WO2013017111A1 - 照明装置和投影装置 - Google Patents

照明装置和投影装置 Download PDF

Info

Publication number
WO2013017111A1
WO2013017111A1 PCT/CN2012/080675 CN2012080675W WO2013017111A1 WO 2013017111 A1 WO2013017111 A1 WO 2013017111A1 CN 2012080675 W CN2012080675 W CN 2012080675W WO 2013017111 A1 WO2013017111 A1 WO 2013017111A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
blue
color
excitation light
material layer
Prior art date
Application number
PCT/CN2012/080675
Other languages
English (en)
French (fr)
Inventor
杨毅
胡飞
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Priority to EP12820118.3A priority Critical patent/EP2740997B1/en
Priority to KR1020147002655A priority patent/KR101830753B1/ko
Priority to EP18157141.5A priority patent/EP3418801B1/en
Priority to JP2014523193A priority patent/JP6166723B2/ja
Priority to KR1020187004223A priority patent/KR101875850B1/ko
Priority to US14/235,752 priority patent/US9989837B2/en
Priority to EP18157144.9A priority patent/EP3418803B1/en
Priority to EP18157143.1A priority patent/EP3418802B1/en
Publication of WO2013017111A1 publication Critical patent/WO2013017111A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • F21V13/02Combinations of only two kinds of elements
    • F21V13/08Combinations of only two kinds of elements the elements being filters or photoluminescent elements and reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V14/00Controlling the distribution of the light emitted by adjustment of elements
    • F21V14/08Controlling the distribution of the light emitted by adjustment of elements by movement of the screens or filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0087Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for illuminating phosphorescent or fluorescent materials, e.g. using optical arrangements specifically adapted for guiding or shaping laser beams illuminating these materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping
    • H01S5/0078Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping for frequency filtering

Definitions

  • the present invention relates to the field of projection technology, and in particular to a projection system and a projection system thereof, and a blue light correction method.
  • Solid-state light sources such as light-emitting diodes (LDs) or light-emitting diodes (LEDs), which produce high-intensity light, have been widely used in various electronic products, such as lighting devices. in.
  • LDs light-emitting diodes
  • LEDs light-emitting diodes
  • blue light emitted by the blue excitation light itself is between 440 nm and 450 nm, and its color coordinates are about (0.15, 0.016).
  • the pure blue light has a color coordinate of (0.152, 0.061) and a dominant wavelength of 462 nm. Therefore, the blue light (wavelength 440-450nm) emitted by the general blue excitation light will appear as a blue-violet light instead of pure blue light, which easily affects the visual effect produced by the solid-state light source.
  • the main technical problem to be solved by the present invention is to provide a projection apparatus and a projection system thereof, and a blue light correction method, so that the emitted blue light is closer to or substantially equal to the preset required color light.
  • the invention provides a lighting device, comprising:
  • a light source for generating blue light excitation light
  • the substrate includes at least one partition disposed on a propagation path of the blue excitation light, and at least one of the partitions is a blue light partition; a wavelength conversion material layer disposed on the blue light region, wherein the wavelength conversion material layer is used to absorb a part of the excitation light and emit a laser light, and the color coordinate of the laser light is located inside the predetermined color region, so that the blue light region is emitted by The mixed light composed of the laser and the remaining blue excitation light that is not absorbed by the wavelength conversion material layer, the color coordinates of the mixed light being closer to a predetermined blue color coordinate than the color coordinate of the blue excitation light.
  • the invention also proposes a projection device comprising the illumination device described above.
  • the illumination device and the projection device of the present invention can be subjected to the wavelength range or color coordinate of the blue light excitation light of the laser source, so that the emitted blue light is closer or substantially opposite. It is equal to the predetermined blue color coordinate, thus ensuring the visual effect of the lighting device and its overall color performance.
  • FIG. 1 is a schematic structural view of a second embodiment of a lighting device of the present invention.
  • Figure 2 is a front view of ⁇ in the embodiment shown in Figure 1;
  • FIG. 3 is a schematic structural view of a first embodiment of a lighting device of the present invention.
  • FIG. 4 is a schematic structural view of a projection device according to the present invention.
  • Figure 5 is a schematic structural view of a third embodiment of the lighting device of the present invention.
  • FIG. 6 is a diagram showing the correspondence between the transmittance and the laser spectrum of the first filter in the embodiment shown in FIG. 5 according to the present invention.
  • Figure 7 is a schematic structural view of an eighth embodiment of the lighting device of the present invention.
  • FIG. 8A is a schematic structural view of a fourth embodiment of a lighting device of the present invention.
  • Figure 8B is a partial enlarged view of Figure 8A;
  • FIG. 9A is a schematic structural view of a fifth embodiment of a lighting device of the present invention.
  • Figure 9B is a partial enlarged view of Figure 9A;
  • Figure 10 is a schematic view showing the structure of a circular sixth embodiment of the present invention.
  • Figure 11 is a schematic structural view of a seventh embodiment of the lighting device of the present invention.
  • FIG. 13 is a schematic structural view of a ninth embodiment of a lighting device according to the present invention.
  • FIG. 3 is a schematic structural view of a first embodiment of a lighting device 3000 according to the present invention.
  • the illumination device of this embodiment includes a light source (not shown) for generating blue excitation light 3001 having a peak wavelength range of 430 nm or more and 465 nm or less.
  • the illumination device further includes a substrate 3030 including at least one partition disposed on a propagation path of the blue excitation light 3001, at least one of the partitions being a blue light partition 3031.
  • the illumination device 3000 further includes a wavelength conversion material layer 3040 overlying the blue light partition 3031.
  • the wavelength conversion material layer is configured to absorb a portion of the blue excitation light 3001 and emit a laser light, so that the blue light region 3031 exits the laser light.
  • the mixed light 3002 is composed of residual blue light excitation light that is not absorbed by the wavelength conversion material layer 3040, and the color coordinates of the mixed light are closer to a predetermined blue color coordinate than the color coordinates of the blue light excitation light 3001.
  • the wavelength converting material layer 3040 includes a wavelength converting material, which may be a phosphor or a quantum dot, such as a mixture of one or more of a green phosphor or a cyan phosphor or a yellow-green phosphor or a yellow phosphor. , which can absorb a portion of the blue light region (eg, 10%) of the blue light excitation light 3001, and then emit a green or cyan laser (wavelength range, for example, 500-600 nm), the laser and the remaining blue excitation light can form Mix light.
  • a wavelength converting material which may be a phosphor or a quantum dot, such as a mixture of one or more of a green phosphor or a cyan phosphor or a yellow-green phosphor or a yellow phosphor.
  • the mixed light has a partial green or cyan laser light
  • the color coordinates of the mixed light can be shifted toward the green direction so that the mixed light emitted via the blue light partition 3031 can have a better blue light visual effect.
  • the laser light of the wavelength conversion material layer 3040 is not limited to green or Bone light, which may be other colored light having a wavelength greater than that of the blue excitation light, to correct the blue excitation light.
  • the above numerical values of the absorption ratio and the wavelength range of the laser are only for convenience of explanation and do not limit the invention.
  • the color coordinates of the mixed light of the blue excitation light and the laser light are located on the line between the color coordinates of the blue excitation light and the color coordinates of the mixed light.
  • the specific combining principle is as follows: Let the brightness of the blue excitation light and the laser light be L 2 respectively, and the color coordinates are ( , yi ), (x 2 , y 2 ), respectively, and the brightness L and color coordinates (x, y) of the mixed light after the combination. Expressed as:
  • the color coordinate of the laser light generated by the wavelength conversion material can be selected to be close to the color coordinate of the blue light excitation light 3001 to an extension line of the predetermined blue color coordinate line. Then, a point close to a predetermined blue color coordinate is selected as a color coordinate of the mixed light on a line connecting the color coordinates of the blue excitation light and the color coordinate of the laser.
  • the brightness ratio between the blue excitation light and the received laser light can be calculated according to the known color coordinates of the blue excitation light, the laser light, and the mixed light, thereby adjusting the brightness of the blue excitation light and the laser light.
  • the ratio is such that the color coordinates of the mixed light are closer to the predetermined blue color coordinate than the color coordinates of the blue excitation light.
  • the ratio of the luminance between the blue excitation light and the received laser light can be changed by changing the addition amount of the wavelength conversion material in the wavelength conversion material layer 3040. Obviously, if the wavelength conversion material is added in a large amount, the absorbed blue light excitation light 3001 has more energy, and the excited laser light is generated more, so the ratio of the remaining blue excitation light to the laser light is decreased; Then rise.
  • the remaining blue excitation light and the laser light are adjusted by adjusting the addition amount of the wavelength conversion material. With a brightness ratio, you can get a better color blue light.
  • FIG. 12b An enlarged view of the blue light region 1201 is shown in Fig. 12b in the CIE1931 chromaticity diagram 1200 shown in Fig. 12a.
  • 1211 is the color coordinate of the blue excitation light 3001, such as but not limited to (0.16, 0.016), and the area covered by the rectangles of four vertices 1212a, 1212b, 1212c and 1212d is a better blue light.
  • the color coordinate area where 1212a has a color coordinate of (0.14, 0.03), 1212b has a color coordinate of (0.18, 0.03), 1212c has a color coordinate of (0.14, 0.08), and 1212d has a color coordinate of (0.18, 0.08).
  • the laser color is required to be mixed by the color of the blue light indicated by 1211 to obtain the color color coordinates of the area covered by the rectangles of four vertices 1212a, 1212b, 1212c and 1212d.
  • the color coordinates are in the first color area.
  • the first color region is intersected by the following line segments, lines or curves, and is connected end to end: a line connecting the color coordinate 1211 and the color coordinate 1212a and an extension line (straight line), and a line segment between the color coordinate 1212a and the color coordinate 1212b ( Line segment), the line connecting the color coordinate 1211 and the color coordinate 1212b and its extension line (straight line), the edge curve (curve) of the chromaticity diagram 1200.
  • the edge curve of the chromaticity diagram 1200 is based on the data published by the CIE, and is a well-known technique in the art. According to the knowledge of color science, it is easy to calculate that the color wavelength in the first color region corresponds to a main wavelength range of about 465 nm to 585 nm.
  • the color coordinate of the laser is required to be in the second color region.
  • the second color region is formed by the following line segments, straight lines or curved lines, and is connected end to end together: a line connecting the color coordinate 1211 and the color coordinate 1212c and an extension line (straight line), and a line segment between the color coordinate 1212c and the color coordinate 1212d ( Line segment), the line connecting the color coordinate 1211 and the color coordinate 1212d and its extension line (straight line), the edge curve (curve) of the chromaticity diagram 1200.
  • the main wavelength range corresponding to the color coordinates in the second color region is about 492 nm to 562 nm.
  • the second color region is a subset of the first color region.
  • the color color coordinates of the laser light fall into the second color region, as long as the ratio of the blue light excitation light to the laser light is properly adjusted, the final light obtained by the illumination device 3000 will be closer to the ideal blue light. Further, for a more optimized blue light range, that is, the blue color coordinates on the line segment ending with 1213a and 1213b, the color coordinates of the laser are required to be located in the third color region.
  • the third color region is formed by the following line segments, straight lines or curved lines, and is connected end to end together: a line connecting the color coordinate 1211 and the color coordinate 1213a and an extension line (straight line), and a line segment between the color coordinate 1213a and the color coordinate 1213b ( Line segment), the line connecting the color coordinate 1211 and the color coordinate 1212d and its extension line (straight line), the edge curve (curve) of the chromaticity diagram 1200.
  • the main wavelength range corresponding to the color coordinates in the third color region is about 515 nm to 545 nm.
  • the third color region is a subset of the second color region.
  • the color coordinate of the laser light falls into the third color region, as long as the ratio of the blue excitation light to the laser light is properly adjusted, the resulting mixed light of the illumination device 3000 will fall on the line segment having the two end points 1213a and 1213b.
  • the wavelength conversion material layer 3040 absorbs the incident blue excitation light 3001 by 1% to 50% of the total energy of the blue excitation light 3001.
  • the color of the resulting mixed light is improved with respect to the color color coordinates of the blue excitation light 3001.
  • the wavelength conversion material layer 3040 absorbs the incident blue excitation light 3001 by 10%-30% of the total energy of the blue excitation light 3001.
  • 3030 is also a second filter located on the side of the wavelength converting material layer 3040 that is incident on the blue excitation light 3001.
  • the surface of the second filter is plated with an interference filter coating which transmits blue light excitation light 3001 while reflecting the laser light.
  • the blue light illuminating light 3001 is incident on the wavelength conversion material layer 3040 after passing through the second color filter 3030, and is partially absorbed by the wavelength conversion material and converted into a laser light.
  • the laser Since the stimulated emission is isotropic, the laser is divided into two parts, one part is directly emitted into the outer space above it by the laser, and the other part is reflected by the laser after being incident on the second filter 3030 and finally
  • the exiting light 3002 of the illumination device 3000 is formed from the outer space above it and together with the first portion of the laser and the remaining blue light that is not absorbed.
  • the second filter functions to reflect the laser light incident thereon to emit in the outgoing direction (upper in Fig. 3), enhancing the intensity of the laser light in the outgoing light 3002 of the illumination source 3000.
  • one side of the substrate 3030 coated with the interference filter coating is adjacent to the wavelength conversion material layer 3040.
  • the advantage of the coated surface of the substrate 3030 facing the wavelength converting material layer 3040 is that it avoids propagation and lateral diffusion of the laser within the substrate 3030, thereby avoiding the expansion of the spot and the degradation of the energy density.
  • the effect of the air gap between the interference filter coating and the wavelength converting material layer 3040 is that the design of the interference filter coating becomes simpler.
  • FIG. 1 is a schematic structural view of a second embodiment of a lighting device according to the present invention.
  • the illumination device 100 of the present embodiment can be used to generate high-intensity polychromatic light, and the illumination device 100 can include a light source 110, a focusing optical component 120, a substrate 130, and a wavelength converting material layer 140.
  • Light source 110 is used to generate blue blue light excitation light
  • focusing optics assembly 120 is used to focus the blue light excitation light onto substrate 130.
  • the light source 110 can be a solid state light source or a combination of a plurality of solid state light sources, such as a blue light LD, an LED, or a mixture of the two, for generating blue light excitation light having a peak wavelength range of 430 nm or more and less than or equal to 465nm. Take the blue excitation light with a peak wavelength of 445 nm as an example, and the color coordinates are about (0.16, 0.016).
  • the embodiment is different from the first embodiment in that it further includes a driving device, and the wavelength conversion material layer 140 and the substrate 130 are respectively fixedly connected to the driving device; the driving device drives the substrate 130 and the wavelength conversion material layer 140 and the blue light excitation
  • the light is relatively moved so that the respective sections 131, 132, 133, and 134 of the substrate 130 are alternately located on the propagation path of the blue excitation light, as shown in FIGS. 1 and 2.
  • the substrate 130 in this embodiment is made of an optically transparent material such as glass, PMMA plastic or the like.
  • the substrate 130 has a plurality of partitions 131, 132, 133, and 134, wherein the partition 131 is a blue light partition 131.
  • the wavelength conversion material layer 140 is disposed on a blue light partition 131 of the substrate 130 and is disposed on at least a portion of the blue light region 131 for absorbing the blue light excitation light and emitting a laser light to cause the blue light region 131 to exit.
  • the mixed light composed of the laser and the blue excitation light remaining in the blue light region, the color coordinate of the mixed light is closer to a predetermined blue color coordinate than the color coordinate of the blue excitation light.
  • the range of the color coordinates of the received laser light is the same as that of the first embodiment.
  • At least one of the partitions 132 to 134 includes a wavelength converting material (not shown) different in material from the wavelength converting material layer 140 for absorbing blue light excitation light and emitting a wavelength different from blue Shade.
  • the partitioned wavelength converting material is preferably a phosphorescent material such as a phosphor, a nano material such as a quantum dot, or the like. This wavelength converting material may be deposited on the surface of the substrate 130 or doped within the material of the substrate 130.
  • 130 may be, for example, a circular wheel that rotates about the axis of rotation A, and the sections 131-134 of the substrate 130 are sequentially disposed around the axis of rotation A of the wheel, and These partitions 131-134 may be a Blu-ray partition 131, a green light partition 132, a red light partition 133, and a white light partition 134.
  • the wavelength conversion materials on the green light partition 132, the red light partition 133, and the white light partition 134 are preferably emitted in the wavelength range of 500 to 580 nm, 58 (700 nm, 48 (700 nm, respectively), so that the blue light excitation light of the light source 110 can be respectively in the green light partition. 132.
  • the red light partition 133 and the white light partition 134 are converted into green light, red light, and white light.
  • the substrate 130 can be rotated relative to the light source 110 to make different partitions 131-134.
  • the blue light excitation light is exposed at different times, and thus the colored light of different colors can be sequentially emitted through the rotating substrate 130.
  • the substrate 130 may have fewer (eg, two or three) or more (eg, eight) partitions; the substrate 130 may also have only one blue light partition, at which time the substrate may not need to be moved relative to the light source 120. As long as it can ensure that the blue zone can be set on the propagation path of the blue excitation light.
  • the substrate may not move relative to the light source 120, and multiple light sources are used corresponding to each partition of the substrate. For example, a blue light source is disposed corresponding to the blue light partition of the substrate to obtain blue light, and an ultraviolet light source. Corresponding to the red light partition of the substrate to obtain red light.
  • 130 may have at least one green light partition carrying a green phosphor for absorbing blue excitation light and emitting green light; at least one yellow light partition carrying light for absorbing blue excitation light and emitting A yellow light phosphor of yellow light; or at least one red light partition carrying a red phosphor for absorbing blue light excitation light and emitting red light.
  • FIG. 4 is a schematic structural diagram of a projection apparatus according to the present invention.
  • the illumination device 100 of the present embodiment can be applied to a projection system, which can include a light source 110, a focusing optics assembly 120, a substrate 130, a wavelength converting material layer 140, an optical integrator 150, an optical relay, or a collection device 160. , a prism 170, a micro-display imager 180 and a projection lens 190.
  • the blue light excitation light can form polychromatic light through the substrate 130, and then the polychromatic light can be intensity-homogenized (mixed) by the optical integrator 150.
  • Optical relay 160 can focus the mixed light through prism 170 onto microdisplay imager 180.
  • the light modulated by the imager 180 can be projected onto the display screen by the projection lens 190, and a multi-color image can be realized by the synchronous operation between the imager 180 and the substrate 130.
  • the microdisplay imager 180 The synchronization operation with 130 can be controlled by a signal processor (not shown).
  • the color coordinates of the laser light emitted by the wavelength-exchange material layer are required to be at specific positions in the CIE1931 chromaticity diagram.
  • the wavelength conversion material which is practically selectable is limited, the color coordinates of the laser light emitted by some wavelength conversion materials cannot satisfy the above requirements.
  • FIG. 5 is a schematic structural view of a third embodiment of the lighting device of the present invention.
  • the illumination device 200 of the second embodiment may include a light source 210, a substrate 230, and a wavelength conversion material layer 240. Unlike the first embodiment, the embodiment further includes a first filter (or first filter layer) 250. .
  • the first filter 250 is disposed on the wavelength conversion material layer 240, that is, the wavelength conversion material layer 240 is located between the first filter 250 and the blue portion 231.
  • the first filter only allows the wavelength range to be less than or equal to a predetermined wavelength.
  • the wavelength value is transmitted by the laser.
  • the first filter 250 and the wavelength converting material layer 240 may optionally have a predetermined pitch (i.e., an air gap), or the first filter 250 may be adhered to the wavelength converting material layer 240.
  • FIG. 6 is a diagram showing the correspondence between the transmittance and the laser spectrum of the first filter in the embodiment shown in FIG. 5.
  • the first filter 250 can allow only mixed light having a wavelength range of about 550 nm or less to pass.
  • the color coordinate X value of the mixed light emitted by the blue light partition 231 can be less than 0 by the wavelength conversion material layer 240 and the first color filter (first filter layer) 250 of the present embodiment. It is 0.1 or more and 0.2 or less, for example, 0.15.
  • the color coordinates of the mixed light emitted by the blue zone 231 can be (0.16, 0.052), so that the mixed light emitted by the blue zone 231 can further approach the international standard through the first filter 250. Pure blue light as specified. Therefore, the first filter functions to be disposed on the outgoing light path of the mixed light for filtering the laser light so that the color of the mixed light is closer to or reaches a predetermined blue color coordinate.
  • the wavelength conversion material layer 240 is disposed on the surface of one side of the 230, and the first filter 250 is disposed on the wavelength conversion material layer 240.
  • the first filter 250 may also be disposed after the collection optical system or on other optical paths in the system, and the invention is not limited thereto.
  • a scattering material may be added to the wavelength conversion material layer of the present invention, so that when the blue excitation light is incident, the wavelength conversion material layer can not only absorb part of the blue excitation light and emit the laser, but also the remaining blue light that is not absorbed.
  • the excitation light is scattered to eliminate its coherence, and the composition of the coherent light in the exiting light of the final illumination device of the present invention is greatly reduced.
  • a scattering material can be added to the wavelength converting material layer in all embodiments of the invention.
  • the surface of the substrate, the first filter or the second filter may be roughened to achieve scattering of the blue excitation light.
  • FIG. 8A is a schematic structural view of a fourth embodiment of the illumination device of the present invention
  • FIG. 8B is a partial enlarged view of FIG. 8A
  • the illumination device 400 of the fourth embodiment may include a light source 410, a substrate 430, a wavelength conversion material layer 440, and a first filter 450.
  • the wavelength conversion material layer 440 is disposed on the blue light partition 431 of the substrate 430 for absorbing a portion of the blue light excitation light of the blue light portion 431 and emitting a laser light to cause the laser light source of the wavelength conversion material layer 440 to be partitioned by the blue light of the light source 410.
  • the blue light excitation light is mixed into a suitable mixed blue light.
  • the substrate 430 may be a second filter that transmits blue light excitation light and reflects the laser light
  • the first color filter 450 is disposed on one side of the 3 ⁇ 4 430 (second filter), wavelength conversion.
  • the material layer 440 is overlaid on the surface of the first filter 450 facing the side of the substrate 430.
  • the blue light excitation light of the light source 410 is incident on the substrate 430 from the side of the substrate 430 facing away from the layer of the wavelength conversion material layer 440.
  • the laser light generated by the wavelength conversion material layer 440 can be modified by the first filter 450.
  • the substrate 430 and the wavelength conversion material layer 440 have A predetermined pitch (ie, an air gap), or the substrate 430 may also be in close contact with the wavelength conversion material layer 440.
  • the first color filter 450 may have a surface structure 451 formed on a side surface of the first color filter 450 facing the substrate 430, and the wavelength conversion material layer 440.
  • the fluorescent material can be filled in the recess of the surface microstructure 451. Therefore, by controlling the depth and shape of the surface microstructure 451, the coating amount of the wavelength conversion material layer 440 can be controlled, and the color of the emitted light can be precisely controlled.
  • the surface microstructure can be equivalent to the roughening treatment of the surface, that is, when the blue excitation light is incident on the surface of the microstructure, a certain degree of scattering is emitted to eliminate the coherence of the laser.
  • the coating on the first filter 450 is located on one side of the first filter 450 principle wavelength converting material 440.
  • FIG. 9A is a schematic structural view of a fifth embodiment of the illumination device of the present invention
  • FIG. 9B is a partial enlarged view of FIG. 9A
  • the illumination device 500 of the fifth embodiment may include a light source 510, a substrate 530, a wavelength conversion material layer 540, and a first filter (or first filter layer) 550.
  • the wavelength conversion material layer 540 is disposed on the blue light partition 531 of the substrate 530 to absorb part of the blue light excitation light and emit a laser light to mix the laser light of the wavelength conversion material layer 540 with the remaining blue light excitation light of the blue light partition. Suitable for mixing blue light.
  • the first filter 550 is disposed on a surface of one side of the substrate 530.
  • the substrate 530 may have a surface drum structure 532 formed on the other side of the substrate 530.
  • the fluorescent material of the wavelength converting material layer 540 can be filled in the recess of the surface microstructure 532. Therefore, by controlling the depth and shape of the surface microstructure 532, the amount of coating of the wavelength converting material layer 540 can be controlled, and the color of the emitted light can be precisely controlled.
  • FIG. 10 is a schematic structural view of a circular sixth embodiment of the present invention.
  • the wavelength converting material layer 640 (as shown in the shaded area in FIG. 10) is overlaid on a partial region of the blue light partition 631 of the shy 630.
  • the blue light partition 631 includes an adjustment sub-area 601 and a blank sub-partition 602, and the wavelength conversion material layer 640 is disposed on the adjustment sub-area 601, and the wavelength conversion material layer 640 on the adjustment sub-area 601 can have a higher concentration. Or a larger thickness to enhance the absorption of the blue excitation light by the wavelength conversion material layer 640, for example, to absorb 100% of the blue excitation light.
  • a blue-laser color sequence can be generated on the blue region 631.
  • the color timing sequence can be mixed by using synchronous control of a rear-end light modulation chip (not shown). To get pure blue light as specified by international standards.
  • FIG. 11 is a schematic structural view of a seventh embodiment of a lighting device of the present invention.
  • the illumination device 700 of the seventh embodiment may include a light source 710, a focusing optics 720, a substrate 730, and a wavelength converting material layer 740.
  • Light source 710 is used to generate blue excitation light
  • focusing optics 720 is used to focus the blue excitation light onto a small area of substrate 730.
  • the substrate 730 is allowed to move relative to the light source 720 such that the respective sections 731, 732, and 733 of the substrate 130 are alternately located on the propagation path of the blue excitation light.
  • the wavelength conversion material layer 740 is disposed on the blue light partition 731 of the substrate 730 for absorbing a portion of the blue light excitation light of the blue light region and emitting a laser light to cause the remaining blue light excitation light of the wavelength conversion material layer 740 to be subjected to laser and blue light partitioning. Can be blended into a suitable mixed blue light.
  • the substrate 730 may be a rectangular moving plate, and the partitions 73 1 , 732 and 733 of different colors are linearly arranged on the 730. When the rectangular substrate 730 is linearly vibrated, the partitions 73 1 , 732 and 733 can be alternately excited and produce alternating colors of colored light.
  • FIG. 7 is a schematic structural view of an eighth embodiment of a lighting device of the present invention.
  • the illumination device 300 of the present embodiment may include a light source 3 10, a substrate 330, a wavelength conversion material layer 340, and a first filter 350.
  • the wavelength conversion material layer 340 is disposed on the surface of one side of the 330
  • the first filter 350 is disposed on the wavelength conversion material layer 340
  • the substrate 330 has a reflective layer 332.
  • the side of the wavelength converting material layer 340 away from the incident light of the blue light is used to reflect a blue light excitation light and a laser light incident on the substrate 330.
  • the reflective layer 332 is attached to or plated on the surface of 330.
  • the blue light emitted by the light source 310 is emitted from the first filter 350 to the wavelength conversion material layer 340, and the laser light emitted by the wavelength conversion material layer 340 which is isotropically emitted can be divided into two parts, a part of which is subjected to The laser is directly emitted into the outer space of the upper part, and the other part The laser light is incident on and reflected by the surface of the emission layer 332 and finally exits in the outer space of the upper portion of the wavelength conversion material layer 340, and is mixed with the remaining blue excitation light that is not absorbed by the wavelength conversion material layer 340, and passes through A filter 350 is used to further correct this mixed blue light.
  • the first filter 350 and the wavelength converting material layer 340 may selectively have a predetermined spacing (ie, an air gap), or the first filter 350 may be in close contact with the wavelength converting material layer 340.
  • the outgoing light of the wavelength converting material layer 340 faces the light source 310, and if it enters the surface of the light source 310, a serious loss of optical energy is formed. Therefore, in the ninth embodiment of the invention, there is further included a light guiding means disposed between the wavelength converting material layer and the light source, as shown in FIG.
  • the light guiding device is configured to transmit the blue light excitation light while simultaneously reflecting the incident light path of the blue light excitation light emitted from the light source from the mixed light of the laser light and the unabsorbed residual blue light excitation light emitted from the wavelength conversion material layer. The separation is performed to form an outgoing light, thereby avoiding the loss caused by the incident light being incident on the light source.
  • the light guiding device is a curved reflecting device 1070 with a light passing hole, and the blue light excitation light 811 emitted from the light source 810 is incident on the wavelength conversion through the light passing hole of the curved reflecting device.
  • the surface of the substrate 830 has a reflective layer that reflects the blue excitation light and is exposed to the external space by the laser.
  • the light emitted from the wavelength converting material layer 840 is reflected by the arc reflecting surface around the light passing hole of the arc reflecting means, and is incident on the entrance of the light collecting means 1090.
  • the incident light is prevented from being incident on the surface of the light source 810.
  • the arc reflecting device 1070 is a hemispherical or hemispherical portion, and the wavelength conversion material layer 840 is incident at a first point near the hemispherical center by the blue excitation light, and the entrance position of the light collecting device 1090 is located.
  • the second point near the hemispherical center of the sphere.
  • the first point and the second point are symmetrical about the hemispherical center of the sphere, thus ensuring that the efficiency of the light incident on the entrance of the light collecting means is relatively optimized.
  • the curved reflecting surface 1070 is a part of a semi-ellipsoidal or semi-ellipsoidal shape, and the wavelength conversion material layer 840 is located at a focus of the semi-ellipsoid by the position of the light-emitting excitation light, the light collecting device
  • the entry position of the 1090 is located at the second point focus of the semi-ellipsoid. This ensures that the efficiency of light incident on the entrance of the light collecting device is maximized.
  • the embodiment further includes a driving device 1610, wherein the wavelength conversion material layer 840 and the substrate 830 are respectively connected and fixed with the driving device; the driving device drives the substrate 830 and the wavelength conversion material layer 840 to rotate around the rotation axis A, so that The region is sequentially illuminated by the blue excitation light 811 and emits light of different colors to form a color light timing, or there is only one blue light region on the substrate, and the color of the emitted light of the illumination device 1600 remains blue as the driving device 1610 rotates.
  • the illumination device of the embodiment further comprises at least one first filter connected to the driving device 1610 and fixed, and synchronously moved with the wavelength conversion material layer 840.
  • the angle of the first filter is the same as the angle of the blue zone on the 830, and the position corresponds to the position of the blue zone on the 830, that is, when the blue zone on the substrate is illuminated by the blue light, the emitted light is generated. After passing through the light collecting device 1090, it is incident on the first filter 850.
  • the first filter 850 in this embodiment is located behind the light collecting device 1090, which has the advantage that the incident angle of the light becomes smaller due to the collection of the light collecting device 1090, so the filter The light effect is better.
  • all embodiments of the present invention may employ a driving device to cause the wavelength converting material layer to move relative to the blue excitation light.
  • the second filter in the above embodiment also needs to be connected to the driving device and fixed, and moves in synchronization with the wavelength conversion material layer.
  • the light guiding device in the eighth embodiment has various modifications.
  • the light guiding means may be a planar reflecting means with a light passing hole and a mirror located around the light passing hole. Similar to the arc reflecting device in the eighth embodiment, the blue light excitation light may be incident on the wavelength conversion material layer through the light passing hole of the planar reflecting device, and the laser light and the remaining blue light emitting light are mixed by the wavelength converting material layer. The light is reflected by the mirror located around the light-passing hole of the planar reflecting device to form the outgoing light of the light source device; the planar reflecting device effectively prevents the emitted light from being incident on the surface of the light source.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Projection Apparatus (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optical Filters (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

一种照明装置(100)及投影装置,包括用于产生蓝光激发光的光源(110)和基板(130),以及覆设于基板(130)上的波长转换材料层(140),波长转换材料层(140)用于吸收蓝光激发光中的一部分并发出一受激光,受激光的色坐标位于预定颜色区域内部,使得波长转换材料层(140)出射由受激光和没有被波长转换材料层(140)吸收的剩余蓝光激发光组成的混合光,混合光的色坐标相较于蓝光激发光的色坐标更接近预定的蓝光色坐标。

Description

照明装置和投影装置
【技术领域】
本发明涉及投影技术领域, 尤其是涉及一种照明装置及其应用的投影***、 及蓝光校正方法。
【背景技术】
固态光源, 例如蓝光激发光二极管 (LD, Laser Diode)或发光二极管 (LED, Light Emitting Diode), 其可产生高亮度的光线, 并已被广泛应用于各种电子产 品中, 例如应用于照明装置中。
目前, 不同种类的固态光源可发出不同的色光, 例如蓝光、 红光或黄光。 然而, 一^:蓝光激发光本身所发出的蓝光波长是在 440nm-450nm之间, 其色坐 标约为(0.15, 0.016)。 在国际通用的数字电视标准 Rec709中, 纯蓝光的色坐标 为(0.152, 0.061), 其主波长为 462nm。 因此, 一般蓝光激发光所发出的蓝光 (波 长 440-450nm)会看似一蓝紫光, 而非纯蓝光, 因而容易影响固态光源所产成的 视觉效果。
故, 有必要提供一种照明装置及其应用的投影***、 及蓝光校正方法, 以 解决现有技术所存在的问题。
【发明内容】
本发明主要解决的技术问题是提供一种照明装置及其应用的投影***、 及 蓝光校正方法, 以使发出的蓝光更接近或实质相等于预设要求的色光。
本发明提出一种照明装置, 包括:
用于产生蓝光激发光的光源;
基板, 该基板包括设置于该蓝光激发光的传播路径上的至少一个分区, 该 分区中的至少一个分区为蓝光分区; 覆设于蓝光分区上的波长转换材料层, 谅波长转换材料层用于吸收盟光激 发光中的一部分并发出一受激光, 该受激光的色坐标位于预定颜色区域内部, 使得蓝光分区出射由该受激光和没有被波长转换材料层吸收的剩余蓝光激发光 组成的混合光, 该混合光的色坐标相较于蓝光激发光的色坐标更接近预定的蓝 光色坐标。
本发明还提出一种投影装置, 包括上述的照明装置。
相较于现有的蓝光固态光源无法发出符合要求的纯蓝光, 本发明的照明装 置及投影装置可受激光源的蓝光激发光的波长范围或色坐标, 以使发出的蓝光 更接近或实质相等于预定的蓝光色坐标, 因而可确保照明装置的视觉效果及其 整体色彩表现。
【附图说明】
图 1为本发明中照明装置的第二实施例的结构示意图;
图 2为图 1所示实施例中 ^的主视图;
图 3为本发明中照明装置的第一实施例的结构示意图;
图 4为本发明中投影装置的结构示意图;
图 5为本发明照明装置的第三实施例的结构示意图;
图 6为本发明为图 5所示实施例中第一滤光片的透过率及受激光光谱的对 应关系图;
图 7为本发明照明装置的第八实施例中结构示意图;
图 8A为本发明照明装置的第四实施例中结构示意图;
图 8B为图 8A的局部放大图;
图 9A为本发明照明装置的五实施例的结构示意图;
图 9B为图 9A的局部放大图;
图 10为本发明圓形 的第六实施例的结构示意图; 以及
图 11为本发明照明装置的第七实施例的结构示意图;
图 12a和 12b是本发明的照明装置中波长装换材料所发射的受激光的色坐 标的范围;
图 13为本发明照明装置的第九实施例的结构示意图; 【具体实施方式】
以下各实施例的说明是参考附加的图式, 用以例示本发明可用以实施的特 定实施例。 本发明所提到的方向用语, 例如 「上」、 「下」、 「前」、 「后」、 「左」、 「右」、 「内」、 「外」、 「侧面」等, 仅是参考附加图式的方向。 因此, 使用的方 向用语是用以说明及理解本发明, 而非用以限制本发明。
在图中, 结构相似的单元是以相同标号表示。
请参照图 3, 其为本发明中照明装置 3000的第一实施例的结构示意图。 本 实施例的照明装置包括, 用于产生蓝光激发光 3001 的光源 (图中未画出), 该 蓝光激发光光谱的峰值波长范围为大于等于 430nm且小于等于 465nm。 本照明 装置还包括基板 3030, 该基板 3030包括设置于蓝光激发光 3001的传播路径上 的至少一个分区, 该分区中的至少一个分区为蓝光分区 3031。
本照明装置 3000还包括波长转换材料层 3040, 覆设于蓝光分区 3031上, 该波长转换材料层用于吸收蓝光激发光 3001中的一部分并发出一受激光, 使得 蓝光分区 3031 出射由该受激光和没有被波长转换材料层 3040吸收的剩余蓝光 激发光组成的混合光 3002,该混合光的色坐标相较于蓝光激发光 3001的色坐标 更接近预定的蓝光色坐标。
波长转换材料层 3040包括波长转换材料, 该波长转换材料可能是荧光粉或 量子点, 例如为绿色荧光粉或青色荧光粉或黄绿色荧光粉或黄色荧光粉中的一 种或多种的的混合, 其可吸收蓝光分区的一部分 (如 10%)的蓝光激发光 3001, 再发射出绿色或青色的受激光 (波长范围例如为 500-600nm), 该受激光与剩余的 蓝光激发光可形成此混合光。 由于混合光具有部分绿色或青色的受激光, 因而 混合光的色坐标可向绿色方向偏移, 以使经由蓝光分区 3031所发出的混合光可 具更好的蓝光视觉效果。 然而, 波长转换材料层 3040的受激光并不限于绿色或 骨色光, 其可为其它波长大于蓝光激发光的色光, 以校正此蓝光激发光。 以上 的吸收比例的数值和受激光的波长范围只是为了说明方便的举例, 并不对本发 明造成限制。
具体来说, CIE色品图上, 蓝光激发光和受激光的混合光的色坐标位于蓝 光激发光的色坐标与混合光的色坐标之间的连线上, 具体合光原理如下所示: 设蓝光激发光和受激光的亮度分别为 、 L2, 色坐标分別为( , yi)、 (x2, y2), 则合光后的混合光的亮度 L和色坐标 (x, y)表示为:
L=L,+L2 (1) x = (L1^ + L2^)/(^ + ^) (2) y = (L1 +L2)/(^ + ^) (3) 因此, 可以通过选择波长转换材料, 使其产生的受激光的色坐标接近蓝光 激发光 3001的色坐标到预定的蓝光色坐标连线的延长线上。 然后, 在蓝光激发 光的色坐标与受激光的色坐标的连线上选择接近预定的蓝光色坐标的一点作为 混合光的色坐标。 随后, 通过上述公式才艮据已知的蓝光激发光、 受激光以及混 合光的色坐标可以计算出的蓝光激发光和受激光之间的亮度比例, 进而通过调 节蓝光激发光和受激光的亮度比例, 使得混合光的色坐标相较于蓝光激发光的 色坐标更接近预定的蓝光色坐标。
可以通过改变波长转换材料层 3040中的波长转换材料的添加量来改变蓝光 激发光和受激光之间的亮度比例。 显而易见, 波长转换材料的添加量多, 则吸 收的蓝光激发光 3001的能量就比较多, 受激产生的受激光就比较多, 因此剩余 的蓝光激发光和受激光的亮度比例就会降低; 反之则升高。
才艮据公式 (1)至 (3)可见,只要选择合适的波长转换材料层 3040中的波长转换 材料, 再通过调整波长转换材料的添加量以调整剩余的蓝光激发光和受激光的 亮度比例, 就可以得到颜色更好的蓝光。
下面具体说明对波长转换材料的选择原则。 如图 12a所示的 CIE1931 色品 图 1200中, 蓝光区域 1201的放大图如图 12b所示。 在图 12b中, 1211为蓝光 激发光 3001的色坐标,例如但不限于(0.16, 0.016 ), 而以 1212a、 1212b, 1212c 和 1212d 为四个顶点的矩形所覆盖的区域为较好的蓝光的色坐标区域, 其中 1212a的色坐标是(0.14,0.03 ), 1212b的色坐标是( 0.18,0.03 ), 1212c的色坐标 是(0.14,0.08 ), 1212d的色坐标是(0.18, 0.08 )。 在该蓝光色坐标区域中, 最优 的为以 1213a和 1213b为端点的线段上的蓝光色坐标, 其中 1213a的色坐标为 ( 0.155,0.06 ), 1213b的色坐标是(0.165,0.06 )。 根据上述的分析可知, 若要受 激光与 1211所示的蓝光的颜色进行混合得到以 1212a、 1212b, 1212c和 1212d 为四个顶点的矩形所覆盖的区域的颜色色坐标, 则需要该受激光的色坐标位于 第一颜色区域。 该第一颜色区域由以下线段、 直线或曲线相交后首尾相连共同 围成: 色坐标 1211 与色坐标 1212a的连线及其延长线(直线), 色坐标 1212a 与色坐标 1212b之间的线段 (线段), 色坐标 1211与色坐标 1212b的连线及其 延长线 (直线), 色品图 1200的边缘曲线 (曲线)。 其中色品图 1200的边缘曲 线以 CIE发布的数据为准, 属于本领域的公知技术。 根据颜色学的知识容易计 算出, 第一颜色区域内的色坐标所对应的主波长范围大约是 465nm至 585nm。
进一步的, 若要得到更优化的蓝光色坐标, 则需要受激光的色坐标位于第 二颜色区域。 该第二颜色区域由以下线段、 直线或曲线相交后首尾相连共同围 成: 色坐标 1211与色坐标 1212c的连线及其延长线(直线), 色坐标 1212c与色 坐标 1212d之间的线段(线段), 色坐标 1211与色坐标 1212d的连线及其延长 线 (直线), 色品图 1200的边缘曲线 (曲线)。 才艮据颜色学的知识容易计算出, 第二颜色区域内的色坐标所对应的主波长范围大约是 492nm至 562nm。
显而易见, 第二颜色区域是第一颜色区域的一个子集。 当受激光的颜色色 坐标落入第二颜色区域时, 只要蓝光激发光与受激光的比例调整得当, 照明装 置 3000最终得到的混合光将更接近理想蓝光。 逬一步的, 对于更优化的蓝光范围, 即以 1213a和 1213b为端点的线段上 的蓝光色坐标, 则需要受激光的色坐标位于第三颜色区域。 该第三颜色区域由 以下线段、 直线或曲线相交后首尾相连共同围成: 色坐标 1211与色坐标 1213a 的连线及其延长线(直线), 色坐标 1213a与色坐标 1213b之间的线段(线段), 色坐标 1211与色坐标 1212d的连线及其延长线(直线), 色品图 1200的边缘曲 线(曲线)。 才艮据颜色学的知识容易计算出, 第三颜色区域内的色坐标所对应的 主波长范围大约是 515nm至 545nm。
显而易见, 第三颜色区域是第二颜色区域的一个子集。 当受激光的颜色色 坐标落入第三颜色区域时, 只要蓝光激发光与受激光的比例调整得当, 照明装 置 3000最终得到的混合光将落在由 1213a和 1213b为两个端点的线段上。
才艮据实验数据, 当控制波长转换材料层 3040中的波长转换材料的添加量使 波长转换材料层 3040吸收入射的蓝光激发光 3001的能量占蓝光激发光 3001总 能量的 1%-50%时, 所得到的出射的混合光的颜色相对于蓝光激发光 3001的颜 色色坐标有改善。 优选的, 波长转换材料层 3040吸收入射的蓝光激发光 3001 的能量占蓝光激发光 3001总能量的 10%-30%。
在本实施例中, 优选的, 3030同时也是第二滤光片, 位于波长转换材 料层 3040的被蓝光激发光 3001入射的一侧。 该第二滤光片的表面上镀有干涉 滤光镀膜, 该干涉滤光镀膜可以透射蓝光激发光 3001同时反射受激光。 蓝光激 发光 3001穿透第二滤光片 3030后入射到波长转换材料层 3040, 部分被波长转 换材料吸收后被转换成受激光发射出来。 由于受激发射是各项同性的, 因此该 受激光分为两部分, 一部分受激光直接出射到其上方的外部空间中, 另一部分 受激光入射于第二滤光片 3030后被其反射并最终从其上方的外部空间出射, 并 与第一部分受激光和未被吸收的剩余的蓝光激发光一起形成照明装置 3000的出 射光 3002。第二滤光片的作用在于反射入射到其上的受激光使其向出射方向(图 3中的上方)发射, 增强了照明光源 3000的出射光 3002中的受激光的强度。
更优选的,基板 3030的镀有干涉滤光镀膜的一面靠近波长转换材料层 3040, 且与波长转换材料层 3040之间存在一空气隙。 基板 3030的镀膜面面向波长转 换材料层 3040的优点在于其避免了受激光在基板 3030内部的传播和横向扩散, 进而避免了光斑的扩大和能量密度的下降。 干涉滤光镀膜与波长转换材料层 3040之间的空气隙的作用是时该干涉滤光镀膜的设计变得更简单。
请参照图 1 , 其为本发明中照明装置的第二实施例的结构示意图。 本实施例 的照明装置 100可用于产生高亮度的多色光, 照明装置 100可包括光源 110、 聚 焦光学组件 120、 基板 130及波长转换材料层 140。 光源 110用于产生蓝色的蓝 光激发光, 聚焦光学组件 120用于将该蓝光激发光聚焦至基板 130上。
光源 110可为一个固态光源或多个固态光源的组合, 此固态光源例如为蓝 光 LD、 LED或两者混合使用, 用于产生蓝光激发光, 其光谱的峰值波长范围为 大于等于 430nm且小于等于 465nm。 以峰值波长为 445nm的蓝光激发光为例, 且其色坐标约为(0.16, 0.016)。
本实施例与第一实施例的不同点还在于, 还包括驱动装置, 波长转换材料 层 140和基板 130分別与该驱动装置连接固定; 该驱动装置驱动基板 130和波 长转换材料层 140与蓝光激发光相对运动, 以使基板 130的各个分区 131、 132、 133及 134轮流位于蓝光激发光的传播路径上, 如图 1和图 2所示。 本实施例中 的基板 130是由光学透明材料制成, 例如玻璃、 PMMA塑料等。 基板 130具有 多个分区 131、 132、 133及 134, 其中分区 131为蓝光分区 131。 波长转换材料 层 140覆设于基板 130的一蓝光分区 131上, 且至少覆设于蓝光分区 131的部 分区域上, 用以吸收此蓝光激发光, 并发出一受激光, 使得蓝光分区 131 出射 由该受激光与蓝光分区剩余的蓝光激发光组成的混合光, 该混合光的色坐标相 较于蓝光激发光的色坐标更接近预定的蓝光色坐标。 该受激光的色坐标的取值 范围与第一实施例相同。
在本实施例中, 分区 132至 134中的至少一个包含波长转换材料 (未显示), 其材料不同于波长转换材料层 140, 用于吸收蓝光激发光, 并发出波长不同于蓝 色光。 分区的波长转换材料优选为磷光性材料、 例如荧光粉、 纳米材料 (如量子 点)等。 此波长转换材料可沉积于基板 130的表面上, 或者掺杂于基板 130的材 料内。
在本实施例中, 130可例如为圆形的转轮, 此转轮绕着转轴 A来旋转, 而基板 130的这些分区 131-134可依序地围绕此转轮的转轴 A来设置, 且这些 分区 131-134可为蓝光分区 131、 绿光分区 132、 红光分区 133及白光分区 134。 绿光分区 132、红光分区 133及白光分区 134上的波长转换材料分別优选在波长 范围 500~580nm、 58( 700nm、 48( 700nm发出光, 使得光源 110的蓝光激发 光可分别在绿光分区 132、 红光分区 133及白光分区 134上转换成绿光、 红光及 白光。 当基板 130绕着转轴 A来旋转时, 基板 130可相对于光源 110来转动, 以使不同的分区 131-134在不同的时间暴露于蓝光激发光,因而可通过旋转的基 板 130来依序发出不同颜色的色光。
在其它实施例中, 基板 130可具有更少(例如二个或三个)或更多(例如 8个) 的分区; 基板 130也可以只有一个蓝光分区, 此时基板可无需相对于光源 120 运动, 只要能保证蓝光分区能够设置于蓝光激发光的传播路径上即可。 在基板 具有至少两个分区时, 基板也可以不能相对于光源 120运动, 而采用多个光源 对应基板的各分区, 例如, 一个蓝光光源与基板的蓝光分区对应设置以得到蓝 光, 一个紫外光光源与基板的红光分区对应设置以得到红光。
在另一实施例中, 130可具有至少一个绿光分区, 其承载有用于吸收 蓝光激发光并发出绿光的绿光荧光粉; 至少一个黄光分区, 其承载有用于吸收 蓝光激发光并发出黄光的黄光荧光粉; 或至少一个红光分区, 承载有用于吸收 蓝光激发光并发出红光的红光荧光粉。
请参照图 4, 其为本发明的投影装置的结构示意图。 本实施例的照明装置 100可应用于投影***, 此投影***可包括光源 110、 聚焦光学组件 120、 基板 130、 波长转换材料层 140、 光学积分器 150、 光学中继 (relay)或收集器件 160、 棱镜 170、微显示成像器 (micro-display imager) 180及投影透镜 190。来自光源 110 的蓝光激发光可通过基板 130来形成多色光, 接着, 此多色光可通过光学积分 器 150来进行强度均化 (进行混杂)。 光学中继 160可将混杂后的光通过棱镜 170 来聚焦到微显示成像器 180上。 经过^ ¾显示成像器 180调制过的光可由投影透 镜 190投影到显示屏幕上, 通过 ^鼓显示成像器 180与基板 130之间的同步操作, 可实现一多色影像, 其中微显示成像器 180与 130之间的同步操作可通过 一信号处理器 (未显示)来控制。
在上述实施例中,要求波长装换材料层所发射的受激光的色坐标在 CIE1931 色品图中特定的位置。 然而, 由于实际中可选择的波长转换材料有限, 因此有 的波长转换材料发射的受激光的色坐标不能满足上述的要求。 在本发明中, 还 可以利用滤光片对受激光进行过滤, 使其达到上述的颜色要求。
请参照图 5, 图 5为本发明照明装置的第三实施例的结构示意图。 第二实施 例的照明装置 200可包括光源 210、 基板 230、 波长转换材料层 240, 与第一实 施例不同的是, 本实施例还包括第一滤光片(或第一滤光层) 250。
第一滤光片 250覆设于波长转换材料层 240之上, 即波长转换材料层 240 位于第一滤光片 250与 的蓝光分区 231之间, 第一滤光片只允许波长范围 小于等于预定波长值的受激光透过。 第一滤光片 250与波长转换材料层 240之 间可选择性地具有一预设间距 (亦即为空气间隙), 或者, 第一滤光片 250亦可紧 贴于波长转换材料层 240。
请参照图 6,图 6为图 5所示实施例中第一滤光片的透过率及受激光光谱的 对应关系图。 如图 6所示, 在本实施例中, 第一滤光片 250可仅允许波长范围 约小于等于 550nm的混合光通过。 如图 5所示, 通过本实施例的波长转换材料 层 240及第一滤光片(第一滤光层 )250, 由蓝光分区 231所发出的混合光的色坐 标 X值可小于 0 其优选是大于等于 0.1且小于等于 0.2, 例如 0.15。 在本实施 例中, 由蓝光分区 231所发出的混合光的色坐标可为(0.16, 0.052), 因此, 通过 第一滤光片 250,由蓝光分区 231所发出的混合光可进一步接近国际标准所规定 的纯蓝光。 因此, 第一滤光片的作用在于, 设置于混合光的出射光路上, 用于过滤受 激光使混合光的颜色更接近或达到预定的蓝光色坐标。
如图 5所示, 在本实施例中, 波长转换材料层 240覆设于 230的一侧 的表面上, 而第一滤光片 250设置于波长转换材料层 240上。 在另一实施例中, 第一滤光片 250 亦可设置于收集光学***之后, 或者位于***中其它位置的光 路上, 本发明并不作限制。
值得说明的是, 由于蓝光激发光往往为相干光, 因此在使用中需要使用消 相干装置来消除原有的相干性。 散射是最常用的消相干的方法。 例如可以在本 发明的波长转换材料层中, 加入散射材料, 这样在蓝光激发光入射时, 波长转 换材料层不仅可以吸收部分蓝光激发光并发射出受激光, 还可以对没有被吸收 的剩余的蓝光激发光进行散射以消除其相干性, 并使最终本发明的照明装置的 出射光中的相干光的成分大大降低。 本发明的所有实施例中都可以在波长转换 材料层中加入散射材料。
除了在波长换换材料层中添加散射材料之外, 还可以对基板、 第一滤光片 或第二滤光片的表面进行粗糙化处理来实现对蓝光激发光的散射。
请参照图 8A和图 8B ,图 8A为本发明照明装置的第四实施例中结构示意图, 图 8B显示依照图 8A的局部放大图。第四实施例的照明装置 400可包括光源 410、 基板 430、 波长转换材料层 440及第一滤光片 450。 波长转换材料层 440覆设于 基板 430的蓝光分区 431上, 用以吸收蓝光分区 431的部分蓝光激发光, 并发 出受激光, 以使波长转换材料层 440的受激光与光源 410蓝光分区剩余的蓝光 激发光混成适合的混合蓝光。 在第四实施例中, 基板 430可为透射蓝光激发光 且反射受激光的第二滤光片, 第一滤光片 450设置于 ¾ 430(第二滤光片)的一 侧上, 波长转换材料层 440覆设于第一滤光片 450的面向基板 430的一侧的表 面上。 此时, 光源 410的蓝光激发光是从基板 430的背向波长转换材料层 440 层的一侧入射于基板 430的。 波长转换材料层 440所产生的受激光可通过第一 滤光片 450来进行修饰。 基板 430与波长转换材料层 440之间可选择性地具有 一预设间距 (亦即为空气间隙),或者,基板 430亦可紧贴于波长转换材料层 440。 再者, 如图 8A与 8B所示, 第一滤光片 450可具有表面 ^T结构 451, 其形 成于第一滤光片 450的面向基板 430的一侧表面上, 而波长转换材料层 440的 荧光材料可填入于表面微结构 451 的凹陷处。 因此, 通过控制表面微结构 451 的深度和形状, 可控制波长转换材料层 440 的涂布量, 进而可精确控制出射光 的颜色。 同时, 从宏观上看, 表面微结构可以等同于表面的粗糙化处理, 即当 蓝光激发光入射于该微结构表面时, 会发射一定程度的散射, 用于消除激光的 相干性。
由于表面微结构 451上 «存在困难, 因此优选的, 第一滤光片 450上的 镀膜位于第一滤光片 450原理波长转换材料 440的一侧。
请参照图 9A和图 9B,图 9A为本发明照明装置的第五实施例的结构示意图, 图 9B为图 9A的局部放大图。 第五实施例的照明装置 500可包括光源 510、 基 板 530、波长转换材料层 540及第一滤光片(或第一滤光层) 550。波长转换材料层 540覆设于基板 530的蓝光分区 531上, 用以吸收部分的蓝光激发光, 并发出受 激光, 以使波长转换材料层 540 的受激光与蓝光分区剩余的蓝光激发光可混成 适合的混合蓝光。 在第五实施例中, 第一滤光片 550覆设于基板 530的一侧的 表面上, 如图 9B所示, 基板 530可具有表面 ^鼓结构 532, 其形成于基板 530的 另一侧的表面上, 而波长转换材料层 540 的荧光材料可填入于表面微结构 532 的凹陷处内。 因此, 通过控制表面微结构 532 的深度和形状, 可控制波长转换 材料层 540的涂布量, 进而可精确控制出射光的颜色。
请参照图 10, 其为本发明圆形 的第六实施例的结构示意图。 在第六实 施例中, 波长转换材料层 640(如图 10中的阴影区)覆设于羞 630的蓝光分区 631 的部分区域上。 此时, 蓝光分区 631 包含调整子分区 601 以及空白子分区 602, 波长转换材料层 640覆设于调整子分区 601上, 且调整子分区 601上的此 波长转换材料层 640可具较高的浓度或较大厚度, 以提升波长转换材料层 640 对蓝光激发光的吸收, 例如可吸收 100%的蓝光激发光。 当利用本实施例的照明 装置来形成多色光时, 在蓝光分区 631上可产生一蓝光-受激光的颜色序列, 此 时,可利用对一后端的光调制芯片(未显示)的同步控制对此颜色时序序列进行混 光, 以得到更接近国际标准所规定的纯蓝光。
请参照图 11 , 其为本发明照明装置的第七实施例的结构示意图。 第七实施 例的照明装置 700可包括光源 710、 聚焦光学组件 720、 基板 730及波长转换材 料层 740。 光源 710用于产生蓝光激发光, 聚焦光学组件 720用于将蓝光激发光 聚焦至基板 730的一个小的面积上。 基板 730允许相对于光源 720运动, 以使 基板 130的各个分区 731、 732及 733轮流位于蓝光激发光的传播路径上。 波长 转换材料层 740覆设于基板 730的蓝光分区 731上, 用以吸收蓝光分区的部分 蓝光激发光, 并发出受激光, 以使波长转换材料层 740 的受激光与蓝光分区剩 余的蓝光激发光可混成适合的混合蓝光。 在第七实施例中, 基板 730可为矩形 移动板, 不同颜色的分区 73 1、 732及 733线性地配置于 730上。 当矩形的 基板 730线性振动时, 这些分区 73 1、 732及 733可被交替激发及产生交替颜色 的色光。
在本发明的上述实施例中, 都是蓝光激发光从波长转换材料层的一侧入射, 受激光和剩余的蓝光激发光的混合光从另一侧出射出来。 实际上还可能受激光 和剩余蓝光激发光还可能从波长转换材料层的同一侧出射出来。请参照图 7, 其 为本发明照明装置的第八实施例中结构示意图。
本实施例的照明装置 300可包括光源 3 10、 基板 330、 波长转换材料层 340 及第一滤光片 350。 与第三实施例不同的是, 波长转换材料层 340覆设于 330的一侧的表面上, 而第一滤光片 350设置于波长转换材料层 340上, 且基板 330具有一反射层 332, 位于波长转换材料层 340的远离被蓝光激发光入射的一 侧, 用于反射一入射至基板 330的蓝光激发光和受激光。 反射层 332贴附于或 镀于 330的表面。 此时, 光源 310发出的蓝光 ½光由第一滤光片 350射 到波长转换材料层 340,而波长转换材料层 340所产生的以各向同性发射的受激 光可以分为两部分, 一部分受激光直接出射于其上部的外部空间中, 另一部分 受激光则入射于发射层 332表面并被其反射并最终出射于波长转换材料层 340 上部的外部空间中, 与没有被波长转换材料层 340吸收的剩余的蓝光激发光混 合在一起, 并通过第一滤光片 350来进一步修正此混合蓝光。 第一滤光片 350 与波长转换材料层 340之间可选择性地具有一预设间距 (亦即为空气间隙),或者, 第一滤光片 350亦可紧贴于波长转换材料层 340。
在上述第八实施例中, 波长转换材料层 340的出射光面向光源 310, 如果入 射于光源 310的表面将形成严重的光能量损失。 因此在本发明的第九实施例中, 还包括设置于波长转换材料层与光源之间的光引导装置, 如图 13所示。 该光引 导装置用于透射蓝光激发光, 同时一反射的方式引导从波长转换材料层发射出 来的受激光和未被吸收的剩余蓝光激发光的混合光从光源发出的蓝光激发光的 入射光路中分离出来形成出射光, 进而避免了该混合光入射到光源上造成的损 失。
在本实施例的照明装置 1600中, 光引导装置为一个带有通光孔的弧形反射 装置 1070, 光源 810发出的蓝光激发光 811穿过该弧形反射装置的通光孔入射 于波长转换材料层 840的表面。 与第七实施例相同的, 基板 830表面具有一反 射层, 可以反射蓝光激发光和受激光出射于外部空间。 由波长转换材料层 840 出射的光线经过弧形反射装置的通光孔周围的弧形反射面的反射, 入射于光收 集装置 1090的入口。 这样利用光引导装置 1970, 避免了出射光入射于光源 810 的表面。
优选的, 该弧形反射装置 1070为半球形或半球形的一部分, 波长转换材料 层 840被蓝光激发光入射的位置位于该半球形球心附近的第一点, 光收集装置 1090的入口位置位于该半球形球心附近的第二点。 第一点和第二点关于该半球 形的球心对称, 这样就能够保证光线入射到光收集装置入口的效率达到比较优 化的数值。
更优化的, 该弧形反射面 1070为半椭球形或半椭球形的一部分, 波长转换 材料层 840被益光激发光入射的位置位于该半椭球形的一个焦点上, 光收集装 置 1090的入口位置位于该半椭球形的第二点焦点上。 这样就能够保证光线入射 到光收集装置入口的效率达到最高。
进一步的,本实施例还包括驱动装置 1610,波长转换材料层 840和基板 830 分別与该驱动装置连接固定; 该驱动装置驱动基板 830和波长转换材料层 840 围绕旋转轴 A做转动, 使得 ^不同区域依次被蓝光激发光 811所照射并发出 不同颜色的光已形成色光时序, 或者基板上只有一个蓝光分区, 随着驱动装置 1610的转动本照明装置 1600的发射光的颜色保持蓝色。
优选的, 本实施例的照明装置还包括至少一个第一滤光片, 该第一滤光片 与驱动装置 1610连接并固定, 并与波长转换材料层 840同步运动。 该第一滤光 片的角度大小与 830上的蓝光分区的角度大小相同, 位置与 830上的 蓝光分区位置相对应, 即当基板上的蓝光分区位于蓝光激发光照射时, 所产生 的出射光经过光收集装置 1090后入射于第一滤光片 850。
与第七实施例不同的是,本实施例中的第一滤光片 850位于光收集装置 1090 之后, 其好处在于光线由于经过了光收集装置 1090的收集而入射角变得较小, 因此滤光效果比较好。
值得注意的是, 本发明的所有实施例都可以应用驱动装置, 使波长转换材 料层与蓝光激发光发生相对运动。 此时, 上述实施例中的第二滤光片同样需要 与驱动装置连接并固定, 并与波长转换材料层同步运动。
值得说明的是, 第八实施例中的光引导装置有多种变形。 除了弧形反射装 置外, 光引导装置还可以是带有通光孔和位于通光孔四周的反射镜的平面反射 装置。 与第八实施例中的弧形反射装置相似的, 蓝光激发光可以穿过该平面反 射装置的通光孔入射于波长转换材料层, 波长转换材料层发出的受激光和剩余 蓝光激发光的混合光则被位于平面反射装置的通光孔四周的反射镜的反射形成 光源装置的出射光; 平面反射装置有效避免了该出射光入射于光源的表面。
综上所述, 虽然本发明已以优选实施例揭露如上, 但上述优选实施例并非 用以限制本发明, 本领域的普通技术人员, 在不脱离本发明的精神和范围内, 均可作各种更动与润饰, 因此本发明的保护范围以权利要求界定的范围为准 <

Claims

权 利 要 求 书
1. 一种照明装置, 其特征在于, 包括:
用于产生蓝光激发光的光源;
反, 该基板包括设置于所述蓝光激发光的传播路径上的至少一个分区, 该分区中的 至少一个分区为蓝光分区;
覆设于蓝光分区上的波长转换材料层,该波长转换材料层用于吸收所述蓝光激发光中 的一部分并发出一受激光, 该受激光的色坐标位于预定颜色区域内, 使得蓝光分区出射由 所述受激光和没有被所述波长转换材料层吸收的剩余蓝光激发光組成的 合光,该混合光 的色坐标相较于蓝光激发光的色坐标更接近于预定的蓝光色坐标。
2. 根据权利要求 1所述的照明装置, 其特征在于, 所述蓝光激发光为蓝光激光, 该蓝光 激光的光谱的峰值波长范围为大于等于 430纳米 (nm )且小于等于 465nm。
3. 根据权利要求 1所述的照明装置, 其特征在于, 所述波长转换材料层包括绿色荧光粉 或青色荧光粉或黄绿色荧光粉或黄色荧光粉中的一种或多种的混合。
4. 根据权利要求 1所述的照明装置, 其特征在于, 所述预定的蓝光色坐标位于一个矩形 区域内部,该矩形区域的四个顶点的色坐标分别是( 0.14,0.03 )、 ( 0.18,0.03 )、 ( 0.14,0.08 ) 和(0.18, 0.08 )。
5. 根据权利要求 4所述的照明装置, 其特征在于, 所述預定的蓝光色坐标位于一条线段 上, 该线段的两个端点的色坐标分别是( 0.155,0.06 )和 (0.165,0.06 )。
6. 根据权利要求 1所述的照明装置, 其特征在于, 所述预定颜色区域为第一颜色区域, 该第一颜色区域由以下线段、 直线或曲线相交后首尾相连共同围成: 所述蓝光激发光 的色坐标与色坐标 (0.14,0.03 ) 的连线及其延长线, 色坐标 (0.14,0.03 ) 与色坐标
( 0.18,0.03 )之间的线段, 所述蓝光激发光的色坐标与色坐标( 0.18,0.03 )的连线及其 延长线, 国际发光照明委员会 CIE 1931色品图的边缘曲线。
7. 根据权利要求 1所述的照明装置, 其特征在于, 所述預定颜色区域为第二颜色区域, 该第一颜色区域由以下线段、 直线或曲线相交后首尾相连共同围成: 所述蓝光激发光 的色坐标与色坐标 (0.14,0.08 ) 的连线及其延长线, 色坐标 (0.14,0.08 ) 与色坐标
( 0.18,0.08 )之间的线段, 所述蓝光激发光的色坐标与色坐标(0.18,0.08 )的连线及其 延长线, CIE1931色品图的边缘曲线。
8. 根据权利要求 1所述的照明装置, 其特征在于, 所述預定颜色区域为第三颜色区域, 该第一颜色区域由以下线段、 直线或曲线相交后首尾相连共同围成: 所述蓝光激发光 的色坐标与色坐标 ( 0.155,0.06 ) 的连线及其延长线, 色坐标 ( 0.155,0.06 ) 与色坐标
( 0.165,0.06 )之间的线段, 所述蓝光激发光的色坐标与色坐标( 0.165,0.06 )的连线及 其延长线, CIE1931色品图的边缘曲线。
9. 根据权利要求 1所述的照明装置, 其特征在于, 所述波长转换材料层包括散射材料。
10.根据权利要求 1所述的照明装置, 其特征在于, 还包括位于所述〉 合光的出射光路上 的第一滤光片, 用于过滤受激光使混合光的颜色更接近或达到预定的蓝光色坐标。
11.根据权利要求 1所述的照明装置, 其特征在于, 还包括位于所述波长转换材料层的被 所述蓝光激发光入射的一侧的第二滤光片, 用于透射蓝光激发光并反射受激光。
12.根据权利要求 11所述的照明装置, 其特征在于,所述第二滤光片为所述基板表面的干 涉滤光镀膜, 该干涉滤光镀膜透射激发光并反射受激光。
13.根据权利要求 1所述的照明装置, 其特征在于, 还包括位于所述波长转换材料层的远 离被所述蓝光激发光入射的一侧的反射层, 该反射层用于反射蓝光激发光和受激光。
14.根据权利要求 13所述的照明装置, 其特征在于, 所述反射层贴附或镀于基板的表面。
15.根据权利要求 13所述的照明装置, 其特征在于, 还包括光引导装置, 用于透射所述蓝 光激发光, 同时以反射的方式引导从所述波长转换材料层发射出来的所述受激光和未 被吸收的剩余蓝光激发光的混合光从所述光源发出的蓝光激发光的入射光路中分离出 来形成出射光。
16.根据权利要求 1至 15中任意一项所述的照明装置, 其特征在于:
还包括驱动装置 , 所述波长转换材料层和所述基板分别与该驱动装置连接固定; 所述驱动装置驱动所述基板和所述波长转换材料层与所述蓝光激发光相对运动。
17.根据权利要求 16所述的照明装置, 其特征在于, 所述第一滤光片与所述驱动装置连接 固定并与所述波长转换材料层同步运动。
18.根据权利要求 16所述的照明装置, 其特征在于, 所述第二滤光片与所述驱动装置相连 接固定并与所述波长转换材料层同步运动。
19.根据权利要求 16所述的照明装置 , 其特征在于 , 所述反射层与所述驱动装置连接固定 并与所述波长转换材料层同步运动。
一种投影装置, 其特征在于, 包括如权利要求 1至 19中任意一项所述的照明装置。
PCT/CN2012/080675 2011-08-04 2012-08-29 照明装置和投影装置 WO2013017111A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP12820118.3A EP2740997B1 (en) 2011-08-04 2012-08-29 Lighting device and projection device
KR1020147002655A KR101830753B1 (ko) 2011-08-04 2012-08-29 조명장치와 투영장치
EP18157141.5A EP3418801B1 (en) 2011-08-04 2012-08-29 Lighting device and projection device
JP2014523193A JP6166723B2 (ja) 2011-08-04 2012-08-29 照明装置および投影装置
KR1020187004223A KR101875850B1 (ko) 2011-08-04 2012-08-29 조명장치와 투영장치
US14/235,752 US9989837B2 (en) 2011-08-04 2012-08-29 Lighting device and projection device
EP18157144.9A EP3418803B1 (en) 2011-08-04 2012-08-29 Lighting device and projection device
EP18157143.1A EP3418802B1 (en) 2011-08-04 2012-08-29 Lighting device and projection device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201110222464.3 2011-08-04
CN201110222464 2011-08-04
CN201110397907.2A CN102707551B (zh) 2011-08-04 2012-03-19 照明装置和投影装置
CN201110397907.2 2012-03-19

Publications (1)

Publication Number Publication Date
WO2013017111A1 true WO2013017111A1 (zh) 2013-02-07

Family

ID=46900455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/080675 WO2013017111A1 (zh) 2011-08-04 2012-08-29 照明装置和投影装置

Country Status (5)

Country Link
EP (4) EP3418802B1 (zh)
JP (2) JP6762073B2 (zh)
KR (2) KR101830753B1 (zh)
CN (1) CN102707551B (zh)
WO (1) WO2013017111A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090403A (ja) * 2013-11-05 2015-05-11 パナソニックIpマネジメント株式会社 照明装置
JP2015106561A (ja) * 2013-11-28 2015-06-08 台達電子工業股▲分▼有限公司 青色光合成方法及び青色光合成装置
JP2015166787A (ja) * 2014-03-04 2015-09-24 カシオ計算機株式会社 光源装置及び投影装置
JP2017513062A (ja) * 2014-04-02 2017-05-25 深▲せん▼市繹立鋭光科技開発有限公司Appotronics(China)Corporation 光源システム及び投影システム
JP2018081329A (ja) * 2018-01-31 2018-05-24 カシオ計算機株式会社 光源装置及び投影装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930022B2 (ja) * 2006-12-06 2012-05-09 ダイキン工業株式会社 流体機械
CN203025471U (zh) * 2012-08-05 2013-06-26 深圳市绎立锐光科技开发有限公司 发光装置以及投影***
DE102013208549A1 (de) * 2013-05-08 2014-11-13 Osram Gmbh Leuchtstoffrad und Beleuchtungsvorrichtung mit diesem Leuchtstoffrad und einer Pumplichtquelle
JP6286953B2 (ja) * 2013-09-06 2018-03-07 カシオ計算機株式会社 光源装置及び投影装置
US9541820B2 (en) * 2013-08-29 2017-01-10 Casio Computer Co., Ltd. Light source unit including an area of luminescent material emitting luminescent light in green wavelength range on part of member situated on optical path of light in blue wavelength range and projector
CN104683775B (zh) * 2013-11-28 2017-03-01 台达电子工业股份有限公司 蓝光合成方法及***
JP6318606B2 (ja) * 2013-12-23 2018-05-09 株式会社リコー 波長変換部材及びこの波長変換部材を有する光学系及びこの波長変換部材を有する光源装置及びこの光源装置を有する投影装置
CN104765239A (zh) * 2014-01-03 2015-07-08 深圳市亿思达科技集团有限公司 一种光源***
US9910347B2 (en) * 2014-06-11 2018-03-06 Sony Corporation Image display apparatus and image generation method
CN103995424B (zh) * 2014-06-15 2016-06-01 杨毅 波长转换转盘和发光装置
CN104317151B (zh) * 2014-10-27 2017-06-20 苏州佳世达光电有限公司 投影装置及投影装置的混光方法
JP6536212B2 (ja) * 2015-06-23 2019-07-03 セイコーエプソン株式会社 波長変換素子、光源装置およびプロジェクター
JP6785458B2 (ja) * 2016-03-08 2020-11-18 パナソニックIpマネジメント株式会社 光源装置
US10133164B2 (en) * 2016-05-25 2018-11-20 Panasonic Intellectual Property Management Co., Ltd. Projection display apparatus for improving the chromaticity of blue light
CN107479309A (zh) * 2016-06-07 2017-12-15 无锡视美乐激光显示科技有限公司 一种荧光轮装置及光源***
US10146114B2 (en) * 2016-06-13 2018-12-04 Panasonic Intellectual Property Management Co., Ltd. Projection display apparatus
CN206863465U (zh) * 2017-05-26 2018-01-09 深圳市光峰光电技术有限公司 波长转换装置与光源***
CN109752904B (zh) 2017-11-07 2021-06-22 中强光电股份有限公司 荧光粉转轮及使用荧光粉转轮的投影装置
CN109932858B (zh) 2017-12-18 2021-04-23 中强光电股份有限公司 照明***与投影装置
CN109976075B (zh) 2017-12-27 2021-05-07 中强光电股份有限公司 波长转换装置
CN109991798B (zh) 2017-12-29 2022-01-25 中强光电股份有限公司 投影装置以及光源装置
CN110275372A (zh) 2018-03-14 2019-09-24 中强光电股份有限公司 投影装置及照明***
CN110632814A (zh) 2018-06-25 2019-12-31 中强光电股份有限公司 照明***以及投影装置
CN112352194B (zh) * 2018-06-29 2022-07-12 松下知识产权经营株式会社 荧光体轮装置、光源装置和投影型影像显示装置
CN111190322A (zh) 2018-11-15 2020-05-22 中强光电股份有限公司 照明***与投影装置
CN112782918B (zh) 2019-11-08 2022-07-08 中强光电股份有限公司 波长转换模块以及投影装置
NL2024469B1 (en) * 2019-12-16 2021-09-02 Barco Efficient light engine systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251649A (ja) * 2004-03-05 2005-09-15 Sony Corp 照明装置及びカラー液晶表示装置
CN101451685A (zh) * 2007-11-30 2009-06-10 财团法人工业技术研究院 白光发光装置
CN101581410A (zh) * 2008-05-15 2009-11-18 卡西欧计算机株式会社 光源装置及投影机
US20100296269A1 (en) * 2009-05-22 2010-11-25 Chunghwa Picture Tubes, Ltd. Display apparatus and light source device used in the display apparatus
CN102142510A (zh) * 2010-02-01 2011-08-03 深圳市光峰光电技术有限公司 基于光波长转换的固态光源及其应用

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119440A (ja) * 2004-10-22 2006-05-11 Olympus Corp 面順次照明装置及び画像投射装置
JP2006156187A (ja) 2004-11-30 2006-06-15 Mitsubishi Electric Corp Led光源装置及びled電球
US7543959B2 (en) * 2005-10-11 2009-06-09 Philips Lumiled Lighting Company, Llc Illumination system with optical concentrator and wavelength converting element
KR100930171B1 (ko) * 2006-12-05 2009-12-07 삼성전기주식회사 백색 발광장치 및 이를 이용한 백색 광원 모듈
KR101195430B1 (ko) * 2006-12-05 2012-10-30 삼성전자주식회사 백색 발광장치 및 이를 이용한 백색 광원 모듈
JP5527571B2 (ja) * 2008-09-30 2014-06-18 カシオ計算機株式会社 発光装置及び光源装置並びにこの光源装置を用いたプロジェクタ
JP4900736B2 (ja) * 2009-03-31 2012-03-21 カシオ計算機株式会社 光源装置及びプロジェクタ
CN102482576B (zh) * 2009-04-09 2016-03-09 皇家飞利浦电子股份有限公司 用于激光应用的灯
GB2469794B (en) * 2009-04-24 2014-02-19 Photonstar Led Ltd High colour quality luminaire
JP5370764B2 (ja) * 2009-09-15 2013-12-18 カシオ計算機株式会社 光源装置及びプロジェクタ
JP5311137B2 (ja) * 2009-09-28 2013-10-09 カシオ計算機株式会社 光源装置及び光源装置を備えたプロジェクタ
JP5399871B2 (ja) 2009-11-26 2014-01-29 スタンレー電気株式会社 光源装置および照明装置
US8684560B2 (en) * 2009-11-18 2014-04-01 Stanley Electric Co., Ltd. Semiconductor light source apparatus and lighting unit
JP2011164537A (ja) 2010-02-15 2011-08-25 Fine Rubber Kenkyusho:Kk ディスプレイ装置
JP5617288B2 (ja) * 2010-03-18 2014-11-05 セイコーエプソン株式会社 照明装置及びプロジェクター
JP2011221502A (ja) * 2010-03-25 2011-11-04 Sanyo Electric Co Ltd 投写型映像表示装置および光源装置
JP5059208B2 (ja) * 2010-04-07 2012-10-24 シャープ株式会社 照明装置および車両用前照灯
JP2012008549A (ja) * 2010-05-27 2012-01-12 Panasonic Corp 光源装置およびこれを用いた照明装置ならびに画像表示装置
US9989837B2 (en) * 2011-08-04 2018-06-05 Appotronics Corporation Limited Lighting device and projection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251649A (ja) * 2004-03-05 2005-09-15 Sony Corp 照明装置及びカラー液晶表示装置
CN101451685A (zh) * 2007-11-30 2009-06-10 财团法人工业技术研究院 白光发光装置
CN101581410A (zh) * 2008-05-15 2009-11-18 卡西欧计算机株式会社 光源装置及投影机
US20100296269A1 (en) * 2009-05-22 2010-11-25 Chunghwa Picture Tubes, Ltd. Display apparatus and light source device used in the display apparatus
CN102142510A (zh) * 2010-02-01 2011-08-03 深圳市光峰光电技术有限公司 基于光波长转换的固态光源及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2740997A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015090403A (ja) * 2013-11-05 2015-05-11 パナソニックIpマネジメント株式会社 照明装置
US9753275B2 (en) 2013-11-05 2017-09-05 Panasonic Intellectual Property Management Co., Ltd. Illumination apparatus
JP2015106561A (ja) * 2013-11-28 2015-06-08 台達電子工業股▲分▼有限公司 青色光合成方法及び青色光合成装置
JP2015166787A (ja) * 2014-03-04 2015-09-24 カシオ計算機株式会社 光源装置及び投影装置
JP2017513062A (ja) * 2014-04-02 2017-05-25 深▲せん▼市繹立鋭光科技開発有限公司Appotronics(China)Corporation 光源システム及び投影システム
US10110861B2 (en) 2014-04-02 2018-10-23 Appotronics Corporation Limited Light source system and projection system
JP2018081329A (ja) * 2018-01-31 2018-05-24 カシオ計算機株式会社 光源装置及び投影装置

Also Published As

Publication number Publication date
EP2740997B1 (en) 2018-03-07
EP3418803B1 (en) 2020-06-03
JP6762073B2 (ja) 2020-09-30
JP7051950B2 (ja) 2022-04-11
EP2740997A1 (en) 2014-06-11
EP3418801B1 (en) 2020-05-27
JP2017201632A (ja) 2017-11-09
KR101830753B1 (ko) 2018-02-22
JP2020202182A (ja) 2020-12-17
KR20140125756A (ko) 2014-10-29
KR101875850B1 (ko) 2018-07-06
EP2740997A4 (en) 2016-07-06
EP3418803A1 (en) 2018-12-26
EP3418802B1 (en) 2020-06-03
CN102707551B (zh) 2015-04-29
CN102707551A (zh) 2012-10-03
EP3418802A1 (en) 2018-12-26
KR20180019250A (ko) 2018-02-23
EP3418801A1 (en) 2018-12-26

Similar Documents

Publication Publication Date Title
WO2013017111A1 (zh) 照明装置和投影装置
JP6406679B2 (ja) 投影システムおよびその発光デバイス
JP6166723B2 (ja) 照明装置および投影装置
JP6296312B2 (ja) 光源システム及び関連する投影システム
TWI437350B (zh) 光源系統及其波長轉換裝置
TWI421448B (zh) 照明裝置及影像顯示裝置
KR101209668B1 (ko) 파장 변환 물질을 갖는 이동 평판을 이용한 다색 조명 장치
CN104880896B (zh) 照明装置和投影装置
WO2011118536A1 (ja) 投写型映像表示装置および光源装置
JP2011065771A (ja) 光源装置及びプロジェクタ
JP2011191602A (ja) プロジェクター
JP5737769B2 (ja) 蛍光体カラーホイル、それを内蔵する投写型表示装置及び投写型表示方法
JP2014002416A (ja) 光源装置の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12820118

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20147002655

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014523193

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14235752

Country of ref document: US