WO2013005831A1 - 回路接続材料及び回路基板の接続構造体 - Google Patents

回路接続材料及び回路基板の接続構造体 Download PDF

Info

Publication number
WO2013005831A1
WO2013005831A1 PCT/JP2012/067329 JP2012067329W WO2013005831A1 WO 2013005831 A1 WO2013005831 A1 WO 2013005831A1 JP 2012067329 W JP2012067329 W JP 2012067329W WO 2013005831 A1 WO2013005831 A1 WO 2013005831A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
circuit board
filler
conductive particles
silica filler
Prior art date
Application number
PCT/JP2012/067329
Other languages
English (en)
French (fr)
Inventor
憂子 永原
高井 健次
剛幸 市村
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to KR1020147000360A priority Critical patent/KR101920952B1/ko
Priority to CN201280031918.1A priority patent/CN103636068B/zh
Priority to JP2013523067A priority patent/JP6208011B2/ja
Publication of WO2013005831A1 publication Critical patent/WO2013005831A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/04Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation using electrically conductive adhesives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R12/00Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
    • H01R12/50Fixed connections
    • H01R12/51Fixed connections for rigid printed circuits or like structures
    • H01R12/52Fixed connections for rigid printed circuits or like structures connecting to other rigid printed circuits or like structures
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • H05K3/323Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives by applying an anisotropic conductive adhesive layer over an array of pads

Definitions

  • the present invention relates to a circuit connection material and a circuit board connection structure.
  • the method of mounting a liquid crystal driving IC on a glass panel for liquid crystal display can be roughly divided into two types: COG (Chip-on-Glass) mounting and COF (Chip-on-Flex) mounting.
  • COG mounting an IC for liquid crystal is directly bonded onto a glass panel using an anisotropic conductive adhesive containing conductive particles.
  • COF mounting a liquid crystal driving IC is bonded to a flexible tape having metal wiring, and thereafter, they are bonded to a glass panel using an anisotropic conductive adhesive containing conductive particles.
  • the anisotropic conductivity means that the insulation is maintained in the non-pressurization direction while having conductivity in the pressurization direction.
  • a two-layer type circuit connecting material consisting of a conductive adhesive layer containing conductive particles and an insulating adhesive layer containing no conductive particles has a conductive adhesive layer on the glass panel side. They are used so as to face each other (see Patent Document 1 below).
  • the insulating adhesive layer easily flows during mounting, the flow of the conductive particles can be suppressed, and the capture rate of the conductive particles on the electrode can be improved.
  • the insulating adhesive layer is used so as to face the chip side, the entry of conductive particles between the bumps can be reduced, and the occurrence of a short circuit can be suppressed.
  • connection circuit area is required to be narrowed.
  • the conductive particles in the circuit connecting material adheresive
  • the conductive particles flow out between a plurality of adjacent circuit electrodes to cause a short circuit.
  • the conductive particles flow out from between the circuit electrodes facing each other (for example, between the bump and the electrode on the glass panel), so that the number of conductive particles captured between the circuit electrodes decreases, and the circuit electrodes facing each other.
  • the connection resistance between the two increases and a connection failure occurs.
  • the present invention has been made in view of the above circumstances, and can achieve both excellent insulating properties between adjacent circuit electrodes and excellent conductive properties between opposing circuit electrodes, and good film formability.
  • An object of the present invention is to provide a simple circuit connection material and a circuit board connection structure using the circuit connection material.
  • the present inventors reduced the fluidity of the adhesive component contained in the circuit connecting material by highly filling the silica connecting material in the circuit connecting material, and the number of conductive particles captured between the facing circuit electrodes. It was thought that it was possible to improve (conducting particle capture ratio). At the same time, filling the circuit connecting material with an organic filler having a large particle diameter and adequately presenting the organic filler between the conductive particles ensures a sufficient distance between the conductive particles, and the insulation characteristics between adjacent circuit electrodes. We thought that improvement would be possible.
  • the present invention includes an adhesive component, conductive particles, a silica filler having an average particle size of 7 to 75 nm, and an organic filler having an average particle size of 130 to 2000 nm.
  • a circuit connecting material which is 10% by mass or more and less than 80% by mass based on the mass, and the content of the organic filler is 5 to 20% by mass based on the total mass of the adhesive component.
  • the present invention also includes an adhesive component, conductive particles, a silica filler having an average particle size of 7 to 75 nm, and an organic filler having an average particle size of 130 to 2000 nm.
  • an adhesive component conductive particles
  • a silica filler having an average particle size of 7 to 75 nm
  • an organic filler having an average particle size of 130 to 2000 nm.
  • a circuit connecting material which is 5% by volume or more and less than 40% by volume based on the total volume, and the content of the organic filler is 5 to 20% by volume based on the total volume of the adhesive component.
  • the silica filler can produce ultrafine particles having a particle size of 100 nm or less, but the flowability of the resin can be suitably controlled especially when the silica filler has an average particle size of 7 to 75 nm. Therefore, it is possible to improve the number of conductive particles trapped between opposing circuit electrodes.
  • an organic filler having an average particle size of 130 to 2000 nm has a relatively large particle size and good compatibility with the resin (adhesive component), so that the dispersibility is good.
  • the distance between the conductive particles can be suitably maintained, which leads to an improvement in insulation characteristics between adjacent circuit electrodes.
  • it is a circuit connection material which contained these silica fillers and organic fillers in the said range, the moldability of a film will improve rather than the case where only a silica filler is highly filled.
  • the content of the silica filler and the organic filler is in such a range, the above-described insulating characteristics and conductive characteristics can be more reliably achieved. Moreover, the circuit connection material which is more excellent also in film formation property can be obtained.
  • the average particle size of the silica filler is preferably 7 to 50 nm.
  • the average particle size of the silica filler is more preferably 7 to 15 nm, and the average particle size of the organic filler is preferably 130 to 1500 nm.
  • the silica filler and the organic filler have such an average particle diameter, they are excellent in dispersibility and can be more suitably dispersed in the adhesive component. Therefore, it is possible to obtain a circuit connecting material that can achieve both superior insulating properties and conductive properties and further improved film formability.
  • the surface of the silica filler is subjected to a hydrophobic treatment.
  • the hydrophobizing treatment is more preferably a treatment in which a silicone oil having a polymerization degree of 10 to 500 is attached or bonded to the silica filler surface.
  • Dispersibility in the adhesive component can be further improved by hydrophobizing the silica filler.
  • the silica filler is highly filled in the adhesive component, the aggregation of the silica filler can be more reliably suppressed. Therefore, for example, when a circuit connection material is formed into a film, coating flaws, physical property variations, and thickness variations caused by the aggregated silica filler can be improved more favorably.
  • such a silica filler hydrophobization treatment can also better suppress a decrease in the tackiness of the circuit connection material, which usually decreases as the silica filler is highly filled. .
  • the organic filler contained in the circuit connecting material of the present invention is preferably an organic filler made of silicone rubber.
  • D1 / D2 is preferably 13.3 to 1428.6.
  • the monodispersion rate of the conductive particles is preferably 80% or more. As described above, when the conductive particles are suitably dispersed, the insulating characteristics can be improved more reliably.
  • the circuit connection material of the present invention is suitably used for electrically connecting a circuit board having an electrode with an area of 3000 ⁇ m 2 or less and another circuit board.
  • circuit connecting material of the present invention is suitably used for electrically connecting a circuit board having a plurality of electrodes arranged at intervals of 12 ⁇ m or less and another circuit board.
  • circuit connection material of the present invention is used for connecting such an electrode having a small electrode area or a circuit board having an electrode group having a pitch of 12 ⁇ m or less to another circuit board, the adjacent circuit It is possible to achieve both excellent insulating characteristics between the electrodes and excellent conductive characteristics between the opposing circuit electrodes.
  • the present invention also provides a first circuit board having a first electrode, a second circuit board having a second electrode, and a circuit connection interposed between the first circuit board and the second circuit board.
  • a hardened material, and the first circuit board and the second circuit board are arranged so that the first electrode and the second electrode face each other, and the first electrode and the second electrode Is electrically connected via a cured product, and the circuit connection material provides a circuit board connection structure which is the above-described circuit connection material.
  • the first circuit board having the first electrode and the second circuit board having the second electrode are connected via the cured product of the circuit connection material of the present invention. Therefore, both the above-described insulating characteristics and conductive characteristics are excellent.
  • the fluidity of the circuit connection material can be easily controlled, and the connection resistance can be reduced by improving the conductivity particle capturing property.
  • the distance between the conductive particles can be increased, so that the insulating characteristics can be improved.
  • the silica filler can be hydrophobized to more reliably suppress the aggregation of the silica filler and maintain the film formability of the circuit connecting material more reliably even when the silica filler is highly filled. it can.
  • the water absorption rate of the silica filler can be further reduced by such a hydrophobization treatment, the occurrence of a short circuit is more reliably suppressed in the circuit board connection structure using the circuit connection material of the present invention. It is possible.
  • the circuit connection material of this embodiment is characterized in that a silica filler and an organic filler are filled at a high concentration.
  • the circuit connecting material of the present embodiment contains an adhesive component, conductive particles, a silica filler having an average particle diameter of 7 to 75 nm, and an organic filler having an average particle diameter of 130 to 2000 nm, and the silica filler Is based on the total mass or total volume of the adhesive component, and is 10% by mass or more and less than 80% by mass or 5% by volume or more and less than 40% by volume, respectively, and the content of the organic filler is 5 to 20% by mass or 5 to 20% by volume based on the total mass or the total volume, respectively.
  • the circuit connecting material may be used in a paste form or may be used after being formed into a film form. Hereinafter, each component will be described in detail.
  • the average particle size of the silica filler used in the present embodiment is 7 to 75 nm, preferably 7 to 50 nm, more preferably 7 to 30 nm, still more preferably 7 to 20 nm, It is very preferably 7 to 15 nm, and very preferably 10 to 15 nm.
  • the average particle diameter of the silica filler is 7 nm or more, the silica filler hardly aggregates and the dispersibility is good, and when it is 75 nm or less, a thickening effect or a thixotropic improvement effect can be sufficiently obtained.
  • a reactive organic group can be supported on the surface of the silica filler.
  • This reactive organic group preferably reacts with the adhesive component in the present embodiment and does not particularly adversely affect the curing reaction or the like.
  • Examples of such reactive organic groups include amino groups, glycidyl groups, mercapto groups, ureido groups, hydroxy groups, and carboxyl groups.
  • amino groups (—NH 2 ), mercapto groups (—SH), carboxyl groups (—COOH), ureido groups (—NHCONH 2 ), and hydroxy groups (—OH) having active hydrogen are It is preferable because it is considered to be added to a hydrophilic group in the adhesive component, for example, an epoxy group (oxirane ring) present at the end of the epoxy resin or to form a hydrogen bond with the epoxy group.
  • a glycidyl group is preferable because it is considered that a ring-opening addition reaction is performed in the presence of an epoxy group and an amine catalyst.
  • the surface treatment of the silica filler is performed using a compound having both the reactive organic group and a functional group capable of binding to the silica surface in the molecule.
  • examples of such compounds include silane coupling agents and silicone oils.
  • silicone oil is preferable, and the degree of polymerization is more preferably 10 to 500.
  • Silicone oils preferably used for the surface treatment of the silica filler in the present embodiment include silicone oils typified by dimethylpolysiloxane, methylhydrogenpolysiloxane, etc., in which the hydrogen atom of the terminal or side chain alkyl group is an amino group. And a modified silicone oil substituted with at least one group selected from the group consisting of a group, a glycidyl group, a mercapto group, a ureido group, a hydroxy group and a carboxyl group. These modified silicone oils have a structure (repeating unit) represented by the following chemical formula (1).
  • A represents an amino group, glycidyl group, mercapto group, ureido group, hydroxy group or carboxyl group
  • R 1 each independently represents a hydrogen atom or an alkyl group (preferably a methyl group)
  • R 2 represents a lower alkylene group such as a methylene group
  • x and y each independently represents an integer of 1 or more.
  • the modified silicone oil the modified siloxane unit may be continuous in a block shape, but generally, when the substituent A is introduced, the substituent is included in the siloxane unit in the molecule. Replace hydrogen atoms regularly or randomly. Therefore, in the modified silicone oil, the modified siloxane unit exists regularly or randomly in the molecule. It is considered that these substituents enable the reaction between the silicone oil and the adhesive component.
  • the amount of substituent introduced is preferably about 0.01 to 2.0% by mass based on the total mass of the silica filler.
  • the modified silicone oil preferably has a degree of polymerization of about 10 to 500.
  • the degree of polymerization is 10 or more, the volatility is low and when the silica filler is surface-treated, there is a tendency that it is difficult to volatilize by heating.
  • the degree of polymerization is 500 or less, the viscosity does not become too high and the silica filler surface tends to be treated uniformly. There is.
  • Such modified silicone oils can be used alone or in combination of two or more.
  • the content of the silica filler is 10% by mass or more and less than 80% by mass based on the total mass of the adhesive component, but is preferably 10 to 70% by mass, and more preferably 20 to 70% by mass. Preferably, it is 30 to 50% by mass. Further, the content of the silica filler is 5% by volume or more and less than 40% by volume based on the total volume of the adhesive component, but is preferably 10 to 35% by volume, and preferably 15 to 20% by volume. Is more preferable. By making the content of the silica filler 10% by mass or more or 5% by volume or more, the thixotropy of the adhesive component can be made sufficiently high, that is, the fluidity of the adhesive component at the time of mounting can be made sufficiently low.
  • the content is less than 80% by mass or less than 40% by volume, the amount of solvent necessary for forming into a film is not excessive, and coating becomes easy, so that film formability is improved. Furthermore, it becomes difficult to generate coating stripes.
  • the average particle size of the organic filler used in the present embodiment is 130 to 2000 nm, preferably 130 to 1500 nm, more preferably 300 to 1200 nm, and further preferably 500 to 1000 nm.
  • the average particle size is 130 nm or more, aggregation in the adhesive component can be suppressed, and insulation between adjacent circuit electrodes can be improved. Further, when the average particle size is 2000 nm or less, conduction inhibition of the conductive particles is not caused.
  • Examples of such an organic filler include acrylic particles, styrene particles, and rubber particles.
  • rubber particles are preferable, and particles made of butadiene rubber, acrylic rubber, styrene-butadiene-styrene rubber, nitrile-butadiene rubber, silicone rubber, and the like can be used.
  • an organic filler whose surface is treated with a silane coupling agent is more preferable because dispersibility in a heat-reactive resin or a photoreactive resin is improved.
  • an organic filler what coat
  • Such an organic filler can be used individually or in combination of 2 or more types.
  • silicone rubber particles can be used as suitable rubber particles because they are excellent in solvent resistance and dispersibility.
  • Silicone rubber particles are hydrolyzed and polycondensed by adding a silane compound or methyltrialkoxysilane and / or a partially hydrolyzed condensate thereof to an aqueous alcohol solution adjusted to pH> 9 with a basic substance such as caustic soda or ammonia. Alternatively, it can be obtained by a method of copolymerizing an organosiloxane.
  • Silicone rubber particles having a functional group such as a hydroxy group, an epoxy group, an imino group, a carboxyl group, or a mercapto group at the molecular terminal or inner molecular chain are preferable because of good dispersibility in the reactive resin.
  • the content of the organic filler is 5 to 20% by mass, preferably 5 to 15% by mass, more preferably 5 to 10% by mass, based on the total mass of the adhesive component.
  • the content of the organic filler is 5 to 20% by volume, preferably 5 to 15% by volume, more preferably 5 to 10% by volume, based on the total volume of the adhesive component.
  • a mixture of a thermally reactive resin and a curing agent can be suitably used.
  • a mixture of an epoxy resin and a latent curing agent include imidazole curing agents, hydrazide curing agents, boron trifluoride-amine complexes, sulfonium salts, amine imides, polyamine salts, dicyandiamide, and the like.
  • latent curing agents include imidazole curing agents, hydrazide curing agents, boron trifluoride-amine complexes, sulfonium salts, amine imides, polyamine salts, dicyandiamide, and the like.
  • a mixture of a radical reactive resin and an organic peroxide, an energy ray curable resin (photoreactive resin) that is cured by ultraviolet rays or the like can be used as an adhesive component.
  • epoxy resin examples include bisphenol-type epoxy resins derived from epichlorohydrin and bisphenol A, bisphenol F, bisphenol AD, etc .; epoxy novolac resins derived from epichlorohydrin and phenol novolac or cresol novolac; Naphthalene-based epoxy resins having glycidylamine-based epoxy resins, glycidyl ether-based epoxy resins, biphenyl-type epoxy resins, alicyclic epoxy resins, and various epoxy compounds having two or more glycidyl groups in one molecule It is done. These can be used alone or in combination of two or more. These epoxy resins, from the viewpoint of electromigration prevention, impurity ions (Na +, Cl -, etc.), it is preferable to use a high-purity product was reduced to 300ppm or less hydrolyzable chlorine and the like.
  • rubber components such as butadiene rubber, acrylic rubber, styrene-butadiene rubber, and silicone rubber are mixed with the adhesive component in order to reduce the stress after adhesion or to improve the adhesion.
  • a filler, a softening agent, an accelerator, an anti-aging agent, a coloring agent, a flame retardant, a thixotropic agent, a coupling agent, a phenol resin, a melamine resin, isocyanates, and the like can be contained.
  • thermoplastic resin such as a phenoxy resin, a polyester resin, or a polyamide resin
  • film-forming polymer such as a phenoxy resin, a polyester resin, or a polyamide resin
  • the film-forming polymer has a functional group such as a hydroxyl group.
  • the conductive particles include gold, silver, copper, platinum, zinc, iron, palladium, nickel, tin, chromium, titanium, aluminum, cobalt, germanium, cadmium and other metals, ITO, solder and other metal particles, or carbon. And the like.
  • the conductive particles may be particles in which core particles are covered with one or more layers, and the outermost layer is a conductive layer. In this case, the outermost layer is preferably nickel, gold, palladium or the like.
  • the conductive particles may be those in which the surface of a transition metal such as nickel is coated with gold or palladium.
  • the conductive particles for example, nonconductive glass, ceramic, plastic, or other insulating particles coated with the above-described conductive material such as metal can be used.
  • the conductive particles are those in which insulating particles are coated with a conductive substance and the outermost layer is gold or palladium and the core insulating particles are plastic, or the conductive particles are made of hot-melt metal particles. In this case, since it is deformable by heating and pressing, the contact area with the electrode is increased at the time of connection, and the reliability is improved.
  • Such conductive particles can be produced, for example, by coating the core with insulating particles by plating or the like. Examples of the coating method include methods such as electroless plating, displacement plating, electroplating, and sputtering.
  • the average particle diameter of the conductive particles is preferably from 1 to 10 ⁇ m, more preferably from 1 to 8 ⁇ m, and more preferably from 2 to 6 ⁇ m from the standpoint that the short circuit between adjacent electrodes decreases when the electrode height is lower than the electrode height of the circuit to be connected. Is more preferably 3 to 5 ⁇ m, and most preferably 3 to 4 ⁇ m. Conductive particles having a 10% compression modulus (K value) of 100 to 1000 kgf / mm 2 can be appropriately selected and used.
  • K value 10% compression modulus
  • D1 and D2 are 13.3 to 1428.6, the influence of the silica filler aggregation on the connection resistance is affected. Since it can be made smaller, it is preferable. From such a viewpoint, D1 / D2 is more preferably 150 to 714, and further preferably 200 to 400.
  • these conductive particles can be subjected to an insulation coating treatment.
  • the insulating coating treatment include a method of attaching or bonding the insulating small particles to the conductive particles, a method of forming a film of an insulating resin on the surface of the conductive particles, and the like.
  • the insulating small particles include inorganic oxide fine particles and organic fine particles, but inorganic oxide fine particles are preferable from the viewpoint of sufficiently increasing the conductivity between the facing circuit electrodes.
  • inorganic oxide fine particles for example, fine particles made of an oxide containing at least one element selected from silicon, aluminum, zirconium, titanium, niobium, zinc, tin, cerium, and magnesium can be suitably used.
  • silica is preferable, and water-dispersed colloidal silica particles having a controlled particle size are more preferable.
  • the particle size of the insulating small particles is preferably 20 to 500 nm.
  • the particle diameter is 20 nm or more, the insulating small particles covering the conductive particles function as an insulating layer, and there is a tendency that short-circuiting between circuit electrodes adjacent to each other on the same substrate is sufficiently suppressed.
  • it is 500 nm or less, there is a tendency that it is easy to ensure the conductivity between the circuit electrodes facing each other.
  • Such conductive particles can be used alone or in combination of two or more.
  • the content of the conductive particles is 0.1 to 30% by volume with respect to the total volume of the adhesive component from the viewpoint of improving the insulation between adjacent circuit electrodes and the conductivity between opposing circuit electrodes. It is preferably 1 to 25% by volume.
  • the monodispersion rate of the conductive particles is preferably 80% or more, and more preferably 90% or more.
  • the preferable upper limit of the monodispersion rate is 100%.
  • the monodispersion rate of the conductive particles means the ratio of conductive particles (single particles) that are present alone without aggregating in the whole conductive particles in the circuit connecting material, and is represented by the following formula (1). The When the monodispersion rate is in such a range, there is an effect that the insulating characteristics between adjacent circuit electrodes are improved.
  • the monodispersion rate of the conductive particles means the proportion of conductive particles (single particles) that exist alone without aggregating in the entire conductive particles, and can be measured, for example, as follows.
  • an adhesive layer composed only of an adhesive component is prepared, and a laminate of the adhesive layer and a film-like circuit connecting material is cut into 1 mm squares. Also, an adhesive layer is separately prepared and cut into 3 mm squares. Each of these is placed on a cover glass and bonded together to obtain a laminate in which a 3 mm square adhesive layer, a 1 mm square film-like circuit connecting material, and a 1 mm square adhesive layer are laminated in this order. This is rolled for 40 seconds at 80 ° C. using a high-definition automatic bonder (FC-1200) manufactured by Toray Engineering Co., Ltd., and further heated and pressurized at 200 ° C. for 20 seconds.
  • FC-1200 high-definition automatic bonder
  • the laminate after heating and pressing is imaged from the main surface side at 1000 times using a Keyence optical microscope (VH-Z450). From the obtained image, the monodispersion rate of the conductive particles is calculated according to the following formula (1).
  • the rolling conditions and heating / pressing conditions can be changed as appropriate in accordance with the characteristics of the film-like circuit connecting material to be measured.
  • Monodispersion rate of conductive particles (number of single particles / total number of measured conductive particles) ⁇ 100 (1)
  • the average particle diameter of various particles in the present embodiment can be obtained as follows. That is, one particle is arbitrarily selected, and this is observed with a scanning electron microscope to measure the maximum diameter and the minimum diameter. The square root of the product of the maximum diameter and the minimum diameter is defined as the particle diameter of the particle. By this method, the particle size of 50 arbitrarily selected particles is measured, and the average value is taken as the average particle size of various particles.
  • the circuit connection material of this embodiment is, for example, liquefied by dissolving or dispersing an adhesive component containing an epoxy resin, acrylic rubber and a latent curing agent in an organic solvent, and adding conductive particles, silica filler and organic filler thereto. It can be produced by dispersing. If necessary, it can be further formed into a film. In that case, a film-like circuit connection material is obtained by apply
  • an organic solvent the mixed solvent of an aromatic hydrocarbon type and an oxygen-containing type is preferable from a viewpoint of the solubility improvement of an adhesive agent component, for example.
  • the circuit connection material of the present embodiment includes an ACF (Anisotropic Conductive Film) layer including an adhesive component and conductive particles, and an NCF (Non-Conductive Film) layer including an adhesive component and not including conductive particles. It can be set as the film-form circuit connection material which consists of at least two layers.
  • the silica filler in the present embodiment can be contained in both the ACF layer and the NCF layer, but when contained in the ACF layer, it is 10% by mass with respect to the total amount of the adhesive component of the ACF layer. It is preferable to contain 5% by volume or more.
  • the thickness of such a film-like circuit connecting material is relatively determined in consideration of the particle size of the conductive particles and the characteristics of the circuit connecting material, but is preferably 1 to 100 ⁇ m, and preferably 1 to 30 ⁇ m. It is more preferable. If the thickness is 1 ⁇ m or more, sufficient adhesion tends to be obtained, and if it is 100 ⁇ m or less, a large amount of conductive particles are not required to obtain conductivity between opposing circuit electrodes. Realistic.
  • the circuit connection material of the present embodiment is preferably used as a material for electrically connecting a circuit board having an electrode with an area of 3000 ⁇ m 2 or less because the supplemental property of conductive particles on the electrode is improved. be able to.
  • the area of the electrode of such a circuit board is 1500 ⁇ m 2 or more from the viewpoint of supplementing the conductive particles exhibiting the conduction characteristics on the electrode as much as possible.
  • the circuit connection material of the present embodiment is suitable as a material for electrically connecting a circuit board or the like having an electrode group having a pitch of 12 ⁇ m or less (that is, a plurality of electrodes arranged with an interval of 12 ⁇ m or less). Can be used for However, when the gap between the electrodes is too narrow, the conductive particles may agglomerate between the electrodes and cause dielectric breakdown. Therefore, the pitch of the electrodes is preferably 8 ⁇ m or more.
  • FIG. 1 is a cross-sectional view showing an embodiment of the circuit connection material of the present embodiment.
  • the circuit connection material 1 is in the form of a film and has a resin composition layer 3 containing a silica filler, an organic filler, and an adhesive component.
  • a plurality of conductive particles 5 are dispersed in the resin composition layer 3.
  • the film-like circuit connection material 1 is cured after electrically connecting the circuit electrodes that are melted and flowed when heated and pressurized while being sandwiched between a pair of opposing circuit members. To develop adhesive strength.
  • the film-like circuit connecting material 1 is useful as a material for connecting chip components such as a semiconductor chip, a resistor chip, a capacitor chip, or circuit members such as a printed board. That is, the first circuit board having the first electrode and the second circuit board having the second electrode are arranged so that the first electrode and the second electrode face each other, The circuit connection material of the present embodiment is interposed between one electrode and the second electrode, and heated and pressed to electrically connect the first electrode and the second electrode.
  • the substrates can be connected to each other.
  • the first circuit board and the second circuit board are arranged so that the first electrode and the second electrode face each other, and the first electrode and the second electrode are
  • the circuit board connection structure of the present embodiment having a cross section as shown in FIG. 2, which is electrically connected through the cured product and the circuit connection material is the circuit connection material of the present embodiment, is obtained.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of a circuit board connection structure according to the present embodiment.
  • a circuit board connection structure 101 shown in FIG. 2 includes a first circuit board 11 and a first circuit member 10 having a first circuit electrode 13 formed on the main surface thereof, and a second circuit board. 21 and the second circuit member 20 having the second circuit electrode 23 formed on the main surface thereof are made of a cured product obtained by curing the above-described film-like circuit connection material 1 and are first and second.
  • the circuit members 10 and 20 are connected by a circuit connecting member 1a.
  • the first circuit electrode 13 and the second circuit electrode 23 are electrically connected and bonded.
  • the circuit connection member 1a includes a cured product 3a of the resin composition layer 3 containing a silica filler, an organic filler, and an adhesive component, and conductive particles 5 dispersed therein.
  • the first circuit electrode 13 and the second circuit electrode 23 are electrically connected via the conductive particles 5.
  • the first circuit board 11 is, for example, a resin film containing at least one resin selected from the group consisting of polyester terephthalate, polyethersulfone, epoxy resin, acrylic resin, and polyimide resin.
  • the circuit electrode 13 is formed of a material having conductivity that can function as an electrode (preferably at least one selected from the group consisting of gold, silver, tin, platinum group metals, and indium-tin oxide). .
  • a plurality of circuit electrodes 13 are formed on the main surface of the first circuit board 11.
  • the second circuit board 21 is, for example, a glass substrate, and a plurality of second circuit electrodes 23 are formed on the main surface of the second circuit board 21.
  • the circuit board connection structure 101 includes, for example, the first circuit member 10, the film-like circuit connection material 1, and the second circuit member 20, and the first circuit electrode 13 and the second circuit electrode.
  • the first circuit member 10 is electrically connected to the first circuit electrode 13 and the second circuit electrode 23 by heating and pressurizing the laminate laminated in this order so as to face each other. And a method of connecting the second circuit member 20 to each other.
  • the circuit connection material 1 formed on a support film is heated and pressed in a state of being bonded to the second circuit member 20 to temporarily bond the circuit connection material 1.
  • the said support film is peeled and the 1st circuit member 10 is mounted on the surface from which the support film was peeled, adjusting the position of a circuit electrode, and a laminated body is prepared.
  • the laminated body is bonded by heating and pressurizing to obtain the connection structure 101 of the circuit board.
  • the conditions for heating and pressurizing the laminate are appropriately adjusted according to the curability of the adhesive component in the circuit connecting material so that the circuit connecting material is cured and sufficient adhesive strength is obtained.
  • Examples of such a circuit board connection structure include a structure in which a chip component such as a semiconductor chip, a resistor chip, or a capacitor chip is connected to a circuit member such as a printed circuit board.
  • These circuit members are usually provided with a large number of electrodes (or a single electrode in some cases), and at least one set of the circuit members is disposed so that at least a part of the electrodes provided on the circuit members are opposed to each other.
  • the circuit connection material of the present embodiment is interposed between the electrodes arranged opposite to each other, heated and pressed, and the electrodes arranged opposite to each other are electrically connected to each other to obtain a circuit board connection structure as described above. . At this time, the electrodes arranged opposite to each other are electrically connected via conductive particles of an anisotropic conductive adhesive (circuit connection material).
  • silica filler 1 Preparation of silica filler dispersion and organic filler dispersion
  • Silica filler 1 200 g of dry silica fine particles having an average particle size of 12 nm (product name: Aerosil 200) as a silica filler are placed in a 15 liter reaction tank, and silicone oil (product name: KF96, product name: KF96, polymerization degree: 10). ) was added. Further, the system was replaced with nitrogen gas while stirring, and the temperature was raised to 280 ° C. while flowing the nitrogen gas, kept for 20 minutes, and then cooled to room temperature. Thus, the silica filler (silica filler 1) hydrophobized with silicone oil was obtained. This was dispersed in ethyl acetate to prepare an ethyl acetate dispersion of silica filler 1 having a concentration of 13% by mass.
  • silica filler 2 An ethyl acetate dispersion of silica filler 2 was prepared in the same manner as silica filler 1 except that silica fine particles having an average particle diameter of 75 nm (Fuso Chemical Co., Ltd. Quatron PL-7) were used as the silica filler.
  • silica filler 3 The ethyl acetate of the silica filler 3 was the same as the silica filler 1 except that silica fine particles having a mean particle diameter of 7 nm (product name: Aerosil R812 manufactured by Nippon Aerosil Co., Ltd.) hydrophobized with a trimethylsilyl group were used as the silica filler. A dispersion was prepared.
  • Organic filler 1 As the organic filler 1, an organic filler (manufactured by Gantz Kasei Co., Ltd., product name: Staphyloid AC-3364P) composed of a rubber-like acrylic polymer core and a glassy high-Tg polymer shell was used. The organic filler 1 was dispersed in ethyl acetate to prepare an ethyl acetate dispersion of the organic filler 1 having a concentration of 15% by mass.
  • an organic filler manufactured by Gantz Kasei Co., Ltd., product name: Staphyloid AC-3364P
  • the organic filler 1 was dispersed in ethyl acetate to prepare an ethyl acetate dispersion of the organic filler 1 having a concentration of 15% by mass.
  • Organic filler 2 An ethyl acetate dispersion of organic filler 2 was prepared in the same manner as organic filler 1 except that a silicone resin filler (manufactured by Shin-Etsu Polymer Co., Ltd., product name: X52-854) having an average particle diameter of 800 nm was used as organic filler 2. did.
  • a silicone resin filler manufactured by Shin-Etsu Polymer Co., Ltd., product name: X52-854 having an average particle diameter of 800 nm was used as organic filler 2. did.
  • Organic filler 3 An ethyl acetate dispersion of organic filler 3 was prepared in the same manner as organic filler 1 except that a silicone resin filler having an average particle size of 2000 nm (product name: KMP-590, manufactured by Shin-Etsu Polymer Co., Ltd.) was used as organic filler 3. did.
  • a silicone resin filler having an average particle size of 2000 nm product name: KMP-590, manufactured by Shin-Etsu Polymer Co., Ltd.
  • Organic filler 4 An ethyl acetate dispersion of organic filler 4 was prepared in the same manner as organic filler 1 except that a silicone resin filler (manufactured by Shin-Etsu Polymer Co., Ltd., product name: KMP-701) having an average particle diameter of 3500 nm was used as organic filler 4. did.
  • a silicone resin filler manufactured by Shin-Etsu Polymer Co., Ltd., product name: KMP-701
  • Example 1 [Production of film-like circuit connection material] 35 g of phenoxy resin (manufactured by Union Carbide, product name: PKHC) is dissolved in 80 g of ethyl acetate, 30 g of acrylic rubber is dissolved in 70 g of ethyl acetate, and these are mixed to obtain a solution having a polymer concentration of 30% by mass. Obtained.
  • the weight average molecular weight of the acrylic rubber was 850,000.
  • a liquid epoxy containing a microcapsule-type latent curing agent manufactured by Asahi Kasei Epoxy Corporation, product name: Novacure HX-3941, epoxy equivalent 185
  • a liquid epoxy containing a microcapsule-type latent curing agent manufactured by Asahi Kasei Epoxy Corporation, product name: Novacure HX-3941, epoxy equivalent 185
  • 35 g of an ethyl acetate dispersion of silica filler 1 is added so that the content of silica filler 1 is 40% by mass (20% by volume) with respect to the total amount of the adhesive component, and further an organic filler.
  • the ethyl acetate dispersion of organic filler 1 was added and stirred so that the content of 1 was 5% by mass (5% by volume) with respect to the total amount of the adhesive component.
  • a dispersion was prepared by mixing 20 g of insulating coated conductive particles having an average particle size of 3.0 ⁇ m with 100 g of this solution.
  • the value obtained by dividing the average particle diameter D1 of the conductive particles by the average particle diameter D2 of the silica filler, that is, the value of D1 / D2 was as shown in Table 1.
  • the insulating coated conductive particles particles obtained by coating colloidal silica on conductive particles obtained by performing nickel plating and gold plating in this order on plastic particles were used. The content of the insulating coated conductive particles in the dispersion was adjusted to 9% by volume with respect to the total amount of the adhesive component.
  • the dispersion was applied on a separator (thickness 40 ⁇ m) with a roll coater and dried at 80 ° C. for 5 minutes to prepare a film-like circuit connection material having a thickness of 25 ⁇ m.
  • a separator a silicone-treated polyethylene terephthalate film was used.
  • connection structure sample Using the produced film-like circuit connection material, the connection between the chip with gold bumps (1.7 mm ⁇ 17 mm, thickness: 0.5 mm) and the glass substrate with ITO circuit (Geomatec, thickness: 0.7 mm) The following was conducted.
  • the area of the gold bump was 30 ⁇ m ⁇ 90 ⁇ m.
  • the space (pitch) between the gold bumps was 10 ⁇ m.
  • the height of the gold bump was 15 ⁇ m.
  • the number of bumps was 362.
  • the film-like circuit connecting material was cut into a predetermined size (2 mm ⁇ 19 mm). Then, the surface opposite to the surface on which the separator of the film-like circuit connecting material is provided is directed to the surface on which the ITO circuit of the glass substrate with ITO circuit is formed at 80 ° C. on the surface of the glass substrate with ITO circuit. , 0.98 MPa (10 kgf / cm 2 ), and temporarily bonded. Thereafter, the separator was peeled off from the film-like circuit connecting material attached to the glass substrate with ITO circuit, and the gold bumps of the chip and the glass substrate with ITO circuit were aligned with each other via the film-like circuit connecting material. .
  • the surface on which the gold bumps of the chip are provided is directed to the surface opposite to the surface on which the glass substrate with ITO circuit of the film-like circuit connecting material is attached, and the temperature is 190 ° C., 40 g / bump for 10 seconds. Heating and pressurization were performed under the conditions to perform main bonding (main connection), and a connection structure sample was obtained.
  • Example 2 A film-like circuit connection material and a connection structure sample were prepared in the same manner as in Example 1 except that the ethyl acetate dispersion of silica filler 2 was used as the silica filler dispersion.
  • Example 3 A film-like circuit connection material and a connection structure sample were prepared in the same manner as in Example 1 except that the ethyl acetate dispersion of silica filler 3 was used as the silica filler dispersion.
  • Example 4 The same as Example 1 except that 8.75 g of ethyl acetate dispersion of silica filler 1 was used so that the content of silica filler 1 was 10% by mass (5% by volume) with respect to the total amount of the adhesive component. Thus, a film-like circuit connection material and a connection structure sample were produced.
  • Example 5 The same as Example 1 except that 52.5 g of the ethyl acetate dispersion of silica filler 1 was used so that the content of silica filler 1 was 60% by mass (30% by volume) with respect to the total amount of the adhesive component. Thus, a film-like circuit connection material and a connection structure sample were produced.
  • Example 6 Except for adding 27 g of an ethyl acetate dispersion of the organic filler 1 so that the content of the organic filler 1 is 20% by mass (20% by volume) with respect to the total amount of the adhesive component, the same as in Example 1. A film-like circuit connection material and a connection structure sample were prepared.
  • Example 7 A film-like circuit connection material and a connection structure sample were prepared in the same manner as in Example 1 except that the ethyl acetate dispersion of organic filler 2 was used as the organic filler dispersion.
  • Example 8 A film-like circuit connection material and a connection structure sample were prepared in the same manner as in Example 1 except that the ethyl acetate dispersion of organic filler 3 was used as the organic filler dispersion.
  • Example 1 The same as in Example 1 except that 6.8 g of the ethyl acetate dispersion of the organic filler 4 was added so that the content of the organic filler 4 was 5% by mass (5% by volume) with respect to the total amount of the adhesive component. Thus, a film-like circuit connection material and a connection structure sample were produced.
  • Example 2 The same as Example 1 except that 1.4 g of the ethyl acetate dispersion of the organic filler 1 was added so that the content of the organic filler 1 was 1% by mass (1% by volume) with respect to the total amount of the adhesive component. Thus, a film-like circuit connection material and a connection structure sample were produced.
  • Example 4 A film-like circuit connection material and a connection structure sample were produced in the same manner as in Example 1 except that the ethyl acetate dispersion of silica filler 1 was not added.
  • Example 5 Film as in Example 1, except that 70 g of ethyl acetate dispersion of silica filler 1 was added so that the content of silica filler 1 was 80% by mass (40% by volume) with respect to the total amount of the adhesive component.
  • a sample circuit connection material and a connection structure sample were prepared.
  • connection resistance value The connection resistance of the connection structure sample was measured by the 4-terminal method. A constant current (1 mA) was applied between the chip electrode and the substrate electrode (connection portion) of the connection structure sample using a constant current power supply R-6145 manufactured by Advantest Corporation. The potential difference at the connection portion when current was applied was measured using a digital multimeter (R-6557) manufactured by Advantest Corporation. The potential difference was measured at arbitrary 10 points, and the average value was obtained. The average value of the potential difference was converted to the connection resistance value. The obtained connection resistance value was evaluated based on the following criteria. A: Less than 1 ⁇ B: 1 ⁇ or more and less than 5 ⁇ C: 5 ⁇ or more and 10 ⁇ or less D: More than 10 ⁇
  • the insulation resistance means a resistance between adjacent circuit electrodes (between gold bumps).
  • the insulation resistance value between any 10 pairs of gold bumps included in each connection structure sample was measured, and the average value was obtained. And the average value of the insulation resistance value was evaluated based on the following criteria.
  • the laminate after heating and pressing was imaged from the main surface side at 1000 times using a Keyence optical microscope (VH-Z450).
  • the monodispersion rate of the conductive particles was calculated from the obtained image.
  • the monodispersion rate of the conductive particles means the ratio of the conductive particles (single particles) that are present alone without aggregating in the entire conductive particles, and specifically obtained from the following formula (1). .
  • Monodispersion rate of conductive particles (number of single particles / total number of measured conductive particles) ⁇ 100 (1)
  • the film-like circuit connecting materials of Examples 1 to 8 had good film formability and good monodispersion rate of conductive particles. Moreover, in the connection structure using this film-like circuit connection material, it was possible to achieve both excellent insulating characteristics between adjacent circuit electrodes and excellent conductive characteristics between opposing circuit electrodes.
  • organic fine particles organic filler having a large particle diameter in addition to the silica filler, it becomes possible to keep the distance between the conductive particles appropriately, and in particular, the insulation resistance value between adjacent circuit electrodes is reduced. It is thought that it was able to improve.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Conductive Materials (AREA)
  • Non-Insulated Conductors (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Combinations Of Printed Boards (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 接着剤成分、導電粒子、平均粒径が7~75nmであるシリカフィラー及び平均粒径が130~2000nmである有機フィラーを含有し、シリカフィラーの含有量が、接着剤成分の全質量又は全体積を基準として、それぞれ10質量%以上80質量%未満又は5体積%以上40体積%未満であり、有機フィラーの含有量が、接着剤成分の全質量又は全体積を基準として、それぞれ5~20質量%又は5~20体積%である、回路接続材料。

Description

回路接続材料及び回路基板の接続構造体
 本発明は、回路接続材料及び回路基板の接続構造体に関する。
 液晶表示用ガラスパネルに液晶駆動用ICを実装する方式は、COG(Chip-on-Glass)実装とCOF(Chip-on-Flex)実装の2種類に大別することができる。COG実装では、導電粒子を含む異方導電性接着剤を用いて液晶用ICを直接ガラスパネル上に接合する。一方、COF実装では、金属配線を有するフレキシブルテープに液晶駆動用ICを接合し、その後、導電粒子を含む異方導電性接着剤を用いてそれらをガラスパネルに接合する。なお、ここでいう異方導電性とは、加圧方向に導通性を有しつつ非加圧方向には絶縁性を保つという意味である。
 従来のCOG実装では、導電粒子を含有する導電性接着剤層と、導電粒子を含有しない絶縁性接着剤層とからなる二層タイプの回路接続材料が、ガラスパネル側に導電性接着剤層が対向するようにして使用される(下記特許文献1参照)。この方式では、実装時に絶縁性接着剤層が流動しやすいために導電粒子の流動を抑えることができ、導電粒子の電極上補足率を向上させることができる。また、チップ側には絶縁性接着剤層が対向するようにして使用されるため、バンプ間への導電粒子の入り込みを減少させることができ、ショートの発生を抑制することができる。
 一方、フィラーを添加することにより、接着剤にチキソトロピー性を付与して樹脂粘度を増加させ、比重の高い導電粒子の沈降を防ぐ検討も行われてきた(下記特許文献2参照)。
 また、帯電させた接着剤層に対し、その逆電荷に帯電させた導電粒子を散布して一層の導電粒子層を作製する方法も開発されている。導電粒子を帯電させることによって粒子同士が反発するため、分散性が向上する。そのため使用する導電粒子数が少なく、コストを削減することができる(下記特許文献3参照)。
特開2009-194359号公報 特開2003-064330号公報 特開平10-302926号公報
 近年では、液晶パネルの小型化、薄型化が進行する中、接続回路面積の狭小化が要求される状況にある。このような状況において、回路接続材料(接着剤)中の導電粒子が隣接する複数の回路電極の間に流出してショートを発生させることがより問題となっている。また、対向する回路電極の間(例えばバンプとガラスパネル上の電極との間)から導電粒子が流出することにより、回路電極の間に補足される導電粒子数が減少して、対向する回路電極間の接続抵抗が上昇し、接続不良が発生することもより問題となっている。上記特許文献に記載の接着剤では、このような問題に対し充分に対応することが困難である。
 本発明は、上記事情に鑑みてなされたものであり、隣接する回路電極間の優れた絶縁特性と、対向する回路電極間の優れた導電特性を両立することができ、かつフィルム成形性が良好な回路接続材料、及びこの回路接続材料を用いた回路基板の接続構造体を提供することを目的とする。
 そこで、本発明者らは、シリカフィラーを回路接続材料中に高充填することで回路接続材料に含まれる接着剤成分の流動性を低下させ、対向する回路電極間に捕捉される導電粒子の数(導電粒子補足率)を向上することが可能となると考えた。同時に、粒子径の大きい有機フィラーを回路接続材料中に充填し、導電粒子間に有機フィラーを適度に存在させることにより、充分な導電粒子間距離を確保でき、隣接する回路電極間の絶縁特性の向上も可能となると考えた。
 本発明は、接着剤成分、導電粒子、平均粒径が7~75nmであるシリカフィラー及び平均粒径が130~2000nmである有機フィラーを含有し、シリカフィラーの含有量が、接着剤成分の全質量を基準として、10質量%以上80質量%未満であり、有機フィラーの含有量が、接着剤成分の全質量を基準として、5~20質量%である、回路接続材料を提供する。
 本発明はまた、接着剤成分、導電粒子、平均粒径が7~75nmであるシリカフィラー及び平均粒径が130~2000nmである有機フィラーを含有し、シリカフィラーの含有量が、接着剤成分の全体積を基準として、5体積%以上40体積%未満であり、有機フィラーの含有量が、接着剤成分の全体積を基準として、5~20体積%である、回路接続材料を提供する。
 このような回路接続材料であれば、隣接する回路電極間の優れた絶縁特性と、対向する回路電極間の優れた導電特性とを両立することができ、かつフィルム形成性が良好である。一般に、シリカフィラーは粒径100nm以下の極小微粒子の作成が可能であるが、特に平均粒径7~75nmのシリカフィラーであれば、好適に樹脂の流動性を制御することができる。そのため、対向する回路電極間に捕捉される導電粒子の数を向上することが可能である。また、平均粒径130~2000nmの有機フィラーであれば、比較的大粒径であるとともに樹脂(接着剤成分)との相溶性が良好であるため分散性が良い。そのため、導電粒子間距離を好適に保つことが可能となり、隣接する回路電極間の絶縁特性の向上につながる。そして、これらのシリカフィラー及び有機フィラーを上記範囲で含有させた回路接続材料であれば、シリカフィラーのみを高充填した場合よりも、フィルムの成形性が向上する。
 シリカフィラー及び有機フィラーの含有量がこのような範囲にあることで、前述した絶縁特性と導電特性をより確実に両立することができる。また、フィルム形成性にもより優れる回路接続材料を得ることができる。
 シリカフィラーの平均粒径は、7~50nmであることが好ましい。なお、シリカフィラーの平均粒径は7~15nmであることがより好ましく、有機フィラーの平均粒径は、130~1500nmであることが好ましい。
 このような平均粒径を有するシリカフィラー及び有機フィラーであれば、分散性に優れ接着剤成分中により好適に分散させることができる。そのため、より優れた絶縁特性と導電特性を両立することができ、かつフィルム形成性がさらに良好である回路接続材料とすることができる。
 また、シリカフィラーの表面に疎水化処理が施されていることが好ましい。
 特に、この疎水化処理は、重合度が10~500のシリコーンオイルをシリカフィラー表面に付着又は結合させる処理であることがより好ましい。
 シリカフィラーを疎水化処理することにより、接着剤成分中での分散性をより向上させることができる。これにより、シリカフィラーを接着剤成分中に高充填しても、シリカフィラーが凝集することをより確実に抑制することができる。そのため、例えば回路接続材料をフィルム化する場合にも、凝集したシリカフィラーに起因する塗工傷や物性バラツキや厚みバラツキをより良好に改善することができる。また、具体的な機構は明らかではないものの、このようなシリカフィラーの疎水化処理により、通常、シリカフィラーの高充填に従って低下する回路接続材料のタック力の低下もより良好に抑制することができる。
 また、本発明の回路接続材料に含有される有機フィラーは、シリコーンゴムからなる有機フィラーであることが好ましい。これにより、接着剤成分中でより好適に分散するため、絶縁特性と導電特性をより確実に両立できる。また、凝集がより確実に抑制されるため、フィルム形成性も良好である。
 本発明の回路接続材料において、導電粒子の平均粒径をD1とし、シリカフィラーの平均粒径をD2としたときに、D1/D2が13.3~1428.6であることが好ましい。
 導電粒子及びシリカフィラーの平均粒径の関係がこのような数値範囲にある場合、隣接する回路電極間の良好な絶縁特性及び対向する回路電極間の良好な導電特性をより確実に達成することができ、フィルム形成性が良好な回路接続材料を得ることができる。
 また、導電粒子の単分散率は、80%以上であることが好ましい。このように導電粒子が好適に分散していることにより、絶縁特性をより確実に向上することができる。
 本発明の回路接続材料は、3000μm以下の面積の電極を有する回路基板と、他の回路基板とを電気的に接続するために好適に用いられる。
 また、本発明の回路接続材料は、12μm以下の間隔を空けて配置された複数の電極を有する回路基板と、他の回路基板とを電気的に接続するために好適に用いられる。
 本発明の回路接続材料は、このような電極面積の小さな電極や、12μm以下のピッチを有する電極群を有する回路基板と、他の回路基板とを接続するために用いた場合でも、隣接する回路電極間の優れた絶縁特性と、対向する回路電極間の優れた導電特性とを両立することができる。
 また、本発明は、第一の電極を有する第一の回路基板と、第二の電極を有する第二の回路基板と、第一の回路基板及び第二の回路基板の間に介在する回路接続材料の硬化物と、を備え、第一の回路基板と第二の回路基板とは、第一の電極と第二の電極とが対向するように配置され、第一の電極と第二の電極とは、硬化物を介して電気的に接続され、回路接続材料は、前述の回路接続材料である、回路基板の接続構造体を提供する。
 このような回路基板の接続構造体は、第一の電極を有する第一の回路基板と第二の電極を有する第二の回路基板とが、本発明の回路接続材料の硬化物を介して接続されているため、前述した絶縁特性と導電特性とが共に優れている。
 このように、本発明の回路接続材料において、シリカフィラーを回路接続材料に高充填することにより、回路接続材料の流動性制御が容易となり、導電粒子補足性向上により接続抵抗を低下させることができる。また、大粒径で分散性が良好な有機フィラーを回路接続材料に添加することで、導電粒子間の距離を広くすることができるため、絶縁特性の向上が可能となる。また、必要に応じてシリカフィラーを疎水化処理することにより、シリカフィラーの凝集をより確実に抑えられ、シリカフィラーを高充填しても回路接続材料のフィルム成形性をより確実に維持することができる。また、このような疎水化処理により、シリカフィラーの吸水率をより低下することができるため、本発明の回路接続材料を用いた回路基板の接続構造体において、ショートの発生をより確実に抑制することが可能である。
 本発明によれば、隣接する回路電極間の優れた絶縁特性と、対向する回路電極間の優れた導電特性を両立することができ、かつフィルム成形性が良好な回路接続材料、及びこの回路接続材料を用いた回路基板の接続構造体を提供することができる。
本発明の回路接続材料の一実施形態を示す断面図である。 本発明の回路基板の接続構造体の一実施形態を示す断面図である。
 以下、本発明の好適な実施形態について、場合により図面を参照して詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
[回路接続材料]
 本実施形態の回路接続材料は、シリカフィラー及び有機フィラーが高濃度で充填されていることを特徴とする。具体的には、本実施形態の回路接続材料は、接着剤成分、導電粒子、平均粒径が7~75nmであるシリカフィラー及び平均粒径が130~2000nmである有機フィラーを含有し、シリカフィラーの含有量が、接着剤成分の全質量又は全体積を基準として、それぞれ10質量%以上80質量%未満又は5体積%以上40体積%未満であり、有機フィラーの含有量が、接着剤成分の全質量又は全体積を基準として、それぞれ5~20質量%又は5~20体積%であることを特徴とする。なお、回路接続材料はペースト状で使用してもよく、フィルム状に成形して使用してもよい。以下、各成分について詳述する。
(A:シリカフィラー)
 本実施形態において使用されるシリカフィラーの平均粒径は7~75nmであるが、7~50nmであることが好ましく、7~30nmであることがより好ましく、7~20nmであることがさらに好ましく、7~15nmであることが非常に好ましく、10~15nmであることが極めて好ましい。シリカフィラーの平均粒径が7nm以上であると、シリカフィラーが凝集し難く分散性が良好となり、75nm以下であると、増粘効果又はチキソ性の改善効果を充分に得ることができる。
 シリカフィラーの回路接続材料への高充填化を容易にするために、フィリカフィラーの表面に疎水化処理を施すことが好ましい。この疎水化処理により、シリカフィラー表面に反応性有機基を担持させることができる。この反応性有機基は、本実施形態における接着剤成分と反応し、かつ硬化反応等に特に悪影響を及ぼさないものであることが好ましい。このような反応性有機基としては、例えば、アミノ基、グリシジル基、メルカプト基、ウレイド基、ヒドロキシ基、カルボキシル基等が挙げられる。これらの反応性有機基のうち、活性水素を有するアミノ基(-NH)、メルカプト基(-SH)、カルボキシル基(-COOH)、ウレイド基(-NHCONH)、ヒドロキシ基(-OH)は、接着剤成分中の親水基、例えばエポキシ樹脂の端部に存在するエポキシ基(オキシラン環)に付加ないし、エポキシ基と水素結合を形成すると考えられるため好ましい。また、グリシジル基は、エポキシ基とアミン系触媒の存在下で開環付加反応すると考えられるため好ましい。
 これらの反応性有機基をシリカフィラー表面に担持させるためには、例えば、この反応性有機基とシリカ表面に結合し得る官能基とを分子内に併せ持つ化合物を用いてシリカフィラーの表面処理を行えばよい。このような化合物としては、シランカップリング剤、シリコーンオイル等が挙げられる。特に、シリコーンオイルが好ましく、その重合度が10~500であることがより好ましい。
 本実施形態におけるシリカフィラーの表面処理に好適に用いられるシリコーンオイルとしては、ジメチルポリシロキサン、メチルハイドロジェンポリシロキサン等に代表されるシリコーンオイルにおいて、末端または側鎖のアルキル基の水素原子を、アミノ基、グリシジル基、メルカプト基、ウレイド基、ヒドロキシ基及びカルボキシル基からなる群より選ばれる少なくとも1種の基で置換してなる変性シリコーンオイルが挙げられる。これらの変性シリコーンオイルは下記化学式(1)で表されるような構造(繰返し単位)を有する。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、Aは、アミノ基、グリシジル基、メルカプト基、ウレイド基、ヒドロキシ基又はカルボキシル基を示し、Rはそれぞれ独立に水素原子又はアルキル基(好ましくはメチル基)を示し、Rはメチレン基等の低級アルキレン基を示し、x及びyはそれぞれ独立に1以上の整数を示す。なお、変性シリコーンオイルにおいて、変性されたシロキサン単位はブロック状に連続していてもよいが、一般的には、これらAなる置換基を導入する際、置換基は分子内のシロキサン単位に含まれる水素原子を規則的にあるいはランダムに置換する。そのため、変性シリコーンオイルにおいて、変性されたシロキサン単位は分子内に規則的にあるいはランダムに存在する。これらの置換基によりシリコーンオイルと接着剤成分との反応が可能となると考える。
 置換基の導入量は、シリカフィラーの全質量を基準として、0.01~2.0質量%程度であることが好ましい。この導入量が0.01質量%以上であると接着剤成分との反応が充分に行われ、チキソ性等の改善効果が好適な水準に達し易い傾向があり、2.0質量%以下であるとシリコーンオイルとしての特性が損なわれ難く、シリカフィラー表面との結合性がより向上する傾向がある。変性シリコーンオイルは、重合度が10~500程度のものが好ましい。重合度が10以上であると揮発性が低くシリカフィラーを表面処理する際に加熱により揮散し難い傾向があり、500以下であると粘度が高くなり過ぎずシリカフィラー表面を均一に処理し易い傾向がある。このような変性シリコーンオイルは単独で又は二種以上を組み合わせて使用することができる。
 シリカフィラーの含有量は、接着剤成分の全質量を基準として、10質量%以上80質量%未満であるが、10~70質量%であることが好ましく、20~70質量%であることがより好ましく、30~50質量%であることが更に好ましい。また、シリカフィラーの含有量は、接着剤成分の全体積を基準として、5体積%以上40体積%未満であるが、10~35体積%であることが好ましく、15~20体積%であることがより好ましい。シリカフィラーの含有量を10質量%以上又は5体積%以上とすることで、接着剤成分のチキソ性を充分高くすることができ、すなわち実装時の接着剤成分の流動性を充分低くすることができ、電極における導電粒子の捕捉率を充分確保することができる。なお、含有量が80質量%未満又は40体積%未満であると、フィルム状に成形する際に必要な溶剤量が過剰にならず、塗工が容易になるため、フィルム成形性が向上する。更に、塗工筋が発生し難くなる。
(B:有機フィラー)
 本実施形態において使用される有機フィラーの平均粒径は130~2000nmであるが、130~1500nmであることが好ましく、300~1200nmであることがより好ましく、500~1000nmであることがさらに好ましい。平均粒径が130nm以上であることにより、接着剤成分中での凝集を抑制することができ、隣接する回路電極間の絶縁性を向上することができる。また、平均粒径が2000nm以下であることにより、導電粒子の導通阻害を引き起こすことがない。このような有機フィラーとしてはアクリル粒子、スチレン粒子、ゴム粒子等が挙げられる。この中でもゴム粒子が好ましく、ブタジエンゴム、アクリルゴム、スチレン-ブタジエン-スチレンゴム、ニトリル-ブタジエンゴム、シリコーンゴム等からなる粒子を用いることができる。特に、表面をシランカップリング剤で処理された有機フィラーであれば、熱反応性樹脂や光反応性樹脂に対する分散性が向上するのでより好ましい。また、有機フィラーとしては、例えば、ゴム粒子等からなるコアに、ポリマーを被覆したものも使用することができる。このような有機フィラーは、単独で又は二種以上を組み合わせて使用することができる。
 ゴム粒子の中でシリコーンゴム粒子は、耐溶剤性に優れる他、分散性にも優れるため好適なゴム粒子として用いることができる。シリコーンゴム粒子はシラン化合物若しくはメチルトリアルコキシシラン及び/又はその部分加水分解縮合物を、苛性ソーダ、アンモニア等の塩基性物質によりpH>9に調整したアルコール水溶液に添加し、加水分解、重縮合させる方法、又はオルガノシロキサンを共重合する方法等で得ることができる。また、分子末端もしくは分子内側鎖にヒドロキシ基、エポキシ基、イミノ基、カルボキシル基、メルカプト基等の官能基を有するシリコーンゴム粒子は、反応性樹脂への分散性が良好であるため好ましい。
 有機フィラーの含有量は、接着剤成分の全質量を基準として、5~20質量%であるが、5~15質量%が好ましく、5~10質量%がより好ましい。また、有機フィラーの含有量は、接着剤成分の全体積を基準として、5~20体積%であるが、5~15体積%が好ましく、5~10体積%がより好ましい。有機フィラーの含有量が5質量%以上又は5体積%以上であると、絶縁抵抗値を充分確保することができ、20質量%以下又は20体積%以下であると、シリカフィラーと同様に塗工が容易となる。
(C:接着剤成分)
 本実施形態における回路接続材料に用いられる接着剤成分としては、例えば、熱反応性樹脂と硬化剤との混合物を好適に用いることができる。このうち、エポキシ樹脂と潜在性硬化剤との混合物を用いることが好ましい。潜在性硬化剤としては、例えば、イミダゾール系硬化剤、ヒドラジド系硬化剤、三フッ化ホウ素-アミン錯体、スルホニウム塩、アミンイミド、ポリアミンの塩、ジシアンジアミド等が挙げられる。また、ラジカル反応性樹脂と有機過酸化物との混合物、紫外線等により硬化するエネルギー線硬化性樹脂(光反応性樹脂)等も接着剤成分として用いることができる。
 上記エポキシ樹脂としては、例えば、エピクロルヒドリンとビスフェノールA、ビスフェノールF、ビスフェノールAD等とから誘導されるビスフェノール型エポキシ樹脂;エピクロルヒドリンとフェノールノボラック又はクレゾールノボラックとから誘導されるエポキシノボラック樹脂;ナフタレン環を含む骨格を有するナフタレン系エポキシ樹脂;グリシジルアミン系エポキシ樹脂、グリシジルエーテル系エポキシ樹脂、ビフェニル型エポキシ樹脂、脂環式エポキシ樹脂等の1分子内に2個以上のグリシジル基を有する各種のエポキシ化合物などが挙げられる。これらは単独で又は二種以上を組み合わせて使用することができる。これらのエポキシ樹脂は、エレクトロマイグレーション防止の観点から、不純物イオン(Na、Cl等)、加水分解性塩素等を300ppm以下に低減した高純度品を用いることが好ましい。
 さらに接着剤成分には、接着後の応力を低減するため、又は接着性を向上するために、上述の成分に加えてブタジエンゴム、アクリルゴム、スチレン-ブタジエンゴム、シリコーンゴム等のゴム成分を混合することもできる。また、充填材、軟化剤、促進剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤、フェノール樹脂、メラミン樹脂、イソシアネート類等を含有させることもできる。
 さらに、フィルム形成性の観点から接着剤成分にフェノキシ樹脂、ポリエステル樹脂、ポリアミド樹脂等の熱可塑性樹脂(フィルム形成性高分子)を配合することが好ましい。これらのフィルム形成性高分子を配合することは、反応性樹脂の硬化時の応力を緩和できる観点からも好ましい。また、接着性向上の観点から、フィルム形成性高分子が水酸基等の官能基を有することがより好ましい。
(D:導電粒子)
 導電粒子としては、例えば、金、銀、銅、白金、亜鉛、鉄、パラジウム、ニッケル、錫、クロム、チタン、アルミニウム、コバルト、ゲルマニウム、カドミウム等の金属、ITO、はんだなどの金属粒子、又はカーボン等の粒子などが挙げられる。導電粒子は、核となる粒子を1又は2以上の層で被覆し、最外層が導電性の層である粒子であってもよい。この場合、最外層はニッケル、金、パラジウム等が好ましい。また、導電粒子は、ニッケル等の遷移金属類の表面を金やパラジウムで被覆したものでもよい。
 さらに、導電粒子として、例えば、非導電性のガラス、セラミック、プラスチック等の絶縁粒子に、上述した金属等の導電性物質を被覆したものも使用することができる。例えば、導電粒子が、絶縁粒子に導電性物質を被覆したものであって、最外層を金又はパラジウム、核となる絶縁粒子をプラスチックとしたものである場合、又は導電粒子が熱溶融金属粒子の場合、加熱加圧による変形性を有するため、接続時に電極との接触面積が増加し信頼性が向上するので好ましい。このような導電粒子は、例えば、核となる絶縁粒子に金属をめっき等により被覆することによって作製することができる。この被覆する方法としては、例えば、無電解めっき、置換めっき、電気めっき、スパッタリング等の方法が挙げられる。
 導電粒子の平均粒径は、接続する回路の電極高さより低くすると隣接電極間の短絡が減少する等の点から、1~10μmであると好ましく、1~8μmであるとより好ましく、2~6μmであるとさらに好ましく、3~5μmであると非常に好ましく、3~4μmであると極めて好ましい。また、10%圧縮弾性率(K値)が100~1000kgf/mmの導電粒子を適宜選択して使用することができる。
 なお、導電粒子の平均粒径をD1とし、シリカフィラーの平均粒径をD2としたとき、D1/D2が13.3~1428.6であれば、シリカフィラーの凝集による接続抵抗への影響をより小さくすることができるため好ましい。このような観点から、D1/D2は、150~714であることがより好ましく、200~400であることがさらに好ましい。
 さらに必要に応じて、これら導電粒子を絶縁被覆処理することができる。絶縁被覆処理としては、例えば、絶縁性小粒子を導電粒子に付着又は結合する方法、導電粒子の表面に絶縁性樹脂による膜を形成する方法等が挙げられる。
 上記絶縁性小粒子としては、例えば、無機酸化物微粒子、有機微粒子が挙げられるが、対向する回路電極間の導通性を充分高くする観点から、無機酸化物微粒子であることが好ましい。無機酸化物微粒子としては、例えば、ケイ素、アルミニウム、ジルコニウム、チタン、ニオブ、亜鉛、錫、セリウム、マグネシウムより選ばれる少なくとも一つの元素を含む酸化物からなる微粒子を好適に用いることができる。これらの中でも、隣接する回路電極間の絶縁性を良好にする観点から、シリカであることが好ましく、粒子径を制御した水分散コロイダルシリカ粒子であることがより好ましい。
 絶縁性小粒子の粒子径は、20~500nmであることが好ましい。この粒子径が20nm以上であると、導電粒子を被覆する絶縁性小粒子が絶縁層として機能し、同一基板上で互いに隣り合う回路電極間のショートを充分に抑制し易い傾向がある。一方、500nm以下であると、対向する回路電極間の導通性を確保し易い傾向がある。このような導電粒子は単独で又は二種以上を組み合わせて使用することができる。
 上記導電粒子の含有量は、隣接する回路電極間の絶縁性及び対向する回路電極間の導通性を良好にする観点から、接着剤成分の全体積に対して、0.1~30体積%であることが好ましく、1~25体積%であることがより好ましい。
 導電粒子の単分散率は、80%以上であることが好ましく、90%以上であることがより好ましい。なお、単分散率の好ましい上限値は100%である。ここで、導電粒子の単分散率とは、上記回路接続材料中の導電粒子全体において凝集せずに単独で存在する導電粒子(単独粒子)の割合を意味し、下記式(1)で表される。単分散率がこのような範囲にあることで、隣接する回路電極間の絶縁特性が向上するという効果を奏する。なお、導電粒子の単分散率とは、導電粒子全体において凝集せずに単独で存在している導電粒子(単独粒子)の割合を意味し、例えば次のようにして測定することができる。まず、接着剤成分のみからなる接着剤層を作製し、これをフィルム状回路接続材料とラミネートしたものを1mm角に切断する。また、接着剤層を別途作成し、これを3mm角に切断する。これらをそれぞれカバーガラスに乗せ、それらを貼り合わせて、3mm角の接着剤層、1mm角のフィルム状回路接続材料、1mm角の接着剤層がこの順で積層された積層体を得る。これを、(株)東レエンジニアリング製高精細自動ボンダ(FC-1200)を用いて80℃で40秒間圧延した後、さらに200℃で20秒間加熱加圧する。加熱加圧後の積層体を主面側から、キーエンス製光学顕微鏡(VH-Z450)を用いて1000倍にて撮像する。得られた画像から下記式(1)に従い導電粒子の単分散率を計算する。なお、圧延条件や加熱加圧条件は、測定対象であるフィルム状回路接続材料の特性に合わせて適宜変更することができる。
 導電粒子の単分散率(%)=(単独粒子数/測定した全導電粒子数)×100 ・・・(1)
 なお、本実施形態における各種粒子の平均粒径は、次のようにして求めることができる。すなわち、1個の粒子を任意に選択し、これを走査型電子顕微鏡で観察してその最大径及び最小径を測定する。この最大径及び最小径の積の平方根をその粒子の粒径とする。この方法で、任意に選択した粒子50個について粒径を測定し、その平均値を各種粒子の平均粒径とする。
[回路接続材料の製造方法及び使用方法]
 本実施形態の回路接続材料は、例えば、エポキシ樹脂、アクリルゴム及び潜在性硬化剤を含む接着剤成分を有機溶剤に溶解又は分散して液状化し、それに導電粒子、シリカフィラー及び有機フィラーを加えて分散させることで作製することができる。なお、必要に応じ、さらにこれをフィルム状に成形することもできる。その場合、得られた回路接続材料を剥離性基材上に塗布して硬化剤の活性温度以下で溶剤を除去することにより、フィルム状の回路接続材料が得られる。なお、有機溶剤としては、例えば、接着剤成分の溶解性向上の観点から、芳香族炭化水素系と含酸素系との混合溶剤が好ましい。
 また、本実施形態の回路接続材料は、接着剤成分と導電粒子とを含むACF(Anisotoropic Conductive Film)層と、接着剤成分を含み、導電粒子を含まないNCF(Non-Conductive Film)層との少なくとも二層からなるフィルム状の回路接続材料とすることができる。なお、この際、本実施形態におけるシリカフィラーはACF層及びNCF層の両方に含有させることができるが、ACF層に含有させる場合には、ACF層の接着剤成分の総量に対して10質量%以上又は5体積%以上含有させることが好ましい。
 このようなフィルム状の回路接続材料の厚みは、導電粒子の粒径及び回路接続材料の特性を考慮して相対的に決定されるが、1~100μmであることが好ましく、1~30μmであることがより好ましい。厚みが1μm以上であると充分な接着性を得易い傾向があり、100μm以下であると対向する回路電極間の導通性を得るために多量の導電粒子を必要としないため、コスト等の観点から現実的である。
 また、本実施形態の回路接続材料は、導電粒子の電極上への補足性が向上することから、3000μm以下の面積の電極を有する回路基板等を電気的に接続する材料として好適に使用することができる。ただし、電極上に導通特性を発現する導電粒子を必要最低限補足する観点から、このような回路基板の電極の面積は1500μm以上であることが好ましい。また、本実施形態の回路接続材料は、12μm以下のピッチを有する電極群(すなわち、12μm以下の間隔を空けて配置された複数の電極)を有する回路基板等を電気的に接続する材料として好適に使用することができる。ただし、電極ピッチ間が狭すぎる場合、導電粒子が電極間で凝集して絶縁破壊を起こす可能性があるため、電極のピッチは8μm以上であることが好ましい。
 図1は、本実施形態の回路接続材料の一実施形態を示す断面図である。回路接続材料1はフィルム状であり、シリカフィラー、有機フィラー及び接着剤成分を含有する樹脂組成物層3を有している。そして複数の導電粒子5が、樹脂組成物層3中に分散している。
 フィルム状の回路接続材料1は、対向する一対の回路部材同士間に挟まれた状態で加熱及び加圧されたときに、溶融流動して対峙する回路電極同士を電気的に接続した後、硬化して接着強度を発現する。
 上記フィルム状の回路接続材料1は、例えば、半導体チップ、抵抗体チップ、コンデンサチップ等のチップ部品、又はプリント基板のような回路部材同士を接続するための材料として有用である。すなわち、第一の電極を有する第一の回路基板と第二の電極を有する第二の回路基板とを、第一の電極と第二の電極とが対向するように配置し、対向配置した第一の電極と第二の電極との間に、上記本実施形態の回路接続材料を介在させ、加熱加圧して、第一の電極と第二の電極とを電気的に接続させることにより、回路基板同士を接続することができる。
 これにより、第一の電極を有する第一の回路基板と、第二の電極を有する第二の回路基板と、第一の回路基板及び第二の回路基板の間に介在する回路接続材料の硬化物と、を備え、第一の回路基板と第二の回路基板とは、第一の電極と第二の電極とが対向するように配置され、第一の電極と第二の電極とは、硬化物を介して電気的に接続され、回路接続材料は、本実施形態の回路接続材料である、図2に示すような断面を有する、本実施形態の回路基板の接続構造体が得られる。
 図2は、本実施形態の回路基板の接続構造体の一実施形態を示す概略断面図である。図2に示す回路基板の接続構造体101は、第一の回路基板11及びこれの主面上に形成された第一の回路電極13を有する第一の回路部材10と、第二の回路基板21及びこれの主面上に形成された第二の回路電極23を有する第二の回路部材20とが、上述のフィルム状の回路接続材料1が硬化した硬化物からなりかつ第一及び第二の回路部材10、20の間に形成された回路接続部材1aによって接続されたものである。回路基板の接続構造体101においては、第一の回路電極13と第二の回路電極23とが電気的に接続されていると共に接着している。
 回路接続部材1aは、シリカフィラー、有機フィラー及び接着剤成分を含有する樹脂組成物層3の硬化物3a、並びに、これに分散している導電粒子5から構成される。第一の回路電極13と第二の回路電極23とは、導電粒子5を介して電気的に接続されている。
 第一の回路基板11は、例えば、ポリエステルテレフタレート、ポリエーテルサルフォン、エポキシ樹脂、アクリル樹脂及びポリイミド樹脂からなる群から選ばれる少なくとも一種の樹脂を含む樹脂フィルムである。
 回路電極13は、電極として機能し得る程度の導電性を有する材料(好ましくは金、銀、錫、白金族の金属及びインジウム-錫酸化物からなる群から選ばれる少なくとも一種)で形成されている。複数の回路電極13が、第一の回路基板11の主面上に形成されている。
 第二の回路基板21は、例えば、ガラス基板であり、第二の回路基板21の主面上には、複数の第二の回路電極23が形成されている。
 回路基板の接続構造体101は、例えば、第一の回路部材10と、上記フィルム状の回路接続材料1と、第二の回路部材20とを、第一の回路電極13と第二の回路電極23とが対峙するようにこの順に積層した積層体を加熱及び加圧することにより、第一の回路電極13と第二の回路電極23とが電気的に接続されるように第一の回路部材10と第二の回路部材20とを接続する方法、によって、得られる。
 この方法においては、例えば、まず、支持フィルム上に形成されているフィルム状の回路接続材料1を第二の回路部材20上に貼り合わせた状態で加熱及び加圧して回路接続材料1を仮接着する。その後、上記支持フィルムを剥離し、支持フィルムが剥離された面上に第一の回路部材10を、回路電極の位置を調整しながら載せて、積層体を準備する。そして、上記積層体を加熱及び加圧することで本接着し、回路基板の接続構造体101を得ることができる。
 上記積層体を加熱及び加圧する条件は、回路接続材料中の接着剤成分の硬化性等に応じて、回路接続材料が硬化して充分な接着強度が得られるように、適宜調整される。
 このような回路基板の接続構造体としては、例えば、半導体チップ、抵抗体チップ、コンデンサチップ等のチップ部品と、プリント基板等の回路部材とを接続した構造などが挙げられる。これらの回路部材には電極が通常は多数(場合によっては単数でもよい)設けられており、回路部材の少なくとも一組を、それらの回路部材に設けられた電極の少なくとも一部を対向配置し、対向配置した電極間に本実施形態の回路接続材料を介在させ、加熱加圧して、対向配置した電極同士を電気的に接続して、前述したような回路基板の接続構造体を得ることができる。このとき、対向配置した電極同士は、異方導電性接着剤(回路接続材料)の導電粒子を介して電気的に接続される。
 以下、実施例及び比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[シリカフィラー分散液及び有機フィラー分散液の調製]
(シリカフィラー1)
 シリカフィラーとして平均粒径12nmの乾式シリカ微粒子(日本アエロジル社製、製品名:Aerosil 200)200gを15リットルの反応槽にとり、シリコーンオイル(信越化学工業社製、製品名:KF96、重合度:10)を26g添加した。さらに攪拌しながら系内を窒素ガスで置換し、窒素ガスを流したまま280℃まで昇温、20分間保持後室温まで冷却した。このようにして、シリコーンオイルで疎水化処理したシリカフィラー(シリカフィラー1)を得た。これを酢酸エチルに分散させて、濃度13質量%のシリカフィラー1の酢酸エチル分散液を調製した。
(シリカフィラー2)
 シリカフィラーとして平均粒径75nmのシリカ微粒子(扶桑化学工業株式会社 クォートロンPL-7)を用いた以外は、シリカフィラー1と同様にして、シリカフィラー2の酢酸エチル分散液を調製した。
(シリカフィラー3)
 シリカフィラーとしてトリメチルシリル基で疎水化処理された平均粒径7nmのシリカ微粒子(日本アエロジル社製、製品名:Aerosil R812)を用いた以外は、シリカフィラー1と同様にして、シリカフィラー3の酢酸エチル分散液を調製した。
(有機フィラー1)
 有機フィラー1として、ゴム状アクリルポリマーのコアとガラス状高Tgポリマーのシェルからなる平均粒径130nmの有機フィラー(ガンツ化成株式会社製、製品名:スタフィロイドAC-3364P)を用いた。この有機フィラー1を酢酸エチルに分散させて、濃度15質量%の有機フィラー1の酢酸エチル分散液を調製した。
(有機フィラー2)
 有機フィラー2として平均粒径800nmのシリコーンレジンフィラー(信越ポリマー社製、製品名:X52-854)を用いたこと以外は、有機フィラー1と同様にして、有機フィラー2の酢酸エチル分散液を調製した。
(有機フィラー3)
 有機フィラー3として平均粒径2000nmのシリコーンレジンフィラー(信越ポリマー社製、製品名:KMP-590)を用いたこと以外は、有機フィラー1と同様にして、有機フィラー3の酢酸エチル分散液を調製した。
(有機フィラー4)
 有機フィラー4として平均粒径3500nmのシリコーンレジンフィラー(信越ポリマー社製、製品名:KMP-701)を用いたこと以外は、有機フィラー1と同様にして、有機フィラー4の酢酸エチル分散液を調製した。
(実施例1)
[フィルム状回路接続材料の作製]
 フェノキシ樹脂(ユニオンカーバイド社製、製品名:PKHC)35gを酢酸エチル80gに溶解し、またアクリルゴム30gを、酢酸エチル70gに溶解し、これらを混合することでポリマー濃度が30質量%の溶液を得た。なお、アクリルゴムとしては、ブチルアクリレート40質量部、エチルアクリレート30質量部、アクリロニトリル30質量部、及びグリシジルメタクリレート3質量部の共重合体を用いた。アクリルゴムの重量平均分子量は85万であった。この溶液に、マイクロカプセル型潜在性硬化剤を含有する液状エポキシ(旭化成エポキシ株式会社製、製品名:ノバキュアHX-3941、エポキシ当量185)50gを加えて撹拌し、接着剤溶液を作製した。この接着剤溶液に、シリカフィラー1の含有量が接着剤成分の総量に対して40質量%(20体積%)となるように、シリカフィラー1の酢酸エチル分散液を35g添加し、さらに有機フィラー1の含有量が接着剤成分の総量に対して5質量%(5体積%)となるように、有機フィラー1の酢酸エチル分散液を添加し攪拌した。この溶液100gに対して、平均粒径が3.0μmの絶縁被覆導電粒子20gを混合して分散液を作製した。なお、実施例1において、導電粒子の平均粒径D1をシリカフィラーの平均粒径D2で除した値、すなわち、D1/D2の値は表1に示すとおりであった。絶縁被覆導電粒子としては、プラスチック粒子に対しニッケルめっき及び金めっきをこの順に施した導電粒子に、コロイダルシリカが被覆されている粒子を用いた。分散液中の絶縁被覆導電粒子の含有量は、接着剤成分の総量に対して9体積%に調整した。
 この分散液をセパレータ(厚み40μm)上にロールコータで塗布し、80℃で5分間乾燥して厚み25μmのフィルム状回路接続材料を作製した。なお、セパレータとしては、シリコーン処理したポリエチレンテレフタレートフイルムを用いた。
[接続構造体サンプルの作製]
 作製したフィルム状回路接続材料を用いて、金バンプ付きチップ(1.7mm×17mm、厚み:0.5mm)と、ITO回路付きガラス基板(ジオマテック製、厚み:0.7mm)との接続を、以下のとおり行った。なお、金バンプの面積は30μm×90μmであった。金バンプ間のスペース(ピッチ)は10μmであった。金バンプの高さは15μmであった。バンプ数は362であった。
 まず、フィルム状回路接続材料を所定のサイズ(2mm×19mm)に切断した。そして、フィルム状回路接続材料のセパレータが設けられた面とは反対側の面を、ITO回路付きガラス基板のITO回路が形成された面に向けて、ITO回路付きガラス基板の表面上に80℃、0.98MPa(10kgf/cm)で貼り付け、仮接着した。その後、ITO回路付きガラス基板に貼り付けたフィルム状回路接続材料からセパレータを剥離し、フィルム状回路接続材料を介した状態で、チップの金バンプとITO回路付きガラス基板との位置合わせを行った。次いで、チップの金バンプが設けられた面を、フィルム状回路接続材料のITO回路付きガラス基板が貼り付けられた面とは反対側の面に向けて、190℃、40g/バンプ、10秒間の条件で加熱及び加圧を行って本接着(本接続)を行い、接続構造体サンプルを得た。
(実施例2)
 シリカフィラーの分散液として、シリカフィラー2の酢酸エチル分散液を用いた以外は、実施例1と同様にしてフィルム状回路接続材料及び接続構造体サンプルを作製した。
(実施例3)
 シリカフィラーの分散液として、シリカフィラー3の酢酸エチル分散液を用いた以外は、実施例1と同様にしてフィルム状回路接続材料及び接続構造体サンプルを作製した。
(実施例4)
 シリカフィラー1の含有量が接着剤成分の総量に対して10質量%(5体積%)となるように、シリカフィラー1の酢酸エチル分散液を8.75g用いた以外は、実施例1と同様にしてフィルム状回路接続材料及び接続構造体サンプルを作製した。
(実施例5)
 シリカフィラー1の含有量が接着剤成分の総量に対して60質量%(30体積%)となるように、シリカフィラー1の酢酸エチル分散液を52.5g用いた以外は、実施例1と同様にしてフィルム状回路接続材料及び接続構造体サンプルを作製した。
(実施例6)
 有機フィラー1の含有量が接着剤成分の総量に対して20質量%(20体積%)となるように、有機フィラー1の酢酸エチル分散液を27g添加した以外は、実施例1と同様にしてフィルム状回路接続材料及び接続構造体サンプルを作製した。
(実施例7)
 有機フィラーの分散液として、有機フィラー2の酢酸エチル分散液を用いた以外は、実施例1と同様にしてフィルム状回路接続材料及び接続構造体サンプルを作製した。
(実施例8)
 有機フィラーの分散液として、有機フィラー3の酢酸エチル分散液を用いた以外は、実施例1と同様にしてフィルム状回路接続材料及び接続構造体サンプルを作製した。
(比較例1)
 有機フィラー4の含有量が接着剤成分の総量に対して5質量%(5体積%)となるように、有機フィラー4の酢酸エチル分散液を6.8g添加した以外は、実施例1と同様にしてフィルム状回路接続材料及び接続構造体サンプルを作製した。
(比較例2)
 有機フィラー1の含有量が接着剤成分の総量に対して1質量%(1体積%)となるように、有機フィラー1の酢酸エチル分散液を1.4g添加した以外は、実施例1と同様にしてフィルム状回路接続材料及び接続構造体サンプルを作製した。
(比較例3)
 有機フィラー1の酢酸エチル分散液を添加しない以外は、実施例1と同様にしてフィルム状回路接続材料及び接続構造体サンプルを作製した。
(比較例4)
 シリカフィラー1の酢酸エチル分散液を添加しない以外は、実施例1と同様にしてフィルム状回路接続材料及び接続構造体サンプルを作製した。
(比較例5)
 シリカフィラー1の含有量が接着剤成分の総量に対して80質量%(40体積%)となるように、シリカフィラー1の酢酸エチル分散液を70g添加した以外は実施例1と同様にしてフィルム状回路接続材料及び接続構造体サンプルを作製した。
Figure JPOXMLDOC01-appb-T000002
 実施例1~8及び比較例1~5で得られたフィルム状回路接続材料及び接続構造体サンプルについて、それぞれ以下の評価を行った。結果を表2に示す。
(接続抵抗値)
 接続構造体サンプルの接続抵抗を4端子法により測定した。(株)アドバンテスト製の定電流電源装置R-6145を用いて、一定電流(1mA)を接続構造体サンプルのチップ電極-基板電極間(接続部分)に印加した。電流の印加時における接続部分の電位差を、(株)アドバンテスト製のデジタルマルチメーター(R-6557)を用いて測定した。電位差は任意の10点で測定し、その平均値を求めた。電位差の平均値を接続抵抗値に換算した。得られた接続抵抗値を下記の基準に基づき評価した。
 A:1Ω未満
 B:1Ω以上5Ω未満
 C:5Ω以上10Ω以下
 D:10Ω超
(絶縁抵抗値)
 接続構造体サンプルについて、直流(DC)50Vの電圧を1分間印加した後の絶縁抵抗を、2端子測定法を用いマルチメータで測定した。ここで、絶縁抵抗とは隣り合う回路電極間(金バンプ間)の抵抗を意味する。各接続構造体サンプルが有する任意の10対の金バンプ間の絶縁抵抗値を測定してその平均値を求めた。そして、絶縁抵抗値の平均値を下記の基準に基づき評価した。
 A:1010Ω超
 B:10Ω以上1010Ω以下
 C:10Ω以上10Ω未満
 D:10Ω未満
(導電粒子の単分散率)
 接着剤成分のみからなる接着剤層を作製し、これを各フィルム状回路接続材料とラミネートしたものを1mm角に切断した。また、接着剤層を別途作成し、これを3mm角に切断した。これらをそれぞれカバーガラスに乗せ、それらを貼り合わせて、3mm角の接着剤層、1mm角のフィルム状回路接続材料、1mm角の接着剤層がこの順で積層された積層体を得た。これを、(株)東レエンジニアリング製高精細自動ボンダ(FC-1200)を用いて80℃で40秒間圧延した後、さらに200℃で20秒間加熱加圧した。加熱加圧後の積層体を主面側から、キーエンス製光学顕微鏡(VH-Z450)を用いて1000倍にて撮像した。得られた画像から導電粒子の単分散率を計算した。なお、導電粒子の単分散率とは、導電粒子全体において凝集せずに単独で存在している導電粒子(単独粒子)の割合を意味し、具体的には以下の数式(1)から求めた。
 導電粒子の単分散率(%)=(単独粒子数/測定した全導電粒子数)×100 ・・・(1)
(フィルム成形性)
 フィルム状回路接続材料の作製時において、分散液をセパレータ上にロールコータで塗布した際の塗工傷、白点の有無、塗工後のフィルムの割れ、タック力を評価した。評価は以下のとおり行った。
 A:塗工傷、白点、フィルムの割れが無く、タック力が充分に高い
 B:塗工傷、白点、フィルムの割れが発生している、又はタック力が低い
 C:塗工傷、白点、フィルムの割れが発生しており、タック力が低い
Figure JPOXMLDOC01-appb-T000003
 実施例1~8のフィルム状回路接続材料はフィルム形成性が良好であると共に、導電粒子の単分散率も良好であった。また、このフィルム状回路接続材料を用いた接続構造体において、隣接する回路電極間の優れた絶縁特性と、対向する回路電極間の優れた導電特性を両立することができた。
 本実施例では、シリカフィラーに加え、粒子径の大きな有機微粒子(有機フィラー)を添加することで、導電粒子間距離を適切に保つことが可能となり、特に隣接する回路電極間の絶縁抵抗値を向上することができたものと考えられる。なお、本実施例では、疎水化処理を行ったシリカフィラーを用いることで、接着剤成分中にシリカフィラーをより多量に添加することが可能であった。そのため、接着剤成分のチキソトロピー性がより一層向上して、実装時(接続構造体作製時)の接着剤成分の流動性を好適に制御することができたと考えられる。このことはまた、バンプ上の粒子捕捉数を向上させ、接続抵抗値の低下に繋がった。
 1…回路接続材料、1a…回路接続部材、3…樹脂組成物層、3a…硬化物、5…導電粒子、10…第一の回路部材、11…第一の回路基板、13…第一の回路電極、20…第二の回路部材、21…第二の回路基板、23…第二の回路電極、101…回路基板の接続構造体。

Claims (12)

  1.  接着剤成分、導電粒子、平均粒径が7~75nmであるシリカフィラー及び平均粒径が130~2000nmである有機フィラーを含有し、
     前記シリカフィラーの含有量が、前記接着剤成分の全質量を基準として、10質量%以上80質量%未満であり、
     前記有機フィラーの含有量が、前記接着剤成分の全質量を基準として、5~20質量%である、回路接続材料。
  2.  接着剤成分、導電粒子、平均粒径が7~75nmであるシリカフィラー及び平均粒径が130~2000nmである有機フィラーを含有し、
     前記シリカフィラーの含有量が、前記接着剤成分の全体積を基準として、5体積%以上40体積%未満であり、
     前記有機フィラーの含有量が、前記接着剤成分の全体積を基準として、5~20体積%である、回路接続材料。
  3.  前記シリカフィラーの平均粒径は、7~50nmである、請求項1又は2記載の回路接続材料。
  4.  前記シリカフィラーの平均粒径は、7~15nmであり、
     前記有機フィラーの平均粒径は、130~1500nmである、請求項1~3のいずれか一項記載の回路接続材料。
  5.  前記シリカフィラーの表面に疎水化処理が施されている、請求項1~4のいずれか一項記載の回路接続材料。
  6.  前記疎水化処理は、重合度が10~500のシリコーンオイルを前記表面に付着又は結合させる処理である、請求項5記載の回路接続材料。
  7.  前記有機フィラーは、シリコーンゴムからなる、請求項1~6のいずれか一項記載の回路接続材料。
  8.  前記導電粒子の平均粒径をD1とし、前記シリカフィラーの平均粒径をD2としたときに、D1/D2が13.3~1428.6である、請求項1~7のいずれか一項記載の回路接続材料。
  9.  前記導電粒子の単分散率は、80%以上である、請求項1~8のいずれか一項記載の回路接続材料。
  10.  3000μm以下の面積の電極を有する回路基板と、他の回路基板とを電気的に接続するために用いられる、請求項1~9のいずれか一項記載の回路接続材料。
  11.  12μm以下の間隔を空けて配置された複数の電極を有する回路基板と、他の回路基板とを電気的に接続するために用いられる、請求項1~10のいずれか一項記載の回路接続材料。
  12.  第一の電極を有する第一の回路基板と、
     第二の電極を有する第二の回路基板と、
     前記第一の回路基板及び前記第二の回路基板の間に介在する回路接続材料の硬化物と、
    を備え、
     前記第一の回路基板と前記第二の回路基板とは、前記第一の電極と前記第二の電極とが対向するように配置され、
     前記第一の電極と前記第二の電極とは、前記硬化物を介して電気的に接続され、
     前記回路接続材料は、請求項1~11のいずれか一項記載の回路接続材料である、
    回路基板の接続構造体。
PCT/JP2012/067329 2011-07-07 2012-07-06 回路接続材料及び回路基板の接続構造体 WO2013005831A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020147000360A KR101920952B1 (ko) 2011-07-07 2012-07-06 회로 접속 재료 및 회로 기판의 접속 구조체
CN201280031918.1A CN103636068B (zh) 2011-07-07 2012-07-06 电路连接材料和电路基板的连接结构体
JP2013523067A JP6208011B2 (ja) 2011-07-07 2012-07-06 回路接続材料及び回路基板の接続構造体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011150991 2011-07-07
JP2011-150991 2011-07-07

Publications (1)

Publication Number Publication Date
WO2013005831A1 true WO2013005831A1 (ja) 2013-01-10

Family

ID=47437174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067329 WO2013005831A1 (ja) 2011-07-07 2012-07-06 回路接続材料及び回路基板の接続構造体

Country Status (5)

Country Link
JP (2) JP6208011B2 (ja)
KR (1) KR101920952B1 (ja)
CN (1) CN103636068B (ja)
TW (1) TW201308354A (ja)
WO (1) WO2013005831A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017201624A (ja) * 2016-05-02 2017-11-09 デクセリアルズ株式会社 異方性導電フィルムの製造方法、及び異方性導電フィルム
WO2017191776A1 (ja) * 2016-05-02 2017-11-09 デクセリアルズ株式会社 異方性導電フィルムの製造方法、及び異方性導電フィルム
US10010437B2 (en) 2011-10-17 2018-07-03 W. L. Gore & Associates, Inc. Endoluminal device retrieval devices and related systems and methods
WO2018181589A1 (ja) * 2017-03-29 2018-10-04 日立化成株式会社 接着剤組成物及び構造体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112421262B (zh) 2014-11-17 2023-06-20 迪睿合株式会社 各向异性导电膜、连接结构体及其制造方法
JP7011141B2 (ja) * 2016-06-24 2022-02-10 天馬微電子有限公司 触覚提示用パネル、触覚提示装置および電子機器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110062A (ja) * 2005-09-15 2007-04-26 Hitachi Chem Co Ltd ダイボンディング用樹脂ペースト並びに、それを用いた半導体装置の製造方法及び半導体装置
JP2011080033A (ja) * 2009-05-29 2011-04-21 Hitachi Chem Co Ltd 接着剤組成物、接着剤シート及び半導体装置の製造方法
JP2011233633A (ja) * 2010-04-26 2011-11-17 Hitachi Chem Co Ltd 回路接続材料及び回路部材の接続体

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07133466A (ja) * 1993-11-09 1995-05-23 Soken Kagaku Kk 接着方法
JP3561748B2 (ja) * 1994-10-14 2004-09-02 綜研化学株式会社 異方導電性接着剤
JP2001164232A (ja) * 1999-12-09 2001-06-19 Sony Chem Corp 熱硬化性接着材料
JP4178774B2 (ja) * 2001-08-28 2008-11-12 ソニーケミカル&インフォメーションデバイス株式会社 異方性導電接着剤
JP4238124B2 (ja) * 2003-01-07 2009-03-11 積水化学工業株式会社 硬化性樹脂組成物、接着性エポキシ樹脂ペースト、接着性エポキシ樹脂シート、導電接続ペースト、導電接続シート及び電子部品接合体
JP5030196B2 (ja) * 2004-12-16 2012-09-19 住友電気工業株式会社 回路接続用接着剤
JP4839622B2 (ja) * 2005-01-31 2011-12-21 日立化成工業株式会社 接着フィルム及びこれを備える積層体
JP2007056209A (ja) * 2005-08-26 2007-03-08 Sumitomo Electric Ind Ltd 回路接続用接着剤
JP5130682B2 (ja) * 2006-02-14 2013-01-30 日立化成工業株式会社 ダイボンディング用樹脂ペースト、該樹脂ペーストを用いた半導体装置の製造方法、および該製造方法により得られる半導体装置
JP2009194359A (ja) * 2008-01-16 2009-08-27 Hitachi Chem Co Ltd 回路接続用接着フィルム、これを用いた回路部材の接続構造及び回路部材の接続方法
JP5151920B2 (ja) * 2008-02-05 2013-02-27 日立化成工業株式会社 導電粒子及び導電粒子の製造方法
JP5304019B2 (ja) * 2008-05-14 2013-10-02 日立化成株式会社 回路接続材料
JP2010006912A (ja) * 2008-06-25 2010-01-14 Shin-Etsu Chemical Co Ltd 接着剤組成物、接着フィルム及びダイシング・ダイアタッチフィルム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007110062A (ja) * 2005-09-15 2007-04-26 Hitachi Chem Co Ltd ダイボンディング用樹脂ペースト並びに、それを用いた半導体装置の製造方法及び半導体装置
JP2011080033A (ja) * 2009-05-29 2011-04-21 Hitachi Chem Co Ltd 接着剤組成物、接着剤シート及び半導体装置の製造方法
JP2011233633A (ja) * 2010-04-26 2011-11-17 Hitachi Chem Co Ltd 回路接続材料及び回路部材の接続体

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10010437B2 (en) 2011-10-17 2018-07-03 W. L. Gore & Associates, Inc. Endoluminal device retrieval devices and related systems and methods
JP2017201624A (ja) * 2016-05-02 2017-11-09 デクセリアルズ株式会社 異方性導電フィルムの製造方法、及び異方性導電フィルム
WO2017191776A1 (ja) * 2016-05-02 2017-11-09 デクセリアルズ株式会社 異方性導電フィルムの製造方法、及び異方性導電フィルム
US11004574B2 (en) 2016-05-02 2021-05-11 Dexerials Corporation Method for manufacturing anisotropic conductive film, and anisotropic conductive film
US12014840B2 (en) 2016-05-02 2024-06-18 Dexerials Corporation Method for manufacturing anisotropic conductive film, and anisotropic conductive film
WO2018181589A1 (ja) * 2017-03-29 2018-10-04 日立化成株式会社 接着剤組成物及び構造体
JPWO2018181589A1 (ja) * 2017-03-29 2020-02-06 日立化成株式会社 接着剤組成物及び構造体
JP7172991B2 (ja) 2017-03-29 2022-11-16 昭和電工マテリアルズ株式会社 接着剤組成物及び構造体

Also Published As

Publication number Publication date
TWI563519B (ja) 2016-12-21
KR20140035993A (ko) 2014-03-24
TW201308354A (zh) 2013-02-16
JP2016196646A (ja) 2016-11-24
CN103636068A (zh) 2014-03-12
JP6208011B2 (ja) 2017-10-04
JPWO2013005831A1 (ja) 2015-02-23
JP6183499B2 (ja) 2017-08-23
CN103636068B (zh) 2017-09-08
KR101920952B1 (ko) 2018-11-21

Similar Documents

Publication Publication Date Title
JP6183499B2 (ja) 回路接続材料及び回路基板の接続構造体
JP4775377B2 (ja) 回路接続用接着フィルム、回路部材の接続構造及び回路部材の接続方法
US9023464B2 (en) Connecting film, and joined structure and method for producing the same
TWI402321B (zh) An adhesive composition and a circuit connecting material using the same, and a method of connecting a circuit member and a circuit connecting body
JP5316410B2 (ja) 回路部材の接続構造
JP2009194359A (ja) 回路接続用接着フィルム、これを用いた回路部材の接続構造及び回路部材の接続方法
JP4978493B2 (ja) 回路接続材料、接続構造体及びその製造方法
JP5644067B2 (ja) 絶縁被覆導電粒子
JP6237855B2 (ja) 接着フィルム、回路部材の接続構造及び回路部材の接続方法
JP2011233633A (ja) 回路接続材料及び回路部材の接続体
JP6748999B2 (ja) 接着剤組成物
KR20100020029A (ko) 회로 접속용 필름상 접착제
JP2011100605A (ja) 回路接続材料及び、これを用いた回路部材の接続構造
JP4265140B2 (ja) 異方導電性接着剤組成物、それを用いた回路端子の接続方法及び接続構造体
JP2008308682A (ja) 回路接続材料
JP4888482B2 (ja) 異方導電性接着剤組成物、それを用いた回路端子の接続方法及び接続構造体
JP2011175846A (ja) 回路部材接続用接着フィルム、回路部材接続構造体及び回路部材接続構造体の製造方法
JP4626495B2 (ja) 回路接続用接着剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807340

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013523067

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147000360

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12807340

Country of ref document: EP

Kind code of ref document: A1