WO2013005809A1 - ショベル及びショベルの制御方法 - Google Patents

ショベル及びショベルの制御方法 Download PDF

Info

Publication number
WO2013005809A1
WO2013005809A1 PCT/JP2012/067233 JP2012067233W WO2013005809A1 WO 2013005809 A1 WO2013005809 A1 WO 2013005809A1 JP 2012067233 W JP2012067233 W JP 2012067233W WO 2013005809 A1 WO2013005809 A1 WO 2013005809A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydraulic
boom cylinder
pressure
regeneration
boom
Prior art date
Application number
PCT/JP2012/067233
Other languages
English (en)
French (fr)
Inventor
春男 呉
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Priority to EP12807289.9A priority Critical patent/EP2730704B1/en
Priority to KR1020137033041A priority patent/KR101580933B1/ko
Priority to JP2013523056A priority patent/JP6022453B2/ja
Priority to CN201280029995.3A priority patent/CN103608526B/zh
Publication of WO2013005809A1 publication Critical patent/WO2013005809A1/ja
Priority to US14/140,863 priority patent/US9422689B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/425Drive systems for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2062Control of propulsion units
    • E02F9/2075Control of propulsion units of the hybrid type
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2058Electric or electro-mechanical or mechanical control devices of vehicle sub-units
    • E02F9/2091Control of energy storage means for electrical energy, e.g. battery or capacitors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2217Hydraulic or pneumatic drives with energy recovery arrangements, e.g. using accumulators, flywheels
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2282Systems using center bypass type changeover valves
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2285Pilot-operated systems
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3116Neutral or centre positions the pump port being open in the centre position, e.g. so-called open centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/705Output members, e.g. hydraulic motors or cylinders or control therefor characterised by the type of output members or actuators
    • F15B2211/7051Linear output members
    • F15B2211/7053Double-acting output members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/80Other types of control related to particular problems or conditions
    • F15B2211/88Control measures for saving energy

Definitions

  • the present invention relates to an excavator provided with a boom regeneration hydraulic motor and a method for controlling the excavator.
  • This hybrid excavator is configured to shift an engine motor generator to a power running operation during a regenerative operation of a boom motor generator or a swing motor generator, thereby regenerating the motor motor generator without charging the battery
  • the regenerative power can be used more efficiently.
  • Patent Document 1 only discharges the hydraulic oil from the boom cylinder to the oil tank after driving the hydraulic oil for driving the boom regeneration. There is room for improvement in planning.
  • an object of the present invention is to provide a shovel that efficiently uses hydraulic oil flowing out from a boom cylinder when the boom is lowered, and a method for controlling the shovel.
  • an excavator including a hydraulic actuator including a boom cylinder, the hydraulic motor driven by hydraulic oil flowing out from the boom cylinder, and the boom A regenerative oil passage for supplying hydraulic oil flowing out from the cylinder to the hydraulic motor, a regeneration oil passage for supplying hydraulic oil flowing out from the boom cylinder to another hydraulic actuator, and a flow through the regeneration oil passage And a regeneration flow control valve for controlling the flow rate of the hydraulic oil.
  • a shovel control method is a shovel control method including a hydraulic actuator including a boom cylinder, the step of driving a hydraulic motor with hydraulic oil flowing out of the boom cylinder, and the boom Supplying the hydraulic oil flowing out from the cylinder to the hydraulic motor, supplying the hydraulic oil flowing out from the boom cylinder through the regeneration oil passage to another hydraulic actuator, and the regeneration oil by the regeneration flow control valve. Controlling the flow rate of hydraulic oil flowing through the passage.
  • the present invention can provide a shovel that uses the hydraulic oil flowing out from the boom cylinder more efficiently when the boom is lowered, and a method for controlling the shovel.
  • FIG. 1 is a side view of a hybrid excavator according to a first embodiment. It is a figure which shows transition of the operation state of the hybrid type shovel which concerns on a 1st Example. It is a block diagram which shows the structural example of the drive system of the hybrid type shovel which concerns on a 1st Example. It is a block diagram which shows the structural example of the electrical storage system of the hybrid type shovel which concerns on a 1st Example. It is a figure which shows the structural example of the communication circuit in the hybrid type shovel which concerns on a 1st Example. It is a flowchart which shows the flow of a communication circuit drive process. It is a figure which shows the state of the communication circuit in the case of an arm drive assist process.
  • FIG. 1 is a side view showing a hybrid excavator to which the present invention is applied.
  • the upper swing body 3 is mounted on the lower traveling body 1 of the hybrid excavator via the swing mechanism 2.
  • a boom 4 is attached to the upper swing body 3.
  • An arm 5 is attached to the tip of the boom 4, and a bucket 6 is attached to the tip of the arm 5.
  • the boom 4, the arm 5, and the bucket 6 are hydraulically driven by a boom cylinder 7, an arm cylinder 8, and a bucket cylinder 9, respectively.
  • the upper swing body 3 is provided with a cabin 10 and is mounted with a power source such as an engine.
  • the operator turns the upper swing body 3, positions the bucket 6 above the excavation position, opens the arm 5, and opens the bucket 6.
  • the operator lowers the boom 4 and lowers the bucket 6 so that the tip of the bucket 6 reaches a desired height from the excavation target.
  • the operator visually confirms the position of the bucket 6.
  • the turning of the upper swing body 3 and the lowering of the boom 4 are generally performed simultaneously.
  • the above operation is referred to as a boom lowering / turning operation, and this operation section is referred to as a boom lowering / turning operation section.
  • the operator closes the arm 5 until the arm 5 is substantially perpendicular to the ground, as shown by the state CD2.
  • soil having a predetermined depth is excavated and scraped by the bucket 6 until the arm 5 is substantially perpendicular to the ground surface.
  • the operator further closes the arm 5 and the bucket 6 as shown by the state CD3, and closes the bucket 6 until the bucket 6 becomes substantially perpendicular to the arm 5 as shown by the state CD4. That is, the bucket 6 is closed until the upper edge of the bucket 6 becomes substantially horizontal, and the collected soil is accommodated in the bucket 6.
  • the above operation is called excavation operation, and this operation section is called excavation operation section.
  • the boom 4 is lifted until the bottom of the bucket 6 reaches a desired height, for example, when the bucket 6 is dumped to a dump truck bed unless the bucket 6 is lifted higher than the bed height. It is because it ends.
  • the operator turns the upper swing body 3 in the direction of the arrow AR2 and moves the bucket 6 right above the excavation position as shown by the state CD7.
  • the boom 4 is lowered simultaneously with the turning to lower the bucket 6 from the excavation target to a desired height.
  • This operation is a part of the boom lowering turning operation described in the state CD1.
  • the operator lowers the bucket 6 to a desired height as indicated by the state CD1, and performs the operation after the excavation operation again.
  • FIG. 3 is a block diagram showing a configuration example of the drive system of the hybrid excavator according to the first embodiment of the present invention.
  • FIG. 3 shows a mechanical power system by a double line, a high-pressure hydraulic line by a solid line (thick line), a pilot line by a broken line, and an electric drive / control system by a solid line (thin line).
  • the engine 11 as a mechanical drive unit and the motor generator 12 as an assist drive unit are connected to two input shafts of a transmission 13, respectively.
  • a main pump 14 and a pilot pump 15 as hydraulic pumps are connected to the output shaft of the transmission 13.
  • a control valve 17 is connected to the main pump 14 via a high pressure hydraulic line 16.
  • the regulator 14A is a device for controlling the discharge amount of the main pump 14. For example, the regulator 14A adjusts the swash plate tilt angle of the main pump 14 according to the discharge pressure of the main pump 14, a control signal from the controller 30, and the like. Thus, the discharge amount of the main pump 14 is controlled.
  • the control valve 17 is a control device that controls the hydraulic system in the hybrid excavator.
  • the hydraulic motors 1A (for right) and 1B (for left), the boom cylinder 7, the arm cylinder 8 and the bucket cylinder 9 for the lower traveling body 1 are connected to the control valve 17 via a high pressure hydraulic line.
  • the hydraulic motors 1A (for right) and 1B (for left), the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9 for the lower traveling body 1 are collectively referred to as a hydraulic actuator.
  • the motor generator 12 is connected to a power storage system 120 including a capacitor as a battery via an inverter 18A.
  • the electric storage system 120 is connected to a turning electric motor 21 as an electric work element via an inverter 20.
  • a resolver 22, a mechanical brake 23, and a turning transmission 24 are connected to the rotating shaft 21 ⁇ / b> A of the turning electric motor 21.
  • An operation device 26 is connected to the pilot pump 15 through a pilot line 25.
  • the turning electric motor 21, inverter 20, resolver 22, mechanical brake 23, and turning transmission 24 constitute a first load drive system.
  • the operating device 26 includes a lever 26A, a lever 26B, and a pedal 26C.
  • the lever 26A, the lever 26B, and the pedal 26C are connected to the control valve 17 and the pressure sensor 29 via hydraulic lines 27 and 28, respectively.
  • the pressure sensor 29 functions as an operation state detection unit that detects each operation state of the hydraulic actuator, and is connected to a controller 30 that performs drive control of the electric system.
  • a boom regeneration generator 300 for obtaining boom regeneration power is connected to the power storage system 120 via the inverter 18C.
  • the generator 300 is driven by a hydraulic motor 310 that is driven by hydraulic fluid that flows out of the boom cylinder 7.
  • the generator 300 uses the pressure of the hydraulic oil flowing out from the boom cylinder 7 when the boom 4 descends by its own weight, and converts the potential energy of the boom 4 (hydraulic energy of hydraulic oil flowing out from the boom cylinder 7) into electrical energy.
  • the hydraulic motor 310 and the generator 300 are shown at positions separated from each other, but in reality, the rotating shaft of the generator 300 is mechanically connected to the rotating shaft of the hydraulic motor 310. .
  • the hydraulic motor 310 is configured to rotate by the hydraulic oil flowing out from the boom cylinder 7 when the boom 4 is lowered, and converts the hydraulic energy of the hydraulic oil when the boom 4 is lowered by its own weight into a rotational force. Provided for.
  • the electric power generated by the generator 300 is supplied as regenerative power to the power storage system 120 via the inverter 18C.
  • the generator 300 and the inverter 18C constitute a second load drive system.
  • a boom cylinder pressure sensor S1 for detecting the pressure of hydraulic oil in the bottom side oil chamber of the boom cylinder 7 is attached to the boom cylinder 7, and the hydraulic oil in the rod side oil chamber of the arm cylinder 8 is detected.
  • An arm cylinder pressure sensor S ⁇ b> 2 for detecting pressure is attached to the arm cylinder 8.
  • Each of the boom cylinder pressure sensor S1 and the arm cylinder pressure sensor S2 is an example of a hydraulic actuator pressure detection unit, and outputs the detected pressure value to the controller 30.
  • the communication circuit 320 is a hydraulic circuit for controlling the supply destination of the hydraulic oil flowing out from the boom cylinder 7. For example, all or part of the hydraulic oil flowing out from the boom cylinder 7 according to a control signal from the controller 30. Is supplied to the arm cylinder 8. Further, the communication circuit 320 may supply all of the hydraulic oil flowing out from the boom cylinder 7 to the hydraulic motor 310, while supplying a part of the hydraulic oil flowing out from the boom cylinder 7 to the arm cylinder 8, The remaining portion may be supplied to the hydraulic motor 310. The operation of the communication circuit 320 will be described later.
  • FIG. 4 is a block diagram showing a configuration example of the power storage system 120.
  • the power storage system 120 includes a capacitor 19, a buck-boost converter 100, and a DC bus 110.
  • the capacitor 19 is provided with a capacitor voltage detector 112 for detecting a capacitor voltage value and a capacitor current detector 113 for detecting a capacitor current value.
  • the capacitor voltage value and the capacitor current value detected by the capacitor voltage detection unit 112 and the capacitor current detection unit 113 are supplied to the controller 30.
  • the step-up / step-down converter 100 performs control for switching between the step-up operation and the step-down operation so that the DC bus voltage value falls within a certain range according to the operation state of the motor generator 12, the turning electric motor 21, and the generator 300.
  • the DC bus 110 is disposed between the inverters 18A, 18C, and 20 and the step-up / down converter 100, and transfers power between the capacitor 19, the motor generator 12, the turning motor 21, and the generator 300. Do.
  • the controller 30 is a control device as a main control unit that performs drive control of the hybrid excavator.
  • the controller 30 includes a CPU (Central Processing Unit) and an arithmetic processing device including an internal memory, and the CPU executes a drive control program stored in the internal memory.
  • CPU Central Processing Unit
  • arithmetic processing device including an internal memory, and the CPU executes a drive control program stored in the internal memory.
  • the controller 30 converts the signal supplied from the pressure sensor 29 into a turning speed command, and performs drive control of the turning electric motor 21.
  • the signal supplied from the pressure sensor 29 corresponds to a signal representing an operation amount when the operation device 26 (a turning operation lever) is operated to turn the turning mechanism 2.
  • the controller 30 performs operation control of the motor generator 12 (switching between electric (assist) operation or power generation operation) and charge / discharge of the capacitor 19 by drivingly controlling the step-up / down converter 100 as the step-up / step-down control unit. Take control.
  • the controller 30 includes a charge state of the capacitor 19, an operation state of the motor generator 12 (electric (assist) operation or power generation operation), an operation state of the turning motor 21 (power running operation or regenerative operation), and Based on the operating state of the generator 300, switching control between the step-up / step-down operation of the step-up / step-down converter 100 is performed, and thereby charge / discharge control of the capacitor 19 is performed.
  • the switching control between the step-up / step-down operation of the step-up / down converter 100 is performed by controlling the DC bus voltage value detected by the DC bus voltage detection unit 111, the capacitor voltage value detected by the capacitor voltage detection unit 112, and the capacitor current detection unit 113. Is performed based on the capacitor current value detected by.
  • the electric power generated by the motor generator 12 which is an assist motor is supplied to the DC bus 110 of the power storage system 120 via the inverter 18A, and is supplied to the capacitor 19 via the step-up / down converter 100.
  • the regenerative power generated by the regenerative operation of the turning electric motor 21 is supplied to the DC bus 110 of the power storage system 120 via the inverter 20 and supplied to the capacitor 19 via the step-up / down converter 100.
  • the electric power generated by the boom regeneration generator 300 is supplied to the DC bus 110 of the power storage system 120 via the inverter 18 ⁇ / b> C and supplied to the capacitor 19 via the buck-boost converter 100.
  • the electric power generated by the motor generator 12 or the generator 300 may be directly supplied to the turning electric motor 21 via the inverter 20. Further, the electric power generated by the turning electric motor 21 or the generator 300 may be directly supplied to the motor generator 12 via the inverter 18A.
  • Capacitor 19 may be a chargeable / dischargeable capacitor so that power can be exchanged with DC bus 110 via buck-boost converter 100. 4 shows a capacitor 19 as a capacitor. Instead of the capacitor 19, a secondary battery capable of charging / discharging such as a lithium ion battery, a lithium ion capacitor, or other forms capable of transmitting and receiving power. A power source may be used as a battery.
  • controller 30 further performs drive control of the communication circuit 320 according to the operating state of the hydraulic actuator and the pressure state of the hydraulic oil in the hydraulic actuator.
  • FIG. 5 is a diagram illustrating a configuration example of the communication circuit 320.
  • the communication circuit 320 is arranged to connect the bottom side oil chamber of the boom cylinder 7, the rod side oil chamber of the arm cylinder 8, the control valve 17, and the hydraulic motor 310.
  • the communication circuit 320 includes a regeneration flow control valve 321, a regeneration flow control valve 322, an electromagnetic valve 323, and a check valve 324.
  • the regeneration flow control valve 321 has a regeneration oil passage C3 that connects the boom cylinder bottom side oil passage C1 (highlighted with a bold line) and an arm cylinder rod side oil passage C2 (also highlighted with a thick line). Controls the flow rate of flowing hydraulic oil.
  • the regeneration flow control valve 321 is, for example, a 3-port 2-position electromagnetic spool valve.
  • the boom cylinder bottom oil passage C1 is an oil passage connecting the bottom oil chamber of the boom cylinder 7 and the boom flow control valve 17B of the control valve 17.
  • the arm cylinder rod side oil passage C ⁇ b> 2 is an oil passage connecting the rod side oil chamber of the arm cylinder 8 and the arm flow control valve 17 ⁇ / b> A of the control valve 17.
  • one end of the regeneration oil passage C3 is connected to the arm cylinder rod side oil passage C2.
  • the regeneration oil passage C3 may be connected to an oil passage that connects the bottom oil chamber of the arm cylinder 8 and the arm flow control valve 17A of the control valve 17.
  • the hydraulic oil flowing out from the bottom side oil chamber of the boom cylinder 7 can flow into the bottom side oil chamber of the arm cylinder 8 and can be used for the arm closing operation.
  • the regeneration oil passage C3 may be connected to an oil passage connecting the main pumps 14L and 14R and the control valve 17, that is, upstream of the control valve 17.
  • the hydraulic oil flowing out from the bottom side oil chamber of the boom cylinder 7 can be used by other hydraulic actuators other than the arm cylinder 8.
  • the regenerative flow control valve 322 controls the flow rate of the working oil flowing through the regenerative oil passage C4 connecting the boom cylinder bottom side oil passage C1 and the hydraulic motor 310.
  • the regenerative flow control valve 322 is, for example, a 3-port 2-position spool valve.
  • the electromagnetic valve 323 controls the regenerative flow control valve 322.
  • the electromagnetic valve 323 selectively causes, for example, a control pressure generated by a pilot pump to act on the pilot port of the regenerative flow control valve 322.
  • the check valve 324 is installed in the regeneration oil passage C3 and prevents the hydraulic oil from flowing from the arm cylinder rod side oil passage C2 to the boom cylinder bottom side oil passage C1.
  • FIG. 6 is a flowchart showing the flow of the communication circuit driving process, and the controller 30 repeatedly executes this communication circuit driving process at a predetermined control period during the shovel operation.
  • the controller 30 detects the operation amounts of the boom operation lever and the arm operation lever based on the output of the pressure sensor 29, and whether or not it is a dumping operation section, that is, the boom lowering and the arm opening are performed simultaneously. It is determined whether or not (step ST1).
  • the controller 30 may determine whether the boom lowering, the arm opening, and the bucket opening are performed at the same time in order to determine whether or not it is a dumping operation section. Further, the controller 30 may determine whether or not it is a dumping operation section based on an output of an angle sensor (not shown) or a displacement sensor (not shown).
  • the angle sensor detects the rotation angles of the boom 4, the arm 5, and the bucket 6, and the displacement sensor detects the displacement of each of the boom cylinder 7, the arm cylinder 8, and the bucket cylinder 9.
  • the controller 30 monitors the output of the pressure sensor 29 until it is determined that it is the dumping operation section. Continue.
  • the controller 30 detects the detected pressure P1 of the boom cylinder pressure sensor S1 and the arm cylinder pressure sensor S2. The detected pressure P2 is compared (step ST2).
  • step ST3 When the detected pressure P1 is larger than the detected pressure P2, that is, when the pressure of the hydraulic oil in the bottom side oil chamber of the boom cylinder 7 is larger than the pressure of the hydraulic oil in the rod side oil chamber of the arm cylinder 8 (YES in step ST2).
  • the controller 30 executes an arm drive assist process (step ST3).
  • the controller 30 outputs a predetermined control signal to the regeneration flow control valve 321 and the electromagnetic valve 323 in the communication circuit 320. Then, the controller 30 causes the hydraulic oil flowing out from the bottom side oil chamber of the boom cylinder 7 to flow into the rod side oil chamber of the arm cylinder 8.
  • the controller 30 controls the discharge amount of the main pump 14R by outputting a predetermined control signal to the regulator 14RA.
  • the controller 30 supplies the hydraulic oil at a desired flow rate to the rod-side oil chamber of the arm cylinder 8 by the hydraulic oil flowing out from the bottom-side oil chamber of the boom cylinder 7 and the hydraulic oil discharged from the main pump 14R.
  • the controller 30 determines the flow rate of hydraulic oil to be discharged by the main pump 14R based on the detected pressure P1 of the boom cylinder pressure sensor S1 and the detected pressure P2 of the arm cylinder pressure sensor S2.
  • the controller 30 can use the hydraulic energy of the hydraulic oil flowing out of the boom cylinder 7 in the dumping operation section for the arm opening operation without converting it into electric energy. As a result, the controller 30 can achieve more efficient utilization of the hydraulic oil that has been discharged to the oil tank after the hydraulic motor 310 has been rotated as before.
  • step ST4 when the detected pressure P1 is equal to or lower than the detected pressure P2, that is, when the pressure of the hydraulic oil in the bottom side oil chamber of the boom cylinder 7 is equal to or lower than the pressure of the hydraulic oil in the rod side oil chamber of the arm cylinder 8 (step ST2). NO), the controller 30 executes a boom regenerative power generation process (step ST4).
  • the controller 30 outputs a predetermined control signal to the regeneration flow control valve 321 and the electromagnetic valve 323 in the communication circuit 320. Then, the controller 30 causes hydraulic oil flowing out from the bottom side oil chamber of the boom cylinder 7 to flow into the hydraulic motor 310 and cause the generator 300 to generate power.
  • the controller 30 may cause the remaining part of the hydraulic oil flowing out from the boom cylinder 7 to flow into the hydraulic motor 310 while supplying a part of the hydraulic oil flowing out from the boom cylinder 7 to the arm cylinder 8.
  • the hydraulic energy of the hydraulic oil flowing out from the boom cylinder 7 is reduced. This is to ensure maximum utilization.
  • the controller 30 executes the boom regenerative power generation process when the boom lowering is performed. This is because the hydraulic energy of the hydraulic oil flowing out from the boom cylinder 7 can be utilized to the maximum extent.
  • the controller 30 allows the hydraulic oil flowing out from the boom cylinder 7 to be used for the arm opening operation, but the arm closing operation, the bucket closing operation, the bucket opening operation, or the lower traveling You may make it utilize for the driving
  • FIGS. 7 shows the state of the communication circuit 320 during the arm drive assist process
  • FIG. 8 shows the state of the communication circuit 320 during the boom regenerative power generation process.
  • the thick solid line in FIG.7 and FIG.8 represents that the flow of hydraulic fluid has arisen.
  • the hydraulic oil discharged from the main pump 14L flows into the rod side oil chamber of the boom cylinder 7
  • the hydraulic oil discharged from the main pump 14R flows into the rod side oil chamber of the arm cylinder 8, and the boom lowering and arm Indicates that the opening is performed at the same time.
  • the detected pressure P1 of the boom cylinder pressure sensor S1 is larger than the detected pressure P2 of the arm cylinder pressure sensor S2.
  • the regeneration flow control valve 321 switches its valve position to the first valve position 321A in accordance with a control signal from the controller 30. As a result, the flow of hydraulic oil from the boom cylinder 7 to the control valve 17 is blocked.
  • the hydraulic oil flowing out from the boom cylinder 7 reaches the arm cylinder rod side oil path C2 through the regeneration oil path C3, merges with the hydraulic oil discharged from the main pump 14R, and flows into the rod side oil chamber of the arm cylinder 8. .
  • the electromagnetic valve 323 switches the valve position of the regenerative flow control valve 322 to the first valve position 322A in accordance with a control signal from the controller 30.
  • the flow of hydraulic oil from the boom cylinder 7 to the hydraulic motor 310 is interrupted, and all of the hydraulic oil flowing out of the boom cylinder 7 flows into the rod side oil chamber of the arm cylinder 8.
  • the controller 30 outputs a control signal to the regulator 14RA to reduce the discharge amount of the main pump 14R, and to reduce the flow rate of the working oil from the main pump 14R toward the rod side oil chamber of the arm cylinder 8. . Further, the controller 30 may control the arm flow control valve 17A to reduce or eliminate the flow rate of the working oil from the main pump 14R toward the rod side oil chamber of the arm cylinder 8. When the flow rate of the working oil from the main pump 14R toward the rod side oil chamber of the arm cylinder 8 is extinguished, only the working oil flowing out from the bottom side oil chamber of the boom cylinder 7 is the rod side oil of the arm cylinder 8. Supplied to the chamber.
  • the communication circuit 320 allows all of the hydraulic oil flowing out from the boom cylinder 7 to flow out of the arm cylinder 8 when the boom lowering and the arm opening are performed simultaneously and the detected pressure P1 is larger than the detected pressure P2. Let it flow into the rod side oil chamber.
  • FIG. 8 shows a state in which the hydraulic oil discharged from the main pump 14L flows into the rod side oil chamber of the boom cylinder 7 and only the boom lowering is executed.
  • the regeneration flow control valve 321 switches its valve position to the second valve position 321B in accordance with a control signal from the controller 30.
  • the flow of hydraulic oil from the boom cylinder 7 to the arm cylinder 8 is interrupted.
  • Part of the hydraulic oil flowing out from the boom cylinder 7 reaches the control valve 17 through the boom cylinder bottom side oil passage C ⁇ b> 1 and is discharged to the oil tank through the control valve 17.
  • the electromagnetic valve 323 switches the valve position of the regenerative flow control valve 322 to the second valve position 322B according to a control signal from the controller 30.
  • the remaining portion of the hydraulic oil flowing out of the boom cylinder 7 flows into the hydraulic motor 310, and is discharged to the oil tank after rotating the hydraulic motor 310 and the generator 300.
  • the communication circuit 320 causes a part of the hydraulic oil flowing out from the boom cylinder 7 to flow into the hydraulic motor 310 and perform power generation by the generator 300 when only the boom lowering is performed. To do.
  • the controller 30 may cause all of the hydraulic oil flowing out of the boom cylinder 7 to flow into the hydraulic motor 310.
  • pilot pressure (see the upper part of FIG. 9) and cylinder displacement (see the middle part of FIG. 9) when the controller 30 executes the arm drive assist process or the boom regenerative power generation process in the dumping operation section.
  • the time transition of each of the cylinder pressure (see the lower part of FIG. 9) will be described.
  • the transitions indicated by the solid lines in the upper part of FIG. 9, the middle part of FIG. 9, and the lower part of FIG. 9 indicate the pilot pressure of the boom operation lever, the displacement of the boom cylinder 7,
  • the oil pressure (detected pressure P1 of the boom cylinder pressure sensor S1) is shown.
  • the transitions indicated by broken lines in the upper part of FIG. 9, the middle part of FIG. 9, and the lower part of FIG. 9 indicate the pilot pressure of the arm operating lever, the displacement of the arm cylinder 8, and the operation in the rod side oil chamber of the arm cylinder 8.
  • the oil pressure (detected pressure P2 of the arm cylinder pressure sensor S2) is shown.
  • the controller 30 executes the boom regenerative power generation process, and sets the communication circuit 320 to the state shown in FIG. This is because the hydraulic energy of the hydraulic oil flowing out of the boom cylinder 7 due to the boom lowering can be used, and the detected pressure P1 is equal to or lower than the detected pressure P2, and the arm drive assist process cannot be executed. Note that the arm operating lever has already been operated in the opening direction, and the pilot pressure in the opening direction of the arm operating lever has already exceeded a predetermined level.
  • the boom cylinder 7 operates to gently displace to the contraction side and lower the boom 4, and the arm cylinder 8 operates to displace to the contraction side and open the arm 5.
  • the controller 30 may determine the start timing of the arm drive assist process or the boom regenerative power generation process based on such displacement of the boom cylinder 7 and the arm cylinder 8.
  • the controller 30 stops the execution of the boom regenerative power generation process and then executes the arm drive assist process to bring the communication circuit 320 into the state shown in FIG. . This is because the detection pressure P1 exceeds the detection pressure P2 and hydraulic oil flowing out of the boom cylinder 7 can be allowed to flow into the arm cylinder 8.
  • the controller 30 may continue the boom regenerative power generation process by using a part of the hydraulic oil flowing out from the boom cylinder 7 even when the arm drive assist process is executed.
  • the regeneration flow control valve 321 is set to the first valve position 321A
  • the regeneration flow control valve 322 is set to the second valve position 322B.
  • the controller 30 stops the execution of the arm drive assist process, executes the boom regenerative power generation process, and sets the communication circuit 320 to the state shown in FIG. To. This is because the detected pressure P1 is equal to or lower than the detected pressure P2, and the arm drive assist process cannot be executed.
  • the hybrid excavator according to the first embodiment can be used for the operation of other hydraulic actuators without converting the hydraulic energy of hydraulic oil flowing out of the boom cylinder 7 into electric energy when the boom is lowered. Therefore, the hydraulic oil flowing out from the boom cylinder 7 when the boom is lowered can be used more efficiently.
  • the hybrid excavator according to the first embodiment confirms that the hydraulic oil pressure in the boom cylinder 7 is larger than the hydraulic oil pressure in the other hydraulic actuators that are candidates for supply of the hydraulic oil.
  • the hybrid excavator according to the first embodiment causes the hydraulic oil flowing out from the boom cylinder 7 to flow into another hydraulic actuator that is a supply candidate thereof.
  • the hybrid excavator according to the first embodiment when the hydraulic oil pressure in the boom cylinder 7 is smaller than the hydraulic oil pressure in other hydraulic actuators that are candidates for supply of the hydraulic oil, the hybrid excavator according to the first embodiment The oil path between 7 and other hydraulic actuators that are candidates for supply is blocked. Therefore, the hydraulic oil flowing out from the boom cylinder 7 can be surely flowed into another hydraulic actuator that is a candidate for supply.
  • the hybrid excavator according to the first embodiment confirms that another hydraulic actuator that is a candidate for supplying hydraulic oil flowing out from the boom cylinder 7 is operating.
  • the hybrid excavator according to the first embodiment causes the hydraulic oil flowing out from the boom cylinder 7 to flow into another hydraulic actuator that is a supply candidate thereof.
  • the hydraulic oil that flows out from the boom cylinder 7 is caused to flow into the hydraulic motor 310 to generate the generator 300. Power generation by Therefore, the hybrid excavator according to the first embodiment can efficiently and reliably use the hydraulic oil flowing out from the boom cylinder 7 in accordance with the operating state of the other hydraulic actuator that is the supply candidate.
  • FIG. 10 is a block diagram showing a configuration example of the drive system of the shovel according to the second embodiment of the present invention.
  • the mechanical power system is a double line
  • the high pressure hydraulic line is a solid line (thick line)
  • the pilot line is indicated by a broken line
  • the electric drive / control system is indicated by a solid line (thin line).
  • the excavator according to the second embodiment is different from the hybrid excavator according to the first embodiment in that the excavator according to the second embodiment includes a turning hydraulic motor 40 instead of the first load drive system that is an electric turning mechanism. Common. With this configuration, the shovel according to the second embodiment can achieve the same effects as the hybrid excavator according to the first embodiment.
  • the regeneration flow control valve 321 and the regeneration flow control valve 322 are configured as two independent spool valves, but may be configured as a single spool valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

本発明の実施例に係るショベルは、ブームシリンダ7及びアームシリンダ8を備えるショベルであって、ブームシリンダ7から流出する作動油により駆動される油圧モータ310と、ブームシリンダ7から流出する作動油を油圧モータ310に供給するための回生用油路C4と、ブームシリンダ7から流出する作動油をアームシリンダ8へ供給する再生用油路C3と、再生用油路C3を流れる作動油の流量を制御する再生用流量制御弁321とを備える。

Description

ショベル及びショベルの制御方法
 本発明は、ブーム回生用油圧モータを備えたショベル及びそのショベルの制御方法に関する。
 従来、ブーム下げ時にブーム回生用油圧モータによって回転駆動されるブーム用電動発電機と、エンジンにより回転駆動されるエンジン用電動発電機と、回生運転及び力行運転が可能な旋回用電動発電機とを備えたハイブリッド式ショベルが知られている(例えば、特許文献1参照。)。
 このハイブリッド式ショベルは、ブーム用電動発電機又は旋回用電動発電機の回生運転時にエンジン用電動発電機を力行運転に移行させることによって、回生した電力をバッテリに充電することなくエンジン用電動発電機の駆動に利用し、回生電力をより効率的に利用できるようにする。
特開2010-281183号公報
 しかしながら、特許文献1のハイブリッド式ショベルは、ブームシリンダから流出する作動油をブーム回生用油圧モータの駆動に利用した後はその作動油を油タンクに排出するのみであるため、エネルギの有効利用を図る上で改善の余地がある。
 上述の点に鑑み、本発明は、ブーム下げ時にブームシリンダから流出する作動油をより効率的に利用するショベル及びそのショベルの制御方法を提供することを目的とする。
 上述の目的を達成するために、本発明の実施例に係るショベルは、ブームシリンダを含む油圧アクチュエータを備えるショベルであって、前記ブームシリンダから流出する作動油により駆動される油圧モータと、前記ブームシリンダから流出する作動油を前記油圧モータに供給するための回生用油路と、前記ブームシリンダから流出する作動油を別の油圧アクチュエータへ供給する再生用油路と、前記再生用油路を流れる作動油の流量を制御する再生用流量制御弁と、を備えることを特徴とする。
 また、本発明の実施例に係るショベルの制御方法は、ブームシリンダを含む油圧アクチュエータを備えるショベルの制御方法であって、前記ブームシリンダから流出する作動油により油圧モータを駆動するステップと、前記ブームシリンダから流出する作動油を前記油圧モータに供給するステップと、再生用油路を通じて前記ブームシリンダから流出する作動油を別の油圧アクチュエータへ供給するステップと、再生用流量制御弁により前記再生用油路を流れる作動油の流量を制御するステップと、を有する。
 上述の手段により、本発明は、ブーム下げ時にブームシリンダから流出する作動油をより効率的に利用するショベル及びそのショベルの制御方法を提供することができる。
第一実施例に係るハイブリッド式ショベルの側面図である。 第一実施例に係るハイブリッド式ショベルの動作状態の推移を示す図である。 第一実施例に係るハイブリッド式ショベルの駆動系の構成例を示すブロック図である。 第一実施例に係るハイブリッド式ショベルの蓄電系の構成例を示すブロック図である。 第一実施例に係るハイブリッド式ショベルにおける連通回路の構成例を示す図である。 連通回路駆動処理の流れを示すフローチャートである。 アーム駆動アシスト処理の際の連通回路の状態を示す図である。 ブーム回生発電処理の際の連通回路の状態を示す図である。 ダンプ動作区間においてコントローラがアーム駆動アシスト処理又はブーム回生発電処理を実行する際の各種物理量の時間的推移を示す図である。 第二実施例に係るショベルの駆動系の構成例を示すブロック図である。
 図1は、本発明が適用されるハイブリッド式ショベルを示す側面図である。
 ハイブリッド式ショベルの下部走行体1には、旋回機構2を介して上部旋回体3が搭載される。上部旋回体3には、ブーム4が取り付けられる。ブーム4の先端に、アーム5が取り付けられ、アーム5の先端にバケット6が取り付けられる。ブーム4、アーム5及びバケット6は、ブームシリンダ7、アームシリンダ8、及びバケットシリンダ9によりそれぞれ油圧駆動される。上部旋回体3には、キャビン10が設けられ、且つエンジン等の動力源が搭載される。
 次に、図2を参照しながらハイブリッド式ショベルの動作の一例である掘削・積込み動作について説明する。まず、状態CD1で示すように、操作者は、上部旋回体3を旋回させ、バケット6を掘削位置の上方に位置させ、アーム5を開き、かつ、バケット6を開く。その状態で、操作者は、ブーム4を下降させ、バケット6の先端が掘削対象から所望の高さとなるようにバケット6を下降させる。通常、上部旋回体3を旋回させる際、及び、ブーム4を下降させる際、操作者は、目視でバケット6の位置を確認する。また、上部旋回体3の旋回、及び、ブーム4の下降は同時に行われることが一般的である。以上の動作をブーム下げ旋回動作と称し、この動作区間をブーム下げ旋回動作区間と称する。
 操作者は、バケット6の先端が所望の高さに到達したと判断した場合、状態CD2で示すように、アーム5が地面に対して略垂直になるまでアーム5を閉じる。これにより、所定の深さの土が掘削され、アーム5が地表面に対して略垂直になるまでバケット6でかき寄せられる。次に、操作者は、状態CD3で示すように、アーム5及びバケット6を更に閉じ、状態CD4で示すように、バケット6がアーム5に対して略垂直になるまでバケット6を閉じる。すなわち、バケット6の上縁が略水平となるまでバケット6を閉じ、かき集めた土をバケット6内に収容する。以上の動作を掘削動作と称し、この動作区間を掘削動作区間と称する。
 次に、操作者は、バケット6がアーム5に対して略垂直になるまで閉じたと判断した場合、状態CD5で示すように、バケット6を閉じたままバケット6の底部が地面から所望の高さとなるまでブーム4を上げる。この動作をブーム上げ動作と称し、この動作区間をブーム上げ動作区間と称する。この動作に続いて、あるいは同時に、操作者は、上部旋回体3を旋回させ、矢印AR1で示すようにバケット6を排土位置まで旋回移動する。ブーム上げ動作を含むこの動作をブーム上げ旋回動作と称し、この動作区間をブーム上げ旋回動作区間と称する。
 なお、バケット6の底部が所望の高さとなるまでブーム4を上げるのは、例えば、ダンプカーの荷台に排土する際にはバケット6を荷台の高さより高く持ち上げないとバケット6が荷台にぶつかってしまうためである。
 次に、操作者は、ブーム上げ旋回動作が完了したと判断した場合、状態CD6で示すように、ブーム4を下げながらアーム5及びバケット6を開いて、バケット6内の土を排出する。この動作をダンプ動作と称し、この動作区間をダンプ動作区間と称する。
 次に、操作者は、ダンプ動作が完了したと判断した場合、状態CD7で示すように、矢印AR2の方向に上部旋回体3を旋回させ、バケット6を掘削位置の真上に移動させる。このとき、旋回と同時にブーム4を下げてバケット6を掘削対象から所望の高さのところまで下降させる。この動作は状態CD1にて説明したブーム下げ旋回動作の一部である。その後、操作者は、状態CD1で示すようにバケット6を所望の高さまで下降させ、再び掘削動作以降の動作を行うようにする。
 操作者は、上述の「ブーム下げ旋回動作」、「掘削動作」、「ブーム上げ旋回動作」、及び「ダンプ動作」を一サイクルとしてこのサイクルを繰り返しながら掘削・積込みを進めていく。
 図3は、本発明の第一実施例に係るハイブリッド式ショベルの駆動系の構成例を示すブロック図である。図3は、機械的動力系を二重線、高圧油圧ラインを実線(太線)、パイロットラインを破線、電気駆動・制御系を実線(細線)でそれぞれ示す。
 機械式駆動部としてのエンジン11、及び、アシスト駆動部としての電動発電機12は、変速機13の2つの入力軸にそれぞれ接続される。変速機13の出力軸には、油圧ポンプとしてのメインポンプ14及びパイロットポンプ15が接続される。メインポンプ14には、高圧油圧ライン16を介してコントロールバルブ17が接続される。
 レギュレータ14Aは、メインポンプ14の吐出量を制御するための装置であり、例えば、メインポンプ14の吐出圧、コントローラ30からの制御信号等に応じてメインポンプ14の斜板傾転角を調節することによって、メインポンプ14の吐出量を制御する。
 コントロールバルブ17は、ハイブリッド式ショベルにおける油圧系の制御を行う制御装置である。下部走行体1用の油圧モータ1A(右用)及び1B(左用)、ブームシリンダ7、アームシリンダ8並びにバケットシリンダ9は、高圧油圧ラインを介してコントロールバルブ17に接続される。なお、以下では、下部走行体1用の油圧モータ1A(右用)及び1B(左用)、ブームシリンダ7、アームシリンダ8並びにバケットシリンダ9を総称して油圧アクチュエータとする。
 電動発電機12には、インバータ18Aを介して、蓄電器としてのキャパシタを含む蓄電系120が接続される。蓄電系120には、インバータ20を介して電動作業要素としての旋回用電動機21が接続される。旋回用電動機21の回転軸21Aには、レゾルバ22、メカニカルブレーキ23、及び旋回変速機24が接続される。また、パイロットポンプ15には、パイロットライン25を介して操作装置26が接続される。旋回用電動機21、インバータ20、レゾルバ22、メカニカルブレーキ23及び旋回変速機24で第一の負荷駆動系が構成される。
 操作装置26は、レバー26A、レバー26B、ペダル26Cを含む。レバー26A、レバー26B、及びペダル26Cは、油圧ライン27及び28を介して、コントロールバルブ17及び圧力センサ29にそれぞれ接続される。圧力センサ29は、油圧アクチュエータのそれぞれの作動状態を検出する作動状態検出部として機能し、電気系の駆動制御を行うコントローラ30に接続される。
 また、本実施例では、ブーム回生電力を得るためのブーム回生用発電機300がインバータ18Cを介して蓄電系120に接続される。発電機300は、ブームシリンダ7から流出する作動油により駆動される油圧モータ310によって駆動される。発電機300は、ブーム4が自重で下降するときにブームシリンダ7から流出する作動油の圧力を利用して、ブーム4の位置エネルギ(ブームシリンダ7から流出する作動油の油圧エネルギ)を電気エネルギに変換する。なお、図3において、説明の便宜上、油圧モータ310と発電機300は離れた位置に示されるが、実際には、発電機300の回転軸は油圧モータ310の回転軸に機械的に接続される。すなわち、油圧モータ310は、ブーム4が下降するときにブームシリンダ7から流出する作動油によって回転するように構成され、ブーム4が自重で下降するときの作動油の油圧エネルギを回転力に変換するために設けられる。
 発電機300で発電された電力は、回生電力としてインバータ18Cを経て蓄電系120に供給される。発電機300とインバータ18Cとで第二の負荷駆動系が構成される。
 なお、本実施例では、ブームシリンダ7のボトム側油室における作動油の圧力を検出するためのブームシリンダ圧センサS1がブームシリンダ7に取り付けられ、アームシリンダ8のロッド側油室における作動油の圧力を検出するためのアームシリンダ圧センサS2がアームシリンダ8に取り付けられる。ブームシリンダ圧センサS1及びアームシリンダ圧センサS2のそれぞれは、油圧アクチュエータ圧検出部の一例であり、検出した圧力値をコントローラ30に対して出力する。
 連通回路320は、ブームシリンダ7から流出する作動油の供給先を制御するための油圧回路であり、例えば、コントローラ30からの制御信号に応じてブームシリンダ7から流出する作動油の全部又は一部をアームシリンダ8に供給する。また、連通回路320は、ブームシリンダ7から流出する作動油の全部を油圧モータ310に供給するようにしてもよく、ブームシリンダ7から流出する作動油の一部をアームシリンダ8に供給しながら、残りの部分を油圧モータ310に供給してもよい。なお、連通回路320の動作については後述する。
 図4は蓄電系120の構成例を示すブロック図である。蓄電系120は、キャパシタ19、昇降圧コンバータ100及びDCバス110を含む。キャパシタ19には、キャパシタ電圧値を検出するためのキャパシタ電圧検出部112と、キャパシタ電流値を検出するためのキャパシタ電流検出部113が設けられている。キャパシタ電圧検出部112とキャパシタ電流検出部113によって検出されるキャパシタ電圧値とキャパシタ電流値は、コントローラ30に供給される。
 昇降圧コンバータ100は、電動発電機12、旋回用電動機21及び発電機300の運転状態に応じて、DCバス電圧値が一定の範囲内に収まるように昇圧動作と降圧動作を切り替える制御を行う。DCバス110は、インバータ18A、18C及び20、並びに、昇降圧コンバータ100の間に配設されており、キャパシタ19、電動発電機12、旋回用電動機21及び発電機300の間で電力の授受を行う。
 ここで再び図3を参照してコントローラ30の詳細について説明する。コントローラ30は、ハイブリッド式ショベルの駆動制御を行う主制御部としての制御装置である。コントローラ30は、CPU(Central Processing Unit)及び内部メモリを含む演算処理装置で構成され、CPUが内部メモリに格納された駆動制御用のプログラムを実行する。
 コントローラ30は、圧力センサ29から供給される信号を旋回速度指令に変換し、旋回用電動機21の駆動制御を行う。この場合、圧力センサ29から供給される信号は、旋回機構2を旋回させるために操作装置26(旋回操作レバー)を操作した場合の操作量を表す信号に相当する。
 また、コントローラ30は、電動発電機12の運転制御(電動(アシスト)運転又は発電運転の切り替え)を行うとともに、昇降圧制御部としての昇降圧コンバータ100を駆動制御することによるキャパシタ19の充放電制御を行う。具体的には、コントローラ30は、キャパシタ19の充電状態、電動発電機12の運転状態(電動(アシスト)運転又は発電運転)、旋回用電動機21の運転状態(力行運転又は回生運転)、及び、発電機300の運転状態に基づいて、昇降圧コンバータ100の昇圧動作と降圧動作の切り替え制御を行い、これによりキャパシタ19の充放電制御を行う。
 この昇降圧コンバータ100の昇圧動作と降圧動作の切り替え制御は、DCバス電圧検出部111によって検出されるDCバス電圧値、キャパシタ電圧検出部112によって検出されるキャパシタ電圧値、及びキャパシタ電流検出部113によって検出されるキャパシタ電流値に基づいて行われる。
 以上のような構成において、アシストモータである電動発電機12が発電した電力は、インバータ18Aを介して蓄電系120のDCバス110に供給され、昇降圧コンバータ100を介してキャパシタ19に供給される。また、旋回用電動機21が回生運転して生成した回生電力は、インバータ20を介して蓄電系120のDCバス110に供給され、昇降圧コンバータ100を介してキャパシタ19に供給される。また、ブーム回生用の発電機300が発電した電力は、インバータ18Cを介して蓄電系120のDCバス110に供給され、昇降圧コンバータ100を介してキャパシタ19に供給される。なお、電動発電機12又は発電機300が発電した電力は、インバータ20を介して旋回用電動機21に直接的に供給されてもよい。また、旋回用電動機21又は発電機300が発電した電力は、インバータ18Aを介して電動発電機12に直接的に供給されてもよい。
 キャパシタ19は、昇降圧コンバータ100を介してDCバス110との間で電力の授受が行えるように、充放電可能な蓄電器であればよい。なお、図4には、蓄電器としてキャパシタ19を示すが、キャパシタ19の代わりに、リチウムイオン電池等の充放電可能な二次電池、リチウムイオンキャパシタ、又は、電力の授受が可能なその他の形態の電源を蓄電器として用いてもよい。
 上述のような機能に加え、コントローラ30はさらに、油圧アクチュエータの作動状態、及び、油圧アクチュエータにおける作動油の圧力状態に応じて連通回路320の駆動制御を行う。
 ここで、図5を参照しながら、連通回路320の詳細について説明する。なお、図5は、連通回路320の構成例を示す図である。本実施例において、連通回路320は、ブームシリンダ7のボトム側油室と、アームシリンダ8のロッド側油室と、コントロールバルブ17と、油圧モータ310とを接続するように配置される。
 連通回路320は、再生用流量制御弁321、回生用流量制御弁322、電磁弁323及び逆止弁324で構成される。
 再生用流量制御弁321は、ブームシリンダボトム側油路C1(太線で強調して表示)とアームシリンダロッド側油路C2(同じく太線で強調して表示)とを接続する再生用油路C3を流れる作動油の流量を制御する。本実施例では、再生用流量制御弁321は、例えば、3ポート2位置の電磁スプール弁である。なお、ブームシリンダボトム側油路C1は、ブームシリンダ7のボトム側油室とコントロールバルブ17のブーム用流量制御弁17Bとを接続する油路である。また、アームシリンダロッド側油路C2は、アームシリンダ8のロッド側油室とコントロールバルブ17のアーム用流量制御弁17Aとを接続する油路である。
 第一実施例において、再生用油路C3は、その一端がアームシリンダロッド側油路C2に接続される。なお、再生用油路C3は、アームシリンダ8のボトム側油室とコントロールバルブ17のアーム用流量制御弁17Aとを接続する油路に接続されてもよい。この場合、ブームシリンダ7のボトム側油室から流出する作動油は、アームシリンダ8のボトム側油室に流入可能となり、アーム閉じ動作のために利用可能となる。また、再生用油路C3は、メインポンプ14L、14Rとコントロールバルブ17とを接続する油路、すなわち、コントロールバルブ17の上流に接続されてもよい。この場合、ブームシリンダ7のボトム側油室から流出する作動油は、アームシリンダ8以外の他の油圧アクチュエータでも利用可能となる。
 回生用流量制御弁322は、ブームシリンダボトム側油路C1と油圧モータ310とを接続する回生用油路C4を流れる作動油の流量を制御する。本実施例では、回生用流量制御弁322は、例えば、3ポート2位置のスプール弁である。
 電磁弁323は、回生用流量制御弁322を制御する。本実施例では、電磁弁323は、例えば、パイロットポンプが発生させる制御圧を回生用流量制御弁322のパイロットポートに選択的に作用させる。
 逆止弁324は、再生用油路C3に設置され、アームシリンダロッド側油路C2からブームシリンダボトム側油路C1に作動油が流れるのを防止する。
 ここで、図6を参照しながら、コントローラ30が連通回路320における作動油の流れを制御する処理(以下、「連通回路駆動処理」とする。)について説明する。なお、図6は、連通回路駆動処理の流れを示すフローチャートであり、コントローラ30は、ショベル運転中、所定の制御周期で繰り返しこの連通回路駆動処理を実行する。
 最初に、コントローラ30は、圧力センサ29の出力に基づいてブーム操作レバー及びアーム操作レバーの操作量を検出し、ダンプ動作区間であるか否か、すなわち、ブーム下げとアーム開きが同時に行われているか否かを判定する(ステップST1)。なお、コントローラ30は、ダンプ動作区間であるか否かを判定するために、ブーム下げと、アーム開きと、バケット開きとが同時に行われているか否かを判定するようにしてもよい。また、コントローラ30は、角度センサ(図示せず。)又は変位センサ(図示せず。)の出力に基づいてダンプ動作区間であるか否かを判定するようにしてもよい。なお、角度センサは、ブーム4、アーム5、バケット6のそれぞれの回動角度を検出し、変位センサは、ブームシリンダ7、アームシリンダ8、バケットシリンダ9のそれぞれの変位を検出する。
 ダンプ動作区間でない、すなわち、ブーム下げとアーム開きが同時に行われていないと判定した場合(ステップST1のNO)、コントローラ30は、ダンプ動作区間であると判定するまで、圧力センサ29の出力の監視を継続する。
 ダンプ動作区間である、すなわち、ブーム下げとアーム開きが同時に行われていると判定した場合(ステップST1のYES)、コントローラ30は、ブームシリンダ圧センサS1の検出圧P1とアームシリンダ圧センサS2の検出圧P2とを比較する(ステップST2)。
 検出圧P1が検出圧P2より大きい場合、すなわち、ブームシリンダ7のボトム側油室における作動油の圧力がアームシリンダ8のロッド側油室における作動油の圧力よりも大きい場合(ステップST2のYES)、コントローラ30は、アーム駆動アシスト処理を実行する(ステップST3)。
 具体的には、コントローラ30は、連通回路320における再生用流量制御弁321及び電磁弁323に対して所定の制御信号を出力する。そして、コントローラ30は、ブームシリンダ7のボトム側油室から流出する作動油をアームシリンダ8のロッド側油室に流入させるようにする。
 また、コントローラ30は、レギュレータ14RAに対して所定の制御信号を出力してメインポンプ14Rの吐出量を制御する。そして、コントローラ30は、ブームシリンダ7のボトム側油室から流出する作動油とメインポンプ14Rが吐出する作動油とにより、アームシリンダ8のロッド側油室に所望の流量で作動油が供給されるようにする。具体的には、コントローラ30は、ブームシリンダ圧センサS1の検出圧P1とアームシリンダ圧センサS2の検出圧P2とに基づいて、メインポンプ14Rが吐出すべき作動油の流量を決定する。
 これにより、コントローラ30は、ダンプ動作区間においてブームシリンダ7から流出する作動油の油圧エネルギを電気エネルギに変換することなくアーム開き動作のために利用できるようにする。その結果、コントローラ30は、これまでのように油圧モータ310を回転させた後で油タンクに排出していた作動油のより効率的な利用を図ることができる。
 一方、検出圧P1が検出圧P2以下である場合、すなわち、ブームシリンダ7のボトム側油室における作動油の圧力がアームシリンダ8のロッド側油室における作動油の圧力以下である場合(ステップST2のNO)、コントローラ30は、ブーム回生発電処理を実行する(ステップST4)。
 具体的には、コントローラ30は、連通回路320における再生用流量制御弁321及び電磁弁323に対して所定の制御信号を出力する。そして、コントローラ30は、ブームシリンダ7のボトム側油室から流出する作動油を油圧モータ310に流入させ、発電機300による発電を実行させるようにする。
 アームシリンダ8のロッド側油室における作動油の圧力がブームシリンダ7のボトム側油室における作動油の圧力よりも高いため、ブームシリンダ7のボトム側油室から流出する作動油をアームシリンダ8のロッド側油室に流入させることができないためである。
 なお、コントローラ30は、ブームシリンダ7から流出する作動油の一部をアームシリンダ8に供給しながら、ブームシリンダ7から流出する作動油の残りの部分を油圧モータ310に流入させてもよい。アーム駆動アシスト処理において、ブームシリンダ7から流出する作動油の流量が、アーム開き動作で必要とされる作動油の流量より大きい場合であっても、ブームシリンダ7から流出する作動油の油圧エネルギを最大限利用できるようにするためである。
 また、コントローラ30は、ブーム下げとアーム開き又はバケット開きとが同時に行われていない場合であっても、ブーム下げが行われている場合には、ブーム回生発電処理を実行する。ブームシリンダ7から流出する作動油の油圧エネルギを最大限利用できるようにするためである。
 また、本実施例において、コントローラ30は、ブームシリンダ7から流出する作動油がアーム開き動作のために利用されるようにするが、アーム閉じ動作、バケット閉じ動作、バケット開き動作、或いは、下部走行体1の走行のために利用されるようにしてもよい。
 ここで、図7及び図8を参照しながら、アーム駆動アシスト処理及びブーム回生発電処理の際の連通回路320の動作を詳細に説明する。なお、図7は、アーム駆動アシスト処理の際の連通回路320の状態を示し、図8は、ブーム回生発電処理の際の連通回路320の状態を示す。また、図7及び図8における太い実線は、作動油の流れが生じていることを表す。
 図7は、メインポンプ14Lが吐出する作動油がブームシリンダ7のロッド側油室に流入し、メインポンプ14Rが吐出する作動油がアームシリンダ8のロッド側油室に流入し、ブーム下げとアーム開きが同時に実行されている状態を示す。なお、図7では、ブームシリンダ圧センサS1の検出圧P1は、アームシリンダ圧センサS2の検出圧P2よりも大きい。
 このような状態において、再生用流量制御弁321は、コントローラ30からの制御信号に応じてその弁位置を第一弁位置321Aに切り替える。その結果、ブームシリンダ7からコントロールバルブ17への作動油の流れが遮断される。ブームシリンダ7から流出する作動油は、再生用油路C3を通じてアームシリンダロッド側油路C2に至り、メインポンプ14Rが吐出する作動油に合流して、アームシリンダ8のロッド側油室に流入する。
 また、電磁弁323は、コントローラ30からの制御信号に応じて回生用流量制御弁322の弁位置を第一弁位置322Aに切り替える。その結果、ブームシリンダ7から油圧モータ310への作動油の流れが遮断され、ブームシリンダ7から流出する作動油の全部がアームシリンダ8のロッド側油室に流入する。
 また、コントローラ30は、レギュレータ14RAに対し制御信号を出力し、メインポンプ14Rの吐出量を低減させ、メインポンプ14Rからアームシリンダ8のロッド側油室に向かう作動油の流量を低減させるようにする。また、コントローラ30は、アーム用流量制御弁17Aを制御してメインポンプ14Rからアームシリンダ8のロッド側油室に向かう作動油の流量を低減させ或いは消滅させるようにしてもよい。なお、メインポンプ14Rからアームシリンダ8のロッド側油室に向かう作動油の流量を消滅させた場合には、ブームシリンダ7のボトム側油室から流出する作動油のみがアームシリンダ8のロッド側油室に供給される。
 このようにして、連通回路320は、ブーム下げとアーム開きが同時に実行され、かつ、検出圧P1が検出圧P2よりも大きい場合に、ブームシリンダ7から流出する作動油の全部をアームシリンダ8のロッド側油室に流入させるようにする。
 また、図8は、メインポンプ14Lが吐出する作動油がブームシリンダ7のロッド側油室に流入し、ブーム下げのみが実行されている状態を示す。
 このような状態において、再生用流量制御弁321は、コントローラ30からの制御信号に応じてその弁位置を第二弁位置321Bに切り替える。その結果、ブームシリンダ7からアームシリンダ8への作動油の流れが遮断される。ブームシリンダ7から流出する作動油の一部は、ブームシリンダボトム側油路C1を通じてコントロールバルブ17に至り、コントロールバルブ17を通じて油タンクに排出される。
 また、電磁弁323は、コントローラ30からの制御信号に応じて回生用流量制御弁322の弁位置を第二弁位置322Bに切り替える。その結果、ブームシリンダ7から流出する作動油の残りの部分は、油圧モータ310に流入し、油圧モータ310及び発電機300を回転させた上で油タンクに排出される。
 このようにして、連通回路320は、ブーム下げのみが実行されている場合に、ブームシリンダ7から流出する作動油の一部を油圧モータ310に流入させ、発電機300による発電を実行させるようにする。なお、コントローラ30は、ブームシリンダ7から流出する作動油の全部を油圧モータ310に流入させるようにしてもよい。
 次に、図9を参照しながら、ダンプ動作区間においてコントローラ30がアーム駆動アシスト処理又はブーム回生発電処理を実行する際のパイロット圧(図9上段参照。)、シリンダ変位(図9中段参照。)、及びシリンダ圧力(図9下段参照。)のそれぞれの時間的推移について説明する。なお、図9上段、図9中段、及び図9下段のそれぞれにおいて実線で表される推移は、ブーム操作レバーのパイロット圧、ブームシリンダ7の変位、及び、ブームシリンダ7のボトム側油室における作動油の圧力(ブームシリンダ圧センサS1の検出圧P1)をそれぞれ示す。また、図9上段、図9中段、及び図9下段のそれぞれにおいて破線で表される推移は、アーム操作レバーのパイロット圧、アームシリンダ8の変位、及び、アームシリンダ8のロッド側油室における作動油の圧力(アームシリンダ圧センサS2の検出圧P2)をそれぞれ示す。
 時刻t0においてブーム操作レバーが下げ方向に操作され、ブーム操作レバーの下げ方向のパイロット圧が上昇すると、コントローラ30は、ブーム回生発電処理を実行し、連通回路320を図8の状態にする。ブーム下げによりブームシリンダ7から流出する作動油の油圧エネルギが利用可能となるためであり、また、検出圧P1が検出圧P2以下となっておりアーム駆動アシスト処理を実行できないためである。なお、アーム操作レバーは既に開き方向に操作されており、アーム操作レバーの開き方向のパイロット圧は既に所定レベル以上となっている。
 上述の操作により、ブームシリンダ7は、緩やかに収縮側に変位してブーム4を下げるように作動し、アームシリンダ8は、収縮側に変位してアーム5を開くように作動する。なお、コントローラ30は、ブームシリンダ7及びアームシリンダ8のこのような変位に基づいてアーム駆動アシスト処理又はブーム回生発電処理の開始タイミングを判断するようにしてもよい。
 その後、時刻t1において検出圧P1が検出圧P2を上回ると、コントローラ30は、ブーム回生発電処理の実行を中止した上で、アーム駆動アシスト処理を実行し、連通回路320を図7の状態にする。検出圧P1が検出圧P2を上回り、ブームシリンダ7から流出する作動油をアームシリンダ8に流入させることが可能となったためである。
 なお、コントローラ30は、アーム駆動アシスト処理を実行する場合であっても、ブームシリンダ7から流出する作動油の一部を利用して、ブーム回生発電処理の実行を継続させるようにしてもよい。その場合、再生用流量制御弁321が第一弁位置321Aに設定され、回生用流量制御弁322が第二弁位置322Bに設定される。
 その後、時刻t2において検出圧P1が再び検出圧P2未満になると、コントローラ30は、アーム駆動アシスト処理の実行を中止した上で、ブーム回生発電処理を実行し、連通回路320を再び図8の状態にする。検出圧P1が検出圧P2以下となりアーム駆動アシスト処理を実行できないためである。
 以上の構成により、第一実施例に係るハイブリッド式ショベルは、ブーム下げ時にブームシリンダ7から流出する作動油の油圧エネルギを電気エネルギに変換することなく他の油圧アクチュエータの動作のために利用できる。そのため、ブーム下げ時にブームシリンダ7から流出する作動油をより効率的に利用できる。
 また、第一実施例に係るハイブリッド式ショベルは、ブームシリンダ7における作動油の圧力が、その作動油の供給候補である他の油圧アクチュエータにおける作動油の圧力よりも大きいことを確認する。その上で、第一実施例に係るハイブリッド式ショベルは、ブームシリンダ7から流出する作動油をその供給候補である他の油圧アクチュエータに流入させる。一方で、第一実施例に係るハイブリッド式ショベルは、ブームシリンダ7における作動油の圧力が、その作動油の供給候補である他の油圧アクチュエータにおける作動油の圧力よりも小さい場合には、ブームシリンダ7とその供給候補である他の油圧アクチュエータとの間の油路を遮断する。そのため、ブームシリンダ7から流出する作動油を確実にその供給候補である他の油圧アクチュエータに流入させることができる。
 また、第一実施例に係るハイブリッド式ショベルは、ブームシリンダ7から流出する作動油の供給候補である他の油圧アクチュエータが作動中であることを確認する。その上で、第一実施例に係るハイブリッド式ショベルは、ブームシリンダ7から流出する作動油をその供給候補である他の油圧アクチュエータに流入させる。一方で、第一実施例に係るハイブリッド式ショベルは、その供給候補である他の油圧アクチュエータが作動中でない場合には、ブームシリンダ7から流出する作動油を油圧モータ310に流入させ、発電機300による発電を実行させる。そのため、第一実施例に係るハイブリッド式ショベルは、その供給候補である他の油圧アクチュエータの作動状態に応じて、ブームシリンダ7から流出する作動油を効率的にかつ確実に利用できる。
 次に、図10を参照しながら、本発明の第二実施例に係るショベルについて説明する。
 図10は、本発明の第二実施例に係るショベルの駆動系の構成例を示すブロック図であり、図3と同様、機械的動力系を二重線、高圧油圧ラインを実線(太線)、パイロットラインを破線、電気駆動・制御系を実線(細線)でそれぞれ示す。
 第二実施例に係るショベルは、電動旋回機構である第一の負荷駆動系の代わりに旋回用油圧モータ40を備える点において、第一実施例に係るハイブリッド式ショベルと相違し、その他の点において共通する。この構成により、第二実施例に係るショベルは、第一実施例に係るハイブリッド式ショベルと同様の効果を実現させることができる。
 以上、本発明の好ましい実施例について詳説したが、本発明は、上述した実施例に制限されることはなく、本発明の範囲を逸脱することなしに上述した実施例に種々の変形及び置換を加えることができる。
 例えば、上述の実施例において、再生用流量制御弁321及び回生用流量制御弁322は、別個独立した二つのスプール弁として構成されるが、一つのスプール弁で構成されてもよい。
 また、本願は、2011年7月6日に出願した日本国特許出願2011-150372号に基づく優先権を主張するものでありその日本国特許出願の全内容を本願に参照により援用する。
 1・・・下部走行体 1A、1B・・・走行用油圧モータ 2・・・旋回機構 3・・・上部旋回体 4・・・ブーム 5・・・アーム 6・・・バケット 7・・・ブームシリンダ 8・・・アームシリンダ 9・・・バケットシリンダ 10・・・キャビン 11・・・エンジン 12・・・電動発電機 13・・・変速機 14、14L、14R・・・メインポンプ 14A、14LA、14RA・・・レギュレータ 15・・・パイロットポンプ 16・・・高圧油圧ライン 17・・・コントロールバルブ 17A・・・アーム用流量制御弁 17B・・・ブーム用流量制御弁 18A、18C・・・インバータ 19・・・キャパシタ 20・・・インバータ 21・・・旋回用電動機 22・・・レゾルバ 23・・・メカニカルブレーキ 24・・・旋回変速機 25・・・パイロットライン 26・・・操作装置 26A、26B・・・レバー 26C・・・ペダル 27、28・・・油圧ライン 29・・・圧力センサ 30・・・コントローラ 40・・・旋回用油圧モータ 100・・・昇降圧コンバータ 110・・・DCバス 111・・・DCバス電圧検出部 112・・・キャパシタ電圧検出部 113・・・キャパシタ電流検出部 120・・・蓄電系 300・・・発電機 310・・・油圧モータ 320・・・連通回路 321・・・再生用流量制御弁 322・・・回生用流量制御弁 323・・・電磁弁 324・・・逆止弁

Claims (12)

  1.  ブームシリンダを含む油圧アクチュエータを備えるショベルであって、
     前記ブームシリンダから流出する作動油により駆動される油圧モータと、
     前記ブームシリンダから流出する作動油を前記油圧モータに供給するための回生用油路と、
     前記ブームシリンダから流出する作動油を別の油圧アクチュエータへ供給する再生用油路と、
     前記再生用油路を流れる作動油の流量を制御する再生用流量制御弁と、
     を備えるショベル。
  2.  前記ブームシリンダにおける作動油の圧力を検出するブームシリンダ圧センサと、
     前記別の油圧アクチュエータにおける作動油の圧力を検出する油圧アクチュエータ圧検出部と、をさらに備え、
     前記再生用流量制御弁は、前記再生用油路の連通・遮断を切り替える切り替え弁であり、前記ブームシリンダにおける作動油の圧力が前記別の油圧アクチュエータにおける作動油の圧力より高い場合に、前記再生用油路を連通させる、
     請求項1に記載のショベル。
  3.  前記ブームシリンダにおける作動油の圧力を検出するブームシリンダ圧センサと、
     前記別の油圧アクチュエータにおける作動油の圧力を検出する油圧アクチュエータ圧検出部と、をさらに備え、
     前記再生用流量制御弁は、前記ブームシリンダにおける作動油の圧力が前記別の油圧アクチュエータにおける作動油の圧力より低い場合に、前記再生用油路を遮断する、
     請求項1に記載のショベル。
  4.  前記別の油圧アクチュエータの作動状態を検出する作動状態検出部をさらに備え、
     前記再生用流量制御弁は、前記別の油圧アクチュエータが作動中である場合に、前記再生用油路を連通させる、
     請求項1に記載のショベル。
  5.  前記別の油圧アクチュエータの作動状態を検出する作動状態検出部と、
     前記油圧モータに接続される回生用発電機と、をさらに備え、
     前記回生用発電機は、前記別の油圧アクチュエータが作動中でない場合に、発電する、
     請求項1に記載のショベル。
  6.  前記別の油圧アクチュエータは、アームシリンダである、
     請求項1に記載のショベル。
  7.  ブームシリンダを含む油圧アクチュエータを備えるショベルの制御方法であって、
     前記ブームシリンダから流出する作動油により油圧モータを駆動するステップと、
     前記ブームシリンダから流出する作動油を前記油圧モータに供給するステップと、
     再生用油路を通じて前記ブームシリンダから流出する作動油を別の油圧アクチュエータへ供給するステップと、
     再生用流量制御弁により前記再生用油路を流れる作動油の流量を制御するステップと、
     を有するショベルの制御方法。
  8.  前記ブームシリンダにおける作動油の圧力を検出するステップと、
     前記別の油圧アクチュエータにおける作動油の圧力を検出するステップと、をさらに有し、
     前記再生用流量制御弁は、前記再生用油路の連通・遮断を切り替える切り替え弁であり、前記ブームシリンダにおける作動油の圧力が前記別の油圧アクチュエータにおける作動油の圧力より高い場合に、前記再生用油路を連通させる、
     請求項7に記載のショベルの制御方法。
  9.  前記ブームシリンダにおける作動油の圧力を検出するステップと、
     前記別の油圧アクチュエータにおける作動油の圧力を検出するステップと、をさらに有し、
     前記再生用流量制御弁は、前記ブームシリンダにおける作動油の圧力が前記別の油圧アクチュエータにおける作動油の圧力より低い場合に、前記再生用油路を遮断する、
     請求項7に記載のショベルの制御方法。
  10.  前記別の油圧アクチュエータの作動状態を検出するステップをさらに有し、
     前記再生用流量制御弁は、前記別の油圧アクチュエータが作動中である場合に、前記再生用油路を連通させる、
     請求項7に記載のショベルの制御方法。
  11.  前記別の油圧アクチュエータの作動状態を検出するステップと、
     前記別の油圧アクチュエータが作動中でない場合に、前記油圧モータに接続される回生用発電機により発電するステップと、をさらに有する、
     請求項7に記載のショベルの制御方法。
  12.  前記別の油圧アクチュエータは、アームシリンダである、
     請求項7に記載のショベルの制御方法。
PCT/JP2012/067233 2011-07-06 2012-07-05 ショベル及びショベルの制御方法 WO2013005809A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12807289.9A EP2730704B1 (en) 2011-07-06 2012-07-05 Regenerative hydraulic circuit for a shovel and method for controlling a shovel
KR1020137033041A KR101580933B1 (ko) 2011-07-06 2012-07-05 쇼벨 및 쇼벨의 제어방법
JP2013523056A JP6022453B2 (ja) 2011-07-06 2012-07-05 ショベル及びショベルの制御方法
CN201280029995.3A CN103608526B (zh) 2011-07-06 2012-07-05 挖土机以及挖土机的控制方法
US14/140,863 US9422689B2 (en) 2011-07-06 2013-12-26 Shovel and method for controlling shovel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-150372 2011-07-06
JP2011150372 2011-07-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/140,863 Continuation US9422689B2 (en) 2011-07-06 2013-12-26 Shovel and method for controlling shovel

Publications (1)

Publication Number Publication Date
WO2013005809A1 true WO2013005809A1 (ja) 2013-01-10

Family

ID=47437155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/067233 WO2013005809A1 (ja) 2011-07-06 2012-07-05 ショベル及びショベルの制御方法

Country Status (6)

Country Link
US (1) US9422689B2 (ja)
EP (1) EP2730704B1 (ja)
JP (1) JP6022453B2 (ja)
KR (1) KR101580933B1 (ja)
CN (1) CN103608526B (ja)
WO (1) WO2013005809A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103437389A (zh) * 2013-09-12 2013-12-11 上海三一重机有限公司 一种复合动作能量再生结构、方法及挖掘机
JP2014206253A (ja) * 2013-04-15 2014-10-30 住友重機械工業株式会社 油圧回路、油圧回路を備える建設機械及びその制御方法
CN103437389B (zh) * 2013-09-12 2016-11-30 上海三一重机有限公司 一种复合动作能量再生结构、方法及挖掘机
JP2017106227A (ja) * 2015-12-09 2017-06-15 住友重機械工業株式会社 ショベル
JP2017180045A (ja) * 2016-03-31 2017-10-05 住友重機械工業株式会社 ショベルのシリーズ、ショベルの油圧回路、及びショベル
JP2019141901A (ja) * 2018-02-23 2019-08-29 宇部興産機械株式会社 押出プレス装置及び押出プレス装置のメインクロスヘッド後退制御方法
WO2021025170A1 (ja) * 2019-08-08 2021-02-11 住友重機械工業株式会社 ショベル
WO2021256058A1 (ja) * 2020-06-19 2021-12-23 日立建機株式会社 建設機械
WO2023248681A1 (ja) * 2022-06-23 2023-12-28 川崎重工業株式会社 液圧駆動装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6962667B2 (ja) * 2014-03-27 2021-11-05 住友建機株式会社 ショベル及びその制御方法
JP6282523B2 (ja) * 2014-05-09 2018-02-21 住友重機械工業株式会社 作業機械
JP6291394B2 (ja) * 2014-10-02 2018-03-14 日立建機株式会社 作業機械の油圧駆動システム
JP6317656B2 (ja) * 2014-10-02 2018-04-25 日立建機株式会社 作業機械の油圧駆動システム
KR101978476B1 (ko) * 2014-12-24 2019-05-15 현대건설기계 주식회사 굴삭기의 붐 실린더 제어시스템
CN105201937A (zh) * 2014-12-31 2015-12-30 徐州重型机械有限公司 液压***、起重机及液压***的辅助驱动方法
US10047502B2 (en) * 2015-12-10 2018-08-14 Caterpillar Inc. System and method for controlling a work implement of a machine
JP6360824B2 (ja) * 2015-12-22 2018-07-18 日立建機株式会社 作業機械
JP6797015B2 (ja) * 2016-12-22 2020-12-09 川崎重工業株式会社 油圧ショベル駆動システム
CN108869467A (zh) * 2018-07-05 2018-11-23 伊婕 一种压差液能和势能回收***
WO2020101006A1 (ja) * 2018-11-14 2020-05-22 住友重機械工業株式会社 ショベル、ショベルの制御装置
DE112020004605T5 (de) * 2019-09-26 2022-06-15 Jiangsu Hengli Hydraulic Technology Co., Ltd. Ein hydrauliksystem für regenerative steuerung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336433A (ja) * 2005-06-06 2006-12-14 Shin Caterpillar Mitsubishi Ltd 作業機械の流体圧回路
JP2008275101A (ja) * 2007-05-01 2008-11-13 Daikin Ind Ltd ハイブリッド式建設車両

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183815B2 (ja) * 1995-12-27 2001-07-09 日立建機株式会社 油圧ショベルの油圧回路
JP3705387B2 (ja) * 1996-12-26 2005-10-12 株式会社小松製作所 アクチュエータの戻り圧油回収装置
US6751896B2 (en) * 2000-07-24 2004-06-22 Lowell Underwood Combination bucket/breaker apparatus for excavator boom stick
US6502393B1 (en) * 2000-09-08 2003-01-07 Husco International, Inc. Hydraulic system with cross function regeneration
JP4179465B2 (ja) * 2002-07-31 2008-11-12 株式会社小松製作所 建設機械
JP2004190845A (ja) * 2002-12-13 2004-07-08 Shin Caterpillar Mitsubishi Ltd 作業機械の駆動装置
EP1790781B1 (en) * 2005-06-02 2008-10-22 Shin Caterpillar Mitsubishi Ltd. Working machine
US20090288408A1 (en) 2005-06-06 2009-11-26 Shin Caterpillar Mitsubishi Ltd. Hydraulic circuit, energy recovery device, and hydraulic circuit for work machine
JP2006336848A (ja) * 2005-06-06 2006-12-14 Shin Caterpillar Mitsubishi Ltd 作業機械の流体圧回路
JP4509874B2 (ja) * 2005-06-17 2010-07-21 キャタピラージャパン株式会社 作業機械のハイブリッドシステム
JP2008045575A (ja) * 2006-08-10 2008-02-28 Hitachi Constr Mach Co Ltd 油圧ショベルの油圧駆動装置
JP4815338B2 (ja) * 2006-12-18 2011-11-16 日立建機株式会社 油圧ショベルの油圧駆動装置
JP4812655B2 (ja) * 2007-02-21 2011-11-09 日立建機株式会社 建設機械の油圧駆動装置
JP5238181B2 (ja) * 2007-04-17 2013-07-17 カヤバ工業株式会社 油圧ショベル
JP2010281183A (ja) 2009-06-08 2010-12-16 Sumitomo (Shi) Construction Machinery Co Ltd ハイブリッド建設機械
JP6022461B2 (ja) * 2011-09-09 2016-11-09 住友重機械工業株式会社 ショベル及びショベルの制御方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006336433A (ja) * 2005-06-06 2006-12-14 Shin Caterpillar Mitsubishi Ltd 作業機械の流体圧回路
JP2008275101A (ja) * 2007-05-01 2008-11-13 Daikin Ind Ltd ハイブリッド式建設車両

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2730704A4 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206253A (ja) * 2013-04-15 2014-10-30 住友重機械工業株式会社 油圧回路、油圧回路を備える建設機械及びその制御方法
CN103437389A (zh) * 2013-09-12 2013-12-11 上海三一重机有限公司 一种复合动作能量再生结构、方法及挖掘机
CN103437389B (zh) * 2013-09-12 2016-11-30 上海三一重机有限公司 一种复合动作能量再生结构、方法及挖掘机
JP2017106227A (ja) * 2015-12-09 2017-06-15 住友重機械工業株式会社 ショベル
JP2017180045A (ja) * 2016-03-31 2017-10-05 住友重機械工業株式会社 ショベルのシリーズ、ショベルの油圧回路、及びショベル
JP6992588B2 (ja) 2018-02-23 2022-01-13 宇部興産機械株式会社 押出プレス装置及び押出プレス装置のメインクロスヘッド後退制御方法
JP2019141901A (ja) * 2018-02-23 2019-08-29 宇部興産機械株式会社 押出プレス装置及び押出プレス装置のメインクロスヘッド後退制御方法
WO2021025170A1 (ja) * 2019-08-08 2021-02-11 住友重機械工業株式会社 ショベル
WO2021256058A1 (ja) * 2020-06-19 2021-12-23 日立建機株式会社 建設機械
JPWO2021256058A1 (ja) * 2020-06-19 2021-12-23
CN115244251A (zh) * 2020-06-19 2022-10-25 日立建机株式会社 工程机械
JP7236596B2 (ja) 2020-06-19 2023-03-09 日立建機株式会社 建設機械
CN115244251B (zh) * 2020-06-19 2024-04-16 日立建机株式会社 工程机械
US12043983B2 (en) 2020-06-19 2024-07-23 Hitachi Construction Machinery Co., Ltd. Construction machine
WO2023248681A1 (ja) * 2022-06-23 2023-12-28 川崎重工業株式会社 液圧駆動装置

Also Published As

Publication number Publication date
JPWO2013005809A1 (ja) 2015-02-23
EP2730704A4 (en) 2014-12-17
JP6022453B2 (ja) 2016-11-09
KR20140021024A (ko) 2014-02-19
US20140102289A1 (en) 2014-04-17
CN103608526B (zh) 2016-10-12
KR101580933B1 (ko) 2015-12-30
US9422689B2 (en) 2016-08-23
CN103608526A (zh) 2014-02-26
EP2730704A1 (en) 2014-05-14
EP2730704B1 (en) 2017-08-30

Similar Documents

Publication Publication Date Title
JP6022453B2 (ja) ショベル及びショベルの制御方法
JP6022461B2 (ja) ショベル及びショベルの制御方法
JP5653844B2 (ja) ショベル
CN104024659B (zh) 作业机械的动力再生装置以及作业机械
KR101834589B1 (ko) 선회체를 갖는 건설 기계
JP5562893B2 (ja) ショベル
JP5000430B2 (ja) ハイブリッド型作業機械の運転制御方法および同方法を用いた作業機械
CN110352304B (zh) 工程机械
KR101121705B1 (ko) 건설기계의 붐 위치에너지 회생 장치 및 방법
US20180355584A1 (en) Hydraulic system and hydraulic control method for construction machine
EP2857601A1 (en) Hybrid construction machine
CN102713085B (zh) 混合式施工机械
CN106104010A (zh) 控制阀装置
CN107250560B (zh) 工程机械的驱动装置
JP2014206253A (ja) 油圧回路、油圧回路を備える建設機械及びその制御方法
WO2020196871A1 (ja) ショベル
JP6009388B2 (ja) 作業機械
KR20080107494A (ko) 유압실린더용 위치에너지 회생장치 및 회생방법
KR20130114863A (ko) 전기 굴삭기의 전자 유압 시스템
JP5948704B2 (ja) ハイブリッド式建設機械の動力回生回路
JP5723947B2 (ja) 旋回体を有する建設機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12807289

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137033041

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013523056

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2012807289

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012807289

Country of ref document: EP