WO2013002345A1 - Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element - Google Patents

Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element Download PDF

Info

Publication number
WO2013002345A1
WO2013002345A1 PCT/JP2012/066591 JP2012066591W WO2013002345A1 WO 2013002345 A1 WO2013002345 A1 WO 2013002345A1 JP 2012066591 W JP2012066591 W JP 2012066591W WO 2013002345 A1 WO2013002345 A1 WO 2013002345A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal alignment
alignment film
acid
formula
Prior art date
Application number
PCT/JP2012/066591
Other languages
French (fr)
Japanese (ja)
Inventor
喜弘 川月
瑞穂 近藤
耕平 後藤
淳彦 萬代
悟志 南
達哉 名木
Original Assignee
日産化学工業株式会社
兵庫県
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社, 兵庫県 filed Critical 日産化学工業株式会社
Priority to CN201280031708.2A priority Critical patent/CN103827740B/en
Priority to KR1020137034527A priority patent/KR101991140B1/en
Priority to JP2013522956A priority patent/JP6057895B2/en
Publication of WO2013002345A1 publication Critical patent/WO2013002345A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • G02F1/133723Polyimide, polyamide-imide

Definitions

  • the present invention relates to a method for manufacturing a liquid crystal alignment film, a liquid crystal alignment film obtained by the manufacturing method, and a liquid crystal display element using the liquid crystal alignment film.
  • the liquid crystal display element is known as a light, thin, and low power consumption display device and has been remarkably developed in recent years.
  • the liquid crystal display element is configured, for example, by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes.
  • an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates.
  • the liquid crystal alignment film is a constituent member of the liquid crystal display element, and is formed on a surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates. Further, the liquid crystal alignment film has a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction such as a direction parallel to the substrate.
  • alignment control ability is given by performing an alignment treatment on the organic film constituting the liquid crystal alignment film.
  • the main liquid crystal alignment film used industrially is a polyimide liquid crystal alignment treatment agent made of a solution of polyimide precursor (polyamic acid (polyamic acid), polyamic acid ester), polyimide, etc., applied to the substrate. Then, it is manufactured by forming a film.
  • a surface stretching process by rubbing is performed after film formation.
  • a method using an anisotropic photochemical reaction by irradiation with polarized ultraviolet rays or the like has been proposed, and in recent years, studies for industrialization have been performed.
  • the rubbing treatment is performed by rubbing the surface of an organic film such as polyvinyl alcohol, polyamide or polyimide on the substrate with a cloth such as cotton, nylon or polyester (rubbing), and liquid crystal in the rubbing direction (rubbing direction).
  • This is a method of orientation. Since this rubbing method can easily realize a relatively stable alignment state of liquid crystals, it has been used in the manufacturing process of conventional liquid crystal display elements.
  • a photo-alignment method As a method for aligning a liquid crystal alignment film in place of rubbing, a photo-alignment method has been actively studied. For example, a photo-alignment method using an anisotropic photochemical reaction by irradiation with polarized ultraviolet rays or the like has been proposed, and in recent years, studies for industrialization have been performed. There are several photo-alignment methods, but in general, anisotropy is formed on the surface of the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated (parallelized) light. The liquid crystal is aligned according to the above. As a main specific photo-alignment method, a decomposition type photo-alignment method is known.
  • the decomposition type photo-alignment method means, for example, that a polyimide film is irradiated with polarized ultraviolet rays, and an anisotropic decomposition is caused by utilizing the polarization direction dependency of ultraviolet absorption of the molecular structure.
  • This is a method of aligning liquid crystal with polyimide (for example, see Patent Document 1).
  • a dimerization type photo-alignment method is also known.
  • the dimerization type photo-alignment method is, for example, using polyvinyl cinnamate, irradiating polarized ultraviolet rays, causing a dimerization reaction at double bond portions of two side chains parallel to the polarized light, and orthogonal to the polarization direction.
  • This is a method of aligning liquid crystals in the direction (see, for example, Non-Patent Document 1).
  • the alignment treatment method of the liquid crystal alignment film by the photo-alignment method does not require rubbing, and there is no concern about generation of dust or static electricity.
  • the alignment treatment method of the liquid crystal alignment film by the photo-alignment method can perform the alignment treatment even on the substrate of the liquid crystal display element having a concavo-convex surface, and is suitable as an industrial production process.
  • the display characteristics of the liquid crystal display element can be improved by changing the structure of polyamic acid, polyamic acid ester, polyimide, etc., blending polyamic acid, polyamic acid ester, polyimide, etc. having different characteristics, and adding additives. Methods are used to improve liquid crystal alignment and electrical characteristics, and control the pretilt angle. For example, it has been proposed to use a polymer having a group having a specific structure as a side chain (see Patent Document 2).
  • the photo-alignment method eliminates the rubbing process itself as compared with the rubbing process conventionally used industrially as an alignment processing method for liquid crystal display elements, and has a great advantage.
  • it is necessary to irradiate the polyimide film with ultraviolet light from a high-pressure mercury lamp with an output of 500 W for 60 minutes. Necessary.
  • a large amount of ultraviolet irradiation of about several to several tens of joules (J) may be required.
  • the amount of photoreactive groups introduced is increased. There is a need. Therefore, an unreacted group may remain even after ultraviolet irradiation.
  • the unreacted group reacts due to backlight or external light, and the alignment state of the liquid crystal is changed. There is a problem that defects such as change occur.
  • An object of this invention is to provide the manufacturing method of the liquid crystal aligning film which implement
  • a thin film containing a polyimide or a polyimide precursor having a photoreactive group is formed on a substrate, and the front thin film surface is irradiated with polarized ultraviolet rays while being heated, and the substrate contains a polyimide precursor.
  • a method for producing a liquid crystal alignment film comprising producing a liquid crystal alignment film comprising molecules.
  • R 1 represents a divalent organic group
  • R 2 represents a tetravalent organic group
  • R 3 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms
  • R 4 represents hydrogen.
  • n 1 represents a positive integer.
  • R 5 represents a divalent organic group constituting a photoreactive group.
  • R 6 represents a tetravalent organic group,
  • R 7 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms.
  • R 8 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms, and
  • n 2 represents a positive integer.
  • R 9 represents a divalent organic group
  • R 10 represents a divalent organic group constituting a photoreactive group
  • n 3 represents a positive integer.
  • the polyimide precursor having the photoreactive group is a polyimide precursor obtained by polycondensation reaction of a diamine component containing a diamine represented by the following formula [4] and tetracarboxylic dianhydride.
  • the manufacturing method of the liquid crystal aligning film as described in said (1) is a polyimide precursor obtained by polycondensation reaction of a diamine component containing a diamine represented by the following formula [4] and tetracarboxylic dianhydride.
  • X 1 represents a single bond or an alkylene group having 1 to 5 carbon atoms (provided that —CH 2 — which is not adjacent to each other may be replaced by an ether bond, an ester bond or an amide bond).
  • X 2 represents —OCO—CH ⁇ CH— or —CH ⁇ CH—COO—
  • X 3 represents a single bond, an alkylene group having 1 to 10 carbon atoms or a divalent benzene ring
  • X 4 represents a single bond.
  • X 5 is a single bond or an alkylene group having 1 to 6 carbon atoms (provided that —CH 2 — not adjacent to each other is an ether bond, ester bond) Or an amide bond may be substituted.)
  • the formula [4] has one or more cinnamoyl groups.
  • thermoforming film according to any one of (1) to (6), wherein the heating temperature is a temperature selected from a temperature range in which the polyimide precursor having the photoreactive group does not change to polyimide. Manufacturing method.
  • achieves high photoreaction efficiency and enables highly efficient alignment processing is provided.
  • the liquid crystal display device using the obtained liquid crystal alignment film has a high production efficiency and a small number of photoreactive residues in the liquid crystal alignment film, resulting in a defect that the liquid crystal alignment state changes even after long-term use. Hard to do.
  • rubbing on the liquid crystal alignment film can be eliminated.
  • a high-efficiency photoreaction can be realized in a polymer film containing a polyimide precursor, and a highly efficient liquid crystal alignment film can be produced.
  • a liquid crystal display element having a liquid crystal alignment film using the above-mentioned poimide obtained from a novel diamine has a reduced change in the liquid crystal alignment performance due to AC driving, and the liquid crystal alignment performance hardly changes, and an afterimage Is unlikely to occur.
  • the method for producing a liquid crystal alignment film of the present invention uses a method in which a polymer film containing a polyimide precursor is used and alignment treatment is performed by polarized light irradiation.
  • a polyamic acid ester derivative film having a photoreactive group is formed on a substrate, and then heated, and the film surface is irradiated with polarized ultraviolet rays while maintaining the heated state, whereby a polyamic acid is formed on the substrate.
  • a liquid crystal alignment film made of an ester derivative is formed.
  • the polyimide precursor used in the method for producing a liquid crystal alignment film of the present invention includes a repeating unit represented by the following formula [2] and a repeating unit represented by the following formula [1] together with the repeating unit represented by the following formula [1]. It contains at least one selected from repeating units represented.
  • the repeating unit represented by the following formula [2] and formula [3] has a photoreactive group.
  • R 1 is a divalent organic group.
  • R 2 represents a tetravalent organic group.
  • R 3 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms.
  • R 4 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms.
  • n 1 represents a positive integer.
  • the repeating unit represented by the formula [1] includes a diamine component represented by the following formula [1-A] and a tetracarboxylic acid dihydride which is an anhydride of the tetracarboxylic acid represented by the following formula [1-B]. It can be obtained using an anhydride component.
  • R 1 and R 2 are the same as R 1 and R 2 in the formula [1].
  • diamine component represented by the above formula [1-A] examples include p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, and 2,5-dimethyl-p-phenylenediamine.
  • diamine component represented by the above formula [1-A] examples include those having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring or a heterocyclic ring in the diamine side chain, or from these And the like having a macrocyclic substituent.
  • diamine compounds represented by the following formulas [DA1] to [DA30] can be exemplified.
  • a 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or NH—.
  • 3 represents a linear or branched alkyl group having 1 to 22 carbon atoms, or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms.
  • p represents an integer of 1 to 10.
  • a 4 represents an alkyl group having 2 to 24 carbon atoms or a fluorine-containing alkyl group.
  • a 5 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—
  • a 6 represents 1 carbon atom.
  • a 7 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2.
  • a 8 represents an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
  • a 9 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH. 2 —, —CH 2 —, —O—, or —NH—
  • a 10 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group.
  • a 11 represents an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • a 12 represents an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
  • tetracarboxylic acid represented by the above formula [1-B] include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 2,3 , 4,5-tetrahydrofurantetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, 3,4-dicarboxy-1-cyclohexylsuccinic acid, 3,4-dicarboxy-1,2,3,4 And alicyclic tetracarboxylic acids such as tetrahydro-1-naphthalene succinic acid.
  • tetracarboxylic acids include pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8- Naphthalenetetracarboxylic acid, 2,3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3, 3 ′, 4-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluor
  • the polyimide precursor used in the method for producing a liquid crystal alignment film of the present invention is represented by the repeating unit represented by the following formula [2] and the repeating unit represented by the following formula [2] together with the repeating unit represented by the above formula [1]. Containing at least one selected from repeating units.
  • the repeating unit represented by the following formula [2] and formula [3] has a photoreactive group. Therefore, the polyimide precursor used in the method for producing a liquid crystal alignment film of the present invention has a photoreactive group.
  • the photoreactive group is preferably a group that causes a crosslinking reaction upon irradiation with light.
  • the polyimide precursor used in the method for producing a liquid crystal alignment film of the present invention also contains at least one selected from repeating units represented by the following formula [2] and formula [3].
  • R 5 represents a divalent organic group constituting a photoreactive group.
  • R 6 represents a tetravalent organic group.
  • R 7 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms.
  • R 8 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms.
  • n 2 represents a positive integer.
  • R 9 represents a divalent organic group.
  • R 10 represents a divalent organic group constituting a photoreactive group.
  • n 3 represents a positive integer.
  • the repeating unit represented by the above formula [2] includes a diamine component represented by the following formula [2-A] and a tetracarboxylic acid dihydrate which is an anhydride of the tetracarboxylic acid represented by the following formula [2-B]. It can be obtained using an anhydride component.
  • R 5 and R 6 are the same as R 5 and R 6 in the formula [2].
  • a photocrosslinkable diamine can be used as the diamine component represented by the above formula [2-A]. Specific examples thereof include the following compounds.
  • Examples of the tetracarboxylic acid represented by the above formula [2-B] include the same tetracarboxylic acids as those described above for the tetracarboxylic acid represented by the formula [1-B].
  • the repeating unit represented by the above formula [3] can be obtained using a diamine component represented by the following formula [3-A] and a dicarboxylic acid component represented by the following formula [3-B].
  • R 9 and R 10 are the same as R 9 and R 10 in the formula [3].
  • Examples of the diamine component represented by the above formula [3-A] include the same diamine components as those described above for the diamine component represented by the above formula [1-A].
  • dicarboxylic acid component represented by the above formula [3-B] include the compounds shown below.
  • the ratio of the content of the repeating unit represented by is as follows. When only the repeating unit represented by the above formula [2] is included, in terms of molar ratio, (the repeating unit represented by the formula [1]) / (the repeating unit represented by the formula [2]) is The range of 1/99 to 99/1 is preferable, and the range of 5/95 to 95/5 is more preferable.
  • repeating unit represented by the above formula [3] in terms of molar ratio, (the repeating unit represented by the formula [1]) / (the repeating unit represented by the formula [3] ) Is preferably in the range of 1/99 to 99/1, more preferably in the range of 5/95 to 95/5.
  • the repeating unit represented by the formula [1] in terms of molar ratio ) / ⁇ (Repeating unit represented by Formula [2]) + (Repeating unit represented by Formula [3]) ⁇ is preferably in the range of 1/99 to 99/1, and 5/95 to 95/5. The range which becomes is more preferable.
  • the polyimide precursor having the photoreactive group is a polyimide precursor obtained by polycondensation reaction of a diamine component containing a novel diamine represented by the following formula (4) and tetracarboxylic dianhydride.
  • a diamine component containing a novel diamine represented by the following formula (4) and tetracarboxylic dianhydride can be the body.
  • X 1 , X 2 , X 3 , X 4 , and X 5 are as defined above. In formula (4), it has one or more cinnamoyl groups.
  • the cinnamoyl group is represented by the following formula, and the diamine represented by formula (4) has at least one, preferably 2 to 4 cinnamoyl groups.
  • the position of the amino group (—NH 2 ) of the benzene ring is not particularly limited. However, from the viewpoint of liquid crystal alignment performance and ease of synthesis, for example, —X 1 —X 2 — It is preferably present in the para position or the meta position with respect to X 3 -X 4 -X 5- .
  • Preferred diamines represented by the formula (4) include the following diamines.
  • X independently represents a single bond, a bonding group of ether (—O—), ester (—COO— or —OCO—) or amide (—CONH— or —NHCO—)
  • Y represents independently Each represents a single bond or an alkylene group having 1 to 5 carbon atoms
  • Z independently represents an alkylene group having 1 to 10 carbon atoms or a phenylene group, and in each formula, the bonding position of an amino group on the benzene ring, (The position of the linking group with respect to the central benzene ring is not particularly limited.)
  • diamine represented by the formula (4) include the following diamines.
  • the liquid crystal alignment film formed using the liquid crystal aligning agent containing polyimide precursors, such as polyamic acid and polyamic acid ester which use the diamine of this invention represented by the said Formula (4) as a raw material, polyimide, polyamide, etc. is , Changes in the liquid crystal alignment performance due to AC (alternating current) drive, for example, changes in the alignment orientation of the liquid crystal are reduced. Therefore, the liquid crystal display element having this liquid crystal alignment film has the effect that the liquid crystal alignment performance of the liquid crystal alignment film by AC driving is stable, so that an afterimage is hardly generated by AC driving and the afterimage characteristics by AC driving are very good. Play.
  • the liquid crystal alignment film formed using the diamine represented by the above formula (4) has excellent liquid crystal alignment performance and can be substantially free of alignment defects.
  • the liquid crystal alignment film obtained by using the diamine represented by the above formula (4) and the liquid crystal display element having the liquid crystal alignment film reduce the change in the liquid crystal alignment performance due to AC driving, and the AC driving.
  • the reason why the afterimage is difficult to occur is not necessarily clear, but is estimated as follows.
  • a specific photoreactive group derived from a diamine represented by the formula (4) capable of imparting orientation to a liquid crystal on a main chain of a polyimide precursor, polyimide, polyimide or the like that is, —HN—C 6 H).
  • the method for synthesizing the diamine represented by the formula (4) is not particularly limited, and can be produced, for example, according to the synthesis examples described later. Any diamine represented by the above formula (a) can be synthesized by the following method.
  • the diamine represented by the formula (a) can be obtained by synthesizing a corresponding dinitro compound represented by the following formula (a ′), and further reducing the nitro group in a solvent to convert it to an amino group.
  • the method for reducing the dinitro compound is not particularly limited, and palladium-carbon, platinum oxide, Raney nickel, iron, tin chloride, platinum black, rhodium-alumina, platinum carbon sulfide and the like are usually used as a catalyst. From the viewpoint of selectively reducing only the nitro group with high yield while leaving the olefin unreduced, it is effective to use a chemical reduction method using iron or tin chloride.
  • the reduction is performed by a reaction using a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane, or alcohol as a solvent, and using hydrogen gas, hydrazine, hydrogen chloride, ammonium chloride, or the like as a reducing agent.
  • a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane, or alcohol
  • hydrogen gas, hydrazine, hydrogen chloride, ammonium chloride, or the like as a reducing agent.
  • the synthesis method of the dinitro compound represented by the formula (a ′) is not particularly limited, and can be synthesized by any method. As a specific example, for example, it can be synthesized by the method shown in the following reaction formula.
  • the nitrobenzene compound A and the compound B having a carboxylic acid can be reacted with each other in a direct condensation method using, for example, DMAP / DCC or DMAP / EDC in an organic solvent, and the carboxylic acid is thionyl chloride, chloride.
  • the carboxylic acid is thionyl chloride, chloride.
  • DMAP is 4-N, N-dimethylaminopyridine
  • DCC is dicyclohexylcarbodiimide
  • EDC is 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride.
  • X and Y have the same meanings as X and Y in the formula (a), respectively.
  • Specific examples include 4-nitrophenol, 3-nitrophenol, 2-nitrophenol, 4-nitrobenzyl alcohol, Examples include 3-nitrobenzyl alcohol, 2-nitrobenzyl alcohol, 4-nitrophenethyl alcohol, 3-nitrophenethyl alcohol, 2-nitrophenethyl alcohol and the like.
  • a linking group Y may be inserted between the benzene ring and the hydroxyl group as necessary. Further, other substituents may be bonded on the benzene ring, and the substitution position of the nitro group on the benzene ring is appropriately selected from those at which the target diamine is obtained.
  • the compound shown here is an example and is not specifically limited.
  • organic solvent examples include solvents that do not affect the reaction, specifically, aromatic solvents such as toluene and xylene; aliphatic hydrocarbon solvents such as hexane and heptane; halogens such as dichloromethane and 1,2-dichloroethane.
  • these usage-amounts are arbitrary.
  • diamines can also be synthesized by using the same technique as the diamine represented by the above formula (a).
  • the polyimide precursors such as polyamic acid and polyamic acid ester of the present invention are obtained by reacting a diamine component containing a diamine represented by the above formula (4) with a tetracarboxylic acid component.
  • polyamic acid ester is obtained also by the method of converting the carboxyl group of polyamic acid into ester.
  • the polyimide of this invention is obtained by imidating polyimide precursors, such as these polyamic acids and polyamic acid ester.
  • the polyamide of this invention makes the diamine component and the dicarboxylic acid halide containing the diamine represented by the said Formula (4) react in base presence, or the diamine containing the diamine represented by the said Formula (1).
  • any of polyimide precursors such as polyamic acid and polyamic acid ester, polyimide, and polyamide are useful as a polymer for obtaining a liquid crystal alignment film.
  • 1 type or 2 or more types may be sufficient as the diamine represented by Formula (4) contained in a diamine component, and a diamine component is 1 type of other diamines other than the diamine represented by Formula (4). Or two or more types may be included.
  • the content of the diamine represented by the formula (4) is 10 mol% or more, preferably 30 to 100 mol%, more preferably 50 to 100 mol%, based on the total amount of the diamine component. In the present specification, unless otherwise specified, the ratio is based on the number of moles.
  • Examples of other diamines other than the diamine represented by the above formula (4) that may be contained in the diamine component include the diamines listed as specific examples of the diamine component represented by the above formula [1-A]. Can be used.
  • the above-mentioned other diamines can be used alone or in combination of two or more depending on the properties such as liquid crystal orientation, voltage holding ratio, and accumulated charge when the liquid crystal alignment film is used.
  • the tetracarboxylic acid component is at least one selected from tetracarboxylic acids and tetracarboxylic acid derivatives.
  • the tetracarboxylic acid derivative include tetracarboxylic acid dihalide, tetracarboxylic dianhydride, tetracarboxylic acid diester dichloride, and tetracarboxylic acid diester.
  • a polyamic acid can be obtained by reacting a diamine component with a tetracarboxylic acid dihalide, tetracarboxylic dianhydride, or the like.
  • a polyamic acid ester can be obtained by reacting a tetracarboxylic acid diester dichloride with a diamine component or reacting a tetracarboxylic acid diester with a diamine component in the presence of an appropriate condensing agent or base.
  • the tetracarboxylic acid component to be used may be one type or two or more types.
  • tetracarboxylic acid component examples include a tetracarboxylic dianhydride represented by the following formula (5).
  • Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and containing a non-aromatic cyclic hydrocarbon group having 4 to 8 carbon atoms.
  • Z 1 examples include tetravalent organic groups represented by the following formulas (5a) to (5j).
  • Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different.
  • Z 6 and Z 7 Represents a hydrogen atom or a methyl group, which may be the same or different.
  • a particularly preferable structure of Z 1 is the formula (5a), the formula (5c), the formula (5d), the formula (5e), the formula (5f), or the formula (5g) from the viewpoint of polymerization reactivity and ease of synthesis.
  • a formula (5a), a formula (5e), a formula (5f), or a formula (5g) is preferred.
  • the ratio of the tetracarboxylic dianhydride shown by Formula (5) with respect to the tetracarboxylic acid component whole quantity is not specifically limited,
  • the tetracarboxylic dianhydride whose tetracarboxylic acid component is shown by the said Formula (5) is mentioned. It may be only.
  • the tetracarboxylic acid component may contain a tetracarboxylic acid or a tetracarboxylic acid derivative other than the tetracarboxylic dianhydride represented by the formula (5) as long as the effects of the present invention are not impaired.
  • 1 mol% or more of the total amount of the tetracarboxylic acid component is the tetracarboxylic dianhydride represented by the above formula (5), more preferably 5 mol% or more, and still more preferably 10 mol%. That's it.
  • Examples of other tetracarboxylic dianhydrides other than the tetracarboxylic dianhydride represented by the above formula (5) include the tetracarboxylic acids exemplified as other examples of the tetracarboxylic acid represented by the above formula [1-B]. Carboxylic dianhydrides can be used as well.
  • Tetracarboxylic acid diesters are not particularly limited. Specific examples are given below. Specific examples of the aliphatic tetracarboxylic acid diester include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1 , 3-Dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2, 3,4-cyclopentanetetracarboxylic acid dialkyl ester, 2,3,4,5-tetrahydrofurantetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid dialkyl ester, 3,4-dicarboxy-1 -Cyclohexyl succinic acid dialkyl ester, 3,
  • aromatic tetracarboxylic acid dialkyl ester examples include pyromellitic acid dialkyl ester, 3,3 ′, 4,4′-biphenyltetracarboxylic acid dialkyl ester, 2,2 ′, 3,3′-biphenyltetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-biphenyltetracarboxylic acid dialkyl ester, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-benzophenone tetracarboxylic acid dialkyl ester, bis (3,4-dicarboxyphenyl) ether dialkyl ester, bis (3,4-dicarboxyphenyl) sulfone dialkyl ester, 1,2,5,6-naphthalenetetracarboxylic acid dialkyl ester, 2,3,6,7- Naphthalenetetracarboxylic acid dialkyl
  • the dicarboxylic acid to be reacted with the diamine component to obtain the polyamide of the present invention is not particularly limited.
  • Specific examples of the dicarboxylic acid or its derivative aliphatic dicarboxylic acid to be reacted with a diamine component to obtain a polyamide include malonic acid, succinic acid, dimethylmalonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, muconic acid, 2 -Methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethylsuccinic acid, azelaic acid, sebacic acid, suberic acid and the like.
  • Examples of the alicyclic dicarboxylic acid include 1,1-cyclopropanedicarboxylic acid, 1,2-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, and 1,3-cyclobutanedicarboxylic acid.
  • aromatic dicarboxylic acids o-phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 5-tert-butylisophthalic acid, 5-aminoisophthalic acid, 5-hydroxyisophthalic acid, 2,5-dimethylterephthalic acid Acid, tetramethylterephthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-anthracenedicarboxylic acid, 1,4 Anthraquinone dicarboxylic acid, 2,5-biphenyl dicarboxylic acid, 4,4'-biphenyl dicarboxylic acid, 1,5-biphenylene dicarboxylic acid, 4,4 "-terphenyl dicarboxylic acid, 4,4'-diphenylmethane dicarboxylic acid,
  • dicarboxylic acid containing a heterocyclic ring examples include 1,5- (9-oxofluorene) dicarboxylic acid, 3,4-furandicarboxylic acid, 4,5-thiazole dicarboxylic acid, 2-phenyl-4,5-thiazole dicarboxylic acid, 1,2,5-thiadiazole-3,4-dicarboxylic acid, 1,2,5-oxadiazole-3,4-dicarboxylic acid, 2,3-pyridinedicarboxylic acid, 2,4-pyridinedicarboxylic acid, 2, Examples include 5-pyridinedicarboxylic acid, 2,6-pyridinedicarboxylic acid, 3,4-pyridinedicarboxylic acid, and 3,5-pyridinedicarboxylic acid.
  • dicarboxylic acids may have an acid dihalide or anhydride structure.
  • dicarboxylic acids are preferably dicarboxylic acids that can give a polyamide having a linear structure, from the viewpoint of maintaining the orientation of liquid crystal molecules.
  • terephthalic acid isoterephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-diphenylmethanedicarboxylic acid, 4,4′-diphenylethanedicarboxylic acid, 4,4 '-Diphenylpropanedicarboxylic acid, 4,4'-diphenylhexafluoropropanedicarboxylic acid, 2,2-bis (phenyl) propanedicarboxylic acid, 4,4 "-terphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2 , 5-pyridinedicarboxylic acid, these acid dihal
  • tetracarboxylic dianhydride represented by the above formula (5) other tetracarboxylic acids and their tetracarboxylic acid derivatives, dicarboxylic acids, etc. are liquid crystal alignment properties, voltage holding ratios, accumulated charges, etc. when used as liquid crystal alignment films. Depending on the desired characteristics, one kind or a mixture of two or more kinds may be used.
  • the reaction between the diamine component and the tetracarboxylic acid component is usually carried out in an organic solvent.
  • the organic solvent used at that time is not particularly limited as long as the generated polyimide precursor such as polyamic acid dissolves. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ - Butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethy
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is.
  • a method of adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic acid component in an organic solvent a method of alternately adding a tetracarboxylic acid component and a diamine component, and the like. Any of these methods may be used.
  • the polymerization temperature can be selected from -20 to 150 ° C., but is preferably in the range of ⁇ 5 to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polyimide precursor (and thus polyimide), and if the concentration is too high, the viscosity of the reaction solution becomes too high. Uniform stirring becomes difficult.
  • the concentration of the total amount of the diamine component and the tetracarboxylic acid component is preferably 1 to 50% by mass, more preferably 5 to 30% by mass in the reaction solution.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor formed increases as the molar ratio approaches 1.0.
  • the polyamic acid ester can be obtained by reacting the tetracarboxylic acid diester dichloride with the diamine component as described above, or reacting the tetracarboxylic acid diester with the diamine component in the presence of an appropriate condensing agent or base. it can. It can also be obtained by previously synthesizing a polyamic acid by the above method and esterifying the carboxyl group of the polyamic acid using a polymer reaction.
  • a polyamic acid ester can be synthesized by reacting for a period of time.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the condensing agent includes triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazinylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluro Nium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzo Oxazolyl) phosphonic acid diphenyl, 4- (4,6-dimeth
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0.1 to 1.0 times the molar amount of the diamine or tetracarboxylic acid diester to be reacted.
  • the solvent used in the above reaction can be the same solvent as that used in the synthesis of the polyamic acid, but N-methyl-2-pyrrolidone and ⁇ -butyrolactone are preferred from the viewpoint of the solubility of the monomer and polymer. You may use these 1 type or in mixture of 2 or more types.
  • the concentration at the time of synthesis is such that in the reaction solution of a tetracarboxylic acid derivative such as tetracarboxylic acid diester dichloride or tetracarboxylic acid diester and a diamine component, from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the total concentration is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent external air from being mixed, for example, by reacting in a nitrogen atmosphere.
  • the polyimide precursor thus polymerized is, for example, a polymer having a repeating unit represented by the following formula [h].
  • R 11 is a tetravalent organic group derived from the starting tetracarboxylic acid component
  • R 12 is a divalent organic group derived from the starting diamine component
  • a 11 and A 12 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, which may be the same or different
  • j represents a positive integer.
  • R 11 and R 12 may each be one type and a polymer having the same repeating unit, or R 11 and R 12 may be a plurality of types and a polymer having a repeating unit having a different structure. Good.
  • R 11 is a group derived from a tetracarboxylic acid component represented by the following formula [k] or the like that is a raw material.
  • R 12 is a group derived from a diamine component represented by the following formula [s], which is a raw material.
  • R 12 is a group derived from a diamine represented by the above formula (4), —C 6 H 4 —X 1 —X 2 —X 3 —X 4 —X 5 —C 6 H 4 —.
  • the main chain is —HN—C 6 H 4 —X 1 —X 2 —X 3 —X 4 —X by using the diamine represented by the above formula (4) as a raw material.
  • This is a polyimide precursor having 5- C 6 H 4 —NH— introduced therein.
  • a polyimide is obtained by dehydrating and ring-closing a polyimide precursor represented by the formula [h].
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature when the polyimide precursor is thermally imidized in a solution is 100 to 400 ° C., preferably 120 to 250 ° C., and is preferably performed while removing water generated by the imidization reaction from the system.
  • the catalytic imidation of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
  • the acid anhydride examples include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Of these, use of acetic anhydride is preferred because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • reaction solutions such as polyimide precursors, such as a polyamic acid and polyamic acid ester, and a polyimide.
  • polyimide precursors such as a polyamic acid and polyamic acid ester, and a polyimide.
  • the solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, water and the like.
  • the polyimide precursor or polyimide deposited by precipitation in a solvent can be recovered by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating.
  • the polyimide precursor and polyimide recovered by precipitation are redissolved in an organic solvent, and reprecipitation and recovery are repeated 2 to 10 times, whereby impurities in the polyimide precursor and polyimide can be reduced.
  • the solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further improved.
  • the dehydration cyclization rate (imidation rate) of the amic acid group of the polyimide is not necessarily 100%, and can be arbitrarily selected in the range of 0 to 100% depending on the application and purpose, but 50 to 100% preferable.
  • Polyamide can be synthesized in the same manner as polyamic acid ester.
  • the molecular weight of the polyimide precursor, polyimide, polyamide, etc. of the present invention is determined by GPC (in terms of the strength of the resulting polymer film (liquid crystal alignment film), workability during formation of the polymer film, and uniformity of the polymer film.
  • the weight average molecular weight measured by Gel Permeation Chromatography is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • a thin film containing the above polyimide precursor is formed on a substrate, then heated, and further irradiated with polarized ultraviolet rays while maintaining the heated state. . Then, the liquid crystal alignment film containing the polyimide precursor is formed on the substrate by inducing a photocrosslinking reaction with high reaction efficiency by the polarized ultraviolet irradiation and introducing anisotropy into the thin film containing the polyimide precursor.
  • polyimide is not contained in the thin film containing the polyimide precursor. Even if the polyimide is inevitably contained in the thin film containing the polyimide precursor, the content thereof is preferably 30 mol% or less, more preferably 20 mol% or less with respect to the polyimide precursor. 10 mol% or less is more preferable.
  • Polyimide is a relatively rigid polymer material, and when it is contained in a large amount in a thin film, the flexibility of the film containing the polyimide precursor is impaired. Moreover, the effect of using heat treatment at the time of polarized light irradiation is impaired, and there is a possibility that the progress of the photoreaction in the film containing the polyimide precursor may be hindered. As a result, there is a concern that the introduction of anisotropy into the film containing the polyimide precursor by photoreaction may be hindered.
  • the heating temperature of the thin film containing the polyimide precursor formed on the substrate is a temperature in a range that realizes high photoreaction efficiency of the thin film, and a temperature that does not cause a chemical reaction of the polyimide precursor. It is preferable to do. That is, as the upper limit of the heating temperature, it is preferable to select a temperature within a range in which a thermal reaction occurs and does not change to polyimide, depending on the type of polyimide precursor used. About a minimum, it is preferable to select the temperature which can express the photoreactive improvement effect mentioned later by the kind of polyimide precursor to be used.
  • the heating temperature of the thin film containing the polyimide precursor formed on the substrate is 50 to 300 ° C., preferably 80 to 250 ° C., more preferably 150 to 200 ° C. .
  • the heating of the thin film containing the polyimide precursor on the substrate and the maintenance of the heating state can be performed using, for example, a hot plate, a thermal circulation oven, an IR (infrared) oven, or the like. Among these, it is preferable to select and use a hot plate that can be easily irradiated with ultraviolet rays.
  • the substrate When irradiating polarized ultraviolet rays to the film surface of the thin film containing the polyimide precursor, the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction.
  • the wavelength of ultraviolet rays to be used ultraviolet rays in the range of 100 to 400 nm can be used.
  • the optimum wavelength is selected through a filter or the like depending on the type of polyimide precursor to be used.
  • ultraviolet rays in the range of 300 to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced.
  • the ultraviolet light for example, light emitted from a high-pressure mercury lamp can be used.
  • the photoreaction in a thin film containing the polyimide precursor to be used can be advanced with very high efficiency.
  • the photoreaction in the thin film containing the polyimide precursor constituting the liquid crystal alignment film can be advanced with an ultraviolet irradiation amount of about 1/10 compared with the conventional photoalignment method, and the efficiency of the photoreaction is increased. It can be increased about 10 times.
  • the present invention in the alignment treatment performed by irradiating light, it is possible to make the amount of ultraviolet irradiation much smaller than that of the conventional photo-alignment method. That is, in the present invention, a liquid crystal alignment film having the ability to control the alignment of liquid crystals is produced with a much smaller amount of UV irradiation than the number J to several tens J required in the conventional photo-alignment method. Is possible. Specifically, the liquid crystal alignment film can be produced with an ultraviolet irradiation amount in the range of 10 to 1000 mJ, preferably 20 to 800 mJ.
  • a liquid crystal alignment film can be produced by irradiating ultraviolet rays having an intensity of 10 to 20 mW for several seconds to several tens of seconds, and the production throughput (processing ability) of the liquid crystal alignment film can be improved.
  • a thin film containing a polyimide precursor is heated and irradiated with polarized ultraviolet rays while maintaining the heating state, so that high efficiency can be achieved with a small amount of ultraviolet irradiation.
  • a liquid crystal alignment film can be manufactured. That is, the present invention can produce a liquid crystal alignment film with high production efficiency.
  • a liquid crystal display element can be manufactured using the obtained liquid crystal aligning film using the manufacturing method of the liquid crystal aligning film of this invention. Next, a liquid crystal display element using the liquid crystal alignment film of the present invention will be described.
  • the liquid-crystal aligning agent of this invention contains polyimide precursors, such as the said polyamic acid and polyamic acid ester, a polyimide, polyamide, etc.
  • the liquid crystal alignment treatment agent is a solution for forming a liquid crystal alignment film, and is a solution in which a polymer component for forming a liquid crystal alignment film is dispersed or dissolved in an organic solvent.
  • the liquid crystal alignment film is a film for aligning liquid crystals in a predetermined direction.
  • the polymer component contains at least one selected from polyimide precursors such as the polyamic acid and polyamic acid ester of the present invention, polyimide and polyamide.
  • the polyimide precursor of the present invention is dissolved in a solvent, constitutes a liquid crystal alignment treatment agent, and can be used for forming a thin film containing the polyimide precursor. Can be used.
  • the content of the polyimide precursor in the liquid crystal aligning agent is preferably 0.1 to 30% by mass, more preferably 0.5 to 30% by mass, and particularly preferably 1 to 25% by mass. .
  • all of the polymer components contained may be polyimide precursors such as the polyamic acid and polyamic acid ester of the present invention, polyimides, polyamides, etc.
  • Other polymers may be mixed in polymer components such as polyimide precursors such as polyamic acid and polyamic acid ester, polyimide, and polyamide.
  • the content of the other polymer in the total amount of the polymer component is 0.5 to 50% by mass, preferably 1 to 30% by mass.
  • the other polymer can be obtained, for example, using only a diamine other than the diamine represented by the above formula (4) of the present invention as a diamine component to be reacted with a tetracarboxylic dianhydride component, a dicarboxylic acid or the like.
  • a diamine other than the diamine represented by the above formula (4) of the present invention as a diamine component to be reacted with a tetracarboxylic dianhydride component, a dicarboxylic acid or the like.
  • examples thereof include a polyimide precursor, polyimide, and polyamide.
  • polymers other than a polyimide precursor, polyimide, and polyamide, specifically, an acrylic polymer, a methacrylic polymer, polystyrene, and the like are also included.
  • the polyamic acid of the present invention at least one selected from polyimide precursors such as polyamic acid esters, polyimides and polyamides, and other polymers mixed as necessary are totaled.
  • the content is 0.1 to 30% by mass, preferably 1 to 25% by mass, more preferably 3 to 15% by mass, and particularly preferably 3 to 10% by mass in the total amount of the polymer components.
  • the organic solvent used in the liquid crystal aligning agent of the present invention is not particularly limited as long as it is an organic solvent that dissolves polymer components such as the polyimide precursor, polyimide, and polyamide of the present invention.
  • Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl sulfoxide, tetra Methylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropane Amides, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone,
  • the liquid-crystal aligning agent of this invention is an organic solvent (it is also called a poor solvent) which improves the uniformity of the film thickness of a polymer film at the time of apply
  • poor solvents that improve film thickness uniformity and surface smoothness include isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol Thor, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl Ether, diethylene glycol, diethylene glycol monoa Tate, Diethylene glycol dimethyl ether, Dipropylene glycol monoacetate monomethyl ether, Dipropylene glycol monomethyl ether, Dipropylene glycol mono
  • These poor solvents may be used alone or in combination.
  • the above poor solvent it is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the whole organic solvent contained in the liquid crystal alignment treatment agent.
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.).
  • the use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal alignment agent. is there.
  • Examples of compounds that improve the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds.
  • the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent.
  • the amount is preferably 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
  • the dielectric or conductive material is used for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film.
  • a substance, and further, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
  • the liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film by applying and baking on a substrate and then performing alignment treatment by rubbing treatment or light irradiation (radiation irradiation) as necessary.
  • a liquid crystal alignment film of the present invention is formed of a polyimide precursor, polyimide, polyamide, or the like using the diamine represented by the above formula (4) as a raw material, so that the liquid crystal alignment performance by AC driving is hardly changed.
  • the substrate is not particularly limited as long as it is a highly transparent substrate, and in addition to a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplifying the process, it is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode for driving a liquid crystal is formed.
  • an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case.
  • a high-performance element such as a TFT type liquid crystal display element, an element in which an element such as a transistor is formed between an electrode for driving liquid crystal and a substrate is used.
  • the method for applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and inkjet method are common. As other coating methods, there are a dipping method, a roll coater method, a slit coater method, a spinner method, a spray method, etc., and these may be used according to the purpose.
  • the solvent is evaporated at 50 to 300 ° C., preferably 80 to 250 ° C. by a heating means such as a hot plate, a heat circulation oven, an IR (infrared) oven, etc. It can be set as an alignment film (polymer thin film). If the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm.
  • the liquid crystal When the liquid crystal is horizontally or tilted, the liquid crystal can be aligned by treating the fired liquid crystal alignment film with rubbing, irradiation with polarized ultraviolet rays, or the like.
  • irradiating light such as polarized ultraviolet rays
  • the photoreactive group derived from diamine represented by the formula (4) undergoes a dimerization reaction, and the liquid crystal can be aligned with the anisotropy generated thereby.
  • the irradiation with polarized ultraviolet light may be performed while heating the liquid crystal alignment film.
  • the thin film containing the polyimide precursor formed on the substrate is heated at 80 to 250 ° C. using, for example, a hot plate.
  • a temperature in a range in which a thermal reaction occurs and does not change to polyimide is selected depending on the type of polyimide precursor to be used.
  • the temperature which expresses the improvement effect of photoreactivity is selected by the kind of polyimide precursor to be used.
  • the light irradiation conditions are selected as described above, and the film surface of the thin film containing the polyimide precursor is polarized through a polarizing plate from a certain direction. Irradiate with ultraviolet light.
  • a liquid crystal alignment film having a liquid crystal alignment control ability can be produced on the substrate.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method. For example, two substrates arranged to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal alignment treatment agent of the present invention provided between the substrate and the liquid crystal layer.
  • a liquid crystal display device comprising a liquid crystal cell having the liquid crystal alignment film.
  • liquid crystal display element of the present invention horizontal alignment (IPS: In-Plane Switching) method, twisted nematic (TN) method, OCB alignment (OCB: Optically Compensated Bend), vertical alignment (VA: Vertical (Alignment) method etc. are mentioned. Note that the liquid crystal alignment film only needs to be provided on at least one of the two substrates.
  • the substrate used in the liquid crystal display element of the present invention is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed.
  • a substrate on which a transparent electrode for driving liquid crystal is formed.
  • substrate described with the said liquid crystal aligning film can be mentioned.
  • the liquid crystal alignment film is formed by applying the liquid crystal alignment treatment agent of the present invention on this substrate and then firing, and irradiating with radiation such as rubbing treatment or polarized ultraviolet rays as necessary. Is as described above.
  • the liquid crystal material constituting the liquid crystal layer of the liquid crystal display element of the present invention is not particularly limited, and a positive liquid crystal having a positive dielectric anisotropy, a negative liquid crystal having a negative dielectric anisotropy, or the like can be used.
  • a liquid crystal material used in a conventional horizontal alignment method for example, MLC-2041 manufactured by Merck Ltd. can be used.
  • a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers such as beads are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded together, the liquid crystal is injected under reduced pressure and sealed, the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed. It can be illustrated.
  • the thickness of the spacer is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m. Further, in the case of a horizontal alignment type liquid crystal display element, after the liquid crystal is sealed in this way, a polarizing plate is disposed outside the substrate.
  • the liquid crystal display device produced using the liquid crystal alignment treatment agent of the present invention has a liquid crystal alignment film in which the change in the liquid crystal alignment performance due to AC driving is suppressed, and thus has excellent afterimage characteristics, Image sticking is less likely to occur, and display defects and contrast are less likely to occur.
  • Monomer (1) (20 g, 0.09 mol) was added to dry ethanol (60 ml), and the mixture was stirred and refluxed until all the solid was dissolved, and then stirred and refluxed for another 2 hours. After completion of the reaction, ethanol was distilled off under reduced pressure until a solid was slightly precipitated. The reaction solution of about 50% (volume) of dry ethanol was cooled at room temperature, and the precipitate was separated by filtration and then washed with ethanol to obtain the desired monomer (2). Further, the solvent of the filtrate was distilled off under reduced pressure to obtain a mixture of target isomers. The monomer (2) was obtained by recrystallizing the mixture of isomers with ethyl acetate. The yield was 10 g, and the yield was 35.2%.
  • 1 H-NMR of the obtained monomer (2) is an NMR measurement apparatus in a solvent of deuterated dimethyl sulfoxide (abbreviated as DMSO) using TMS (Si (CH 3 ) 4 ) as a reference substance. (JEOL, 500 MHz).
  • DMSO deuterated dimethyl sulfoxide
  • JEOL 500 MHz
  • the 1 H-NMR measurement results of the monomer (2) are shown below, but the same applies to other compounds.
  • N, N′-dimethylformamide was added to a mixture of 4.77 g (0.015 mol) of monomer (2) and 35 ml of ethyl acetate.
  • 3 ml of thionyl chloride was added and stirred to reflux. After confirming that all solids were dissolved, the mixture was further stirred and refluxed for 1 hour. After completion of the reaction, the solvent and excess thionyl chloride were distilled off under reduced pressure.
  • the product was purified by recrystallization from hexane to obtain purified monomer (3). The yield was 4.3 g, and the yield was 80.5%.
  • the solvent for 1 H-NMR was deuterated chloroform (CDCl 3 ).
  • N, N′-dimethylformamide was added to a mixture of 4.8 g (0.022 mol) of monomer (4) and 50 ml of ethyl acetate.
  • 6 ml of thionyl chloride was added and stirred and refluxed. After confirming that all solids were dissolved, the mixture was further stirred and refluxed for 1 hour. After completion of the reaction, the solvent and excess thionyl chloride were distilled off under reduced pressure.
  • the product was purified by recrystallization from an ethyl acetate / hexane system to obtain a purified monomer (5).
  • the yield was 3.5 g, and the yield was 62.4%.
  • the reaction solution was poured into 800 ml of water, and the produced polymer was separated, followed by filtration and separation, and washing with ethanol and acetone. Next, the polymer was dried and then dissolved in NMP and purified by reprecipitation with ethanol and chloroform. Thereafter, the precipitate was separated by filtration and sufficiently dried to obtain a polyamic acid ester derivative (6FPAE2-8) powder (A) having an Mn of 31,400 and an Mw of 66,000.
  • 6FPAE2-8) powder (A) having an Mn of 31,400 and an Mw of 66,000.
  • the reaction solution was poured into 800 ml of water, and the produced polymer was separated, followed by filtration and separation, and washing with ethanol and acetone. Next, the polymer was dried and then dissolved in NMP and purified by reprecipitation with ethanol and chloroform. Thereafter, the precipitate was separated by filtration and sufficiently dried to obtain a polyamic acid ester derivative (6FPAE5-5) powder (B) having an Mn of 28,600 and an Mw of 52,800.
  • 6FPAE5-5-5 powder (B) having an Mn of 28,600 and an Mw of 52,800.
  • Example 1 NMP and BCS were added to the polyamic acid ester derivative (6FPAE2-8) powder (A) obtained in Synthesis Example 3 and diluted to 4% by mass to obtain a liquid crystal aligning agent (I). Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved.
  • Example 3 Using the liquid crystal aligning agent (I) containing the polyamic acid ester derivative (6FPAE2-8) obtained in Example 1, spin coating was performed on a transparent glass substrate (thickness 1.1 mm, width 30 mm, length 40 mm). Then, after drying for 5 minutes on a hot plate at 80 ° C., a coating film with a film thickness of 40 nm was formed to obtain a substrate with a liquid crystal alignment film before the alignment treatment.
  • Example 4 The liquid crystal alignment treatment agent (II) containing the polyamic acid ester derivative (6FPAE5-5) obtained in Example 2 was spin-coated on a transparent glass substrate and dried on a hot plate at 80 ° C. for 5 minutes. After that, a coating film having a thickness of 40 nm was formed to obtain a substrate with a liquid crystal alignment film before the alignment treatment.
  • the liquid crystal alignment treatment agent (II) containing the polyamic acid ester derivative (6FPAE5-5) obtained in Example 2 was spin-coated on a transparent glass substrate and dried on a hot plate at 80 ° C. for 5 minutes. After that, a coating film having a thickness of 40 nm was formed to obtain a substrate with a liquid crystal alignment film before the alignment treatment.
  • Example 5 The substrate with a liquid crystal alignment film before alignment treatment obtained in Example 3 was used, heated to 240 ° C. on a hot plate, and kept constant with respect to the liquid crystal alignment film surface on the substrate while maintaining the heating state.
  • Were irradiated with ultraviolet rays high pressure mercury lamp manufactured by Ushio Electric Co., Ltd., polarized light irradiation device manufactured by Mejiro Precision Co., Ltd.
  • the intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 500 mJ. In this way, an alignment-treated substrate with a liquid crystal alignment film was obtained.
  • ⁇ Comparative example 2> Using the substrate with a liquid crystal alignment film before alignment treatment obtained in Example 3, and maintaining this at room temperature, the ultraviolet light polarized through a polarizing plate from a certain direction with respect to the liquid crystal alignment film surface on the substrate was irradiated.
  • the intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 4500 mJ.
  • a substrate with a liquid crystal alignment film on which a liquid crystal alignment film was formed was obtained.
  • Example 6 Using the substrate with a liquid crystal alignment film before alignment treatment obtained in Example 4, this was heated to 160 ° C. on a hot plate, and the liquid crystal alignment film surface on the substrate was kept constant while maintaining the heated state.
  • the polarized ultraviolet rays were irradiated from the direction through the polarizing plate.
  • the intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 250 mJ. In this way, an alignment-treated substrate with a liquid crystal alignment film was obtained.
  • Example 7 A substrate with a liquid crystal alignment film subjected to alignment treatment according to the same method as in Example 6 was obtained except that the heating temperature on the hot plate was 200 ° C.
  • Example 8> A substrate with a liquid crystal alignment film that had been subjected to alignment treatment according to the same method as in Example 6 was obtained except that the heating temperature on the hot plate was 240 ° C.
  • Table 1 summarizes the conditions for producing the substrates with the liquid crystal alignment films obtained in Examples 3 to 8, Comparative Example 1 and Comparative Example 2.
  • Liquid crystal aligning agent A5 (described in [Example B] described later) was spin-coated on a quartz substrate (thickness 1.1 mm, width 40 mm, length 40 mm). Subsequently, after drying for 60 seconds with a 90 degreeC hotplate, it baked for 30 minutes with a 200 degreeC hot-air circulation type oven, and formed the liquid crystal aligning film with a film thickness of 100 nm. Next, the substrate was heated to 240 ° C.
  • Example 3 In the same manner as in Example 9, a liquid crystal alignment film was formed, and the liquid crystal alignment film surface of the substrate was irradiated with 1000 mJ / cm 2 of ultraviolet light at 313 nm through a polarizing plate at room temperature (23 ° C.) to form a substrate with a liquid crystal alignment film. Obtained.
  • FIG. 1 is an ultraviolet absorption spectrum of the liquid crystal alignment film before alignment treatment obtained in Example 3 and the liquid crystal alignment film obtained in Example 5.
  • FIG. 1 shows an ultraviolet absorption spectrum of the liquid crystal alignment film obtained in Example 5, and as an object for comparison, shows an ultraviolet absorption spectrum of the liquid crystal alignment film of Example 3 that has not been heated or irradiated with polarized ultraviolet light.
  • the ultraviolet absorption spectrum of the liquid crystal alignment film of Example 5 (described as “Example 5” in FIG. 1) and the ultraviolet absorption spectrum of the liquid crystal alignment film of Example 3 (in FIG. In comparison with Example 3 ”, it can be seen that the absorbance in the vicinity of a wavelength of 350 nm is greatly reduced in the liquid crystal alignment film of Example 5. This decrease in absorbance is considered to be due to heating at 240 ° C.
  • the absorption in the vicinity of the wavelength of 300 to 350 nm of the liquid crystal alignment film of Example 3 is understood as absorption derived from the photoreactive group contained in the polyamic acid ester derivative constituting the liquid crystal alignment film, and is heated at 240 ° C. on a hot plate. It can be seen that the photo-crosslinking reaction proceeded efficiently in the polyamic acid ester derivative film by the irradiation treatment with 500 mJ polarized ultraviolet light.
  • the ultraviolet absorption spectrum of each liquid crystal alignment film was measured using the substrate with a liquid crystal alignment film on which the liquid crystal alignment film of Comparative Example 1 was formed and the substrate with the liquid crystal alignment film on which the liquid crystal alignment film of Comparative Example 2 was formed. did.
  • the ultraviolet absorption spectrum of the liquid crystal alignment film before alignment treatment was measured and used as a comparison object.
  • FIG. 2 is an ultraviolet absorption spectrum of the liquid crystal alignment film before alignment treatment obtained in Example 3 and the liquid crystal alignment film obtained in Comparative Examples 1 and 2.
  • FIG. 2 the ultraviolet absorption spectrum of the liquid crystal aligning film of the comparative example 1 and the liquid crystal aligning film of the comparative example 2 is shown,
  • the ultraviolet absorption spectrum of the liquid crystal aligning film of Example 3 which is not heated and polarized ultraviolet irradiation is made.
  • the ultraviolet absorption spectrum of the liquid crystal alignment film of Example 3 (described as “Example 3” in FIG. 2) and the ultraviolet absorption spectrum of the liquid crystal alignment film of Comparative Example 1 (in FIG. Comparing Comparative Example 1 ”), it can be seen that the absorbance in the vicinity of the wavelength of 300 to 350 nm is decreased in the liquid crystal alignment film of Comparative Example 1.
  • the liquid crystal alignment film of Comparative Example 2 when the ultraviolet absorption spectrum of the liquid crystal alignment film of Comparative Example 2 (referred to as “Comparative Example 2” in FIG. 2) is compared, the liquid crystal alignment film of Comparative Example 2 further has an absorbance around 300 to 350 nm. It turns out that it has fallen. From this, it can be seen that the absorbance of the liquid crystal alignment film near the wavelength of 300 to 350 nm decreases as the irradiation amount of polarized ultraviolet rays increases.
  • Absorption in the vicinity of a wavelength of 300 to 350 nm is understood as absorption derived from a photoreactive group contained in the polyamic acid ester derivative constituting the liquid crystal alignment film, and photocrosslinking reaction occurs in the polyamic acid ester derivative film by irradiation with polarized ultraviolet rays. Can be seen.
  • FIG. 1 and FIG. 2 are compared, the absorbance of the liquid crystal alignment film of Comparative Example 2 shown in FIG. 2 in the vicinity of the wavelength of 300 to 350 nm and the wavelength of the liquid crystal alignment film obtained in Example 5 of FIG. It can be seen that the absorbance around ⁇ 350 nm is equivalent.
  • the irradiation amount of polarized ultraviolet rays in Example 5 is 500 mJ
  • the irradiation amount of polarized ultraviolet rays in the liquid crystal alignment film of Comparative Example 2 is 4500 mJ. From this, it can be seen that the photoreaction progressed with very high efficiency in the liquid crystal alignment film of Example 5 in which heat treatment at 240 ° C. was used in combination with irradiation of polarized ultraviolet rays.
  • FIG. 3 is an ultraviolet absorption spectrum of the liquid crystal alignment film obtained in Example 9 of the present invention.
  • Comparative Example 3 in which polarized ultraviolet rays were irradiated at room temperature and Comparative Example in which heating and polarized ultraviolet rays were not applied. 4 also shows the ultraviolet absorption spectrum of the liquid crystal alignment film of No. 4.
  • the ultraviolet absorption spectrum of the liquid crystal alignment film of Example 9 (described as “Example 9” in FIG.
  • the ultraviolet absorption spectrum of the liquid crystal alignment film was measured, and the absorbance at the absorption maximum near a wavelength of 350 nm was evaluated. It was 0.70.
  • the degree of decrease in absorbance at the absorption maximum is slightly large.
  • the degree of decrease in absorbance at the absorption maximum is It was equivalent.
  • the heating temperature at the time of irradiation with polarized ultraviolet rays in the alignment treatment of the liquid crystal alignment film is particularly preferably 160 to 200 ° C., which can suppress the change of the polyamic acid ester derivative constituting the liquid crystal alignment film to polyimide. all right.
  • Example 10 A liquid crystal alignment film was prepared using the liquid crystal alignment treatment agent (I) obtained in Example 1, and a liquid crystal cell using the liquid crystal alignment film was manufactured.
  • the liquid crystal cell was a parallel aligned liquid crystal cell corresponding to the characteristics of the liquid crystal alignment film.
  • a liquid crystal display element can be constituted by sandwiching the obtained liquid crystal cell between a pair of polarizing plates.
  • a liquid crystal alignment agent (I) is spin-coated on a glass substrate with an ITO electrode (length 30 mm ⁇ width 40 mm, thickness 1,1 mm) and dried on an 80 ° C. hot plate for 5 minutes. After that, a liquid crystal alignment film was formed as a 40 nm-thick coating film to obtain a substrate with a liquid crystal alignment film before the alignment treatment. It was found that all the liquid crystal alignment films formed on the substrate were excellent in film thickness uniformity, and the liquid crystal alignment treatment agent (I) exhibited excellent coating properties.
  • the obtained substrate with a liquid crystal alignment film before the alignment treatment is heated to 240 ° C. on a hot plate and polarized from a certain direction with respect to the liquid crystal alignment film surface on the substrate while maintaining the heated state.
  • the polarized ultraviolet light was irradiated through the plate.
  • the intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 250 mJ. In this way, an alignment-treated substrate with a liquid crystal alignment film was obtained.
  • nematic liquid crystal ZLI-4792 manufactured by Merck & Co., Inc.
  • ZLI-4792 manufactured by Merck & Co., Inc.
  • Example 11 A liquid crystal cell was produced according to the same method as in Example 10 except that the irradiation amount of polarized ultraviolet rays was 500 mJ.
  • Example 5 A liquid crystal cell was produced according to the same method as in Example 10 except that the irradiation amount of polarized ultraviolet rays was 50 mJ.
  • Example 6 A liquid crystal alignment film was prepared using the liquid crystal alignment treatment agent (I) obtained in Example 1, and a liquid crystal cell using the liquid crystal alignment film was manufactured.
  • the liquid crystal cell was a parallel alignment liquid crystal cell as in Example 10.
  • a liquid crystal alignment treatment agent (I) is spin-coated on a glass substrate with an ITO electrode, dried on a hot plate at 80 ° C. for 5 minutes, and then a liquid crystal alignment film as a 40 nm-thick coating film. And a substrate with a liquid crystal alignment film before the alignment treatment was obtained.
  • the obtained substrate with a liquid crystal alignment film before the alignment treatment was used, and while maintaining this at room temperature, the surface of the liquid crystal alignment film on the substrate was irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction.
  • the intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 50 mJ. In this way, an alignment-treated substrate with a liquid crystal alignment film was obtained.
  • FIG. 4 is a diagram showing the liquid crystal cells of Examples 10 and 11 and Comparative Examples 5 to 8 in comparison with polarization micrographs.
  • CBDA 1,2,3,4-cyclobutanetetracarboxylic dianhydride
  • p-PDA p-phenylenediamine
  • NMP N-methyl-2-pyrrolidone
  • BCS Butyl cellosolve
  • APHFP Diamine [1] to [7]: Diamine [1] to [7] represented by the following formula
  • ⁇ Measurement of molecular weight of polymer> The measurement conditions of the molecular weight of the polymer (polyamic acid or the like) are as follows. Apparatus: Room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Scientific Co., Ltd.
  • terephthalaldehyde [A] (40.00 g, 298 mmol), pyridine (46 g), and piperidine (7.0 g) were added, and the reaction solution was heated to 100 ° C. with stirring.
  • a pyridine solution 500 g
  • malonic acid [B] 140.0 g, 1.34 mol
  • HPLC high performance liquid chromatography
  • Isophthalaldehyde [H] (50.00 g, 373 mol), pyridine (78 g), and piperidine (9.5 g) were added to a 2 L four-necked flask, and the reaction solution was heated to 100 ° C. with stirring. Then, a pyridine solution (600 g) of malonic acid [B] (169.5 g, 1.68 mol) was dropped into the reaction solution. After confirming the completion of the reaction by HPLC, the reaction solution was cooled to 40 ° C., and the reaction solution was poured into distilled water (1 L). Next, concentrated hydrochloric acid was added until the reaction solution became acidic, and then the solid was filtered.
  • Liquid crystal aligning agent A1 NMP (5.0 g) was added to diamine [1] (1.20 g, 3.0 mmol), and the mixture was stirred and completely dissolved at room temperature, and then CBDA (0.53 g, 2.8 mmol) and NMP (5. 0 g) was added and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (10.0g) and BCS (5.0g) were added to this polyamic acid solution (10g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A1. The number average molecular weight of this polyamic acid was 6000, and the weight average molecular weight was 10500.
  • Liquid crystal aligning agent A2 NMP (5.4 g) was added to diamine [2] (1.37 g, 3.0 mmol) and stirred at room temperature for complete dissolution, and then CBDA (0.55 g, 2.8 mmol) and NMP (5. 4 g) was added and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (10.0g) and BCS (5.0g) were added to this polyamic acid solution (10g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A2. The number average molecular weight of this polyamic acid was 3800, and the weight average molecular weight was 5000.
  • Liquid crystal aligning agent A3 NMP (5.0 g) was added to diamine [3] (1.20 g, 3.0 mmol), and the mixture was stirred and completely dissolved at room temperature, and then CBDA (0.55 g, 2.8 mmol) and NMP (5. 0 g) was added and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (10.0g) and BCS (5.0g) were added to this polyamic acid solution (10g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A3. The number average molecular weight of this polyamic acid was 8100, and the weight average molecular weight was 16000.
  • Liquid crystal aligning agent A4 NMP (5.4 g) was added to diamine [4] (1.37 g, 3.0 mmol) and stirred at room temperature for complete dissolution, then CBDA (0.55 g, 2.8 mmol) and NMP (5. 4 g) was added and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (10.0g) and BCS (5.0g) were added to this polyamic acid solution (10g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A4. The number average molecular weight of this polyamic acid was 5200, and the weight average molecular weight was 7600.
  • NMP (32.3 g) was added to diamine [5] (7.06 g, 25.0 mmol) and stirred at room temperature for complete dissolution, and then CBDA (4.51 g, 23.0 mmol) and NMP (33. 2 g) was added and reacted at room temperature for 10 hours to obtain a polyamic acid solution.
  • NMP (40.0g) and BCS (20.0g) were added to this polyamic acid solution (40g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A5.
  • the number average molecular weight of this polyamic acid was 10500, and the weight average molecular weight was 57000.
  • NMP (Liquid crystal aligning agent A6) NMP (4.9 g) was added to diamine [6] (1.18 g, 3.0 mmol) and stirred at room temperature for complete dissolution, and then CBDA (0.53 g, 2.7 mmol) and NMP (4. 9 g) was added and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (10.0g) and BCS (5.0g) were added to this polyamic acid solution (10g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A6. The number average molecular weight of this polyamic acid was 8800, and the weight average molecular weight was 35000.
  • NMP (Liquid crystal aligning agent A7) NMP (5.6 g) was added to diamine [7] (1.14 g, 4.5 mmol) and stirred at room temperature for complete dissolution, and then CBDA (0.83 g, 4.2 mmol) and NMP (5.2. 6 g) was added and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (10.0g) and BCS (5.0g) were added to this polyamic acid solution (10g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A7. The number average molecular weight of this polyamic acid was 13800, and the weight average molecular weight was 35500.
  • NMP (27.0 g) was added to diamine [5] (3.53 g, 12.5 mmol) and p-PDA (1.35 g, 12.5 mmol), and the mixture was stirred at room temperature until completely dissolved, and then CBDA ( 4.66 g, 23.8 mmol) and NMP (27.0 g) were added and reacted at room temperature for 10 hours to obtain a polyamic acid solution.
  • NMP (40.0g) and BCS (20.0g) were added to this polyamic acid solution (40g), and the liquid crystal aligning agent A8 was obtained by stirring at room temperature for 5 hours.
  • the number average molecular weight of this polyamic acid was 11500, and the weight average molecular weight was 25000.
  • Liquid crystal aligning agent B1 NMP (22.0 g) was added to DA-1 (5.10 g, 14.0 mmol), and the mixture was stirred and completely dissolved at room temperature. Then, CBDA (2.66 g, 13.6 mmol) and NMP (22.0 g) were added. ) And reacted at room temperature for 5 hours to obtain a polyamic acid solution. NMP (40.0g) and BCS (20.0g) were added to this polyamic acid solution (40g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent B1. The number average molecular weight of this polyamic acid was 6500, and the weight average molecular weight was 26000.
  • Example 1 Using the liquid crystal aligning agent A1, a liquid crystal cell was produced according to the procedure shown below.
  • the substrate used was a glass substrate having a size of 30 mm ⁇ 40 mm and a thickness of 0.7 mm, on which comb-like pixel electrodes formed by patterning an ITO film were arranged.
  • the pixel electrode has a comb-like shape configured by arranging a plurality of dog-shaped electrode elements whose central portion is bent. The width in the short direction of each electrode element is 3 ⁇ m, and the distance between the electrode elements is 6 ⁇ m.
  • the pixel electrode forming each pixel is configured by arranging a plurality of dog-shaped electrode elements whose central part is bent, so that the shape of each pixel is not rectangular, and is similar to the electrode element in the central part. It has a shape that bends and resembles a bold-faced koji.
  • Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side. When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different.
  • the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and in the second region of the pixel.
  • the electrode elements of the pixel electrode are formed so as to form an angle of ⁇ 10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
  • Liquid crystal aligning agent A1 was spin-coated on the prepared substrate with electrodes. Subsequently, after drying for 60 seconds with a 90 degreeC hotplate, it baked for 30 minutes with a 200 degreeC hot-air circulation type oven, and formed the liquid crystal aligning film with a film thickness of 100 nm. Next, the substrate was placed on a hot plate at 240 ° C., and the surface of the liquid crystal alignment film was irradiated with 313 nm ultraviolet rays at 20 mJ / cm 2 via a polarizing plate to obtain a substrate with a liquid crystal alignment film.
  • a liquid crystal alignment film was formed using a liquid crystal alignment treatment agent A1 on a glass substrate having a columnar spacer with a height of 4 ⁇ m on which no electrode was formed as a counter substrate, and subjected to alignment treatment. .
  • a sealant (XN-1500T, manufactured by Kyoritsu Chemical Co., Ltd.) was printed on the liquid crystal alignment film of one substrate. Next, the other substrate was bonded so that the liquid crystal alignment film faces each other and the alignment direction was 0 °, and then the sealing agent was cured to produce an empty cell.
  • Liquid crystal MLC-2041 manufactured by Merck & Co., Inc.
  • IPS liquid crystal cell
  • IPS Mode liquid crystal cell IPS Mode liquid crystal cell
  • the IPS mode liquid crystal cell obtained above is placed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, the light source is turned on with no voltage applied, and the transmitted light has the highest luminance.
  • the arrangement angle of the liquid crystal cell was adjusted so as to be small.
  • the rotation angle (alignment azimuth angle) when the liquid crystal cell was rotated from the angle at which the second region of the pixel was darkest to the angle at which the first region was darkest was calculated as the initial alignment azimuth.
  • an AC voltage of 8 V PP was applied for 24 hours at a frequency of 30 Hz in a room temperature environment.
  • Example 2 A liquid crystal alignment performance evaluation and an afterimage evaluation were performed in the same manner as in Example 1 except that the liquid crystal alignment treatment agent A2 was used instead of the liquid crystal alignment treatment agent A1.
  • Example 3 A liquid crystal alignment performance evaluation and an afterimage evaluation were performed in the same manner as in Example 1 except that the liquid crystal alignment treatment agent A3 was used instead of the liquid crystal alignment treatment agent A1.
  • Example 4 A liquid crystal alignment performance evaluation and an afterimage evaluation were performed in the same manner as in Example 1 except that the liquid crystal alignment treatment agent A4 was used instead of the liquid crystal alignment treatment agent A1.
  • Example 5 A liquid crystal alignment performance evaluation and an afterimage evaluation were performed in the same manner as in Example 1 except that the liquid crystal alignment treatment agent A5 was used instead of the liquid crystal alignment treatment agent A1.
  • Example 6 A liquid crystal alignment performance evaluation and an afterimage evaluation were performed in the same manner as in Example 1 except that the liquid crystal alignment treatment agent A6 was used instead of the liquid crystal alignment treatment agent A1.
  • Example 7 A liquid crystal alignment performance evaluation and an afterimage evaluation were performed in the same manner as in Example 1 except that the liquid crystal alignment treatment agent A7 was used instead of the liquid crystal alignment treatment agent A1.
  • Example 8 A liquid crystal alignment performance evaluation and an afterimage evaluation were performed in the same manner as in Example 1 except that the liquid crystal alignment treatment agent A8 was used instead of the liquid crystal alignment treatment agent A1.
  • the diamine represented by the above formula (4) is used as a raw material in the main chain skeleton of the polyimide polymer in spite of the low temperature and short time measurement conditions of 24 hours at room temperature. It can be seen that in Examples 1 to 6 in which the photoreactive group is introduced, the difference in orientation azimuth before and after AC driving is small and the afterimage characteristics are remarkably improved as compared with Comparative Example 1. Also. In Examples 1 to 6, the liquid crystal orientation was also good. Furthermore, also in Example 7 which copolymerized other diamine, it turned out that a favorable liquid crystal aligning performance and AC image sticking characteristic are shown.
  • liquid crystal aligning agent of the present invention by using the liquid crystal aligning agent of the present invention, a liquid crystal alignment film excellent in liquid crystal alignment and afterimage characteristics can be obtained.
  • a liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention is excellent in liquid crystal alignment and afterimage characteristics, so that a liquid crystal display device that is unlikely to cause display defects, contrast reduction, image sticking, etc. It can be.
  • ⁇ Comparative Example 9> The liquid crystal alignment performance evaluation was performed by performing the same operation as in Example 1 except that the liquid crystal alignment treatment agent A1 was used and the surface of the liquid crystal alignment film was irradiated with 20 mJ / cm 2 of 313 nm ultraviolet light at room temperature via a polarizing plate. went.
  • ⁇ Comparative Example 10> Liquid crystal alignment performance evaluation was performed by performing the same operation as Comparative Example 9 except that the liquid crystal alignment treatment agent A2 was used instead of the liquid crystal alignment treatment agent A1.
  • ⁇ Comparative Example 11> Liquid crystal alignment performance evaluation was performed by performing the same operation as in Comparative Example 9 except that the liquid crystal alignment treatment agent A3 was used instead of the liquid crystal alignment treatment agent A1.
  • the liquid crystal orientation is improved by irradiating polarized ultraviolet rays while performing the heat treatment at 240 ° C. This is considered to be derived from the fact that the photodimerization reaction of the cinnamoyl group is promoted by performing ultraviolet irradiation while performing the heat treatment.
  • a liquid crystal alignment film that achieves high photoreaction efficiency and enables high-efficiency alignment treatment is obtained.
  • the liquid crystal alignment film can be used efficiently and even for a long period of use. It is possible to provide a liquid crystal display element in which a defect such as a change in the alignment state of the liquid crystal hardly occurs.

Abstract

Provided are: a method for producing a liquid crystal alignment film that enables highly efficient photo-alignment; a liquid crystal alignment film which is obtained by the method; and a liquid crystal display element. A thin film that contains a polyimide precursor having a photoreactive group is formed on a substrate and the thin film surface is irradiated with polarized ultraviolet light, while being heated, so that a liquid crystal alignment film that is composed of a polymer containing the polyimide precursor is produced on the substrate.

Description

液晶配向膜の製造方法、液晶配向膜及び液晶表示素子Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
 本発明は、液晶配向膜の製造方法、その製造方法によって得られる液晶配向膜及びその液晶配向膜を使用した液晶表示素子に関する。 The present invention relates to a method for manufacturing a liquid crystal alignment film, a liquid crystal alignment film obtained by the manufacturing method, and a liquid crystal display element using the liquid crystal alignment film.
 液晶表示素子は、軽量、薄型かつ低消費電力の表示デバイスとして知られ、近年では大型のテレビ用途に用いられるなど、目覚ましい発展を遂げている。液晶表示素子は、例えば、電極を備えた透明な一対の基板により液晶層を挟持して構成される。また、液晶表示素子では、液晶が基板間で所望の配向状態となるように有機材料からなる有機膜が液晶配向膜として使用されている。 The liquid crystal display element is known as a light, thin, and low power consumption display device and has been remarkably developed in recent years. The liquid crystal display element is configured, for example, by sandwiching a liquid crystal layer between a pair of transparent substrates provided with electrodes. In the liquid crystal display element, an organic film made of an organic material is used as the liquid crystal alignment film so that the liquid crystal is in a desired alignment state between the substrates.
 すなわち、液晶配向膜は、液晶表示素子の構成部材であって、液晶を挟持する基板の液晶と接する面に形成され、その基板間で液晶を一定の方向に配向させるという役割を担っている。さらに、液晶配向膜には、液晶を、例えば、基板に対して平行な方向など、一定の方向に配向させるという役割に加え、液晶のプレチルト角を制御するという役割がある。こうした液晶配向膜における、液晶の配向を制御する能力(以下、配向制御能と言う。)は、液晶配向膜を構成する有機膜に対して配向処理を行うことによって与えられる。
 現在、工業的に利用されている主な液晶配向膜は、ポリイミド前駆体(ポリアミック酸(ポリアミド酸)、ポリアミック酸エステル)、ポリイミド等の溶液からなるポリイミド系の液晶配向処理剤を、基板に塗布し成膜することで作製される。
 また、基板面に対して液晶を水平配向、平行配向又は傾斜配向等させる場合は、成膜した後、ラビングによる表面延伸処理が行われている。そして、ラビング処理に代わるものとして、偏光紫外線照射等による異方性光化学反応を利用する方法が提案されており、近年では工業化に向けた検討が行われている。
That is, the liquid crystal alignment film is a constituent member of the liquid crystal display element, and is formed on a surface of the substrate that holds the liquid crystal in contact with the liquid crystal, and plays a role of aligning the liquid crystal in a certain direction between the substrates. Further, the liquid crystal alignment film has a role of controlling the pretilt angle of the liquid crystal in addition to the role of aligning the liquid crystal in a certain direction such as a direction parallel to the substrate. In such a liquid crystal alignment film, the ability to control the alignment of liquid crystal (hereinafter referred to as alignment control ability) is given by performing an alignment treatment on the organic film constituting the liquid crystal alignment film.
Currently, the main liquid crystal alignment film used industrially is a polyimide liquid crystal alignment treatment agent made of a solution of polyimide precursor (polyamic acid (polyamic acid), polyamic acid ester), polyimide, etc., applied to the substrate. Then, it is manufactured by forming a film.
In addition, when the liquid crystal is horizontally aligned, parallel aligned, or inclinedly aligned with respect to the substrate surface, a surface stretching process by rubbing is performed after film formation. As an alternative to the rubbing treatment, a method using an anisotropic photochemical reaction by irradiation with polarized ultraviolet rays or the like has been proposed, and in recent years, studies for industrialization have been performed.
 ラビング処理は、基板上のポリビニルアルコールやポリアミドやポリイミド等の有機膜に対し、その表面を綿、ナイロン、ポリエステル等の布で一定方向に擦り(ラビング)、擦った方向(ラビング方向)に液晶を配向させる方法である。このラビング法は簡便に比較的安定した液晶の配向状態を実現できるため、従来の液晶表示素子の製造プロセスにおいて利用されてきた。 The rubbing treatment is performed by rubbing the surface of an organic film such as polyvinyl alcohol, polyamide or polyimide on the substrate with a cloth such as cotton, nylon or polyester (rubbing), and liquid crystal in the rubbing direction (rubbing direction). This is a method of orientation. Since this rubbing method can easily realize a relatively stable alignment state of liquid crystals, it has been used in the manufacturing process of conventional liquid crystal display elements.
 しかし、ポリイミドなどからなる液晶配向膜の表面を擦るラビング法は、発塵や静電気の発生が問題となることがあった。また、近年の液晶表素子の高精細化や、対応する基板上の電極や液晶駆動用のスイッチング能動素子による凹凸のため、液晶配向膜の表面は、布で均一に擦ることができず、均一な液晶の配向を実現できないことがあった。 However, in the rubbing method of rubbing the surface of the liquid crystal alignment film made of polyimide or the like, generation of dust and static electricity may be a problem. In addition, due to the high definition of liquid crystal surface elements in recent years and unevenness due to the corresponding electrodes on the substrate and the switching active elements for driving the liquid crystal, the surface of the liquid crystal alignment film cannot be rubbed uniformly with a cloth, and is uniform. Liquid crystal alignment may not be realized.
 ラビング処理に代わる液晶配向膜の配向処理方法として、光配向法が盛んに検討されている。例えば、偏光紫外線照射等による異方性光化学反応を利用する光配向方法が提案されており、近年では工業化に向けた検討が行われている。
 光配向法には幾つかの方法があるが、一般的には直線偏光又はコリメート(平行化)した光によって液晶配向膜を構成する有機膜の表面に異方性を形成し、その異方性に従って液晶を配向させるものである。
 主な具体的な光配向法としては、分解型の光配向法が知られている。分解型の光配向法とは、例えば、ポリイミド膜に偏光紫外線を照射し、分子構造の紫外線吸収の偏光方向依存性を利用して異方的な分解を生じさせ、分解せずに残されたポリイミドにより液晶を配向させる方法である(例えば、特許文献1参照。)。
As a method for aligning a liquid crystal alignment film in place of rubbing, a photo-alignment method has been actively studied. For example, a photo-alignment method using an anisotropic photochemical reaction by irradiation with polarized ultraviolet rays or the like has been proposed, and in recent years, studies for industrialization have been performed.
There are several photo-alignment methods, but in general, anisotropy is formed on the surface of the organic film constituting the liquid crystal alignment film by linearly polarized light or collimated (parallelized) light. The liquid crystal is aligned according to the above.
As a main specific photo-alignment method, a decomposition type photo-alignment method is known. The decomposition type photo-alignment method means, for example, that a polyimide film is irradiated with polarized ultraviolet rays, and an anisotropic decomposition is caused by utilizing the polarization direction dependency of ultraviolet absorption of the molecular structure. This is a method of aligning liquid crystal with polyimide (for example, see Patent Document 1).
 また、二量化型の光配向法も知られている。二量化型の光配向法とは、例えば、ポリビニルシンナメートを用い、偏光紫外線を照射し、偏光と平行な2つの側鎖の二重結合部分で二量化反応を生じさせ、偏光方向と直交した方向に液晶を配向させる方法である(例えば、非特許文献1参照。)。
 上記のように、光配向法による液晶配向膜の配向処理方法では、ラビングが不要であり、発塵や静電気の発生の懸念が無い。また、光配向法による液晶配向膜の配向処理方法は、表面に凹凸のある液晶表示素子の基板においても配向処理を施すことができ、工業的な生産プロセスとしても好適である。
 また、液晶表示素子の表示特性の向上は、ポリアミック酸、ポリアミック酸エステル、ポリイミド等の構造を変更する方法、特性の異なるポリアミック酸、ポリアミック酸エステル、ポリイミド等をブレンドする方法、さらに添加剤を加える方法などを使い、液晶配向性や電気特性等の改善、プレチルト角のコントロール等が行われている。例えば、特定の構造の基を側鎖として有する重合体を用いることが提案されている(特許文献2参照)。
 しかしながら、液晶表示素子の高性能化、大面積化、表示デバイスの省電力化などが進み、液晶配向膜に求められる特性も厳しいものになってきている。特許文献2等の従来の液晶配向処理剤を用いた場合、焼き付き特性が不十分で、AC(交流)駆動によって液晶配向性能が変化して残像が生じてしまうことが問題であった。
A dimerization type photo-alignment method is also known. The dimerization type photo-alignment method is, for example, using polyvinyl cinnamate, irradiating polarized ultraviolet rays, causing a dimerization reaction at double bond portions of two side chains parallel to the polarized light, and orthogonal to the polarization direction. This is a method of aligning liquid crystals in the direction (see, for example, Non-Patent Document 1).
As described above, the alignment treatment method of the liquid crystal alignment film by the photo-alignment method does not require rubbing, and there is no concern about generation of dust or static electricity. Moreover, the alignment treatment method of the liquid crystal alignment film by the photo-alignment method can perform the alignment treatment even on the substrate of the liquid crystal display element having a concavo-convex surface, and is suitable as an industrial production process.
In addition, the display characteristics of the liquid crystal display element can be improved by changing the structure of polyamic acid, polyamic acid ester, polyimide, etc., blending polyamic acid, polyamic acid ester, polyimide, etc. having different characteristics, and adding additives. Methods are used to improve liquid crystal alignment and electrical characteristics, and control the pretilt angle. For example, it has been proposed to use a polymer having a group having a specific structure as a side chain (see Patent Document 2).
However, as liquid crystal display elements have higher performance, larger area, and lower power consumption of display devices, characteristics required for liquid crystal alignment films have become severe. When a conventional liquid crystal alignment treatment agent such as Patent Document 2 is used, there is a problem that image sticking characteristics are insufficient, and liquid crystal alignment performance is changed by AC (alternating current) driving, resulting in an afterimage.
日本特許第3893659号公報Japanese Patent No. 3893659 日本特表2001-517719号公報Japanese Special Table 2001-517719
 光配向法は、液晶表示素子の配向処理方法として従来から工業的に使用されてきたラビング処理と比べてラビング工程そのものを不要とし、大きな利点を備える。
 しかし、例えば、上記した特許文献1に記載の分解型の光配向法では、ポリイミド膜に出力500Wの高圧水銀灯からの紫外光を60分間照射する必要があるなど、長時間かつ大量の紫外線照射が必要となる。
The photo-alignment method eliminates the rubbing process itself as compared with the rubbing process conventionally used industrially as an alignment processing method for liquid crystal display elements, and has a great advantage.
However, for example, in the decomposition type photo-alignment method described in Patent Document 1 described above, it is necessary to irradiate the polyimide film with ultraviolet light from a high-pressure mercury lamp with an output of 500 W for 60 minutes. Necessary.
 また、二量化型の光配向法においては、数~数十ジュール(J)程度の大量の紫外線照射が必要となる場合がある。さらに、液晶配向膜に対する紫外線の照射量を数十~数百ミリジュール(mJ)程度と少量にできる場合においても、均一な液晶の配向を得るためには、光反応基の導入量を多くする必要がある。そのため、紫外線照射後においても未反応基が残存することがあり、このような液晶配向膜を用いた液晶表示素子では、バックライトや外光により、未反応基が反応し、液晶の配向状態が変化するといった不良が発生する問題がある。このように、大量の紫外線照射を必要としたり、未反応な光反応基が残存するのは、液晶配向膜に用いられる有機膜の光反応効率の低さに起因すると解される。
 すなわち、より光反応効率の高い液晶配向膜用の有機膜材料の開発及び光反応効率を高めることができる液晶配向膜の製造方法の開発が求められている。
Further, in the dimerization type photo-alignment method, a large amount of ultraviolet irradiation of about several to several tens of joules (J) may be required. Furthermore, in order to obtain uniform liquid crystal alignment even when the irradiation amount of ultraviolet rays to the liquid crystal alignment film can be as small as several tens to several hundred millijoules (mJ), the amount of photoreactive groups introduced is increased. There is a need. Therefore, an unreacted group may remain even after ultraviolet irradiation. In a liquid crystal display device using such a liquid crystal alignment film, the unreacted group reacts due to backlight or external light, and the alignment state of the liquid crystal is changed. There is a problem that defects such as change occur. As described above, it is understood that a large amount of ultraviolet irradiation is required or an unreacted photoreactive group remains due to the low photoreaction efficiency of the organic film used for the liquid crystal alignment film.
That is, development of an organic film material for a liquid crystal alignment film having higher photoreaction efficiency and development of a method for producing a liquid crystal alignment film capable of increasing photoreaction efficiency are required.
 本発明は、高い光反応効率を実現し、高効率な配向処理を可能とする液晶配向膜の製造方法、得られた液晶配向膜を備えた液晶表示素子を提供することを目的とする。
 さらに、本発明は、新規なジアミンを用いて得られるポリイミド前駆体を使用する液晶配向膜の製造方法、得られた液晶配向膜を使用したAC駆動による液晶配向性能の変化が低減され残像特性が良好な液晶表示素子を提供することをお目的とする。
An object of this invention is to provide the manufacturing method of the liquid crystal aligning film which implement | achieves high photoreaction efficiency and enables highly efficient alignment processing, and the liquid crystal display element provided with the obtained liquid crystal aligning film.
Furthermore, the present invention provides a method for producing a liquid crystal alignment film using a polyimide precursor obtained by using a novel diamine, a change in liquid crystal alignment performance by AC driving using the obtained liquid crystal alignment film, and an afterimage characteristic. An object is to provide a good liquid crystal display element.
 本発明者は、鋭意研究を行った結果、以下の(1)~(12)の要旨とする本発明を完成するに至った。
(1)基板上に光反応基を有するポリイミド若しくはポリイミド前駆体を含有する薄膜を形成し、前薄膜面を加熱しながら、偏光した紫外線を照射し、前記基板上にポリイミド前駆体を含有する高分子からなる液晶配向膜を製造することを特徴とする液晶配向膜の製造方法。
(2)前記光反応基を有するポリイミド前駆体は、下記の式[1]で表される繰り返し単位及び下記の式[2]で表される繰り返し単位を含有する前記(1)に記載の液晶配向膜の製造方法。
As a result of intensive studies, the present inventor has completed the present invention as summarized in the following (1) to (12).
(1) A thin film containing a polyimide or a polyimide precursor having a photoreactive group is formed on a substrate, and the front thin film surface is irradiated with polarized ultraviolet rays while being heated, and the substrate contains a polyimide precursor. A method for producing a liquid crystal alignment film, comprising producing a liquid crystal alignment film comprising molecules.
(2) The liquid crystal according to (1), wherein the polyimide precursor having the photoreactive group contains a repeating unit represented by the following formula [1] and a repeating unit represented by the following formula [2]. A method for producing an alignment film.
Figure JPOXMLDOC01-appb-C000006
(式[1]において、Rは2価の有機基を表し、Rは4価の有機基を表し、Rは水素原子又は炭素数1~6の有機基を表し、Rは水素原子又は炭素数1~6の有機基を表す。nは正の整数を表す。)
Figure JPOXMLDOC01-appb-C000006
(In the formula [1], R 1 represents a divalent organic group, R 2 represents a tetravalent organic group, R 3 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms, and R 4 represents hydrogen. Represents an atom or an organic group having 1 to 6 carbon atoms, and n 1 represents a positive integer.)
Figure JPOXMLDOC01-appb-C000007
 (式[2]において、Rは光反応基を構成する2価の有機基を表す。Rは4価の有機基を表し、Rは水素原子又は炭素数1~6の有機基を表し、Rは水素原子又は炭素数1~6の有機基を表す。nは正の整数を表す。)
Figure JPOXMLDOC01-appb-C000007
(In Formula [2], R 5 represents a divalent organic group constituting a photoreactive group. R 6 represents a tetravalent organic group, R 7 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms. R 8 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms, and n 2 represents a positive integer.)
(3)前記光反応基を有するポリイミド前駆体は、上記の式[1]で表される繰り返し単位及び下記の式[3]で表される繰り返し単位を含有する前記(1)に記載の液晶配向膜の製造方法。 (3) The liquid crystal according to (1), wherein the polyimide precursor having the photoreactive group contains a repeating unit represented by the above formula [1] and a repeating unit represented by the following formula [3]. A method for producing an alignment film.
Figure JPOXMLDOC01-appb-C000008

 (式[3]において、Rは2価の有機基を表し、R10は光反応性基を構成する2価の有機基を表す。nは正の整数を表す。)
Figure JPOXMLDOC01-appb-C000008

(In Formula [3], R 9 represents a divalent organic group, R 10 represents a divalent organic group constituting a photoreactive group, and n 3 represents a positive integer.)
(4)前記光反応基を有するポリイミド前駆体が、下記の式[4]で表されるジアミンを含むジアミン成分とテトラカルボン酸二無水物とを重縮合反応させて得られるポリイミド前駆体である前記(1)に記載の液晶配向膜の製造方法。 (4) The polyimide precursor having the photoreactive group is a polyimide precursor obtained by polycondensation reaction of a diamine component containing a diamine represented by the following formula [4] and tetracarboxylic dianhydride. The manufacturing method of the liquid crystal aligning film as described in said (1).
Figure JPOXMLDOC01-appb-C000009
(式[1]中、Xは単結合又は炭素数1~5のアルキレン基(但し、隣り合わない-CH-は。エーテル結合、エステル結合若しくはアミド結合に置き換わってもよい。)を表し、Xは-OCO-CH=CH-又は-CH=CH-COO-を表し、Xは単結合、炭素数1~10のアルキレン基又は2価のベンゼン環を表し、Xは単結合、-OCO-CH=CH-又は-CH=CH-COO-を表し、Xは単結合又は炭素数1~6のアルキレン基(但し、隣り合わない-CH-は。エーテル結合、エステル結合若しくはアミド結合に置き換わってもよい。)を表す。さらに、式[4]中には、1つ以上のシンナモイル基を有する。)
Figure JPOXMLDOC01-appb-C000009
(In the formula [1], X 1 represents a single bond or an alkylene group having 1 to 5 carbon atoms (provided that —CH 2 — which is not adjacent to each other may be replaced by an ether bond, an ester bond or an amide bond). , X 2 represents —OCO—CH═CH— or —CH═CH—COO—, X 3 represents a single bond, an alkylene group having 1 to 10 carbon atoms or a divalent benzene ring, and X 4 represents a single bond. , —OCO—CH═CH— or —CH═CH—COO—, wherein X 5 is a single bond or an alkylene group having 1 to 6 carbon atoms (provided that —CH 2 — not adjacent to each other is an ether bond, ester bond) Or an amide bond may be substituted.) Furthermore, the formula [4] has one or more cinnamoyl groups.
(5)前記薄膜の厚さが、5~300nmである前記(1)~(4)のいずれかに記載の液晶配向膜の製造方法。
(6)前記光反応基を有するポリイミド前駆体の含有量が、0.1~30質量%であり、溶剤を含有する液晶配向処理剤を用いて前記薄膜を形成する前記(1)~(5)のいずれかに記載の液晶配向膜の製造方法。
(5) The method for producing a liquid crystal alignment film according to any one of (1) to (4), wherein the thin film has a thickness of 5 to 300 nm.
(6) The content of the polyimide precursor having the photoreactive group is 0.1 to 30% by mass, and the thin film is formed using a liquid crystal aligning agent containing a solvent. ) For producing a liquid crystal alignment film.
(7)前記加熱の温度は、前記光反応基を有するポリイミド前駆体が、ポリイミドに変化しない温度範囲から選択された温度である前記(1)~(6)のいずれかに記載の液晶配向膜の製造方法。 (7) The liquid crystal alignment film according to any one of (1) to (6), wherein the heating temperature is a temperature selected from a temperature range in which the polyimide precursor having the photoreactive group does not change to polyimide. Manufacturing method.
(8)前記加熱の温度は、50℃~300℃の範囲内である前記(1)~(7)のいずれかに記載の液晶配向膜の製造方法。
(9)前記加熱の温度は、80℃~250℃の範囲内である前記(1)~(8)のいずれかに記載の液晶配向膜の製造方法。
(10)紫外線の照射量が、100~1000mJである前記(1)~(9)のいずれかに記載の液晶配向膜の製造方法。
(8) The method for producing a liquid crystal alignment film according to any one of (1) to (7), wherein the heating temperature is in the range of 50 ° C. to 300 ° C.
(9) The method for producing a liquid crystal alignment film according to any one of (1) to (8), wherein the heating temperature is in the range of 80 ° C. to 250 ° C.
(10) The method for producing a liquid crystal alignment film according to any one of (1) to (9), wherein the irradiation amount of ultraviolet rays is 100 to 1000 mJ.
(11)前記(1)~(10)のいずれかに記載の液晶配向膜の製造方法により製造された液晶配向膜。 (11) A liquid crystal alignment film manufactured by the method for manufacturing a liquid crystal alignment film according to any one of (1) to (10).
(12)前記(11)に記載の液晶配向膜を有する液晶表示素子。 (12) A liquid crystal display device having the liquid crystal alignment film according to (11).
 本発明によれば、高い光反応効率を実現して、高効率な配向処理を可能とする液晶配向膜の製造方法が提供される。得られた液晶配向膜を用いた液晶表示素子は、高い製造効率で、かつ、液晶配向膜内の光反応残基が少なく、長期間の使用においても液晶の配向状態が変化するといった不良が発生しにくい。
 本発明では、さらに、液晶配向膜に対するラビングが不要にできる。また、ポリイミド前駆体を含有する高分子膜における高い反応効率の光反応を実現して高効率な液晶配向膜の製造を可能とする。
 さらに、本発明において、新規なジアミンから得られるポイミド前記体を使用して液晶配向膜を有する液晶表示素子は、AC駆動による液晶配向性能の変化が低減し、液晶配向性能が変化し難く、残像が発生し難い。
ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the liquid crystal aligning film which implement | achieves high photoreaction efficiency and enables highly efficient alignment processing is provided. The liquid crystal display device using the obtained liquid crystal alignment film has a high production efficiency and a small number of photoreactive residues in the liquid crystal alignment film, resulting in a defect that the liquid crystal alignment state changes even after long-term use. Hard to do.
In the present invention, further, rubbing on the liquid crystal alignment film can be eliminated. In addition, a high-efficiency photoreaction can be realized in a polymer film containing a polyimide precursor, and a highly efficient liquid crystal alignment film can be produced.
Furthermore, in the present invention, a liquid crystal display element having a liquid crystal alignment film using the above-mentioned poimide obtained from a novel diamine has a reduced change in the liquid crystal alignment performance due to AC driving, and the liquid crystal alignment performance hardly changes, and an afterimage Is unlikely to occur.
[実施例A]の実施例3で得られた配向処理前の液晶配向膜及び実施例5で得られた液晶配向膜の紫外吸収スペクトルである。It is an ultraviolet absorption spectrum of the liquid crystal aligning film before the alignment process obtained in Example 3 of [Example A] and the liquid crystal aligning film obtained in Example 5. [実施例A]の実施例3で得られた配向処理前の液晶配向膜、及び比較例1、2で得られた液晶配向膜の紫外吸収スペクトルである。It is an ultraviolet absorption spectrum of the liquid crystal aligning film before the alignment process obtained in Example 3 of [Example A] and the liquid crystal aligning films obtained in Comparative Examples 1 and 2. [実施例A]の実施例9で得られた液晶配向膜、及び比較例3、4で得られた液晶配向膜の紫外吸収スペクトルである。It is an ultraviolet absorption spectrum of the liquid crystal aligning film obtained in Example 9 of [Example A] and the liquid crystal aligning film obtained in Comparative Examples 3 and 4. [実施例A]の実施例10、11及び比較例5~8で得られた液晶セルにおける液晶配向膜を偏光顕微鏡を用いて撮影した顕微鏡写真である。4 is a photomicrograph of a liquid crystal alignment film in the liquid crystal cells obtained in Examples 10 and 11 of [Example A] and Comparative Examples 5 to 8 taken using a polarizing microscope.
 本発明の液晶配向膜の製造方法は、ポリイミド前駆体を含有する高分子膜を用い、偏光照射によって配向処理を行う方法を使用する。例えば、光反応基を有するポリアミック酸エステル誘導体の膜を基板上に形成し、次いで、加熱をして、加熱状態を維持しながら膜面に偏光した紫外線を照射することにより、基板上にポリアミック酸エステル誘導体からなる液晶配向膜を形成する。
 本発明の液晶配向膜の製造方法において用いられるポリイミド前駆体は、下記の式[1]で表される繰り返し単位とともに、下記の式[2]で表される繰り返し単位及び下記式[3]で表される繰り返し単位から選ばれる少なくともいずれか一方を含有する。下記の式[2]及び式[3]で表される繰り返し単位は、光反応基を有する。
The method for producing a liquid crystal alignment film of the present invention uses a method in which a polymer film containing a polyimide precursor is used and alignment treatment is performed by polarized light irradiation. For example, a polyamic acid ester derivative film having a photoreactive group is formed on a substrate, and then heated, and the film surface is irradiated with polarized ultraviolet rays while maintaining the heated state, whereby a polyamic acid is formed on the substrate. A liquid crystal alignment film made of an ester derivative is formed.
The polyimide precursor used in the method for producing a liquid crystal alignment film of the present invention includes a repeating unit represented by the following formula [2] and a repeating unit represented by the following formula [1] together with the repeating unit represented by the following formula [1]. It contains at least one selected from repeating units represented. The repeating unit represented by the following formula [2] and formula [3] has a photoreactive group.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 上記式[1]において、Rは2価の有機基である。Rは4価の有機基を表す。Rは水素原子又は炭素数1~6の有機基を表す。Rは水素原子又は炭素数1~6の有機基を表す。nは正の整数を表す。 In the above formula [1], R 1 is a divalent organic group. R 2 represents a tetravalent organic group. R 3 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms. R 4 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms. n 1 represents a positive integer.
 上記式[1]で表される繰り返し単位は、下記の式[1-A]で示されるジアミン成分及び下記の式[1-B]で示されるテトラカルボン酸の無水物であるテトラカルボン酸二無水物成分を用いて得ることができる。 The repeating unit represented by the formula [1] includes a diamine component represented by the following formula [1-A] and a tetracarboxylic acid dihydride which is an anhydride of the tetracarboxylic acid represented by the following formula [1-B]. It can be obtained using an anhydride component.
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
 上記式[1-A]と式[1-B]において、R及びRは、上記式[1]におけるR及びRと同一である。 In the formula [1-A] and the formula [1-B], R 1 and R 2 are the same as R 1 and R 2 in the formula [1].
 上記の式[1-A]で示されるジアミン成分の具体例としては、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4'-ジアミノビフェニル、3,3'-ジメチル-4,4'-ジアミノビフェニル、3,3'-ジメトキシ-4,4'-ジアミノビフェニル、3,3'-ジヒドロキシ-4,4'-ジアミノビフェニル、3,3'-ジカルボキシ-4,4'-ジアミノビフェニル、3,3'-ジフルオロ-4,4'-ジアミノビフェニル、3,4'-ジアミノビフェニル、3,3'-ジアミノビフェニル、2,2'-ジアミノビフェニル、2,3'-ジアミノビフェニル、4,4'-ジアミノジフェニルメタン、3,3'-ジアミノジフェニルメタン、3,4'-ジアミノジフェニルメタン、2,2'-ジアミノジフェニルメタン、2,3'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルエーテル、3,3'-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、2,2'-ジアミノジフェニルエーテル、2,3'-ジアミノジフェニルエーテル、4,4'-スルホニルジアニリン、3,3'-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4'-チオジアニリン、3,3'-チオジアニリン、4,4'-ジアミノジフェニルアミン、3,3'-ジアミノジフェニルアミン、3,4'-ジアミノジフェニルアミン、2,2'-ジアミノジフェニルアミン、2,3'-ジアミノジフェニルアミン、N-メチル(4,4'-ジアミノジフェニル)アミン、N-メチル(3,3'-ジアミノジフェニル)アミン、N-メチル(3,4'-ジアミノジフェニル)アミン、N-メチル(2,2'-ジアミノジフェニル)アミン、N-メチル(2,3'-ジアミノジフェニル)アミン、4,4'-ジアミノベンゾフェノン、3,3'-ジアミノベンゾフェノン、3,4'-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、2,2'-ジアミノベンゾフェノン、2,3'-ジアミノベンゾフェノン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、2,8-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4'-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4'-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4'-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4'-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3'-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3'-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N'-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N'-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N'-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N'-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N'-ビス(4-アミノフェニル)テレフタルアミド、N,N'-ビス(3-アミノフェニル)テレフタルアミド、N,N'-ビス(4-アミノフェニル)イソフタルアミド、N,N'-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4'-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2'-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2'-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2'-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2'-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2'-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2'-ビス(4-アミノフェニル)プロパン、2,2'-ビス(3-アミノフェニル)プロパン、2,2'-ビス(3-アミノ-4-メチルフェニル)プロパン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-(4-アミノフェノキシ)デカン、1,10-(3-アミノフェノキシ)デカン、1,11-(4-アミノフェノキシ)ウンデカン、1,11-(3-アミノフェノキシ)ウンデカン、1,12-(4-アミノフェノキシ)ドデカン、1,12-(3-アミノフェノキシ)ドデカン、4-(アミノメチル)アニリン、3-(アミノメチル)アニリン、3-((アミノメチル)メチル)アニリン、4-(2-アミノエチル)アニリン、3-(2-アミノエチルアニリン)などの芳香族ジアミン、ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン、1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどの脂肪族ジアミンが挙げられる。 Specific examples of the diamine component represented by the above formula [1-A] include p-phenylenediamine, 2,3,5,6-tetramethyl-p-phenylenediamine, and 2,5-dimethyl-p-phenylenediamine. , M-phenylenediamine, 2,4-dimethyl-m-phenylenediamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diamino Phenol, 3,5-diaminobenzyl alcohol, 2,4-diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4′-diaminobiphenyl, 3,3′-dimethyl-4,4′-diaminobiphenyl, 3, 3'-dimethoxy-4,4'-diaminobiphenyl, 3,3'-dihydroxy-4,4'-diaminobiphenyl, 3,3 ' -Dicarboxy-4,4'-diaminobiphenyl, 3,3'-difluoro-4,4'-diaminobiphenyl, 3,4'-diaminobiphenyl, 3,3'-diaminobiphenyl, 2,2'-diaminobiphenyl 2,3′-diaminobiphenyl, 4,4′-diaminodiphenylmethane, 3,3′-diaminodiphenylmethane, 3,4′-diaminodiphenylmethane, 2,2′-diaminodiphenylmethane, 2,3′-diaminodiphenylmethane, 4, , 4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 2,2'-diaminodiphenyl ether, 2,3'-diaminodiphenyl ether, 4,4'-sulfonyldianiline, 3, 3′-sulfonyldianiline, bis (4-aminophenyl) silane, bis ( 3-aminophenyl) silane, dimethyl-bis (4-aminophenyl) silane, dimethyl-bis (3-aminophenyl) silane, 4,4'-thiodianiline, 3,3'-thiodianiline, 4,4'-diaminodiphenylamine 3,3′-diaminodiphenylamine, 3,4′-diaminodiphenylamine, 2,2′-diaminodiphenylamine, 2,3′-diaminodiphenylamine, N-methyl (4,4′-diaminodiphenyl) amine, N-methyl (3,3'-diaminodiphenyl) amine, N-methyl (3,4'-diaminodiphenyl) amine, N-methyl (2,2'-diaminodiphenyl) amine, N-methyl (2,3'-diaminodiphenyl) ) Amine, 4,4'-diaminobenzophenone, 3,3'-diaminobenzophenone, 3,4'-diaminobenzo Zophenone, 1,4-diaminonaphthalene, 2,2'-diaminobenzophenone, 2,3'-diaminobenzophenone, 1,5-diaminonaphthalene, 1,6-diaminonaphthalene, 1,7-diaminonaphthalene, 1,8- Diaminonaphthalene, 2,5-diaminonaphthalene, 2,6-diaminonaphthalene, 2,7-diaminonaphthalene, 2,8-diaminonaphthalene, 1,2-bis (4-aminophenyl) ethane, 1,2-bis ( 3-aminophenyl) ethane, 1,3-bis (4-aminophenyl) propane, 1,3-bis (3-aminophenyl) propane, 1,4-bis (4aminophenyl) butane, 1,4-bis (3-aminophenyl) butane, bis (3,5-diethyl-4-aminophenyl) methane, 1,4-bis (4-aminopheno) Xyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenyl) benzene, 1,3-bis (4-aminophenyl) benzene, 1,4-bis (4 -Aminobenzyl) benzene, 1,3-bis (4-aminophenoxy) benzene, 4,4 '-[1,4-phenylenebis (methylene)] dianiline, 4,4'-[1,3-phenylenebis ( Methylene)] dianiline, 3,4 ′-[1,4-phenylenebis (methylene)] dianiline, 3,4 ′-[1,3-phenylenebis (methylene)] dianiline, 3,3 ′-[1,4 -Phenylenebis (methylene)] dianiline, 3,3 '-[1,3-phenylenebis (methylene)] dianiline, 1,4-phenylenebis [(4-aminophenyl) methanone], 1,4-phenyle Bis [(3-aminophenyl) methanone], 1,3-phenylenebis [(4-aminophenyl) methanone], 1,3-phenylenebis [(3-aminophenyl) methanone], 1,4-phenylenebis ( 4-aminobenzoate), 1,4-phenylenebis (3-aminobenzoate), 1,3-phenylenebis (4-aminobenzoate), 1,3-phenylenebis (3-aminobenzoate), bis (4-amino Phenyl) terephthalate, bis (3-aminophenyl) terephthalate, bis (4-aminophenyl) isophthalate, bis (3-aminophenyl) isophthalate, N, N ′-(1,4-phenylene) bis (4-amino) Benzamide), N, N ′-(1,3-phenylene) bis (4-aminobenzamide), N, N ′-(1, -Phenylene) bis (3-aminobenzamide), N, N '-(1,3-phenylene) bis (3-aminobenzamide), N, N'-bis (4-aminophenyl) terephthalamide, N, N' -Bis (3-aminophenyl) terephthalamide, N, N'-bis (4-aminophenyl) isophthalamide, N, N'-bis (3-aminophenyl) isophthalamide, 9,10-bis (4-amino) Phenyl) anthracene, 4,4′-bis (4-aminophenoxy) diphenylsulfone, 2,2′-bis [4- (4-aminophenoxy) phenyl] propane, 2,2′-bis [4- (4- Aminophenoxy) phenyl] hexafluoropropane, 2,2′-bis (4-aminophenyl) hexafluoropropane, 2,2′-bis (3-aminophenyl) hexa Fluoropropane, 2,2′-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2′-bis (4-aminophenyl) propane, 2,2′-bis (3-aminophenyl) propane, 2,2′-bis (3-amino-4-methylphenyl) propane, 1,3-bis (4-aminophenoxy) propane, 1,3-bis (3-aminophenoxy) propane, 1,4-bis ( 4-aminophenoxy) butane, 1,4-bis (3-aminophenoxy) butane, 1,5-bis (4-aminophenoxy) pentane, 1,5-bis (3-aminophenoxy) pentane, 1,6- Bis (4-aminophenoxy) hexane, 1,6-bis (3-aminophenoxy) hexane, 1,7-bis (4-aminophenoxy) heptane, 1,7- (3-aminophen Noxy) heptane, 1,8-bis (4-aminophenoxy) octane, 1,8-bis (3-aminophenoxy) octane, 1,9-bis (4-aminophenoxy) nonane, 1,9-bis (3 -Aminophenoxy) nonane, 1,10- (4-aminophenoxy) decane, 1,10- (3-aminophenoxy) decane, 1,11- (4-aminophenoxy) undecane, 1,11- (3-amino Phenoxy) undecane, 1,12- (4-aminophenoxy) dodecane, 1,12- (3-aminophenoxy) dodecane, 4- (aminomethyl) aniline, 3- (aminomethyl) aniline, 3-((aminomethyl) ) Aromatic diamines such as methyl) aniline, 4- (2-aminoethyl) aniline, 3- (2-aminoethylaniline), bis (4-amino) To cycloaliphatic diamines such as (cyclohexyl) methane, bis (4-amino-3-methylcyclohexyl) methane, 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diamino And aliphatic diamines such as xanthone, 1,7-diaminoheptane, 1,8-diaminooctane, 1,9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane, etc. .
 また、上記の式[1-A]で示されるジアミン成分のその他の例として、ジアミン側鎖にアルキル基、フッ素含有アルキル基、芳香環、脂肪族環又は複素環を有するもの、又は、これらからなる大環状置換体を有するものなどを挙げることもできる。具体的には、下記式[DA1]~[DA30]で示されるジアミン化合物を例示することができる。 Other examples of the diamine component represented by the above formula [1-A] include those having an alkyl group, a fluorine-containing alkyl group, an aromatic ring, an aliphatic ring or a heterocyclic ring in the diamine side chain, or from these And the like having a macrocyclic substituent. Specifically, diamine compounds represented by the following formulas [DA1] to [DA30] can be exemplified.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
 上記の式[DA1]~[DA6]中、Aは-COO-、-OCO-、-CONH-、-NHCO-、-CH-、-O-、-CO-又はNH-を表し、Aは炭素数1~22の直鎖状若しくは分岐状アルキル基、又は炭素数1~22の直鎖状若しくは分岐状フッ素含有アルキル基を表す。 In the above formulas [DA1] to [DA6], A 2 represents —COO—, —OCO—, —CONH—, —NHCO—, —CH 2 —, —O—, —CO— or NH—. 3 represents a linear or branched alkyl group having 1 to 22 carbon atoms, or a linear or branched fluorine-containing alkyl group having 1 to 22 carbon atoms.
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
 式[DA7]中、pは1~10の整数を表す。 In the formula [DA7], p represents an integer of 1 to 10.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 式[DA8]~[DA12]中、Aは、炭素数2~24のアルキル基又はフッ素含有アルキル基を表す。 In the formulas [DA8] to [DA12], A 4 represents an alkyl group having 2 to 24 carbon atoms or a fluorine-containing alkyl group.
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
 式[DA13]及び式[DA15]中、Aは、-O-、-OCH-、-CHO-、-COOCH-、又は-CHOCO-を表し、Aは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基を表す。 In Formula [DA13] and Formula [DA15], A 5 represents —O—, —OCH 2 —, —CH 2 O—, —COOCH 2 —, or —CH 2 OCO—, and A 6 represents 1 carbon atom. Represents an alkyl group, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group of ˜22.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
 式[DA16]~[DA18]中、Aは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、又は-CH-を表し、Aは炭素数1~22のアルキル基、アルコキシ基、フッ素含有アルキル基又はフッ素含有アルコキシ基を表す。 In the formulas [DA16] to [DA18], A 7 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH 2. — Or —CH 2 —, and A 8 represents an alkyl group having 1 to 22 carbon atoms, an alkoxy group, a fluorine-containing alkyl group or a fluorine-containing alkoxy group.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
 式[DA19]及び式[DA20]中、Aは、-COO-、-OCO-、-CONH-、-NHCO-、-COOCH-、-CHOCO-、-CHO-、-OCH-、-CH-、-O-、又は-NH-を表し、A10はフッ素基、シアノ基、トリフルオロメタン基、ニトロ基、アゾ基、ホルミル基、アセチル基、アセトキシ基、又は水酸基を表す。 In Formula [DA19] and Formula [DA20], A 9 represents —COO—, —OCO—, —CONH—, —NHCO—, —COOCH 2 —, —CH 2 OCO—, —CH 2 O—, —OCH. 2 —, —CH 2 —, —O—, or —NH—, and A 10 represents a fluorine group, a cyano group, a trifluoromethane group, a nitro group, an azo group, a formyl group, an acetyl group, an acetoxy group, or a hydroxyl group. To express.
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
 式[DA21]及び式[DA22]中、A11は、炭素数3~12のアルキル基を表し、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。 In Formula [DA21] and Formula [DA22], A 11 represents an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
 式[DA23]及び式[DA24]中、A12は、炭素数3~12のアルキル基を表し、1,4-シクロヘキシレンのシス-トランス異性は、それぞれトランス異性体である。 In Formula [DA23] and Formula [DA24], A 12 represents an alkyl group having 3 to 12 carbon atoms, and the cis-trans isomerism of 1,4-cyclohexylene is a trans isomer.
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
 上記の式[1-B]で示されるテトラカルボン酸の具体例としては、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、2,3,4,5-テトラヒドロフランテトラカルボン酸、1,2,4,5- シクロヘキサンテトラカルボン酸、3,4-ジカルボキシ-1-シクロヘキシルコハク酸、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸などの脂環式テトラカルボン酸を挙げることができる。 Specific examples of the tetracarboxylic acid represented by the above formula [1-B] include 1,2,3,4-cyclobutanetetracarboxylic acid, 1,2,3,4-cyclopentanetetracarboxylic acid, 2,3 , 4,5-tetrahydrofurantetracarboxylic acid, 1,2,4,5-cyclohexanetetracarboxylic acid, 3,4-dicarboxy-1-cyclohexylsuccinic acid, 3,4-dicarboxy-1,2,3,4 And alicyclic tetracarboxylic acids such as tetrahydro-1-naphthalene succinic acid.
 また、他の例のテトラカルボン酸としては、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3',4,4'-ビフェニルテトラカルボン酸、2,3,3',4-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3',4,4'-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3',4,4'-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸等の二無水物が挙げられる。 Other examples of tetracarboxylic acids include pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8- Naphthalenetetracarboxylic acid, 2,3,6,7-anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3 ′, 4,4′-biphenyltetracarboxylic acid, 2,3, 3 ′, 4-biphenyltetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3 ′, 4,4′-benzophenonetetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl) methane, 2,2-bis (3,4-dicarboxyphenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis ( , 4-dicarboxyphenyl) propane, bis (3,4-dicarboxyphenyl) dimethylsilane, bis (3,4-dicarboxyphenyl) diphenylsilane, 2,3,4,5-pyridinetetracarboxylic acid, 2, 6-bis (3,4-dicarboxyphenyl) pyridine, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic acid, 3,4,9,10-perylenetetracarboxylic acid, 1,3-diphenyl-1 And dianhydrides such as 2,3,4-cyclobutanetetracarboxylic acid.
 本発明の液晶配向膜の製造方法において用いられるポリイミド前駆体は、上記式[1]で表される繰り返し単位とともに、下記の式[2]で表される繰り返し単位及び下記式[3]で表される繰り返し単位から選ばれる少なくともいずれか一方を含有する。下記の式[2]及び式[3]で表される繰り返し単位は、光反応基を有する。したがって、本発明の液晶配向膜の製造方法において用いるポリイミド前駆体は、光反応基を有することになる。光反応基としては、光の照射により架橋反応を生じる基であることが好ましい。 The polyimide precursor used in the method for producing a liquid crystal alignment film of the present invention is represented by the repeating unit represented by the following formula [2] and the repeating unit represented by the following formula [2] together with the repeating unit represented by the above formula [1]. Containing at least one selected from repeating units. The repeating unit represented by the following formula [2] and formula [3] has a photoreactive group. Therefore, the polyimide precursor used in the method for producing a liquid crystal alignment film of the present invention has a photoreactive group. The photoreactive group is preferably a group that causes a crosslinking reaction upon irradiation with light.
 本発明の液晶配向膜の製造方法において用いられるポリイミド前駆体は、上記のように、下記の式[2]及び式[3]で表される繰り返し単位から選ばれる少なくとも一方をも含有する。 As described above, the polyimide precursor used in the method for producing a liquid crystal alignment film of the present invention also contains at least one selected from repeating units represented by the following formula [2] and formula [3].
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
 上記式[2]において、Rは光反応基を構成する2価の有機基を表す。Rは4価の有機基を表す。Rは水素原子又は炭素数1~6の有機基を表す。Rは水素原子又は炭素数1~6の有機基を表す。nは正の整数を表す。 In the above formula [2], R 5 represents a divalent organic group constituting a photoreactive group. R 6 represents a tetravalent organic group. R 7 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms. R 8 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms. n 2 represents a positive integer.
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
 上記式[3]において、Rは2価の有機基を表す。R10は光反応性基を構成する2価の有機基を表す。nは正の整数を表す。 In the above formula [3], R 9 represents a divalent organic group. R 10 represents a divalent organic group constituting a photoreactive group. n 3 represents a positive integer.
 上記式[2]で表される繰り返し単位は、下記の式[2-A]で示されるジアミン成分及び下記の式[2-B]で示されるテトラカルボン酸の無水物であるテトラカルボン酸二無水物成分を用いて得ることができる。 The repeating unit represented by the above formula [2] includes a diamine component represented by the following formula [2-A] and a tetracarboxylic acid dihydrate which is an anhydride of the tetracarboxylic acid represented by the following formula [2-B]. It can be obtained using an anhydride component.
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
 上記式[2-A]と式[2-B]において、R及びRは、上記式[2]におけるR及びRと同一である。 In the formula [2-A] and the formula [2-B], R 5 and R 6 are the same as R 5 and R 6 in the formula [2].
 上記の式[2-A]で示されるジアミン成分としては光架橋性のジアミンを用いることができる。その具体例としては、以下に示す化合物を挙げることができる。 As the diamine component represented by the above formula [2-A], a photocrosslinkable diamine can be used. Specific examples thereof include the following compounds.
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
 上記の式[2-B]で示されるテトラカルボン酸の例としては、上述した式[1-B]で示されるテトラカルボン酸について挙げたものと同様のテトラカルボン酸を挙げることができる。 Examples of the tetracarboxylic acid represented by the above formula [2-B] include the same tetracarboxylic acids as those described above for the tetracarboxylic acid represented by the formula [1-B].
 上記式[3]で表される繰り返し単位は、下記の式[3-A]で示されるジアミン成分及び下記の式[3-B]で示されるジカルボン酸成分を用いて得ることができる。 The repeating unit represented by the above formula [3] can be obtained using a diamine component represented by the following formula [3-A] and a dicarboxylic acid component represented by the following formula [3-B].
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
 上記式[3-A]及び式[3-B]において、R及びR10は、上記式[3]におけるR及びR10と同一である。 In the formula [3-A] and the formula [3-B], R 9 and R 10 are the same as R 9 and R 10 in the formula [3].
 上記の式[3-A]で示されるジアミン成分の例としては、上述の式[1-A]で示されるジアミン成分について挙げたものと同様のジアミン成分を挙げることができる。 Examples of the diamine component represented by the above formula [3-A] include the same diamine components as those described above for the diamine component represented by the above formula [1-A].
 上記の式[3-B]で示されるジカルボン酸成分の具体例としては、以下に示す化合物を挙げることができる。 Specific examples of the dicarboxylic acid component represented by the above formula [3-B] include the compounds shown below.
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
 本発明の液晶配向膜の製造方法で用いられるポリイミド前駆体において、上記式[1]で表される繰り返し単位に対する、上記の式[2]で表される繰り返し単位及び/又は上記式[3]で表される繰り返し単位の含有の比率については、以下のとおりである。
 上記の式[2]で表される繰り返し単位のみが含まれる場合、モル比換算で、(式[1]で表される繰り返し単位)/(式[2]で表される繰り返し単位)は、1/99~99/1の範囲が好ましく、5/95~95/5となる範囲がより好ましい。
 同様に、上記の式[3]で表される繰り返し単位のみが含まれる場合、モル比換算で、(式[1]で表される繰り返し単位)/(式[3]で表される繰り返し単位)は、1/99~99/1の範囲が好ましく、5/95~95/5となる範囲がより好ましい。
 また、上記の式[2]で表される繰り返し単位及び上記の式[3]で表される繰り返し単位の両方が含まれる場合、モル比換算で、(式[1]で表される繰り返し単位)/{(式[2]で表される繰り返し単位)+(式[3]で表される繰り返し単位)}は、1/99~99/1の範囲が好ましく、5/95~95/5となる範囲がより好ましい。
In the polyimide precursor used in the method for producing a liquid crystal alignment film of the present invention, the repeating unit represented by the above formula [2] and / or the above formula [3] with respect to the repeating unit represented by the above formula [1]. The ratio of the content of the repeating unit represented by is as follows.
When only the repeating unit represented by the above formula [2] is included, in terms of molar ratio, (the repeating unit represented by the formula [1]) / (the repeating unit represented by the formula [2]) is The range of 1/99 to 99/1 is preferable, and the range of 5/95 to 95/5 is more preferable.
Similarly, when only the repeating unit represented by the above formula [3] is included, in terms of molar ratio, (the repeating unit represented by the formula [1]) / (the repeating unit represented by the formula [3] ) Is preferably in the range of 1/99 to 99/1, more preferably in the range of 5/95 to 95/5.
Further, when both the repeating unit represented by the above formula [2] and the repeating unit represented by the above formula [3] are included, the repeating unit represented by the formula [1] in terms of molar ratio ) / {(Repeating unit represented by Formula [2]) + (Repeating unit represented by Formula [3])} is preferably in the range of 1/99 to 99/1, and 5/95 to 95/5. The range which becomes is more preferable.
 本発明において、前記光反応基を有するポリイミド前駆体は、下記の式(4)で表される新規なジアミンを含むジアミン成分とテトラカルボン酸二無水物とを重縮合反応させて得られるポリイミド前駆体であることができる。 In the present invention, the polyimide precursor having the photoreactive group is a polyimide precursor obtained by polycondensation reaction of a diamine component containing a novel diamine represented by the following formula (4) and tetracarboxylic dianhydride. Can be the body.
Figure JPOXMLDOC01-appb-C000028
 式(4)における、X、X、X、X、Xは、上記において定義したとおりである。式(4)中には、1つ以上のシンナモイル基を有する。なお、式(4)においてシンナモイル基は、下記の式で表され、式(4)で表されるジアミンは、少なくとも1つ、好ましくは2~4個のシンナモイル基を有する。
Figure JPOXMLDOC01-appb-C000028
In formula (4), X 1 , X 2 , X 3 , X 4 , and X 5 are as defined above. In formula (4), it has one or more cinnamoyl groups. In formula (4), the cinnamoyl group is represented by the following formula, and the diamine represented by formula (4) has at least one, preferably 2 to 4 cinnamoyl groups.
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
 また、式(4)において、ベンゼン環が有するアミノ基(-NH)の位置は特に限定されないが、液晶配向性能や合成のし易さの観点から、例えば、それぞれ-X-X-X-X-X-に対してパラ位又はメタ位に存在することが好ましい。 In the formula (4), the position of the amino group (—NH 2 ) of the benzene ring is not particularly limited. However, from the viewpoint of liquid crystal alignment performance and ease of synthesis, for example, —X 1 —X 2 — It is preferably present in the para position or the meta position with respect to X 3 -X 4 -X 5- .
 式(4)で表される好ましいジアミンとしては、下記ジアミンが挙げられる。 Preferred diamines represented by the formula (4) include the following diamines.
Figure JPOXMLDOC01-appb-C000030
(式中、Xは独立して単結合、エーテル(-O-)、エステル(-COO-又は-OCO-)又はアミド(-CONH-又は-NHCO-)の結合基を表し、Yは独立して単結合又は炭素数1~5のアルキレン基を表し、Zは独立して炭素数1~10のアルキレン基又はフェニレン基を表す。各式においては、ベンゼン環上のアミノ基の結合位置や、中央のベンゼン環に対する結合基の位置は特に限定されない。)
Figure JPOXMLDOC01-appb-C000030
(Wherein X independently represents a single bond, a bonding group of ether (—O—), ester (—COO— or —OCO—) or amide (—CONH— or —NHCO—), and Y represents independently Each represents a single bond or an alkylene group having 1 to 5 carbon atoms, and Z independently represents an alkylene group having 1 to 10 carbon atoms or a phenylene group, and in each formula, the bonding position of an amino group on the benzene ring, (The position of the linking group with respect to the central benzene ring is not particularly limited.)
 式(4)で表されるジアミンの具体例としては、下記ジアミンが挙げられる。
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-I000032
Specific examples of the diamine represented by the formula (4) include the following diamines.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-I000032
 上記式(4)で表される本発明のジアミンを原料とするポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体、ポリイミド、ポリアミド等を含有する液晶配向処理剤を用いて形成される液晶配向膜は、AC(交流)駆動による液晶配向性能の変化、例えば、液晶の配向方位の変化が低減されたものである。したがって、この液晶配向膜を有する液晶表示素子は、AC駆動での液晶配向膜の液晶配向性能が安定なため、AC駆動により残像が生じ難く、AC駆動による残像特性が非常に良好であるという効果を奏する。また、上記式(4)で表されるジアミンを用いて形成された液晶配向膜は、液晶配向性能も優れており、配向欠陥が実質的に無いものとすることができる。 The liquid crystal alignment film formed using the liquid crystal aligning agent containing polyimide precursors, such as polyamic acid and polyamic acid ester which use the diamine of this invention represented by the said Formula (4) as a raw material, polyimide, polyamide, etc. is , Changes in the liquid crystal alignment performance due to AC (alternating current) drive, for example, changes in the alignment orientation of the liquid crystal are reduced. Therefore, the liquid crystal display element having this liquid crystal alignment film has the effect that the liquid crystal alignment performance of the liquid crystal alignment film by AC driving is stable, so that an afterimage is hardly generated by AC driving and the afterimage characteristics by AC driving are very good. Play. In addition, the liquid crystal alignment film formed using the diamine represented by the above formula (4) has excellent liquid crystal alignment performance and can be substantially free of alignment defects.
 このように、上記式(4)で表されるジアミンを用いて得られる液晶配向膜、及び該液晶配向膜を有する液晶表示素子が、AC駆動による液晶配向性能の変化が低減し、AC駆動による残像が生じ難い理由は、必ずしも明らかではないが、以下のように推測される。例えば、ポリイミド前駆体、ポリイミド、ポリイミド等の主鎖に、液晶に配向性を付与することができる式(4)で表されるジアミン由来の特定の光反応性基(すなわち-HN-C-X-X-X-X-X-C-NH-)を導入することにより、AC駆動によって液晶が動いても、式(4)で表されるジアミン由来の特定の光反応性基が動かされ難くなり、配向方位がずれ難くなるためと推測される。 As described above, the liquid crystal alignment film obtained by using the diamine represented by the above formula (4) and the liquid crystal display element having the liquid crystal alignment film reduce the change in the liquid crystal alignment performance due to AC driving, and the AC driving. The reason why the afterimage is difficult to occur is not necessarily clear, but is estimated as follows. For example, a specific photoreactive group derived from a diamine represented by the formula (4) capable of imparting orientation to a liquid crystal on a main chain of a polyimide precursor, polyimide, polyimide or the like (that is, —HN—C 6 H). By introducing 4- X 1 -X 2 -X 3 -X 4 -X 5 -C 6 H 4 -NH-), it is derived from the diamine represented by the formula (4) even if the liquid crystal moves by AC driving It is presumed that this specific photoreactive group is difficult to move and the orientation orientation is difficult to shift.
 一方、本発明の式(4)で表されるジアミンに由来する構造(特定の光反応性基)を、ポリイミド前駆体、ポリイミド、ポリイミド等の主鎖ではなく側鎖に導入した場合は、AC駆動によって動いた液晶に押し付けられて側鎖が動き、この側鎖の動きにあわせて液晶に配向性を付与する式(4)で表されるジアミンに由来する構造が動くため、配向方位が大きくずれ、残像が生じやすい。 On the other hand, when the structure (specific photoreactive group) derived from the diamine represented by the formula (4) of the present invention is introduced into the side chain instead of the main chain of polyimide precursor, polyimide, polyimide, etc., AC The side chain moves when pressed against the liquid crystal moved by driving, and the structure derived from the diamine represented by the formula (4) that imparts orientation to the liquid crystal moves in accordance with the movement of the side chain. Deviation and afterimage are likely to occur.
 式(4)で表されるジアミンの合成方法は、特に限定されず、例えば後述する合成例に従って製造することができる。上記式(a)で表されるジアミンであれば、以下に示す方法によって合成することができる。 The method for synthesizing the diamine represented by the formula (4) is not particularly limited, and can be produced, for example, according to the synthesis examples described later. Any diamine represented by the above formula (a) can be synthesized by the following method.
 式(a)で表されるジアミンは、対応する下記式(a')で表されるジニトロ化合物を合成し、さらにニトロ基を溶媒中で還元しアミノ基に変換することで得られる。ジニトロ化合物を還元する方法には、特に制限はなく、通常、パラジウム-炭素、酸化白金、ラネーニッケル、鉄、塩化スズ、白金黒、ロジウム-アルミナ、硫化白金炭素などを触媒として用いる。なお、オレフィンを還元せずに残したままニトロ基のみを高収率で選択的に還元するという観点からは、鉄や塩化スズを用いた化学還元法を用いることが有効である。還元は、溶媒として、酢酸エチル、トルエン、テトラヒドロフラン、ジオキサン、アルコール系などの溶媒を用い、還元剤として、水素ガス、ヒドラジン、塩化水素、塩化アンモニウムなどを用いた反応によって行う。 The diamine represented by the formula (a) can be obtained by synthesizing a corresponding dinitro compound represented by the following formula (a ′), and further reducing the nitro group in a solvent to convert it to an amino group. The method for reducing the dinitro compound is not particularly limited, and palladium-carbon, platinum oxide, Raney nickel, iron, tin chloride, platinum black, rhodium-alumina, platinum carbon sulfide and the like are usually used as a catalyst. From the viewpoint of selectively reducing only the nitro group with high yield while leaving the olefin unreduced, it is effective to use a chemical reduction method using iron or tin chloride. The reduction is performed by a reaction using a solvent such as ethyl acetate, toluene, tetrahydrofuran, dioxane, or alcohol as a solvent, and using hydrogen gas, hydrazine, hydrogen chloride, ammonium chloride, or the like as a reducing agent.
Figure JPOXMLDOC01-appb-C000033
(式中、X及びYは、それぞれ式(a)におけるX及びYと同義である。)
Figure JPOXMLDOC01-appb-C000033
(In the formula, X and Y have the same meanings as X and Y in formula (a), respectively).
 式(a')で表されるジニトロ化合物の合成方法は特に限定されず、任意の方法により合成することができる。その具体例としては、例えば、以下の反応式に示される方法で合成することができる。 The synthesis method of the dinitro compound represented by the formula (a ′) is not particularly limited, and can be synthesized by any method. As a specific example, for example, it can be synthesized by the method shown in the following reaction formula.
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
 上記反応において、ニトロベンゼン化合物Aとカルボン酸を有する化合物Bとを反応させる方法としては、有機溶媒中、例えば、DMAP/DCC、もしくはDMAP/EDCを用いた直接縮合法、カルボン酸を塩化チオニル、塩化オキサリル、塩化ホスホリル、塩化スルフリル、三塩化リン等を用いて酸塩化物としてから反応させる方法がある。なお、DMAPとは4-N,N-ジメチルアミノピリジンであり、DCCとはジシクロヘキシルカルボジイミドであり、EDCとは1-(3-ジメチルアミノプロピル)-3-エチルカルボジイミド塩酸塩である。 In the above reaction, the nitrobenzene compound A and the compound B having a carboxylic acid can be reacted with each other in a direct condensation method using, for example, DMAP / DCC or DMAP / EDC in an organic solvent, and the carboxylic acid is thionyl chloride, chloride. There is a method of reacting an acid chloride after using oxalyl, phosphoryl chloride, sulfuryl chloride, phosphorus trichloride or the like. DMAP is 4-N, N-dimethylaminopyridine, DCC is dicyclohexylcarbodiimide, and EDC is 1- (3-dimethylaminopropyl) -3-ethylcarbodiimide hydrochloride.
 上記ニトロベンゼン化合物Aにおいて、X及びYはそれぞれ式(a)におけるX及びYと同義であり、具体例としては、4-ニトロフェノール、3-ニトロフェノール、2-ニトロフェノール、4-ニトロベンジルアルコール、3-ニトロベンジルアルコール、2-ニトロベンジルアルコール、4-ニトロフェネチルアルコール、3-ニトロフェネチルアルコール、2-ニトロフェネチルアルコール等が挙げられる。必要に応じてベンゼン環と水酸基との間には、連結基Yが挿入されていても良い。また、ベンゼン環上には、その他の置換基が結合していても良く、ベンゼン環上のニトロ基の置換位置は、目的とするジアミンが得られる置換位置のものが適宜選択される。なお、ここに示した化合物は一例であり、特に限定されるものではない。 In the nitrobenzene compound A, X and Y have the same meanings as X and Y in the formula (a), respectively. Specific examples include 4-nitrophenol, 3-nitrophenol, 2-nitrophenol, 4-nitrobenzyl alcohol, Examples include 3-nitrobenzyl alcohol, 2-nitrobenzyl alcohol, 4-nitrophenethyl alcohol, 3-nitrophenethyl alcohol, 2-nitrophenethyl alcohol and the like. A linking group Y may be inserted between the benzene ring and the hydroxyl group as necessary. Further, other substituents may be bonded on the benzene ring, and the substitution position of the nitro group on the benzene ring is appropriately selected from those at which the target diamine is obtained. In addition, the compound shown here is an example and is not specifically limited.
 有機溶媒としては、反応に影響を及ぼさない溶媒、具体的には、トルエン、キシレン等の芳香族系溶媒;ヘキサン、ヘプタン等の脂肪族炭化水素系溶媒;ジクロロメタン、1,2-ジクロロエタン等のハロゲン系溶媒;テトラヒドロフラン、1,4-ジオキサンなどのエーテル系溶媒;N,N-ジメチルホルムアミド;N,N-ジメチルアセトアミド;N-メチルピロリドン;ジメチルスルホキシド等の非プロトン性極性溶媒を単独、あるいは複数混合して用いることもできる。またこれらの使用量は任意である。 Examples of the organic solvent include solvents that do not affect the reaction, specifically, aromatic solvents such as toluene and xylene; aliphatic hydrocarbon solvents such as hexane and heptane; halogens such as dichloromethane and 1,2-dichloroethane. Solvents; ether solvents such as tetrahydrofuran and 1,4-dioxane; N, N-dimethylformamide; N, N-dimethylacetamide; N-methylpyrrolidone; aprotic polar solvents such as dimethylsulfoxide alone or in combination It can also be used. Moreover, these usage-amounts are arbitrary.
 他のジアミンも上記式(a)で表されるジアミンと同様な手法を用いることで合成することができる。 Other diamines can also be synthesized by using the same technique as the diamine represented by the above formula (a).
 本発明のポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体は、上記式(4)で表されるジアミンを含むジアミン成分と、テトラカルボン酸成分と反応させることにより、得られるものである。なお、ポリアミック酸エステルは、ポリアミック酸のカルボキシル基をエステルに変換する方法でも得られる。また、これらポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体をイミド化することで、本発明のポリイミドが得られる。
 また、本発明のポリアミドは、上記式(4)で表されるジアミンを含むジアミン成分とジカルボン酸のハライドとを塩基存在下で反応させる、又は上記式(1)で表されるジアミンを含むジアミン成分とジカルボン酸とを適当な縮合剤、塩基の存在下にて反応させることによって得られる。
 ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体、ポリイミド及びポリアミドのいずれも液晶配向膜を得るための重合体として有用である。なお、ジアミン成分に含まれる式(4)で表されるジアミンは、1種類でも2種類以上でもよく、また、ジアミン成分は、式(4)で表されるジアミン以外のその他のジアミンを1種類又は2種類以上含んでいてもよい。
The polyimide precursors such as polyamic acid and polyamic acid ester of the present invention are obtained by reacting a diamine component containing a diamine represented by the above formula (4) with a tetracarboxylic acid component. In addition, polyamic acid ester is obtained also by the method of converting the carboxyl group of polyamic acid into ester. Moreover, the polyimide of this invention is obtained by imidating polyimide precursors, such as these polyamic acids and polyamic acid ester.
Moreover, the polyamide of this invention makes the diamine component and the dicarboxylic acid halide containing the diamine represented by the said Formula (4) react in base presence, or the diamine containing the diamine represented by the said Formula (1). It can be obtained by reacting the component with dicarboxylic acid in the presence of a suitable condensing agent and base.
Any of polyimide precursors such as polyamic acid and polyamic acid ester, polyimide, and polyamide are useful as a polymer for obtaining a liquid crystal alignment film. In addition, 1 type or 2 or more types may be sufficient as the diamine represented by Formula (4) contained in a diamine component, and a diamine component is 1 type of other diamines other than the diamine represented by Formula (4). Or two or more types may be included.
 式(4)で表されるジアミンの含有量は、ジアミン成分全量に対して10モル%以上であり、30~100モル%であることが好ましく、さらに好ましくは50~100モル%である。
 なお、本明細書において、特に記載がなければ、割合は、モル数を基準とするものである。
The content of the diamine represented by the formula (4) is 10 mol% or more, preferably 30 to 100 mol%, more preferably 50 to 100 mol%, based on the total amount of the diamine component.
In the present specification, unless otherwise specified, the ratio is based on the number of moles.
 また、ジアミン成分が含有していてもよい上記式(4)で表されるジアミン以外のその他のジアミンの例としては、上記式[1-A]で示されるジアミン成分の具体例として挙げたジアミン使用できる。 Examples of other diamines other than the diamine represented by the above formula (4) that may be contained in the diamine component include the diamines listed as specific examples of the diamine component represented by the above formula [1-A]. Can be used.
 上記のその他のジアミンは、液晶配向膜とした際の液晶配向性、電圧保持率、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The above-mentioned other diamines can be used alone or in combination of two or more depending on the properties such as liquid crystal orientation, voltage holding ratio, and accumulated charge when the liquid crystal alignment film is used.
 テトラカルボン酸成分とは、テトラカルボン酸及びテトラカルボン酸誘導体から選択される少なくとも一種である。テトラカルボン酸誘導体としては、テトラカルボン酸ジハライド、テトラカルボン酸二無水物、テトラカルボン酸ジエステルジクロリド、テトラカルボン酸ジエステル等が挙げられる。
 例えば、テトラカルボン酸ジハライド、テトラカルボン酸二無水物などとジアミン成分とを反応させることで、ポリアミック酸を得ることができる。また、テトラカルボン酸ジエステルジクロリドとジアミン成分との反応や、テトラカルボン酸ジエステルとジアミン成分とを適当な縮合剤や塩基の存在下で反応させることにより、ポリアミック酸エステルを得ることができる。なお、用いるテトラカルボン酸成分は、1種類でも2種類以上でもよい。
The tetracarboxylic acid component is at least one selected from tetracarboxylic acids and tetracarboxylic acid derivatives. Examples of the tetracarboxylic acid derivative include tetracarboxylic acid dihalide, tetracarboxylic dianhydride, tetracarboxylic acid diester dichloride, and tetracarboxylic acid diester.
For example, a polyamic acid can be obtained by reacting a diamine component with a tetracarboxylic acid dihalide, tetracarboxylic dianhydride, or the like. In addition, a polyamic acid ester can be obtained by reacting a tetracarboxylic acid diester dichloride with a diamine component or reacting a tetracarboxylic acid diester with a diamine component in the presence of an appropriate condensing agent or base. In addition, the tetracarboxylic acid component to be used may be one type or two or more types.
 テトラカルボン酸成分としては、下記式(5)で示されるテトラカルボン酸二無水物が挙げられる。 Examples of the tetracarboxylic acid component include a tetracarboxylic dianhydride represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000035
(式(5)中、Zは炭素数4~8の非芳香族環状炭化水素基を含有する、炭素数4~13の4価の有機基である。)
Figure JPOXMLDOC01-appb-C000035
(In Formula (5), Z 1 is a tetravalent organic group having 4 to 13 carbon atoms and containing a non-aromatic cyclic hydrocarbon group having 4 to 8 carbon atoms.)
 式(5)中、Zの具体例としては、下記式(5a)~(5j)で表される4価の有機基が挙げられる。 In formula (5), specific examples of Z 1 include tetravalent organic groups represented by the following formulas (5a) to (5j).
Figure JPOXMLDOC01-appb-C000036

(式(5a)中、Z~Zは水素原子、メチル基、塩素原子又はベンゼン環を表し、それぞれ、同じであっても異なってもよく、式(5g)中、Z及びZは水素原子又はメチル基を表し、それぞれ、同じであっても異なってもよい。)
Figure JPOXMLDOC01-appb-C000036

(In formula (5a), Z 2 to Z 5 represent a hydrogen atom, a methyl group, a chlorine atom or a benzene ring, and may be the same or different. In formula (5g), Z 6 and Z 7 Represents a hydrogen atom or a methyl group, which may be the same or different.
 Zの特に好ましい構造は、重合反応性や合成の容易性から、式(5a)、式(5c)、式(5d)、式(5e)、式(5f)又は式(5g)である。なかでも、式(5a)、式(5e)、式(5f)又は式(5g)が好ましい。 A particularly preferable structure of Z 1 is the formula (5a), the formula (5c), the formula (5d), the formula (5e), the formula (5f), or the formula (5g) from the viewpoint of polymerization reactivity and ease of synthesis. Especially, a formula (5a), a formula (5e), a formula (5f), or a formula (5g) is preferred.
 また、テトラカルボン酸成分全量に対する式(5)で示されるテトラカルボン酸二無水物の割合は特に限定されず、例えば、テトラカルボン酸成分が上記式(5)で示されるテトラカルボン酸二無水物のみでもよい。勿論、テトラカルボン酸成分は、本発明の効果を損なわない限りにおいて、式(5)で示されるテトラカルボン酸二無水物以外のテトラカルボン酸やテトラカルボン酸誘導体を含んでいてもよい。その際、テトラカルボン酸成分全量の1モル%以上が上記式(5)で示されるテトラカルボン酸二無水物であることが好ましく、より好ましくは、5モル%以上、さらに好ましくは、10モル%以上である。 Moreover, the ratio of the tetracarboxylic dianhydride shown by Formula (5) with respect to the tetracarboxylic acid component whole quantity is not specifically limited, For example, the tetracarboxylic dianhydride whose tetracarboxylic acid component is shown by the said Formula (5) is mentioned. It may be only. Of course, the tetracarboxylic acid component may contain a tetracarboxylic acid or a tetracarboxylic acid derivative other than the tetracarboxylic dianhydride represented by the formula (5) as long as the effects of the present invention are not impaired. In that case, it is preferable that 1 mol% or more of the total amount of the tetracarboxylic acid component is the tetracarboxylic dianhydride represented by the above formula (5), more preferably 5 mol% or more, and still more preferably 10 mol%. That's it.
 上記式(5)で示されるテトラカルボン酸二無水物以外のその他のテトラカルボン酸二無水物としては、上記式[1-B]で示されるテトラカルボン酸の他の例として挙げられたテトララカルボン酸二無水物が同様に使用できる。 Examples of other tetracarboxylic dianhydrides other than the tetracarboxylic dianhydride represented by the above formula (5) include the tetracarboxylic acids exemplified as other examples of the tetracarboxylic acid represented by the above formula [1-B]. Carboxylic dianhydrides can be used as well.
 テトラカルボン酸ジエステルも特に限定されない。その具体例を以下に挙げる。
 脂肪族テトラカルボン酸ジエステルの具体的な例としては1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-シクロペンタンテトラカルボン酸ジアルキルエステル、2,3,4,5-テトラヒドロフランテトラカルボン酸ジアルキルエステル、1,2,4,5-シクロヘキサンテトラカルボン酸ジアルキルエステル、3,4-ジカルボキシ-1-シクロヘキシルコハク酸ジアルキルエステル、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸ジアルキルエステル、1,2,3,4-ブタンテトラカルボン酸ジアルキルエステル、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸ジアルキルエステル、3,3',4,4'-ジシクロヘキシルテトラカルボン酸ジアルキルエステル、2,3,5-トリカルボキシシクロペンチル酢酸ジアルキルエステル、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸ジアルキルエステル、トリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-ジアルキルエステル、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-ジアルキルエステル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボンジアルキルエステル等が挙げられる。
Tetracarboxylic acid diesters are not particularly limited. Specific examples are given below.
Specific examples of the aliphatic tetracarboxylic acid diester include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1 , 3-Dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2, 3,4-cyclopentanetetracarboxylic acid dialkyl ester, 2,3,4,5-tetrahydrofurantetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid dialkyl ester, 3,4-dicarboxy-1 -Cyclohexyl succinic acid dialkyl ester, 3,4-dicarboxy- , 2,3,4-Tetrahydro-1-naphthalene succinic acid dialkyl ester, 1,2,3,4-butanetetracarboxylic acid dialkyl ester, bicyclo [3,3,0] octane-2,4,6,8- Tetracarboxylic acid dialkyl ester, 3,3 ′, 4,4′-dicyclohexyltetracarboxylic acid dialkyl ester, 2,3,5-tricarboxycyclopentylacetic acid dialkyl ester, cis-3,7-dibutylcycloocta-1,5- Diene-1,2,5,6-tetracarboxylic acid dialkyl ester, tricyclo [4.2.1.0 2,5 ] nonane-3,4,7,8-tetracarboxylic acid-3, 4: 7,8 A dialkyl ester, hexacyclo [6.6.0.1 2,7 . 0 3,6 . 1 9,14 . 0 10,13] hexadecane -4,5,11,12- tetracarboxylic acid-4,5: 11,12-dialkyl ester, 4- (2,5-di-oxo-tetrahydrofuran-3-yl) -1,2, Examples include 3,4-tetrahydronaphthalene-1,2-dicarboxylic dialkyl ester.
 芳香族テトラカルボン酸ジアルキルエステルとしては、ピロメリット酸ジアルキルエステル、3,3',4,4'-ビフェニルテトラカルボン酸ジアルキルエステル、2,2',3,3'-ビフェニルテトラカルボン酸ジアルキルエステル、2,3,3',4-ビフェニルテトラカルボン酸ジアルキルエステル、3,3',4,4'-ベンゾフェノンテトラカルボン酸ジアルキルエステル、2,3,3',4-ベンゾフェノンテトラカルボン酸ジアルキルエステル、ビス(3,4-ジカルボキシフェニル)エーテルジアルキルエステル、ビス(3,4-ジカルボキシフェニル)スルホンジアルキルエステル、1,2,5,6-ナフタレンテトラカルボン酸ジアルキルエステル、2,3,6,7-ナフタレンテトラカルボン酸ジアルキルエステル等が挙げられる。 Examples of the aromatic tetracarboxylic acid dialkyl ester include pyromellitic acid dialkyl ester, 3,3 ′, 4,4′-biphenyltetracarboxylic acid dialkyl ester, 2,2 ′, 3,3′-biphenyltetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-biphenyltetracarboxylic acid dialkyl ester, 3,3 ′, 4,4′-benzophenone tetracarboxylic acid dialkyl ester, 2,3,3 ′, 4-benzophenone tetracarboxylic acid dialkyl ester, bis (3,4-dicarboxyphenyl) ether dialkyl ester, bis (3,4-dicarboxyphenyl) sulfone dialkyl ester, 1,2,5,6-naphthalenetetracarboxylic acid dialkyl ester, 2,3,6,7- Naphthalenetetracarboxylic acid dialkyl ester, etc. It is.
 本発明のポリアミドを得るためにジアミン成分と反応させるジカルボン酸等は特に限定されない。ポリアミドを得るためにジアミン成分と反応させるジカルボン酸又はその誘導体の脂肪族ジカルボン酸の具体例として、マロン酸、蓚酸、ジメチルマロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、ムコン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、3,3-ジエチルコハク酸、アゼライン酸、セバシン酸、スベリン酸等を挙げることができる。 The dicarboxylic acid to be reacted with the diamine component to obtain the polyamide of the present invention is not particularly limited. Specific examples of the dicarboxylic acid or its derivative aliphatic dicarboxylic acid to be reacted with a diamine component to obtain a polyamide include malonic acid, succinic acid, dimethylmalonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, muconic acid, 2 -Methyladipic acid, trimethyladipic acid, pimelic acid, 2,2-dimethylglutaric acid, 3,3-diethylsuccinic acid, azelaic acid, sebacic acid, suberic acid and the like.
 脂環式系のジカルボン酸としては、1,1-シクロプロパンジカルボン酸、1,2-シクロプロパンジカルボン酸、1,1-シクロブタンジカルボン酸、1,2-シクロブタンジカルボン酸、1,3-シクロブタンジカルボン酸、3,4-ジフェニル-1,2-シクロブタンジカルボン酸、2,4-ジフェニル-1,3-シクロブタンジカルボン酸、1-シクロブテン-1,2-ジカルボン酸、1-シクロブテン-3,4-ジカルボン酸、1,1-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,1-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,4-(2-ノルボルネン)ジカルボン酸、ノルボルネン-2,3-ジカルボン酸、ビシクロ[2.2.2]オクタン-1,4-ジカルボン酸、ビシクロ[2.2.2]オクタン-2,3-ジカルボン酸、2,5-ジオキソ-1,4-ビシクロ[2.2.2]オクタンジカルボン酸、1,3-アダマンタンジカルボン酸、4,8-ジオキソ-1,3-アダマンタンジカルボン酸、2,6-スピロ[3.3]ヘプタンジカルボン酸、1,3-アダマンタン二酢酸、カンファ-酸等を挙げることができる。 Examples of the alicyclic dicarboxylic acid include 1,1-cyclopropanedicarboxylic acid, 1,2-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, and 1,3-cyclobutanedicarboxylic acid. Acid, 3,4-diphenyl-1,2-cyclobutanedicarboxylic acid, 2,4-diphenyl-1,3-cyclobutanedicarboxylic acid, 1-cyclobutene-1,2-dicarboxylic acid, 1-cyclobutene-3,4-dicarboxylic acid Acid, 1,1-cyclopentanedicarboxylic acid, 1,2-cyclopentanedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,1-cyclohexanedicarboxylic acid, 1,2-cyclohexanedicarboxylic acid, 1,3-cyclohexane Dicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1,4- (2-nor Lunene) dicarboxylic acid, norbornene-2,3-dicarboxylic acid, bicyclo [2.2.2] octane-1,4-dicarboxylic acid, bicyclo [2.2.2] octane-2,3-dicarboxylic acid, 2, 5-dioxo-1,4-bicyclo [2.2.2] octane dicarboxylic acid, 1,3-adamantane dicarboxylic acid, 4,8-dioxo-1,3-adamantane dicarboxylic acid, 2,6-spiro [3. 3] Heptanedicarboxylic acid, 1,3-adamantanediacetic acid, camphoric acid and the like.
 芳香族ジカルボン酸としては、o-フタル酸、イソフタル酸、テレフタル酸、5-メチルイソフタル酸、5-tert-ブチルイソフタル酸、5-アミノイソフタル酸、5-ヒドロキシイソフタル酸、2,5-ジメチルテレフタル酸、テトラメチルテレフタル酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-アントラセンジカルボン酸、1,4-アントラキノンジカルボン酸、2,5-ビフェニルジカルボン酸、4,4'-ビフェニルジカルボン酸、1,5-ビフェニレンジカルボン酸、4,4"-タ-フェニルジカルボン酸、4,4'-ジフェニルメタンジカルボン酸、4,4'-ジフェニルエタンジカルボン酸、4,4'-ジフェニルプロパンジカルボン酸、4,4'-ジフェニルヘキサフルオロプロパンジカルボン酸、4,4'-ジフェニルエーテルジカルボン酸、4,4'-ビベンジルジカルボン酸、4,4'-スチルベンジカルボン酸、4,4'-トランジカルボン酸、4,4'-カルボニル二安息香酸、4,4'-スルホニル二安息香酸、4,4'-ジチオ二安息香酸、p-フェニレン二酢酸、3,3'-p-フェニレンジプロピオン酸、4-カルボキシ桂皮酸、p-フェニレンジアクリル酸、3,3'-[4,4'-(メチレンジ-p-フェニレン)]ジプロピオン酸、4,4'-[4,4'-(オキシジ-p-フェニレン)]ジプロピオン酸、4,4'-[4,4'-(オキシジ-p-フェニレン)]二酪酸、(イソプロピリデンジ-p-フェニレンジオキシ)二酪酸、ビス(p-カルボキシフェニル)ジメチルシラン等のジカルボン酸等を挙げることができる。 As aromatic dicarboxylic acids, o-phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 5-tert-butylisophthalic acid, 5-aminoisophthalic acid, 5-hydroxyisophthalic acid, 2,5-dimethylterephthalic acid Acid, tetramethylterephthalic acid, 1,4-naphthalenedicarboxylic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 1,4-anthracenedicarboxylic acid, 1,4 Anthraquinone dicarboxylic acid, 2,5-biphenyl dicarboxylic acid, 4,4'-biphenyl dicarboxylic acid, 1,5-biphenylene dicarboxylic acid, 4,4 "-terphenyl dicarboxylic acid, 4,4'-diphenylmethane dicarboxylic acid, 4,4'-diphenylethanedicarboxylic acid, 4,4'-diphenyl Lopandicarboxylic acid, 4,4'-diphenylhexafluoropropanedicarboxylic acid, 4,4'-diphenyl ether dicarboxylic acid, 4,4'-bibenzyldicarboxylic acid, 4,4'-stilbene dicarboxylic acid, 4,4'-tolane Dicarboxylic acid, 4,4′-carbonyldibenzoic acid, 4,4′-sulfonyldibenzoic acid, 4,4′-dithiodibenzoic acid, p-phenylenediacetic acid, 3,3′-p-phenylenedipropionic acid 4-carboxycinnamic acid, p-phenylenediacrylic acid, 3,3 ′-[4,4 ′-(methylenedi-p-phenylene)] dipropionic acid, 4,4 ′-[4,4 ′-(oxydi) -P-phenylene)] dipropionic acid, 4,4 '-[4,4'-(oxydi-p-phenylene)] butyric acid, (isopropylidenedi-p-phenylenedioxy) dibutyric acid, bis (p- Cal And dicarboxylic acids such as (boxyphenyl) dimethylsilane.
 複素環を含むジカルボン酸としては、1,5-(9-オキソフルオレン)ジカルボン酸、3,4-フランジカルボン酸、4,5-チアゾールジカルボン酸、2-フェニル-4,5-チアゾールジカルボン酸、1,2,5-チアジアゾール-3,4-ジカルボン酸、1,2,5-オキサジアゾール-3,4-ジカルボン酸、2,3-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、2,6-ピリジンジカルボン酸、3,4-ピリジンジカルボン酸、3,5-ピリジンジカルボン酸等を挙げることができる。 Examples of the dicarboxylic acid containing a heterocyclic ring include 1,5- (9-oxofluorene) dicarboxylic acid, 3,4-furandicarboxylic acid, 4,5-thiazole dicarboxylic acid, 2-phenyl-4,5-thiazole dicarboxylic acid, 1,2,5-thiadiazole-3,4-dicarboxylic acid, 1,2,5-oxadiazole-3,4-dicarboxylic acid, 2,3-pyridinedicarboxylic acid, 2,4-pyridinedicarboxylic acid, 2, Examples include 5-pyridinedicarboxylic acid, 2,6-pyridinedicarboxylic acid, 3,4-pyridinedicarboxylic acid, and 3,5-pyridinedicarboxylic acid.
 上記の各種ジカルボン酸は酸ジハライドあるいは無水物の構造のものであってもよい。これらのジカルボン酸類は、特に直線的な構造のポリアミドを与えることが可能なジカルボン酸類であることが液晶分子の配向性を保つ上から好ましい。これらの中でも、テレフタル酸、イソテレフタル酸、1,4-シクロヘキサンジカルボン酸、4,4'-ビフェニルジカルボン酸、4,4'-ジフェニルメタンジカルボン酸、4,4'-ジフェニルエタンジカルボン酸、4,4'-ジフェニルプロパンジカルボン酸、4,4'-ジフェニルヘキサフルオロプロパンジカルボン酸、2,2-ビス(フェニル)プロパンジカルボン酸、4,4"-ターフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、2,5-ピリジンジカルボン酸、これらの酸ジハライド等が好ましく用いられる。上記化合物には異性体が存在するものもあるが、それらを含む混合物であってもよい。また、2種以上の化合物を併用してもよい。なお、本発明に使用するジカルボン酸類は、上記の例示化合物に限定されるものではない。 The above various dicarboxylic acids may have an acid dihalide or anhydride structure. These dicarboxylic acids are preferably dicarboxylic acids that can give a polyamide having a linear structure, from the viewpoint of maintaining the orientation of liquid crystal molecules. Among these, terephthalic acid, isoterephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4′-biphenyldicarboxylic acid, 4,4′-diphenylmethanedicarboxylic acid, 4,4′-diphenylethanedicarboxylic acid, 4,4 '-Diphenylpropanedicarboxylic acid, 4,4'-diphenylhexafluoropropanedicarboxylic acid, 2,2-bis (phenyl) propanedicarboxylic acid, 4,4 "-terphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2 , 5-pyridinedicarboxylic acid, these acid dihalides, etc. Some of the above compounds have isomers, but may be a mixture containing them, and two or more compounds may be used in combination. The dicarboxylic acids used in the present invention are limited to the above exemplified compounds. No.
 上記式(5)で示されるテトラカルボン酸二無水物、その他のテトラカルボン酸及びそのテトラカルボン酸誘導体、ジカルボン酸等は、液晶配向膜とした際の液晶配向性、電圧保持率、蓄積電荷などの所望の特性に応じて、1種類又は2種類以上を混合して使用することもできる。 The tetracarboxylic dianhydride represented by the above formula (5), other tetracarboxylic acids and their tetracarboxylic acid derivatives, dicarboxylic acids, etc. are liquid crystal alignment properties, voltage holding ratios, accumulated charges, etc. when used as liquid crystal alignment films. Depending on the desired characteristics, one kind or a mixture of two or more kinds may be used.
 ジアミン成分とテトラカルボン酸成分との反応は、通常、有機溶媒中で行う。その際に用いる有機溶媒としては、生成したポリアミック酸等のポリイミド前駆体が溶解するものであれば特に限定されない。具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン等が挙げられる。これらは単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。 The reaction between the diamine component and the tetracarboxylic acid component is usually carried out in an organic solvent. The organic solvent used at that time is not particularly limited as long as the generated polyimide precursor such as polyamic acid dissolves. Specific examples include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ- Butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, Ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol Nobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl Ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol Methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n-hexane , N-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, pyruvic acid Ethyl, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-metho Shipuropion acid, 3-methoxy propionic acid propyl, 3-methoxy propionic acid butyl, diglyme, 4-hydroxy-4-methyl-2-pentanone and the like. These may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Moreover, since the water | moisture content in an organic solvent inhibits a polymerization reaction, and also causes the produced polyimide precursor to hydrolyze, it is preferable to use what dehydrated and dried the organic solvent.
 ジアミン成分とテトラカルボン酸成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸成分をそのまま、又は有機溶媒に分散、あるいは溶解させて添加する方法、逆にテトラカルボン酸成分を有機溶媒に分散、あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸成分とジアミン成分とを交互に添加する方法等が挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸成分を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させてもよい。その際の重合温度は-20~150℃の任意の温度を選択することができるが、好ましくは-5~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量のポリイミド前駆体(ひいてはポリイミド)を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、ジアミン成分及びテトラカルボン酸成分の総量の濃度は、反応液中で好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 When the diamine component and the tetracarboxylic acid component are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred and the tetracarboxylic acid component is dispersed or dissolved in the organic solvent as it is. And a method of adding a diamine component to a solution obtained by dispersing or dissolving a tetracarboxylic acid component in an organic solvent, a method of alternately adding a tetracarboxylic acid component and a diamine component, and the like. Any of these methods may be used. In addition, when reacting using a plurality of diamine components or tetracarboxylic acid components, they may be reacted in a premixed state, individually or sequentially, or further individually reacted low molecular weight substances. May be mixed and reacted. In this case, the polymerization temperature can be selected from -20 to 150 ° C., but is preferably in the range of −5 to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polyimide precursor (and thus polyimide), and if the concentration is too high, the viscosity of the reaction solution becomes too high. Uniform stirring becomes difficult. Therefore, the concentration of the total amount of the diamine component and the tetracarboxylic acid component is preferably 1 to 50% by mass, more preferably 5 to 30% by mass in the reaction solution. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
 ポリアミック酸等のポリイミド前駆体の重縮合反応においては、ジアミン成分の合計モル数とテトラカルボン酸成分の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。 In the polycondensation reaction of a polyimide precursor such as polyamic acid, the ratio of the total number of moles of the diamine component to the total number of moles of the tetracarboxylic acid component is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor formed increases as the molar ratio approaches 1.0.
 なお、ポリアミック酸エステルは、上記のようにテトラカルボン酸ジエステルジクロリドとジアミン成分との反応や、テトラカルボン酸ジエステルとジアミン成分を適当な縮合剤、塩基の存在下にて反応させることにより得ることができる。また、上記の方法で予めポリアミック酸を合成し、高分子反応を利用してポリアミック酸のカルボキシル基をエステル化することでも得ることができる。 The polyamic acid ester can be obtained by reacting the tetracarboxylic acid diester dichloride with the diamine component as described above, or reacting the tetracarboxylic acid diester with the diamine component in the presence of an appropriate condensing agent or base. it can. It can also be obtained by previously synthesizing a polyamic acid by the above method and esterifying the carboxyl group of the polyamic acid using a polymer reaction.
 具体的には、例えば、テトラカルボン酸ジエステルジクロリドとジアミン成分とを塩基と有機溶剤の存在下で-20~150℃、好ましくは0~50℃において、30分~24時間、好ましくは1~4時間反応させることによって、ポリアミック酸エステルを合成することができる。 Specifically, for example, tetracarboxylic acid diester dichloride and a diamine component in the presence of a base and an organic solvent at −20 to 150 ° C., preferably 0 to 50 ° C., for 30 minutes to 24 hours, preferably 1 to 4 A polyamic acid ester can be synthesized by reacting for a period of time.
 塩基としては、ピリジン、トリエチルアミン、4-ジメチルアミノピリジン等が使用できるが、反応が穏和に進行するためピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。 As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
 また、テトラカルボン酸ジエステルとジアミン成分を、縮合剤存在下に重縮合する場合、縮合剤としては、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N'-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N',N'-テトラメチルウロニウム
 テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N',N'-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)4-メトキシモルホリウムクロリド
 n-水和物等が使用できる。
Further, when polycondensation of tetracarboxylic acid diester and diamine component in the presence of a condensing agent, the condensing agent includes triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazinylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluro Nium tetrafluoroborate, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzo Oxazolyl) phosphonic acid diphenyl, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) 4- Toki Simo sulfo potassium chloride n- hydrates can be used.
 また、上記縮合剤を用いる方法において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウム等のハロゲン化リチウムが好ましい。ルイス酸の添加量は、反応させるジアミン又はテトラカルボン酸ジエステルに対して0.1~1.0倍モル量であることが好ましい。 In the method using the condensing agent, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0.1 to 1.0 times the molar amount of the diamine or tetracarboxylic acid diester to be reacted.
 上記の反応に用いる溶媒は、ポリアミック酸を合成する際に用いられる溶媒と同様の溶媒で行うことができるが、モノマー及びポリマーの溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリド、テトラカルボン酸ジエステル等のテトラカルボン酸誘導体とジアミン成分の反応溶液中での合計濃度が1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることが好ましく、窒素雰囲気中で反応させるなど、外気の混入を防ぐのが好ましい。 The solvent used in the above reaction can be the same solvent as that used in the synthesis of the polyamic acid, but N-methyl-2-pyrrolidone and γ-butyrolactone are preferred from the viewpoint of the solubility of the monomer and polymer. You may use these 1 type or in mixture of 2 or more types. The concentration at the time of synthesis is such that in the reaction solution of a tetracarboxylic acid derivative such as tetracarboxylic acid diester dichloride or tetracarboxylic acid diester and a diamine component, from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained. The total concentration is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass. In order to prevent hydrolysis of the tetracarboxylic acid diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent external air from being mixed, for example, by reacting in a nitrogen atmosphere.
 このようにして重合されたポリイミド前駆体は、例えば、下記式[h]で示される繰り返し単位を有する重合体である。 The polyimide precursor thus polymerized is, for example, a polymer having a repeating unit represented by the following formula [h].
Figure JPOXMLDOC01-appb-C000037

(式[h]中、R11は、原料のテトラカルボン酸成分に由来する4価の有機基であり、R12は、原料のジアミン成分に由来する2価の有機基であり、A11及びA12は、水素原子又は炭素数1~4のアルキル基であり、それぞれ同じであっても異なってもよく、jは正の整数を示す。)
Figure JPOXMLDOC01-appb-C000037

(In the formula [h], R 11 is a tetravalent organic group derived from the starting tetracarboxylic acid component, R 12 is a divalent organic group derived from the starting diamine component, and A 11 and A 12 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, which may be the same or different, and j represents a positive integer.)
 式[h]において、R11及びR12がそれぞれ1種類であり同一の繰り返し単位を有する重合体でもよく、また、R11やR12が複数種であり異なる構造の繰り返し単位を有する重合体でもよい。 In the formula [h], R 11 and R 12 may each be one type and a polymer having the same repeating unit, or R 11 and R 12 may be a plurality of types and a polymer having a repeating unit having a different structure. Good.
 式[h]において、R11は原料である下記式[k]等で示されるテトラカルボン酸成分に由来する基である。また、R12は原料である下記式[s]等で示されるジアミン成分に由来する基であり、例えば、R12が上記式(4)で表されるジアミン由来の基であれば、-C-X-X-X-X-X-C-である。なお、上記式[h]は、上記式(4)で表されるジアミンを原料とすることにより、主鎖に-HN-C-X-X-X-X-X-C-NH-が導入されたポリイミド前駆体である。 In the formula [h], R 11 is a group derived from a tetracarboxylic acid component represented by the following formula [k] or the like that is a raw material. R 12 is a group derived from a diamine component represented by the following formula [s], which is a raw material. For example, if R 12 is a group derived from a diamine represented by the above formula (4), —C 6 H 4 —X 1 —X 2 —X 3 —X 4 —X 5 —C 6 H 4 —. In the above formula [h], the main chain is —HN—C 6 H 4 —X 1 —X 2 —X 3 —X 4 —X by using the diamine represented by the above formula (4) as a raw material. This is a polyimide precursor having 5- C 6 H 4 —NH— introduced therein.
Figure JPOXMLDOC01-appb-C000038

(式[k]及び式[s]中、R11及びR12は、式[h]で定義したものと同じである。)
Figure JPOXMLDOC01-appb-C000038

(In formula [k] and formula [s], R 11 and R 12 are the same as defined in formula [h].)
 式[h]のようなポリイミド前駆体を脱水閉環させることにより、ポリイミドが得られる。 A polyimide is obtained by dehydrating and ring-closing a polyimide precursor represented by the formula [h].
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化又はポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。 Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行うのが好ましい。 The temperature when the polyimide precursor is thermally imidized in a solution is 100 to 400 ° C., preferably 120 to 250 ° C., and is preferably performed while removing water generated by the imidization reaction from the system.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。
 塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。
 酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸等を挙げることができる。中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。
The catalytic imidation of the polyimide precursor can be carried out by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like. Of these, pyridine is preferable because it has an appropriate basicity for proceeding with the reaction.
Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Of these, use of acetic anhydride is preferred because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 なお、ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体、ポリイミド等の反応溶液から、生成したポリイミド前駆体やポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水等を挙げることができる。溶媒に投入して沈殿させたポリイミド前駆体やポリイミドは、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収したポリイミド前駆体やポリイミドを、有機溶媒に再溶解させ、再沈殿して回収する操作を2~10回繰り返すと、ポリイミド前駆体やポリイミド中の不純物を少なくすることができる。この際の溶媒としては、例えば、アルコール類、ケトン類、炭化水素等が挙げられ、これら中から選ばれる3種類以上の溶媒を用いると、より一層、精製の効率が上がるので好ましい。 In addition, what is necessary is just to throw a reaction solution into a solvent and to precipitate, when collect | recovering the produced | generated polyimide precursors and a polyimide from reaction solutions, such as polyimide precursors, such as a polyamic acid and polyamic acid ester, and a polyimide. Examples of the solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, water and the like. The polyimide precursor or polyimide deposited by precipitation in a solvent can be recovered by filtration, and then dried at normal temperature or under reduced pressure at room temperature or by heating. In addition, the polyimide precursor and polyimide recovered by precipitation are redissolved in an organic solvent, and reprecipitation and recovery are repeated 2 to 10 times, whereby impurities in the polyimide precursor and polyimide can be reduced. Examples of the solvent at this time include alcohols, ketones, hydrocarbons and the like, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further improved.
 ポリイミドのアミド酸基の脱水閉環率(イミド化率)は必ずしも100%である必要はなく、0~100%の範囲で用途や目的に応じて任意に選ぶことができるが、50~100%が好ましい。 The dehydration cyclization rate (imidation rate) of the amic acid group of the polyimide is not necessarily 100%, and can be arbitrarily selected in the range of 0 to 100% depending on the application and purpose, but 50 to 100% preferable.
 ポリアミドもポリアミック酸エステルと同様にして合成することができる。 Polyamide can be synthesized in the same manner as polyamic acid ester.
 本発明のポリイミド前駆体、ポリイミド、ポリアミド等の分子量は、得られる重合体被膜(液晶配向膜)の強度、重合体被膜形成時の作業性、重合体被膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。 The molecular weight of the polyimide precursor, polyimide, polyamide, etc. of the present invention is determined by GPC (in terms of the strength of the resulting polymer film (liquid crystal alignment film), workability during formation of the polymer film, and uniformity of the polymer film. The weight average molecular weight measured by Gel Permeation Chromatography) is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
 本発明の液晶配向膜の製造方法は、上述のポリイミド前駆体を含有する薄膜を基板上に形成し、次いで、加熱して、さらに、加熱状態を維持しながら膜面に偏光した紫外線を照射する。そして、その偏光した紫外線照射により高い反応効率の光架橋反応を誘起し、ポリイミド前駆体を含有する薄膜中に異方性を導入することにより、基板上にポリイミド前駆体を含有する液晶配向膜を形成する。 In the method for producing a liquid crystal alignment film of the present invention, a thin film containing the above polyimide precursor is formed on a substrate, then heated, and further irradiated with polarized ultraviolet rays while maintaining the heated state. . Then, the liquid crystal alignment film containing the polyimide precursor is formed on the substrate by inducing a photocrosslinking reaction with high reaction efficiency by the polarized ultraviolet irradiation and introducing anisotropy into the thin film containing the polyimide precursor. Form.
 本発明においては、ポリイミド前駆体を含有する薄膜の中にポリイミドが含まれないことが望ましい。仮に、不可避的にポリイミド前駆体を含有する薄膜の中にポリイミドが含まれることがあっても、その含有量は、ポリイミド前駆体に対し、30モル%以下が望ましく、20モル%以下がより望ましく、10モル%以下がさらに好ましい。
 ポリイミドは比較的剛直な高分子材料であり、薄膜中に多く含まれると、ポリイミド前駆体を含有する膜の柔軟性が損なわれる。また、偏光照射時に加熱処理を併用する効果が損なわれ、ポリイミド前駆体を含有する膜中での光反応の進行を妨げる可能性がある。その結果、光反応によるポリイミド前駆体を含有する膜への異方性の導入を妨げる懸念がある。
In the present invention, it is desirable that polyimide is not contained in the thin film containing the polyimide precursor. Even if the polyimide is inevitably contained in the thin film containing the polyimide precursor, the content thereof is preferably 30 mol% or less, more preferably 20 mol% or less with respect to the polyimide precursor. 10 mol% or less is more preferable.
Polyimide is a relatively rigid polymer material, and when it is contained in a large amount in a thin film, the flexibility of the film containing the polyimide precursor is impaired. Moreover, the effect of using heat treatment at the time of polarized light irradiation is impaired, and there is a possibility that the progress of the photoreaction in the film containing the polyimide precursor may be hindered. As a result, there is a concern that the introduction of anisotropy into the film containing the polyimide precursor by photoreaction may be hindered.
 したがって、基板上に形成されたポリイミド前駆体を含有する薄膜の加熱温度については、薄膜の高い光反応効率を実現する範囲の温度であって、ポリイミド前駆体の化学反応を生じさせない範囲の温度とすることが好ましい。すなわち、加熱温度の上限としては、用いるポリイミド前駆体の種類により、熱反応を生じてポリイミドに変化しない範囲の温度を選択することが好ましい。下限については、用いるポリイミド前駆体の種類により、後述する光反応性の向上効果を発現させることのできる温度を選択することが好ましい。
 具体的には、基板上に形成されたポリイミド前駆体を含有する薄膜の加熱温度は50~300℃であり、好ましくは80~250℃の範囲であり、150~200℃とすることがさらに好ましい。
 基板上のポリイミド前駆体を含有する薄膜の加熱とその加熱状態の維持は、例えば、ホットプレート、熱循環型オーブン又はIR(赤外線)型オーブンなどを用いて行うことができる。なかでも、紫外線照射を行うことが容易なホットプレートを選択して用いることが好ましい。
Therefore, the heating temperature of the thin film containing the polyimide precursor formed on the substrate is a temperature in a range that realizes high photoreaction efficiency of the thin film, and a temperature that does not cause a chemical reaction of the polyimide precursor. It is preferable to do. That is, as the upper limit of the heating temperature, it is preferable to select a temperature within a range in which a thermal reaction occurs and does not change to polyimide, depending on the type of polyimide precursor used. About a minimum, it is preferable to select the temperature which can express the photoreactive improvement effect mentioned later by the kind of polyimide precursor to be used.
Specifically, the heating temperature of the thin film containing the polyimide precursor formed on the substrate is 50 to 300 ° C., preferably 80 to 250 ° C., more preferably 150 to 200 ° C. .
The heating of the thin film containing the polyimide precursor on the substrate and the maintenance of the heating state can be performed using, for example, a hot plate, a thermal circulation oven, an IR (infrared) oven, or the like. Among these, it is preferable to select and use a hot plate that can be easily irradiated with ultraviolet rays.
 ポリイミド前駆体を含有する薄膜の膜面に偏光した紫外線を照射する場合、基板に対して一定の方向から偏光板を介して偏光された紫外線を照射する。使用する紫外線の波長としては、100~400nmの範囲の紫外線を使用することがきる。好ましくは、使用するポリイミド前駆体の種類によりフィルター等を介して最適な波長を選択する。例えば、選択的に光架橋反応を誘起できるように、300~400nmの範囲の紫外線を選択して使用することがきる。紫外線としては、例えば、高圧水銀灯から放射される光を用いることができる。 When irradiating polarized ultraviolet rays to the film surface of the thin film containing the polyimide precursor, the substrate is irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction. As the wavelength of ultraviolet rays to be used, ultraviolet rays in the range of 100 to 400 nm can be used. Preferably, the optimum wavelength is selected through a filter or the like depending on the type of polyimide precursor to be used. For example, ultraviolet rays in the range of 300 to 400 nm can be selected and used so that the photocrosslinking reaction can be selectively induced. As the ultraviolet light, for example, light emitted from a high-pressure mercury lamp can be used.
 本発明の液晶配向膜の製造方法においては、使用するポリイミド前駆体を含有する薄膜での光反応を非常に高い効率で進行させることができる。具体的には、従来の光配向法に比べ1/10程度の紫外線照射量で、液晶配向膜を構成するポリイミド前駆体を含有する薄膜における光反応を進行させることができ、光反応の効率を約10倍程度高めることが可能となる。 In the method for producing a liquid crystal alignment film of the present invention, the photoreaction in a thin film containing the polyimide precursor to be used can be advanced with very high efficiency. Specifically, the photoreaction in the thin film containing the polyimide precursor constituting the liquid crystal alignment film can be advanced with an ultraviolet irradiation amount of about 1/10 compared with the conventional photoalignment method, and the efficiency of the photoreaction is increased. It can be increased about 10 times.
 その結果、本発明においては、光を照射して行う配向処理に際し、紫外線の照射量を、従来の光配向法に比べてはるかに少ない量とすることが可能である。すなわち、本発明においては、従来の光配向法で必要とされた数J~数十Jに比べてはるかに少ない紫外線の照射量で、液晶の配向制御能を備えた液晶配向膜を製造することが可能である。具体的には、10~1000mJ、好ましくは20~800mJの範囲の紫外線照射量で、液晶配向膜を製造することが可能となる。その場合、10~20mWの強度の紫外線を数秒~数十秒照射することにより液晶配向膜を製造することができ、液晶配向膜の製造のスループット(処理能力)の向上も可能となる。 As a result, in the present invention, in the alignment treatment performed by irradiating light, it is possible to make the amount of ultraviolet irradiation much smaller than that of the conventional photo-alignment method. That is, in the present invention, a liquid crystal alignment film having the ability to control the alignment of liquid crystals is produced with a much smaller amount of UV irradiation than the number J to several tens J required in the conventional photo-alignment method. Is possible. Specifically, the liquid crystal alignment film can be produced with an ultraviolet irradiation amount in the range of 10 to 1000 mJ, preferably 20 to 800 mJ. In that case, a liquid crystal alignment film can be produced by irradiating ultraviolet rays having an intensity of 10 to 20 mW for several seconds to several tens of seconds, and the production throughput (processing ability) of the liquid crystal alignment film can be improved.
 上記したように、本発明の液晶配向膜の製造方法においては、ポリイミド前駆体を含有する薄膜の加熱を行い、加熱状態を維持しながら偏光した紫外線を照射して、少ない紫外線照射量により高い効率で液晶配向膜を製造することができる。すなわち、本発明は、液晶配向膜を高い製造効率で製造することができる。
 また、本発明の液晶配向膜の製造方法を利用し、得られた液晶配向膜を用いて液晶表示素子を製造することができる。
 次に、本発明の液晶配向膜を用いた液晶表示素子について説明する。
As described above, in the method for producing a liquid crystal alignment film of the present invention, a thin film containing a polyimide precursor is heated and irradiated with polarized ultraviolet rays while maintaining the heating state, so that high efficiency can be achieved with a small amount of ultraviolet irradiation. A liquid crystal alignment film can be manufactured. That is, the present invention can produce a liquid crystal alignment film with high production efficiency.
Moreover, a liquid crystal display element can be manufactured using the obtained liquid crystal aligning film using the manufacturing method of the liquid crystal aligning film of this invention.
Next, a liquid crystal display element using the liquid crystal alignment film of the present invention will be described.
 本発明の液晶配向処理剤は、上記ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体、ポリイミド、ポリアミド等を含有するものである。液晶配向処理剤とは液晶配向膜を形成するための溶液であり、液晶配向膜を形成するための重合体成分を有機溶媒に分散又は溶解した溶液である。ここで、液晶配向膜とは液晶を所定の方向に配向させるための膜である。
 本発明においては、上記重合体成分として、本発明の上記ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体、ポリイミド及びポリアミドから選択される少なくとも一種を含有する。
The liquid-crystal aligning agent of this invention contains polyimide precursors, such as the said polyamic acid and polyamic acid ester, a polyimide, polyamide, etc. The liquid crystal alignment treatment agent is a solution for forming a liquid crystal alignment film, and is a solution in which a polymer component for forming a liquid crystal alignment film is dispersed or dissolved in an organic solvent. Here, the liquid crystal alignment film is a film for aligning liquid crystals in a predetermined direction.
In the present invention, the polymer component contains at least one selected from polyimide precursors such as the polyamic acid and polyamic acid ester of the present invention, polyimide and polyamide.
 また、本発明のポリイミド前駆体は、溶剤に溶解され、液状の液晶配向処理剤を構成して、ポリイミド前駆体を含有する薄膜の形成に使用することが可能であり、さらに液晶配向膜の製造に使用することが可能である。その際、液晶配向処理剤中のポリイミド前駆体の含有量は、0.1~30質量%が好ましく、より好ましくは0.5~30質量%であり、特に好ましくは1~25質量%である。 In addition, the polyimide precursor of the present invention is dissolved in a solvent, constitutes a liquid crystal alignment treatment agent, and can be used for forming a thin film containing the polyimide precursor. Can be used. At that time, the content of the polyimide precursor in the liquid crystal aligning agent is preferably 0.1 to 30% by mass, more preferably 0.5 to 30% by mass, and particularly preferably 1 to 25% by mass. .
 本発明の液晶配向処理剤において、含有する重合体成分は、全てが本発明の上記ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体、ポリイミド、ポリアミド等であってもよく、また、本発明の上記ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体、ポリイミド、ポリアミド等の重合体成分中に、その他の重合体が混合されていてもよい。重合体成分としてその他の重合体を含有する場合、重合体成分全量におけるその他の重合体の含有量は0.5~50質量%、好ましくは1~30質量%である。 In the liquid crystal alignment treatment agent of the present invention, all of the polymer components contained may be polyimide precursors such as the polyamic acid and polyamic acid ester of the present invention, polyimides, polyamides, etc. Other polymers may be mixed in polymer components such as polyimide precursors such as polyamic acid and polyamic acid ester, polyimide, and polyamide. When other polymer is contained as the polymer component, the content of the other polymer in the total amount of the polymer component is 0.5 to 50% by mass, preferably 1 to 30% by mass.
 その他の重合体としては、例えば、テトラカルボン酸ニ無水物成分、ジカルボン酸等と反応させるジアミン成分として、本発明の上記式(4)で表されるジアミン以外のジアミンのみを使用して得られるポリイミド前駆体、ポリイミド、ポリアミド等が挙げられる。さらに、ポリイミド前駆体、ポリイミド及びポリアミド以外の重合体、具体的には、アクリルポリマー、メタクリルポリマー、ポリスチレン等も挙げられる。 The other polymer can be obtained, for example, using only a diamine other than the diamine represented by the above formula (4) of the present invention as a diamine component to be reacted with a tetracarboxylic dianhydride component, a dicarboxylic acid or the like. Examples thereof include a polyimide precursor, polyimide, and polyamide. Furthermore, polymers other than a polyimide precursor, polyimide, and polyamide, specifically, an acrylic polymer, a methacrylic polymer, polystyrene, and the like are also included.
 本発明の液晶配向処理剤において、本発明の上記ポリアミック酸、ポリアミック酸エステル等のポリイミド前駆体、ポリイミド及びポリアミドから選択される少なくとも一種と、必要に応じて混合するその他の重合体とを合計した含有割合は、重合体成分全量中、0.1~30質量%であり、1~25質量%が好ましく、より好ましくは3~15質量%、特に好ましくは3~10質量%である。 In the liquid crystal aligning agent of the present invention, the polyamic acid of the present invention, at least one selected from polyimide precursors such as polyamic acid esters, polyimides and polyamides, and other polymers mixed as necessary are totaled. The content is 0.1 to 30% by mass, preferably 1 to 25% by mass, more preferably 3 to 15% by mass, and particularly preferably 3 to 10% by mass in the total amount of the polymer components.
 本発明の液晶配向処理剤において用いられる有機溶媒は、本発明のポリイミド前駆体、ポリイミド、ポリアミド等の重合体成分を溶解させる有機溶媒であれば特に限定されない。その具体例として、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチルピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、3-メトキシ-N,N-ジメチルプロパンアミド、3-エトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン等が挙げられる。これらは単独で使用しても、混合して使用してもよい。 The organic solvent used in the liquid crystal aligning agent of the present invention is not particularly limited as long as it is an organic solvent that dissolves polymer components such as the polyimide precursor, polyimide, and polyamide of the present invention. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethylpyrrolidone, N-vinylpyrrolidone, dimethyl sulfoxide, tetra Methylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 3-methoxy-N, N-dimethylpropanamide, 3-ethoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropane Amides, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme, - hydroxy-4-methyl-2-pentanone and the like. These may be used alone or in combination.
 本発明の液晶配向処理剤は、本発明の効果を損なわない限り、液晶配向処理剤を塗布した際の重合体被膜の膜厚の均一性や表面平滑性を向上させる有機溶媒(貧溶媒ともいわれる)又は化合物を含有してもよい。さらに、液晶配向膜と基板との密着性を向上させる化合物などを含有してもよい。 Unless the effect of this invention is impaired, the liquid-crystal aligning agent of this invention is an organic solvent (it is also called a poor solvent) which improves the uniformity of the film thickness of a polymer film at the time of apply | coating a liquid-crystal aligning agent, and surface smoothness. ) Or a compound. Furthermore, you may contain the compound etc. which improve the adhesiveness of a liquid crystal aligning film and a board | substrate.
 膜厚の均一性や表面平滑性を向上させる貧溶媒の具体例としては、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル等の低表面張力を有する有機溶媒が挙げられる。 Specific examples of poor solvents that improve film thickness uniformity and surface smoothness include isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl carbitol Thor, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl Ether, diethylene glycol, diethylene glycol monoa Tate, Diethylene glycol dimethyl ether, Dipropylene glycol monoacetate monomethyl ether, Dipropylene glycol monomethyl ether, Dipropylene glycol monoethyl ether, Dipropylene glycol monoacetate monoethyl ether, Dipropylene glycol monopropyl ether, Dipropylene glycol monoacetate monopropyl ether , 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexane Xene, propyl ether, dihexyl ether, n- Xanthone, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, 3-methoxypropionic acid Methyl, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy-2-propanol 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether-2 -Acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n-butyl ester, An organic solvent having a low surface tension such as isoamyl lactate is exemplified.
 これらの貧溶媒は1種類でも複数種類を混合して用いてもよい。上記のような貧溶媒を用いる場合は、液晶配向処理剤に含まれる有機溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。 These poor solvents may be used alone or in combination. When the above poor solvent is used, it is preferably 5 to 80% by mass, more preferably 20 to 60% by mass, based on the whole organic solvent contained in the liquid crystal alignment treatment agent.
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤等が挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ社製)、メガファックF171、F173、R-30(大日本インキ社製)、フロラードFC430、FC431(住友スリーエム社製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子社製)等が挙げられる。これらの界面活性剤の使用割合は、液晶配向社剤に含有される重合体成分の100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。 Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, and nonionic surfactants. More specifically, for example, F-top EF301, EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M) Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass Co., Ltd.). The use ratio of these surfactants is preferably 0.01 to 2 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal alignment agent. is there.
 液晶配向膜と基板との密着性を向上させる化合物としては、官能性シラン含有化合物、エポキシ基含有化合物等が挙げられる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N',N',-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N',N',-テトラグリシジル-4,4'-ジアミノジフェニルメタン等が挙げられる。 Examples of compounds that improve the adhesion between the liquid crystal alignment film and the substrate include functional silane-containing compounds and epoxy group-containing compounds. For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxysilane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxy Carbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 10-trimethoxysilyl-1,4,7-triazadecane, 10-to Ethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3,6-diazanonyl acetate, N-benzyl-3-aminopropyltri Methoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3-aminopropyltriethoxysilane, N-bis (oxyethylene) -3-amino Propyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, tripropylene glycol diglycidyl ether , Polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1,3,5,6-tetra Glycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) cyclohexane, N, N, N Examples include ', N',-tetraglycidyl-4,4'-diaminodiphenylmethane.
 基板との密着性を向上させる化合物を使用する場合、その使用量は、液晶配向処理剤に含有される重合体成分100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。使用量が0.1質量部未満であると、密着性向上の効果は期待できず、30質量部よりも多くなると液晶の配向性が悪くなる場合がある。 When using a compound that improves the adhesion to the substrate, the amount used is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymer component contained in the liquid crystal aligning agent. The amount is preferably 1 to 20 parts by mass. If the amount used is less than 0.1 parts by mass, the effect of improving the adhesion cannot be expected, and if it exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate.
 本発明の液晶配向処理剤には、上記の他、本発明の効果が損なわれない範囲であれば、液晶配向膜の誘電率や導電性等の電気特性を変化させる目的で、誘電体や導電物質、さらには、液晶配向膜にした際の膜の硬度や緻密度を高める目的の架橋性化合物を添加してもよい。 In the liquid crystal alignment treatment agent of the present invention, in addition to the above, within the range where the effects of the present invention are not impaired, the dielectric or conductive material is used for the purpose of changing the electrical properties such as the dielectric constant and conductivity of the liquid crystal alignment film. A substance, and further, a crosslinkable compound for the purpose of increasing the hardness and density of the liquid crystal alignment film may be added.
 本発明の液晶配向処理剤は、基板上に塗布、焼成した後、必要に応じてラビング処理や光照射(放射線照射)による配向処理をして、液晶配向膜として用いることができる。このような本発明の液晶配向膜は、上記式(4)で表されるジアミンを原料とするポリイミド前駆体、ポリイミド、ポリアミド等で形成されるため、AC駆動による液晶配向性能が変化し難い。 The liquid crystal alignment treatment agent of the present invention can be used as a liquid crystal alignment film by applying and baking on a substrate and then performing alignment treatment by rubbing treatment or light irradiation (radiation irradiation) as necessary. Such a liquid crystal alignment film of the present invention is formed of a polyimide precursor, polyimide, polyamide, or the like using the diamine represented by the above formula (4) as a raw material, so that the liquid crystal alignment performance by AC driving is hardly changed.
 基板としては、透明性の高い基板であれば特に限定されず、ガラス基板の他、アクリル基板やポリカーボネート基板等のプラスチック基板も用いることができる。プロセスの簡素化の観点からは、液晶駆動のためのITO(Indium Tin Oxide)電極などが形成された基板を用いることが好ましい。また、反射型の液晶表示素子では、片側の基板のみにならばシリコンウェハなどの不透明な基板も使用でき、この場合の電極としてはアルミ等の光を反射する材料も使用できる。また、TFT型の液晶表示素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。 The substrate is not particularly limited as long as it is a highly transparent substrate, and in addition to a glass substrate, a plastic substrate such as an acrylic substrate or a polycarbonate substrate can also be used. From the viewpoint of simplifying the process, it is preferable to use a substrate on which an ITO (Indium Tin Oxide) electrode for driving a liquid crystal is formed. In the reflective liquid crystal display element, an opaque substrate such as a silicon wafer can be used if only one substrate is used, and a material that reflects light such as aluminum can be used as an electrode in this case. In a high-performance element such as a TFT type liquid crystal display element, an element in which an element such as a transistor is formed between an electrode for driving liquid crystal and a substrate is used.
 液晶配向処理剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法等の方法が一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法等があり、目的に応じてこれらを用いてもよい。 The method for applying the liquid crystal aligning agent is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and inkjet method are common. As other coating methods, there are a dipping method, a roll coater method, a slit coater method, a spinner method, a spray method, etc., and these may be used according to the purpose.
 液晶配向処理剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブン等の加熱手段により50~300℃、好ましくは80~250℃で溶媒を蒸発させて液晶配向膜(重合体の薄膜)とすることができる。焼成後の液晶配向膜の厚みは、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~100nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の液晶配向膜をラビング、偏光紫外線照射等で処理することにより、液晶を配向させることができる。例えば、偏光紫外線等の光を照射することにより、式(4)で表されるジアミン由来等の光反応基が二量化反応して、それにより生じた異方性で液晶を配向させることができる。
 偏光紫外線の照射は、液晶配向膜を加熱しながら照射してもよい。
After the liquid crystal alignment treatment agent is applied on the substrate, the solvent is evaporated at 50 to 300 ° C., preferably 80 to 250 ° C. by a heating means such as a hot plate, a heat circulation oven, an IR (infrared) oven, etc. It can be set as an alignment film (polymer thin film). If the thickness of the liquid crystal alignment film after baking is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be lowered. Is 10 to 100 nm. When the liquid crystal is horizontally or tilted, the liquid crystal can be aligned by treating the fired liquid crystal alignment film with rubbing, irradiation with polarized ultraviolet rays, or the like. For example, by irradiating light such as polarized ultraviolet rays, the photoreactive group derived from diamine represented by the formula (4) undergoes a dimerization reaction, and the liquid crystal can be aligned with the anisotropy generated thereby. .
The irradiation with polarized ultraviolet light may be performed while heating the liquid crystal alignment film.
 基板上に形成されたポリイミド前駆体を含有する薄膜は、例えば、ホットプレートなどを用い、80~250℃での加熱を行う。このとき、加熱温度の上限としては、用いるポリイミド前駆体の種類により、熱反応を生じてポリイミドに変化しない範囲の温度を選択する。下限については、用いるポリイミド前駆体の種類により、光反応性の向上効果を発現させる温度を選択する。
 上記範囲内の選択された温度で加熱を行いながら、上述したように光照射条件を選択して、ポリイミド前駆体を含有する薄膜の膜面に対し、一定の方向から偏光板を介して偏光された紫外線を照射する。こうして基板上に、液晶の配向制御能を備えた液晶配向膜を製造することができる。
The thin film containing the polyimide precursor formed on the substrate is heated at 80 to 250 ° C. using, for example, a hot plate. At this time, as the upper limit of the heating temperature, a temperature in a range in which a thermal reaction occurs and does not change to polyimide is selected depending on the type of polyimide precursor to be used. About a minimum, the temperature which expresses the improvement effect of photoreactivity is selected by the kind of polyimide precursor to be used.
While heating at a selected temperature within the above range, the light irradiation conditions are selected as described above, and the film surface of the thin film containing the polyimide precursor is polarized through a polarizing plate from a certain direction. Irradiate with ultraviolet light. Thus, a liquid crystal alignment film having a liquid crystal alignment control ability can be produced on the substrate.
 本発明の液晶表示素子は、上記した手法により本発明の液晶配向処理剤から液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。一例を挙げるならば、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ本発明の液晶配向処理剤により形成された上記液晶配向膜とを有する液晶セルを具備する液晶表示素子である。このような本発明の液晶表示素子としては、水平配向(IPS:In-Plane Switching)方式、ツイストネマティック(TN:Twisted Nematic)方式、OCB配向(OCB:Optically Compensated Bend)や、垂直配向(VA:Vertical Alignment)方式等が挙げられる。なお、液晶配向膜は、2枚の基板のうち、少なくとも一方に設けられていればよい。 The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film from the liquid crystal aligning agent of the present invention by the method described above, and then preparing a liquid crystal cell by a known method. For example, two substrates arranged to face each other, a liquid crystal layer provided between the substrates, and a liquid crystal alignment treatment agent of the present invention provided between the substrate and the liquid crystal layer. A liquid crystal display device comprising a liquid crystal cell having the liquid crystal alignment film. As such a liquid crystal display element of the present invention, horizontal alignment (IPS: In-Plane Switching) method, twisted nematic (TN) method, OCB alignment (OCB: Optically Compensated Bend), vertical alignment (VA: Vertical (Alignment) method etc. are mentioned. Note that the liquid crystal alignment film only needs to be provided on at least one of the two substrates.
 本発明の液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上記液晶配向膜で記載した基板と同様のものを挙げることができる。 The substrate used in the liquid crystal display element of the present invention is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed. As a specific example, the thing similar to the board | substrate described with the said liquid crystal aligning film can be mentioned.
 また、液晶配向膜は、この基板上に本発明の液晶配向処理剤を塗布した後焼成し、必要に応じてラビング処理や偏光紫外線等の放射線を照射することにより形成されるものであり、詳しくは上述したとおりである。 In addition, the liquid crystal alignment film is formed by applying the liquid crystal alignment treatment agent of the present invention on this substrate and then firing, and irradiating with radiation such as rubbing treatment or polarized ultraviolet rays as necessary. Is as described above.
 本発明の液晶表示素子の液晶層を構成する液晶材料は特に限定されず、正の誘電異方性を有するポジ型液晶、負の誘電異方性を有するネガ型液晶等を用いることができる。具体例としては、従来の水平配向方式で使用される液晶材料、例えばメルク社製のMLC-2041などを用いることができる。 The liquid crystal material constituting the liquid crystal layer of the liquid crystal display element of the present invention is not particularly limited, and a positive liquid crystal having a positive dielectric anisotropy, a negative liquid crystal having a negative dielectric anisotropy, or the like can be used. As a specific example, a liquid crystal material used in a conventional horizontal alignment method, for example, MLC-2041 manufactured by Merck Ltd. can be used.
 液晶セルの作製の一例を挙げるならば、液晶配向膜の形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布し、液晶配向膜面が内側になるようにして、もう一方の基板を貼り合わせ、液晶を減圧注入して封止する方法、スペーサーを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法等が例示できる。スペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。さらに、水平配向方式の液晶表示素子の場合は、このように液晶を封止した後に、基板の外側に偏光板を配置する。 For example, a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers such as beads are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. Then, the other substrate is bonded together, the liquid crystal is injected under reduced pressure and sealed, the liquid crystal is dropped on the liquid crystal alignment film surface on which the spacers are dispersed, and then the substrate is bonded and sealed. It can be illustrated. The thickness of the spacer is preferably 1 to 30 μm, more preferably 2 to 10 μm. Further, in the case of a horizontal alignment type liquid crystal display element, after the liquid crystal is sealed in this way, a polarizing plate is disposed outside the substrate.
 以上のようにして、本発明の液晶配向処理剤を用いて作製された液晶表示素子は、AC駆動による液晶配向性能の変化が抑制された液晶配向膜を有するため、残像特性に非常に優れ、焼き付きが生じにくく、表示不良やコントラストの低下も生じ難い。 As described above, the liquid crystal display device produced using the liquid crystal alignment treatment agent of the present invention has a liquid crystal alignment film in which the change in the liquid crystal alignment performance due to AC driving is suppressed, and thus has excellent afterimage characteristics, Image sticking is less likely to occur, and display defects and contrast are less likely to occur.
 以下、本発明の実施例を挙げて、本発明を具体的に説明するが、本発明はこれらに限定して解釈されるものではない。
 [実施例A]
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples of the present invention, but the present invention is not construed as being limited thereto.
[Example A]
<合成例1(モノマー(3)の合成)>
 モノマー(3)は、反応式(i)に従い合成した。
<Synthesis Example 1 (Synthesis of Monomer (3))>
Monomer (3) was synthesized according to reaction formula (i).
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000039
 モノマー(1)20g(0.09mol)を乾燥エタノール60mlに加え、固体が全て溶解するまで攪拌還流した後、さらに2時間攪拌還流させた。反応終了後、固体が僅かに析出するまでエタノールを減圧留去した。乾燥エタノールの約50%(volume))の反応溶液を室温下で冷却し、析出物を濾過分別した後、エタノールで洗浄し目的物のモノマー(2)を得た。さらに、濾液の溶媒を減圧留去し、目的物異性体の混合物を得た。この異性体の混合物を酢酸エチルで再結晶することによりモノマー(2)を得た。収量は10gで、収率35.2%であった。
 なお、得られたモノマー(2)のH-NMRは、TMS(Si(CH)を基準物質として、重水素化ジメチルスルホキシド(DMSOと略称する。)の溶媒中で、NMR測定装置(JEOL社製、500MHz)を用いて行った。モノマー(2)のH-NMR測定結果を以下に示すが、他の化合物についても同様である。
1H-NMR(500MHz, DMSO, δppm)=1.27(t, J=7.09Hz, 6H, -CH2-CH3-), 4.28(q, J=7.04Hz, 4H, -CH2-CH3), 7.96(S, 2H, Ph).
Monomer (1) (20 g, 0.09 mol) was added to dry ethanol (60 ml), and the mixture was stirred and refluxed until all the solid was dissolved, and then stirred and refluxed for another 2 hours. After completion of the reaction, ethanol was distilled off under reduced pressure until a solid was slightly precipitated. The reaction solution of about 50% (volume) of dry ethanol was cooled at room temperature, and the precipitate was separated by filtration and then washed with ethanol to obtain the desired monomer (2). Further, the solvent of the filtrate was distilled off under reduced pressure to obtain a mixture of target isomers. The monomer (2) was obtained by recrystallizing the mixture of isomers with ethyl acetate. The yield was 10 g, and the yield was 35.2%.
In addition, 1 H-NMR of the obtained monomer (2) is an NMR measurement apparatus in a solvent of deuterated dimethyl sulfoxide (abbreviated as DMSO) using TMS (Si (CH 3 ) 4 ) as a reference substance. (JEOL, 500 MHz). The 1 H-NMR measurement results of the monomer (2) are shown below, but the same applies to other compounds.
1 H-NMR (500MHz, DMSO, δppm) = 1.27 (t, J = 7.09Hz, 6H, -CH 2 -CH 3- ), 4.28 (q, J = 7.04Hz, 4H, -CH 2 -CH 3 ) , 7.96 (S, 2H, Ph).
 モノマー(2)4.77g(0.015mol)と酢酸エチル35mlの混合液に、N,N’-ジメチルホルムアミドを少量加えた。次に、塩化チオニルを3ml加え攪拌還流させた。固体が全て溶解したことを確認した後、さらに1時間攪拌還流させた。反応終了後、溶媒と過剰の塩化チオニルを減圧留去した。生成物はヘキサンで再結晶して精製し、精製されたモノマー(3)を得た。収量は4.3gで、収率80.5%であった。H-NMRの溶媒は、重水素化クロロホルム(CDCl)とした。
1H-NMR(500MHz, CDCl3, δppm)=1.43(t, J= 7.12Hz,6H, -CH2-CH3-), 4.46(q, J=7.1Hz, 4H, -CH2-CH3), 8.16(S, 2H, Ph).
A small amount of N, N′-dimethylformamide was added to a mixture of 4.77 g (0.015 mol) of monomer (2) and 35 ml of ethyl acetate. Next, 3 ml of thionyl chloride was added and stirred to reflux. After confirming that all solids were dissolved, the mixture was further stirred and refluxed for 1 hour. After completion of the reaction, the solvent and excess thionyl chloride were distilled off under reduced pressure. The product was purified by recrystallization from hexane to obtain purified monomer (3). The yield was 4.3 g, and the yield was 80.5%. The solvent for 1 H-NMR was deuterated chloroform (CDCl 3 ).
1 H-NMR (500MHz, CDCl 3 , δppm) = 1.43 (t, J = 7.12Hz, 6H, -CH 2 -CH 3- ), 4.46 (q, J = 7.1Hz, 4H, -CH 2 -CH 3 ), 8.16 (S, 2H, Ph).
<合成例2(モノマー(5)の合成)>
 モノマー(5)は、反応式(ii)に従い合成した。
<Synthesis Example 2 (Synthesis of Monomer (5))>
Monomer (5) was synthesized according to reaction formula (ii).
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000040
 モノマー(4)4.8g(0.022mol)と50mlの酢酸エチルの混合液に、N,N’-ジメチルホルムアミドを少量加えた。次に、塩化チオニルを6ml加え攪拌還流させた。固体が全て溶解したことを確認後、さらに1時間攪拌還流させた。反応終了後、溶媒と過剰の塩化チオニルを減圧留去した。生成物は酢酸エチル/ヘキサン系で再結晶して精製し、精製されたモノマー(5)を得た。収量は3.5gで、収率62.4%であった。H-NMRの溶媒は、重水素化クロロホルム(CDCl)とした。
1H-NMR(500MHz, CDCl3, δppm)=6.72 (d, J=15.7Hz, 2H, -CH=CH-), 7.65(S, 4H, Ph), 7.82(d, J=15.7Hz, 2H, -CH=CH-)
A small amount of N, N′-dimethylformamide was added to a mixture of 4.8 g (0.022 mol) of monomer (4) and 50 ml of ethyl acetate. Next, 6 ml of thionyl chloride was added and stirred and refluxed. After confirming that all solids were dissolved, the mixture was further stirred and refluxed for 1 hour. After completion of the reaction, the solvent and excess thionyl chloride were distilled off under reduced pressure. The product was purified by recrystallization from an ethyl acetate / hexane system to obtain a purified monomer (5). The yield was 3.5 g, and the yield was 62.4%. The solvent for 1 H-NMR was deuterated chloroform (CDCl 3 ).
1 H-NMR (500MHz, CDCl 3 , δppm) = 6.72 (d, J = 15.7Hz, 2H, -CH = CH-), 7.65 (S, 4H, Ph), 7.82 (d, J = 15.7Hz, 2H , -CH = CH-)
(分子量測定)
 ポリアミック酸エステル誘導体の分子量の測定は、後記する[実施例B]に記載したポリマーの分子量測定方法と同様に行なった。
(Molecular weight measurement)
The molecular weight of the polyamic acid ester derivative was measured in the same manner as the polymer molecular weight measurement method described in [Example B] described later.
<合成例3(6FPAE2-8の合成)>
 APHFP1.49g(4.5mmol)とLiCl 1.5gを60mlの乾燥NMPに加え、室温で固体が全て溶解するまで攪拌した。その後、クロロトリメチルシラン0.12gを加えた。この溶液にモノマー(3)0.31g(0.9mmol)、モノマー(5)0.91g(3.5mmol)、及び乾燥THF5mlの混合溶液を室温で滴下し、滴下漏斗を2mlの乾燥THFで洗い流した後、1時間攪拌した。その後、徐々に反応温度を上げ、40℃でさらに3時間攪拌した。反応終了後、反応溶液を800mlの水に注ぎ、生成したポリマーを分離した後、濾過分別し、エタノールとアセトンで洗浄した。次いで、ポリマーを乾燥させた後、NMPに溶解し、エタノール、及びクロロホルムにより再沈殿させて精製した。その後、沈殿物を濾過分別し、十分に乾燥させ、Mnが31,400であり、Mwが66,000のポリアミック酸エステル誘導体(6FPAE2-8)粉末(A)を得た。
<Synthesis Example 3 (Synthesis of 6FPAE2-8)>
APHFP 1.49 g (4.5 mmol) and LiCl 1.5 g were added to 60 ml of dry NMP and stirred at room temperature until all solids were dissolved. Thereafter, 0.12 g of chlorotrimethylsilane was added. To this solution, a mixed solution of 0.31 g (0.9 mmol) of monomer (3), 0.91 g (3.5 mmol) of monomer (5) and 5 ml of dry THF was dropped at room temperature, and the dropping funnel was washed away with 2 ml of dry THF. And stirred for 1 hour. Thereafter, the reaction temperature was gradually raised, and the mixture was further stirred at 40 ° C. for 3 hours. After completion of the reaction, the reaction solution was poured into 800 ml of water, and the produced polymer was separated, followed by filtration and separation, and washing with ethanol and acetone. Next, the polymer was dried and then dissolved in NMP and purified by reprecipitation with ethanol and chloroform. Thereafter, the precipitate was separated by filtration and sufficiently dried to obtain a polyamic acid ester derivative (6FPAE2-8) powder (A) having an Mn of 31,400 and an Mw of 66,000.
<合成例4(6FPAE5-5の合成)>
 APHFP1.49g(4.5mmol)とLiCl 1.5gを60mlの乾燥NMPに加え、室温で固体が全て溶解するまで攪拌した。その後、クロロトリメチルシラン0.12gを加えた。この溶液にモノマー(3)0.77g(2.2mmol)、モノマー(5)0.57g(2.2mmol)、及び乾燥THF5mlの混合溶液を室温で滴下し、滴下漏斗を2mlの乾燥THFで洗い流した後、1時間攪拌した。その後、徐々に反応温度を上げ、40℃でさらに3時間攪拌した。反応終了後、反応溶液を800mlの水に注ぎ、生成したポリマーを分離した後、濾過分別し、エタノールとアセトンで洗浄した。次いで、ポリマーを乾燥させた後、NMPに溶解し、エタノール、及びクロロホルムにより再沈殿させて精製した。その後、沈殿物を濾過分別し、十分に乾燥させ、Mnが28,600であり、Mwが52,800のポリアミック酸エステル誘導体(6FPAE5-5)粉末(B)を得た。
<Synthesis Example 4 (Synthesis of 6FPAE5-5)>
APHFP 1.49 g (4.5 mmol) and LiCl 1.5 g were added to 60 ml of dry NMP and stirred at room temperature until all solids were dissolved. Thereafter, 0.12 g of chlorotrimethylsilane was added. To this solution, a mixed solution of 0.77 g (2.2 mmol) of monomer (3), 0.57 g (2.2 mmol) of monomer (5) and 5 ml of dry THF was added dropwise at room temperature, and the dropping funnel was rinsed with 2 ml of dry THF. And stirred for 1 hour. Thereafter, the reaction temperature was gradually raised, and the mixture was further stirred at 40 ° C. for 3 hours. After completion of the reaction, the reaction solution was poured into 800 ml of water, and the produced polymer was separated, followed by filtration and separation, and washing with ethanol and acetone. Next, the polymer was dried and then dissolved in NMP and purified by reprecipitation with ethanol and chloroform. Thereafter, the precipitate was separated by filtration and sufficiently dried to obtain a polyamic acid ester derivative (6FPAE5-5) powder (B) having an Mn of 28,600 and an Mw of 52,800.
<実施例1>
 合成例3で得られたポリアミック酸エステル誘導体(6FPAE2-8)粉末(A)にNMP及びBCSを加えて4質量%に希釈し、液晶配向処理剤(I)を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<Example 1>
NMP and BCS were added to the polyamic acid ester derivative (6FPAE2-8) powder (A) obtained in Synthesis Example 3 and diluted to 4% by mass to obtain a liquid crystal aligning agent (I). Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved.
<実施例2>
 合成例4で得られたポリアミック酸エステル誘導体(6FPAE5-5)粉末(B)にNMP及びBCSを加えて4質量%に希釈し、液晶配向処理剤(II)を得た。この液晶配向処理剤に濁りや析出などの異常は見られず、樹脂成分は均一に溶解していることが確認された。
<Example 2>
NMP and BCS were added to the polyamic acid ester derivative (6FPAE5-5) powder (B) obtained in Synthesis Example 4 and diluted to 4% by mass to obtain a liquid crystal aligning agent (II). Abnormalities such as turbidity and precipitation were not observed in this liquid crystal alignment treatment agent, and it was confirmed that the resin component was uniformly dissolved.
<実施例3>
 実施例1で得られたポリアミック酸エステル誘導体(6FPAE2-8)を含有する液晶配向処理剤(I)を用い、透明なガラス基板(厚さ1.1mm、横30mm、縦40mm)上にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、膜厚40nmの塗膜を形成し、配向処理前の液晶配向膜付き基板を得た。
<Example 3>
Using the liquid crystal aligning agent (I) containing the polyamic acid ester derivative (6FPAE2-8) obtained in Example 1, spin coating was performed on a transparent glass substrate (thickness 1.1 mm, width 30 mm, length 40 mm). Then, after drying for 5 minutes on a hot plate at 80 ° C., a coating film with a film thickness of 40 nm was formed to obtain a substrate with a liquid crystal alignment film before the alignment treatment.
<実施例4>
 実施例2で得られたポリアミック酸エステル誘導体(6FPAE5-5)を含有する液晶配向処理剤(II)を用い、透明なガラス基板上にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、膜厚40nmの塗膜を形成し、配向処理前の液晶配向膜付き基板を得た。
<Example 4>
The liquid crystal alignment treatment agent (II) containing the polyamic acid ester derivative (6FPAE5-5) obtained in Example 2 was spin-coated on a transparent glass substrate and dried on a hot plate at 80 ° C. for 5 minutes. After that, a coating film having a thickness of 40 nm was formed to obtain a substrate with a liquid crystal alignment film before the alignment treatment.
<実施例5>
 実施例3で得られた配向処理前の液晶配向膜付き基板を用い、これをホットプレート上で240℃に加熱し、その加熱状態を維持したまま、基板上の液晶配向膜面に対して一定の方向から偏光板(目白プレシジョン社製)を介して偏光された紫外線(ウシオ電機社製高圧水銀ランプ、目白プレシジョン社製偏光照射装置)を照射した。偏光された紫外線の強度は、波長365nmで14mWとし、紫外線照射量は500mJとした。こうして、配向処理された液晶配向膜付き基板を得た。
<Example 5>
The substrate with a liquid crystal alignment film before alignment treatment obtained in Example 3 was used, heated to 240 ° C. on a hot plate, and kept constant with respect to the liquid crystal alignment film surface on the substrate while maintaining the heating state. Were irradiated with ultraviolet rays (high pressure mercury lamp manufactured by Ushio Electric Co., Ltd., polarized light irradiation device manufactured by Mejiro Precision Co., Ltd.) through a polarizing plate (made by Mejiro Precision Co., Ltd.). The intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 500 mJ. In this way, an alignment-treated substrate with a liquid crystal alignment film was obtained.
<比較例1>
 実施例3で得られた配向処理前の液晶配向膜付き基板を用い、これを室温に維持したまま、基板上の液晶配向膜面に対して一定の方向から偏光板を介して偏光された紫外線を照射した。偏光された紫外線の強度は、波長365nmで14mWとし、紫外線照射量は500mJとした。こうして、液晶配向膜の形成された液晶配向膜付き基板を得た。
<Comparative Example 1>
Using the substrate with a liquid crystal alignment film before alignment treatment obtained in Example 3, and maintaining this at room temperature, the ultraviolet light polarized through a polarizing plate from a certain direction with respect to the liquid crystal alignment film surface on the substrate Was irradiated. The intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 500 mJ. Thus, a substrate with a liquid crystal alignment film on which a liquid crystal alignment film was formed was obtained.
<比較例2>
 実施例3で得られた配向処理前の液晶配向膜付き基板を用い、これを室温に維持したまま、基板上の液晶配向膜面に対して一定の方向から偏光板を介して偏光された紫外線を照射した。偏光された紫外線の強度は、波長365nmで14mWとし、紫外線照射量は4500mJとした。こうして、液晶配向膜の形成された液晶配向膜付き基板を得た。
<Comparative example 2>
Using the substrate with a liquid crystal alignment film before alignment treatment obtained in Example 3, and maintaining this at room temperature, the ultraviolet light polarized through a polarizing plate from a certain direction with respect to the liquid crystal alignment film surface on the substrate Was irradiated. The intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 4500 mJ. Thus, a substrate with a liquid crystal alignment film on which a liquid crystal alignment film was formed was obtained.
<実施例6>
 実施例4で得られた配向処理前の液晶配向膜付き基板を用い、これをホットプレート上で160℃に加熱し、その加熱状態を維持したまま、基板上の液晶配向膜面に対して一定の方向から偏光板を介して偏光された紫外線を照射した。偏光された紫外線の強度は、波長365nmで14mWとし、紫外線照射量は250mJとした。こうして、配向処理された液晶配向膜付き基板を得た。
<Example 6>
Using the substrate with a liquid crystal alignment film before alignment treatment obtained in Example 4, this was heated to 160 ° C. on a hot plate, and the liquid crystal alignment film surface on the substrate was kept constant while maintaining the heated state. The polarized ultraviolet rays were irradiated from the direction through the polarizing plate. The intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 250 mJ. In this way, an alignment-treated substrate with a liquid crystal alignment film was obtained.
<実施例7>
 ホットプレート上での加熱温度を200℃としたこと以外、実施例6と同様の方法に従い配向処理された液晶配向膜付き基板を得た。
<Example 7>
A substrate with a liquid crystal alignment film subjected to alignment treatment according to the same method as in Example 6 was obtained except that the heating temperature on the hot plate was 200 ° C.
<実施例8>
 ホットプレート上での加熱温度を240℃としたこと以外、実施例6と同様の方法に従い配向処理された液晶配向膜付き基板を得た。
 実施例3~8、比較例1及び比較例2において得られた液晶配向膜付き基板の作製条件について表1にまとめて示す。
<Example 8>
A substrate with a liquid crystal alignment film that had been subjected to alignment treatment according to the same method as in Example 6 was obtained except that the heating temperature on the hot plate was 240 ° C.
Table 1 summarizes the conditions for producing the substrates with the liquid crystal alignment films obtained in Examples 3 to 8, Comparative Example 1 and Comparative Example 2.
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
<実施例9>
 液晶配向処理剤A5(後記する[実施例B]に記載)を、石英基板(厚さ1.1mm、横40mm、縦40mm)にスピンコートした。次いで、90℃のホットプレートで60秒間乾燥した後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。次いで、ホットプレート上で240℃に加熱し、その加熱状態を維持したまま、基板上の液晶配向膜面に偏光板を介して313nmの紫外線を1000mJ/cm照射し、液晶配向膜付き基板を得た。
<比較例3>
 実施例9と同様にして、液晶配向膜を形成し、室温(23℃)で基板の液晶配向膜面に偏光板を介して313nmの紫外線を1000mJ/cm照射し、液晶配向膜付き基板を得た。
<比較例4>
 実施例9と同様にして、液晶配向膜を形成し、加熱及び紫外線照射のない液晶配向膜付き基板を得た。比較例4の紫外線吸収スペクトルは、実施例9及び比較例3の比較対象とした。
 実施例9、比較例3、4において得られた液晶配向膜付き基板の作製条件について表2にまとめて示す。
<Example 9>
Liquid crystal aligning agent A5 (described in [Example B] described later) was spin-coated on a quartz substrate (thickness 1.1 mm, width 40 mm, length 40 mm). Subsequently, after drying for 60 seconds with a 90 degreeC hotplate, it baked for 30 minutes with a 200 degreeC hot-air circulation type oven, and formed the liquid crystal aligning film with a film thickness of 100 nm. Next, the substrate was heated to 240 ° C. on a hot plate, and while maintaining the heated state, the surface of the liquid crystal alignment film on the substrate was irradiated with 1000 mJ / cm 2 of 313 nm ultraviolet light via a polarizing plate, and the substrate with a liquid crystal alignment film was formed. Obtained.
<Comparative Example 3>
In the same manner as in Example 9, a liquid crystal alignment film was formed, and the liquid crystal alignment film surface of the substrate was irradiated with 1000 mJ / cm 2 of ultraviolet light at 313 nm through a polarizing plate at room temperature (23 ° C.) to form a substrate with a liquid crystal alignment film. Obtained.
<Comparative Example 4>
In the same manner as in Example 9, a liquid crystal alignment film was formed, and a substrate with a liquid crystal alignment film without heating and ultraviolet irradiation was obtained. The ultraviolet absorption spectrum of Comparative Example 4 was used as a comparison target of Example 9 and Comparative Example 3.
Table 2 summarizes the conditions for producing the substrates with liquid crystal alignment films obtained in Example 9 and Comparative Examples 3 and 4.
Figure JPOXMLDOC01-appb-T000042
Figure JPOXMLDOC01-appb-T000042
[液晶配向膜の評価1]
(紫外吸収スペクトルの測定方法)
 液晶配向膜の紫外吸収スペクトルの測定は、UV-Vis吸光高度測定法により行なった。
 実施例5で得られた配向処理された液晶配向膜付き基板を用い、液晶配向膜の紫外吸収スペクトルを測定した。併せて、実施例3で得られた配向処理前の液晶配向膜付き基板を用い、配向処理前の液晶配向膜の紫外吸収スペクトルを測定して比較対象とした。
[Evaluation 1 of liquid crystal alignment film]
(Measurement method of ultraviolet absorption spectrum)
The ultraviolet absorption spectrum of the liquid crystal alignment film was measured by the UV-Vis absorption height measurement method.
Using the alignment-treated substrate with a liquid crystal alignment film obtained in Example 5, the ultraviolet absorption spectrum of the liquid crystal alignment film was measured. In addition, using the substrate with a liquid crystal alignment film before alignment treatment obtained in Example 3, the ultraviolet absorption spectrum of the liquid crystal alignment film before alignment treatment was measured and used as a comparison object.
 図1は、実施例3で得られた配向処理前の液晶配向膜及び実施例5で得られた液晶配向膜の紫外吸収スペクトルである。 FIG. 1 is an ultraviolet absorption spectrum of the liquid crystal alignment film before alignment treatment obtained in Example 3 and the liquid crystal alignment film obtained in Example 5.
 図1では、実施例5で得られた液晶配向膜の紫外吸収スペクトルを示し、比較対象として、加熱や偏光紫外線照射がなされていない実施例3の液晶配向膜の紫外吸収スペクトルを示す。図1に示すように、実施例5の液晶配向膜の紫外吸収スペクトル(図1では、「実施例5」と記載)と、実施例3の液晶配向膜の紫外吸収スペクトル(図1では、「実施例3」と記載)を比較した場合、実施例5の液晶配向膜において波長350nm付近の吸光度が大きく低下していることが分かる。この吸光度の低下は、ホットプレート上での240℃の加熱と500mJの偏光紫外線の照射処理によるものと解される。実施例3の液晶配向膜の波長300~350nm近辺の吸収は、液晶配向膜を構成するポリアミック酸エステル誘導体の含有する光反応基に由来する吸収と解され、ホットプレート上での240℃の加熱と500mJの偏光紫外線の照射処理により、ポリアミック酸エステル誘導体の膜において光架橋反応が効率良く進行したことが分かる。 FIG. 1 shows an ultraviolet absorption spectrum of the liquid crystal alignment film obtained in Example 5, and as an object for comparison, shows an ultraviolet absorption spectrum of the liquid crystal alignment film of Example 3 that has not been heated or irradiated with polarized ultraviolet light. As shown in FIG. 1, the ultraviolet absorption spectrum of the liquid crystal alignment film of Example 5 (described as “Example 5” in FIG. 1) and the ultraviolet absorption spectrum of the liquid crystal alignment film of Example 3 (in FIG. In comparison with Example 3 ”, it can be seen that the absorbance in the vicinity of a wavelength of 350 nm is greatly reduced in the liquid crystal alignment film of Example 5. This decrease in absorbance is considered to be due to heating at 240 ° C. on a hot plate and irradiation treatment with 500 mJ polarized ultraviolet light. The absorption in the vicinity of the wavelength of 300 to 350 nm of the liquid crystal alignment film of Example 3 is understood as absorption derived from the photoreactive group contained in the polyamic acid ester derivative constituting the liquid crystal alignment film, and is heated at 240 ° C. on a hot plate. It can be seen that the photo-crosslinking reaction proceeded efficiently in the polyamic acid ester derivative film by the irradiation treatment with 500 mJ polarized ultraviolet light.
 次いで、比較例1の液晶配向膜の形成された液晶配向膜付き基板と、比較例2の液晶配向膜の形成された液晶配向膜付き基板を用い、それぞれの液晶配向膜の紫外吸収スペクトルを測定した。併せて、実施例3で得られた配向処理前の液晶配向膜付き基板を用い、配向処理前の液晶配向膜の紫外吸収スペクトルを測定して比較対象とした。 Subsequently, the ultraviolet absorption spectrum of each liquid crystal alignment film was measured using the substrate with a liquid crystal alignment film on which the liquid crystal alignment film of Comparative Example 1 was formed and the substrate with the liquid crystal alignment film on which the liquid crystal alignment film of Comparative Example 2 was formed. did. In addition, using the substrate with a liquid crystal alignment film before alignment treatment obtained in Example 3, the ultraviolet absorption spectrum of the liquid crystal alignment film before alignment treatment was measured and used as a comparison object.
 図2は、の実施例3で得られた配向処理前の液晶配向膜、並びに比較例1、2で得られた液晶配向膜の紫外吸収スペクトルである。 FIG. 2 is an ultraviolet absorption spectrum of the liquid crystal alignment film before alignment treatment obtained in Example 3 and the liquid crystal alignment film obtained in Comparative Examples 1 and 2.
 図2では、比較例1の液晶配向膜及び比較例2の液晶配向膜の紫外吸収スペクトルを示し、比較対象として、加熱や偏光紫外線照射がなされていない実施例3の液晶配向膜の紫外吸収スペクトルを示す。図2に示ように、実施例3の液晶配向膜の紫外吸収スペクトル(図2では、「実施例3」と記載)と、比較例1の液晶配向膜の紫外吸収スペクトル(図2では、「比較例1」と記載)を比較した場合、比較例1の液晶配向膜において波長300~350nm近辺の吸光度が低下していることが分かる。同様に、比較例2の液晶配向膜の紫外吸収スペクトル(図2中では、「比較例2」と記載)を比較すると、比較例2の液晶配向膜において、さらに波長300~350nm近辺の吸光度が低下していることが分かる。このことから、偏光紫外線の照射量の増大に従い、液晶配向膜の波長300~350nm近辺の吸光度が低下していることが分かる。波長300~350nm近辺の吸収は、液晶配向膜を構成するポリアミック酸エステル誘導体の含有する光反応基に由来する吸収と解され、偏光紫外線の照射処理により、ポリアミック酸エステル誘導体の膜において光架橋反応が進行したことが分かる。 In FIG. 2, the ultraviolet absorption spectrum of the liquid crystal aligning film of the comparative example 1 and the liquid crystal aligning film of the comparative example 2 is shown, As a comparison object, the ultraviolet absorption spectrum of the liquid crystal aligning film of Example 3 which is not heated and polarized ultraviolet irradiation is made. Indicates. As shown in FIG. 2, the ultraviolet absorption spectrum of the liquid crystal alignment film of Example 3 (described as “Example 3” in FIG. 2) and the ultraviolet absorption spectrum of the liquid crystal alignment film of Comparative Example 1 (in FIG. Comparing Comparative Example 1 ”), it can be seen that the absorbance in the vicinity of the wavelength of 300 to 350 nm is decreased in the liquid crystal alignment film of Comparative Example 1. Similarly, when the ultraviolet absorption spectrum of the liquid crystal alignment film of Comparative Example 2 (referred to as “Comparative Example 2” in FIG. 2) is compared, the liquid crystal alignment film of Comparative Example 2 further has an absorbance around 300 to 350 nm. It turns out that it has fallen. From this, it can be seen that the absorbance of the liquid crystal alignment film near the wavelength of 300 to 350 nm decreases as the irradiation amount of polarized ultraviolet rays increases. Absorption in the vicinity of a wavelength of 300 to 350 nm is understood as absorption derived from a photoreactive group contained in the polyamic acid ester derivative constituting the liquid crystal alignment film, and photocrosslinking reaction occurs in the polyamic acid ester derivative film by irradiation with polarized ultraviolet rays. Can be seen.
 また、図1と図2とを比較すると、図2に示す比較例2の液晶配向膜の波長300~350nm近辺の吸光度と、図1に示す実施例5で得られた液晶配向膜の波長300~350nm近辺の吸光度とが同等の値であることが分かる。実施例5における偏光紫外線の照射量は500mJであり、比較例2の液晶配向膜における偏光紫外線照射量は4500mJである。このことから、偏光した紫外線の照射時に240℃での加熱処理を併用した実施例5の液晶配向膜では、非常に高い効率で光反応が進行したことがわかる。実施例5の液晶配向膜の場合、その光反応の効率は、比較例1、2などの、偏光照射時に加熱処理を併用しない液晶配向膜の場合に比べ、10倍程度向上していることがわかった。
 図3は本発明の実施例9で得られた液晶配向膜の紫外吸収スペクトルであり、比較対象として、室温にて偏光紫外線を照射した比較例3及び加熱や偏光紫外線照射がなされていない比較例4の液晶配向膜の紫外吸収スペクトルを併せて示す。図3に示すように、実施例9の液晶配向膜の紫外吸収スペクトル(図3中では、「実施例9」と記載した。)と比較例3の液晶配向膜の紫外吸収スペクトル(図3中では、「比較例3」と記載した。)を比較すると、実施例9の液晶配向膜において波長310nm付近の吸光度が大きく低下していることが分かる。この吸光度の低下は、ホットプレート上での240℃の加熱と1000mJの偏光紫外線の照射処理によるものと解される。実施例9の液晶配向膜の波長300nm~350nm近辺の吸収は、液晶配向膜を構成するポリアミック酸誘導体の含有する光反応基に由来する吸収と解され、ホットプレート上での240℃の加熱と1000mJの偏光紫外線の照射処理により、ポリアミック酸誘導体の膜において光架橋反応が効率良く進行したことが分かる。偏光した紫外線の照射時に240℃での加熱処理を併用した実施例9の液晶配向膜では、非常に高い効率で光反応が進行したことがわかる。
1 and FIG. 2 are compared, the absorbance of the liquid crystal alignment film of Comparative Example 2 shown in FIG. 2 in the vicinity of the wavelength of 300 to 350 nm and the wavelength of the liquid crystal alignment film obtained in Example 5 of FIG. It can be seen that the absorbance around ˜350 nm is equivalent. The irradiation amount of polarized ultraviolet rays in Example 5 is 500 mJ, and the irradiation amount of polarized ultraviolet rays in the liquid crystal alignment film of Comparative Example 2 is 4500 mJ. From this, it can be seen that the photoreaction progressed with very high efficiency in the liquid crystal alignment film of Example 5 in which heat treatment at 240 ° C. was used in combination with irradiation of polarized ultraviolet rays. In the case of the liquid crystal alignment film of Example 5, the efficiency of the photoreaction is improved about 10 times compared to the case of the liquid crystal alignment film such as Comparative Examples 1 and 2 that does not use heat treatment at the time of polarized light irradiation. all right.
FIG. 3 is an ultraviolet absorption spectrum of the liquid crystal alignment film obtained in Example 9 of the present invention. For comparison, Comparative Example 3 in which polarized ultraviolet rays were irradiated at room temperature and Comparative Example in which heating and polarized ultraviolet rays were not applied. 4 also shows the ultraviolet absorption spectrum of the liquid crystal alignment film of No. 4. As shown in FIG. 3, the ultraviolet absorption spectrum of the liquid crystal alignment film of Example 9 (described as “Example 9” in FIG. 3) and the ultraviolet absorption spectrum of the liquid crystal alignment film of Comparative Example 3 (in FIG. 3) Then, it was described as “Comparative Example 3”.), It was found that the absorbance in the vicinity of the wavelength of 310 nm was greatly reduced in the liquid crystal alignment film of Example 9. This decrease in absorbance is considered to be due to heating at 240 ° C. on a hot plate and irradiation treatment with 1000 mJ polarized ultraviolet rays. The absorption in the vicinity of the wavelength of 300 nm to 350 nm of the liquid crystal alignment film of Example 9 is understood as absorption derived from the photoreactive group contained in the polyamic acid derivative constituting the liquid crystal alignment film, and heating at 240 ° C. on the hot plate It can be seen that the photocrosslinking reaction proceeded efficiently in the polyamic acid derivative film by the irradiation with 1000 mJ polarized ultraviolet light. It can be seen that in the liquid crystal alignment film of Example 9 in which the heat treatment at 240 ° C. was used in combination with the irradiation of polarized ultraviolet rays, the photoreaction proceeded with very high efficiency.
[液晶配向膜の評価2]
 実施例6で得られた配向処理された液晶配向膜付き基板を用い、液晶配向膜の紫外吸収スペクトルを測定した。併せて、実施例4で得られた配向処理前の液晶配向膜付き基板を用い、紫外吸収スペクトルを測定して比較対象とした。実施例4で得られた液晶配向膜の紫外吸収スペクトルにおける波長350nm付近の吸収極大の吸光度は1.0であるのに対し、実施例6の液晶配向膜の紫外吸収スペクトルにおける波長350nm付近の吸収極大の吸光度は0.76であり、実施例の6の液晶配向膜の波長350nm付近の吸光度が大きく低下していることが分かった。その結果から、偏光した紫外線の照射時に160℃での加熱処理を併用した実施例6の液晶配向膜では、高い効率で光反応が進行したことがわかった。
[Evaluation 2 of liquid crystal alignment film]
Using the alignment-treated substrate with a liquid crystal alignment film obtained in Example 6, the ultraviolet absorption spectrum of the liquid crystal alignment film was measured. In addition, using the substrate with a liquid crystal alignment film before alignment treatment obtained in Example 4, an ultraviolet absorption spectrum was measured and used as a comparison target. The absorbance at the absorption maximum near a wavelength of 350 nm in the ultraviolet absorption spectrum of the liquid crystal alignment film obtained in Example 4 is 1.0, whereas the absorption near the wavelength of 350 nm in the ultraviolet absorption spectrum of the liquid crystal alignment film in Example 6 is obtained. The maximum absorbance was 0.76, and it was found that the absorbance around the wavelength of 350 nm of the liquid crystal alignment film of Example 6 was greatly reduced. From the results, it was found that the photoreaction progressed with high efficiency in the liquid crystal alignment film of Example 6 in which the heat treatment at 160 ° C. was used in combination with the irradiation of polarized ultraviolet rays.
 同様に、実施例7、8で得られた配向処理された液晶配向膜付き基板を用い、液晶配向膜の紫外吸収スペクトルを測定し、波長350nm付近の吸収極大の吸光度を評価したところ、いずれも0.70であった。実施例6の液晶配向膜と比較した場合、吸収極大の吸光度の低下の程度が若干大きく、実施例7の液晶配向膜と実施例8の液晶配向膜では、吸収極大の吸光度の低下の程度は同等であった。
 以上の評価結果から、偏光した紫外線を液晶配向膜に照射する時に加熱処理を併用する場合、160℃の加熱温度で光反応効率の向上の効果が十分となり、200℃以上の加熱温度においても、光反応効率の向上効果は、160℃の場合とほぼ同等となることがわかった。すなわち、液晶配向膜の配向処理における偏光紫外線照射時の加熱温度としては、液晶配向膜を構成するポリアミック酸エステル誘導体のポリイミドへの変化を抑制できる、160~200℃とすることが特に好ましいことがわかった。
Similarly, using the alignment-treated substrate with a liquid crystal alignment film obtained in Examples 7 and 8, the ultraviolet absorption spectrum of the liquid crystal alignment film was measured, and the absorbance at the absorption maximum near a wavelength of 350 nm was evaluated. It was 0.70. When compared with the liquid crystal alignment film of Example 6, the degree of decrease in absorbance at the absorption maximum is slightly large. In the liquid crystal alignment film of Example 7 and the liquid crystal alignment film of Example 8, the degree of decrease in absorbance at the absorption maximum is It was equivalent.
From the above evaluation results, when heat treatment is used in combination with irradiation of polarized ultraviolet rays to the liquid crystal alignment film, the effect of improving the photoreaction efficiency is sufficient at a heating temperature of 160 ° C., and even at a heating temperature of 200 ° C. or higher, It was found that the effect of improving the photoreaction efficiency was almost the same as that at 160 ° C. That is, the heating temperature at the time of irradiation with polarized ultraviolet rays in the alignment treatment of the liquid crystal alignment film is particularly preferably 160 to 200 ° C., which can suppress the change of the polyamic acid ester derivative constituting the liquid crystal alignment film to polyimide. all right.
<実施例10>
 実施例1で得られた液晶配向処理剤(I)を用いて液晶配向膜を作製し、その液晶配向膜を用いた液晶セルを製造した。液晶セルは、液晶配向膜の特性に対応して、平行配向の液晶セルとした。得られた液晶セルを一対の偏光板で挟持することにより液晶表示素子を構成することができる。
<Example 10>
A liquid crystal alignment film was prepared using the liquid crystal alignment treatment agent (I) obtained in Example 1, and a liquid crystal cell using the liquid crystal alignment film was manufactured. The liquid crystal cell was a parallel aligned liquid crystal cell corresponding to the characteristics of the liquid crystal alignment film. A liquid crystal display element can be constituted by sandwiching the obtained liquid crystal cell between a pair of polarizing plates.
 液晶セルの製造方法としては、液晶配向処理剤(I)をITO電極付きガラス基板(縦30mm×横40mm、厚さ1,1mm)にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、膜厚40nmの塗膜として液晶配向膜を形成し、配向処理前の液晶配向膜付き基板を得た。基板上に形成された液晶配向膜はいずれも膜厚の均一性に優れ、液晶配向処理剤(I)は優れた塗布性を示すことがわかった。 As a method for producing a liquid crystal cell, a liquid crystal alignment agent (I) is spin-coated on a glass substrate with an ITO electrode (length 30 mm × width 40 mm, thickness 1,1 mm) and dried on an 80 ° C. hot plate for 5 minutes. After that, a liquid crystal alignment film was formed as a 40 nm-thick coating film to obtain a substrate with a liquid crystal alignment film before the alignment treatment. It was found that all the liquid crystal alignment films formed on the substrate were excellent in film thickness uniformity, and the liquid crystal alignment treatment agent (I) exhibited excellent coating properties.
 得られた配向処理前の液晶配向膜付き基板を用い、これをホットプレート上で240℃に加熱し、その加熱状態を維持したまま、基板上の液晶配向膜面に対して一定の方向から偏光板を介して偏光された紫外線を照射した。偏光された紫外線の強度は、波長365nmで14mWとし、紫外線照射量は250mJとした。こうして、配向処理された液晶配向膜付き基板を得た。
 この液晶配向膜付き基板を2枚用意し、一方の液晶配向膜面上に14μmのスペーサ(日本触媒社製、真し球)を散布した後、この上からシール剤(三井化学社製XN-1500T)を塗布した。次いで、他方の基板と液晶配向膜面が向き合うようにして貼り合わせた後、シール剤を150℃で150間加熱することにより硬化して空セルを作製した。この空セルに毛細管現象を利用し、液晶の等方相温度以上である105℃で、ネマティック液晶(メルク社製ZLI-4792)を注入して、液晶セルを得た。
Using the obtained substrate with a liquid crystal alignment film before the alignment treatment, this is heated to 240 ° C. on a hot plate and polarized from a certain direction with respect to the liquid crystal alignment film surface on the substrate while maintaining the heated state. The polarized ultraviolet light was irradiated through the plate. The intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 250 mJ. In this way, an alignment-treated substrate with a liquid crystal alignment film was obtained.
Two substrates with this liquid crystal alignment film were prepared, and 14 μm spacers (manufactured by Nippon Shokubai Co., Ltd., true sphere) were sprayed on one liquid crystal alignment film surface, and then a sealing agent (XN- 1500T) was applied. Subsequently, after bonding together so that the other board | substrate and liquid crystal aligning film surface might face each other, it hardened | cured by heating the sealing compound at 150 degreeC for 150, and produced the empty cell. By utilizing capillary action, nematic liquid crystal (ZLI-4792 manufactured by Merck & Co., Inc.) was injected into the empty cell at 105 ° C., which is higher than the isotropic phase temperature of the liquid crystal, to obtain a liquid crystal cell.
<実施例11>
 偏光された紫外線の照射量を500mJとしたこと以外は、上述の実施例10と同様の方法に従い液晶セルを製造した。
<Example 11>
A liquid crystal cell was produced according to the same method as in Example 10 except that the irradiation amount of polarized ultraviolet rays was 500 mJ.
<比較例5>
 偏光された紫外線の照射量を50mJとしたこと以外は、上述の実施例10と同様の方法に従い液晶セルを製造した。
<Comparative Example 5>
A liquid crystal cell was produced according to the same method as in Example 10 except that the irradiation amount of polarized ultraviolet rays was 50 mJ.
<比較例6>
 実施例1で得られた液晶配向処理剤(I)を用いて液晶配向膜を作製し、その液晶配向膜を用いた液晶セルを製造した。液晶セルは、実施例10と同様に平行配向の液晶セルとした。
<Comparative Example 6>
A liquid crystal alignment film was prepared using the liquid crystal alignment treatment agent (I) obtained in Example 1, and a liquid crystal cell using the liquid crystal alignment film was manufactured. The liquid crystal cell was a parallel alignment liquid crystal cell as in Example 10.
 液晶セルの製造方法としては、液晶配向処理剤(I)をITO電極付きガラス基板にスピンコートし、80℃のホットプレート上で5分間乾燥させた後、膜厚40nmの塗膜として液晶配向膜を形成し、配向処理前の液晶配向膜付き基板を得た。 As a method for manufacturing a liquid crystal cell, a liquid crystal alignment treatment agent (I) is spin-coated on a glass substrate with an ITO electrode, dried on a hot plate at 80 ° C. for 5 minutes, and then a liquid crystal alignment film as a 40 nm-thick coating film. And a substrate with a liquid crystal alignment film before the alignment treatment was obtained.
 得られた配向処理前の液晶配向膜付き基板を用い、これを室温に維持したまま、基板上の液晶配向膜面に対して一定の方向から偏光板を介して偏光された紫外線を照射した。偏光された紫外線の強度は、波長365nmで14mWとし、紫外線照射量は50mJとした。こうして、配向処理された液晶配向膜付き基板を得た。 The obtained substrate with a liquid crystal alignment film before the alignment treatment was used, and while maintaining this at room temperature, the surface of the liquid crystal alignment film on the substrate was irradiated with polarized ultraviolet rays through a polarizing plate from a certain direction. The intensity of the polarized ultraviolet light was 14 mW at a wavelength of 365 nm, and the ultraviolet irradiation amount was 50 mJ. In this way, an alignment-treated substrate with a liquid crystal alignment film was obtained.
 この液晶配向膜付き基板を2枚用意し、一方の液晶配向膜面上に14μmのスペーサを散布した後、この上からシール剤を塗布した。次いで、他方の基板と液晶配向膜面が向き合うようにして貼り合わせた後、シール剤を150℃で150間加熱することにより硬化して空セルを作製した。この空セルに毛細管現象を利用し、液晶の等方相温度以上である105℃で、ネマティック液晶(メルク社製ZLI-4792)を注入して、液晶セルを得た。 Two substrates with this liquid crystal alignment film were prepared, and 14 μm spacers were sprayed on one liquid crystal alignment film surface, and then a sealing agent was applied thereon. Subsequently, after bonding together so that the other board | substrate and liquid crystal aligning film surface might face each other, it hardened | cured by heating the sealing compound at 150 degreeC for 150, and produced the empty cell. By utilizing capillary action, nematic liquid crystal (ZLI-4792 manufactured by Merck & Co., Inc.) was injected into the empty cell at 105 ° C., which is higher than the isotropic phase temperature of the liquid crystal, to obtain a liquid crystal cell.
<比較例7>
 偏光された紫外線の照射量を250mJとしたこと以外は、比較例10と同様の方法に従い液晶セルを製造した。
<Comparative Example 7>
A liquid crystal cell was produced in the same manner as in Comparative Example 10 except that the irradiation amount of polarized ultraviolet rays was 250 mJ.
<比較例8>
 偏光された紫外線の照射量を500mJとしたこと以外は、比較例10と同様の方法に従い液晶セルを製造した。
 実施例10、11及び比較例5~8において作製された液晶セルの液晶配向膜の作製条件を表3にまとめて示す。
<Comparative Example 8>
A liquid crystal cell was produced in the same manner as in Comparative Example 10 except that the irradiation amount of polarized ultraviolet rays was 500 mJ.
Table 3 summarizes the conditions for producing the liquid crystal alignment films of the liquid crystal cells produced in Examples 10 and 11 and Comparative Examples 5 to 8.
Figure JPOXMLDOC01-appb-T000043
Figure JPOXMLDOC01-appb-T000043
[液晶表示素子の評価]
 実施例10、11及び比較例5~8で得られた液晶セルの液晶配向膜について、偏光顕微鏡(ニコン社製)を用いた液晶の配向状態の評価を行った。
[Evaluation of liquid crystal display elements]
The liquid crystal alignment films of the liquid crystal cells obtained in Examples 10 and 11 and Comparative Examples 5 to 8 were evaluated for the alignment state of the liquid crystals using a polarizing microscope (Nikon Corporation).
 図4は、実施例10、11及び比較例5~8の液晶セルを偏光顕微鏡写真を比較して示す図である。 FIG. 4 is a diagram showing the liquid crystal cells of Examples 10 and 11 and Comparative Examples 5 to 8 in comparison with polarization micrographs.
 図4に示すように、実施例10、11で得られた液晶セルでは、欠陥は観察されなかった。そして、偏光顕微鏡のクロスニコル下で回転させたところ、明瞭な明暗を生じることが確認され、液晶は均一に平行配向していることが確認された。紫外線照射量が250mJである実施例6の液晶セルでも、十分な配向処理がなされていることがわかる。
 一方、比較例5~8で得られた液晶セルでは、多数の欠陥が観察され、液晶の均一な配向が形成されていないことがわかった。紫外線照射量が500mJである比較例6の液晶セルでも液晶の均一配向は実現されず、十分な配向処理がなされていないことがわかった。
As shown in FIG. 4, no defects were observed in the liquid crystal cells obtained in Examples 10 and 11. And when it rotated under the crossed Nicols of a polarizing microscope, it was confirmed that clear brightness and darkness were produced, and it was confirmed that the liquid crystal is parallel-aligned uniformly. It can be seen that sufficient alignment treatment was performed even in the liquid crystal cell of Example 6 in which the amount of ultraviolet irradiation was 250 mJ.
On the other hand, in the liquid crystal cells obtained in Comparative Examples 5 to 8, many defects were observed, and it was found that a uniform alignment of the liquid crystal was not formed. It was found that even in the liquid crystal cell of Comparative Example 6 having an ultraviolet irradiation amount of 500 mJ, liquid crystal uniform alignment was not realized and sufficient alignment treatment was not performed.
 以上の観察結果から、偏光された紫外線の照射時に240℃の加熱処理を併用する実施例10及び実施例11の液晶セルでは、少ない紫外線照射量でも液晶の配向制御を行うことが可能であることがわかった。また、偏光紫外線の照射時に加熱処理を併用する場合、必要とされる紫外線照射量は、250mJ程度と、従来の光配向法に比べてはるかに少量ですむことがわかった。 From the above observation results, in the liquid crystal cells of Example 10 and Example 11 in which the heat treatment at 240 ° C. is used in combination with the irradiation of polarized ultraviolet rays, it is possible to control the alignment of the liquid crystals even with a small amount of ultraviolet irradiation. I understood. In addition, when heat treatment is used in combination with polarized ultraviolet irradiation, the required ultraviolet irradiation amount is about 250 mJ, which is much smaller than the conventional photo-alignment method.
 次いで、実施例10、11で得られた液晶セルを用い、それぞれをクロスニコル配置された一対の偏光板で挟持し、液晶表示素子を構成した。得られた液晶表示素子では、それぞれ、基板上のITO電極間に電圧を印加することにより、液晶の配向変化が引き起こされ、光の透過量を変化させることができることを確認した。
 以上の評価結果から、本発明の液晶配向膜の製造方法を用い、少ない紫外線照射量によって作製された本発明の液晶配向膜は、液晶表示素子を提供できることがわかった。
 [実施例B]
Next, using the liquid crystal cells obtained in Examples 10 and 11, each was sandwiched between a pair of polarizing plates arranged in a crossed Nicol configuration, thereby forming a liquid crystal display element. In the obtained liquid crystal display elements, it was confirmed that by applying a voltage between the ITO electrodes on the substrate, the change in the alignment of the liquid crystal was caused and the amount of transmitted light could be changed.
From the above evaluation results, it was found that the liquid crystal alignment film of the present invention produced by using the method for producing a liquid crystal alignment film of the present invention with a small amount of ultraviolet irradiation can provide a liquid crystal display element.
[Example B]
 実施例において使用された略号の意味は、以下のとおりである。
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
p-PDA:p-フェニレンジアミン
Figure JPOXMLDOC01-appb-I000044
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
APHFP:
Figure JPOXMLDOC01-appb-I000045

ジアミン[1]~[7]:下記式で表されるジアミン[1]~[7]
The meanings of the abbreviations used in the examples are as follows.
CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride p-PDA: p-phenylenediamine
Figure JPOXMLDOC01-appb-I000044
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve APHFP:
Figure JPOXMLDOC01-appb-I000045

Diamine [1] to [7]: Diamine [1] to [7] represented by the following formula
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000046
 <H-NMRの測定>
 合成例におけるH-NMRの測定条件は、以下の通りである。
装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)INOVA-400(Varian社製)400MHz
溶媒:重水素化ジメチルスルホキシド(DMSO-d)及び重水素化クロロホルム(CDCl
標準物質:テトラメチルシラン(TMS)
<Measurement of 1 H-NMR>
The measurement conditions of 1 H-NMR in the synthesis examples are as follows.
Apparatus: Fourier transform type superconducting nuclear magnetic resonance apparatus (FT-NMR) INOVA-400 (manufactured by Varian) 400 MHz
Solvent: deuterated dimethyl sulfoxide (DMSO-d 6 ) and deuterated chloroform (CDCl 3 )
Standard substance: Tetramethylsilane (TMS)
 <ポリマーの分子量測定>
 ポリマー(ポリアミック酸等)の分子量の測定条件は、以下の通りである。
装置:センシュー科学社製 常温ゲル浸透クロマトグラフィー(GPC)装置(SSC-7200)、
カラム:Shodex社製カラム(KD-803、及びKD-805)
カラム温度:50℃
溶離液:N,N'-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0ml/分
検量線作成用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量約900,000、150,000、100,000、及び30,000)、及びポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、及び1,000)。
<Measurement of molecular weight of polymer>
The measurement conditions of the molecular weight of the polymer (polyamic acid or the like) are as follows.
Apparatus: Room temperature gel permeation chromatography (GPC) apparatus (SSC-7200) manufactured by Senshu Scientific Co., Ltd.
Column: Column manufactured by Shodex (KD-803 and KD-805)
Column temperature: 50 ° C
Eluent: N, N′-dimethylformamide (as additive, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) 30 mmol) / L, 10 ml / L of tetrahydrofuran (THF))
Flow rate: 1.0 ml / standard curve preparation standard sample: Tosoh TSK standard polyethylene oxide (molecular weight about 900,000, 150,000, 100,000, and 30,000), and polymer laboratory polyethylene glycol ( Molecular weights of about 12,000, 4,000, and 1,000).
 <ジアミンの合成>
 (合成例1)
ジアミン[1]((E,E)-Bis-(4'-aminophenyl) 1,4-benzenediacrylate)の合成
<Synthesis of diamine>
(Synthesis Example 1)
Synthesis of Diamine [1] ((E, E) -Bis- (4'-aminophenyl) 1,4-benzenediacrylate)
Figure JPOXMLDOC01-appb-C000047
Figure JPOXMLDOC01-appb-C000047
 2L四つ口フラスコに、テレフタルアルデヒド[A](40.00g、298mmol)、ピリジン(46g)、及びピペリジン(7.0g)を加え、撹拌しながら反応溶液を100℃に加熱した。次いで、反応溶液中に、マロン酸[B](140.0g、1.34mol)のピリジン溶液(500g)を滴下した。反応終了をHPLC(高速液体クロマトグラフィー)で確認後、反応溶液を40℃まで冷却し、蒸留水(1L)に反応溶液を注いだ。次いで、この反応溶液が酸性になるまで濃塩酸を加えた後、固体をろ過した。その後、水洗し、さらにメタノール洗浄し、減圧乾燥して、化合物[C]を得た(収量:60.3g、収率:93%)。得られた化合物[C]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):12.4(2H, brs), 7.74(4H, s), 7.60(2H, d), 6.61(2H, d).
To a 2 L four-necked flask, terephthalaldehyde [A] (40.00 g, 298 mmol), pyridine (46 g), and piperidine (7.0 g) were added, and the reaction solution was heated to 100 ° C. with stirring. Next, a pyridine solution (500 g) of malonic acid [B] (140.0 g, 1.34 mol) was dropped into the reaction solution. After confirming the completion of the reaction by HPLC (high performance liquid chromatography), the reaction solution was cooled to 40 ° C., and the reaction solution was poured into distilled water (1 L). Next, concentrated hydrochloric acid was added until the reaction solution became acidic, and then the solid was filtered. Thereafter, it was washed with water, further washed with methanol, and dried under reduced pressure to obtain compound [C] (yield: 60.3 g, yield: 93%). The 1 H-NMR measurement result of the obtained compound [C] is shown below.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 12.4 (2H, brs), 7.74 (4H, s), 7.60 (2H, d), 6.61 (2H, d).
 次に、1L四つ口フラスコに、化合物[C](30.00g、138mmol)、4-ニトロフェノール[D](42.08g、303mmol)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(以下、EDCと省略)(68.53g、358mmol)、4-N,N-ジメチルアミノピリジン(以下、DMAPと省略)(3.56g、27.5mmol)、及びテトラヒドロフラン(以下、THFと省略)(600g)を加え、23℃で撹拌を行った。反応終了をHPLCで確認後、反応溶液を酢酸エチル(500mL)/蒸留水(1L)混合溶液に注ぎ、固体をろ過した。その後、酢酸エチル/メタノール1:1混合溶液で洗浄し、減圧乾燥して、化合物[E]を得た(収量:60.6g、収率:96%)。得られた化合物[E]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):8.36-8.31(4H, m), 7.92(2H, d), 7.68(4H, s), 7.40-7.37(4H, m), 6.70(2H, d).
Next, in a 1 L four-necked flask, compound [C] (30.00 g, 138 mmol), 4-nitrophenol [D] (42.08 g, 303 mmol), 1-ethyl-3- (3-dimethylaminopropyl) Carbodiimide hydrochloride (hereinafter abbreviated as EDC) (68.53 g, 358 mmol), 4-N, N-dimethylaminopyridine (hereinafter abbreviated as DMAP) (3.56 g, 27.5 mmol), and tetrahydrofuran (hereinafter referred to as THF) And (600 g) was added, and the mixture was stirred at 23 ° C. After confirming the completion of the reaction by HPLC, the reaction solution was poured into a mixed solution of ethyl acetate (500 mL) / distilled water (1 L), and the solid was filtered. Then, it wash | cleaned with the ethyl acetate / methanol 1: 1 mixed solution, and it dried under reduced pressure, and obtained compound [E] (yield: 60.6g, yield: 96%). The results of 1 H-NMR measurement of the obtained compound [E] are shown below.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 8.36-8.31 (4H, m), 7.92 (2H, d), 7.68 (4H, s), 7.40-7.37 (4H, m), 6.70 (2H, d).
 次に、2L四つ口フラスコに、化合物[E](63.30g、138mmol)、塩化スズ(182.5g、962mmol)、THF(630g)、及び蒸留水(440g)を加え、70℃で加熱撹拌を行った。反応終了をHPLCで確認後、N,N-ジメチルアセトアミド(1L)を加えた後、反応溶液を酢酸エチル(2.5L)で希釈し、副生物である水酸化スズが析出しなくなるまで、炭酸水素ナトリウムを加えた。その後、上澄みをろ過し、ろ液を分液し水層を除去した。その後、有機層をそれぞれ1Lの飽和炭酸水素ナトリウム水溶液(2回)、及びブライン(2回)で順次洗浄し、有機層を硫酸マグネシウムで乾燥した。ろ過後、エバポレーターで溶媒を留去し、粗物を得た後、メタノール(200mL)を加え、室温(23℃)下で30分間撹拌した。その後、再度ろ過し、メタノール洗浄を行い、減圧乾燥して、ジアミン[1]を得た(収量:24.0g、収率:44%)。得られたジアミン[1]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):7.83(4H, s), 7.79(2H, d), 6.89(2H, d), 6.81-6.78(4H, m), 6.56-6.53(4H, m), 5.04(4H, brs).
Next, compound [E] (63.30 g, 138 mmol), tin chloride (182.5 g, 962 mmol), THF (630 g), and distilled water (440 g) were added to a 2 L four-necked flask and heated at 70 ° C. Stirring was performed. After confirming the completion of the reaction by HPLC, N, N-dimethylacetamide (1 L) was added, and then the reaction solution was diluted with ethyl acetate (2.5 L), and carbonic acid was added until no by-product tin hydroxide was precipitated. Sodium hydride was added. Thereafter, the supernatant was filtered, the filtrate was separated, and the aqueous layer was removed. Thereafter, the organic layer was washed sequentially with 1 L of saturated aqueous sodium hydrogen carbonate solution (twice) and brine (twice), and the organic layer was dried over magnesium sulfate. After filtration, the solvent was distilled off with an evaporator to obtain a crude product, methanol (200 mL) was added, and the mixture was stirred at room temperature (23 ° C.) for 30 minutes. Thereafter, the mixture was filtered again, washed with methanol, and dried under reduced pressure to obtain diamine [1] (yield: 24.0 g, yield: 44%). The 1 H-NMR measurement result of the obtained diamine [1] is shown below.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 7.83 (4H, s), 7.79 (2H, d), 6.89 (2H, d), 6.81-6.78 (4H, m), 6.56-6.53 (4H, m), 5.04 (4H, brs).
 (合成例2)
 ジアミン[2]((E,E)-Bis-(4'-aminophenylethyl) 1,4-benzenediacrylate)の合成
(Synthesis Example 2)
Synthesis of Diamine [2] ((E, E) -Bis- (4'-aminophenylethyl) 1,4-benzenediacrylate)
Figure JPOXMLDOC01-appb-C000048
Figure JPOXMLDOC01-appb-C000048
 1L四つ口フラスコに、化合物[C](30.21g、138mmol)、2-(4-ニトロフェニル)エタノール[F](50.91g、305mmol)、EDC(68.98g、360mmol)、DMAP(3.38g、27.9mmol)、及びTHF(600g)を加え、23℃で撹拌を行った。反応終了をHPLCで確認後、反応溶液を酢酸エチル(1L)/蒸留水(1L)混合溶液に注ぎ、固体をろ過した。その後、酢酸エチル/メタノール1:1混合溶液で洗浄し、減圧乾燥して、化合物[G]を得た(収量:70.9g、収率:99%)。 In a 1 L four-necked flask, compound [C] (30.21 g, 138 mmol), 2- (4-nitrophenyl) ethanol [F] (50.91 g, 305 mmol), EDC (68.98 g, 360 mmol), DMAP ( 3.38 g, 27.9 mmol) and THF (600 g) were added, and the mixture was stirred at 23 ° C. After confirming the completion of the reaction by HPLC, the reaction solution was poured into a mixed solution of ethyl acetate (1 L) / distilled water (1 L), and the solid was filtered. Then, it was washed with a mixed solution of ethyl acetate / methanol 1: 1 and dried under reduced pressure to obtain compound [G] (yield: 70.9 g, yield: 99%).
 次に、2L四つ口フラスコに、化合物[G](71.48g、138mmol)、塩化スズ(183.4g、969mmol)、THF(715g)、及び蒸留水(500g)を加え、70℃で加熱撹拌を行った。反応終了をHPLCで確認後、N,N-ジメチルアセトアミド(1L)を加えた後、反応溶液を酢酸エチル(2.5L)で希釈し、副生物である水酸化スズが析出しなくなるまで、炭酸水素ナトリウムを加えた。その後、上澄みをろ過し、ろ液を分液し水層を除去した。その後、有機層をそれぞれ1Lの飽和炭酸水素ナトリウム水溶液(2回)、及びブライン(2回)で順次洗浄し、有機層を硫酸マグネシウムで乾燥した。ろ過後、エバポレーターで溶媒を留去し、粗物を得た後、メタノール(200mL)を加え、室温下で30分間撹拌した。その後、再度ろ過し、メタノール洗浄を行い、減圧乾燥して、ジアミン[2]を得た(収量:30.6g、収率:48%)。得られたジアミン[2]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):7.66(2H, d), 7.73(4H, s), 7.60(2H, d), 6.90-6.88(4H, m), 6.66(2H, d), 6.45-6.46(4H, m), 4.88(4H, brs), 4.21(4H, t), 2.75(4H, t).
Next, compound [G] (71.48 g, 138 mmol), tin chloride (183.4 g, 969 mmol), THF (715 g), and distilled water (500 g) are added to a 2 L four-necked flask and heated at 70 ° C. Stirring was performed. After confirming the completion of the reaction by HPLC, N, N-dimethylacetamide (1 L) was added, and then the reaction solution was diluted with ethyl acetate (2.5 L), and carbonic acid was added until no by-product tin hydroxide was precipitated. Sodium hydride was added. Thereafter, the supernatant was filtered, the filtrate was separated, and the aqueous layer was removed. Thereafter, the organic layer was washed sequentially with 1 L of saturated aqueous sodium hydrogen carbonate solution (twice) and brine (twice), and the organic layer was dried over magnesium sulfate. After filtration, the solvent was distilled off with an evaporator to obtain a crude product, methanol (200 mL) was added, and the mixture was stirred at room temperature for 30 minutes. Thereafter, the mixture was filtered again, washed with methanol, and dried under reduced pressure to obtain diamine [2] (yield: 30.6 g, yield: 48%). The 1 H-NMR measurement result of the obtained diamine [2] is shown below.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 7.66 (2H, d), 7.73 (4H, s), 7.60 (2H, d), 6.90-6.88 (4H, m), 6.66 (2H, d) , 6.45-6.46 (4H, m), 4.88 (4H, brs), 4.21 (4H, t), 2.75 (4H, t).
 (合成例3)
 ジアミン[3]((E,E)-Bis-(4'-aminophenyl) 1,3-benzenediacrylate)の合成
(Synthesis Example 3)
Synthesis of Diamine [3] ((E, E) -Bis- (4'-aminophenyl) 1,3-benzenediacrylate)
Figure JPOXMLDOC01-appb-C000049
Figure JPOXMLDOC01-appb-C000049
 2L四つ口フラスコに、イソフタルアルデヒド[H](50.00g、373mol)、ピリジン(78g)、及びピペリジン(9.5g)を加え、撹拌しながら反応溶液を100℃に加熱した。次いで、反応溶液中に、マロン酸[B](169.5g、1.68mol)のピリジン溶液(600g)を滴下した。反応終了をHPLCで確認後、反応溶液を40℃まで冷却し、蒸留水(1L)に反応溶液を注いだ。次いで、この反応溶液が酸性になるまで濃塩酸を加えた後、固体をろ過した。その後、水洗し、化合物[I]の粗物を得た。この粗物を酢酸エチル/メタノール1:1混合溶液で室温下、30分間撹拌した。その後、ろ過し、酢酸エチルで洗浄した後、減圧乾燥して、化合物[I]を得た(収量:80.2g、収率:99%)。得られた化合物[I]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):12.4(2H, brs), 8.07(1H, s), 7.72(2H, dd), 7.61(2H, d), 7.46(1H, t).
Isophthalaldehyde [H] (50.00 g, 373 mol), pyridine (78 g), and piperidine (9.5 g) were added to a 2 L four-necked flask, and the reaction solution was heated to 100 ° C. with stirring. Then, a pyridine solution (600 g) of malonic acid [B] (169.5 g, 1.68 mol) was dropped into the reaction solution. After confirming the completion of the reaction by HPLC, the reaction solution was cooled to 40 ° C., and the reaction solution was poured into distilled water (1 L). Next, concentrated hydrochloric acid was added until the reaction solution became acidic, and then the solid was filtered. Then, it washed with water and the crude product of compound [I] was obtained. This crude product was stirred with an ethyl acetate / methanol 1: 1 mixed solution at room temperature for 30 minutes. Thereafter, the mixture was filtered, washed with ethyl acetate, and dried under reduced pressure to obtain compound [I] (yield: 80.2 g, yield: 99%). The results of 1 H-NMR measurement of the obtained compound [I] are shown below.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 12.4 (2H, brs), 8.07 (1H, s), 7.72 (2H, dd), 7.61 (2H, d), 7.46 (1H, t).
 次に、1L四つ口フラスコに、化合物[I](30.00g、138mmol)、4-ニトロフェノール[D](40.17g、289mmol)、EDC(63.26g、330mmol)、DMAP(3.36g、27.5mmol)、及びTHF(600g)を加え、23℃で撹拌を行った。反応終了をHPLCで確認後、反応溶液を酢酸エチル(500mL)/蒸留水(1L)混合溶液に注ぎ、固体をろ過した。その後、酢酸エチルで洗浄し、減圧乾燥して、化合物[J]を得た(収量:62.1g、収率:98%)。得られた化合物[J]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):8.37(1H, s), 8.32-8.29(4H, m), 7.92(2H, d), 7.88(2H, dd), 7.56-7.51(5H, m), 7.08(2H, d).
Next, in a 1 L four-necked flask, compound [I] (30.00 g, 138 mmol), 4-nitrophenol [D] (40.17 g, 289 mmol), EDC (63.26 g, 330 mmol), DMAP (3. 36 g, 27.5 mmol) and THF (600 g) were added, and the mixture was stirred at 23 ° C. After confirming the completion of the reaction by HPLC, the reaction solution was poured into a mixed solution of ethyl acetate (500 mL) / distilled water (1 L), and the solid was filtered. Then, it was washed with ethyl acetate and dried under reduced pressure to obtain compound [J] (yield: 62.1 g, yield: 98%). The 1 H-NMR measurement result of the obtained compound [J] is shown below.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 8.37 (1H, s), 8.32-8.29 (4H, m), 7.92 (2H, d), 7.88 (2H, dd), 7.56-7.51 (5H, m), 7.08 (2H, d).
 次に、2L四つ口フラスコに、化合物[J](62.1g、135mmol)、塩化スズ(182.5g、962mmol)、THF(630g)、及び蒸留水(630g)を加え、70℃で加熱撹拌を行った。反応終了をHPLCで確認後、反応溶液を酢酸エチル(2L)で希釈し、副生物である水酸化スズが析出しなくなるまで、炭酸水素ナトリウムを加えた。その後、上澄みをろ過し、ろ液を分液し水層を除去した。その後、有機層をそれぞれ1Lの飽和炭酸水素ナトリウム水溶液(2回)、及びブライン(2回)で順次洗浄し、有機層を硫酸マグネシウムで乾燥した。ろ過後、エバポレーターで溶媒を留去し、粗物を得た後、メタノール(200mL)を加え、室温下30分間撹拌した。その後、再度ろ過し、メタノール洗浄を行い、減圧乾燥してジアミン[3]を得た(収量:34.1g、収率:54%)。得られたジアミン[3]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):8.27(1H, s), 7.82-7.77(4H, m), 7.49(1H, t), 6.96(2H, d), 6.82-6.78(4H, m), 6.56-6.53(4H, m), 5.04(4H, brs).
Next, the compound [J] (62.1 g, 135 mmol), tin chloride (182.5 g, 962 mmol), THF (630 g), and distilled water (630 g) are added to a 2 L four-necked flask, and heated at 70 ° C. Stirring was performed. After confirming the completion of the reaction by HPLC, the reaction solution was diluted with ethyl acetate (2 L), and sodium bicarbonate was added until no by-product tin hydroxide was precipitated. Thereafter, the supernatant was filtered, the filtrate was separated, and the aqueous layer was removed. Thereafter, the organic layer was washed sequentially with 1 L of saturated aqueous sodium hydrogen carbonate solution (twice) and brine (twice), and the organic layer was dried over magnesium sulfate. After filtration, the solvent was distilled off with an evaporator to obtain a crude product, methanol (200 mL) was added, and the mixture was stirred at room temperature for 30 minutes. Thereafter, the mixture was filtered again, washed with methanol, and dried under reduced pressure to obtain diamine [3] (yield: 34.1 g, yield: 54%). The 1 H-NMR measurement result of the obtained diamine [3] is shown below.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 8.27 (1H, s), 7.82-7.77 (4H, m), 7.49 (1H, t), 6.96 (2H, d), 6.82-6.78 (4H, m), 6.56-6.53 (4H, m), 5.04 (4H, brs).
 (合成例4)
 ジアミン[4]((E,E)-Bis-(4'-aminophenylethyl) 1,3-benzenediacrylate)の合成
(Synthesis Example 4)
Synthesis of Diamine [4] ((E, E) -Bis- (4'-aminophenylethyl) 1,3-benzenediacrylate)
Figure JPOXMLDOC01-appb-C000050
Figure JPOXMLDOC01-appb-C000050
 1L四つ口フラスコに、化合物[I](54.92g、252mmol)、2-(4-ニトロフェニル)エタノール[F](92.58g、554mmol)、EDC(125.4g、654mmol)、DMAP(6.15g、50.3mmol)、及びTHF(1.1Kg)を加え、23℃で撹拌を行った。反応終了をHPLCで確認後、反応溶液に酢酸エチル(1L)/ヘキサン(500mL)/蒸留水(1L)を加え、分液操作により、水層を除去した。その後、有機層をブライン(1L)で3回洗浄し、有機層を硫酸マグネシウムで乾燥した。ろ過後、エバポレーターで溶媒を留去し、化合物[K]の粗物を得た。この粗物にメタノール(300g)を加え、室温で30分間撹拌した。その後、ろ過し、減圧乾燥して、化合物[K]を得た(収量:82.2g、収率:63%)。得られた化合物[K]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):8.17-8.14(4H, m), 8.11(1H, s), 7.70(2H, dd), 7.62(1H, s), 7.59-7.56(5H, m), 7.42(1H, t), 6.71(2H, d), 4.41(4H, t), 3.10(4H, t).
In a 1 L four-necked flask, compound [I] (54.92 g, 252 mmol), 2- (4-nitrophenyl) ethanol [F] (92.58 g, 554 mmol), EDC (125.4 g, 654 mmol), DMAP ( 6.15 g, 50.3 mmol) and THF (1.1 Kg) were added, and the mixture was stirred at 23 ° C. After confirming the completion of the reaction by HPLC, ethyl acetate (1 L) / hexane (500 mL) / distilled water (1 L) was added to the reaction solution, and the aqueous layer was removed by a liquid separation operation. Thereafter, the organic layer was washed three times with brine (1 L), and the organic layer was dried over magnesium sulfate. After filtration, the solvent was distilled off with an evaporator to obtain a crude product of compound [K]. Methanol (300 g) was added to the crude product and stirred at room temperature for 30 minutes. Then, it filtered and dried under reduced pressure and compound [K] was obtained (yield: 82.2 g, yield: 63%). The 1 H-NMR measurement result of the obtained compound [K] is shown below.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 8.17-8.14 (4H, m), 8.11 (1H, s), 7.70 (2H, dd), 7.62 (1H, s), 7.59-7.56 (5H, m), 7.42 (1H, t), 6.71 (2H, d), 4.41 (4H, t), 3.10 (4H, t).
 次に、2L四つ口フラスコに、化合物[K](82.21g、139mmol)、塩化スズ(211.3g、1.11mol)、THF(820g)、及び蒸留水(820g)を加え、70℃で加熱撹拌を行った。反応終了をHPLCで確認後、反応溶液を酢酸エチル(2.5L)で希釈し、副生物である水酸化スズが析出しなくなるまで、炭酸水素ナトリウムを加えた。その後、上澄みをろ過し、ろ液を分液し水層を除去した。その後、有機層をそれぞれ1Lの飽和炭酸水素ナトリウム水溶液(2回)、及びブライン(2回)で順次洗浄し、有機層を硫酸マグネシウムで乾燥した。ろ過後、エバポレーターで溶媒を留去し、粗物を得た後、メタノール(200mL)を加え、室温下30分間撹拌した。その後、再度ろ過し、メタノール洗浄を行い、減圧乾燥して、ジアミン[4]を得た(収量:46.1g、収率:73%)。得られたジアミン[4]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, CDCl3, δppm):7.66(2H, d), 7.63(1H, s), 7.54-7.39(1H, m), 7.07-7.04(4H, m), 6.68-6.65(4H, m), 6.45(2H, d), 5.04(4H, brs), 4.37(4H, t), 2.91(4H, t).
Next, compound [K] (82.21 g, 139 mmol), tin chloride (211.3 g, 1.11 mol), THF (820 g), and distilled water (820 g) were added to a 2 L four-necked flask at 70 ° C. The mixture was heated and stirred. After confirming the completion of the reaction by HPLC, the reaction solution was diluted with ethyl acetate (2.5 L), and sodium bicarbonate was added until no by-product tin hydroxide was precipitated. Thereafter, the supernatant was filtered, the filtrate was separated, and the aqueous layer was removed. Thereafter, the organic layer was washed sequentially with 1 L of saturated aqueous sodium hydrogen carbonate solution (twice) and brine (twice), and the organic layer was dried over magnesium sulfate. After filtration, the solvent was distilled off with an evaporator to obtain a crude product, methanol (200 mL) was added, and the mixture was stirred at room temperature for 30 minutes. Thereafter, the mixture was filtered again, washed with methanol, and dried under reduced pressure to obtain diamine [4] (yield: 46.1 g, yield: 73%). The 1 H-NMR measurement result of the obtained diamine [4] is shown below.
1 H-NMR (400 MHz, CDCl3, δ ppm): 7.66 (2H, d), 7.63 (1H, s), 7.54-7.39 (1H, m), 7.07-7.04 (4H, m), 6.68-6.65 (4H, m), 6.45 (2H, d), 5.04 (4H, brs), 4.37 (4H, t), 2.91 (4H, t).
 (合成例5)
 ジアミン[5]((E)-4-aminophenethyl 3-(4-aminophenyl)acrylate)の合成
(Synthesis Example 5)
Synthesis of Diamine [5] ((E) -4-aminophenethyl 3- (4-aminophenyl) acrylate)
Figure JPOXMLDOC01-appb-C000051
Figure JPOXMLDOC01-appb-C000051
 500mLの反応容器に化合物[M](12.7g、65.8mmol)、2-(4-ニトロフェニル)エタノール[F](10g、59.8mmol)、EDC(15g、77.7mmol)、DMAP(365mg、3mmol)、及びTHF200gを加え、窒素置換をした後、室温にて撹拌した。反応終了後、蒸留水(2L)に反応溶液を注ぎ、得られた結晶をイソプロピルアルコール(100g)にて縣濁洗浄し、化合物[N]を得た(収量:18.4g、収率:90%)。 In a 500 mL reaction vessel, compound [M] (12.7 g, 65.8 mmol), 2- (4-nitrophenyl) ethanol [F] (10 g, 59.8 mmol), EDC (15 g, 77.7 mmol), DMAP ( 365 mg, 3 mmol) and 200 g of THF were added, and after nitrogen substitution, the mixture was stirred at room temperature. After completion of the reaction, the reaction solution was poured into distilled water (2 L), and the obtained crystals were suspended in isopropyl alcohol (100 g) to obtain compound [N] (yield: 18.4 g, yield: 90). %).
 次いで、500mLの反応容器に、上記で得られた化合物[N](22.4g、65.5mmol)、塩化スズ(II)(80g、458.7mmol)、THF200g、及び蒸留水100gを加え、60℃にて加熱撹拌した。反応終了後、反応液に炭酸水素ナトリウムを加えて中和し、酢酸エチルで抽出した。抽出液の溶媒を留去した後、得られた黄色結晶を乾燥させ、ジアミン[5]を得た(収量:14.0g、収率:76%)。得られたジアミン[5]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):7.46(1H, d), 7.37 (2H, d), 6.92(2H, d), 6.56-6.47(4H, m), 6.20(1H, d), 5.78(2H,s), 4.89(2H,s), 4.18(2H,t), 2.74(2H, t).
Subsequently, the compound [N] obtained above (22.4 g, 65.5 mmol), tin (II) chloride (80 g, 458.7 mmol), 200 g of THF, and 100 g of distilled water were added to a 500 mL reaction vessel. The mixture was heated and stirred at ° C. After completion of the reaction, the reaction solution was neutralized with sodium hydrogen carbonate and extracted with ethyl acetate. After the solvent of the extract was distilled off, the obtained yellow crystals were dried to obtain diamine [5] (yield: 14.0 g, yield: 76%). The 1 H-NMR measurement result of the obtained diamine [5] is shown below.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 7.46 (1H, d), 7.37 (2H, d), 6.92 (2H, d), 6.56-6.47 (4H, m), 6.20 (1H, d) , 5.78 (2H, s), 4.89 (2H, s), 4.18 (2H, t), 2.74 (2H, t).
 (合成例6)
 ジアミン[6]((2E,2'E)-pentane-1,5-diyl bis(3-(4-aminophenyl)acrylate))の合成
(Synthesis Example 6)
Synthesis of Diamine [6] ((2E, 2'E) -pentane-1,5-diyl bis (3- (4-aminophenyl) acrylate))
Figure JPOXMLDOC01-appb-C000052
Figure JPOXMLDOC01-appb-C000052
 500mLの反応容器に化合物[M](37.5g、160.2mmol)、化合物[O](6.4g、61.6mmol)、EDC(41.6g、172.5mmol)、DMAP(828mg、6.8mmol)、及びTHF300gを加え室温にて撹拌した。反応終了後、蒸留水(2L)に反応溶液を注ぎ、結晶を析出させた。析出した結晶を減圧乾燥し、化合物[P]を得た(30g)。 In a 500 mL reaction vessel, compound [M] (37.5 g, 160.2 mmol), compound [O] (6.4 g, 61.6 mmol), EDC (41.6 g, 172.5 mmol), DMAP (828 mg, 6. 8 mmol) and 300 g of THF were added and stirred at room temperature. After completion of the reaction, the reaction solution was poured into distilled water (2 L) to precipitate crystals. The precipitated crystals were dried under reduced pressure to obtain compound [P] (30 g).
 次いで、500mLの反応容器に上記で得られた化合物[P](15g、33.0mmol)、塩化スズ(II)(43.8g、231.0mmol)、THF150g、及び蒸留水150gを加え、60℃にて加熱撹拌した。反応終了後、反応溶液に炭酸水素ナトリウムを加えて中和し、酢酸エチルで抽出した。抽出液の溶媒を留去した後、得られた黄色結晶を酢酸エチル及びヘキサンで順次縣濁洗浄し、ジアミン[6]を得た(収量:11.9g、収率:91%)。得られたジアミン[6]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):7.47(2H,d), 7.36(4H,d), 6.55(4H,d), 6.22(2H,d), 5.76(4H,s), 4.10(4H,t), 1.99-1.63(4H, m), 1.46-1.40(2H,m).
Subsequently, the compound [P] obtained above (15 g, 33.0 mmol), tin (II) chloride (43.8 g, 231.0 mmol), 150 g of THF, and 150 g of distilled water were added to a 500 mL reaction vessel, and The mixture was stirred with heating. After completion of the reaction, the reaction solution was neutralized with sodium bicarbonate and extracted with ethyl acetate. After the solvent of the extract was distilled off, the resulting yellow crystals were washed with ethyl acetate and hexane in order to obtain diamine [6] (yield: 11.9 g, yield: 91%). The 1 H-NMR measurement result of the obtained diamine [6] is shown below.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 7.47 (2H, d), 7.36 (4H, d), 6.55 (4H, d), 6.22 (2H, d), 5.76 (4H, s), 4.10 (4H, t), 1.99-1.63 (4H, m), 1.46-1.40 (2H, m).
 (合成例7)
ジアミン[7]((E)-4-aminophenyl 3-(4-aminophenyl)acrylate)の合成
(Synthesis Example 7)
Synthesis of Diamine [7] ((E) -4-aminophenyl 3- (4-aminophenyl) acrylate)
Figure JPOXMLDOC01-appb-C000053
Figure JPOXMLDOC01-appb-C000053
 500mLの反応容器に化合物[M](34g、193.2mmol)、化合物[D]25.0g、179.7mmol)、EDC(40.4g、191.7mmol)、DMAP(2.2g、18mmol)、及びTHF300gを加え室温にて撹拌した。反応終了後、蒸留水(3L)に反応溶液を注ぎ、析出した白色結晶を濾別した。得られた粗結晶を、イソプロピルアルコール(200g)にて縣濁洗浄して、化合物[Q]を得た(52g、165.7mmol)。 In a 500 mL reaction vessel, compound [M] (34 g, 193.2 mmol), compound [D] 25.0 g, 179.7 mmol), EDC (40.4 g, 191.7 mmol), DMAP (2.2 g, 18 mmol), And 300 g of THF were added and stirred at room temperature. After completion of the reaction, the reaction solution was poured into distilled water (3 L), and the precipitated white crystals were separated by filtration. The obtained crude crystals were suspended and washed with isopropyl alcohol (200 g) to obtain compound [Q] (52 g, 165.7 mmol).
 次いで、2Lの反応容器に、上記で得られた化合物[Q](30g、95.5mmol)、還元鉄(21.0g、382mmol)、塩化アンモニウムクロライド(40.8g、762.8mmol)、N,N-ジメチルホルムアルデヒド200g、酢酸エチル200g、及び蒸留水400gを加え、70℃で加熱撹拌した。反応終了後、酢酸エチルにて抽出し、活性炭処理を行った。その後、ろ過し、さらに溶媒を留去することで粗結晶を得た。得られた粗結晶をメタノール、及びヘキサンにて順次縣濁洗浄して精製し、ジアミン[7]を得た(収量:19.4g、収率:80%)。得られたジアミン[7]のH-NMR測定結果を以下に示す。
1H-NMR(400MHz, DMSO-d6, δppm):7.60(1H,d), 7.43(2H,d), 6.78(2H,d), 6.77-6.36(4H,m), 6.10(1H,d), 5.85(2H,s), 5.02(2H,s).
Next, in a 2 L reaction vessel, the compound [Q] obtained above (30 g, 95.5 mmol), reduced iron (21.0 g, 382 mmol), ammonium chloride (40.8 g, 762.8 mmol), N, 200 g of N-dimethylformaldehyde, 200 g of ethyl acetate, and 400 g of distilled water were added, and the mixture was heated and stirred at 70 ° C. After completion of the reaction, the mixture was extracted with ethyl acetate and treated with activated carbon. Then, it filtered and the crude crystal was obtained by distilling a solvent off further. The obtained crude crystals were purified by suspending in order with methanol and hexane to obtain diamine [7] (yield: 19.4 g, yield: 80%). The 1 H-NMR measurement result of the obtained diamine [7] is shown below.
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 7.60 (1H, d), 7.43 (2H, d), 6.78 (2H, d), 6.77-6.36 (4H, m), 6.10 (1H, d) , 5.85 (2H, s), 5.02 (2H, s).
 (比較合成例1)
 ジアミンDA-1の合成
 日本特公表2001-517719号公報の実施例1に従って、ジアミンDA-1を合成した。
(Comparative Synthesis Example 1)
Synthesis of Diamine DA-1 Diamine DA-1 was synthesized according to Example 1 of Japanese Patent Publication No. 2001-517719.
 <液晶配向処理剤の調製>
 (液晶配向処理剤A1)
 ジアミン[1](1.20g、3.0mmol)にNMP(5.0g)を加え、室温で撹拌して完全に溶解させた後、CBDA(0.53g、2.8mmol)とNMP(5.0g)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)及びBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向処理剤A1を得た。このポリアミック酸の数平均分子量は6000であり、重量平均分子量は10500であった。
<Preparation of liquid crystal aligning agent>
(Liquid crystal aligning agent A1)
NMP (5.0 g) was added to diamine [1] (1.20 g, 3.0 mmol), and the mixture was stirred and completely dissolved at room temperature, and then CBDA (0.53 g, 2.8 mmol) and NMP (5. 0 g) was added and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (10.0g) and BCS (5.0g) were added to this polyamic acid solution (10g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A1. The number average molecular weight of this polyamic acid was 6000, and the weight average molecular weight was 10500.
 (液晶配向処理剤A2)
 ジアミン[2](1.37g、3.0mmol)にNMP(5.4g)を加え、室温で撹拌して完全に溶解させた後、CBDA(0.55g、2.8mmol)とNMP(5.4g)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)及びBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向処理剤A2を得た。このポリアミック酸の数平均分子量は3800であり、重量平均分子量は5000であった。
(Liquid crystal aligning agent A2)
NMP (5.4 g) was added to diamine [2] (1.37 g, 3.0 mmol) and stirred at room temperature for complete dissolution, and then CBDA (0.55 g, 2.8 mmol) and NMP (5. 4 g) was added and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (10.0g) and BCS (5.0g) were added to this polyamic acid solution (10g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A2. The number average molecular weight of this polyamic acid was 3800, and the weight average molecular weight was 5000.
 (液晶配向処理剤A3)
 ジアミン[3](1.20g、3.0mmol)にNMP(5.0g)を加え、室温で撹拌して完全に溶解させた後、CBDA(0.55g、2.8mmol)とNMP(5.0g)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)及びBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向処理剤A3を得た。このポリアミック酸の数平均分子量は8100であり、重量平均分子量は16000であった。
(Liquid crystal aligning agent A3)
NMP (5.0 g) was added to diamine [3] (1.20 g, 3.0 mmol), and the mixture was stirred and completely dissolved at room temperature, and then CBDA (0.55 g, 2.8 mmol) and NMP (5. 0 g) was added and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (10.0g) and BCS (5.0g) were added to this polyamic acid solution (10g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A3. The number average molecular weight of this polyamic acid was 8100, and the weight average molecular weight was 16000.
 (液晶配向処理剤A4)
 ジアミン[4](1.37g、3.0mmol)にNMP(5.4g)を加え、室温で撹拌して完全に溶解させた後、CBDA(0.55g、2.8mmol)とNMP(5.4g)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)及びBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向処理剤A4を得た。このポリアミック酸の数平均分子量は5200であり、重量平均分子量は7600であった。
(Liquid crystal aligning agent A4)
NMP (5.4 g) was added to diamine [4] (1.37 g, 3.0 mmol) and stirred at room temperature for complete dissolution, then CBDA (0.55 g, 2.8 mmol) and NMP (5. 4 g) was added and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (10.0g) and BCS (5.0g) were added to this polyamic acid solution (10g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A4. The number average molecular weight of this polyamic acid was 5200, and the weight average molecular weight was 7600.
 (液晶配向処理剤A5)
 ジアミン[5](7.06g、25.0mmol)にNMP(32.3g)を加え、室温で撹拌して完全に溶解させた後、CBDA(4.51g、23.0mmol)とNMP(33.2g)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(40g)にNMP(40.0g)及びBCS(20.0g)を加え、室温にて5時間攪拌することにより、液晶配向処理剤A5を得た。このポリアミック酸の数平均分子量は10500であり、重量平均分子量は57000であった。
(Liquid crystal aligning agent A5)
NMP (32.3 g) was added to diamine [5] (7.06 g, 25.0 mmol) and stirred at room temperature for complete dissolution, and then CBDA (4.51 g, 23.0 mmol) and NMP (33. 2 g) was added and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (40.0g) and BCS (20.0g) were added to this polyamic acid solution (40g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A5. The number average molecular weight of this polyamic acid was 10500, and the weight average molecular weight was 57000.
 (液晶配向処理剤A6)
 ジアミン[6](1.18g、3.0mmol)にNMP(4.9g)を加え、室温で撹拌して完全に溶解させた後、CBDA(0.53g、2.7mmol)とNMP(4.9g)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)及びBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向処理剤A6を得た。このポリアミック酸の数平均分子量は8800であり、重量平均分子量は35000であった。
(Liquid crystal aligning agent A6)
NMP (4.9 g) was added to diamine [6] (1.18 g, 3.0 mmol) and stirred at room temperature for complete dissolution, and then CBDA (0.53 g, 2.7 mmol) and NMP (4. 9 g) was added and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (10.0g) and BCS (5.0g) were added to this polyamic acid solution (10g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A6. The number average molecular weight of this polyamic acid was 8800, and the weight average molecular weight was 35000.
 (液晶配向処理剤A7)
 ジアミン[7](1.14g、4.5mmol)にNMP(5.6g)を加え、室温で撹拌して完全に溶解させた後、CBDA(0.83g、4.2mmol)とNMP(5.6g)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(10g)にNMP(10.0g)及びBCS(5.0g)を加え、室温にて5時間攪拌することにより、液晶配向処理剤A7を得た。このポリアミック酸の数平均分子量は13800であり、重量平均分子量は35500であった。
(液晶配向処理剤A8)
 ジアミン[5](3.53g、12.5mmol)及びp-PDA(1.35g、12.5mmol)にNMP(27.0g)を加え、室温で撹拌して完全に溶解させた後、CBDA(4.66g、23.8mmol)とNMP(27.0g)を加え、室温で10時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(40g)にNMP(40.0g)及びBCS(20.0g)を加え、室温で5時間攪拌することにより、液晶配向処理剤A8を得た。このポリアミック酸の数平均分子量は11500であり、重量平均分子量は25000であった。
(Liquid crystal aligning agent A7)
NMP (5.6 g) was added to diamine [7] (1.14 g, 4.5 mmol) and stirred at room temperature for complete dissolution, and then CBDA (0.83 g, 4.2 mmol) and NMP (5.2. 6 g) was added and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (10.0g) and BCS (5.0g) were added to this polyamic acid solution (10g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent A7. The number average molecular weight of this polyamic acid was 13800, and the weight average molecular weight was 35500.
(Liquid crystal aligning agent A8)
NMP (27.0 g) was added to diamine [5] (3.53 g, 12.5 mmol) and p-PDA (1.35 g, 12.5 mmol), and the mixture was stirred at room temperature until completely dissolved, and then CBDA ( 4.66 g, 23.8 mmol) and NMP (27.0 g) were added and reacted at room temperature for 10 hours to obtain a polyamic acid solution. NMP (40.0g) and BCS (20.0g) were added to this polyamic acid solution (40g), and the liquid crystal aligning agent A8 was obtained by stirring at room temperature for 5 hours. The number average molecular weight of this polyamic acid was 11500, and the weight average molecular weight was 25000.
 (液晶配向処理剤B1)
 DA-1(5.10g、14.0mmol)にNMP(22.0g)を加え、室温で撹拌して完全に溶解させた後、CBDA(2.66g、13.6mmol)とNMP(22.0g)を加え、室温で5時間反応させ、ポリアミック酸溶液を得た。このポリアミック酸溶液(40g)にNMP(40.0g)及びBCS(20.0g)を加え、室温にて5時間攪拌することにより、液晶配向処理剤B1を得た。このポリアミック酸の数平均分子量は6500であり、重量平均分子量は26000であった。
(Liquid crystal aligning agent B1)
NMP (22.0 g) was added to DA-1 (5.10 g, 14.0 mmol), and the mixture was stirred and completely dissolved at room temperature. Then, CBDA (2.66 g, 13.6 mmol) and NMP (22.0 g) were added. ) And reacted at room temperature for 5 hours to obtain a polyamic acid solution. NMP (40.0g) and BCS (20.0g) were added to this polyamic acid solution (40g), and it stirred at room temperature for 5 hours, and obtained liquid crystal aligning agent B1. The number average molecular weight of this polyamic acid was 6500, and the weight average molecular weight was 26000.
 (実施例1)
 液晶配向処理剤A1を用いて、下記に示す手順で液晶セルの作製を行った。
 基板は、30mm×40mmの大きさで、厚さが0.7mmのガラス基板であり、ITO膜をパターニングして形成された櫛歯状の画素電極が配置されたものを用いた。画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成された櫛歯状の形状を有する。各電極要素の短手方向の幅は3μmであり、電極要素間の間隔は6μmである。各画素を形成する画素電極は、中央部分が屈曲したくの字形状の電極要素を複数配列して構成されているため、各画素の形状は長方形状ではなく、電極要素と同様に中央部分で屈曲する、太字のくの字に似た形状を備える。そして、各画素は、その中央の屈曲部分を境にして上下に分割され、屈曲部分の上側の第1領域と下側の第2領域を有する。各画素の第1領域と第2領域とを比較すると、それらを構成する画素電極の電極要素の形成方向が異なるものとなっている。すなわち、後述する液晶配向膜の配向処理方向を基準とした場合、画素の第1領域では画素電極の電極要素が+10°の角度(時計回り)をなすように形成され、画素の第2領域では画素電極の電極要素が-10°の角度(時計回り)をなすように形成されている。すなわち、各画素の第1領域と第2領域とでは、画素電極と対向電極との間の電圧印加によって誘起される液晶の、基板面内での回転動作(インプレーン・スイッチング)の方向が互いに逆方向となるように構成されている。
Example 1
Using the liquid crystal aligning agent A1, a liquid crystal cell was produced according to the procedure shown below.
The substrate used was a glass substrate having a size of 30 mm × 40 mm and a thickness of 0.7 mm, on which comb-like pixel electrodes formed by patterning an ITO film were arranged. The pixel electrode has a comb-like shape configured by arranging a plurality of dog-shaped electrode elements whose central portion is bent. The width in the short direction of each electrode element is 3 μm, and the distance between the electrode elements is 6 μm. The pixel electrode forming each pixel is configured by arranging a plurality of dog-shaped electrode elements whose central part is bent, so that the shape of each pixel is not rectangular, and is similar to the electrode element in the central part. It has a shape that bends and resembles a bold-faced koji. Each pixel is divided into upper and lower portions with a central bent portion as a boundary, and has a first region on the upper side of the bent portion and a second region on the lower side. When the first region and the second region of each pixel are compared, the formation directions of the electrode elements of the pixel electrodes constituting them are different. That is, when the alignment processing direction of the liquid crystal alignment film described later is used as a reference, the electrode element of the pixel electrode is formed to form an angle of + 10 ° (clockwise) in the first region of the pixel, and in the second region of the pixel. The electrode elements of the pixel electrode are formed so as to form an angle of −10 ° (clockwise). That is, in the first region and the second region of each pixel, the directions of the rotation operation (in-plane switching) of the liquid crystal induced by the voltage application between the pixel electrode and the counter electrode are mutually in the substrate plane. It is comprised so that it may become a reverse direction.
 液晶配向処理剤A1を、準備された上記電極付き基板にスピンコートした。次いで、90℃のホットプレートで60秒間乾燥した後、200℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜を形成した。次いで、基板を240℃のホットプレートに乗せ、液晶配向膜面に偏光板を介して313nmの紫外線を20mJ/cm照射し、液晶配向膜付き基板を得た。また、対向基板として電極が形成されていない高さ4μmの柱状スペーサーを有するガラス基板にも、上記と同様にして、液晶配向処理剤A1を用いて液晶配向膜を形成し、配向処理を施した。 Liquid crystal aligning agent A1 was spin-coated on the prepared substrate with electrodes. Subsequently, after drying for 60 seconds with a 90 degreeC hotplate, it baked for 30 minutes with a 200 degreeC hot-air circulation type oven, and formed the liquid crystal aligning film with a film thickness of 100 nm. Next, the substrate was placed on a hot plate at 240 ° C., and the surface of the liquid crystal alignment film was irradiated with 313 nm ultraviolet rays at 20 mJ / cm 2 via a polarizing plate to obtain a substrate with a liquid crystal alignment film. In addition, a liquid crystal alignment film was formed using a liquid crystal alignment treatment agent A1 on a glass substrate having a columnar spacer with a height of 4 μm on which no electrode was formed as a counter substrate, and subjected to alignment treatment. .
 一方の基板の液晶配向膜上にシール剤(協立化学社製、XN-1500T)を印刷した。次いで、もう一方の基板を、液晶配向膜面が向き合い配向方向が0°になるようにして張り合わせた後、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク社製)を注入し、注入口を封止して、IPS(In-Planes Switching)モード液晶表示素子の構成を備えた液晶セル(IPSモード用液晶セル)を得た。 A sealant (XN-1500T, manufactured by Kyoritsu Chemical Co., Ltd.) was printed on the liquid crystal alignment film of one substrate. Next, the other substrate was bonded so that the liquid crystal alignment film faces each other and the alignment direction was 0 °, and then the sealing agent was cured to produce an empty cell. Liquid crystal MLC-2041 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, the injection port was sealed, and a liquid crystal cell (IPS) having an IPS (In-Plane Switching) mode liquid crystal display element configuration (IPS Mode liquid crystal cell).
 (液晶配向性能評価)
 上記で得られたIPSモード用液晶セルの配向状態を偏光顕微鏡にて観察し、配向欠陥がないものを「良好」、配向欠陥があるものは「不良」とした。結果を表4に示す。
(Liquid crystal alignment performance evaluation)
The alignment state of the liquid crystal cell for IPS mode obtained above was observed with a polarizing microscope, and “good” was obtained when there was no alignment defect, and “bad” when there was an alignment defect. The results are shown in Table 4.
 (残像評価)
 上記で得られたIPSモード用液晶セルを、偏光軸が直交するように配置された2枚の偏光板の間に設置し、電圧無印加の状態で光源を点灯させておき、透過光の輝度が最も小さくなるように液晶セルの配置角度を調整した。次いで、画素の第2領域が最も暗くなる角度から第1領域が最も暗くなる角度まで液晶セルを回転させたときの回転角度(配向方位角)を、初期配向方位角として算出した。次いで、室温環境下、周波数30Hzで8VPPの交流電圧を24時間印加した。その後、液晶セルの画素電極と対向電極との間をショートさせた状態にし、そのまま室温に1時間放置した。放置の後、同様にして配向方位角を測定し、交流駆動前後の配向方位角の差、すなわち、(交流駆動前の配向方位角)-(交流駆動後の配向方位角)を、Δ配向方位角(°)として算出した。結果を表4に示す。
(Afterimage evaluation)
The IPS mode liquid crystal cell obtained above is placed between two polarizing plates arranged so that the polarization axes are orthogonal to each other, the light source is turned on with no voltage applied, and the transmitted light has the highest luminance. The arrangement angle of the liquid crystal cell was adjusted so as to be small. Next, the rotation angle (alignment azimuth angle) when the liquid crystal cell was rotated from the angle at which the second region of the pixel was darkest to the angle at which the first region was darkest was calculated as the initial alignment azimuth. Next, an AC voltage of 8 V PP was applied for 24 hours at a frequency of 30 Hz in a room temperature environment. Thereafter, the pixel electrode and the counter electrode of the liquid crystal cell were short-circuited and left as it was at room temperature for 1 hour. After standing, the orientation azimuth is measured in the same manner, and the difference in orientation azimuth before and after AC driving, that is, (alignment azimuth before AC driving) − (alignment azimuth after AC driving) is expressed as Δ orientation azimuth. Calculated as an angle (°). The results are shown in Table 4.
 (実施例2)
 液晶配向処理剤A1のかわりに液晶配向処理剤A2を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
(Example 2)
A liquid crystal alignment performance evaluation and an afterimage evaluation were performed in the same manner as in Example 1 except that the liquid crystal alignment treatment agent A2 was used instead of the liquid crystal alignment treatment agent A1.
 (実施例3)
 液晶配向処理剤A1のかわりに液晶配向処理剤A3を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
(Example 3)
A liquid crystal alignment performance evaluation and an afterimage evaluation were performed in the same manner as in Example 1 except that the liquid crystal alignment treatment agent A3 was used instead of the liquid crystal alignment treatment agent A1.
 (実施例4)
 液晶配向処理剤A1のかわりに液晶配向処理剤A4を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
(Example 4)
A liquid crystal alignment performance evaluation and an afterimage evaluation were performed in the same manner as in Example 1 except that the liquid crystal alignment treatment agent A4 was used instead of the liquid crystal alignment treatment agent A1.
 (実施例5)
 液晶配向処理剤A1のかわりに液晶配向処理剤A5を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
(Example 5)
A liquid crystal alignment performance evaluation and an afterimage evaluation were performed in the same manner as in Example 1 except that the liquid crystal alignment treatment agent A5 was used instead of the liquid crystal alignment treatment agent A1.
 (実施例6)
 液晶配向処理剤A1のかわりに液晶配向処理剤A6を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
(実施例7)
 液晶配向処理剤A1のかわりに液晶配向処理剤A7を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
 (実施例8)
 液晶配向処理剤A1のかわりに液晶配向処理剤A8を用いた以外は実施例1と同様の操作を行って、液晶配向性能評価及び残像評価を行った。
(Example 6)
A liquid crystal alignment performance evaluation and an afterimage evaluation were performed in the same manner as in Example 1 except that the liquid crystal alignment treatment agent A6 was used instead of the liquid crystal alignment treatment agent A1.
(Example 7)
A liquid crystal alignment performance evaluation and an afterimage evaluation were performed in the same manner as in Example 1 except that the liquid crystal alignment treatment agent A7 was used instead of the liquid crystal alignment treatment agent A1.
(Example 8)
A liquid crystal alignment performance evaluation and an afterimage evaluation were performed in the same manner as in Example 1 except that the liquid crystal alignment treatment agent A8 was used instead of the liquid crystal alignment treatment agent A1.
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000054
 この結果、表4に示すように、室温で24時間という低温且つ短時間の測定条件にも関わらず、上記式(4)で表されるジアミンを原料としてポリイミド系ポリマーの主鎖骨格中に特定の光反応性基を導入した実施例1~6は、比較例1と比べて、交流駆動前後の配向方位角の差が小さく、残像特性が顕著に向上していることがわかる。また。実施例1~6は液晶配向性も良好であった。さらに、他のジアミンを共重合した実施例7においても、良好な液晶配向性能及びAC焼き付き特性を示すことがわかった。すなわち、本発明の液晶配向処理剤を用いることにより、液晶配向性及び残像特性に優れた液晶配向膜を得ることができる。また、本発明の液晶配向処理剤から得られた液晶配向膜を有する液晶表示素子は、液晶配向性及び残像特性に優れているため、表示不良、コントラストの低下、焼き付き等の起こり難い液晶表示デバイスとすることができる。 As a result, as shown in Table 4, the diamine represented by the above formula (4) is used as a raw material in the main chain skeleton of the polyimide polymer in spite of the low temperature and short time measurement conditions of 24 hours at room temperature. It can be seen that in Examples 1 to 6 in which the photoreactive group is introduced, the difference in orientation azimuth before and after AC driving is small and the afterimage characteristics are remarkably improved as compared with Comparative Example 1. Also. In Examples 1 to 6, the liquid crystal orientation was also good. Furthermore, also in Example 7 which copolymerized other diamine, it turned out that a favorable liquid crystal aligning performance and AC image sticking characteristic are shown. That is, by using the liquid crystal aligning agent of the present invention, a liquid crystal alignment film excellent in liquid crystal alignment and afterimage characteristics can be obtained. In addition, a liquid crystal display element having a liquid crystal alignment film obtained from the liquid crystal alignment treatment agent of the present invention is excellent in liquid crystal alignment and afterimage characteristics, so that a liquid crystal display device that is unlikely to cause display defects, contrast reduction, image sticking, etc. It can be.
<比較例9>
 液晶配向処理剤A1を用い、室温にて液晶配向膜面に偏光板を介して313nmの紫外線を20mJ/cm照射した以外は、実施例1と同様の操作を行って、液晶配向性能評価を行った。
<比較例10>
 液晶配向処理剤A1の代わりに液晶配向処理剤A2を用いた以外は比較例9と同様の操作を行って、液晶配向性能評価を行った。
<比較例11>
 液晶配向処理剤A1の代わりに液晶配向処理剤A3を用いた以外は比較例9と同様の操作を行って、液晶配向性能評価を行った。
<比較例12>
 液晶配向処理剤A1の代わりに液晶配向処理剤A4を用いた以外は比較例9と同様の操作を行って、液晶配向性能評価を行った。
<比較例13>
 液晶配向処理剤A1の代わりに液晶配向処理剤A5を用いた以外は比較例9と同様の操作を行って、液晶配向性能評価を行った。
<比較例14>
 液晶配向処理剤A1の代わりに液晶配向処理剤A7を用いた以外は比較例9と同様の操作を行って、液晶配向性能評価を行った。
<比較例15>
 液晶配向処理剤A1の代わりに液晶配向処理剤A8を用いた以外は比較例9と同様の操作を行って、液晶配向性能評価を行った。
<Comparative Example 9>
The liquid crystal alignment performance evaluation was performed by performing the same operation as in Example 1 except that the liquid crystal alignment treatment agent A1 was used and the surface of the liquid crystal alignment film was irradiated with 20 mJ / cm 2 of 313 nm ultraviolet light at room temperature via a polarizing plate. went.
<Comparative Example 10>
Liquid crystal alignment performance evaluation was performed by performing the same operation as Comparative Example 9 except that the liquid crystal alignment treatment agent A2 was used instead of the liquid crystal alignment treatment agent A1.
<Comparative Example 11>
Liquid crystal alignment performance evaluation was performed by performing the same operation as in Comparative Example 9 except that the liquid crystal alignment treatment agent A3 was used instead of the liquid crystal alignment treatment agent A1.
<Comparative Example 12>
Liquid crystal alignment performance evaluation was performed by performing the same operation as in Comparative Example 9 except that the liquid crystal alignment treatment agent A4 was used instead of the liquid crystal alignment treatment agent A1.
<Comparative Example 13>
Liquid crystal alignment performance evaluation was performed by performing the same operation as in Comparative Example 9 except that the liquid crystal alignment treatment agent A5 was used instead of the liquid crystal alignment treatment agent A1.
<Comparative example 14>
Liquid crystal alignment performance evaluation was performed by performing the same operation as in Comparative Example 9 except that the liquid crystal alignment treatment agent A7 was used instead of the liquid crystal alignment treatment agent A1.
<Comparative Example 15>
Liquid crystal alignment performance evaluation was performed by performing the same operation as in Comparative Example 9 except that the liquid crystal alignment treatment agent A8 was used instead of the liquid crystal alignment treatment agent A1.
 次に、上記実施例1~7で得られた液晶セルの液晶配向性能と以下の比較例9~15で得られた液晶セルの液晶配向性能をまとめて表5に示す。 Next, the liquid crystal alignment performance of the liquid crystal cells obtained in Examples 1 to 7 and the liquid crystal alignment performance of the liquid crystal cells obtained in Comparative Examples 9 to 15 are summarized in Table 5.
Figure JPOXMLDOC01-appb-T000055
Figure JPOXMLDOC01-appb-T000055
 表5に示すように240℃で加熱処理を行いながら偏光紫外線を照射することで液晶配向性が良好になることがわかる。これは加熱処理を行いながら紫外線照射を行うことでシンナモイル基の光二量化反応が促進されていることに由来すると考えられる。 As shown in Table 5, it is understood that the liquid crystal orientation is improved by irradiating polarized ultraviolet rays while performing the heat treatment at 240 ° C. This is considered to be derived from the fact that the photodimerization reaction of the cinnamoyl group is promoted by performing ultraviolet irradiation while performing the heat treatment.
 本発明によれば、高い光反応効率を実現して、高効率な配向処理を可能とする液晶配向膜が得られ、該液晶配向膜を用いることにより、効率よく、かつ長期間の使用においても液晶の配向状態が変化するといった不良が発生しにくい液晶表示素子を提供することが可能である。 According to the present invention, a liquid crystal alignment film that achieves high photoreaction efficiency and enables high-efficiency alignment treatment is obtained. By using the liquid crystal alignment film, the liquid crystal alignment film can be used efficiently and even for a long period of use. It is possible to provide a liquid crystal display element in which a defect such as a change in the alignment state of the liquid crystal hardly occurs.

Claims (12)

  1.  基板上に光反応基を有するポリイミド若しくはポリイミド前駆体を含有する薄膜を形成し、前薄膜面を加熱しながら、偏光した紫外線を照射し、前記基板上にポリイミド前駆体を含有する高分子からなる液晶配向膜を製造することを特徴とする液晶配向膜の製造方法。 A thin film containing a photoreactive group-containing polyimide or polyimide precursor is formed on the substrate, and the front thin film surface is irradiated with polarized ultraviolet rays while being heated, and the substrate is made of a polymer containing a polyimide precursor. A method for producing a liquid crystal alignment film, comprising producing a liquid crystal alignment film.
  2.  前記光反応基を有するポリイミド前駆体は、下記の式[1]で表される繰り返し単位及び下記の式[2]で表される繰り返し単位を含有することを特徴とする請求項1に記載の液晶配向膜の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式[1]において、Rは2価の有機基を表し、Rは4価の有機基を表し、Rは水素原子又は炭素数1~6の有機基を表し、Rは水素原子又は炭素数1~6の有機基を表す。nは正の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
     (式[2]において、Rは光反応基を構成する2価の有機基を表す。Rは4価の有機基を表し、Rは水素原子又は炭素数1~6の有機基を表し、Rは水素原子又は炭素数1~6の有機基を表す。nは正の整数を表す。)
    The polyimide precursor having the photoreactive group contains a repeating unit represented by the following formula [1] and a repeating unit represented by the following formula [2]. A method for producing a liquid crystal alignment film.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula [1], R 1 represents a divalent organic group, R 2 represents a tetravalent organic group, R 3 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms, and R 4 represents hydrogen. Represents an atom or an organic group having 1 to 6 carbon atoms, and n 1 represents a positive integer.)
    Figure JPOXMLDOC01-appb-C000002
    (In Formula [2], R 5 represents a divalent organic group constituting a photoreactive group. R 6 represents a tetravalent organic group, R 7 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms. R 8 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms, and n 2 represents a positive integer.)
  3.  前記光反応基を有するポリイミド前駆体は、下記の式[1]で表される繰り返し単位及び下記の式[3]で表される繰り返し単位を含有することを特徴とする請求項1に記載の液晶配向膜の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式[1]において、Rは2価の有機基を表し、Rは4価の有機基を表し、Rは水素原子又は炭素数1~6の有機基を表し、Rは水素原子又は炭素数1~6の有機基を表す。nは正の整数を表す。)
    Figure JPOXMLDOC01-appb-C000004

     (式[3]において、Rは2価の有機基を表し、R10は光反応性基を構成する2価の有機基を表す。nは正の整数を表す。)
    The polyimide precursor having the photoreactive group contains a repeating unit represented by the following formula [1] and a repeating unit represented by the following formula [3]. A method for producing a liquid crystal alignment film.
    Figure JPOXMLDOC01-appb-C000003
    (In the formula [1], R 1 represents a divalent organic group, R 2 represents a tetravalent organic group, R 3 represents a hydrogen atom or an organic group having 1 to 6 carbon atoms, and R 4 represents hydrogen. Represents an atom or an organic group having 1 to 6 carbon atoms, and n 1 represents a positive integer.)
    Figure JPOXMLDOC01-appb-C000004

    (In Formula [3], R 9 represents a divalent organic group, R 10 represents a divalent organic group constituting a photoreactive group, and n 3 represents a positive integer.)
  4.  前記光反応基を有するポリイミド前駆体が、下記の式[4]で表されるジアミンを含むジアミン成分とテトラカルボン酸二無水物とを重縮合反応させて得られることを特徴とする請求項1に記載の液晶配向膜の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式[1]中、Xは単結合又は炭素数1~6のアルキレン基(但し、隣り合わない-CH-は。エーテル結合、エステル結合若しくはアミド結合に置き換わってもよい。)を表し、Xは-OCO-CH=CH-又は-CH=CH-COO-を表し、Xは単結合、炭素数1~10のアルキレン基又は2価のベンゼン環を表し、Xは単結合、-OCO-CH=CH-又は-CH=CH-COO-を表し、Xは単結合又は炭素数1~6のアルキレン基(但し、隣り合わない-CH-は。エーテル結合、エステル結合若しくはアミド結合に置き換わってもよい。)を表す。さらに、式[4]中には、1つ以上のシンナモイル基を有する。)
    The polyimide precursor having the photoreactive group is obtained by polycondensation reaction of a diamine component containing a diamine represented by the following formula [4] and tetracarboxylic dianhydride. The manufacturing method of the liquid crystal aligning film as described in 2.
    Figure JPOXMLDOC01-appb-C000005
    (In the formula [1], X 1 represents a single bond or an alkylene group having 1 to 6 carbon atoms (provided that —CH 2 — not adjacent to each other may be replaced by an ether bond, an ester bond or an amide bond). , X 2 represents —OCO—CH═CH— or —CH═CH—COO—, X 3 represents a single bond, an alkylene group having 1 to 10 carbon atoms or a divalent benzene ring, and X 4 represents a single bond. , —OCO—CH═CH— or —CH═CH—COO—, wherein X 5 is a single bond or an alkylene group having 1 to 6 carbon atoms (provided that —CH 2 — not adjacent to each other is an ether bond, ester bond) Or an amide bond may be substituted.) Furthermore, the formula [4] has one or more cinnamoyl groups.
  5.  前記薄膜の厚さが、5~300nmであることを特徴とする請求項1~4のいずれか1項に記載の液晶配向膜の製造方法。 The method for producing a liquid crystal alignment film according to any one of claims 1 to 4, wherein the thin film has a thickness of 5 to 300 nm.
  6.  前記光反応基を有するポリイミド前駆体の含有量が、0.1~30質量%であり、溶剤を含有する液晶配向処理剤を用いて前記薄膜を形成することを特徴とする請求項1~5のいずれか1項に記載の液晶配向膜の製造方法。 6. The thin film is formed using a liquid crystal aligning agent containing a solvent, wherein the content of the polyimide precursor having a photoreactive group is 0.1 to 30% by mass. The manufacturing method of the liquid crystal aligning film of any one of these.
  7.  前記加熱の温度は、前記光反応基を有するポリイミド前駆体が、ポリイミドに変化しない温度範囲から選択された温度であることを特徴とする請求項1~6のいずれか1項に記載の液晶配向膜の製造方法。 7. The liquid crystal alignment according to claim 1, wherein the heating temperature is selected from a temperature range in which the polyimide precursor having the photoreactive group does not change to polyimide. A method for producing a membrane.
  8.  前記加熱の温度は、50℃~300℃の範囲内であることを特徴とする請求項1~7のいずれか1項に記載の液晶配向膜の製造方法。 The method for producing a liquid crystal alignment film according to any one of claims 1 to 7, wherein the heating temperature is in the range of 50 ° C to 300 ° C.
  9.  前記加熱の温度は、80℃~250℃の範囲内であることを特徴とする請求項1~8のいずれか1項に記載の液晶配向膜の製造方法。 The method for producing a liquid crystal alignment film according to any one of claims 1 to 8, wherein the heating temperature is in the range of 80 ° C to 250 ° C.
  10.  紫外線の照射量が、100~1000mJであることを特徴とする請求項1~9のいずれか1項に記載の液晶配向膜の製造方法。 10. The method for producing a liquid crystal alignment film according to claim 1, wherein the irradiation amount of ultraviolet rays is 100 to 1000 mJ.
  11.  請求項1~10のいずれか1項に記載の液晶配向膜の製造方法により製造されたことを特徴とする液晶配向膜。 A liquid crystal alignment film manufactured by the method for manufacturing a liquid crystal alignment film according to any one of claims 1 to 10.
  12.  請求項11に記載の液晶配向膜を有することを特徴とする液晶表示素子。 A liquid crystal display element comprising the liquid crystal alignment film according to claim 11.
PCT/JP2012/066591 2011-06-28 2012-06-28 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element WO2013002345A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280031708.2A CN103827740B (en) 2011-06-28 2012-06-28 Manufacture method, liquid crystal orientation film and the liquid crystal display cells of liquid crystal orientation film
KR1020137034527A KR101991140B1 (en) 2011-06-28 2012-06-28 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP2013522956A JP6057895B2 (en) 2011-06-28 2012-06-28 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-143403 2011-06-28
JP2011143403 2011-06-28
JP2012-101709 2012-04-26
JP2012101709 2012-04-26

Publications (1)

Publication Number Publication Date
WO2013002345A1 true WO2013002345A1 (en) 2013-01-03

Family

ID=47424231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066591 WO2013002345A1 (en) 2011-06-28 2012-06-28 Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element

Country Status (4)

Country Link
KR (1) KR101991140B1 (en)
CN (1) CN103827740B (en)
TW (1) TWI554555B (en)
WO (1) WO2013002345A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161984A1 (en) * 2012-04-26 2013-10-31 日産化学工業株式会社 Diamine, polymer, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
KR20150037576A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Photoalignment polymer, liquid crystal alignment layer and its preparation method comprising the same
JP2015135464A (en) * 2013-10-07 2015-07-27 Jsr株式会社 Production method of liquid crystal alignment film, photo-aligning agent, and liquid crystal display element

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI628209B (en) * 2013-05-13 2018-07-01 日產化學工業股份有限公司 Manufacturing method of substrate with liquid crystal alignment film for lateral electric field drive type liquid crystal display element
JP6243862B2 (en) * 2015-02-17 2017-12-06 富士フイルム株式会社 Method for manufacturing liquid crystal alignment film, method for manufacturing liquid crystal display device, and liquid crystal display device
JP6669161B2 (en) * 2015-03-24 2020-03-18 日産化学株式会社 Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display device
CN105487296B (en) * 2016-01-06 2019-01-22 京东方科技集团股份有限公司 Aligning film material and preparation method thereof, alignment films, display base plate preparation method
KR101989587B1 (en) * 2016-03-28 2019-06-14 주식회사 엘지화학 Liquid crystal photoalignment agent, liquid crystal photoalignment film containing the same and method for preparing liquid crystal photoalignment film
WO2017221817A1 (en) * 2016-06-24 2017-12-28 シャープ株式会社 Liquid crystal cell, liquid crystal display device and method for producing liquid crystal cell
CN109445199B (en) * 2018-12-30 2021-11-23 厦门天马微电子有限公司 Liquid crystal device and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1115001A (en) * 1997-04-30 1999-01-22 Nissan Chem Ind Ltd Liquid crystal orientation processing agent
JP2002082336A (en) * 2000-09-08 2002-03-22 Jsr Corp Liquid crystal alignment processing method and liquid crystal display element
WO2006068197A1 (en) * 2004-12-22 2006-06-29 Nissan Chemical Industries, Ltd. Liquid-crystal alignment material and liquid-crystal display element employing the same
JP2006350347A (en) * 2005-06-14 2006-12-28 Lg Phillips Lcd Co Ltd Liquid crystal display device and method of fabricating the same
JP2007256484A (en) * 2006-03-22 2007-10-04 Jsr Corp Liquid crystal aligning agent, alignment layer, liquid crystal display element, and optical member

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893659B2 (en) 1996-03-05 2007-03-14 日産化学工業株式会社 Liquid crystal alignment treatment method
EP0919851B1 (en) * 1996-03-05 2003-10-22 Nissan Chemical Industries, Limited Method for liquid crystal alignment
CN1211418C (en) 1997-09-25 2005-07-20 罗列克股份公司 Photocrosslinkable polyimides
US6303742B1 (en) * 1998-04-01 2001-10-16 Kanekafuchi Kagaku Kogyo Kabushiki Kaisha Polyimide compositions
JP4653421B2 (en) * 2004-06-08 2011-03-16 株式会社 日立ディスプレイズ Liquid crystal display device
KR100759189B1 (en) * 2005-12-01 2007-09-14 주식회사 엘지화학 Process for preparing of liquid crystal aligning layer, liquid crystal aligning prepared by the same, and liquid crystal display including liquid crystal aligning layer
CN101558100B (en) * 2007-01-09 2011-12-14 Lg化学株式会社 New copolyimide, liquid crystal aligning layer comprising the same, and liquid crystal display comprising the same
KR100913605B1 (en) * 2007-12-07 2009-08-26 제일모직주식회사 Photoalignment agent of liquid crystal, photoalignment film of liquid crystal including the same, and liquid crystal display including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1115001A (en) * 1997-04-30 1999-01-22 Nissan Chem Ind Ltd Liquid crystal orientation processing agent
JP2002082336A (en) * 2000-09-08 2002-03-22 Jsr Corp Liquid crystal alignment processing method and liquid crystal display element
WO2006068197A1 (en) * 2004-12-22 2006-06-29 Nissan Chemical Industries, Ltd. Liquid-crystal alignment material and liquid-crystal display element employing the same
JP2006350347A (en) * 2005-06-14 2006-12-28 Lg Phillips Lcd Co Ltd Liquid crystal display device and method of fabricating the same
JP2007256484A (en) * 2006-03-22 2007-10-04 Jsr Corp Liquid crystal aligning agent, alignment layer, liquid crystal display element, and optical member

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013161984A1 (en) * 2012-04-26 2013-10-31 日産化学工業株式会社 Diamine, polymer, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JPWO2013161984A1 (en) * 2012-04-26 2015-12-24 日産化学工業株式会社 Diamine, polymer, liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20150037576A (en) * 2013-09-30 2015-04-08 주식회사 엘지화학 Photoalignment polymer, liquid crystal alignment layer and its preparation method comprising the same
KR101652922B1 (en) * 2013-09-30 2016-08-31 주식회사 엘지화학 Photoalignment polymer, liquid crystal alignment layer and its preparation method comprising the same
JP2015135464A (en) * 2013-10-07 2015-07-27 Jsr株式会社 Production method of liquid crystal alignment film, photo-aligning agent, and liquid crystal display element

Also Published As

Publication number Publication date
TWI554555B (en) 2016-10-21
TW201313790A (en) 2013-04-01
CN103827740B (en) 2017-08-25
KR101991140B1 (en) 2019-06-19
KR20140048890A (en) 2014-04-24
CN103827740A (en) 2014-05-28

Similar Documents

Publication Publication Date Title
WO2013002345A1 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP5321760B2 (en) Manufacturing method of liquid crystal display element
JP6233309B2 (en) Liquid crystal aligning agent, liquid crystal aligning film, and liquid crystal display element
KR102169221B1 (en) Diamine, polymer, liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6249197B2 (en) Diamine compound
JP6478052B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, liquid crystal display element
JP7234924B2 (en) Manufacturing method of zero plane anchoring film and liquid crystal display element
WO2012002511A1 (en) Liquid crystal-aligning agent, liquid crystal-aligning film, liquid crystal display element and method for producing liquid crystal display elements
JP6146578B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
JPWO2011010619A1 (en) Diamine compound, polyamic acid, polyimide and liquid crystal alignment treatment agent
JP6350515B2 (en) Liquid crystal aligning agent, liquid crystal display element obtained using them, and method for producing the same
JP5842581B2 (en) Novel dicarboxylic acid anhydride and production method, liquid crystal alignment treatment agent, liquid crystal alignment film, and liquid crystal display device using the same
JP7276149B2 (en) Manufacturing method of zero plane anchoring film and liquid crystal display element
JP6057895B2 (en) Method for producing liquid crystal alignment film, liquid crystal alignment film, and liquid crystal display element
JP6143014B2 (en) Polymer, liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, and diamine
JP7367674B2 (en) Manufacturing method of zero-plane anchoring film and liquid crystal display element
JP7367673B2 (en) Manufacturing method of zero-plane anchoring film and liquid crystal display element
WO2022196565A1 (en) Liquid-crystal composition, liquid-crystal display element production method, and liquid-crystal display element
TW202130704A (en) Liquid crystal aligning agent, radical generation film and method for producing in-plane switching liquid crystal cell

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12803848

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522956

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137034527

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12803848

Country of ref document: EP

Kind code of ref document: A1