WO2013001980A1 - 液晶表示パネル及び液晶表示装置 - Google Patents

液晶表示パネル及び液晶表示装置 Download PDF

Info

Publication number
WO2013001980A1
WO2013001980A1 PCT/JP2012/064216 JP2012064216W WO2013001980A1 WO 2013001980 A1 WO2013001980 A1 WO 2013001980A1 JP 2012064216 W JP2012064216 W JP 2012064216W WO 2013001980 A1 WO2013001980 A1 WO 2013001980A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
liquid crystal
comb
crystal display
substrate
Prior art date
Application number
PCT/JP2012/064216
Other languages
English (en)
French (fr)
Inventor
孝兼 吉岡
伊織 青山
崇夫 今奥
裕一 居山
津田 和彦
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201280031670.9A priority Critical patent/CN103620489B/zh
Priority to JP2013522550A priority patent/JP5654677B2/ja
Priority to US14/126,455 priority patent/US9372371B2/en
Publication of WO2013001980A1 publication Critical patent/WO2013001980A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates

Definitions

  • the present invention relates to a liquid crystal display panel and a liquid crystal display device. More specifically, the present invention relates to a liquid crystal display panel and a liquid crystal display device having a three-layer electrode structure in which liquid crystal molecules are aligned by an electric field at both rising and falling edges.
  • a liquid crystal display panel is configured by sandwiching a liquid crystal display element between a pair of glass substrates and the like, taking advantage of its thin, lightweight, and low power consumption characteristics, such as personal computers, televisions, car navigation systems, and other portable devices.
  • the display of a portable information terminal such as a telephone is indispensable for daily life and business.
  • liquid crystal display panels of various modes related to electrode arrangement and substrate design for changing the optical characteristics of the liquid crystal layer have been studied.
  • VA vertical alignment
  • IPS In-plane switching
  • FFS fringe field switching
  • an FFS driving type liquid crystal display device a thin film transistor type liquid crystal display having high-speed response and a wide viewing angle, a first substrate having a first common electrode layer, a pixel electrode layer, and a second common A second substrate having both electrode layers, a liquid crystal sandwiched between the first substrate and the second substrate, high-speed response to a high input data transfer rate, and a wide field of view for a viewer An electric field is generated between the first common electrode layer on the first substrate and both the pixel electrode layer and the second common electrode layer on the second substrate to provide a corner.
  • a display including the means is disclosed (for example, refer to Patent Document 1).
  • a liquid crystal device for applying a lateral electric field by a plurality of electrodes a liquid crystal device in which a liquid crystal layer made of a liquid crystal having a positive dielectric anisotropy is sandwiched between a pair of substrates arranged opposite to each other, The first substrate and the second substrate constituting the substrate are opposed to each other with the liquid crystal layer sandwiched therebetween, and an electrode for applying a vertical electric field to the liquid crystal layer is provided.
  • a liquid crystal device provided with a plurality of electrodes for applying a lateral electric field to the liquid crystal layer is disclosed (for example, see Patent Document 2).
  • Patent Document 1 discloses a liquid crystal display device having a vertical alignment type three-layer electrode structure in which a rising edge (while the display state changes from a dark state [black display] to a bright state [white display]) is an upper layer of the lower substrate.
  • a fringe electric field (FFS drive) generated between the slit and the lower surface electrode, and a fall (while the display state changes from a bright state [white display] to a dark state [black display]) is generated by a potential difference between the substrates.
  • FFS drive fringe electric field
  • Disclosed is a liquid crystal molecule that can be made to respond at high speed by rotating the liquid crystal molecules by the electric field both by the electric field and by the electric field.
  • FIG. 24 is a schematic cross-sectional view of a liquid crystal display panel having an FFS driving type electrode structure in which the lower substrate has a conventional FFS structure.
  • FIG. 25 is a schematic plan view of picture elements of a liquid crystal display panel having an FFS structure.
  • FIG. 26 is a simulation result showing the distribution of the director d, the electric field distribution, and the transmittance distribution (solid line) at the rising edge in the liquid crystal display panel shown in FIG. 24 shows the structure of the liquid crystal display panel, in which the slit electrode 417 shown in FIG. 25 is applied to a constant voltage (14V in the figure), and the substrate on which the slit electrode 417 is disposed, and the counter substrate In addition, a lower layer electrode 413 and a counter electrode 423 are respectively disposed. The voltage applied to the lower layer electrode 413 and the counter electrode 423 is 7V.
  • the present inventor performs comb driving using a pair of comb electrodes instead of the upper slit electrode, and sufficiently aligns liquid crystal molecules between the comb electrodes in the horizontal direction, thereby increasing the transmittance. I found that it can be enhanced.
  • the voltage is applied not only to the upper layer electrode that generates the lateral electric field but also to the counter electrode and the lower layer electrode at the time of the rise of the comb drive of the three-layer electrode structure,
  • the transmittance may be lowered due to blocking.
  • the lower layer and the counter electrode need only be moved away from each other.
  • the viewing angle characteristics particularly the viewing angle compensation of the polarizing plate
  • the amount of liquid crystal increases. Cost problems may occur, and this is not a realistic solution.
  • Patent Document 2 describes that a response speed is improved using comb driving in a liquid crystal display device having a three-layer electrode structure.
  • a response speed is improved using comb driving in a liquid crystal display device having a three-layer electrode structure.
  • TN twisted nematic
  • Patent Document 2 describes that a response speed is improved using comb driving in a liquid crystal display device having a three-layer electrode structure.
  • TN twisted nematic
  • the present invention has been made in view of the above situation, and a sufficiently high-speed response is achieved in a liquid crystal display panel and a liquid crystal display device having a three-layer electrode structure in which liquid crystal molecules are aligned by an electric field at both rising and falling edges.
  • an object of the present invention is to provide a liquid crystal display panel and a liquid crystal display device having excellent transmittance.
  • the present inventors have studied to achieve both high-speed response and high transmittance in a vertical alignment type liquid crystal display panel and liquid crystal display device, and control the alignment of liquid crystal molecules by an electric field both at the rise and fall.
  • the electrode structure is further studied.
  • the lower layer electrode is a planar electrode that does not have a slit. I found out that I was dropped. And in comb-tooth electrode drive, in order to raise the transmittance
  • the electrode on the lower substrate is closer to the comb electrode (for example, the upper layer electrode) than the counter electrode of the upper substrate, and further, the gap between the comb electrode and the planar electrode (for example, the lower layer electrode) is usually Since it is an insulating layer (dielectric layer), it is easy to draw lines of electric force, and the degree of blocking the transverse electric field generated by the comb-teeth electrode is large. Therefore, by providing a slit in the planar electrode (for example, the lower layer electrode), when the lower layer electrode is a planar electrode, the electric lines of force pulled downward can be controlled, and the transmittance at the time of rising can be improved. I found what I can do.
  • the rise is caused by a potential difference between the comb electrodes.
  • the lateral electric field and the fall can generate a vertical electric field by the potential difference between the substrates, the liquid crystal molecules are rotated by the electric field for both the rise and fall, and high-speed response can be achieved.
  • the above-mentioned patent document does not describe any method for providing a slit in the lower layer electrode, but there is a limit to the transmittance that can be realized with the structure, and in order to further improve the transmittance, not only the driving method, It is also necessary to pay attention to the electrode structure. Accordingly, a novel three-electrode liquid crystal display panel and liquid crystal display device in which slits are provided in the lower electrode for improving the transmittance are proposed.
  • the above-described upper layer electrode is a pair of comb electrodes
  • the lower layer electrode is preferably an electrode having a slit in order to exhibit the effects of the present invention.
  • the upper layer electrode is an electrode having a slit
  • the lower layer electrode Even if it is a pair of comb-tooth electrode, the effect of this invention can be exhibited.
  • the present invention is a liquid crystal display panel comprising a first substrate, a second substrate, and a liquid crystal layer sandwiched between both substrates, wherein the first substrate and the second substrate have electrodes,
  • the electrode of the second substrate is a liquid crystal display panel including a pair of comb electrodes and an electrode having a slit.
  • the electrode having the slit may be any electrode that can be said to have a slit in the technical field of the present invention, and the entire electrode may be electrically connected so as to surround the slit. It may be divided into two or more parts that are not electrically connected. Further, the electrode having the slit may have a planar region that does not have a slit partially as long as the effect of the present invention can be exhibited.
  • the electrode having the slit is preferably overlapped with at least one of the pair of comb electrodes when the main surface of the substrate is viewed in plan. Accordingly, it is possible to sufficiently improve the on-time transmittance while maintaining the off characteristics, that is, sufficiently increasing the off-time response speed and sufficiently reducing the off-time transmittance. More preferably, the electrode having the slit overlaps substantially all of at least one of the pair of comb electrodes when the main surface of the substrate is viewed in plan. Moreover, it is preferable that the electrode having the slit protrudes (extends) from at least one of the pair of comb electrodes when the main surface of the substrate is viewed in plan.
  • At least one of the pair of comb electrodes is electrically connected to the electrode having the slit.
  • the comb electrode overlapping the electrode having the slit when the main surface of the substrate is viewed in plan is electrically connected to the electrode having the slit.
  • the number of driving TFTs per picture element is two or less.
  • the electrode having the slit does not overlap with the pair of comb electrodes when the substrate main surface is viewed in plan. Thereby, while making the transmittance
  • the electrode having the slit is a space between the pair of comb electrodes when the substrate main surface is viewed in plan (in this specification, the comb teeth in the pair of comb electrodes when the substrate main surface is viewed in plan). The region between the portion and the comb portion is also referred to as a space.
  • the width direction of the space (the main surface of the substrate) from one of the pair of comb electrodes is less than half the width of the space between the pair of comb electrodes.
  • it When viewed in a plan view, it preferably projects in a direction perpendicular to the longitudinal direction of the comb electrode.
  • the electrode having the slit overlaps with both of the pair of comb-tooth electrodes when the main surface of the substrate is viewed in plan. More preferably, the electrode having the slit overlaps substantially all of the pair of comb electrodes when the substrate main surface is viewed in plan.
  • At least a part of the edge of the electrode having the slit does not overlap with the pair of comb electrodes when the main surface of the substrate is viewed in plan.
  • the electrode having the slit protrudes in the width direction of the space by not more than 70% of the width of the space between the pair of comb electrodes.
  • the width between the comb-teeth portions in the pair of comb-teeth electrodes is S ( ⁇ m)
  • at least a part of the edges of the electrodes having the slits when the substrate main surface is viewed in plan view it is preferable that the pair of comb electrodes are separated from each other by 0.5 ⁇ m or more and 0.7 S ⁇ m or less.
  • the electrode having the slit is preferably provided in a layer different from the pair of comb electrodes.
  • a planar electrode having a slit is formed through a pair of comb electrodes and an electric resistance layer.
  • the electrical resistance layer is preferably an insulating layer.
  • the insulating layer may be an insulating layer in the technical field of the present invention.
  • the pair of comb electrodes may be anything as long as it can be said that the two comb electrodes face each other when the substrate main surface is viewed in plan. Since a pair of comb electrodes can generate a lateral electric field between the comb electrodes, when the liquid crystal layer includes liquid crystal molecules having positive dielectric anisotropy, the response performance and transmission at the time of rising When the liquid crystal layer includes liquid crystal molecules having negative dielectric anisotropy, the liquid crystal molecules can be rotated by a lateral electric field at the time of falling to achieve a high-speed response.
  • the electrodes of the first substrate and the second substrate may be any electrode as long as it can provide a potential difference between the substrates, whereby the liquid crystal layer has liquid crystal molecules having positive dielectric anisotropy.
  • a vertical electric field is generated by the potential difference between the substrates at the time of falling when including and when the liquid crystal layer includes liquid crystal molecules having negative dielectric anisotropy, and the liquid crystal molecules are rotated by the electric field and rotated at high speed. Can be responsive.
  • the pair of comb electrodes may be provided in the same layer, and the pair of comb electrodes may be provided in different layers as long as the effects of the present invention can be exhibited.
  • the tooth electrodes are preferably provided in the same layer.
  • a pair of comb electrodes is provided in the same layer when each comb electrode has a common member (for example, an insulating layer, a liquid crystal layer side and / or a side opposite to the liquid crystal layer side). A liquid crystal layer, etc.).
  • the comb-tooth portions are respectively along when the main surface of the substrate is viewed in plan.
  • the comb-tooth portions of the pair of comb-tooth electrodes are substantially parallel, in other words, each of the pair of comb-tooth electrodes has a plurality of substantially parallel slits.
  • the liquid crystal layer preferably includes liquid crystal molecules that are aligned in a direction perpendicular to the main surface of the substrate at a voltage lower than the threshold voltage.
  • the term “orienting in the direction perpendicular to the main surface of the substrate” may be anything that can be said to be oriented in the direction perpendicular to the main surface of the substrate.
  • Including It is preferable that the liquid crystal molecules contained in the liquid crystal layer are substantially composed of liquid crystal molecules that are aligned in a direction perpendicular to the main surface of the substrate at a voltage lower than the threshold voltage.
  • Such a vertical alignment type liquid crystal display panel is an advantageous system for obtaining a wide viewing angle, high contrast characteristics, and the like, and its application is expanding.
  • the pair of comb electrodes can have different potentials at a threshold voltage or higher.
  • the threshold voltage means, for example, a voltage value that gives a transmittance of 5% when the transmittance in the bright state is set to 100%.
  • the potential different from the threshold voltage can be any voltage as long as it can realize a driving operation with a potential different from the threshold voltage. This makes it possible to suitably control the electric field applied to the liquid crystal layer. Become.
  • a preferable upper limit value of the different potential is, for example, 20V.
  • one of the pair of comb electrodes is driven by one TFT and the other comb electrode is driven by another TFT.
  • a pair of comb electrodes can be set to different potentials by conducting with the lower electrode of the other comb electrode.
  • the width of the comb tooth portion in the pair of comb electrodes is preferably 2 ⁇ m or more, for example.
  • the width (space length) between the comb teeth and the comb teeth is preferably 2 ⁇ m to 7 ⁇ m, for example.
  • the liquid crystal display panel is configured such that liquid crystal molecules in a liquid crystal layer are aligned in a direction perpendicular to the main surface of the substrate by an electric field generated between a pair of comb electrodes or between a first substrate and a second substrate.
  • the electrode of the first substrate is preferably a planar electrode.
  • the planar electrode includes a form electrically connected within a plurality of pixels, for example, as a planar electrode of the first substrate, a form electrically connected within all pixels, A form in which the same pixel line is electrically connected is preferable. Thereby, a vertical electric field can be applied suitably and high-speed response can be achieved.
  • the electrode of the first substrate is a planar electrode, a vertical electric field can be suitably generated by a potential difference between the substrates at the time of falling, and high-speed response can be achieved.
  • the electrode of the first substrate is normally provided on the liquid crystal layer side of the glass substrate, but may be provided on the side opposite to the liquid crystal layer side (observer side) of the glass substrate.
  • the liquid crystal layer side electrode (upper layer electrode) of the second substrate is a pair of comb-teeth electrodes, and the electrode on the opposite side of the liquid crystal layer side of the second substrate (
  • the lower layer electrode is particularly preferably an electrode having a slit.
  • an electrode having a slit can be provided below the pair of comb electrodes on the second substrate (a layer opposite to the liquid crystal layer as viewed from the second substrate) with an insulating layer interposed therebetween.
  • the electrodes having the slits of the second substrate are preferably electrically connected along the same pixel line, but may be independent for each pixel.
  • the comb electrode and the electrode having the slit are electrically connected and the electrode having the slit is electrically connected for each pixel line
  • the comb electrode is also the same.
  • Each pixel line is electrically connected, and this is also a preferred embodiment of the present invention.
  • the term “electrically connected for each same pixel line” may be used as long as it is electrically connected across a plurality of pixels along any one of the vertical and horizontal arrays of pixels.
  • the electrodes having the slits are electrically connected in the same pixel column.
  • the same pixel column is a pixel column arranged along the gate bus line in the active matrix substrate when the main surface of the substrate is viewed in plan.
  • the planar electrodes of the first substrate and / or the electrodes having the slits of the second substrate are electrically connected within the same pixel column, so that, for example, every pixel corresponding to an even number of gate bus lines.
  • a voltage can be applied to the electrode so that the potential change is reversed, and a vertical electric field can be preferably generated to achieve high-speed response.
  • the planar electrode of the first substrate may be a surface shape in the technical field of the present invention, and may have an alignment regulating structure such as a rib or a slit in a partial region thereof, May have the alignment regulating structure at the center portion of the pixel when viewed in plan, but those having substantially no alignment regulating structure are suitable.
  • the electrode having the slit of the second substrate may have a rib or the like in a partial region thereof, but it is preferable that the electrode has substantially a slit and has a surface shape other than the slit. .
  • the liquid crystal layer is usually aligned with a horizontal component with respect to the substrate main surface at a threshold voltage or higher by a pair of comb electrodes or an electric field generated between the first substrate and the second substrate.
  • the liquid crystal molecules contained in the liquid crystal layer are preferably substantially composed of liquid crystal molecules that are aligned at a threshold voltage or higher in the horizontal direction with respect to the main surface of the substrate.
  • the liquid crystal layer preferably includes liquid crystal molecules (positive liquid crystal molecules) having positive dielectric anisotropy.
  • the liquid crystal molecules having positive dielectric anisotropy are aligned in a certain direction when an electric field is applied, and the alignment control is easy, and a faster response can be achieved.
  • the liquid crystal layer preferably also includes liquid crystal molecules having negative dielectric anisotropy (negative liquid crystal molecules). Thereby, the transmittance can be further improved. That is, it is preferable that the liquid crystal molecules are substantially composed of liquid crystal molecules having positive dielectric anisotropy from the viewpoint of high-speed response, and the liquid crystal molecules are negative from the viewpoint of transmittance. It can be said that it is preferable to be substantially composed of liquid crystal molecules having a dielectric anisotropy of
  • the first substrate and the second substrate usually have an alignment film on at least one liquid crystal layer side.
  • the alignment film is preferably a vertical alignment film.
  • Examples of the alignment film include alignment films formed from organic materials and inorganic materials, and photo-alignment films formed from photoactive materials.
  • the alignment film may be an alignment film that has not been subjected to an alignment process such as a rubbing process.
  • the first substrate and the second substrate preferably have a polarizing plate on the side opposite to at least one liquid crystal layer side.
  • the polarizing plate is preferably a circular polarizing plate. With such a configuration, the transmittance improvement effect can be further exhibited.
  • the polarizing plate is also preferably a linear polarizing plate. With such a configuration, the viewing angle characteristics can be improved.
  • the liquid crystal display panel of the present invention When the vertical electric field is generated, the liquid crystal display panel of the present invention usually has at least an electrode of the first substrate and an electrode of the second substrate (for example, a planar electrode of the first substrate and a slit of the second substrate). A potential difference is generated between the electrode and the electrode. In a preferred embodiment, a higher potential difference is generated between the electrodes of the first substrate and the electrodes of the second substrate than between the electrodes of the second substrate (for example, a pair of comb electrodes). is there.
  • a potential difference is usually generated at least between electrodes (for example, a pair of comb electrodes) included in the second substrate.
  • electrodes for example, a pair of comb electrodes
  • a higher potential difference is generated between the electrodes included in the second substrate than between the electrodes included in the first substrate (for example, planar electrodes) and the electrodes included in the second substrate. be able to.
  • a potential difference lower than that between the electrode included in the first substrate and the electrode included in the second substrate may be generated between the electrodes included in the second substrate.
  • the potential change can be reversed by applying to the lower layer electrode (electrode having a slit of the second substrate) commonly connected to the even lines and odd lines.
  • the first substrate and the second substrate included in the liquid crystal display panel of the present invention are a pair of substrates for sandwiching a liquid crystal layer.
  • an insulating substrate such as glass or resin is used as a base, and wiring and electrodes are formed on the insulating substrate. It is formed by making a color filter or the like.
  • the liquid crystal display panel of the present invention may be any of a transmissive type, a reflective type, and a transflective type.
  • the present invention is also a liquid crystal display device including the liquid crystal display panel of the present invention.
  • the preferred form of the liquid crystal display panel in the liquid crystal display device of the present invention is the same as the preferred form of the liquid crystal display panel of the present invention described above.
  • Examples of the liquid crystal display device include in-vehicle devices such as personal computers, televisions, and car navigation systems, and displays of portable information terminals such as mobile phones. In particular, in a low-temperature environment such as in-vehicle devices such as car navigation systems. It is preferable to be applied to devices used in the above.
  • the configuration of the liquid crystal display panel and the liquid crystal display device of the present invention is not particularly limited by other components as long as such components are formed as essential, and the liquid crystal display panel and the liquid crystal display are not limited. Other configurations normally used in the apparatus can be applied as appropriate.
  • the first substrate and the second substrate have electrodes, and the electrodes of the second substrate include a pair of comb electrodes and an electrode having a slit, It is possible to achieve a sufficiently high speed response and a sufficiently excellent transmittance.
  • FIG. 3 is a schematic cross-sectional view of the liquid crystal display panel according to Embodiment 1 when a horizontal electric field is generated.
  • FIG. 3 is a schematic cross-sectional view of the liquid crystal display panel according to Embodiment 1 when a vertical electric field is generated.
  • FIG. 3 is a schematic cross-sectional view of the liquid crystal display panel according to Embodiment 1 when a horizontal electric field is generated.
  • FIG. 3 is a simulation result when a horizontal electric field is generated in the liquid crystal display panel according to Embodiment 1.
  • FIG. 3 is a simulation result when a vertical electric field is generated in the liquid crystal display panel according to Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal display panel according to Embodiment 1.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal display panel according to Embodiment 1.
  • FIG. 3 is a schematic plan view illustrating a structure example of a lower layer electrode of the liquid crystal display panel according to Embodiment 1.
  • FIG. 6 is a graph showing transmittance (%) and voltage (V) with respect to time (msec) of each form of the liquid crystal display panel according to Embodiment 1 and each form of the liquid crystal display panel according to Comparative Example 2.
  • 6 is a schematic cross-sectional view of a liquid crystal display panel according to Embodiment 2.
  • FIG. 6 is a graph showing transmittance (%) and voltage (V) with respect to time (msec) in each form of the liquid crystal display panel according to Embodiment 1 and each form of the liquid crystal display panel according to Embodiment 2.
  • FIG. 2 It is a graph which shows the transmittance
  • FIG. It is a simulation result at the time of the horizontal electric field generation
  • FIG. It is a simulation result at the time of the vertical electric field generation
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display panel according to Embodiment 3.
  • FIG. 6 is a graph showing transmittance (%) and voltage (V) with respect to time (msec) in each form of the liquid crystal display panel according to Embodiment 1 and each form of the liquid crystal display panel according to Embodiment 3.
  • FIG. It is a simulation result at the time of the vertical electric field generation
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display panel according to Embodiment 4.
  • FIG. It is a graph which shows the transmittance
  • FIG. It is a simulation result at the time of the horizontal electric field generation
  • FIG. It is a simulation result at the time of the vertical electric field generation
  • FIG. 6 is a schematic cross-sectional view of a liquid crystal display panel according to Comparative Example 1 when a fringe electric field is generated.
  • FIG. FIG. 25 is a schematic plan view of the liquid crystal display panel shown in FIG. 24.
  • 10 is a simulation result when a fringe electric field is generated in the liquid crystal display panel according to Comparative Example 1.
  • FIG. It is a cross-sectional schematic diagram at the time of the horizontal electric field generation
  • FIG. It is a simulation result at the time of the horizontal electric field generation
  • FIG. It is a simulation result at the time of the vertical electric field generation
  • FIG. It is a cross-sectional schematic diagram which shows an example of the liquid crystal display device used for the liquid-crystal drive method of this embodiment. It is a plane schematic diagram around the active drive element used in the present embodiment. It is a cross-sectional schematic diagram of the active drive element periphery used for this embodiment.
  • a pixel may be a picture element (sub-pixel) unless otherwise specified.
  • the planar electrode is a planar electrode in the technical field of the present invention, for example, dot-shaped ribs and / or slits may be formed, but the planar electrode has a substantially alignment regulating structure. What is not preferred is preferred.
  • the substrate on the display surface side is also referred to as an upper substrate, and the substrate on the opposite side to the display surface is also referred to as a lower substrate.
  • the electrode on the display surface side is also referred to as an upper layer electrode
  • the electrode on the opposite side to the display surface is also referred to as a lower layer electrode.
  • the circuit substrate (second substrate) of this embodiment is also referred to as a TFT substrate or an array substrate because it includes a thin film transistor element (TFT).
  • the TFT is turned on both at the rise (eg, horizontal electric field application) and at the fall (eg, vertical electric field application), and a voltage is applied to at least one electrode (pixel electrode) of the pair of comb electrodes. Applied.
  • the member and part which exhibit the same function are attached
  • (i) shows the potential of one of the comb-shaped electrodes on the upper layer of the lower substrate, and (ii) shows the other potential of the comb-shaped electrode on the upper layer of the lower substrate.
  • (Iii) indicates the potential of the lower layer electrode, and (iv) indicates the potential of the planar electrode of the upper substrate.
  • (v) shows the potential of another lower layer electrode.
  • FIGS. 4, 5, 12 to 15, 18, 18, 19, 22, 23, 28, and 29, equipotential lines are shown together with a solid line indicating the transmittance distribution.
  • 8, 10, 11, 17, and 21 are biaxial graphs having two vertical axes. The dotted circles and arrows indicate the values of which vertical axis each graph represents. Pointing to what you are showing.
  • the pair of comb electrodes is the upper layer electrode
  • the electrode having the slit is the lower layer electrode.
  • the effect of the present invention can also be achieved by using a pair of comb electrodes as a lower layer electrode and an electrode having a slit as an upper layer electrode.
  • FIG. 1 is a schematic cross-sectional view of the liquid crystal display panel according to Embodiment 1 when a lateral electric field is generated.
  • FIG. 2 is a schematic cross-sectional view of the liquid crystal display panel according to Embodiment 1 when a vertical electric field is generated.
  • the first embodiment employs a method in which the lower layer electrode 13 is disposed immediately below the comb-teeth electrode 17. 1 and 2, the dotted line indicates the direction of the generated electric field.
  • the liquid crystal display panel according to Embodiment 1 has a vertical alignment type three-layer electrode structure using liquid crystal molecules 31 that are positive type liquid crystals (here, the upper layer electrode of the lower substrate located in the second layer is a pair of combs). Tooth electrode).
  • the lower layer electrode 13 is driven independently of the comb electrode 17 and is also driven independently of the comb electrode 19.
  • the rise is caused by a lateral electric field generated by a potential difference of 14 V between a pair of comb electrodes 16 (for example, a comb electrode 17 having a potential of 0 V and a comb electrode 19 having a potential of 14 V).
  • Rotate the liquid crystal molecules At this time, there is substantially no potential difference between the substrates (between the lower electrode 13 having a potential of 7V and the counter electrode 23 having a potential of 7V).
  • the fall occurs between the substrates (for example, between the lower layer electrode 13, the comb-tooth electrode 17, and the comb-tooth electrode 19 each having a potential of 14 V, and the counter electrode 23 having a potential of 0 V.
  • the liquid crystal molecules are rotated by a vertical electric field generated at a potential difference of 14V.
  • there is substantially no potential difference between the pair of comb-shaped electrodes 16 for example, the comb-shaped electrode 17 having a potential of 14V and the comb-shaped electrode 19 having a potential of 14V).
  • the counter electrode 23 is set to 0 V, and may be set to 0 V in this way. However, in the simulation described later, the counter electrode is always set to 7 V.
  • High-speed response is achieved by rotating liquid crystal molecules by an electric field for both rising and falling. That is, at the rising edge, the transmissivity is increased by turning on the wide electric field between the pair of comb-shaped electrodes 16, and at the falling edge, the high response is achieved by turning on the vertical electric field between the substrates. Further, a high transmittance can be realized by a lateral electric field driven by a comb.
  • a positive liquid crystal is used as the liquid crystal, but a negative liquid crystal may be used instead of the positive liquid crystal.
  • the liquid crystal molecules are aligned in the horizontal direction due to the potential difference between the pair of substrates, and the liquid crystal molecules are aligned in the vertical direction due to the potential difference between the pair of comb electrodes.
  • the transmittance is excellent, and the liquid crystal molecules can be rotated by an electric field at both rising and falling, thereby achieving high-speed response.
  • FIG. 3 is a schematic cross-sectional view of the liquid crystal display panel according to Embodiment 1 when a lateral electric field is generated.
  • FIG. 3 shows a case where the edge of the lower layer electrode is provided at the center of the space between the pair of comb electrodes when the substrate main surface is viewed in plan.
  • the first embodiment it is possible to improve the transmittance at the start-up while improving the off-characteristics.
  • the way to provide slits in the lower electrode (L / S value and electrode position) and the voltage application conditions of each electrode only the transmittance improvement effect is obtained without deteriorating the response at the time of off.
  • the response speed at the time of ON can be further increased.
  • the liquid crystal display panel according to Embodiment 1 is a liquid crystal display panel having a three-layer electrode structure in which the orientation of liquid crystal molecules is controlled by an electric field at both rising and falling, and the transmittance is improved by further providing a slit structure in the lower electrode. And response improvement.
  • the cell thickness is 3.6 ⁇ m
  • the length L of the upper layer electrode (comb electrode) / the width S 2 between the comb teeth portion of the pair of comb electrodes.
  • the counter voltage was always 7 V, and the comb-tooth electrode (upper layer electrode) (i) was 0 V when turned on and 14 V when turned off. Furthermore, the comb-tooth electrode (upper layer electrode) (ii) was set to 14 V both when turned on and when turned off.
  • the applied voltage of the lower layer electrode (iii) is changed.
  • the calculation was performed assuming that the lower layer electrode (iii) is 7V when on and 14V when off.
  • FIG. 4 is a simulation result when the horizontal electric field is generated in the liquid crystal display panel according to the first embodiment.
  • the component that blocks the transverse electric field at the time of ON is reduced as compared with Comparative Example 2 (FIG. 28) in which no slit is provided in the lower layer electrode (for example, a portion surrounded by a solid line in FIG. 4) Compared with the portion surrounded by the solid line in FIG. 28, the transverse electric field is not blocked.), It is possible to increase the transmittance.
  • FIG. 5 is a simulation result when a vertical electric field is generated in the liquid crystal display panel according to the first embodiment.
  • 4 and 5 show the director D, the electric field, and the transmittance distribution (solid line) when the cell thickness is 3.6 ⁇ m and the comb tooth interval is 3.0 ⁇ m.
  • T (msec) indicates a value on the horizontal axis (time axis) of the graph of FIG. 8 described later.
  • the transmittance obtained by simulation was 12.2%.
  • the transmittance obtained by simulation is 13.6%, which can be higher.
  • FIG. 6 is a schematic cross-sectional view of the liquid crystal display panel according to the first embodiment.
  • the liquid crystal display panel according to Embodiment 1 is characterized in that a lower layer electrode having a slit is disposed under one side of the comb electrode (i).
  • the electrode having the slit overlaps with substantially all of one of the pair of comb electrodes when the main surface of the substrate is viewed in plan.
  • the lower electrode is provided with a slit in the space between the pair of comb electrodes (upper electrode) (when the substrate main surface is viewed in plan, the edge of the lower electrode is In the space above.)
  • FIG. 7 is a schematic plan view illustrating a structural example of the lower layer electrode of the liquid crystal display panel according to the first embodiment.
  • the lower layer electrode 13 according to the first embodiment is a comb-like electrode, and such a form is preferable. However, the effect of the present invention can be exhibited as long as the electrode has a slit.
  • the lower layer electrode 13 according to the first embodiment is arranged so as to overlap with the entire comb electrode 17 when the substrate main surface is viewed in plan. Further, substantially all of the edges of the lower layer electrode 13 are separated from the comb-shaped electrode 17 by ⁇ (preferably 0.5 ⁇ m or more and 0.7 S ⁇ m or less) when the main surface of the substrate is viewed in plan.
  • the positional relationship between the lower layer electrode 13 and the comb electrode 17 is particularly preferably such a form.
  • the comb electrode 17 Anything that is separated by ⁇ is acceptable.
  • one of the preferred embodiments is that the comb-tooth portion of the edge of the lower layer electrode 13 extends along the comb-tooth electrode 17, and the portion along the comb-tooth electrode 17 is separated from the comb-tooth electrode 17 by the ⁇ .
  • the preferred embodiment is as described above except that the numerical range of ⁇ is different.
  • the configuration can be the same as that of the present embodiment except that the comb-tooth portion of the lower layer electrode is disposed between the comb-tooth electrode 17 and the comb-tooth electrode 19.
  • the lower electrode 13 is a pair of comb electrodes (in addition to FIG. 7, another comb electrode is added so as to overlap the entire comb electrode 19.
  • the configuration other than () can be the same as the configuration of the present embodiment.
  • FIG. 8 is a graph showing the transmittance (%) and voltage (V) with respect to time (msec) of each form of the liquid crystal display panel according to Embodiment 1 and each form of the liquid crystal display panel according to Comparative Example 2. is there.
  • the transverse electric field generated by a pair of comb electrodes (i) and (ii)
  • the rate has been reduced (Comparative Example 2), this factor can be reduced, so that the transmittance at the time of rising can be improved.
  • the transmittance can be improved while maintaining the off characteristics.
  • the off-characteristic means that the response speed when off is sufficiently increased, and the transmittance when off is sufficiently reduced.
  • a lower layer electrode (iii) having a slit is arranged directly below one comb-tooth electrode (i), and the lower-layer electrode (iii) having a slit from one comb-tooth electrode (i) is 0.5 ⁇ m, 1 ⁇ m,
  • the calculation is for the case of 2 ⁇ m protrusion.
  • the main surface is viewed in plan, it means that the lower electrode (iii) protrudes from one comb electrode (i) by 1.0 ⁇ m and 0.5 ⁇ m, respectively.
  • lower surface shape means that the lower electrode has a surface shape having no slit, and shows the case of Comparative Example 2.
  • the slit width S is 3.0 ⁇ m as described above.
  • the transmittance of the lower layer electrode increases in the order of +1.0 ⁇ m, +0.5 ⁇ m, and +2.0 ⁇ m (+1. 0 ⁇ m is the highest.) Further, in this case, a pair of comb electrodes is cut from one of the pair of comb electrodes when the electrode having a slit is cut in about the center of the space between the comb electrodes when the substrate main surface is viewed in plan view. Projecting in the space width direction is 70% or less of the width of the space between them (the transmittance is maximized when the edge of the lower electrode comes in the middle of the slit).
  • the width between the comb-tooth portions of the pair of comb-tooth electrodes is S ( ⁇ m)
  • one comb-tooth electrode (i) to the lower electrode A configuration in which iii) protrudes from 0.5 ⁇ m to 0.7 S ⁇ m is preferable.
  • the distant distance refers to a distance on a plane when the main surface of the substrate is viewed in plan (a distance indicated by a double arrow in the horizontal direction in FIG.
  • Embodiment 1 With such a configuration, in Embodiment 1, by increasing the size of the lower layer electrode to some extent, the off-characteristics (response speed and transmittance when turning black [lower is preferable]) are improved, and the transmittance is also high. Effect can be remarkably exhibited.
  • the S when the S is 1 ⁇ m or more, it is particularly preferable to apply the above form.
  • the upper limit value of S is, for example, 10 ⁇ m.
  • the liquid crystal display panel according to Embodiment 1 includes an array substrate 10, a liquid crystal layer 30, and a counter substrate 20 (color filter substrate) from the back side of the liquid crystal display panel.
  • the layers are laminated in this order toward the observation surface side.
  • the liquid crystal display panel of Embodiment 1 vertically aligns liquid crystal molecules below a threshold voltage.
  • the upper layer electrodes 17 and 19 a pair of comb electrodes 16 formed on the glass substrate 11 (second substrate) are used.
  • the amount of transmitted light is controlled by inclining the liquid crystal molecules in the horizontal direction between the comb electrodes with the electric field generated.
  • the lower layer electrode 13 having a slit is formed by sandwiching the insulating layer 15 between the upper layer electrodes 17 and 19 (a pair of comb electrodes 16).
  • the insulating layer 15 for example, an oxide film SiO 2 , a nitride film SiN, an acrylic resin, or the like can be used, or a combination of these materials can also be used.
  • a polarizing plate is disposed on the opposite side of the liquid crystal layers of both substrates.
  • the polarizing plate either a circular polarizing plate or a linear polarizing plate can be used.
  • alignment films are arranged on the liquid crystal layer side of both substrates, and these alignment films are either organic alignment films or inorganic alignment films as long as the liquid crystal molecules stand vertically with respect to the film surfaces. There may be.
  • the voltage supplied from the source bus line is applied to the comb electrode 19 that drives the liquid crystal material through the thin film transistor element (TFT).
  • the comb-teeth electrode 17 and the comb-teeth electrode 19 are formed in the same layer, and a form in which the comb-teeth electrode 17 and the comb-teeth electrode 19 are formed in the same layer is preferable. As long as the effect of the present invention of improving the transmittance by applying an electric field can be exhibited, it may be formed in a separate layer.
  • the comb electrode 19 is connected to a drain electrode extending from the TFT through a contact hole. Note that the lower layer electrode 13 having a slit may be commonly connected to each of the even and odd lines of the gate bus line.
  • the counter electrode 23 has a planar shape and is commonly connected corresponding to all pixels.
  • the electrode width L of the comb-tooth electrode is 2.6 ⁇ m, but is preferably 2 ⁇ m or more from the viewpoint of device fabrication such as leakage and disconnection.
  • the electrode spacing S of the comb electrodes is 3.0 ⁇ m, but preferably 2 ⁇ m or more, for example.
  • a preferable upper limit is, for example, 7 ⁇ m.
  • the ratio (L / S) between the electrode spacing S and the electrode width L is preferably 0.4 to 3, for example.
  • a more preferable lower limit value is 0.5, and a more preferable upper limit value is 1.5.
  • the cell thickness d is 3.6 ⁇ m, but it may be 2 ⁇ m to 7 ⁇ m, and is preferably within this range.
  • the cell thickness d thickness of the liquid crystal layer
  • the cell thickness d is preferably calculated by averaging all the thicknesses of the liquid crystal layers in the liquid crystal display panel.
  • the liquid crystal display device including the liquid crystal display panel of Embodiment 1 can appropriately include a member (for example, a light source) included in a normal liquid crystal display device. The same applies to Embodiments 2 to 4 described later.
  • Embodiment 2 In the method in which the lower layer electrode is disposed immediately below the comb electrode, the lower electrode (iii) and the comb electrode (i) or the comb electrode (ii) are equipotential
  • the lower electrode (iii) and the comb electrode (i) or (ii) are made equipotential in addition to the method of the first embodiment in which the lower electrode having a slit is arranged immediately below the comb electrode.
  • FIG. 9 is a schematic cross-sectional view of a liquid crystal display panel according to the second embodiment. As shown in FIG. 9, the liquid crystal display panel according to the second embodiment is the same as the liquid crystal display panel according to the first embodiment in providing slits for the lower layer electrodes, and the voltage application conditions for each electrode are different from those in the first embodiment. .
  • FIG. 10 is a graph showing transmittance (%) and voltage (V) with respect to time (msec) in each form of the liquid crystal display panel according to the first embodiment and each form of the liquid crystal display panel according to the second embodiment. is there.
  • the calculation was performed by setting the lower electrode to the same potential as the comb (upper) electrode.
  • the filled plot shows the case of the second embodiment.
  • a white plot shows the case of Embodiment 1, and the case where the lower layer electrode has a planar shape without slits, and the lower layer electrode (iii) and the comb electrode (i) are equipotential.
  • the transverse electric field (generated by a pair of comb electrodes (i) and (ii)) at the time of ON is transmitted by being pulled vertically by the lower electrode (iii).
  • this factor can also be reduced in the second embodiment, so that the transmittance at the time of rising can be improved while maintaining the off characteristics.
  • the lower layer electrode (iii) having a slit is disposed immediately below one comb-tooth electrode (i), and the lower layer having a slit from one comb-tooth electrode (i).
  • the calculation is performed when the electrode (iii) protrudes 0.5 ⁇ m, 1 ⁇ m, and 2 ⁇ m.
  • “lower layer slit + 2.0 ⁇ m” means that when the main surface of the substrate is viewed in plan in the liquid crystal display panel according to the second embodiment, the lower electrode (iii) is 2 from one comb electrode (i). It means that it protrudes by 0 ⁇ m.
  • lower layer slit + 1.0 ⁇ m and “lower layer slit + 0.5 ⁇ m” mean that, in the liquid crystal display panel according to Embodiment 2, when the substrate main surface is viewed in plan, It means that the lower layer electrode (iii) protrudes by 1.0 ⁇ m and 0.5 ⁇ m, respectively.
  • (i) (iii) indicates a case where the comb electrode (i) and the lower layer electrode (iii) are equipotential.
  • the protruding length is a length indicated by a double-sided arrow in FIG.
  • the number of driving TFTs can be reduced.
  • the manufacturing becomes easier, and the aperture ratio can be sufficiently improved by reducing the number of TFTs.
  • the number of TFTs per picture element is two or less.
  • the space S is 3 ⁇ m
  • the protrusion of the lower electrode (iii) is +0.5 ⁇ m, +1.0 ⁇ m, +2.0 ⁇ m.
  • the transmittance increases in this order (+0.5 ⁇ m is the highest).
  • the width between the comb-teeth portion and the comb-teeth portion in the pair of comb-teeth electrodes is S ( ⁇ m)
  • the pair of comb electrodes are preferably separated from each other by 0 ⁇ m or more and 0.5 S ⁇ m or less.
  • the lower electrode (iii) protrudes from one comb electrode (i) to 0 ⁇ m or more and 50% or less of the length of the space S.
  • the off-characteristics (response speed and transmittance when turning black [lower is preferable]) are improved by increasing the size of the lower electrode to some extent, and the transmittance is sufficiently high. The effect can be exhibited remarkably.
  • the preferable range of S is the same as that described in the first embodiment.
  • the transmittance is higher than that of the first embodiment depending on conditions.
  • FIG. 11 is a graph showing transmittance (%) and voltage (V) with respect to time (msec) in each form of the liquid crystal display panel according to the second embodiment.
  • the comb electrode (ii) at a position different from that of the lower layer electrode (iii) has an equipotential.
  • the comb electrode (i) at the same position as the lower layer electrode (iii) is equipotential.
  • one comb electrode (i) and the lower layer electrode (iii) are made equipotential (Embodiment 2), or one comb electrode (ii) and the lower layer electrode (iii) are made equipotential ( A modification example of the second embodiment will be described. From FIG.
  • the lower layer electrode (iii) assists one comb-tooth electrode (i). Get faster.
  • FIG. 12 shows a simulation result when a lateral electric field is generated in the liquid crystal display panel according to the second embodiment (one comb electrode (i) and the lower layer electrode (iii) are equipotential).
  • FIG. 13 is a simulation result when a vertical electric field is generated in the liquid crystal display panel according to the second embodiment.
  • FIG. 14 shows a simulation result when a lateral electric field is generated in the liquid crystal display panel according to the modification of the second embodiment (one comb electrode (ii) and the lower electrode (iii) are equipotential).
  • FIG. 15 is a simulation result when a vertical electric field is generated in the liquid crystal display panel according to the modification of the second embodiment.
  • T (msec) in FIGS. 12 to 15 indicates the value on the horizontal axis (time axis) of the graphs of FIGS.
  • T (msec) in FIGS. 12 to 15 indicates the value on the horizontal axis (time axis) of the graphs of FIGS.
  • the reason why the transmittance and response speed are the same as those in the second embodiment is considered to be due to the following symmetry of the transmittance distribution. That is, when the transmittance distributions (solid lines) in FIGS. 4, 12, and 14 are compared, when one of the comb electrodes (ii) and the lower layer electrode (iii) in the modified example of the second embodiment is set to an equipotential. The symmetry is lost most (FIG. 14), and in the first embodiment, the transmittance distribution is slightly inclined toward the one of the comb electrodes (i) and the lower layer electrode (iii) (FIG. 4).
  • Embodiment 2 is the same as that of Embodiment 1 mentioned above.
  • Other reference numerals in the drawing according to the second embodiment are the same as those shown in the drawing according to the first embodiment except that 1 is added to the hundreds place.
  • FIG. 16 is a schematic cross-sectional view of a liquid crystal display panel according to the third embodiment.
  • the third embodiment relates to a system in which the lower layer electrode (iii) is disposed between a pair of comb (upper layer) electrodes. When the main surface of the substrate is viewed in plan, the slit of the lower electrode (the portion without the lower electrode) and the pair of comb electrodes are overlapped.
  • the lower layer electrode (iii) is driven independently of the comb electrode (i), and is also driven independently of the comb electrode (ii). The calculation was performed with the lower electrode set to 7V when on and 14V when off.
  • FIG. 17 is a graph showing transmittance (%) and voltage (V) with respect to time (msec) in each mode of the liquid crystal display panel according to the first embodiment and each mode of the liquid crystal display panel according to the third embodiment. is there.
  • the filled plot shows the case of the third embodiment.
  • a white plot shows the case of Embodiment 1 and the case of a lower surface (Comparative Example 2).
  • the lower layer electrode (iii) is set to an appropriate voltage at the time of ON, the lower layer electrode (iii) works so as to assist the lateral electric field between the comb electrode (i) and the comb electrode (ii). For this reason, the transmittance
  • the lower layer electrode (iii) is set to be equal to or lower than the intermediate value of the voltage between the pair of comb-tooth electrodes when turned on.
  • the lower electrode when it is off, the lower electrode is arranged and works to reinforce the slits (portions where there are no electrodes) of the comb electrode (upper electrode), so that a sufficient vertical electric field is applied and the lower electrode does not have a slit. A remarkably excellent off characteristic close to that of a planar electrode is obtained.
  • a lower layer electrode (iii) having a slit is arranged at the center of a space between comb electrodes (a region between the comb electrodes when the main surface of the substrate is viewed in plan), and the electrode length
  • the calculation is performed when the thickness is 1 ⁇ m, 2 ⁇ m, and 3 ⁇ m.
  • “Embodiment 3 (3.0 ⁇ m)” means the electrode length over the entire space between the comb-tooth electrode (i) and the comb-tooth electrode (iii) when the substrate main surface is viewed in plan view. It means that a 3 ⁇ m lower layer electrode is arranged.
  • Embodiment 3 (2.0 ⁇ m)” and “Embodiment 3 (1.0 ⁇ m)” refer to a comb electrode (i) and a comb electrode (iii) when the substrate main surface is viewed in plan view.
  • the lower layer electrode having an electrode length of 2 ⁇ m and the lower layer electrode having an electrode length of 1 ⁇ m are respectively disposed in the space between the two electrodes.
  • “Lower layer slit + 2.0 ⁇ m”, “Lower layer slit + 1.0 ⁇ m”, and “Lower layer slit + 0.5 ⁇ m” are the same as those described above with reference to FIG.
  • the transmittance of the lower layer electrode (iii) increases in the order of 1.0 ⁇ m, 2.0 ⁇ m, and 3.0 ⁇ m (1.0 ⁇ m is the highest).
  • the width between the comb-teeth portions of the pair of comb-teeth electrodes is S ( ⁇ m)
  • the length of the lower layer electrode (iii) is the plan view of the main surface of the substrate.
  • the electrode length of the lower layer electrode (iii) is preferably 30% or more and 70% or less of the length of the space S.
  • the off-characteristics response speed and transmittance when turning black [lower is preferable]
  • the transmittance is sufficiently high.
  • the preferable range of S is the same as that described in the first embodiment.
  • the “electrode length” in Embodiment 3 usually refers to the length in the short direction of the electrode (the length of the width of the electrode), not the longitudinal direction of the electrode.
  • FIG. 18 is a simulation result when a lateral electric field is generated in the liquid crystal display panel according to the third embodiment.
  • FIG. 19 shows a simulation result when a vertical electric field is generated in the liquid crystal display panel according to the third embodiment.
  • Embodiment 1 the electrode arrangement of Embodiment 1 did not provide sufficient symmetry of the transmittance distribution, but in Embodiment 3 in which the lower layer electrode was placed in the middle of the comb-tooth space, Symmetry can be provided by the transmittance distribution (see the portion surrounded by the dotted line in FIGS. 4 and 18). Further, at the time of OFF, the transmittance can be lowered firmly as in the case where the lower layer electrode is a planar electrode having no slit (see FIG. 19).
  • the other structure in Embodiment 3 is the same as that of Embodiment 1 mentioned above.
  • Other reference numerals in the drawing according to the third embodiment are the same as those shown in the drawing according to the first embodiment, except that 2 is added to the hundreds place.
  • FIG. 20 is a schematic cross-sectional view of a liquid crystal display panel according to the fourth embodiment.
  • the fourth embodiment relates to a system in which the lower layer electrode (iii) is disposed under all the comb electrodes (i) and (ii). That is, a slit (a portion without an electrode) of the lower electrode is provided in the space of the comb electrode (upper electrode) (an edge of the lower electrode is provided).
  • the lower layer electrode has a slit and overlaps with substantially all of the pair of comb electrodes when the main surface of the substrate is viewed in plan.
  • the calculation was performed by setting the lower electrode to the same potential as the comb (upper) electrode.
  • FIG. 21 is a graph showing transmittance (%) and voltage (V) with respect to time (msec) of the liquid crystal display panel according to the second embodiment and the liquid crystal display panel according to the fourth embodiment.
  • FIG. 21 shows a case where one comb-tooth electrode (i) and the lower layer electrode (iii) are equipotential and one comb-tooth electrode (ii) and the lower layer electrode (v) are equipotential.
  • the lower layer electrode is divided into two portions that are not electrically connected by the slit.
  • the filled plot indicates the case of the second embodiment.
  • a white plot shows the case of the fourth embodiment.
  • the liquid crystal display panel according to the fourth embodiment can sufficiently improve the off characteristics while maintaining the transmittance to some extent with respect to the second embodiment.
  • the centers of one comb-tooth electrode (i) and the lower layer electrode (iii) are aligned, and the centers of one comb-tooth electrode (ii) and the lower layer electrode (v) are aligned.
  • iii) and the lower layer electrode (v) are calculated in a configuration in which each of the comb electrodes (i) and the comb electrodes (ii) is extended to the left and right by 0.56 ⁇ m (see “ Embodiment 4 (shown as “lower layer slit + 0.56 ⁇ m)”).
  • Electrode (iii) is extended from the comb electrode (i) by 1.0 ⁇ m and 0.5 ⁇ m, respectively. It is preferable that the lower layer electrode (iii) and the lower layer electrode (v) are extended by 0.2 to 1 ⁇ m to the left and right of the one comb electrode (i) and the one comb electrode (ii), respectively.
  • FIG. 22 shows a simulation result when a horizontal electric field is generated in the liquid crystal display panel according to the fourth embodiment.
  • FIG. 23 shows a simulation result when a vertical electric field is generated in the liquid crystal display panel according to the fourth embodiment.
  • T (msec) in FIGS. 22 and 23 represents the value on the horizontal axis (time axis) of the graph of FIG.
  • the transmittance distribution is symmetric.
  • the other structure in Embodiment 4 is the same as that of Embodiment 1 mentioned above.
  • Other reference numerals in the diagram according to the fourth embodiment are the same as those shown in the diagram according to the first embodiment, except that 3 is added to the hundreds place.
  • the liquid crystal display panels of Embodiments 1 to 4 are easy to manufacture and can achieve high speed response and high transmittance. Moreover, the response speed which can implement a field sequential system is realizable.
  • the electrode structure and the like according to the liquid crystal display panel and the liquid crystal display device of the present invention can be confirmed by microscopic observation such as SEM (Scanning / Electron / Microscope).
  • the TFT driving method described above is a method of driving including a subframe that is a driving cycle until the liquid crystal is changed back to the initial state, and between the electrodes of a pair of comb electrodes during the subframe cycle.
  • Driving operation that generates a potential difference driving operation that generates a higher potential difference between the lower electrode and the counter electrode than between the pair of comb electrodes, and all electrodes of the pair of comb electrodes, the lower electrode, and the counter electrode It may include performing a driving operation that does not substantially generate a potential difference therebetween.
  • FIG. 24 is a schematic cross-sectional view of the liquid crystal display panel according to Comparative Example 1 when a fringe electric field is generated.
  • FIG. 25 is a schematic plan view of the liquid crystal display panel shown in FIG.
  • FIG. 26 is a simulation result when the fringe electric field is generated in the liquid crystal display panel according to Comparative Example 1.
  • FIG. 26 shows simulation results of the director D, the electric field, and the transmittance distribution. Note that the reference numerals in FIGS. 24 and 25 according to Comparative Example 1 are the same as those shown in the drawings according to the first embodiment except that the hundreds are added to the hundreds unless otherwise specified. .
  • liquid crystal molecules are rotated by a fringe electric field generated between the upper layer and lower layer electrodes of the lower substrate.
  • the upper layer electrode is an electrode having a slit
  • the lower layer electrode is a planar electrode that does not have a slit and is common to all pixels.
  • the transmittance in the simulation is low, which is 3.6%. The transmittance could not be improved as in the above-described embodiment (see FIG. 26).
  • FIG. 27 is a schematic cross-sectional view of the liquid crystal display panel according to Comparative Example 2 when a horizontal electric field is generated.
  • FIG. 28 is a simulation result when a horizontal electric field is generated in the liquid crystal display panel according to Comparative Example 2.
  • FIG. 29 is a simulation result when a vertical electric field is generated in the liquid crystal display panel according to Comparative Example 2.
  • the liquid crystal display panel according to Comparative Example 2 generates a lateral electric field by a pair of comb-teeth electrodes, as in the above-described embodiment.
  • FIG. 26 shows the simulation results of the director D, the electric field, and the transmittance distribution (cell thickness 5.0 ⁇ m, slit interval 3.0 ⁇ m). Note that the reference numerals in FIGS. 24 and 25 according to Comparative Example 1 are the same as those shown in the drawings according to the first embodiment, except for the case where 5 is added to the hundreds unless otherwise specified. .
  • an oxide semiconductor TFT (IGZO or the like) is preferably used.
  • the oxide semiconductor TFT will be described in detail below.
  • At least one of the first substrate and the second substrate usually includes a thin film transistor element.
  • the thin film transistor element preferably includes an oxide semiconductor. That is, in the thin film transistor element, it is preferable to form the active layer of the active drive element (TFT) using an oxide semiconductor film such as zinc oxide instead of the silicon semiconductor film. Such a TFT is referred to as an “oxide semiconductor TFT”.
  • An oxide semiconductor has characteristics of exhibiting higher carrier mobility and less characteristic variation than amorphous silicon. For this reason, the oxide semiconductor TFT can operate at higher speed than the amorphous silicon TFT, has a high driving frequency, and is suitable for driving a next-generation display device with higher definition.
  • the oxide semiconductor film is formed by a simpler process than the polycrystalline silicon film, there is an advantage that the oxide semiconductor film can be applied to a device requiring a large area.
  • FIG. 30 is a schematic cross-sectional view showing an example of a liquid crystal display device used in the liquid crystal driving method of the present embodiment. Since a large capacitance is generated between the upper layer electrode and the lower layer electrode at a position indicated by an arrow, the pixel capacitance is larger than that of a normal vertical alignment (VA) mode liquid crystal display device.
  • VA vertical alignment
  • the merits when the oxide semiconductor TFT (IGZO or the like) is applied are as follows. For the reasons (1) and (2) above, it is about 20 times that of a model of 52 type with a pixel capacity of 240 Hz driven by UV2A. Therefore, when a conventional a-Si transistor is used to manufacture a transistor, there is a problem that the transistor becomes about 20 times larger and the aperture ratio cannot be sufficiently obtained. Since the mobility of IGZO is about 10 times that of a-Si, the size of the transistor is about 1/10. Since the three transistors in the liquid crystal display device using the color filter RGB are one, it can be manufactured with almost the same or smaller size than a-Si. As described above, since the capacitance of Cgd is reduced when the transistor is reduced, the burden on the source bus line is reduced accordingly.
  • FIGS. 31 is a schematic plan view of the periphery of the active drive element used in this embodiment.
  • FIG. 32 is a schematic cross-sectional view around the active drive element used in the present embodiment.
  • the symbol T indicates a gate / source terminal.
  • a symbol Cs indicates an auxiliary capacity.
  • An example (part concerned) of a manufacturing process of the oxide semiconductor TFT is described below.
  • the active layer oxide semiconductor layers 905a and 905b of the active drive element (TFT) using the oxide semiconductor film can be formed as follows.
  • an In—Ga—Zn—O-based semiconductor (IGZO) film with a thickness of, for example, 30 nm to 300 nm is formed over the insulating film 913i by a sputtering method. Thereafter, a resist mask covering a predetermined region of the IGZO film is formed by photolithography. Next, the portion of the IGZO film that is not covered with the resist mask is removed by wet etching. Thereafter, the resist mask is peeled off. In this manner, island-shaped oxide semiconductor layers 905a and 905b are obtained. Note that the oxide semiconductor layers 905a and 905b may be formed using another oxide semiconductor film instead of the IGZO film.
  • the insulating film 907 is patterned. Specifically, first, for example, a SiO 2 film (thickness: about 150 nm) is formed as the insulating film 907 on the insulating film 913i and the oxide semiconductor layers 905a and 905b by a CVD method.
  • the insulating film 907 preferably includes an oxide film such as SiOy.
  • the SiO 2 film 907 when oxygen vacancies are generated in the oxide semiconductor layers 905a and 905b, the oxygen vacancies can be recovered by oxygen contained in the oxide film, so that the oxide semiconductor layers 905a and 905b The oxidation deficiency can be reduced more effectively.
  • the SiO 2 film as a lower layer may have a laminated structure of the SiNx film as an upper layer.
  • the thickness of the insulating film 907 (the total thickness of each layer in the case of a stacked structure) is preferably 50 nm or more and 200 nm or less.
  • the thickness is 50 nm or more, the surfaces of the oxide semiconductor layers 905a and 905b can be more reliably protected in the patterning process of the source / drain electrodes. On the other hand, if it exceeds 200 nm, a larger step is generated in the source electrode and the drain electrode, which may cause disconnection or the like.
  • the oxide semiconductor layers 905a and 905b in this embodiment include, for example, a Zn—O based semiconductor (ZnO), an In—Ga—Zn—O based semiconductor (IGZO), an In—Zn—O based semiconductor (IZO), or A layer made of a Zn—Ti—O based semiconductor (ZTO) or the like is preferable.
  • ZnO Zn—O based semiconductor
  • IGZO In—Ga—Zn—O-based semiconductor
  • IGZO In—Ga—Zn—O-based semiconductor
  • this mode has a certain function and effect in combination with the above-described oxide semiconductor TFT, it can also be driven using a known TFT element such as an amorphous Si TFT or a polycrystalline Si TFT.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、充分に高速応答化するとともに、透過率が優れる液晶表示パネル及び液晶表示装置を提供する。本発明の液晶表示パネルは、第1基板、第2基板、及び、両基板に挟持された液晶層を備える液晶表示パネルであって、上記第1基板及び上記第2基板は、電極を有し、上記第2基板の電極は、一対の櫛歯電極、及び、スリットを有する電極を含む液晶表示パネルである。

Description

液晶表示パネル及び液晶表示装置
本発明は、液晶表示パネル及び液晶表示装置に関する。より詳しくは、立上がり・立下がりの両方において液晶分子を電界によって配向制御させる3層電極構造を有する液晶表示パネル及び液晶表示装置に関するものである。
液晶表示パネルは、一対のガラス基板等に液晶表示素子を挟持して構成され、薄型で軽量かつ低消費電力といった特長を活かして、パーソナルコンピュータ、テレビジョン、カーナビゲーション等の車載用の機器、携帯電話等の携帯情報端末のディスプレイ等、日常生活やビジネスに欠かすことのできないものとなっている。これらの用途において、液晶層の光学特性を変化させるための電極配置や基板の設計に係る各種モードの液晶表示パネルが検討されている。
近年の液晶表示装置の表示方式としては、負の誘電率異方性を有する液晶分子を基板面に対して垂直配向させた垂直配向(VA:Vertical Alignment)モードや、正又は負の誘電率異方性を有する液晶分子を基板面に対して水平配向させて液晶層に対し横電界を印加する面内スイッチング(IPS:In-Plane Switching)モード及び縞状電界スイッチング(FFS:Fringe Field Switching)等が挙げられる。
例えば、FFS駆動方式の液晶表示装置として、高速応答性及び広視野角を有する薄膜トランジスタ型液晶ディスプレイであって、第1の共通電極層を有する第1の基板と、ピクセル電極層及び第2の共通電極層の両方を有する第2の基板と、前記第1の基板と前記第2の基板との間に挟まれた液晶と、高速な入力データ転送速度に対する高速応答性及び見る人にとっての広視野角をもたらすために、前記第1の基板にある前記第1の共通電極層と、前記第2の基板にある前記ピクセル電極層及び第2の共通電極層の両方との間に電界を発生させる手段とを含むディスプレイが開示されている(例えば、特許文献1参照。)。
また複数の電極により横電界を印加する液晶装置として、互いに対向配置された一対の基板間に誘電率異方性が正の液晶からなる液晶層が挟持された液晶装置であって、前記一対の基板を構成する第1の基板、第2の基板のそれぞれに前記液晶層を挟んで対峙し、該液晶層に対して縦電界を印加する電極が設けられるとともに、前記第2の基板には、前記液晶層に対して横電界を印加する複数の電極が設けられた液晶装置が開示されている(例えば、特許文献2参照。)。
特表2006-523850号公報 特開2002-365657号公報
上記特許文献1は、垂直配向型の3層電極構造を有する液晶表示装置において、立上がり(暗状態〔黒表示〕から明状態〔白表示〕に表示状態が変化する間)は下側基板の上層スリット-下層面状電極間で発生するフリンジ電界(FFS駆動)、立下がり(明状態〔白表示〕から暗状態〔黒表示〕に表示状態が変化する間)は基板間の電位差で発生する縦電界により、立上がり、立下がりともに電界によって液晶分子を回転させて高速応答化できるものを開示する。
図24は、下側基板が従来のFFS構造であるFFS駆動方式の電極構造を有する液晶表示パネルの断面模式図である。図25は、FFS構造を有する液晶表示パネルの絵素平面模式図である。図26は、図24に示した液晶表示パネルにおいて、立上がりにおけるダイレクタdの分布、電界分布及び透過率分布(実線)を示すシミュレーション結果である。なお、図24では、液晶表示パネルの構造を示しており、図25に示したスリット電極417が一定の電圧に印加され(図では14V。)、スリット電極417が配置された基板と、対向基板に、それぞれ下層電極413、対向電極423が配置されている。下層電極413、対向電極423に印加される電圧は、7Vである。
このように、垂直配向している液晶表示装置にフリンジ電界を印加しても、スリット電極端近傍の液晶分子しか回転しないため、透過率が充分に得られないおそれがある(図26参照。)。これに対し、本発明者は、上層スリット電極の代わりに一対の櫛歯電極を用いて櫛歯駆動をおこない、櫛歯電極間の液晶分子を充分に水平方向に配向させることより、透過率を高めることができることを見出した。
ここで、3層電極構造の櫛歯駆動の立上がり時には、横電界を発生させる上層電極だけでなく、対向電極及び下層電極にもそれぞれ電圧が印加されているため、それらが上層電極による横電界を遮るように働き、透過率が低くなってしまうおそれがある。更に透過率を高めるための工夫の余地があった。
これを解決するには、下層・対向電極を遠ざければよいが、その分セル厚が厚くなってしまうため、視野角特性(特に偏光板の視野角補償)が悪くなったり、液晶量増加といったコスト面の問題が発生したりするおそれがあり、現実的な解決策ではない。
また、上記特許文献2は、3層電極構造を有する液晶表示装置において櫛歯駆動を用いて応答速度を向上させることを記載している。しかしながら、実質的に表示方式がツイステッドネマティック(TN)モードの液晶装置についての記載しかなく、広視野角、高コントラストの特性等を得るのに有利な方式である垂直配向型の液晶表示装置については何ら開示されていない。また、透過率の改善や、電極構造と透過率との関連性についても何ら開示されていない。
本発明は、上記現状に鑑みてなされたものであり、立上がり・立下がりの両方において液晶分子を電界によって配向制御させる3層電極構造を有する液晶表示パネル及び液晶表示装置において、充分に高速応答化するとともに、透過率が優れる液晶表示パネル及び液晶表示装置を提供することを目的とするものである。
本発明者らは、垂直配向型の液晶表示パネル及び液晶表示装置において高速応答化と高透過率とを両立させることを検討し、立上がり・立下がりの両方において液晶分子を電界によって配向制御させる3層電極構造に着目した。そして、電極構造について更なる検討をおこない、上記した従来の方式では、下層電極を、スリットを有さない面状電極にしているところ、オン時に電気力線が下に強く引かれるために透過率を落としてしまっていることを見出した。そして、櫛歯電極駆動において、さらに透過率を上げるために、下層電極にもスリットを設けることを見出した。上側基板の対向電極よりも下側基板の電極の方が櫛歯電極(例えば、上層電極)に接近しており、さらに櫛歯電極と面状電極(例えば、下層電極)との間は通常は絶縁層(誘電体層)となっているため、電気力線を引き込みやすく、櫛歯電極により発生する横電界を遮る度合いが大きい。そのため、面状電極(例えば、下層電極)にスリットを設けることで、下層電極が面状電極である場合に下方向に引っ張られる電気力線を制御し、立上がり時の透過率を改善することが出来ることを見出した。
本発明では、垂直配向型の3層電極構造を有する液晶表示装置において、例えば下側基板の上層電極を一対の櫛歯電極として櫛歯駆動をおこなうことにより、立上がりは櫛歯電極間の電位差で横電界、立下がりは基板間の電位差で縦電界を発生させ、立上がり、立下がりともに電界によって液晶分子を回転させて高速応答化し、かつ櫛歯駆動の横電界により高透過率化も実現できる点で上述した特許文献とは異なる。低温環境下では応答速度の課題が特に顕著になるところ、本発明ではこれを解決することができる。
更に、上述した特許文献では下層電極にスリットを設ける方式に関しては何ら述べていないが、その構造では実現できる透過率に限界があり、更に透過率を向上させるためには駆動方法だけでなく、各電極構造にも目を向ける必要がある。そこで、透過率改善を図るための下層電極にスリットを設けた新規な3電極構造の液晶表示パネル及び液晶表示装置を提案する。また、上述した上層電極が一対の櫛歯電極であり、下層電極がスリットを有する電極であることが本発明の効果を発揮するうえで好ましいが、上層電極がスリットを有する電極であり、下層電極が一対の櫛歯電極であっても本発明の効果を発揮することができる。
すなわち、本発明は、第1基板、第2基板、及び、両基板に挟持された液晶層を備える液晶表示パネルであって、上記第1基板及び該第2基板は、電極を有し、上記第2基板の電極は、一対の櫛歯電極、及び、スリットを有する電極を含む液晶表示パネルである。
上記スリットを有する電極は、本発明の技術分野においてスリットを有するといえるものであればよく、スリットをまわりこむようにして、その全体が電気的に接続されているものであってもよく、スリットによって、2つ以上の電気的に接続されていない部分に分けられるものであってもよい。また、上記スリットを有する電極は、本発明の効果を発揮できる限り、部分的にスリットを有さない面状の領域があってもよい。
上記スリットを有する電極は、基板主面を平面視したときに、上記一対の櫛歯電極の少なくとも一方と重畳することが好ましい。これにより、オフ特性を保ちつつ、すなわち、オフ時の応答速度を充分に上げるとともに、オフ時の透過率を充分に低下させつつ、オン時の透過率を充分に向上させることができる。より好ましくは、上記スリットを有する電極が、基板主面を平面視したときに、上記一対の櫛歯電極の少なくとも一方の実質的に全部と重畳することである。また、上記スリットを有する電極が、基板主面を平面視したときに、上記一対の櫛歯電極の少なくとも一方から突出している(延びている)ことが好ましい。
上記一対の櫛歯電極の少なくとも一方は、上記スリットを有する電極と電気的に接続されていることが好ましい。中でも、基板主面を平面視したときに上記スリットを有する電極と重畳する方の櫛歯電極が、上記スリットを有する電極と電気的に接続されていることがより好ましい。更に、1絵素当たりの駆動用TFT数が2つ以下であることが特に好ましい。
上記スリットを有する電極は、基板主面を平面視したときに、上記一対の櫛歯電極と重畳しないこともまた本発明の好ましい形態の1つである。これにより、透過率を充分に優れたものとするとともに、立下がり時に縦電界を充分に印加することができ、オフ特性を優れたものとすることができる。上記スリットを有する電極は、基板主面を平面視したときに、上記一対の櫛歯電極間のスペース(本明細書中、基板主面を平面視したときの、一対の櫛歯電極における櫛歯部分と櫛歯部分との間の領域をスペースともいう。)の中心と重畳するように配置されることが好ましい。また、上記スリットを有する電極が、基板主面を平面視したときに、一対の櫛歯電極の一方から、一対の櫛歯電極間のスペースの幅の半分以下だけスペースの幅方向(基板主面を平面視したときに、櫛歯電極の長手方向と垂直な向き)に突出していることが好ましい。
また上記スリットを有する電極は、基板主面を平面視したときに、上記一対の櫛歯電極の両方と重畳することもまた好ましい形態の1つである。より好ましくは、上記スリットを有する電極は、基板主面を平面視したときに、上記一対の櫛歯電極の両方の実質的に全部と重畳することである。
上記スリットを有する電極のエッジの少なくとも一部は、基板主面を平面視したときに、上記一対の櫛歯電極と重畳していないことが好ましい。
例えば、上記スリットを有する電極が、一対の櫛歯電極間のスペースの幅の7割以下だけスペースの幅方向に突出していることが好ましい。例えば、上記一対の櫛歯電極における櫛歯部分と櫛歯部分との間の幅をS(μm)とすると、上記スリットを有する電極のエッジの少なくとも一部は、基板主面を平面視したときに、上記一対の櫛歯電極から0.5μm以上、0.7Sμm以下離れていることが好ましい。
上記スリットを有する電極は、上記一対の櫛歯電極とは異なる層に設けられることが好ましい。通常は、スリットを有する面状電極は、一対の櫛歯電極と電気抵抗層を介して形成される。上記電気抵抗層は、絶縁層であることが好ましい。絶縁層とは、本発明の技術分野において、絶縁層といえるものであればよい。
上記一対の櫛歯電極は、基板主面を平面視したときに、2つの櫛歯電極が対向するように配置されているといえるものであればよい。これら一対の櫛歯電極により櫛歯電極間で横電界を好適に発生させることができるため、液晶層が正の誘電率異方性を有する液晶分子を含むときは、立上がり時の応答性能及び透過率が優れたものとなり、液晶層が負の誘電率異方性を有する液晶分子を含むときは、立下がり時において横電界によって液晶分子を回転させて高速応答化することができる。また、上記第1基板及び上記第2基板が有する電極は、基板間に電位差を付与することができるものであればよく、これにより、液晶層が正の誘電率異方性を有する液晶分子を含むときの立下がり時、並びに、液晶層が負の誘電率異方性を有する液晶分子を含むときの立上がり時において基板間の電位差で縦電界を発生させ、電界によって液晶分子を回転させて高速応答化することができる。
上記一対の櫛歯電極は、同一の層に設けられていてもよく、また、本発明の効果を発揮できる限り、一対の櫛歯電極が異なる層に設けられていてもよいが、一対の櫛歯電極は、同一の層に設けられていることが好ましい。一対の櫛歯電極が同一の層に設けられているとは、それぞれの櫛歯電極が、その液晶層側、及び/又は、液晶層側と反対側において、共通する部材(例えば、絶縁層、液晶層等)と接していることをいう。
上記一対の櫛歯電極は、基板主面を平面視したときに、櫛歯部分がそれぞれ沿っていることが好ましい。中でも、一対の櫛歯電極の櫛歯部分がそれぞれ略平行であること、言い換えれば、一対の櫛歯電極がそれぞれ複数の略平行なスリットを有することが好適である。
上記液晶層は、閾値電圧未満で基板主面に対して垂直方向に配向する液晶分子を含むことが好ましい。なお、基板主面に対して垂直方向に配向するとは、本発明の技術分野において、基板主面に対して垂直方向に配向するといえるものであればよく、実質的に垂直方向に配向する形態を含む。上記液晶層に含まれる液晶分子は、閾値電圧未満で基板主面に対して垂直方向に配向する液晶分子から実質的に構成されるものであることが好適である。このような垂直配向型の液晶表示パネルは、広視野角、高コントラストの特性等を得るのに有利な方式であり、その適用用途が拡大しているものである。
上記一対の櫛歯電極は、閾値電圧以上で異なる電位とすることができることが好ましい。閾値電圧とは、例えば、明状態の透過率を100%に設定したとき、5%の透過率を与える電圧値を意味する。閾値電圧以上で異なる電位とすることができるとは、閾値電圧以上で異なる電位とする駆動操作を実現できるものであればよく、これにより液晶層に印加する電界を好適に制御することが可能となる。異なる電位の好ましい上限値は、例えば20Vである。異なる電位とすることができる構成としては、例えば、一対の櫛歯電極のうち、一方の櫛歯電極をあるTFTで駆動するとともに、他方の櫛歯電極を、別のTFTで駆動したり、該他方の櫛歯電極の下層電極と導通させたりすることにより、一対の櫛歯電極をそれぞれ異なる電位とすることができる。上記一対の櫛歯電極における櫛歯部分の幅は、例えば2μm以上が好ましい。また、櫛歯部分と櫛歯部分との間の幅(スペースの長さ)は、例えば2μm~7μmであることが好ましい。
上記液晶表示パネルは、一対の櫛歯電極間又は第1基板と第2基板との間で生じる電界により、液晶層における液晶分子が基板主面に対して垂直方向に配向されるように構成されたものであることが好ましい。また、上記第1基板の電極は、面状電極であることが好ましい。本明細書中、面状電極とは、複数の画素内で電気的に接続された形態を含み、例えば第1基板の面状電極としては、すべての画素内で電気的に接続された形態、同一の画素ラインごとに電気的に接続された形態等が好適なものとして挙げられる。これにより、縦電界を好適に印加して高速応答化することができる。特に、上記第1基板の電極が面状電極であることにより、立下がり時に基板間の電位差で好適に縦電界を発生させることができ、高速応答化させることができる。上記第1基板の電極は、通常は、ガラス基板の液晶層側に設けられるものであるが、ガラス基板の液晶層側と反対側(観察者側)に設けられるものであってもよい。
また、横電界・縦電界を好適に印加するうえで、第2基板の液晶層側の電極(上層電極)を、一対の櫛歯電極とし、第2基板の液晶層側と反対側の電極(下層電極)を、スリットを有する電極とすることが特に好ましい。例えば、第2基板の一対の櫛歯電極の下層(第2基板からみて液晶層と反対側の層)に絶縁層を介してスリットを有する電極を設けることができる。更に、上記第2基板のスリットを有する電極は、同一の画素ラインに沿って電気的に接続されているものであることが好ましいが、各画素単位で独立であってもよい。なお、櫛歯電極とスリットを有する電極とを電気的に接続させた場合に、当該スリットを有する電極が同一の画素ラインごとに電気的に接続されているときは、当該櫛歯電極も同一の画素ラインごとに電気的に接続されている形態となり、当該形態も本発明の好ましい形態の一つである。同一の画素ラインごとに電気的に接続されているとは、画素の縦、横等の配列のいずれか1つに沿って複数の画素にわたって電気的に接続されるものであればよい。また、すべての画素ラインにおいてそれぞれ電極が電気的に接続されている必要はなく、実質的に同一の画素ラインごとに電気的に接続されているといえるものであればよい。
上記スリットを有する電極が同一の画素列内で電気的に接続されている形態がより好ましい。上記同一の画素列とは、例えば第2基板がアクティブマトリクス基板である場合、基板主面を平面視したときに、アクティブマトリクス基板におけるゲートバスラインに沿って配置される画素列である。このように第1基板の面状電極及び/又は第2基板のスリットを有する電極が同一の画素列内で電気的に接続されていることにより、例えば偶数のゲートバスラインに対応する画素ごと・奇数のゲートバスラインに対応する画素ごとに、電位変化が反転するように電極に電圧を印加することができ、好適に縦電界を発生させて高速応答化することができる。
上記第1基板の面状電極は、本発明の技術分野において面形状といえるものであればよく、その一部の領域にリブやスリット等の配向規制構造体を有していたり、基板主面を平面視したときに画素の中心部分に当該配向規制構造体を有していたりしてもよいが、実質的に配向規制構造体を有さないものが好適である。
また上記第2基板のスリットを有する電極は、その一部の領域にリブ等を有していてもよいが、実質的にスリットだけを有し、スリット以外は面形状であるものが好適である。
上記液晶層は、通常、一対の櫛歯電極又は第1基板と第2基板との間で生じる電界により、閾値電圧以上で基板主面に対して水平成分を含んで配向するものであるが、中でも、水平方向に配向する液晶分子を含むことが好ましい。水平方向に配向するとは、本発明の技術分野において水平方向に配向するといえるものであればよい。これにより透過率を向上することができる。上記液晶層に含まれる液晶分子は、閾値電圧以上で基板主面に対して水平方向に配向する液晶分子から実質的に構成されるものであることが好適である。
上記液晶層は、正の誘電率異方性を有する液晶分子(ポジ型液晶分子)を含むことが好ましい。正の誘電率異方性を有する液晶分子は、電界を印加した場合に一定方向に配向されるものであり、配向制御が容易であり、より高速応答化することができる。また、上記液晶層は、負の誘電率異方性を有する液晶分子(ネガ型液晶分子)を含むこともまた好ましい。これにより、より透過率を向上することができる。すなわち、高速応答化の観点からは、上記液晶分子が正の誘電率異方性を有する液晶分子から実質的に構成されることが好適であり、透過率の観点からは、上記液晶分子が負の誘電率異方性を有する液晶分子から実質的に構成されることが好適であるといえる。
上記第1基板及び第2基板は、少なくとも一方の液晶層側に、通常は配向膜を有する。該配向膜は、垂直配向膜であることが好ましい。また、該配向膜としては、有機材料、無機材料から形成された配向膜、光活性材料から形成された光配向膜等が挙げられる。なお、上記配向膜は、ラビング処理等による配向処理がなされていない配向膜であってもよい。有機材料、無機材料から形成された配向膜、光配向膜等の、配向処理が必要ない配向膜を用いることによって、プロセスの簡略化によりコストを削減するとともに、信頼性及び歩留まりを向上することができる。また、ラビング処理をおこなった場合、ラビング布などからの不純物混入による液晶汚染、異物による点欠陥不良、液晶パネル内でラビングが不均一であるために表示ムラが発生するなどのおそれがあるが、これら不利点も無いものとすることができる。また、上記第1基板及び第2基板は、少なくとも一方の液晶層側と反対側に、偏光板を有することが好ましい。該偏光板は、円偏光板が好ましい。このような構成により、透過率改善効果を更に発揮することができる。該偏光板は、直線偏光板であることもまた好ましい。このような構成により、視野角特性を優れたものとすることができる。
本発明の液晶表示パネルは、縦電界発生時においては、通常、少なくとも第1の基板が有する電極と第2の基板が有する電極(例えば、第1基板の面状電極と第2基板のスリットを有する電極)との間に電位差を生じさせる。好ましい形態は、第1の基板が有する電極と第2の基板が有する電極との間に、第2の基板が有する電極(例えば、一対の櫛歯電極)間よりも高い電位差を生じさせる形態である。
また横電界発生時においては、通常、少なくとも第2の基板が有する電極(例えば、一対の櫛歯電極)間に、電位差を生じさせる。例えば、第2の基板が有する電極間に、第1の基板が有する電極(例えば、面状電極)と第2の基板が有するスリットを有する電極との間よりも高い電位差を生じさせる形態とすることができる。また、第2の基板が有する電極間に、第1の基板が有する電極と第2の基板が有する電極間よりも低い電位差を生じさせる形態とすることもできる。
なお、偶数ライン・奇数ラインごとに共通接続された下層電極(第2基板が有するスリットを有する電極)に印加して電位変化を反転させるものとすることができる。
本発明の液晶表示パネルが備える第1基板及び第2基板は、液晶層を挟持するための一対の基板であり、例えば、ガラス、樹脂等の絶縁基板を母体とし、絶縁基板上に配線、電極、カラーフィルタ等を作り込むことで形成される。
なお、上記一対の櫛歯電極の少なくとも一方が画素電極であること、上記一対の櫛歯電極を備える第2基板がアクティブマトリクス基板であることが好適である。また、本発明の液晶表示パネルは、透過型、反射型、半透過型のいずれであってもよい。
本発明はまた、本発明の液晶表示パネルを備える液晶表示装置でもある。本発明の液晶表示装置における液晶表示パネルの好ましい形態は、上述した本発明の液晶表示パネルの好ましい形態と同様である。液晶表示装置としては、パーソナルコンピュータ、テレビジョン、カーナビゲーション等の車載用の機器、携帯電話等の携帯情報端末のディスプレイ等が挙げられ、特に、カーナビゲーション等の車載用の機器等の低温環境下等で用いられる機器に適用されることが好ましい。
本発明の液晶表示パネル及び液晶表示装置の構成としては、このような構成要素を必須として形成されるものである限り、その他の構成要素により特に限定されるものではなく、液晶表示パネル及び液晶表示装置に通常用いられるその他の構成を適宜適用することができる。
上述した各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
本発明の液晶表示パネル及び液晶表示装置によれば、第1基板及び第2基板が電極を有し、第2基板の電極が一対の櫛歯電極、及び、スリットを有する電極を含むことにより、充分に高速応答化するとともに、透過率を充分に優れるものとすることができる。
実施形態1に係る液晶表示パネルの横電界発生時における断面模式図である。 実施形態1に係る液晶表示パネルの縦電界発生時における断面模式図である。 実施形態1に係る液晶表示パネルの横電界発生時における断面模式図である。 実施形態1に係る液晶表示パネルの横電界発生時におけるシミュレーション結果である。 実施形態1に係る液晶表示パネルの縦電界発生時におけるシミュレーション結果である。 実施形態1に係る液晶表示パネルの断面模式図である。 実施形態1に係る液晶表示パネルの下層電極の構造例を示す平面模式図である。 実施形態1に係る液晶表示パネルの各形態、及び、比較例2に係る液晶表示パネルの各形態の、時間(msec)に対する透過率(%)及び電圧(V)を示すグラフである。 実施形態2に係る液晶表示パネルの断面模式図である。 実施形態1に係る液晶表示パネルの各形態、及び、実施形態2に係る液晶表示パネルの各形態の、時間(msec)に対する透過率(%)及び電圧(V)を示すグラフである。 実施形態2に係る液晶表示パネルの各形態の、時間(msec)に対する透過率(%)及び電圧(V)を示すグラフである。 実施形態2に係る液晶表示パネルの横電界発生時のシミュレーション結果である。 実施形態2に係る液晶表示パネルの縦電界発生時のシミュレーション結果である。 実施形態2の変形例に係る液晶表示パネルの横電界発生時のシミュレーション結果である。 実施形態2の変形例に係る液晶表示パネルの縦電界発生時のシミュレーション結果である。 実施形態3に係る液晶表示パネルの断面模式図である。 実施形態1に係る液晶表示パネルの各形態、及び、実施形態3に係る液晶表示パネルの各形態の、時間(msec)に対する透過率(%)及び電圧(V)を示すグラフである。 実施形態3に係る液晶表示パネルの横電界発生時のシミュレーション結果である。 実施形態3に係る液晶表示パネルの縦電界発生時のシミュレーション結果である。 実施形態4に係る液晶表示パネルの断面模式図である。 実施形態2に係る液晶表示パネルの各形態、及び、実施形態4に係る液晶表示パネルの、時間(msec)に対する透過率(%)及び電圧(V)を示すグラフである。 実施形態4に係る液晶表示パネルの横電界発生時のシミュレーション結果である。 実施形態4に係る液晶表示パネルの縦電界発生時のシミュレーション結果である。 比較例1に係る液晶表示パネルのフリンジ電界発生時の断面模式図である。 図24に示した液晶表示パネルの平面模式図である。 比較例1に係る液晶表示パネルのフリンジ電界発生時のシミュレーション結果である。 比較例2に係る液晶表示パネルの横電界発生時の断面模式図である。 比較例2に係る液晶表示パネルの横電界発生時のシミュレーション結果である。 比較例2に係る液晶表示パネルの縦電界発生時のシミュレーション結果である。 本実施形態の液晶駆動方法に用いられる液晶表示装置の一例を示す断面模式図である。 本実施形態に用いられるアクティブ駆動素子周辺の平面模式図である。 本実施形態に用いられるアクティブ駆動素子周辺の断面模式図である。
以下に実施形態を掲げ、本発明を図面を参照して更に詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。本明細書中、画素とは、特に明示しない限り、絵素(サブ画素)であってもよい。更に、面状電極は、本発明の技術分野において面状電極であるといえる限り、例えば、点形状のリブ及び/又はスリットが形成されていてもよいが、実質的に配向規制構造体を有さないものが好ましい。そして、液晶層を挟持する一対の基板のうち、表示面側の基板を上側基板ともいい、表示面と反対側の基板を下側基板ともいう。また、基板に配置される電極のうち、表示面側の電極を上層電極ともいい、表示面と反対側の電極を下層電極ともいう。更に、本実施形態の回路基板(第2基板)を、薄膜トランジスタ素子(TFT)を有すること等から、TFT基板又はアレイ基板ともいう。なお、本実施形態では、立上がり(例えば横電界印加)・立下がり(例えば縦電界印加)の両方において、TFTをオン状態にして一対の櫛歯電極の少なくとも一方の電極(画素電極)に電圧を印加している。
なお、各実施形態において、同様の機能を発揮する部材及び部分は同じ符号を付している。また、図中、特に断らない限り、(i)は、下側基板の上層にある櫛歯電極の一方の電位を示し、(ii)は、下側基板の上層にある櫛歯電極の他方の電位を示し、(iii)は、下層電極の電位を示し、(iv)は、上側基板の面状電極の電位を示す。また、実施形態4において、(v)は、もう1つの下層電極の電位を示す。また、図4、図5、図12~図15、図18、図19、図22、図23、図28、図29においては、透過率分布を示す実線とともに、等電位線を示している。なお、図8、図10、図11、図17、図21においては、縦軸が2つある2軸グラフであるところ、点線の円と矢印は、それぞれのグラフがいずれの縦軸の値を示しているかを指し示している。
後述する実施形態では、下側基板に配置される一対の櫛歯電極とスリットを有する電極のうち、一対の櫛歯電極を上層電極とし、スリットを有する電極を下層電極としており、これが好ましい形態であるが、一対の櫛歯電極を下層電極とし、スリットを有する電極を上層電極としても本発明の効果を発揮することができる。
実施形態1(櫛歯電極直下に下層電極を配置する方式)
図1は、実施形態1に係る液晶表示パネルの横電界発生時における断面模式図である。図2は、実施形態1に係る液晶表示パネルの縦電界発生時における断面模式図である。実施形態1は、櫛歯電極17の直下に下層電極13を配置する方式を採る。図1及び図2において、点線は、発生する電界の向きを示す。実施形態1に係る液晶表示パネルは、ポジ型液晶である液晶分子31を用いた垂直配向型の3層電極構造(ここで、第2層目に位置する下側基板の上層電極は一対の櫛歯電極である。)を有する。実施形態1では、下層電極13が櫛歯電極17と独立に駆動され、かつ櫛歯電極19とも独立に駆動される。立上がりは、図1に示すように、一対の櫛歯電極16(例えば、電位0Vである櫛歯電極17と電位14Vである櫛歯電極19とからなる)間の電位差14Vで発生する横電界により、液晶分子を回転させる。このとき、基板間(電位7Vである下層電極13と電位7Vである対向電極23との間)の電位差は実質的に生じていない。
また、立下がりは、図2に示すように、基板間(例えば、それぞれ電位14Vである下層電極13、櫛歯電極17、及び、櫛歯電極19と、電位0Vである対向電極23との間)の電位差14Vで発生する縦電界により、液晶分子を回転させる。このとき、一対の櫛歯電極16(例えば、電位14Vである櫛歯電極17と電位14Vである櫛歯電極19とからなる)間の電位差は実質的に生じていない。なお、図2では対向電極23を0Vとしており、このように0Vとしてもよいが、後述するシミュレーションでは対向電極を常時7Vとしている。
立上がり、立下がりともに電界によって液晶分子を回転させることにより、高速応答化する。すなわち、立上がりでは、一対の櫛歯電極16間の広範囲の横電界でオン状態として高透過率化し、立下がりでは、基板間の縦電界でオン状態として高速応答化する。更に、櫛歯駆動の横電界により高透過率化も実現することができる。なお、実施形態1及びこれ以降の実施形態では液晶としてポジ型液晶を用いているが、ポジ型液晶の代わりにネガ型液晶を用いてもよい。ネガ型液晶を用いた場合は、一対の基板間の電位差により、液晶分子が水平方向に配向し、一対の櫛歯電極間の電位差により、液晶分子が垂直方向に配向することになる。これにより、透過率が優れたものとなるとともに、立上がり・立下がりの両方において電界によって液晶分子を回転させて高速応答化することができる。
更に、下層電極13にスリットを設けることで、さらに高速応答化するとともに、高透過率化することができる。なお、下層電極13は、スリットをまわりこむようにして、その全体が電気的に接続されている。
図3は、実施形態1に係る液晶表示パネルの横電界発生時における断面模式図である。図3では、下層電極のエッジが、基板主面を平面視したときに、一対の櫛歯電極間のスペースの中心に設けた場合を示す。
実施形態1では、オフ特性を良好なものとしつつ、立ち上がり時の透過率を優れたものとすることができる。また、下層電極のスリットの設け方(L/Sの値や電極の位置)や、各電極の電圧印加条件を最適化することで、オフ時の応答を悪化させずに、透過率向上効果だけでなく、オン時の応答速度も更に上げることができる。
実施形態1について、以下に詳細に説明する。
実施形態1に係る液晶表示パネルは、立上がり・立下がりの両方において液晶分子を電界によって配向制御させる3層電極構造を有する液晶表示パネルにおいて、更に下層電極にスリット構造を持たせることで透過率向上や応答改善を行うことができることを特徴とする。
シミュレーションは、代表的な条件として、セル厚3.6μm、上層電極(櫛歯電極)の幅の長さL/一対の櫛歯電極における櫛歯部分と櫛歯部分との間の幅S=2.6μm/3.0μm、誘電体層(櫛歯電極と下層電極との間の絶縁層)の層厚0.3μm(ε=6.9)とした。また、対向電圧は、常時7Vとし、櫛歯電極(上層電極)(i)は、オン時に0Vとし、オフ時に14Vとした。更に、櫛歯電極(上層電極)(ii)は、オン時・オフ時ともに14Vとした。
また、実施形態1~4のそれぞれで下層電極(iii)の印加電圧を変えている。実施形態1は、下層電極(iii)は、オン時7V、オフ時14Vとして計算をおこなった。
図4は、実施形態1に係る液晶表示パネルの横電界発生時におけるシミュレーション結果である。下層電極にスリットを設けることにより、下層電極にスリットを設けていない比較例2(図28)と比較して、オン時に横電界を遮断する成分を減らし(例えば、図4の実線で囲んだ部分は、図28の実線で囲んだ部分と比べて、横電界が遮断されていない。)、透過率を上げることが可能である。図4では、オン状態となって2.0msec後(T=2.8msec)の液晶表示パネルを示す。図5は、実施形態1に係る液晶表示パネルの縦電界発生時におけるシミュレーション結果である。図5は、オフ状態となって1.5msec後(T=4.8msec)の液晶表示パネルを示す。図4及び図5は、セル厚3.6μm、櫛歯間隔3.0μmとしたときの、ダイレクタD、電界、及び、透過率分布(実線)を示している。なお、T(msec)は、後述する図8のグラフの横軸(時間軸)の値を示している。
下層電極にスリットを設けることで、後述する比較例2(図27及び図28)のように下層電極がスリットを有さない面状電極である場合において、オン時に電気力線が下に強く引かれるために透過率を落としてしまうことを充分に防止することができる(実施形態1に係る図4と比較例2に係る図28の実線で囲んだ部分を参照。)。このため、透過率を向上させることができる。言い換えれば、下層電極にスリットを設けることで、オン時の横電界を遮る要素を減らすことが可能となるため、透過率を上げることが可能である。
具体的には、立上がりでは、下層電極がスリットを有さない面状電極であるときは、シミュレーションにより求めた透過率は12.2%であった。一方、本発明の液晶表示パネルでは、下層電極を、スリットを有する電極とすることにより、シミュレーションにより求めた透過率は13.6%でありより高いものとすることができた。
図6は、実施形態1に係る液晶表示パネルの断面模式図である。図1~図3、図6に示すように、実施形態1に係る液晶表示パネルは、スリットを有する下層電極を片側の櫛歯電極(i)の下に配置することを特徴とする。言い換えれば、スリットを有する電極が、基板主面を平面視したときに、一対の櫛歯電極の一方の実質的に全部と重畳する。また、実施形態1に係る液晶表示パネルは、一対の櫛歯電極(上層電極)間のスペースの中で、下層電極にスリットを設ける(基板主面を平面視したときに、下層電極のエッジが上記スペースの中にある。)。
図7は、実施形態1に係る液晶表示パネルの下層電極の構造例を示す平面模式図である。実施形態1に係る下層電極13は、櫛歯電極であり、このような形態が好ましいが、スリットを有する電極であれば本発明の効果を発揮することができる。また、実施形態1に係る下層電極13は、基板主面を平面視したときに櫛歯電極17の全体と重畳するように配置されている。更に、下層電極13のエッジの実質的にすべてが、基板主面を平面視したときに、櫛歯電極17からα(0.5μm以上、0.7Sμm以下が好ましい。)離れている。下層電極13と櫛歯電極17との位置関係は、このような形態が特に好ましいが、下層電極13のエッジの少なくとも一部が、基板主面を平面視したときに、櫛歯電極17から上記αだけ離れているものであればよい。例えば、下層電極13のエッジの櫛歯部分が、櫛歯電極17に沿っており、当該沿っている部分が該櫛歯電極17から上記αだけ離れているものが好ましい形態の1つである。後述する実施形態2においても、好適な形態は、αの数値範囲が異なる以外は上述した通りである。なお、後述する実施形態3においては、例えば、下層電極の櫛歯部分が櫛歯電極17と櫛歯電極19との間に配置される以外は本実施形態と同様の構成とすることができる。また、後述する実施形態4においては、例えば、下層電極13を一対の櫛歯電極とする(図7に加えて、櫛歯電極19の全体と重畳するようにもう一つの櫛歯電極を追加する)以外は本実施形態の構成と同様の構成とすることができる。
図8は、実施形態1に係る液晶表示パネルの各形態、及び、比較例2に係る液晶表示パネルの各形態の、時間(msec)に対する透過率(%)及び電圧(V)を示すグラフである。下層電極がスリットを有さない面状である場合は、オン時の横電界(一対の櫛歯電極(i)と(ii)により発生)を、下層電極(iii)により縦に引っ張ることで透過率を落としてしまっていたが(比較例2)、この要因を減らすことができるため、立上がり時の透過率を向上させることができる。
図8に示したように下層電極がスリットを有さない面状である場合に対して、下層電極がスリットを有する場合はオフ特性を保ちつつ、透過率を向上させることができる。本明細書中、オフ特性とは、オフ時の応答速度を充分に上げること、及び、オフ時の透過率を充分に低下させることをいう。
シミュレーションは、一方の櫛歯電極(i)の真下にスリットを有する下層電極(iii)を配置し、一方の櫛歯電極(i)からスリットを有する下層電極(iii)が0.5μm、1μm、2μm突出している場合での計算となっている。具体的には、図8中、「下層スリット+2.0μm(オン時(iii)=7V)」とは、実施形態1に係る液晶表示パネルにおいて、基板主面を平面視したときに、一方の櫛歯電極(i)から下層電極(iii)が2.0μm突出していることをいう。同様に、「下層スリット+1.0μm(オン時(iii)=7V)」、「下層スリット+0.5μm(オン時(iii)=7V)」とは、実施形態1に係る液晶表示パネルにおいて、基板主面を平面視したときに、一方の櫛歯電極(i)から下層電極(iii)がそれぞれ1.0μm、0.5μm突出していることをいう。「下層面状」とは、ここでは下層電極がスリットを有さない面状であることをいい、比較例2の場合を示す。なお、スリットの幅Sは、上記したように3.0μmである。
対向電極(iv)及び下層電極(iii)をオン時7Vにする上記の駆動では、下層電極の突出が+1.0μm、+0.5μm、+2.0μmの順に透過率が高くなっている(+1.0μmの場合が最も高い。)。また、この場合、櫛歯電極間のスペースのおよそ中心で切ること、すなわち、スリットを有する電極が、基板主面を平面視したときに、一対の櫛歯電極の一方から、一対の櫛歯電極間のスペースの幅の7割以下だけスペースの幅方向に突出していることが最もよい切り方となる(スリットのおよそ真ん中に下層電極のエッジがきたときに透過率が極大となる。)。例えば、一対の櫛歯電極における櫛歯部分と櫛歯部分との間の幅をS(μm)とすると、基板主面を平面視したときに、一方の櫛歯電極(i)から下層電極(iii)が0.5μm以上、0.7Sμm以下突出している形態が好ましい。言い換えれば、基板主面を平面視したときに、一方の櫛歯電極(i)から下層電極(iii)のエッジが0.5μm以上、0.7Sμm以下離れている形態が好ましい。ここで、離れている距離は、基板主面を平面視したときの平面上の距離をいう(図6における、横方向の両矢印で示した距離。)。このような形態により、実施形態1において、下層電極をある程度大きくすることによりオフ特性(黒になる時の応答速度や透過率〔低い方が好ましい〕)を改善するとともに、透過率も高いものとする効果を顕著に発揮できる。また、例えば、Sが1μm以上の場合に、上記形態を適用することが特に好ましい。Sの上限値は、例えば10μmである。
また実施形態1に係る液晶表示パネルは、図1~図3、図6に示されるように、アレイ基板10、液晶層30及び対向基板20(カラーフィルタ基板)が、液晶表示パネルの背面側から観察面側に向かってこの順に積層されて構成されている。実施形態1の液晶表示パネルは、図2に示されるように、閾値電圧未満では液晶分子を垂直配向させる。また、図1に示されるように、櫛歯電極間の電圧差が閾値電圧以上ではガラス基板11(第2基板)上に形成された上層電極17、19(一対の櫛歯電極16)間に発生する電界で、液晶分子を櫛歯電極間で水平方向に傾斜させることによって透過光量を制御する。スリットを有する下層電極13は、上層電極17、19(一対の櫛歯電極16)との間に絶縁層15を挟んで形成される。絶縁層15には、例えば、酸化膜SiOや、窒化膜SiNや、アクリル系樹脂等が使用され、または、それらの材料の組み合わせも使用可能である。
図1、図2には示していないが、偏光板が、両基板の液晶層とは反対側に配置されている。偏光板としては、円偏光板又は直線偏光板のいずれも使用することが可能である。また、両基板の液晶層側にはそれぞれ配向膜が配置され、これら配向膜には、膜面に対して液晶分子を垂直に立たせるものである限り、有機配向膜又は無機配向膜のいずれであってもよい。
ゲートバスラインで選択されたタイミングで、ソースバスラインから供給された電圧を薄膜トランジスタ素子(TFT)を通じて、液晶材料を駆動する櫛歯電極19に印加する。なお、本実施形態では櫛歯電極17と櫛歯電極19とは同層に形成されており、同層に形成される形態が好適であるが、櫛歯電極間に電圧差を発生させて横電界を印加し、透過率を向上するという本発明の効果を発揮できる限り、別層に形成されるものであってもよい。櫛歯電極19は、コンタクトホールを介してTFTから延びているドレイン電極と接続されている。なお、スリットを有する下層電極13は、ゲートバスラインの偶数ライン・奇数ラインごとに共通接続されていてもよい。また、対向電極23は、面状形状であり、すべての画素に対応して共通接続されている。
なお、上述したシミュレーションでは、櫛歯電極の電極幅Lは2.6μmであるが、例えばリーク、断線等デバイス作製上の観点から2μm以上が好ましい。櫛歯電極の電極間隔Sは、3.0μmであるが、例えば2μm以上が好ましい。なお、好ましい上限値は、例えば7μmである。
また、電極間隔Sと電極幅Lとの比(L/S)としては、例えば0.4~3であることが好ましい。より好ましい下限値は、0.5であり、より好ましい上限値は、1.5である。
セル厚dは、3.6μmであるが、2μm~7μmであればよく、当該範囲内であることが好適である。セル厚d(液晶層の厚み)は、本明細書中、液晶表示パネルにおける液晶層の厚みの全部を平均して算出されるものであることが好ましい。
実施形態1の液晶表示パネルを備える液晶表示装置は、通常の液晶表示装置が備える部材(例えば、光源等)を適宜備えることができる。後述する実施形態2~4においても同様である。
実施形態2(櫛歯電極直下に下層電極を配置する方式において、下層電極(iii)と櫛歯電極(i)又は櫛歯電極(ii)とを等電位にする方式)
実施形態2では、櫛歯電極直下にスリットを有する下層電極を配置する実施形態1の方式に加えて、下層電極(iii)と櫛歯電極(i)又は(ii)とを等電位とした。
図9は、実施形態2に係る液晶表示パネルの断面模式図である。図9に示すように、実施形態2に係る液晶表示パネルは、下層電極のスリットの設け方は実施形態1に係る液晶表示パネルと同様であり、各電極の電圧印加条件が実施形態1と異なる。
図10は、実施形態1に係る液晶表示パネルの各形態、及び、実施形態2に係る液晶表示パネルの各形態の、時間(msec)に対する透過率(%)及び電圧(V)を示すグラフである。実施形態2は、下層電極を櫛歯(上層)電極と等電位と設定して計算をおこなった。なお、図10においては、塗りつぶしプロットは実施形態2の場合を示す。白抜きプロットは実施形態1の場合、及び、下層電極がスリットを有さない面状であり、下層電極(iii)と櫛歯電極(i)とを等電位とした場合を示す。
下層電極がスリットを有さない面状である場合は、オン時の横電界(一対の櫛歯電極(i)と(ii)により発生)を、下層電極(iii)により縦に引っ張ることで透過率を落としてしまっていたが(比較例2)、実施形態2においてもこの要因を減らすことができるため、オフ特性を保ちつつ、立上がり時の透過率を向上させることができる。
実施形態2においても、上述したように、シミュレーションは、一方の櫛歯電極(i)の真下にスリットを有する下層電極(iii)を配置し、一方の櫛歯電極(i)からスリットを有する下層電極(iii)が0.5μm、1μm、2μm突出している場合での計算となっている。図10中、「下層スリット+2.0μm」とは、実施形態2に係る液晶表示パネルにおいて、基板主面を平面視したときに、一方の櫛歯電極(i)から下層電極(iii)が2.0μm突出していることをいう。同様に、「下層スリット+1.0μm」、「下層スリット+0.5μm」とは、実施形態2に係る液晶表示パネルにおいて、基板主面を平面視したときに、一方の櫛歯電極(i)から下層電極(iii)がそれぞれ1.0μm、0.5μm突出していることをいう。なお、「下層スリット+1.0μm(オン時(iii)=7V)」、「下層スリット+0.5μm(オン時(iii)=7V)」は、図8におけるものと同一である。「下層面状」は、下層電極がスリットを有さない面状電極であることを示す。また、(i)=(iii)は、櫛歯電極(i)と下層電極(iii)とが等電位である場合を示す。後述する図面においても同様である。なお、上記突出する長さは、図9における横方向の両矢印で示される長さである。
実施形態2では、下層電極(iii)と櫛歯(上層)電極の片側(i)又は(ii)とを等電位にするため、駆動用TFT数を削減することができる。これにより、製造がより容易になるとともに、TFT数が削減されることによって開口率を充分に向上することができる。例えば、1絵素当たりのTFT数を2つ以下とすることが好ましい。
櫛歯電極(i)と下層電極(iii)とを等電位にする上記の駆動では、スペースSが3μmであるところ、下層電極(iii)の突出が+0.5μm、+1.0μm、+2.0μmの順に透過率が高くなっている(+0.5μmが最も高い。)。例えば、一対の櫛歯電極における櫛歯部分と櫛歯部分との間の幅をS(μm)とすると、スリットを有する電極のエッジの少なくとも一部は、基板主面を平面視したときに、前記一対の櫛歯電極から0μm以上、0.5Sμm以下離れていることが好ましい。言い換えれば、一方の櫛歯電極(i)から下層電極(iii)が0μm以上、スペースSの長さの50%以下突出している形態が好ましい。これにより、実施形態2において、下層電極をある程度大きくすることによりオフ特性(黒になる時の応答速度や透過率〔低い方が好ましい〕)を改善するとともに、透過率も充分に高いものとする効果を顕著に発揮することができる。なお、Sの好ましい範囲は、実施形態1において上述したのと同様である。図10の下層スリット+0.5μmの場合のように、条件によっては、実施形態1よりも透過率が高くなる。
図11は、実施形態2に係る液晶表示パネルの各形態の、時間(msec)に対する透過率(%)及び電圧(V)を示すグラフである。なお、図11においては、塗りつぶしプロットは下層電極(iii)と異なる位置の櫛歯電極(ii)を等電位としている。白抜きプロットは下層電極(iii)と同じ位置の櫛歯電極(i)を等電位としている。
図11では、一方の櫛歯電極(i)と下層電極(iii)を等電位にしたり(実施形態2)、一方の櫛歯電極(ii)と下層電極(iii)とを等電位にしたり(実施形態2の変形例)する場合についてそれぞれ示す。図11より、同じ位置、すなわち、基板主面を平面視したときに互いに重畳する一方の櫛歯電極(i)と下層電極(iii)とを等電位にする場合(白抜きプロットにて示す)の方が、一方の櫛歯電極(ii)と下層電極(iii)とを等電位にする場合(塗りつぶしプロットにて示す)よりも、透過率が高く、応答速度も速く、透過率・応答共に良好な結果が得られることが分かる。
更に、一方の櫛歯電極(i)と下層電極(iii)とが等電位である場合は、下層電極(iii)が一方の櫛歯電極(i)をアシストするため、オン時の応答速度が速くなる。
図12は、実施形態2(一方の櫛歯電極(i)と下層電極(iii)とが等電位)に係る液晶表示パネルの横電界発生時のシミュレーション結果である。図13は、実施形態2に係る液晶表示パネルの縦電界発生時のシミュレーション結果である。図14は、実施形態2の変形例(一方の櫛歯電極(ii)と下層電極(iii)とが等電位)に係る液晶表示パネルの横電界発生時のシミュレーション結果である。図15は、実施形態2の変形例に係る液晶表示パネルの縦電界発生時のシミュレーション結果である。図12及び図14は、オン状態となって2.0msec後(T=2.8msec)の液晶表示パネルを示す。図13及び図15は、オフ状態となって1.5msec後(T=4.8msec)の液晶表示パネルを示す。なお、図12~図15におけるT(msec)は、図10、図11のグラフの横軸(時間軸)の値を示している。
ダイレクタDの方向と透過率分布を比較すると、条件によって対称性が異なる。実施形態1に対して実施形態2では対称性が改善されている(図4と、図12及び図14との、点線で囲んだ透過率分布〔実線〕を参照。)。
上記の実施形態2のような透過率・応答速度となる理由としては、以下のような透過率分布の対称性が影響していると考えられる。すなわち、図4、図12及び図14の透過率分布(実線)を比較すると、実施形態2の変形例の一方の櫛歯電極(ii)と下層電極(iii)とを等電位とする場合に最も対称性が失われており(図14)、実施形態1であると一方の櫛歯電極(i)・下層電極(iii)側に透過率分布が少し傾いている(図4)。一方、実施形態2の一方の櫛歯電極(ii)と下層電極(iii)とを等電位とする場合では透過率分布の対称性が得られている(図12)。
なお、実施形態2におけるその他の構成は、上述した実施形態1の構成と同様である。実施形態2に係る図のその他の参照番号は、百の位に1を付した以外は、実施形態1に係る図に示したものと同様である。
実施形態3(一対の櫛歯電極の間〔スペース〕に下層電極を配置する方式)
図16は、実施形態3に係る液晶表示パネルの断面模式図である。実施形態3は、下層電極(iii)を一対の櫛歯(上層)電極の間に配置する方式についてのものである。なお、基板主面を平面視したときに、下層電極のスリット(下層電極の無い部分)と一対の櫛歯電極とが重畳することとなる。実施形態3では、実施形態1と同様に、下層電極(iii)が櫛歯電極(i)と独立に駆動され、かつ櫛歯電極(ii)とも独立に駆動される。計算は、下層電極をオン時7V、オフ時14Vとしておこなった。
図17は、実施形態1に係る液晶表示パネルの各形態、及び、実施形態3に係る液晶表示パネルの各形態の、時間(msec)に対する透過率(%)及び電圧(V)を示すグラフである。なお、図17においては、塗りつぶしプロットは実施形態3の場合を示す。白抜きプロットは実施形態1の場合、及び、下層面状の場合(比較例2)を示す。
オン時に下層電極(iii)を適当な電圧にしておけば、下層電極(iii)は櫛歯電極(i)と櫛歯電極(ii)との間の横電界をアシストするように働く。このため、オン時の透過率を充分に上げることができる。例えば、オン時に下層電極(iii)を、一対の櫛歯電極間の電圧の中間値以下とすることが好ましい。
更に、オフ時は櫛歯電極(上層電極)のスリット(電極のない部分)を補強するように下層電極が配置され、働くため、充分な縦電界が印加され、下層電極がスリットを有さない面状電極である場合に近い、際立って優れたオフ特性が得られる。
シミュレーションは、櫛歯電極間のスペース(基板主面を平面視したときの櫛歯電極と櫛歯電極との間の領域)の中心に、スリットを有する下層電極(iii)を配置し、電極長さを1μm、2μm、3μmとした場合の計算となっている。図17中、「実施形態3(3.0μm)」とは、基板主面を平面視したときに、櫛歯電極(i)と櫛歯電極(iii)との間のスペース全体にわたる電極長さ3μmの下層電極が配置されていることをいう。同様に、「実施形態3(2.0μm)」、「実施形態3(1.0μm)」とは、基板主面を平面視したときに、櫛歯電極(i)と櫛歯電極(iii)との間のスペースに電極長さ2μmの下層電極、電極長さ1μmの下層電極がそれぞれ配置されていることをいう。なお、「下層スリット+2.0μm」、「下層スリット+1.0μm」、「下層スリット+0.5μm」は、図8等において上述したのと同様である。
上記の駆動では、下層電極(iii)の長さが1.0μm、2.0μm、3.0μmの順に透過率が高くなっている(1.0μmが最も高い。)。例えば、一対の櫛歯電極における櫛歯部分と櫛歯部分との間の幅をS(μm)とすると、下層電極(iii)(スリットを有する電極)の長さは、基板主面を平面視したときに、一対の櫛歯電極から0.3Sμm以上、0.7Sμm以下であることが好ましい。言い換えれば、下層電極(iii)の電極長さが、スペースSの長さの30%以上、70%以下であることが好ましい。これにより、実施形態3において、下層電極をある程度大きくすることによりオフ特性(黒になる時の応答速度や透過率〔低い方が好ましい〕)を改善するとともに、透過率も充分に高いものとする効果を顕著に発揮することができる。なお、Sの好ましい範囲は、実施形態1において上述したのと同様である。なお、実施形態3における「電極の長さ」とは、通常は、電極の長手方向ではなく、電極の短手方向の長さ(電極の幅の長さ)をいう。
図18は、実施形態3に係る液晶表示パネルの横電界発生時のシミュレーション結果である。図19は、実施形態3に係る液晶表示パネルの縦電界発生時のシミュレーション結果である。図18は、オン状態となって2.0msec後(T=2.8msec)の液晶表示パネルを示す。図19は、オフ状態となって1.5msec後(T=4.8msec)の液晶表示パネルを示す。なお、図18及び図19におけるT(msec)は、図17のグラフの横軸(時間軸)の値を示している。
図4(実施形態1)においては、実施形態1の電極配置では透過率分布の対称性が充分に得られなかったが、櫛歯スペースの中間に下層電極を配置した実施形態3では、オン時の透過率分布により対称性を持たせることができる(図4と図18の点線で囲んだ部分を参照。)。
更に、オフ時は、下層電極がスリットを有さない面状電極の場合のようにしっかりと透過率を落とすことが可能である(図19参照。)。
なお、実施形態3におけるその他の構成は、上述した実施形態1の構成と同様である。実施形態3に係る図のその他の参照番号は、百の位に2を付した以外は、実施形態1に係る図に示したものと同様である。
実施形態4(全ての櫛歯電極の下に下層電極を配置する方式)
図20は、実施形態4に係る液晶表示パネルの断面模式図である。実施形態4は、下層電極(iii)を全ての櫛歯電極(i)、(ii)の下に配置する方式についてのものである。すなわち、櫛歯電極(上層電極)のスペースの中で下層電極のスリット(電極のない部分)を設ける(下層電極のエッジを設ける。)。なお、実施形態4では、下層電極が、スリットを有するとともに、基板主面を平面視したときに、一対の櫛歯電極の実質的に全部と重畳する。実施形態4は、下層電極を櫛歯(上層)電極と等電位と設定して計算をおこなった。
図21は、実施形態2に係る液晶表示パネルの各形態、及び、実施形態4に係る液晶表示パネルの、時間(msec)に対する透過率(%)及び電圧(V)を示すグラフである。図21では、一方の櫛歯電極(i)と下層電極(iii)とを等電位とするとともに、一方の櫛歯電極(ii)と下層電極(v)とを等電位とした場合を示す。このように、実施形態4では、下層電極が、スリットによって、2つの電気的に接続されていない部分に分けられている。なお、図21においては、塗りつぶしプロットは実施形態2の場合を示す。白抜きプロットは実施形態4の場合を示す。
実施形態4に係る液晶表示パネルにより、実施形態2に対して透過率をある程度維持しながら、オフ特性を充分に改善することが出来る。
シミュレーションは、一方の櫛歯電極(i)と下層電極(iii)との中心を合わせるとともに、一方の櫛歯電極(ii)と下層電極(v)の中心を合わせ、図20において、下層電極(iii)と下層電極(v)をそれぞれ一方の櫛歯電極(i)と一方の櫛歯電極(ii)よりも左右に0.56μmずつ伸ばした構成での計算となっている(図21において「実施形態4(下層スリット+0.56μm)」として示す。)。なお、「実施形態2(+1.0μm)」、「実施形態2(+0.5μm)」は、図10において上述した「下層スリット+1.0μm((i)=(iii))」、「下層スリット+0.5μm((i)=(iii))」とそれぞれ同様であり、櫛歯電極(i)と下層電極(iii)とを同電位としたうえで、基板主面を平面視したときに下層電極(iii)が櫛歯電極(i)からそれぞれ1.0μm、0.5μm伸ばした形態である。なお、下層電極(iii)と下層電極(v)をそれぞれ一方の櫛歯電極(i)と一方の櫛歯電極(ii)よりも左右に0.2~1μmずつ伸ばした構成が好ましい。
図22は、実施形態4に係る液晶表示パネルの横電界発生時のシミュレーション結果である。図23は、実施形態4に係る液晶表示パネルの縦電界発生時のシミュレーション結果である。図22は、オン状態となって2.0msec後(T=2.8msec)の液晶表示パネルを示す。図23は、オフ状態となって1.5msec後(T=4.8msec)の液晶表示パネルを示す。なお、図22及び図23におけるT(msec)は、図21のグラフの横軸(時間軸)の値を示している。実施形態4では、透過率分布が対称的になっている。
なお、実施形態4におけるその他の構成は、上述した実施形態1の構成と同様である。実施形態4に係る図のその他の参照番号は、百の位に3を付した以外は、実施形態1に係る図に示したものと同様である。
実施形態1~4の液晶表示パネルは、製造が容易で、高速応答化・高透過率化が達成可能なものである。また、フィールドシーケンシャル方式を実施可能な応答速度を実現できる。なお、TFT基板及び対向基板において、SEM(Scanning Electron Microscope:走査型電子顕微鏡)等の顕微鏡観察により、本発明の液晶表示パネル及び液晶表示装置に係る電極構造等を確認することができる。
また上述したTFT駆動方法は、液晶を変化させて初期状態に戻すまでの駆動周期であるサブフレームを含んで駆動する方法であり、サブフレームの周期中に、一対の櫛歯電極の電極間に電位差を生じさせる駆動操作、下層電極と対向電極との間に一対の櫛歯電極の電極間よりも高い電位差を生じさせる駆動操作、並びに、一対の櫛歯電極、下層電極及び対向電極の全電極間に実質的に電位差を生じさせない駆動操作を実行することを含むものであってもよい。これにより上述した本発明の効果を発揮できると共に、液晶分子の配向を好適に制御して黒表示時の透過率を充分に低いものとすることができる。
比較例1(フリンジ電界駆動方式)
図24は、比較例1に係る液晶表示パネルのフリンジ電界発生時の断面模式図である。図25は、図24に示した液晶表示パネルの平面模式図である。図26は、比較例1に係る液晶表示パネルのフリンジ電界発生時のシミュレーション結果である。
比較例1に係る液晶表示パネルは、特許文献1と同様に、FFS駆動によりフリンジ電界を発生させるものである。図26は、ダイレクタD、電界、および透過率分布のシミュレーション結果を示す。なお、比較例1に係る図24、図25の参照番号は、特に明示した場合を除いて、百の位に4を付した以外は、実施形態1に係る図に示したものと同様である。
上述した特許文献1に記載のFFS駆動のディスプレイ(一対の櫛歯電極の代わりにスリット電極を用いたもの)では、下側基板の上層-下層電極間で発生するフリンジ電界で液晶分子を回転させる。上層電極は、スリットを有する電極であり、下層電極は、スリット等を有さない、すべての画素に共通する面状電極である。この場合スリット電極端近傍の液晶分子しか回転しないため、シミュレーションにおける透過率は低く、3.6%となった。上述した実施形態のように透過率を向上させることができなかった(図26参照。)。
比較例2(下層面状電極(オン時(iii)7V))
図27は、比較例2に係る液晶表示パネルの横電界発生時の断面模式図である。図28は、比較例2に係る液晶表示パネルの横電界発生時のシミュレーション結果である。図29は、比較例2に係る液晶表示パネルの縦電界発生時のシミュレーション結果である。
比較例2に係る液晶表示パネルは、上述した実施形態と同様に、一対の櫛歯電極により横電界を発生させるものである。図26は、ダイレクタD、電界、および透過率分布のシミュレーション結果(セル厚5.0μm、スリット間隔3.0μm)を示す。なお、比較例1に係る図24、図25の参照番号は、特に明示した場合を除いて、百の位に5を付した以外は、実施形態1に係る図に示したものと同様である。
3層電極構造において、下層電極をスリットを有さない面状電極とした場合、オン時に、対向電極や下層電極に印加される電圧が、上層電極(櫛歯電極)で作り出す横電界を妨げてしまうため、充分な透過率が得られない(透過率シミュレーション結果:12.2%)。すなわち、下層電極がスリットを有さず、面状であると、オン時に、横電界が下層電極によって下に引かれてその分透過率が低下する。また、上記原因により、オン時の応答速度も遅くなってしまう。
(その他の好適な実施形態)
本発明の各実施形態においては、酸化物半導体TFT(IGZO等)が好適に用いられる。この酸化物半導体TFTについて、以下に詳細に説明する。
上記第1基板及び第2基板の少なくとも一方は、通常は薄膜トランジスタ素子を備える。上記薄膜トランジスタ素子は、酸化物半導体を含むことが好ましい。すなわち、薄膜トランジスタ素子においては、シリコン半導体膜の代わりに、酸化亜鉛等の酸化物半導体膜を用いてアクティブ駆動素子(TFT)の活性層を形成することが好ましい。このようなTFTを「酸化物半導体TFT」と称する。 酸化物半導体は、アモルファスシリコンよりも高いキャリア移動度を示し、特性バラつきも小さいという特徴を有している。このため、酸化物半導体TFTは、アモルファスシリコンTFTよりも高速で動作でき、駆動周波数が高く、より高精細である次世代表示装置の駆動に好適である。また、酸化物半導体膜は、多結晶シリコン膜よりも簡便なプロセスで形成されるため、大面積が必要とされる装置にも適用できるという利点を奏する。
本実施形態の液晶駆動方法を、特にFSD(フィールドシーケンシャル表示装置)で使用する場合に、以下の特徴が顕著なものとなる。 
(1)画素容量が通常のVA(垂直配向)モードよりも大きい(図30は、本実施形態の液晶駆動方法に用いられる液晶表示装置の一例を示す断面模式図であるところ、図30中、矢印で示される箇所において、上層電極と下層電極との間に大きな容量が発生するため、画素容量が通常の垂直配向〔VA:Vertical Alignment〕モードの液晶表示装置より大きい。)。(2)RGBの3画素が1画素になるため、1画素の容量が3倍である。(3)更に、240Hz以上の駆動が必要のためゲートオン時間が非常に短い。
更に、酸化物半導体TFT(IGZO等)を適用した場合のメリットは、以下の通りである。
上記(1)と(2)の理由より、52型で画素容量がUV2Aの240Hz駆動の機種の約20倍ある。
故に、従来のa-Siでトランジスタを作製するとトランジスタが約20倍以上大きくなり、開口率が充分にとれない課題があった。
IGZOの移動度はa-Siの約10倍であるため、トランジスタの大きさが約1/10になる。
カラーフィルタRGBを用いる液晶表示装置にあった3つのトランジスタが1つになっているので、a-Siとほぼ同等か小さいくらいで作製可能である。
上記のようにトランジスタが小さくなると、Cgdの容量も小さくなるので、その分ソースバスラインに対する負担も小さくなる。
〔具体例〕
酸化物半導体TFTの構成図(例示)を、図31、図32に示す。図31は、本実施形態に用いられるアクティブ駆動素子周辺の平面模式図である。図32は、本実施形態に用いられるアクティブ駆動素子周辺の断面模式図である。なお、符号Tは、ゲート・ソース端子を示す。符号Csは、補助容量を示す。
酸化物半導体TFTの作製工程の一例(当該部)を、以下に説明する。 
酸化物半導体膜を用いたアクティブ駆動素子(TFT)の活性層酸化物半導体層905a、905bは、以下のようにして形成できる。
まず、スパッタリング法を用いて、例えば厚さが30nm以上、300nm以下のIn-Ga-Zn-O系半導体(IGZO)膜を絶縁膜913iの上に形成する。この後、フォトリソグラフィにより、IGZO膜の所定の領域を覆うレジストマスクを形成する。次いで、IGZO膜のうちレジストマスクで覆われていない部分をウェットエッチングにより除去する。この後、レジストマスクを剥離する。このようにして、島状の酸化物半導体層905a、905bを得る。なお、IGZO膜の代わりに、他の酸化物半導体膜を用いて酸化物半導体層905a、905bを形成してもよい。
次いで、基板911gの表面全体に絶縁膜907を堆積させた後、絶縁膜907をパターニングする。
具体的には、まず、絶縁膜913i及び酸化物半導体層905a、905bの上に、絶縁膜907として例えばSiO膜(厚さ:例えば約150nm)をCVD法によって形成する。
絶縁膜907は、SiOy等の酸化物膜を含むことが好ましい。
酸化物膜を用いると、酸化物半導体層905a、905bに酸素欠損が生じた場合に、酸化物膜に含まれる酸素によって酸素欠損を回復することが可能となるので、酸化物半導体層905a、905bの酸化欠損をより効果的に低減できる。ここでは、絶縁膜907としてSiO膜からなる単層を用いているが、絶縁膜907は、SiO膜を下層とし、SiNx膜を上層とする積層構造を有していてもよい。
絶縁膜907の厚さ(積層構造を有する場合には各層の合計厚さ)は、50nm以上、200nm以下であることが好ましい。50nm以上であれば、ソース・ドレイン電極のパターニング工程等において、酸化物半導体層905a、905bの表面をより確実に保護できる。一方、200nmを超えると、ソース電極やドレイン電極により大きい段差が生じるので、断線等を引き起こすおそれがある。
また本実施形態における酸化物半導体層905a、905bは、例えばZn-O系半導体(ZnO)、In-Ga-Zn-O系半導体(IGZO)、In-Zn-O系半導体(IZO)、又は、Zn-Ti-O系半導体(ZTO)等からなる層であることが好ましい。中でも、In-Ga-Zn-O系半導体(IGZO)がより好ましい。
なお、本モードは上記の酸化物半導体TFTとの組合せで一定の作用効果を奏するが、アモルファスSiTFTや多結晶SiTFT等公知のTFT素子を用いて駆動させることも可能である。
上述した実施形態における各形態は、本発明の要旨を逸脱しない範囲において適宜組み合わされてもよい。
なお、本願は、2011年6月27日に出願された日本国特許出願2011-142350号を基礎として、パリ条約ないし移行する国における法規に基づく優先権を主張するものである。該出願の内容は、その全体が本願中に参照として組み込まれている。
10、110、210、310:410、510:アレイ基板
11、21、111、221、311、321、411、421、511、521:ガラス基板
13、113、213、313、413、513:下層電極
23、123、223、323、423、523:対向電極
15、115、215、315、415、515:絶縁層
16、116、216、316、516:一対の櫛歯電極
17、19、117、119、217、219、317、319、517、519:櫛歯電極
20 、120、220、320、420、520:対向基板
30、130、230、330、430、530:液晶層
31:液晶(液晶分子)
417:スリット電極
D:ダイレクタ

Claims (13)

  1. 第1基板、第2基板、及び、両基板に挟持された液晶層を備える液晶表示パネルであって、
    該第1基板及び該第2基板は、電極を有し、
    該第2基板の電極は、一対の櫛歯電極、及び、スリットを有する電極を含む
    ことを特徴とする液晶表示パネル。
  2. 前記スリットを有する電極は、基板主面を平面視したときに、前記一対の櫛歯電極の少なくとも一方と重畳する
    ことを特徴とする請求項1に記載の液晶表示パネル。
  3. 前記一対の櫛歯電極の少なくとも一方は、前記スリットを有する電極と電気的に接続されている
    ことを特徴とする請求項2に記載の液晶表示パネル。
  4. 前記スリットを有する電極は、基板主面を平面視したときに、前記一対の櫛歯電極と重畳しない
    ことを特徴とする請求項1に記載の液晶表示パネル。
  5. 前記スリットを有する電極は、基板主面を平面視したときに、前記一対の櫛歯電極の両方と重畳する
    ことを特徴とする請求項2~4のいずれかに記載の液晶表示パネル。
  6. 前記スリットを有する電極のエッジの少なくとも一部は、基板主面を平面視したときに、前記一対の櫛歯電極と重畳していない
    ことを特徴とする請求項1~5のいずれかに記載の液晶表示パネル。
  7. 前記一対の櫛歯電極における櫛歯部分と櫛歯部分との間の幅をS(μm)とすると、
    前記スリットを有する電極のエッジの少なくとも一部は、基板主面を平面視したときに、前記一対の櫛歯電極から0.5μm以上、0.7Sμm以下離れている
    ことを特徴とする請求項6に記載の液晶表示パネル。
  8. 前記スリットを有する電極は、前記一対の櫛歯電極とは異なる層に設けられる
    ことを特徴とする請求項1~7のいずれかに記載の液晶表示パネル。
  9. 前記液晶層は、閾値電圧未満で基板主面に対して垂直方向に配向する液晶分子を含む
    ことを特徴とする請求項1~8のいずれかに記載の液晶表示パネル。
  10. 前記第1基板の電極は、面状電極である
    ことを特徴とする請求項1~9のいずれかに記載の液晶表示パネル。
  11. 前記液晶層は、正の誘電率異方性を有する液晶分子を含む
    ことを特徴とする請求項1~10のいずれかに記載の液晶表示パネル。
  12. 前記第1基板及び第2基板の少なくとも一方は、薄膜トランジスタ素子を備え、
    該薄膜トランジスタ素子は、酸化物半導体を含む
    ことを特徴とする請求項1~11のいずれかに記載の液晶表示パネル。
  13. 請求項1~12のいずれかに記載の液晶表示パネルを備える
    ことを特徴とする液晶表示装置。
PCT/JP2012/064216 2011-06-27 2012-05-31 液晶表示パネル及び液晶表示装置 WO2013001980A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280031670.9A CN103620489B (zh) 2011-06-27 2012-05-31 液晶显示面板和液晶显示装置
JP2013522550A JP5654677B2 (ja) 2011-06-27 2012-05-31 液晶表示パネル及び液晶表示装置
US14/126,455 US9372371B2 (en) 2011-06-27 2012-05-31 Liquid crystal display panel, and liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011142350 2011-06-27
JP2011-142350 2011-06-27

Publications (1)

Publication Number Publication Date
WO2013001980A1 true WO2013001980A1 (ja) 2013-01-03

Family

ID=47423880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/064216 WO2013001980A1 (ja) 2011-06-27 2012-05-31 液晶表示パネル及び液晶表示装置

Country Status (4)

Country Link
US (1) US9372371B2 (ja)
JP (1) JP5654677B2 (ja)
CN (1) CN103620489B (ja)
WO (1) WO2013001980A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136586A1 (ja) 2013-03-07 2014-09-12 シャープ株式会社 液晶表示装置
WO2015012092A1 (ja) * 2013-07-24 2015-01-29 シャープ株式会社 液晶表示装置
WO2016006506A1 (ja) * 2014-07-08 2016-01-14 シャープ株式会社 液晶表示装置
US20170103716A1 (en) * 2014-06-13 2017-04-13 Sharp Kabushiki Kaisha Display device

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101602091B1 (ko) 2012-05-10 2016-03-09 샤프 가부시키가이샤 액정 구동 방법 및 액정 표시 장치
US9552785B2 (en) * 2012-12-19 2017-01-24 Sharp Kabushiki Kaisha Liquid crystal display device
CN103176317B (zh) * 2013-04-07 2016-02-10 合肥京东方光电科技有限公司 液晶像素电极结构、阵列基板及显示装置
WO2015133041A1 (ja) * 2014-03-05 2015-09-11 三菱電機株式会社 表示パネル、表示装置、及び液晶パネルの製造方法
US9904126B2 (en) * 2014-07-24 2018-02-27 Sharp Kabushiki Kaisha Liquid crystal display device
WO2016190211A1 (ja) * 2015-05-22 2016-12-01 シャープ株式会社 液晶表示装置
US10372009B2 (en) * 2015-08-11 2019-08-06 Sharp Kabushiki Kaisha Optical device
JP6504990B2 (ja) 2015-10-22 2019-04-24 株式会社ジャパンディスプレイ 液晶表示装置
CN105446014B (zh) * 2015-12-24 2019-05-14 昆山龙腾光电有限公司 可实现视角切换的液晶显示装置
CN109283754A (zh) * 2017-07-21 2019-01-29 京东方科技集团股份有限公司 一种像素结构、阵列基板及液晶显示装置
JP2019101095A (ja) * 2017-11-29 2019-06-24 シャープ株式会社 液晶パネル
US10330991B1 (en) * 2018-05-31 2019-06-25 a.u. Vista Inc. Liquid crystal display devices with electrode stacks and methods for manufacturing such devices
CN113631997B (zh) * 2020-01-13 2024-04-09 京东方科技集团股份有限公司 液晶面板及显示装置
CN112904630A (zh) * 2021-02-22 2021-06-04 Tcl华星光电技术有限公司 显示面板及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365657A (ja) * 2001-06-07 2002-12-18 Seiko Epson Corp 液晶装置、投射型表示装置および電子機器
JP2009186869A (ja) * 2008-02-08 2009-08-20 Epson Imaging Devices Corp 液晶表示装置
WO2011024495A1 (ja) * 2009-08-24 2011-03-03 シャープ株式会社 液晶表示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7995181B2 (en) 2002-08-26 2011-08-09 University Of Central Florida Research Foundation, Inc. High speed and wide viewing angle liquid crystal displays
JP2005316027A (ja) * 2004-04-28 2005-11-10 Stanley Electric Co Ltd 液晶表示素子及びその製造方法
US7847904B2 (en) * 2006-06-02 2010-12-07 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and electronic appliance
JP4421639B2 (ja) * 2007-08-03 2010-02-24 株式会社 日立ディスプレイズ 液晶表示装置
WO2011001742A1 (ja) * 2009-07-03 2011-01-06 シャープ株式会社 液晶表示装置
CN102213854B (zh) * 2010-04-09 2015-08-05 株式会社半导体能源研究所 液晶显示装置及电子设备
JP6132281B2 (ja) * 2013-01-07 2017-05-24 Nltテクノロジー株式会社 液晶レンズ素子及び表示装置並びに端末機
CN103926751A (zh) * 2013-01-14 2014-07-16 瀚宇彩晶股份有限公司 立体显示装置及其显示方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002365657A (ja) * 2001-06-07 2002-12-18 Seiko Epson Corp 液晶装置、投射型表示装置および電子機器
JP2009186869A (ja) * 2008-02-08 2009-08-20 Epson Imaging Devices Corp 液晶表示装置
WO2011024495A1 (ja) * 2009-08-24 2011-03-03 シャープ株式会社 液晶表示装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014136586A1 (ja) 2013-03-07 2014-09-12 シャープ株式会社 液晶表示装置
WO2015012092A1 (ja) * 2013-07-24 2015-01-29 シャープ株式会社 液晶表示装置
US9841643B2 (en) 2013-07-24 2017-12-12 Sharp Kabushiki Kaisha Liquid crystal display apparatus
US20170103716A1 (en) * 2014-06-13 2017-04-13 Sharp Kabushiki Kaisha Display device
US10192493B2 (en) * 2014-06-13 2019-01-29 Sharp Kabushiki Kaisha Display device
WO2016006506A1 (ja) * 2014-07-08 2016-01-14 シャープ株式会社 液晶表示装置

Also Published As

Publication number Publication date
US9372371B2 (en) 2016-06-21
US20140132906A1 (en) 2014-05-15
CN103620489A (zh) 2014-03-05
CN103620489B (zh) 2016-04-06
JP5654677B2 (ja) 2015-01-14
JPWO2013001980A1 (ja) 2015-02-23

Similar Documents

Publication Publication Date Title
JP5654677B2 (ja) 液晶表示パネル及び液晶表示装置
JP5643422B2 (ja) 液晶表示装置
JP5764665B2 (ja) 薄膜トランジスタアレイ基板及び液晶表示装置
WO2013161636A1 (ja) 液晶表示パネル、液晶表示装置及び薄膜トランジスタアレイ基板
WO2013001984A1 (ja) 液晶表示パネル及び液晶表示装置
WO2014103911A1 (ja) 液晶ディスプレイ
JP5728587B2 (ja) 液晶駆動方法及び液晶表示装置
US10197870B2 (en) Array substrate and display device
US20180217426A1 (en) Pixel structure and manufacturing method thereof
WO2013001983A1 (ja) 液晶表示パネル及び液晶表示装置
US9984649B2 (en) Array substrate, driving method thereof and display device
JP5898307B2 (ja) 液晶駆動方法及び液晶表示装置
US9195100B2 (en) Array substrate, liquid crystal panel and display device with pixel electrode and common electrode whose projections are overlapped
WO2013058157A1 (ja) 液晶表示パネル及び液晶表示装置
KR20110041139A (ko) 액정표시장치 및 그 제조방법
KR101101007B1 (ko) 액정표시장치
KR101624826B1 (ko) 액정 구동 방법 및 액정 표시 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280031670.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12804390

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013522550

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14126455

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12804390

Country of ref document: EP

Kind code of ref document: A1