WO2012173177A1 - エンジンの制御装置 - Google Patents

エンジンの制御装置 Download PDF

Info

Publication number
WO2012173177A1
WO2012173177A1 PCT/JP2012/065208 JP2012065208W WO2012173177A1 WO 2012173177 A1 WO2012173177 A1 WO 2012173177A1 JP 2012065208 W JP2012065208 W JP 2012065208W WO 2012173177 A1 WO2012173177 A1 WO 2012173177A1
Authority
WO
WIPO (PCT)
Prior art keywords
learning
engine
operation state
opening degree
stable operation
Prior art date
Application number
PCT/JP2012/065208
Other languages
English (en)
French (fr)
Inventor
小室 敦
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to DE112012002535.0T priority Critical patent/DE112012002535T5/de
Priority to US14/126,139 priority patent/US20140121947A1/en
Priority to CN201280029818.5A priority patent/CN103608573B/zh
Publication of WO2012173177A1 publication Critical patent/WO2012173177A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D28/00Programme-control of engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/18Circuit arrangements for generating control signals by measuring intake air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2438Active learning methods
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0814Circuits or control means specially adapted for starting of engines comprising means for controlling automatic idle-start-stop
    • F02N11/0818Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode
    • F02N11/0829Conditions for starting or stopping the engine or for deactivating the idle-start-stop mode related to special engine control, e.g. giving priority to engine warming-up or learning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0404Throttle position
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for an engine, and in particular, an opening degree of a throttle valve of an engine adapted to perform an idle stop for temporarily stopping the engine when an operating condition of the engine and its mounted vehicle satisfies a predetermined condition.
  • the present invention relates to a control device adapted to learn a change in engine characteristics such as a relationship between an intake air amount and an intake air amount (hereinafter referred to as an opening degree-air amount characteristic).
  • the engine is temporarily stopped when the condition of the engine and its mounted vehicle such as a signal waiting condition satisfies a predetermined condition.
  • a technique of performing idle stop and then restarting it when the driver's accelerator operation is performed is performed.
  • the driver request driving force is less than a predetermined value while traveling, and the power generation operation for battery charging is not necessary.
  • a predetermined value for example, when the motor generated torque is equal to or higher
  • battery charging is required. It is also known to apply torque to an engine output shaft (crankshaft) to restart the engine.
  • idle speed control in which feedback control is performed such that the engine speed converges to the target engine speed. Since the operating state is stable during execution of the idle speed control, various learnings are performed to absorb individual differences among engines and deterioration over time (for example, see Patent Document 1 below).
  • One of the learning methods is learning of the relationship (characteristic) between the opening degree of the electronically controlled throttle valve (hereinafter referred to as the throttle opening degree) and the intake air amount.
  • the relationship between the throttle opening and the intake air amount (the opening degree-air amount characteristic) obtained in advance by experiments etc. is stored in the form of a table or a map, for example, and during engine operation, the target intake air amount is set based on the accelerator operation amount etc. and the amount of air actually inhaled (detected by the air flow sensor
  • the throttle opening degree required at that time is calculated on the basis of the stored opening degree-air quantity characteristic so that the intake air amount becomes the target intake air amount, and the calculated throttle opening degree is obtained.
  • the (valve element) of the throttle valve is rotated by an actuator such as a motor.
  • the opening degree-air amount characteristics differ or change due to individual differences of the engine including the electronically controlled throttle valve, deterioration with time, etc.
  • the intake air amount and the target intake air amount detected by the air flow sensor during idle operation Using feedback control to increase or decrease the throttle opening, etc., learn the change (shift) of the opening-air quantity characteristic, and use the characteristic change (learned value) obtained by the learning.
  • the stored opening degree-air amount characteristic is corrected.
  • the opening degree-air quantity characteristic changes (generally due to adhesion of gum foreign matter etc. (hereinafter referred to as a depot) to the throttle valve portion in the intake passage due to blow-by gas mixing etc. Since the intake air amount decreases with respect to the throttle opening, it is necessary to periodically perform learning of the characteristic change to correct the opening-air amount characteristic.
  • the throttle opening degree and the intake air amount are used as the opening degree-air amount characteristic.
  • the throttle opening degree and the effective passage sectional area of the throttle valve portion in the intake passage are used.
  • the relationship with hereinafter referred to as the throttle opening area
  • Patent Document 1 proposes that learning be performed in a non-idle driving state.
  • the engine is controlled to maintain a fuel efficiency optimum line, so that a stable driving condition exists even in a non-idle driving condition.
  • Patent Document 1 there is no mention of the stable operation state. Therefore, learning accuracy may be lowered by learning even in a transient state during non-idle operation.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to perform an idle stop for temporarily stopping the engine when the condition of the engine and the vehicle equipped with the engine satisfies a predetermined condition.
  • an object of the present invention is to perform an idle stop for temporarily stopping the engine when the condition of the engine and the vehicle equipped with the engine satisfies a predetermined condition.
  • learning changes in engine characteristics such as the relationship between the throttle opening degree and the intake air amount (opening degree-air amount characteristic)
  • a control device of an engine learns characteristic variation of engine characteristics such as throttle opening-air amount characteristics and corrects the previous characteristics;
  • a stable operation state determination means for determining whether or not the vehicle is in a stable operation state, and a learning necessity determination means for determining the necessity of the learning when it is determined by the means that the stable operation state is established;
  • the system is configured to include a learning transition means for shifting to a stable operation state such as an idle operation state and causing the learning means to execute the learning.
  • learning necessity determination means is provided to determine necessity of learning even in a hybrid vehicle having almost no idle operation state by performing necessity determination of learning in a stable operation state during non-idle operation. It becomes possible.
  • FIG. 2 is a view showing a configuration around an ECU that constitutes a main part of a control device of an engine according to the present invention.
  • FIG. 8 is a block diagram provided for explaining an example of calculation of a target throttle opening degree.
  • FIG. 6 is a correlation diagram showing an example of a relationship between target torque-throttle opening area (intake air amount) -throttle opening degree.
  • 5 is a flowchart showing an example of a processing procedure when making a learning necessity determination or the like for a change in opening degree-air amount characteristics according to the first embodiment of the present invention.
  • FIG. 1 is a flowchart showing an example of a processing procedure when making a learning necessity determination or the like for a change in opening degree-air amount characteristics according to the first embodiment of the present invention.
  • FIG. 7 is a flowchart showing a detailed processing procedure example of the deviation amount calculation of S106 of FIG. 5;
  • FIG. FIG. 8 is a diagram provided for explaining the necessity of learning of the change in the opening degree-air amount characteristic.
  • 7 is a time chart showing behavior / change of each part before and after learning necessity determination and learning correction corresponding to a change in opening degree-air amount characteristics.
  • FIG. 7 is a flowchart showing an example of a processing procedure when making a learning necessity determination or the like for the change of the opening degree-air amount characteristic of the second embodiment of the present invention;
  • FIG. It is the graph which showed the frequency with which learning necessity judgment was performed for every throttle opening.
  • FIG. 1 is a schematic block diagram showing one embodiment of a control device for an engine according to the present invention, together with a hybrid vehicle engine to which it is applied.
  • the illustrated engine 1 is a DOHC multi-cylinder four-stroke engine and includes a cylinder 2 consisting of a cylinder head 2A and a cylinder block 2B.
  • the cylinder head 2A includes a camshaft 31 for the intake valve 32, and an exhaust valve.
  • a camshaft 33 for 34 is disposed, a piston 5 is slidably fitted in the cylinder block 2B, and a combustion working chamber 3 having a combustion chamber (ceiling or roof portion) of a predetermined shape above the piston 5
  • an ignition plug 22 connected to an ignition unit 23 composed of an ignition coil and the like is provided.
  • the air used for fuel combustion is a throttle body (tubular passage portion) 12, a collector 14, and an intake manifold (various manifolds provided with a hot wire air flow sensor 43 and an electrically controlled throttle valve 13 from the air cleaner 11).
  • the air is taken into the combustion working chamber 3 of each cylinder through the intake passage 4 including the pipe 15 and the intake port 16 and the like via the intake valve 32 disposed at the downstream end (the end of the intake port 16).
  • a fuel injection valve 21 for injecting fuel toward the intake port 16 is provided for each cylinder, and an intake pressure sensor 44 is disposed.
  • the throttle body 12 is attached to a throttle (opening degree) sensor 42 which detects the opening degree of the electronically controlled throttle valve 13.
  • crank pulley 36 is attached and fixed to one end of the crankshaft 7, and an intake cam pulley 37 is externally fitted and fixed to one end of an intake camshaft 31 for opening and closing the intake valve 32.
  • An exhaust cam pulley 38 is externally fitted and fixed to one end of the exhaust camshaft 33.
  • a tooth is provided on the outer peripheral portion of each pulley 36, 37, 38, and a timing belt (not shown) is wound around each pulley 36, 37, 38, and the rotation of the crankshaft 7 is intake It is transmitted to the cam shaft 31 and the exhaust cam shaft 33.
  • the rotational speed ratio of the crank cam pulley 36 to the intake cam pulley 37 and the exhaust cam pulley 38 is 1: 2.
  • a mixture of air drawn into the combustion working chamber 3 and fuel injected from the fuel injection valve 21 is burned by spark ignition by the spark plug 22, and the combustion waste gas (exhaust gas) is burned in the combustion working chamber 3.
  • the exhaust gas is discharged to the outside (in the atmosphere) through an exhaust passage 6 including an exhaust port, an exhaust manifold, and an exhaust pipe provided with an exhaust purification catalyst (for example, a three-way catalyst) 48 through an exhaust valve 34.
  • An oxygen concentration sensor (air-fuel ratio sensor) 47 is disposed upstream of the catalyst 48 in the exhaust passage 6.
  • the fuel injection valve 21 provided for each cylinder has a fuel supply mechanism provided with a fuel pump, a fuel pressure regulator, etc., with a fuel (gasoline etc.) in the fuel tank rotationally driven by the crankshaft 7 to a predetermined fuel pressure
  • the fuel injection valve 21 is supplied from an engine control unit (hereinafter referred to as an ECU) 8 which constitutes a main part of the engine control system of this embodiment.
  • the valve is driven to open by a drive pulse signal having a corresponding pulse width (corresponding to the valve opening time), and fuel of an amount corresponding to the valve opening time is injected toward the intake port 16.
  • the engine 1 outputs an angle signal representing the rotational position of the crankshaft 7 by detecting the rotational angle of the coolant temperature sensor 41 for detecting the engine coolant temperature, the crankshaft 7 (toothed disc fixed to the crankshaft 7) Crank angle sensor 45, and a cam angle sensor that detects the rotation angle of the cam shaft 31 (the toothed disc 35 fixed to the cam shaft 31 driving the intake valve 32) and outputs an angle signal representing the rotation position of the cam shaft 31 46 and the like are provided, and signals obtained therefrom are also supplied to the ECU 8.
  • the hardware itself of the ECU 8 of this embodiment is well known, and as shown in FIG. 2, the main part of the ECU 8 includes an MPU 8a, an EP-ROM 8b, a RAM 8c, and an A / D converter. It is composed of the LSI for O 8d.
  • crank angle sensor 45 cam angle sensor 46
  • water temperature sensor 41 throttle sensor 42
  • air flow sensor 43 air flow sensor 43
  • intake pipe pressure sensor 44 air-fuel ratio sensor 47 on the input side of I / O LSI 8d Signals are supplied.
  • the hybrid vehicle to which the engine control device 8 of the present embodiment is applied has an integrated control unit (hereinafter referred to as TCU) 9 incorporating a microcomputer separately from the ECU 8 and the TCU 9 to the ECU 8
  • TCU integrated control unit
  • Data transmission / reception is performed by inter-unit communication such as CAN communication, such as a target torque request to be realized, an idle stop request for temporarily stopping the engine, and an idle stop prohibition request for inhibiting the idle stop.
  • the ECU 8 executes predetermined arithmetic processing based on these input signals and inter-unit communication signals, and outputs various control signals calculated as a result of this arithmetic operation from the I / O LSI 8 d to control the throttle as an actuator.
  • a predetermined control signal is supplied to the valve 13, the fuel injection valve 21, the ignition coil 23, and the like to execute throttle opening control, fuel injection control, ignition timing control, and the like.
  • the target torque (1) is calculated based on the required torque from the TCU 9 including the required torque by the driver's accelerator operation and the externally required torque.
  • a throttle opening area (corresponding to the amount of intake air) (2) is calculated as the required driving force required uniquely determined from the calculated target torque (1) according to the engine characteristics.
  • the ISC control air amount is calculated from the target rotation speed and the actual engine rotation speed, and the ISC equivalent opening area (3) is calculated similarly to the torque request amount. Calculate The calculated driving force required opening area (2) and the ISC equivalent opening area (3) are added to obtain the throttle opening area (4) required for the current operating condition.
  • the throttle opening area (4) corresponds to the amount of intake air required for the current operating condition.
  • the throttle opening degree-throttle opening area characteristic (the throttle opening area described above is stored in advance in the storage device (EP-ROM 8b).
  • the final target throttle opening degree (5) is obtained by reading out the throttle opening degree corresponding to the target throttle opening area (4) from the map that represents the opening degree-air amount characteristic) And control is made to turn the throttle valve (the valve element) 13 so as to obtain the calculated opening degree (5).
  • the actual opening-air amount characteristic is the initial opening-air due to the secular change such as deposition on the depot. If the change is large, this means that the amount of intake air is insufficient or excessive at the throttle opening obtained using the initial opening-air amount characteristic. In other words, for example, when the deposit adhesion occurs, the throttle opening area is narrowed, and in order to obtain the target intake air amount set according to the accelerator operation amount or the like, it is necessary to further increase the throttle opening degree.
  • the target torque to be realized by the engine is calculated by the integrated control device, and therefore, in calculating the target torque (1), the target torque request from the integrated control device is used instead of the accelerator opening. Is used.
  • the stable operation state is in non-idle operation, and in the case of the stable operation state, it is determined whether or not learning is necessary.
  • an idle operation state for learning is created, and an opening representing the relationship between the opening degree of the throttle valve 13 stored in the characteristic storage means (EP-ROM 8b) of the ECU 8 and the intake air amount is opened.
  • Degree-The characteristic change of the air amount characteristic is learned to correct the previous characteristic stored in the characteristic storage means, and the ECU 8 is updated with the latest opening degree stored in the characteristic storage means
  • the throttle valve 13 is controlled using an air quantity characteristic.
  • step S102 it is determined in step S102 (hereinafter, step is omitted) whether or not the stable operation state is established.
  • the throttle opening degree is constant (presence or absence of opening degree change) whether or not the stable operation state is established. If the throttle opening is constant, even if there is a slight air phase delay, it will basically be in a steady state.
  • Other conditions may be added, such as a change in engine rotational speed within a predetermined value, a change in intake air amount within a predetermined value, and a change in intake pressure within a predetermined value.
  • the above-mentioned conditions are satisfied as well as warm-up operation and power generation operation, it is possible to be included in the stable operation state. That is, in the non-idle operation, when at least one of the opening degree of the throttle valve, the engine speed, and the actual intake air amount is continuously within the predetermined range for a predetermined time or more, the stable operation state is assumed. judge.
  • the process returns to the original state and waits for the stable operation state.
  • the process proceeds to S104, and it is determined whether the throttle opening degree is equal to or less than a predetermined value.
  • a predetermined value In general, the influence of the change in the opening-air amount characteristic due to the deposition of the deposit is manifested at a low throttle opening, and hardly affected at a high throttle opening. Therefore, the following processing is executed only when the throttle opening degree is small.
  • the threshold value used for the determination of S104 is obtained in advance from the opening degree of the frequency which can be taken by the hybrid vehicle and the opening degree at which the influence of the change of the opening-air amount characteristic becomes apparent.
  • the process proceeds to S106, and a change in the opening degree-air amount characteristic is obtained.
  • the difference between the air amount and the air amount characteristic change is the difference between the opening area obtained from the throttle opening detected by the throttle sensor 42 and the opening area obtained from the air amount detected by the air flow sensor 43. Calculated as a quantity. The details will be described later with reference to FIG.
  • the process proceeds to S110, and the learning start counter is incremented by one. If it is within the predetermined value, it is returned to the original state that there is no change in the opening-air amount characteristic. When returning to the original state, the learning start counter may be cleared to count up only when the air amount deviation amount continues to be equal to or more than the predetermined value.
  • a predetermined value threshold value
  • the learning start counter (the cumulative number of times the deviation amount exceeds the threshold) is equal to or greater than a predetermined value. Since the magnitude of the deviation amount is determined in the non-idle operation state, a change in the opening degree-air amount characteristic is detected a plurality of times in order to prevent an erroneous determination.
  • the process proceeds to S114, and an idle stop prohibition request is transmitted to the TCU 9.
  • the TCU 9 in consideration of the state of the motor and the engine, when there is no engine torque request, the transition to the idle operation state is made.
  • ISC idle speed control
  • S116 in this idle operation state, so-called idle speed control (ISC) is performed in S116 to obtain a change (learned value) of the opening degree-air amount characteristic, and the memory is stored using the characteristic change (learned value).
  • a learning correction is performed to correct the opening degree-air amount characteristic (this learning correction itself is well known in the art, so a detailed description will be omitted).
  • the process proceeds to S118, where the learning start counter is cleared and, at S120, the TCU 9 is sent to cancel the idle stop prohibition request and the engine is stopped (IG switch OFF).
  • the present air amount deviation amount calculation is a method of converting the air amount into the dimension of the opening area information, it may be converted into the dimension of the throttle opening degree information and the dimension of the air amount information.
  • the corrected throttle opening degree TPO1QL is calculated by subtracting the learning value TVOFQL (initial value is 0) corresponding to the previous characteristic change from the throttle opening degree TPO1 detected by the throttle sensor 42. That is, the throttle opening in a state where learning is not performed is used as a reference.
  • the corrected throttle opening degree TPO1QL is converted into a throttle opening equivalent opening area ATPO1 using a table of opening degree-area conversion.
  • the mass flow rate TP detected by the air flow sensor 43 is read.
  • the volumetric flow ratio TPQH0 in the reference state is calculated by multiplying the mass flow TP by the mass flow in the standard state (standard state) ⁇ volumetric flow conversion coefficient TPQH.
  • an opening area / suction volume equivalent ADNVQL is calculated from the volume flow ratio TPQH0 from the volume flow ratio-opening area / suction volume equivalent conversion table.
  • the volumetric flow ratio-area / suction volume equivalent conversion table where the throttle opening area is small, the flow becomes sonic flow and the volumetric flow rate increases proportionally to the increase of the opening area, but the opening area increases. Becomes closer to saturation.
  • the TP equivalent opening area TPA is calculated by multiplying the opening area / suction volume equivalent ADNVQL by the engine displacement VOL and the engine rotational speed NE.
  • ⁇ QAA When there is no change in the opening-air quantity characteristic, ⁇ QAA becomes substantially zero, but as the change in the opening-air quantity characteristic becomes larger, the value of ⁇ QAA becomes larger. That is, when the value of ⁇ QAA is large, it can be considered that the opening-air amount characteristic has largely changed.
  • the opening area deviation amount ⁇ QAA is equal to or more than a predetermined value, it can be determined that the opening degree-air amount characteristic has largely changed, but in the present embodiment, as the stable operation state, the throttle opening degree becomes constant and the main opening area Since the deviation amount calculation is started, immediately after the throttle opening degree becomes constant and the stable operation state is attained, it takes time until the air amount becomes constant due to the phase delay of the intake system. During this time, the opening area deviation amount fluctuates and exceeds the threshold value because it is affected by the intake system in the pre-operation state, and there is a risk of erroneous determination even when the opening degree-air quantity characteristic does not change so much. is there. On the other hand, when the calculation is started after the air amount becomes constant, it takes time to determine the characteristic change.
  • the hybrid vehicle maintains the optimum fuel efficiency line, it is in a non-idle operation state, so the stable operation state may be short, and it is necessary to detect an opening-air amount characteristic change early. Therefore, the threshold for determination immediately after the transition to the stable operation state is increased, and the threshold is reduced with the passage of time, thereby making both early determination of characteristic change presence / absence (necessity of learning necessary) and false determination avoidance compatible. In order to prevent further erroneous determination, it is determined that the opening degree-air amount characteristic change is made only when the opening degree-air amount characteristic change is detected a plurality of times as in S108 to S112 of FIG. 5 There is.
  • the solid line indicates ⁇ QAA when there is no change in the opening-air amount characteristic
  • the one-dot chain line indicates ⁇ QAA when there is a change in ETC characteristic.
  • the broken line shows the threshold for determining the presence or absence of the opening-air quantity characteristic change, and if ⁇ QAA exists in the broken line, it indicates that there is no opening-air quantity characteristic change. As described above, this threshold is set to decrease with time.
  • the throttle opening degree becomes constant, the stable operation state is entered, and the opening area deviation amount calculation is started.
  • the opening-air amount characteristic As shown by the solid line, ⁇ QAA swings greatly immediately after transition to the stable operation state, but since the threshold is set large at this time, erroneous determination does not occur.
  • the final determination of the opening degree-air amount characteristic change (determination of necessity of learning necessity) is performed at time T2 when it deviates from the stable operation state.
  • the degree of opening-the amount of air according to the duration of the stable operation state Weighting of characteristic change detection may be performed.
  • the increase amount of the learning start counter in S110 of FIG. 5 may be set to be larger than 1 as the duration of the stable operation state is longer.
  • the threshold value for determining the opening degree-air quantity characteristic change presence / absence is set as one point constant for simplicity (described in the time chart of ⁇ QAA).
  • the opening area deviation amount ⁇ QAA is larger than the opening / air amount characteristic change presence / absence (learning necessity) determination threshold, that is, it is judged that there is a change in the opening / air amount characteristic. Increment.
  • the opening degree-air quantity characteristic change determination is executed in the stable operation state (time T3 to T4 and time T5 to T6) in the non-idle operation state, and at time T6, the learning start counter is the learning start judgment threshold (number of times) Issue an idle stop prohibition request.
  • the TCU enters the idle operation state at the timing (T7) at which it can shift to the idle operation.
  • learning of the opening degree-air amount characteristic change is executed, and transition to idle stop is made by clearing the idle stop prohibition request together with the end of the learning correction (T8).
  • T9 to T10 although the stable operation state is established, since the air amount learning has already been completed, that is, the opening-air amount characteristic is correctly corrected, the value of ⁇ QAA is small.
  • the first embodiment by utilizing the characteristics of the hybrid vehicle in which the stable driving state exists even in the non-idle driving, whether the opening degree-air quantity characteristic has largely changed in the stable driving state in the non idle driving If it is necessary to learn, it is made to shift to the idle driving state to perform learning for the characteristic change. Therefore, since learning is performed only when learning is necessary, it is possible to achieve both fuel efficiency and improvement in learning accuracy.
  • the learning necessity is not determined and learning is always performed at the timing at which the idle driving state of the situation is reached. In addition to being unable, it is also in a situation where it can not be determined whether learning is necessary.
  • the intake air amount corresponding to the throttle opening at that time which is stored in the form of a map, for example, as the opening-air amount characteristic and the actual intake air detected by the air flow sensor
  • a predetermined value threshold value
  • the determination of necessity of learning can be performed most accurately in the state where there is no fluctuation in the amount of intake air. Therefore, by setting the state in which the air amount fluctuation is reduced as the stable operation state and performing the learning necessity determination in this state, it is possible to prevent an erroneous determination.
  • the determination threshold of characteristic change determination is one point constant, erroneous determination occurs There is a possibility.
  • the determination is started after the intake air amount is sufficiently stabilized, it takes time to complete the determination, and in some cases, the engine is not in stable operation before the determination is completed, making the determination impossible in the first place There is also a risk of It is desirable to start the determination immediately after the transition to the stable operation state also in order to make an early determination with a limited engine stable operation state. Therefore, as in the above embodiment, if the threshold is changed with the passage of time, for example, the threshold is tightened with the passage of time, erroneous determination immediately after the transition to the stable operation state can be prevented. It becomes possible.
  • the change in the opening-air amount characteristic caused by deposition on a deposit, clogging, etc. is more susceptible to the lower (smaller) throttle opening, and is less affected as the throttle opening is higher (larger). Therefore, the threshold value is changed according to the throttle opening as in the above embodiment.
  • the stable operation state is performed at a high throttle opening, it is possible to determine the characteristic change even at a high throttle opening by making it possible to determine that the characteristic has changed significantly even if the deviation is small. Determined necessary).
  • the characteristic change determination means when it is determined that the characteristic has been changed by the characteristic change determination means, if idle stop is prohibited, a scene to be transitioned to idle stop (a condition where the engine and its mounted vehicle satisfy the idle stop condition ), The idle driving state can be continued, and learning can be performed as usual.
  • FIG. 9 shows a flowchart of a second embodiment different from the first embodiment shown in FIG.
  • the next stable operation state is coordinated with TCU.
  • the throttle opening degree is low and the presence or absence of the characteristic change is determined.
  • the throttle opening is judged at S104 whether or not the throttle opening is equal to or less than a predetermined value, but the present throttle opening is judged at S330.
  • the low throttle opening setting counter clearing process is also added.
  • the first necessity determining means for determining necessity of learning based on the expected throttle opening and the necessity for learning are determined by forcibly reducing the throttle opening from the degree of opening.
  • a second necessity determination means is provided.
  • the process proceeds to S330.
  • S330 it is determined whether the throttle opening is equal to or greater than a predetermined value. In the case of a low throttle opening affected by the depot, the determination at S308 is regarded as correct, and the process returns to the start. In the case of the high throttle opening degree, the process proceeds to S332, and the presence or absence of the characteristic change is determined again according to the air amount deviation amount.
  • S332 it is determined whether or not the air amount deviation amount is near the threshold value, and in the case of "predetermined value- ⁇ " or more smaller ⁇ than the threshold value in S308, the opening degree-air amount characteristic change may be generated If it is high, the process proceeds to S334, and the low throttle opening setting counter is incremented by one. When it is determined as NO in S332, the process returns to the original state, but at that time, the low throttle opening setting counter may be cleared. In this case, the processing after S334 can be executed only when the S332 state is established continuously.
  • FIG. 10 stores the throttle opening at that time each time it is judged whether the opening-air amount characteristic has changed significantly (learning necessity judgment), and the learning necessity for each throttle opening degree is stored. It is the graph which showed the frequency (the number of times) by which judgment was performed.
  • the stable operation state is forcibly created for the throttle opening area where the frequency is low or low (next stable operation state When the throttle opening is low).
  • control is performed so that the stable operation state is achieved with a low throttle opening, and at that timing, the ECU determines whether or not there is a characteristic change (determination of necessity of learning).
  • the characteristic change determination of necessity of learning
  • the characteristic change is made by forcibly creating the stable driving state. It becomes possible to determine (necessity of learning). At this time, if the low throttle opening degree request is also made when creating the stable operation state, the characteristic change determination can be reliably performed in one stable operation state.
  • learning may be performed in a stable driving state.
  • learning is performed by excluding or taking into consideration all factors (VTC, purge, EGR, etc.) of the intake system.
  • ECU engine control unit
  • ETC Electronic throttle valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

 燃費の悪化を最小限に抑えつつスロットル開度と吸入空気量との関係(開度-空気量特性)の変化を適正に学習することができ、エンスト防止、トルク制御精度等の向上を図ることのできるエンジンの制御装置を提供する。開度-空気量特性の特性変化分を学習する学習手段と、前記学習の要否を判定する学習要否判定手段と、前記学習が必要であると判定されたとき、安定運転状態において、前記学習手段に前記学習を実行させる学習移行手段と、を備え、前記学習要否判定手段は、安定運転状態において、特性記憶手段に記憶されているそのときのスロットル弁の開度に対応する吸入空気量とエアフローセンサにより検出される実吸入空気量との乖離量を求め、該乖離量とそれについて設定された閾値とを用いて前記学習の要否を判定するようにされる。

Description

エンジンの制御装置
 本発明は、エンジンの制御装置に係り、特に、エンジン及びその搭載車両の運転状態が所定条件を満たすとき、エンジンを一時的に停止させるアイドルストップを行うようにされたエンジンのスロットル弁の開度と吸入空気量との関係(以下、開度-空気量特性と称す)等のエンジン特性の変化を学習するようにされた制御装置に関する。
 自動車の技術分野においては、燃費の向上や温室効果ガス排出量の低減化等を目的として、信号待ち状態等の、エンジン及びその搭載車両の状態が所定条件を満たすとき、エンジンを一時的に停止させるアイドルストップを行い、その後、ドライバのアクセル操作があったときなどに再始動させる技術が知られている。
 また、走行駆動源としてモータ(モータジェネレータ)とエンジンの両方を備えるハイブリット車両においても、走行中に運転者要求駆動力が所定値以下で、且つバッテリ充電のための発電運転が不要な場合等には、それまで走行駆動源としていたエンジンを停止させ、その後、運転者要求駆動力が所定値以上(例えばモータ発生トルク以上となったとき)、または、バッテリ充電が必要と判断されたときに、エンジン出力軸(クランク軸)に回転力を与え、エンジンを再始動させることも知られている。
 すなわち、これまでの車両では運転者がアクセル操作をしないシーンでもエンジンはアイドル運転を継続していたが、アイドルストップを行うようにされたハイブリッド車両を含む車両では燃費・排気性能等の向上のため、不要なアイドル運転はしないことになる。
 一般に、アイドル運転状態では、エンジン回転数が目標エンジン回転数に収束一致するようにフィードバック制御する、いわゆるアイドル回転数制御(ISC)が行われる。このアイドル回転数制御実行中は、運転状態が安定しているため、エンジンの個体差や経時劣化などを吸収するような各種学習が行われる(例えば下記特許文献1参照)。
 学習の一つとして、電制スロットル弁の開度(以下、スロットル開度と称す)と吸入空気量との関係(特性)の学習がある。
 詳細には、車載用エンジンに備えられる電制スロットル弁の制御システムでは、通常、予め実験等により求められたスロットル開度と吸入空気量との関係(開度-空気量特性)がコントロールユニット内の記憶装置に例えばテーブルやマップの形で記憶されており、エンジン運転時には、アクセル操作量等に基づいて目標吸入空気量を設定するとともに、実際に吸入される空気量(エアフローセンサにより検出される吸入空気量)が前記目標吸入空気量となるように、前記記憶されている開度-空気量特性を基準にそのとき要求されるスロットル開度を算出し、この算出されたスロットル開度となるように、スロットル弁(の弁体)をモータ等のアクチュエータにより回動させるようになっている。
 前記開度-空気量特性は、電制スロットル弁を含むエンジンの個体差や経時劣化等により相違・変化するため、例えば、アイドル運転時に、エアフローセンサで検出される吸入空気量、目標吸入空気量等を用いてスロットル開度を増減するフィードバック制御を行なう等して、開度-空気量特性の変化分(ずれ)を学習し、該学習で得られた特性変化分(学習値)を用いて前記記憶されている開度-空気量特性を補正するようにされている。
 また、ブローバイガス混入等に起因して、吸気通路におけるスロットル弁部分にガム質の異物等(以下、デポと称す)が付着すること等によっても、開度-空気量特性が変化(一般的にはスロットル開度に対し、吸入空気量が減少する方向)することから、定期的に前記特性変化分の学習を行って開度-空気量特性を補正する必要がある。
 また、エンジン回転数及び負荷が変化する過渡状態においては、エアフローセンサによる検出吸入空気量には、吸気管容積による位相遅れが発生するため、スロットル開度との相関関係確保の観点から、前記学習は、エンジンが安定した運転状態にあるとき、すなわちアイドル運転時に行なうのが一般的である。
 なお、前記開度-空気量特性としては、スロットル開度と吸入空気量との関係を用いるのが普通であるが、それに代えて、スロットル開度と吸気通路におけるスロットル弁部分の実効通路断面積(以下、スロットル開口面積と称す)との関係を用いる場合もある。
 ところが、前述のようにアイドルストップを行うようにされた車両においては、基本的にアイドル運転状態が存在しないため、前記学習の機会を確保することができない。
 そこで、所定距離走行したときやKEYONが所定回数行われたときにアイドルストップを禁止させて前記学習を行うことが知られている。しかし、この場合、学習が不要な場合でもアイドルストップを禁止するため、燃費悪化を招いたり、デポ付着が増えやすい地域走行時には、学習頻度が足りず、エンストやトルクずれが発生するおそれがある。
 こういった状況を回避するため、特許文献1では、非アイドル運転状態で学習を行うことが提案されている。
特開2010-65529号公報
 一般に、ハイブリッド車では燃費最適線を維持するようにエンジンが制御されるため、非アイドル運転状態でも安定運転状態が存在することになる。
 しかしながら、上記特許文献1では、前記安定運転状態についての言及がない。そのため、非アイドル運転時における過渡状態でも学習してしまうことにより、学習精度が低くなる可能性がある。
 本発明は、上記事情に鑑みてなされたもので、その目的とするところは、エンジン及びその搭載車両の状態が所定条件を満たすとき、エンジンを一時的に停止させるアイドルストップを行うようにされるとともに、スロットル開度と吸入空気量との関係(開度-空気量特性)等のエンジン特性の変化を学習するようにされたもとで、燃費の悪化を最小限に抑えつつ学習精度を高めることができて、エンスト防止、トルク制御精度等の向上を図ることのできるエンジンの制御装置を提供することにある。
 上記目的を達成すべく、本発明に係るエンジンの制御装置は、スロットル開度-空気量特性等のエンジン特性の特性変化分を学習して以前の特性を補正する学習手段と、非アイドル運転時において安定運転状態であるか否かを判定する安定運転状態判定手段と、該手段により前記安定運転状態であると判定されたとき、前記学習の要否を判定する学習要否判定手段と、該判定手段により前記学習が必要であると判定されたとき、アイドル運転状態等の安定運転状態に移行して前記学習手段に前記学習を実行させる学習移行手段と、を具備して構成される。
 一般に、アイドル運転で学習する制御の場合、学習要否の判定を行わず、成り行きのアイドル運転状態となったタイミングで常に学習するため、アイドル運転がほとんど存在しない車両では、学習ができない上に、学習が必要か否かの判定もできない状況となっている。
 そこで、上記のように学習要否判定手段を設け、非アイドル運転時における安定運転状態において学習の要否判定を行うことにより、アイドル運転状態がほとんど存在しないハイブリッド車でも学習の要否を判断することが可能となる。
 これにより、例えば、ハイブリッド車両では、学習が必要と判断された場合には、アイドルストップを禁止してアイドル運転へ移行させて学習を行うことができる。すなわち、学習が必要なシーンに限定して、アイドル運転へと移行させることが可能となるため、燃費の悪化を最小限に抑えることができるとともに、燃費の悪化を最小限に抑えつつ学習精度を高めることができて、エンスト防止、トルク制御精度等の向上を図ることができる。
 上記した以外の、課題、構成、及び効果は、以下の実施形態により明らかにされる。
本発明に係るエンジンの制御装置の一実施例を、それが適用されたハイブリッド車両用エンジンと共に示す概略構成図。 本発明に係るエンジンの制御装置の主要部を構成するECU周りの構成を示す図。 目標スロットル開度の演算例の説明に供されるブロック図。 目標トルク-スロットル開口面積(吸入空気量)-スロットル開度の関係の一例を示す相関図。 本発明第1実施例の開度-空気量特性の変化分の学習要否判定等を行う際の処理手順の一例を示すフローチャート。 図5のS106の乖離量算出の詳細な処理手順例を示すフローチャート。 開度-空気量特性の変化分の学習要否判定の説明に供される図。 開度-空気量特性の変化分の学習要否判定並びに学習補正の前後における各部の挙動・変化を示すタイムチャート。 本発明第2実施例の開度-空気量特性の変化分の学習要否判定等を行う際の処理手順の一例を示すフローチャート。 スロットル開度毎に学習要否判定が行われた頻度を示したグラフである。
 以下、本発明の実施の形態を図面を参照しながら説明する。
 図1は、本発明に係るエンジンの制御装置の一実施例を、それが適用されたハイブリッド車両用エンジンと共に示す概略構成図である。
 図示のエンジン1は、DOHC型の多気筒4サイクルエンジンであり、シリンダヘッド2Aとシリンダブロック2Bとからなるシリンダ2を備え、シリンダヘッド2Aには、吸気弁32用のカム軸31と、排気弁34用のカム軸33が配設され、シリンダブロック2Bにはピストン5が摺動自在に嵌挿され、ピストン5上方には、所定形状の燃焼室(天井ないしルーフ部)を持つ燃焼作動室3が画成され、この燃焼作動室3には、点火コイル等からなる点火ユニット23に接続された点火プラグ22が臨設されている。
 燃料の燃焼に供せられる空気は、エアークリーナ11から、ホットワイヤ式等のエアフローセンサ43や電制スロットル弁13が配在されたスロットルボディ(管状通路部分)12、コレクタ14、吸気マニホールド(多岐管)15、吸気ポート16等からなる吸気通路4を通り、その下流端(吸気ポート16端部)に配在された吸気弁32を介して各気筒の燃焼作動室3に吸入される。また、吸気通路4の下流部分(吸気マニホールド15)には、各気筒毎に、吸気ポート16に向けて燃料を噴射する燃料噴射弁21が臨設されるとともに、吸気圧センサ44が配設されている。なお、前記スロットルボディ12には、電制スロットル弁13の開度を検出するスロットル(開度)センサ42に取り付けられている。
 一方、クランク軸7の一端にはクランクプーリ36が取付固定され、吸気弁32を開閉するための吸気カム軸31の一端には吸気カムプーリ37が外嵌固定され、排気弁34を開閉するための排気カム軸33の一端には排気カムプーリ38が外嵌固定されている。各プーリ36,37,38の外周部には歯が設けられており、各プーリ36、37、38にはタイミングベルト(図示省略)が掛け回され、このタイミングベルトによりクランク軸7の回転が吸気カム軸31及び排気カム軸33に伝達されるようになっている。なお、吸気カムプーリ37及び排気カムプーリ38に対するクランクカムプーリ36の回転数比は1:2となっている。
 燃焼作動室3に吸入された空気と燃料噴射弁21から噴射された燃料との混合気は、点火プラグ22による火花点火により燃焼せしめられ、その燃焼廃ガス(排気ガス)は、燃焼作動室3から排気弁34を介して排気ポート、排気マニホールド、排気浄化用触媒(例えば三元触媒)48が設けられた排気管等からなる排気通路6を通って外部(大気中)に排出される。排気通路6における触媒48より上流側には酸素濃度センサ(空燃比センサ)47が配在されている。
 また、各気筒毎に配備された燃料噴射弁21には、燃料タンク内の燃料(ガソリン等)が、クランク軸7により回転駆動される燃料ポンプや燃圧レギュレータ等を備えた燃料供給機構により所定燃圧に調圧されて供給され、燃料噴射弁21は、本実施例のエンジンの制御装置の主要部を構成するエンジンコントロールユニット(以下、ECUと称す)8から供給される、そのときの運転状態に応じたパルス幅(開弁時間に相当する)を持つ駆動パルス信号により開弁駆動され、その開弁時間に応じた量の燃料を吸気ポート16に向けて噴射するようになっている。
 また、エンジン1には、エンジン冷却水温を検出する水温センサ41、クランク軸7(に固着された歯付き円板)の回転角度を検出して、クランク軸7の回転位置を表す角度信号を出力するクランク角センサ45、吸気弁32を駆動するカム軸31(に固着された歯付き円板35)の回転角度を検出して、カム軸31の回転位置を表す角度信号を出力するカム角センサ46等が配備されており、それらから得られる信号もECU8に供給される。
 本実施例のECU8は、そのハードウェア自体はよく知られたもので、図2に示される如くに、その主要部が、MPU8a、EP-ROM8b、RAM8c、及びA/D変換器を含むI/O用LSI8d等で構成される。
 I/O用LSI8dの入力側には、クランク角センサ45、カム角センサ46、水温センサ41、スロットルセンサ42、エアフローセンサ43、吸気管内圧センサ44、空燃比センサ47を含む各種のセンサ類からの信号が供給される。
 また、本実施例のエンジンの制御装置8が適用されるハイブリッド車では、ECU8とは別に、マイクロコンピュータを内蔵した統合コントロールユニット(以下、TCUと称す)9を有しており、TCU9からECU8へ、実現すべき目標トルク要求やエンジンを一時的に停止させるアイドルストップ要求、アイドルストップを禁止させるアイドルストップ禁止要求などをCAN通信等のユニット間通信によりデータ送受信が行われる。
 ECU8は、これらの入力信号やユニット間通信信号に基づいて所定の演算処理を実行し、この演算結果として算定された各種の制御信号をI/O用LSI8dから出力し、アクチュエータである電制スロットル弁13、燃料噴射弁21、点火コイル23等に向けて所定の制御信号を供給して、スロットル開度制御、燃料噴射制御、点火時期制御等を実行する。
 次に、スロットル弁13の開度-吸入空気量特性(開度-空気量特性)の変化分の学習に関与する制御について、図3のブロック図及び図4のグラフを参照しながら説明する。
 まず、運転者によるアクセル操作による要求トルク及び外部要求トルクを含むTCU9からの要求トルクに基づいて目標トルク(1)を演算する。演算された目標トルク(1)からエンジン特性に応じて一義的に求まる駆動力要求分としてのスロットル開口面積(吸入空気量に相当する)(2)を演算する。
 これとは別に、ISC制御空気量としてアクセルOFF時いわゆるアイドル運転状態でのエンジン回転数保持分を目標回転数と実エンジン回転数から演算し、トルク要求分と同様にISC相当開口面積(3)を算出する。演算された駆動力要求分開口面積(2)とISC相当開口面積(3)を加算して、現在の運転状態に必要なスロットル開口面積(4)とする。このスロットル開口面積(4)は、現在の運転状態に必要な吸入空気量に相当する。
 次に、吸入空気量とスロットル開口面積とスロットル開度とは相関関係にあることから、例えば予め記憶装置(EP-ROM8b)に記憶されているスロットル開度-スロットル開口面積特性(前述したスロットル開度-吸入空気量特性と同じく、開度-空気量特性と称する)を表すマップから目標スロットル開口面積(4)に相当するスロットル開度を読み出すことにより、最終的な目標スロットル開度(5)を求め、求められた開度(5)となるようにスロットル弁(の弁体)13を回動させる制御を行なう。
 ところが、デポ付着等の経年変化により、スロットル開度を前記(5)にしても、実際のスロットル開口面積(吸入空気量)が前記(4)とはならず、吸入空気量に過不足が生じ、所要のトルクが得られない場合がある。
 詳しくは、前述した予め記憶装置に記憶されている開度-空気量特性はあくまで初期特性であるため、デポ付着等の経年変化により、実際の開度-空気量特性は、初期開度-空気量特性からは変化しており、この変化が大きいと、初期開度-空気量特性を用いて求めたスロットル開度では結果的に吸入空気量が不足したり過剰になったりすることになる。言い換えれば、例えば、前記デポ付着が発生すると、スロットル開口面積が狭くなり、アクセル操作量等に応じて設定される目標吸入空気量を得るためにはスロットル開度をより大きくする必要がある。
 なお、図3においてハイブリッド車両では、エンジンが実現すべき目標トルクは統合コントロール装置によって算出されるために、目標トルク(1)算出にあたっては、アクセル開度の代わりに統合コントロール装置からの目標トルク要求が使われる。
 上述のようにデポ付着等の経年変化による開度-空気量特性変化を学習によって補正する必要があるが、吸気管容積による位相遅れが存在するため、前記開度-空気量特性(の変化)の学習は、通常、運転状態が安定するアイドル運転状態で行っている。しかし、前述のとおり、アイドルストップ機能を有する車両においては、基本的にアイドル運転点が存在しないため、前記学習を行うことができない。
 そこで、本第1実施例では、非アイドル運転時において安定運転状態であるか否かを判定するとともに、安定運転状態である場合には学習要否を判定し、学習が必要な場合には、アイドルストップを禁止をすることにより、学習用のアイドル運転状態を作り出し、ECU8の特性記憶手段(EP-ROM8b)に記憶されている前記スロットル弁13の開度と吸入空気量との関係をあらわす開度-空気量特性の特性変化分を学習して、前記特性記憶手段に記憶されている以前の特性を補正するようにされ、ECU8は、前記特性記憶手段に記憶されている最新の開度-空気量特性を用いて前記スロットル弁13を制御するようにされる。
 以下、図5のフローチャートを参照しながら、詳細に説明する。
 まず、ステップS102(以下、ステップは省略)で安定運転状態か否かを判断する。ここでは安定運転状態であるか否かをスロットル開度が一定であるか否か(開度変化の有無)で判定している。スロットル開度が一定であれば、多少の空気の位相遅れが存在するとしても基本的に定常状態になる。他にエンジン回転数の変化が所定値以内、吸入空気量の変化が所定値以内、吸気圧の変化が所定値以内などの条件を追加してもよい。また、暖機運転や発電運転なども前述の条件が満たされるため、安定運転状態に含めることが可能である。すなわち、非アイドル運転時において、前記スロットル弁の開度、エンジン回転数、及び実吸入空気量のうちの少なくとも一つが所定時間以上継続して所定範囲内にある場合に、安定運転状態であると判定する。
 S102で安定運転状態ではないと判断された場合には元に戻り、安定運転状態になるまで待つ。安定運転状態が開始された場合には、S104に進んでスロットル開度が所定値以下か否かを判断する。一般にデポ付着による開度-空気量特性変化の影響は低スロットル開度で顕在化し、高スロットル開度ではほとんど影響が出ない。そのためスロットル開度が小さい場合のみ以下の処理を実行する。このS104の判断に使用する閾値は、ハイブリッド車両で取りうる頻度の開度と開度-空気量特性変化の影響が顕在化する開度とから予め求めておく。
 スロットル開度が前記閾値(所定値)以下の場合にはS106に進んで開度-空気量特性の変化分を求める。ここでは、開度-空気量特性変化分として、スロットルセンサ42により検出されるスロットル開度から求めた開口面積とエアフローセンサ43により検出される空気量から求めた開口面積とのずれを空気量乖離量として算出する。なお、詳細は図6を参照して後述する。
 S108では、S106で算出された空気量乖離量が所定値(閾値)以上か否かを判断する。所定値以上の場合には、空気量がずれている、即ち開度-空気量特性が変化しているとしてS110へ進み、学習開始カウンタを一つインクリメントする。所定値以内の場合には、開度-空気量特性変化が無いとして元に戻る。元に戻るときに、学習開始カウンタをクリアする構成にして、連続して空気量乖離量が所定値以上の状態が続いた時のみカウントアップしていくようにしてもよい。なお、開度-空気量特性変化の有無を判定する閾値に関しては図7を用いて後述する。
 S112では、学習開始カウンタ(乖離量が閾値を越えた累積回数)が所定値以上か否かを判断する。これは、非アイドル運転状態で乖離量の大小を判定しているため、誤判定を防止するために、複数回開度-空気量特性の変化を検出するようにしている。
 学習開始カウンタが所定値以上の場合には、S114へ進み、TCU9に対してアイドルストップ禁止要求を送信する。TCU9では、モータとエンジンの状態を考慮して、エンジントルク要求が無い場合に、アイドル運転状態へと移行する。このアイドル運転状態では、S116にて、いわゆるアイドル回転数制御(ISC)を行って、開度-空気量特性の変化分(学習値)を求め、特性変化分(学習値)を用いて前記記憶されている開度-空気量特性を補正する学習補正を行う(この学習補正自体は当該技術分野ではよく知られているので詳細な説明は省略する)。
 上記学習補正終了後には、S118に進んで、学習開始カウンタをクリアするとともに、S120にてアイドルストップ禁止要求を解除するようにTCU9へ送信するとともに、エンジンを停止(IGスイッチOFF)させる。
 次に、図5のS104で行われる空気量乖離量の算出を、図6のフローチャートを使用して説明する。
 本空気量乖離量算出は、空気量を開口面積情報の次元に換算して行う方法であるが、スロットル開度情報の次元および空気量情報の次元に換算してもよい。
 S202では、スロットルセンサ42によって検出されたスロットル開度TPO1から前回の特性変化分の学習値TVOFQL(初期値は0)を減算して補正スロットル開度TPO1QLを算出する。すなわち、学習をしていない状態のスロットル開度を基準とする。
 S204では、前記補正スロットル開度TPO1QLを開度-面積変換のテーブルを使用して、スロットル開度相当開口面積ATPO1に変換する。
 一方、S208ではエアフローセンサ43により検出される質量流量TPを読み込む。そしてS210では、質量流量TPに基準状態(標準状態)での質量流量→体積流量変換係数TPQHを乗じることにより、基準状態での体積流量比TPQH0を算出する。
 S212では、体積流量比TPQH0から体積流量比-開口面積/吸引容積相当変換テーブルから開口面積/吸引容積相当ADNVQLを算出する。なお、体積流量比-面積/吸引容積相当変換テーブルは、スロットル開口面積が小さいところでは、ソニック流となって開口面積が増大に対して体積流量が比例的に増大するが、開口面積が増大するにつれて飽和状態に近づく特性となる。
 S214では開口面積/吸引容積相当ADNVQLにエンジン排気量VOLとエンジン回転速度NEを乗じることによりTP相当開口面積TPAを算出する。
 S216では、S206で求めたスロットル相当開口面積ATPOとS214で求めたTP相当開口面積TPAの差分を取り開口面積乖離量ΔQAAを算出する。
 開度-空気量特性変化が無い場合にはΔQAAが略零となるが、開度-空気量特性変化が大きければ大きいほどΔQAAの値が大きくなる。即ちΔQAAの値が大きい場合には、開度-空気量特性が大きく変化したとみなすことが可能となる。
 次に、開度-空気量特性が大きく変化したか否かの判定(学習要否判定)に関して図7を用いて説明する。
 開口面積乖離量ΔQAAが所定値以上の場合には、開度-空気量特性が大きく変化したと判定できるが、本実施例では安定運転状態として、スロットル開度が一定になってから本開口面積乖離量演算を開始する構成としているため、スロットル開度一定となって安定運転状態となった直後は吸気系の位相遅れにより空気量が一定となるまでに時間がかかることになる。その間、前運転状態の吸気系の影響を受けるため、開口面積乖離量が振れて、閾値を超えてしまい、本来開度-空気量特性にさほど変化が無い場合でも、誤判定してしまうおそれがある。一方、空気量が一定となる状態となってから演算を開始した場合には、特性変化判定に時間がかかることになる。
 ハイブリッド車は、最適燃費線を維持するとはいえ、非アイドル運転状態であるため、安定運転状態が短い可能性もあり、早期に開度-空気量特性き変化を検知する必要がある。そこで、安定運転状態移行直後の判定用閾値は大きくし、時間経過とともに閾値を小さくするような構成とすることで、特性変化有無(学習要否)の早期判定と誤判定回避を両立させる。なお、更なる誤判定を防止するために、図5のS108~S112のように開度-空気量特性変化が複数回検知された場合のみ開度-空気量特性変化したと判定するようにしている。
 また、スロットル開度によって特性変化の影響代は異なるため、スロットル開度に応じて閾値を可変とするような構成を上記に加えてもよい。
 図7において、実線が開度-空気量特性変化が無い場合のΔQAA、一点鎖線がETC特性変化が有る場合のΔQAAを示す。破線が開度-空気量特性変化の有無を判定する閾値を示しており、破線内にΔQAAが存在していれば、開度-空気量特性変化が無いことを表している。前述したように、この閾値は、時間経過とともに小さくなるように設定されている。
 時点T1にてスロットル開度が一定となって、安定運転状態に移行し、開口面積乖離量演算が開始される。開始直後は、吸気系の位相遅れにより大きく振れており、次第に所定値へ収束していく。実線のように開度-空気量特性変化が無い場合でも安定運転状態に移行直後はΔQAAが大きく振れているが、このときは閾値が大きく設定されているため誤判定には至らない。開度-空気量特性変化(学習要否判定)の最終判定は、安定運転状態から外れた時点T2で行うことになる。
 当然のことながら、安定運転状態が長く続いたほうが、即ち時点T1からT2までの時間が長いほど誤検出の可能性が低くなることから、安定運転状態の継続時間に応じて開度-空気量特性変化検出の重み付けを行っても良い。例えば、安定運転状態継続時間が長いほど図5のS110における学習開始カウンタの増加量を1固定ではなく、大きくするような構成としてもよい。
 次に図8のタイムチャートを用いて、本実施例の各部の挙動・変化を説明する。
 図8では、簡単のため開度-空気量特性変化有無判定用の閾値は一点定数としている(△QAAのタイムチャートに記載)。
 非アイドル運転状態で運転しているが、時点T1にて安定運転状態となるため、このタイミングから開度-空気量特性変化の検出を開始し、時点T2で非安定運転状態となったタイミングで最終の開度-空気量特性変化判定を実行する。開口面積乖離量ΔQAAは開度-空気量特性変化の有無(学習要否)判定用閾値よりも大きい、即ち開度-空気量特性に変化があると判定されるため、学習開始カウンタを一つインクリメントする。同様に非アイドル運転状態における安定運転状態(時点T3~T4、時点T5~T6)で開度-空気量特性変化判定を実行していき、時点T6において学習開始カウンタが学習開始判定閾値(回数)を上回ることにより、アイドルストップ禁止要求を出す。アイドルストップ(I/S)禁止要求を受けてTCUはアイドル運転に移行できるタイミング(T7)でアイドル運転状態となる。このタイミングで開度-空気量特性変化分の学習は実行され、学習補正終了(T8)とともにアイドルストップ禁止要求をクリアすることによりアイドルストップへ移行する。その後、時点T9~T10において、安定運転状態となるが、すでに空気量学習が終了している、即ち開度-空気量特性が正しく補正されているため、ΔQAAの値は小さくなっている。
 上記のように本第1実施例では、非アイドル運転時でも安定運転状態が存在するハイブリッド車両の特徴を生かし、非アイドル運転時における安定運転状態において開度-空気量特性が大きく変化したか否かの判定(学習要否判定)を行い、学習が必要な場合には、アイドル運転状態に移行させて特性変化分の学習を行うようにされる。そのため、学習が必要な場合のみ学習が行われるので、燃費と学習精度向上の両立を図ることができる。
 より詳細には、一般に、アイドル運転状態で学習する場合、学習要否の判定を行わず、成り行きのアイドル運転状態となったタイミングで常に学習するため、アイドル運転がほとんど存在しない車両では、学習ができない上に、学習が必要か否かの判定もできない状況となっている。
 そこで、上記のように、非アイドル運転時の安定運転状態で学習の要否判定を行うことにより、アイドル運転状態がほとんど存在しない車両でも学習の要否を的確に判断することが可能となる。
 これにより、例えば、ハイブリッド車両では、学習が必要と判断された場合には、アイドルストップを禁止してアイドル運転へ移行させて学習を行うことができる。すなわち、学習が必要なシーンに限定して、アイドル運転へと移行させることが可能となるため、燃費の悪化を最小限に抑えることができる。
 また、学習要否を判定するために、開度-空気量特性として例えばマップの形で記憶されている、そのときのスロットル開度に対応する吸入空気量とエアフローセンサにより検出される実吸入空気量との乖離量を算出し、その乖離量が所定値(閾値)を越えたいる場合に学習に移行させることにより、必要なシーンに限定して学習を行うため、燃費悪化を最小限にすることが可能となる。また、エンジンの安定運転状態、即ち空気量が安定している状態で学習要否判定を行うため、要否判定の精度は高く、確実に必要な時に、学習を行うことが可能となる。
 さらに、学習要否判定は、吸入空気量の変動が無い状態がもっとも精度よく判定を行うことができる。そこで、空気量変動が少なくなる状態を安定運転状態とし、その状態で学習要否判定を行う構成とすることで、誤判定するのを防止することができる。
 吸気系の位相遅れやエアフローセンサの応答遅れなどにより、安定運転状態移行直後は、空気量が大きく振れる可能性があるため、特性変化判定の判定閾値を一点定数とした場合、誤判定してしまう可能性ある。一方、吸入空気量が十分安定してから判定を開始した場合には、判定終了までに時間がかかり、場合によっては判定終了するまえにエンジン安定運転状態から外れてしまい、そもそも判定ができなくなってしまう恐れもある。限られたエンジン安定運転状態で早期に判定するためにも、判定は安定運転状態移行直後から開始するのが望ましい。そこで、上記実施例のように、時間の経過に伴って閾値を変化、例えば、時間の経過とともに閾値を厳しくするような構成とすれば、安定運転状態移行直後での誤判定を防止することが可能となる。
 一般に、デポ付着、詰まり等に起因する開度-空気量特性の変化は、スロットル開度が低い(小さい)ほど影響を受けやすく、スロットル開度が高い(大きい)ほど影響を受けにくい。そのため、上記実施例のようにスロットル開度に応じて閾値を変化させて判定するようにする。安定運転状態が高スロットル開度でなされているときには、閾値を厳しく、すなわち少しの乖離量でも特性が大きく変化したと判定できるようにすることで、高スロットル開度でも特性変化が検知(学習が必要と判定)できるようにする。
 また、上記のように高スロットル開度で閾値を厳しくした場合、誤判定しやすくなる。そこで、上記実施例のように、複数回にわたって判定を行うことにより誤判定を回避することができる。
 また、特性変化判定手段にて特性が変化したと判断された場合には、アイドルストップを禁止にすれば、アイドルストップに移行すべきシーン(エンジン及びその搭載車両がアイドルストップを行う条件を満たす状態)において、アイドル運転状態を継続することができ、従前通り学習を行うことができる。
 図9は、図5に示される第1実施例とは別の第2実施例のフローチャートを示す。
 ここでは、安定運転状態のスロットル開度が大きく、かつ空気量乖離量が閾値近傍に滞在して開度-空気量特性が大きく変化したとは判定できない場合、TCUと協調して次回安定運転状態となったときに低スロットル開度にして特性変化の有無を判定するケースを示す。
 図中S302からS320は、図5と基本的に同じ内容であるため、相違部分のみ説明する。
 図5ではS104にてスロットル開度が所定値以下か否かの判定があったが、今回スロットル開度の判定はS330にて行うようになっている。また、S318では、従来の学習開始カウンタのクリア処理に加え、低スロットル開度設定カウンタのクリア処理も追加している。第2実施例では、成り行きのスロットル開度で学習の要否判定を行う第一の要否判定手段と、スロットル開度を成り行きの開度から強制的に小さくして学習の要否判定を行う第二の要否判定手段を備えている。
 S308で空気量乖離量が所定値以下の場合には、S330へ進む。S330ではスロットル開度が所定以上か否かを判定する。デポの影響を受ける低スロットル開度の場合には、S308での判定が正しいとしてそのまま、スタートに戻る。高スロットル開度の場合には、S332へ進み、再度空気量乖離量に応じて特性変化の有無を判定する。S332では空気量乖離量が閾値近傍か否かを判定し、S308での閾値よりα小さい「所定値-α」以上の場合には、開度-空気量特性変化が発生している可能性が高いとして、S334へ進み、低スロットル開度設定カウンタを1カウントアップさせる。S332でNOと判定された場合には、元に戻るが、その際、低スロットル開度設定カウンタをクリアしてもよい。その場合、連続してS332状態が成立した時のみS334以降の処理を実行できる構成となる。
 その後、S336では、低スロットル開度カウンタが所定値以上か否かを判断する。所定値以上の場合には、次回安定運転時に低スロットル開度となるようにTCUに通告し、元に戻る。次回安定運転時には、低スロットル開度となり、S302以下の処理を実行する。低スロットル開度での安定運転状態の場合には、能動的にスロットルを低開度にしているため、誤判定する可能性は低い。そのため、S308でYES判定した場合には、S310、S312をスルーして、S314に進み、アイドルストップ禁止させ、学習に移行させてもよい。なお、低スロットル開度でS308処理がNO判定の場合には、特性変化は無いため、低スロットル開度設定カウンタをクリアするとともに、次回安定運転時の低スロットル開度要求を取り下げる。
 図10は、開度-空気量特性が大きく変化したか否かの判定(学習要否判定)が行われる毎にそのときのスロットル開度を記憶して、スロットル開度毎に前記学習要否判定が行われた頻度(回数)を示したグラフである。
 デポ付着の影響を受けやすい、低スロットル開度領域において頻度が0ないし少ない場合には、該頻度が0ないし少ないスロットル開度領域については強制的に前記安定運転状態を作り出す(次回の安定運転状態の時にときに低スロットル開度にする)。次回運転時は低スロットル開度で安定運転状態となるように制御し、そのタイミングでECUは、特性変化の有無判定(学習要否判定)を行う。これにより、低スロットル開度の分布が少ない運転シーンにおいても、確実に特性変化(学習要否)を判定することが可能となる。
 また、安定運転状態がそもそも存在しないような運転シーンにおいても、所定時間継続して安定運転状態が存在しなかった場合には、安定運転状態を強制的に作り出するようにすることで、特性変化(学習要否)判定を行うことが可能となる。この際、安定運転状態を作り出す際に、低スロットル開度要求も合わせて行うと、1回の安定運転状態で確実に特性変化判定を行うことができる。
 なお、本実施例では、非アイドル運転時における安定運転状態において学習要否判定をして学習が必要な場合には、アイドルストップを禁止して開度-空気量特性の変化分を学習することにより、学習精度を向上させているが、アイドルストップ禁止により燃費への跳ね返りが発生する。
 燃費への跳ね返りを抑えるために、安定運転状態で学習をしてもよい。その場合には吸気系の変動要因(VTC、パージ、EGR等)をすべて排除もしくは考慮して学習を行う構成とする。
1  エンジン
4  吸気通路
8  ECU(エンジンコントロールユニット)
13 電制スロットル弁(ETC)
21 燃料噴射弁
22 点火プラグ
23 点火コイル
32 吸気弁
34 排気弁
42 スロットルセンサ
43 エアフローセンサ
45 クランク角センサ
46 カム角センサ

Claims (11)

  1.  スロットル開度-吸入空気量特性等のエンジン特性の特性変化分を学習して以前の特性を補正する学習手段と、
     非アイドル運転時において安定運転状態であるか否かを判定する安定運転状態判定手段と、
     該手段により前記安定運転状態であると判定されたとき、前記学習の要否を判定する学習要否判定手段と、
     該判定手段により前記学習が必要であると判定されたとき、アイドル運転状態等の安定運転状態に移行して前記学習手段に前記学習を実行させる学習移行手段と、を具備して構成されたエンジンの制御装置。
  2.  走行用駆動源として電制スロットル弁を有するエンジンとモータの両方が搭載されているハイブリッド車用のエンジンの制御装置であって、
     特性記憶手段に記憶されている前記スロットル弁の開度と吸入空気量との関係をあらわす開度-空気量特性の特性変化分を学習して、前記特性記憶手段に記憶されている以前の特性を補正する学習手段と、
     非アイドル運転時において安定運転状態であるか否かを判定する安定運転状態判定手段と、
     該手段により前記安定運転状態であると判定されたとき、前記学習の要否を判定する学習要否判定手段と、
     前記学習要否判定手段により前記学習が必要であると判定されたとき、前記安定運転状態において、前記学習手段に前記学習補正を実行させる学習移行手段と、
     前記特性記憶手段に記憶されている最新の開度-空気量特性を用いて前記スロットル弁を制御するスロットル弁制御手段と、を備え、
     前記学習要否判定手段は、前記安定運転状態において、前記特性記憶手段に記憶されているそのときのスロットル弁の開度に対応する吸入空気量と実吸入空気量との乖離量を求め、該乖離量とそれについて設定された閾値とを用いて前記学習の要否を判定することを特徴とするエンジンの制御装置。
  3.  前記安定運転状態判定手段は、非アイドル運転時において、前記スロットル弁の開度、エンジン回転数、及び実吸入空気量のうちの少なくとも一つが所定時間以上継続して所定範囲内にある場合に、安定運転状態であると判定することを特徴とする請求項2に記載のエンジンの制御装置。
  4.  前記学習要否判定手段は、前記乖離量についての閾値を時間の経過に伴って変化させることを特徴とする請求項2又は3に記載のエンジンの制御装置。
  5.  前記学習要否判定手段は、前記乖離量についての閾値を前記スロットル弁の開度に応じて変化させることを特徴とする請求項2から4のいずれかに記載のエンジンの制御装置。
  6.  前記学習要否判定手段は、前記乖離量が前記閾値を越えた回数をカウントするとともに、その累積回数が、要否判定用回数を越えた場合に、前記学習が必要であると判定することを特徴とする請求項2から5のいずれかに記載のエンジンの制御装置。
  7.  前記学習移行手段は、前記エンジン及びその搭載車両がアイドルストップを行う条件を満たす状態であっても、前記学習要否判定手段により前記学習が必要であると判定されたときは、前記アイドルストップを禁止することを特徴とする請求項2から6のいずれかに記載のエンジンの制御装置。
  8.  前記学習要否判定手段は、成り行きのスロットル開度で要否判定を行う第一の要否判定手段と、スロットル開度を成り行きの開度から強制的に小さくして要否判定を行う第二の要否判定手段を備えていることを特徴とする請求項2から7のいずれかに記載のエンジンの制御装置。
  9.  前記学習要否判定手段は、前記乖離量が前記閾値未満かつ閾値近傍にある場合には、前記モータと協調して、前記第二の要否判定手段により要否判定を行うことを特徴とする請求項8に記載のエンジンの制御装置。
  10.  前記安定運転状態にならない状態が所定時間以上継続した場合には、前記安定運転状態を強制的に作り出すようにされていることを特徴とする請求項2から9のいずれかに記載のエンジンの制御装置。
  11.  前記学習要否判定が行われる毎にそのときのスロットル開度を記憶して、スロットル開度毎に前記学習要否判定が行われた頻度を求め、該頻度が所定値以下のスロットル開度領域については強制的に前記安定運転状態を作り出すことを特徴とする請求項2から10のいずれかに記載のエンジンの制御装置。
PCT/JP2012/065208 2011-06-17 2012-06-14 エンジンの制御装置 WO2012173177A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112012002535.0T DE112012002535T5 (de) 2011-06-17 2012-06-14 Motorsteuergerät
US14/126,139 US20140121947A1 (en) 2011-06-17 2012-06-14 Engine control unit
CN201280029818.5A CN103608573B (zh) 2011-06-17 2012-06-14 发动机的控制装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-135268 2011-06-17
JP2011135268A JP5451687B2 (ja) 2011-06-17 2011-06-17 エンジンの制御装置

Publications (1)

Publication Number Publication Date
WO2012173177A1 true WO2012173177A1 (ja) 2012-12-20

Family

ID=47357159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/065208 WO2012173177A1 (ja) 2011-06-17 2012-06-14 エンジンの制御装置

Country Status (5)

Country Link
US (1) US20140121947A1 (ja)
JP (1) JP5451687B2 (ja)
CN (1) CN103608573B (ja)
DE (1) DE112012002535T5 (ja)
WO (1) WO2012173177A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101619609B1 (ko) 2014-09-05 2016-05-18 현대자동차주식회사 디젤 하이브리드 차량의 공기유량센서 칩 히팅 제어 장치
JP6147289B2 (ja) * 2015-04-08 2017-06-14 三菱電機株式会社 自動二輪車の吸入空気量推定装置
CN104929789A (zh) * 2015-05-28 2015-09-23 奇瑞汽车股份有限公司 一种电子节流阀体流量自学习算法
JP6749297B2 (ja) * 2017-08-24 2020-09-02 日立オートモティブシステムズ株式会社 内燃機関制御装置
US11316456B2 (en) 2018-03-14 2022-04-26 Cummins Inc. Systems and methods for optimizing engine operations in gensets
JP6958477B2 (ja) * 2018-05-11 2021-11-02 トヨタ自動車株式会社 ハイブリッド車両の制御システム
CN108457759B (zh) * 2018-05-14 2020-04-17 三国(上海)企业管理有限公司 内燃机长期学习值控制
CN110714845B (zh) * 2018-07-13 2022-05-03 丰田自动车株式会社 发动机控制装置及发动机控制方法以及记录介质
CN114607830A (zh) * 2020-12-09 2022-06-10 浙江农林大学暨阳学院 一种电动阀开度检测方法及检测***
CN114592983A (zh) * 2022-02-09 2022-06-07 潍柴动力股份有限公司 发动机进气量合理性判定方法、判定***及发动机

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004257317A (ja) * 2003-02-26 2004-09-16 Toyota Motor Corp 内燃機関の吸入空気量制御装置
JP3808200B2 (ja) * 1998-03-24 2006-08-09 ダイハツ工業株式会社 堆積物除去検出方法
JP2007092711A (ja) * 2005-09-30 2007-04-12 Nissan Motor Co Ltd 電制スロットルの学習装置
JP2010065529A (ja) * 2008-09-08 2010-03-25 Toyota Motor Corp 内燃機関の制御装置
JP2011001822A (ja) * 2009-06-16 2011-01-06 Hitachi Automotive Systems Ltd 電制スロットル特性学習制御装置及び方法
JP2011094561A (ja) * 2009-10-30 2011-05-12 Hitachi Automotive Systems Ltd エンジンの制御装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7024305B2 (en) * 2004-02-20 2006-04-04 General Motors Corporation Airflow variation learning using electronic throttle control
US7287510B2 (en) * 2006-03-24 2007-10-30 Gm Global Technology Operations, Inc. Secured operation of electronic throttle control (ETC) in dual module system
CN102042174A (zh) * 2009-10-22 2011-05-04 陈宏� 水浮风水轮风帆风力发电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3808200B2 (ja) * 1998-03-24 2006-08-09 ダイハツ工業株式会社 堆積物除去検出方法
JP2004257317A (ja) * 2003-02-26 2004-09-16 Toyota Motor Corp 内燃機関の吸入空気量制御装置
JP2007092711A (ja) * 2005-09-30 2007-04-12 Nissan Motor Co Ltd 電制スロットルの学習装置
JP2010065529A (ja) * 2008-09-08 2010-03-25 Toyota Motor Corp 内燃機関の制御装置
JP2011001822A (ja) * 2009-06-16 2011-01-06 Hitachi Automotive Systems Ltd 電制スロットル特性学習制御装置及び方法
JP2011094561A (ja) * 2009-10-30 2011-05-12 Hitachi Automotive Systems Ltd エンジンの制御装置

Also Published As

Publication number Publication date
CN103608573A (zh) 2014-02-26
CN103608573B (zh) 2017-05-10
JP2013002386A (ja) 2013-01-07
DE112012002535T5 (de) 2014-03-06
US20140121947A1 (en) 2014-05-01
JP5451687B2 (ja) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2012173177A1 (ja) エンジンの制御装置
US7975670B2 (en) Control unit and control method for torque-demand-type internal combustion engine
JP4292209B2 (ja) エンジンの制御装置および制御方法
US20110288753A1 (en) Device and method for controlling timing at which ignition is stopped when internal combustion engine becomes stopped
JP5143145B2 (ja) ハイブリッド車用エンジン制御装置
US20110100326A1 (en) Engine Control Unit
JP4952654B2 (ja) 内燃機関の制御システム
US7370471B2 (en) Internal combustion engine controller
JP4385940B2 (ja) 内燃機関装置およびこれを搭載する自動車並びに内燃機関の運転停止方法
JP4779543B2 (ja) 電制スロットルの学習装置
JP2012026332A (ja) 内燃機関の制御装置
JP4334367B2 (ja) 燃料噴射制御装置
JP2008138579A (ja) 内燃機関の可変バルブタイミング制御装置
JP2009167991A (ja) 内燃機関のアイドル運転制御装置
JPH09133034A (ja) 内燃機関の燃料噴射制御装置
JP5398994B2 (ja) 内燃機関の運転制御方法
JP5178634B2 (ja) 内燃機関の空燃比制御方法
JP2007056778A (ja) 点火プラグのくすぶり解消制御装置
US6705288B2 (en) Starting control apparatus for internal combustion engine
JP4115162B2 (ja) 内燃機関の排気ガス浄化制御装置
JP5361806B2 (ja) ハイブリッド車用のエンジン制御装置
JP2012136980A (ja) エンジン回転停止制御装置
US6505604B2 (en) Ignition timing control apparatus for internal combustion engine
JP2007100709A (ja) 燃料切替内燃機関制御方法及び装置
JP4133288B2 (ja) 内燃機関の可変バルブタイミング制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12800454

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14126139

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1120120025350

Country of ref document: DE

Ref document number: 112012002535

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12800454

Country of ref document: EP

Kind code of ref document: A1