WO2012167554A1 - 一种同波道双极化微波设备和接收信号接收方法 - Google Patents

一种同波道双极化微波设备和接收信号接收方法 Download PDF

Info

Publication number
WO2012167554A1
WO2012167554A1 PCT/CN2011/082231 CN2011082231W WO2012167554A1 WO 2012167554 A1 WO2012167554 A1 WO 2012167554A1 CN 2011082231 W CN2011082231 W CN 2011082231W WO 2012167554 A1 WO2012167554 A1 WO 2012167554A1
Authority
WO
WIPO (PCT)
Prior art keywords
received signal
signal
frame synchronization
processing
phase noise
Prior art date
Application number
PCT/CN2011/082231
Other languages
English (en)
French (fr)
Inventor
李军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11867122.1A priority Critical patent/EP2770647B1/en
Priority to CN201180002494.1A priority patent/CN102510766B/zh
Priority to PCT/CN2011/082231 priority patent/WO2012167554A1/zh
Publication of WO2012167554A1 publication Critical patent/WO2012167554A1/zh
Priority to US14/279,048 priority patent/US9049060B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/01Equalisers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/002Reducing depolarization effects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0817Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/10Polarisation diversity; Directional diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/0036Interference mitigation or co-ordination of multi-user interference at the receiver
    • H04J11/004Interference mitigation or co-ordination of multi-user interference at the receiver using regenerative subtractive interference cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/04Speed or phase control by synchronisation signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • H04W52/0232Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal according to average transmission signal activity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of wireless technologies, and in particular, to a co-channel dual-polarized microwave device and a receiving signal receiving method. Background technique
  • Microwave technology directly transmits data through space, without the need to lay fiber or cable, etc. It has obvious engineering advantages in cities, remote areas or special areas such as rivers; microwave technology is convenient for networking, flexible in use, and short in service opening time; With the development of microwave technology, the cost of microwave equipment is gradually decreasing. Therefore, the use of microwave technology is becoming more and more widespread.
  • Co-Channel Dual Polarization (CCDP) transmission technology can simultaneously transmit horizontal polarization (H) and vertical polarization (V) in the same channel in space.
  • Polarized waves double the capacity of a single-channel transmission service. Since the dual-polarized signal is affected by the characteristics of the dual-polarized antenna and the spatial transmission environment during transmission, the H and V signals arriving at the receiver are not completely orthogonal, that is, the component of the H-channel receiving opportunity receives the V signal. V, , becomes co-channel interference, which may cause receiver demodulation to fail.
  • Cross Polarization Interference Cancellation XPIC
  • the receiving side cancels the co-channel interference signal V in the received signal ( ⁇ + V, ) by using the signal sent by the XPIC working group in the V direction to ensure correct analysis of the ⁇ direction data.
  • the XPIC working group needs to coordinate with the transmitting and receiving devices in the V direction. If there is a microwave device failure in the working group, such as an indoor unit (IDU) or an outdoor unit (Outdoor Unit, 0DU), it is possible. Lead to disruption of the entire XPIC Working Group business. Summary of the invention The embodiments of the present invention provide a co-channel dual-polarization microwave device and a receiving signal receiving method, which are used to solve the problem that a microwave device failure in the XPIC working group in the prior art causes the entire XPIC working group to be interrupted.
  • IDU indoor unit
  • 0DU Outdoor Unit
  • the embodiment of the invention provides a co-channel dual-polarization microwave device, including:
  • a first equalizing unit configured to receive a first received signal, where the first received signal is a received signal after cross-polarization interference cancellation, and performs frame synchronization processing on the first received signal to obtain a first frame synchronization state signal and frame synchronization
  • the processed first received signal performs phase noise immunity processing on the first received signal after the frame synchronization processing, and performs quality evaluation on the first received signal after the phase noise immune processing to obtain a first signal quality signal, and the first frame is obtained.
  • the synchronization state signal, the first signal quality signal, and the first received signal after the phase noise immunoprocessing are sent to the synchronization combining unit.
  • a second equalizing unit configured to receive a second received signal, where the second received signal is a received signal that is not subjected to cross-polarization interference cancellation processing, and performs frame synchronization processing on the second received signal to obtain a second frame synchronization status signal and
  • the second received signal after the frame synchronization processing performs phase noise immunity processing on the second received signal after the frame synchronization processing, and performs quality evaluation on the second received signal after the phase noise immune processing to obtain a second signal quality signal, which will be
  • the two-frame synchronization state signal, the second signal quality signal, and the second received signal after the phase noise immunoprocessing are sent to the synchronization combining unit.
  • a synchronization synthesizing unit configured to perform, after the phase-noise immune processing, the first received signal and the phase noise immune processing according to the first frame synchronization state signal, the first signal quality signal, the second frame synchronization state signal, and the second signal quality signal
  • the second received signal is selected, and the selected signal is time-aligned according to the first frame synchronization state signal and the second frame synchronization state signal to implement lossless switching of the selection process.
  • An embodiment of the present invention provides a method for receiving a dual-polarized received signal of a same channel, including: receiving a first received signal, where the first received signal is a received signal after cross-polarization interference cancellation, and the first received signal Performing frame synchronization processing to obtain a first frame synchronization state signal and a first received signal after frame synchronization processing, performing phase noise immunity processing on the first received signal after the frame synchronization processing, and first receiving the signal after phase noise immunity processing Performing quality assessment to obtain a first signal quality signal; receiving a second received signal, wherein the second received signal is not subjected to cross-polarization interference cancellation processing Receiving signal, performing frame synchronization processing on the second received signal, obtaining a second frame synchronization state signal and a second received signal after frame synchronization processing, performing phase noise immunity processing on the second received signal after frame synchronization processing, The second received signal after the noise immune processing is subjected to quality evaluation to obtain a second signal quality signal;
  • the first received signal is received, the first received signal is a received signal after cross-polarization interference cancellation, and the first received signal is subjected to frame synchronization processing to obtain a first frame synchronization state signal and frame synchronization processing.
  • the second received signal is a received signal that is not subjected to cross-polarization interference cancellation processing, and performs frame synchronization processing on the second received signal to obtain a second frame synchronization state signal and a second received signal after frame synchronization processing,
  • the second received signal after the synchronization process performs phase noise immunity processing, and performs quality evaluation on the second received signal after the phase noise immune processing to obtain a second signal quality signal; according to the first frame synchronization state signal, the first signal quality signal, The second frame synchronization state signal and the second signal quality signal are paired with the first received signal after phase noise immunity processing
  • Receiving a second noise signal immunized selectively receives, for delay alignment frame synchronization state signal according to a first and a second frame sync signal to the selected receiving condition signal to effect the selective receiving lossless handover procedure.
  • the second received signal is a received signal that is not subjected to cross-polarization interference cancellation processing. If a microwave device fails to cause a cross-polarization interference cancellation error, the microwave device selects a received signal that is not subjected to cross-polarization interference cancellation processing. And delay alignment processing is performed to achieve lossless switching of the selection process.
  • FIG. 1 is a schematic structural diagram of a dual-polarized microwave device of the same channel according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of another dual-polarized microwave device of the same channel according to an embodiment of the present invention
  • FIG. 1 is a schematic structural diagram of a dual channel polarized microwave device according to an embodiment of the present invention.
  • the first equalization unit 101 is configured to receive a first received signal, where the first received signal is a received signal after cross-polarization interference cancellation, and performs frame synchronization processing on the first received signal to obtain a first frame synchronization status signal and a frame.
  • the first received signal after the synchronization processing performs phase noise immunity processing on the first received signal after the frame synchronization processing, and performs quality evaluation on the first received signal after the phase noise immune processing to obtain a first signal quality signal, which will be first
  • the frame synchronization state signal, the first signal quality signal, and the first received signal after the phase noise immunoprocessing are sent to the synchronization combining unit.
  • the second equalization unit 102 is configured to receive a second received signal, where the second received signal is a received signal that is not subjected to cross-polarization interference cancellation processing, and performs frame synchronization processing on the second received signal to obtain a second frame synchronization status signal. And the second received signal after the frame synchronization processing, performing phase noise immunity processing on the second received signal after the frame synchronization processing, performing quality evaluation on the second received signal after the phase noise immune processing, and obtaining a second signal quality signal, The second frame synchronization state signal, the second signal quality signal, and the second received signal after the phase noise immunity processing are sent to the synchronization combining unit.
  • the synchronization synthesizing unit 103 is configured to perform, according to the first frame synchronization state signal, the first signal quality signal, the second frame synchronization state signal, and the second signal quality signal, the first received signal after the phase noise immune processing
  • the second received signal after the phase noise immune processing is selected, and the selected signal is time-aligned according to the first frame synchronization state signal and the second frame synchronization state signal to implement lossless switching of the selection process.
  • the first equalization unit is configured to perform horizontal polarization H frame synchronization processing on the first received signal
  • the second equalization unit is configured to perform horizontal polarization on the second received signal H frame synchronization processing.
  • the second equalization unit If the first equalization unit fails to perform horizontal polarization H frame synchronization processing on the first received signal, and the second equalization unit fails to perform horizontal polarization H frame synchronization processing on the second received signal, the second equalization The unit performs vertical polarization V frame synchronization processing on the second received signal, and if the synchronization is successful, turns off the transmitting function of the microwave device.
  • the first equalizing unit is configured to perform vertical polarization V frame synchronization processing on the first received signal, where the second equalizing unit is specifically configured to vertically perform the second received signal, if the microwave device is configured to receive the vertically polarized wave. Polarized V-frame synchronization processing.
  • the second equalization unit If the first equalization unit fails to perform vertical polarization V frame synchronization processing on the first received signal, and the second equalization unit fails to perform vertical polarization V frame synchronization processing on the second received signal, the second equalization The unit performs horizontal polarization H frame synchronization processing on the second received signal, and if the synchronization is successful, turns off the transmitting function of the microwave device.
  • the first received signal is received, the first received signal is a received signal after cross-polarization interference cancellation, and the first received signal is subjected to frame synchronization processing to obtain a first frame synchronization state signal and frame synchronization processing.
  • the second received signal is a received signal that is not subjected to cross-polarization interference cancellation processing, and performs frame synchronization processing on the second received signal to obtain a second frame synchronization state signal and a second received signal after frame synchronization processing,
  • the second received signal after the synchronization process performs phase noise immunity processing, and performs quality evaluation on the second received signal after the phase noise immune processing to obtain a second signal quality signal; according to the first frame synchronization state signal, the first signal quality signal, The second frame synchronization state signal and the second signal quality signal are paired with the first received signal after phase noise immunity processing
  • the second received signal after the noise immune processing is selected, and the selected signals are time-aligned according to the first frame synchronization state signal and the second frame synchronization state signal, so as to achieve lossless switching of the selection process.
  • the second received signal is a received signal that is not subjected to cross-polarization interference cancellation processing. If a microwave device fails to cause a cross-polarization interference cancellation error, the microwave device selects a received signal that is not subjected to cross-polarization interference cancellation processing. And delay alignment processing is performed, thereby implementing non-destructive switching of the selection process, determining whether the corresponding peer device is faulty according to the frame synchronization state, and if the fault occurs, turning off the sending function of the device, so that the other peer device can work normally. .
  • the microwave device 1 includes IDU1 and 0DU1, the microwave device 2 includes IDU2 and 0DU2, the microwave device 3 includes IDU3 and 0DU3, and the microwave device 4 includes IDU4 and 0DU4.
  • the microwave device 1 is configured to transmit and receive H polarized waves through the microwave antenna 2, and the microwave The device 3 is for transmitting and receiving H polarized waves through the microwave antenna 1, the microwave device 2 is for transmitting and receiving V polarized waves through the microwave antenna 2, and the microwave device 4 is for transmitting and receiving V polarized waves through the microwave antenna 1.
  • the microwave device 3 and the microwave device 4 transmit the polarized wave, the microwave device 1 and the microwave device 2 receive the polarized wave as an example, the microwave device 3 transmits the H polarized wave, the microwave device 4 transmits the V polarized wave, and the microwave device 1 receives the polarized wave.
  • the signal includes an H polarized wave and a co-channel interference signal V', that is, including H+V', and the signal received by the microwave device 2 includes a V polarized wave and a co-channel interference signal H', that is, includes V+H', and the microwave device 1 and the microwave device 2 mutually receives the received signal, and uses the mutually transmitted signal to perform cross-polarization interference cancellation.
  • the analog-to-digital conversion A receives the signal from 0DU1
  • the analog-to-digital conversion B receives the signal from the 0DU2, and passes through the forward filter A and the forward filter B, respectively, and performs cross-polarization interference at the canceller A.
  • the first received signal is obtained after the cross-polarization interference is cancelled
  • the frame synchronization A performs horizontal polarization H frame synchronization processing on the first received signal to obtain the first frame synchronization state signal and the first received signal after the frame synchronization processing.
  • Noise immunity A performs phase correlation on the first received signal after frame synchronization processing
  • Noise immunity processing for eliminating phase noise, performing quality assessment on the first received signal after phase noise immunoprocessing, obtaining a first signal quality signal, and synchronizing the first frame synchronization state signal, the first signal quality signal, and the phase noise immunity
  • the subsequent first received signal is sent to the synchronous synthesizing unit A.
  • the analog-to-digital conversion A receives the signal from the 0DU1, performs the forward filter A processing to obtain the second received signal, and the frame synchronization B performs the horizontal polarization H-frame synchronization processing on the second received signal to obtain the second frame synchronization state signal and the frame.
  • the second received signal after the synchronization processing, the phase noise immunity B performs phase noise immunity processing on the second received signal after the frame synchronization processing, is used for eliminating phase noise, and performs quality assessment on the second received signal after the phase noise immune processing, A second signal quality signal is obtained, and the second frame synchronization state signal, the second signal quality signal, and the phase noise immune processed second received signal are sent to the synchronization combining unit A.
  • the synchronization synthesizing unit A performs the first received signal after the phase noise immune processing and the second after the phase noise immune processing according to the first frame synchronization state signal, the first signal quality signal, the second frame synchronization state signal, and the second signal quality signal.
  • the received signal is selected, and the selected signal is time-aligned according to the first frame synchronization state signal and the second frame synchronization state signal to implement lossless switching of the selection process.
  • the sync synthesizing unit A selects the signal from the equalization unit A.
  • the analog-to-digital conversion A receives the signal from 0DU1 as H+V
  • the analog-to-digital conversion B receives the signal from 0DU2 as V+H
  • the signal after the cross-polarization interference cancellation is processed by the equalization equalization unit.
  • the signal quality is good, and the synchronous synthesizing unit A selects the signal reception.
  • the microwave device 4 fails, the IDU4 or 0DU4 may be faulty, the signal received by the microwave device 1 is an H-polarized wave, the signal received by the microwave device 2 is an H' polarized wave and noise, and the analog-to-digital conversion A receives a signal from the 0DU1.
  • H the number conversion B receives the signal H from 0DU2, and the noise
  • the canceler A performs the cross-polarization interference cancellation to cause the signal quality to deteriorate, and the signal without the cross-polarization interference cancellation is processed by the equalization equalization unit B.
  • the synchronous synthesizing unit A selects the path signal reception.
  • the synchronization synthesizing unit A delays the alignment of the selected signal according to the first frame synchronization state signal and the second frame synchronization state signal, so that the lossless switching of the selection process can be implemented. Time alignment can be achieved by adjusting the FIFO memory.
  • the analog-to-digital conversion C receives the signal from the 0DU2, and the analog-to-digital conversion D receives
  • the signal from the ODU1 passes through the forward filter C and the forward filter D, respectively, and performs cross-polarization interference cancellation on the canceller C. After the cross-polarization interference is cancelled, the first received signal is obtained, and the frame synchronization C is the first received signal.
  • Performing vertical polarization V frame synchronization processing to obtain a first frame synchronization state signal and a first received signal after frame synchronization processing, and the phase noise immunity C performs phase noise immunity processing on the first received signal after the frame synchronization processing, and performs phase noise immunity
  • the first received signal after the immunoprocessing is subjected to quality evaluation to obtain a first signal quality signal, and the first frame synchronization state signal, the first signal quality signal, and the phase noise immune processed first received signal are sent to the synchronization synthesis unit.
  • the analog-to-digital conversion C receives the signal from the 0DU2, performs the forward filter C processing to obtain the second received signal, and the frame synchronization D performs the vertical polarization V-frame synchronization processing on the second received signal to obtain the second frame synchronization state signal and the frame.
  • the second received signal after the synchronization processing, the phase noise immunity D performs phase noise immunity processing on the second received signal after the frame synchronization processing, and after the phase noise immune processing
  • the second received signal is subjected to quality evaluation to obtain a second signal quality signal, and the second frame synchronization state signal, the second signal quality signal, and the phase noise immune processed second received signal are sent to the synchronous synthesizing unit C.
  • the first frame synchronization state signal Performing, by the first frame synchronization state signal, the first signal quality signal, the second frame synchronization state signal, and the second signal quality signal, the first received signal after the phase noise immune processing and the second received signal after the phase noise immune processing Selecting, delay-aligning the selected signals according to the first frame synchronization state signal and the second frame synchronization state signal, so as to implement lossless switching of the selection process.
  • the analog-to-digital conversion C receives the signal from 0DU2 as V+H
  • the analog-to-digital conversion D receives the signal from 0DU1 as H+V
  • the signal after the cross-polarization interference cancellation is processed by the equalization equalization unit.
  • the signal quality is good, and the synchronous synthesizing unit C selects the path signal to receive.
  • the IDU4 or the 0DU4 may be faulty, the signal received by the microwave device 1 is an H-polarized wave, the signal received by the microwave device 2 is an H'-polarized wave and noise, and the analog-to-digital conversion C receives the signal from the 0DU2.
  • H, polarized wave and noise, analog-to-digital conversion D receives signal H from 0DU1
  • frame synchronization C fails vertical polarization V frame synchronization processing of the first received signal
  • frame synchronization D vertically polarizes the second received signal V
  • the frame synchronization processing fails.
  • the frame synchronization D performs horizontal polarization H frame synchronization processing on the second received signal.
  • the transmission function of the microwave device 2 is turned off.
  • the microwave device 1 and the microwave device 2 transmit polarized waves to the microwave device 3 and the microwave device 4, the microwave device 1 transmits an H polarized wave, and the microwave device 2 transmits a V polarized wave, and the signal received by the microwave device 3 includes The H polarized wave and the co-channel interference signal ⁇ , that is, including H+V′, the signals received by the microwave device 4 include a V polarized wave and a co-channel interference signal ,, that is, including V+H′, the microwave device 3, and the microwave device. 4 mutually receive and receive signals, and use the signals sent by each other to perform cross-polarization interference cancellation.
  • the microwave device 2 determines that the microwave device 4 is faulty and is turned off. The transmitting function of the microwave device 2 does not transmit the V polarized wave, and the signal received by the microwave device 3 does not have an interference signal from the V polarized wave, and can be correctly parsed without receiving the interference canceling signal from the microwave device 4. H signal.
  • the microwave device 4 is faulty, and the canceller A of the microwave device 1 is erroneously cancelled.
  • the synchronous synthesizing unit A can select not to cancel the signal according to the frame synchronization state and the signal quality, so that the correct resolution can be correctly performed.
  • the H polarized wave is output, and the switching process is time-aligned, which can ensure non-destructive switching and ensure the benefit of the customer.
  • the microwave device 2 determines the failure of the microwave device 4 through the frame synchronization condition, and turns off the transmitting function of the microwave device 1 to ensure the microwave.
  • the horizontal polarization wave can be correctly parsed, thereby ensuring that the single point failure of the XPIC protection group does not affect the service of the entire XPIC protection group.
  • FIG. 3 is a schematic flowchart of a method for receiving a dual channel polarization receiving signal according to an embodiment of the present invention.
  • S301 Receive a first received signal, where the first received signal is a received signal after cross-polarization interference cancellation, and performs frame synchronization processing on the first received signal to obtain a first frame synchronization state signal and a first frame synchronization process.
  • the selection is performed, and the selected signals are time-aligned according to the first frame synchronization state signal and the second frame synchronization state signal to implement lossless switching of the selection process.
  • the performing the frame synchronization processing on the first received signal includes: performing horizontal polarization H frame synchronization processing on the first received signal; and performing frame synchronization processing on the second received signal, specifically: performing: Horizontally polarized H-frame synchronization processing.
  • the second received signal is subjected to vertical polarization V frame synchronization processing, if the synchronization is successful. And turning off the transmitting function of the microwave device that receives the first received signal and the second received signal.
  • the performing the frame synchronization processing on the first received signal includes: performing vertical polarization V frame synchronization processing on the first received signal; and performing frame synchronization processing on the second received signal, specifically: performing: Vertically polarized V-frame synchronization processing.
  • the horizontally polarized H frame synchronization processing is performed on the second received signal, if the synchronization is successful. And turning off the transmitting function of the microwave device that receives the first received signal and the second received signal.
  • the first received signal is received, the first received signal is a received signal after cross-polarization interference cancellation, and the first received signal is subjected to frame synchronization processing to obtain a first frame synchronization state signal and frame synchronization processing.
  • the received signal of the interference cancellation processing performs frame synchronization processing on the second received signal to obtain a second frame synchronization state signal and a second received signal after the frame synchronization process, and performs phase noise immunity processing on the second received signal after the frame synchronization process And performing quality assessment on the second received signal after the phase noise immune processing to obtain a second signal quality signal; according to the first frame synchronization state signal, the first signal quality signal, the second frame synchronization state signal, and the second signal quality signal pair
  • the first received signal after the phase noise immunoprocessing and the second received signal after the phase noise immune processing are selected, and the selected signal is time-aligned according to the first frame synchronization state signal and the second frame synchronization state signal, Achieve non-destructive switching of the selection process.
  • the second received signal is a received signal that is not subjected to cross-polarization interference cancellation processing. If a microwave device fails to cause a cross-polarization interference cancellation error, the microwave device selects a received signal that is not subjected to cross-polarization interference cancellation processing. And delay alignment processing is performed to achieve lossless switching of the selection process.
  • the embodiments of the present invention can be implemented by means of software plus a necessary general hardware platform, and of course, can also be implemented by hardware. Based on such understanding, the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product.
  • the computer software product is stored in a storage medium and includes a plurality of instructions.
  • a computer device (which may be a personal computer, server, or network device, etc.) is caused to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明实施例公开了一种同波道双极化微波设备和接收信号接收方法,对交叉极化干扰抵消后的第一接收信号进行帧同步处理,对帧同步处理后的第一接收信号进行相噪免疫处理;对未进行交叉极化干扰抵消处理的第二接收信号进行帧同步处理,对帧同步处理后的第二接收信号进行相噪免疫处理,根据帧同步状态信号和信号质量信号对相噪免疫处理后的第一接收信号和相噪免疫处理后的第二接收信号进行选收,根据帧同步状态信号对选收的信号进行延时对齐,以实现选收过程的无损切换。如果一个微波设备故障导致交叉极化干扰抵消错误,则微波设备将会选收未进行交叉极化干扰抵消处理的接收信号,并进行了延时对齐处理,从而实现选收过程的无损切换。

Description

一种同波道双极化微波设备和接收信号接收方法 技术领域
本发明涉及无线技术领域, 尤其涉及一种同波道双极化微波设备和接收 信号接收方法。 背景技术
微波技术直接通过空间传送数据, 不需要铺设光纤或是电缆等, 在城市、 偏远地区或者特殊地区例如河流等具有明显的工程优势; 微波技术组网方便, 使用方式灵活, 业务开通时间短; 随着微波技术的发展, 微波设备的成本逐 渐降低, 因此, 微波技术的使用越来越广泛。
同波道双极化 (Co-Channel Dual Polarization , CCDP )传输技术, 可 以实现在空间同一频道内同时传输水平极化 ( Horizontal Polarization, H ) 和垂直极化(Vertical Polarization, V)两个正交极化波, 使单波道传输业 务容量增大一倍。 由于双极化信号在传送过程中受双极化天线的特性和空间 传输环境的影响, 到达接收机的 H和 V路信号并不是完全正交的, 即 H路接收机 会收到 V信号的分量 V, , 成为同频干扰, 严重时可能导致接收机解调失败。
现有技术中使用交叉极化干扰抵消 ( Cross Polarization Interference Cancellation, XPIC)技术, 通过干 信号 4氏消的方式解决极化干 ·ί尤。 以 Η方 向为例, 接收侧利用 XPIC工作组 V方向互送的信号抵消接收信号 (Η + V, ) 中的同频干扰信号 V, , 从而保证 Η方向数据的正确的解析。
XPIC工作组需要 Η和 V方向发送和接收设备的相互协调, 如果工作组中有 一个微波设备故障, 例如室内单元(Indoor Unit, IDU)或室外单元(Outdoor Unit, 0DU)出现故障, 则有可能导致整个 XPIC工作组业务中断。 发明内容 本发明实施例提供了一种同波道双极化微波设备和接收信号接收方法, 用以解决现有技术中 XPIC工作组中一个微波设备故障导致整个 XPIC工作组 业务中断的问题。
本发明实施例提供了一种同波道双极化微波设备, 包括:
第一均衡单元, 用于接收第一接收信号, 所述第一接收信号为交叉极化 干扰抵消后的接收信号, 对第一接收信号进行帧同步处理, 得到第一帧同步 状态信号和帧同步处理后的第一接收信号, 对帧同步处理后的第一接收信号 进行相噪免疫处理, 对相噪免疫处理后的第一接收信号进行质量评估, 得到 第一信号质量信号, 将第一帧同步状态信号、 第一信号质量信号和相噪免疫 处理后的第一接收信号发送到同步合成单元。
第二均衡单元, 用于接收第二接收信号, 所述第二接收信号为未进行交 叉极化干扰抵消处理的接收信号, 对第二接收信号进行帧同步处理, 得到第 二帧同步状态信号和帧同步处理后的第二接收信号, 对帧同步处理后的第二 接收信号进行相噪免疫处理, 对相噪免疫处理后的第二接收信号进行质量评 估, 得到第二信号质量信号, 将第二帧同步状态信号、 第二信号质量信号和 相噪免疫处理后的第二接收信号发送到同步合成单元。
同步合成单元, 用于根据第一帧同步状态信号、 第一信号质量信号、 第 二帧同步状态信号和第二信号质量信号对相噪免疫处理后的第一接收信号和 相噪免疫处理后的第二接收信号进行选收, 根据第一帧同步状态信号和第二 帧同步状态信号对选收的信号进行延时对齐, 以实现选收过程的无损切换。
本发明实施例提供了一种同波道双极化接收信号的接收方法, 包括: 接收第一接收信号, 所述第一接收信号为交叉极化干扰抵消后的接收信 号, 对第一接收信号进行帧同步处理, 得到第一帧同步状态信号和帧同步处 理后的第一接收信号, 对帧同步处理后的第一接收信号进行相噪免疫处理, 对相噪免疫处理后的第一接收信号进行质量评估, 得到第一信号质量信号; 接收第二接收信号, 所述第二接收信号为未进行交叉极化干扰抵消处理 的接收信号, 对第二接收信号进行帧同步处理, 得到第二帧同步状态信号和 帧同步处理后的第二接收信号, 对帧同步处理后的第二接收信号进行相噪免 疫处理, 对相噪免疫处理后的第二接收信号进行质量评估, 得到第二信号质 量信号;
根据第一帧同步状态信号、 第一信号质量信号、 第二帧同步状态信号和 第二信号质量信号对相噪免疫处理后的第一接收信号和相噪免疫处理后的第 二接收信号进行选收, 根据第一帧同步状态信号和第二帧同步状态信号对选 收的信号进行延时对齐, 以实现选收过程的无损切换。
本发明实施例中, 接收第一接收信号, 所述第一接收信号为交叉极化干 扰抵消后的接收信号, 对第一接收信号进行帧同步处理, 得到第一帧同步状 态信号和帧同步处理后的第一接收信号, 对帧同步处理后的第一接收信号进 行相噪免疫处理, 对相噪免疫处理后的第一接收信号进行质量评估, 得到第 一信号质量信号; 接收第二接收信号, 所述第二接收信号为未进行交叉极化 干扰抵消处理的接收信号, 对第二接收信号进行帧同步处理, 得到第二帧同 步状态信号和帧同步处理后的第二接收信号, 对帧同步处理后的第二接收信 号进行相噪免疫处理, 对相噪免疫处理后的第二接收信号进行质量评估, 得 到第二信号质量信号; 根据第一帧同步状态信号、 第一信号质量信号、 第二 帧同步状态信号和第二信号质量信号对相噪免疫处理后的第一接收信号和相 噪免疫处理后的第二接收信号进行选收, 根据第一帧同步状态信号和第二帧 同步状态信号对选收的信号进行延时对齐, 以实现选收过程的无损切换。 所 述第二接收信号为未进行交叉极化干扰抵消处理的接收信号, 如果一个微波 设备故障导致交叉极化干扰抵消错误, 则微波设备将会选收未进行交叉极化 干扰抵消处理的接收信号, 并且进行了延时对齐处理, 从而实现选收过程的 无损切换。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案, 下面将对实 施例或现有技术描述中所需要使用的附图作筒单地介绍, 显而易见地, 下面 描述中的附图仅仅是本发明的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性的前提下, 还可以根据这些附图获得其他的附图。
图 1为本发明实施例提供的一种同波道双极化微波设备的结构示意图; 图 2为本发明实施例提供的另一种同波道双极化微波设备的结构示意图; 图 3 为本发明实施例提供的一种同波道双极化接收信号的接收方法的流 程示意图。 具体实施方式
下面结合附图对本发明的具体实施方式进行说明。
图 1为本发明实施例提供的一种同波道双极化微波设备的结构示意图。 第一均衡单元 101 , 用于接收第一接收信号, 所述第一接收信号为交叉极 化干扰抵消后的接收信号, 对第一接收信号进行帧同步处理, 得到第一帧同 步状态信号和帧同步处理后的第一接收信号, 对帧同步处理后的第一接收信 号进行相噪免疫处理, 对相噪免疫处理后的第一接收信号进行质量评估, 得 到第一信号质量信号, 将第一帧同步状态信号、 第一信号质量信号和相噪免 疫处理后的第一接收信号发送到同步合成单元。
第二均衡单元 102 , 用于接收第二接收信号, 所述第二接收信号为未进行 交叉极化干扰抵消处理的接收信号, 对第二接收信号进行帧同步处理, 得到 第二帧同步状态信号和帧同步处理后的第二接收信号, 对帧同步处理后的第 二接收信号进行相噪免疫处理, 对相噪免疫处理后的第二接收信号进行质量 评估, 得到第二信号质量信号, 将第二帧同步状态信号、 第二信号质量信号 和相噪免疫处理后的第二接收信号发送到同步合成单元。
同步合成单元 103 , 用于根据第一帧同步状态信号、 第一信号质量信号、 第二帧同步状态信号和第二信号质量信号对相噪免疫处理后的第一接收信号 和相噪免疫处理后的第二接收信号进行选收, 根据第一帧同步状态信号和第 二帧同步状态信号对选收的信号进行延时对齐, 以实现选收过程的无损切换。
如果微波设备用于接收水平极化波, 则所述第一均衡单元用于对第一接 收信号进行水平极化 H帧同步处理, 所述第二均衡单元用于对第二接收信号 进行水平极化 H帧同步处理。
如果所述第一均衡单元对第一接收信号进行水平极化 H帧同步处理失败, 且所述第二均衡单元对第二接收信号进行水平极化 H帧同步处理失败, 则所 述第二均衡单元对第二接收信号进行垂直极化 V帧同步处理, 如果同步成功, 则关闭所述微波设备的发送功能。
如果微波设备用于接收垂直极化波, 所述第一均衡单元具体用于对第一 接收信号进行垂直极化 V帧同步处理, 所述第二均衡单元具体用于对第二接 收信号进行垂直极化 V帧同步处理。
如果所述第一均衡单元对第一接收信号进行垂直极化 V帧同步处理失败, 且所述第二均衡单元对第二接收信号进行垂直极化 V帧同步处理失败, 则所 述第二均衡单元对第二接收信号进行水平极化 H帧同步处理, 如果同步成功, 则关闭所述微波设备的发送功能。
本发明实施例中, 接收第一接收信号, 所述第一接收信号为交叉极化干 扰抵消后的接收信号, 对第一接收信号进行帧同步处理, 得到第一帧同步状 态信号和帧同步处理后的第一接收信号, 对帧同步处理后的第一接收信号进 行相噪免疫处理, 对相噪免疫处理后的第一接收信号进行质量评估, 得到第 一信号质量信号; 接收第二接收信号, 所述第二接收信号为未进行交叉极化 干扰抵消处理的接收信号, 对第二接收信号进行帧同步处理, 得到第二帧同 步状态信号和帧同步处理后的第二接收信号, 对帧同步处理后的第二接收信 号进行相噪免疫处理, 对相噪免疫处理后的第二接收信号进行质量评估, 得 到第二信号质量信号; 根据第一帧同步状态信号、 第一信号质量信号、 第二 帧同步状态信号和第二信号质量信号对相噪免疫处理后的第一接收信号和相 噪免疫处理后的第二接收信号进行选收, 根据第一帧同步状态信号和第二帧 同步状态信号对选收的信号进行延时对齐, 以实现选收过程的无损切换。 所 述第二接收信号为未进行交叉极化干扰抵消处理的接收信号, 如果一个微波 设备故障导致交叉极化干扰抵消错误, 则微波设备将会选收未进行交叉极化 干扰抵消处理的接收信号, 并且进行了延时对齐处理, 从而实现选收过程的 无损切换, 根据帧同步状态判断相应对端设备是否故障, 如果故障则关闭本 设备的发送功能, 从而使得另一个对端设备能够正常工作。
图 2为本发明实施例提供的另一种同波道双极化微波设备的结构示意图。 如图 2所示, 包括微波设备 1、 微波设备 2、 微波设备 3、 微波设备 4 , 本发明实 施例中的微波设备包括室内单元(Indoor Uni t, IDU)和室外单元(Outdoor Uni t, 0DU)设备, 在其它实施例中, 也可以为一体化微波设备。 微波设备 1包 括 IDU1和 0DU1 , 微波设备 2包括 IDU2和 0DU2 , 微波设备 3包括 IDU3和 0DU3 , 微 波设备 4包括 IDU4和 0DU4 , 微波设备 1用于通过微波天线 2发送和接收 H极化波, 微波设备 3用于通过微波天线 1发送和接收 H极化波, 微波设备 2用于通过微波 天线 2发送和接收 V极化波, 微波设备 4用于通过微波天线 1发送和接收 V极化 波。
下面以微波设备 3和微波设备 4发送极化波, 微波设备 1和微波设备 2 接收极化波为例, 微波设备 3发送 H极化波, 微波设备 4发送 V极化波, 微 波设备 1接收的信号包括 H极化波和同频干扰信号 V' , 即包括 H+V' ,微波设 备 2接收的信号包括 V极化波和同频干扰信号 H' ,即包括 V+H' ,微波设备 1 和微波设备 2互送接收到信号, 并利用互送的信号进行交叉极化干扰抵消。
以微波设备 1为例, 模数转换 A接收来自 0DU1的信号, 模数转换 B接收 来自 0DU2的信号,分别经过前向滤波器 A和前向滤波器 B后在抵消器 A进行 交叉极化干扰抵消, 交叉极化干扰抵消后得到第一接收信号, 帧同步 A对第 一接收信号进行水平极化 H帧同步处理, 得到第一帧同步状态信号和帧同步 处理后的第一接收信号, 相噪免疫 A对帧同步处理后的第一接收信号进行相 噪免疫处理, 用于消除相位噪声, 对相噪免疫处理后的第一接收信号进行质 量评估, 得到第一信号质量信号, 将第一帧同步状态信号、 第一信号质量信 号和相噪免疫处理后的第一接收信号发送到同步合成单元 A。模数转换 A接收 来自 0DU1的信号, 进行前向滤波器 A处理后得到第二接收信号, 帧同步 B对 第二接收信号进行水平极化 H帧同步处理, 得到第二帧同步状态信号和帧同 步处理后的第二接收信号, 相噪免疫 B对帧同步处理后的第二接收信号进行 相噪免疫处理, 用于消除相位噪声, 对相噪免疫处理后的第二接收信号进行 质量评估, 得到第二信号质量信号, 将第二帧同步状态信号、 第二信号质量 信号和相噪免疫处理后的第二接收信号发送到同步合成单元 A。同步合成单元 A根据第一帧同步状态信号、 第一信号质量信号、 第二帧同步状态信号和第二 信号质量信号对相噪免疫处理后的第一接收信号和相噪免疫处理后的第二接 收信号进行选收, 根据第一帧同步状态信号和第二帧同步状态信号对选收的 信号进行延时对齐, 以实现选收过程的无损切换。 正常情况下, 同步合成单 元 A选择来自均衡单元 A的信号。
正常情况下,模数转换 A接收来自 0DU1的信号为 H+V,,模数转换 B接收 来自 0DU2的信号为 V+H,,进行交叉极化干扰抵消后的信号经过均衡均衡单元 处理后 A的信号质量好, 同步合成单元 A选择该路信号接收。
如果微波设备 4故障, 可能是 IDU4或者 0DU4故障, 则微波设备 1接收 的信号为 H极化波, 微波设备 2接收的信号为 H' 极化波和噪声, 模数转换 A 接收来自 0DU1的信号 H , 数转换 B接收来自 0DU2的信号 H, 和噪声, 抵消器 A进行交叉极化干扰抵消导致信号质量变差,未进行交叉极化干扰抵消的信号 经过均衡均衡单元 B处理后的信号质量好, 同步合成单元 A选择该路信号接 收。 如果同步合成单元 A选收的信号发生变化, 同步合成单元 A根据第一帧 同步状态信号和第二帧同步状态信号对选收的信号进行延时对齐, 可以实现 选收过程的无损切换, 延时对齐可以通过调整先进先出存储器实现。
以微波设备 2为例, 模数转换 C接收来自 0DU2的信号, 模数转换 D接收 来自 ODUl的信号,分别经过前向滤波器 C和前向滤波器 D后在抵消器 C进行 交叉极化干扰抵消, 交叉极化干扰抵消后得到第一接收信号, 帧同步 C对第 一接收信号进行垂直极化 V帧同步处理, 得到第一帧同步状态信号和帧同步 处理后的第一接收信号, 相噪免疫 C对帧同步处理后的第一接收信号进行相 噪免疫处理, 对相噪免疫处理后的第一接收信号进行质量评估, 得到第一信 号质量信号, 将第一帧同步状态信号、 第一信号质量信号和相噪免疫处理后 的第一接收信号发送到同步合成单元(。 模数转换 C接收来自 0DU2的信号, 进行前向滤波器 C处理后得到第二接收信号, 帧同步 D对第二接收信号进行 垂直极化 V帧同步处理, 得到第二帧同步状态信号和帧同步处理后的第二接 收信号, 相噪免疫 D对帧同步处理后的第二接收信号进行相噪免疫处理, 对 相噪免疫处理后的第二接收信号进行质量评估, 得到第二信号质量信号, 将 第二帧同步状态信号、 第二信号质量信号和相噪免疫处理后的第二接收信号 发送到同步合成单元 C。 同步合成单元 C根据第一帧同步状态信号、 第一信号 质量信号、 第二帧同步状态信号和第二信号质量信号对相噪免疫处理后的第 一接收信号和相噪免疫处理后的第二接收信号进行选收, 根据第一帧同步状 态信号和第二帧同步状态信号对选收的信号进行延时对齐, 以实现选收过程 的无损切换。
正常情况下,模数转换 C接收来自 0DU2的信号为 V+H,,模数转换 D接收 来自 0DU1的信号为 H+V,,进行交叉极化干扰抵消后的信号经过均衡均衡单元 处理后 C的信号质量好, 同步合成单元 C选择该路信号接收。
如果微波设备 4故障, 可能是 IDU4或者 0DU4故障, 则微波设备 1接收 的信号为 H极化波, 微波设备 2接收的信号为 H' 极化波和噪声, 模数转换 C 接收来自 0DU2的信号 H, 极化波和噪声, 模数转换 D接收来自 0DU1的信号 H, 帧同步 C对第一接收信号进行垂直极化 V帧同步处理失败, 帧同步 D对第 二接收信号进行垂直极化 V帧同步处理失败, 此时帧同步 D对第二接收信号 进行水平极化 H帧同步处理, 如果同步成功, 则关闭微波设备 2的发送功能。 正常情况下, 微波设备 1和微波设备 2会发送极化波到微波设备 3和微 波设备 4 , 微波设备 1发送 H极化波, 微波设备 2发送 V极化波, 微波设备 3 接收的信号包括 H极化波和同频干扰信号 Ψ , 即包括 H+V' ,微波设备 4接收 的信号包括 V极化波和同频干扰信号 Η, ,即包括 V+H' ,微波设备 3和微波设 备 4互送接收到信号, 并利用互送的信号进行交叉极化干扰抵消。
如果微波设备 4故障, 则微波设备 3无法收到来自微波设备 4的干扰抵 消信号, 从而可能无法正确解析出 H信号, 本发明实施例中, 微波设备 2判 断出微波设备 4故障, 并且关闭了微波设备 2 的发送功能, 从而不会发送 V 极化波, 微波设备 3接收的信号中没有来自 V极化波的干扰信号, 从而不收 到来自微波设备 4的干扰抵消信号也能够正确解析出 H信号。
本发明实施例中, 微波设备 4故障, 导致微波设备 1的抵消器 A进行了 错误的抵消, 同步合成单元 A根据帧同步状态和信号质量, 可以选择未进行 抵消信号进行接收, 从而可以正确解析出 H极化波, 并且切换过程进行了延 时对齐, 可以保证无损切换, 保证了客户利益, 微波设备 2 通过帧同步情况 判断出微波设备 4故障, 关闭了微波设备 1的发送功能, 保证微波设备 3在 无法收到微波设备 4 的干扰抵消信号的情况下, 也能够正确的解析出水平极 化波, 从而保证 XPIC保护组的单点失效不会影响整个 XPIC保护组的业务。
图 3 为本发明实施例提供的一种同波道双极化接收信号接收方法的流程 示意图。
5301 ,接收第一接收信号, 所述第一接收信号为交叉极化干扰抵消后的接 收信号, 对第一接收信号进行帧同步处理, 得到第一帧同步状态信号和帧同 步处理后的第一接收信号, 对帧同步处理后的第一接收信号进行相噪免疫处 理, 对相噪免疫处理后的第一接收信号进行质量评估, 得到第一信号质量信 号;
5302,接收第二接收信号, 所述第二接收信号为未进行交叉极化干扰抵消 处理的接收信号, 对第二接收信号进行帧同步处理, 得到第二帧同步状态信 号和帧同步处理后的第二接收信号, 对帧同步处理后的第二接收信号进行相 噪免疫处理, 对相噪免疫处理后的第二接收信号进行质量评估, 得到第二信 号质量信号;
S303,根据第一帧同步状态信号、 第一信号质量信号、 第二帧同步状态信 号和第二信号质量信号对相噪免疫处理后的第一接收信号和相噪免疫处理后 的第二接收信号进行选收, 根据第一帧同步状态信号和第二帧同步状态信号 对选收的信号进行延时对齐, 以实现选收过程的无损切换。
其中, 所述对第一接收信号进行帧同步处理具体包括: 对第一接收信号 进行水平极化 H帧同步处理; 所述对第二接收信号进行帧同步处理具体包括: 对第二接收信号进行水平极化 H帧同步处理。
如果对第一接收信号进行水平极化 H帧同步处理失败, 且对第二接收信 号进行水平极化 H帧同步处理失败, 则对第二接收信号进行垂直极化 V帧同 步处理, 如果同步成功, 则关闭接收第一接收信号和第二接收信号的微波设 备的发送功能。
其中, 所述对第一接收信号进行帧同步处理具体包括: 对第一接收信号 进行垂直极化 V帧同步处理; 所述对第二接收信号进行帧同步处理具体包括: 对第二接收信号进行垂直极化 V帧同步处理。
如果对第一接收信号进行垂直极化 V帧同步处理失败, 且对第二接收信 号进行垂直极化 V帧同步处理失败, 则对第二接收信号进行水平极化 H帧同 步处理, 如果同步成功, 则关闭接收第一接收信号和第二接收信号的微波设 备的发送功能。
本发明实施例中, 接收第一接收信号, 所述第一接收信号为交叉极化干 扰抵消后的接收信号, 对第一接收信号进行帧同步处理, 得到第一帧同步状 态信号和帧同步处理后的第一接收信号, 对帧同步处理后的第一接收信号进 行相噪免疫处理, 对相噪免疫处理后的第一接收信号进行质量评估, 得到第 一信号质量信号; 接收第二接收信号, 所述第二接收信号为未进行交叉极化 干扰抵消处理的接收信号, 对第二接收信号进行帧同步处理, 得到第二帧同 步状态信号和帧同步处理后的第二接收信号, 对帧同步处理后的第二接收信 号进行相噪免疫处理, 对相噪免疫处理后的第二接收信号进行质量评估, 得 到第二信号质量信号; 根据第一帧同步状态信号、 第一信号质量信号、 第二 帧同步状态信号和第二信号质量信号对相噪免疫处理后的第一接收信号和相 噪免疫处理后的第二接收信号进行选收, 根据第一帧同步状态信号和第二帧 同步状态信号对选收的信号进行延时对齐, 以实现选收过程的无损切换。 所 述第二接收信号为未进行交叉极化干扰抵消处理的接收信号, 如果一个微波 设备故障导致交叉极化干扰抵消错误, 则微波设备将会选收未进行交叉极化 干扰抵消处理的接收信号, 并且进行了延时对齐处理, 从而实现选收过程的 无损切换。
通过以上的实施方式的描述, 本领域的技术人员可以清楚地了解到本发 明实施例可借助软件加必需的通用硬件平台的方式来实现, 当然也可以通过 硬件实施。 基于这样的理解, 本发明实施例的技术方案本质上或者说对现有 技术做出贡献的部分可以以软件产品的形式体现出来, 该计算机软件产品存 储在一个存储介质中, 包括若干指令用以使得一台计算机设备(可以是个人 计算机, 服务器, 或者网络设备等)执行本发明各个实施例所述的方法。
以上揭露的仅为本发明的较佳实施例而已, 当然不能以此来限定本发明 之权利范围, 因此依本发明权利要求所作的等同变化, 仍属本发明所涵盖的 范围。

Claims

权利 要求 书
1、 一种同波道双极化微波设备, 其特征在于, 包括:
第一均衡单元, 用于接收第一接收信号, 所述第一接收信号为交叉极化干 扰抵消后的接收信号, 对第一接收信号进行帧同步处理, 得到第一帧同步状态 信号和帧同步处理后的第一接收信号, 对帧同步处理后的第一接收信号进行相 噪免疫处理, 对相噪免疫处理后的第一接收信号进行质量评估, 得到第一信号 质量信号, 将第一帧同步状态信号、 第一信号质量信号和相噪免疫处理后的第 一接收信号发送到同步合成单元。
第二均衡单元, 用于接收第二接收信号, 所述第二接收信号为未进行交叉 极化干扰抵消处理的接收信号, 对第二接收信号进行帧同步处理, 得到第二帧 同步状态信号和帧同步处理后的第二接收信号, 对帧同步处理后的第二接收信 号进行相噪免疫处理, 对相噪免疫处理后的第二接收信号进行质量评估, 得到 第二信号质量信号, 将第二帧同步状态信号、 第二信号质量信号和相噪免疫处 理后的第二接收信号发送到同步合成单元。
同步合成单元, 用于根据第一帧同步状态信号、 第一信号质量信号、 第二 帧同步状态信号和第二信号质量信号对相噪免疫处理后的第一接收信号和相噪 免疫处理后的第二接收信号进行选收, 根据第一帧同步状态信号和第二帧同步 状态信号对选收的信号进行延时对齐, 以实现选收过程的无损切换。
2、 根据权利要求 1所述的微波设备, 其特征在于, 所述第一均衡单元具体 用于对第一接收信号进行水平极化 H帧同步处理, 所述第二均衡单元具体用于 对第二接收信号进行水平极化 H帧同步处理。
3、 根据权利要求 1所述的微波设备, 其特征在于, 所述第一均衡单元具体 用于对第一接收信号进行垂直极化 V帧同步处理, 所述第二均衡单元具体用于 对第二接收信号进行垂直极化 V帧同步处理。
4、 根据权利要求 2所述的微波设备, 其特征在于, 如果所述第一均衡单元 对第一接收信号进行水平极化 H帧同步处理失败, 且所述第二均衡单元对第二 接收信号进行水平极化 H帧同步处理失败, 则所述第二均衡单元对第二接收信 号进行垂直极化 V帧同步处理, 如果同步成功, 则关闭所述微波设备的发送功
6匕
3匕。
5、 根据权利要求 3所述的微波设备, 其特征在于, 如果所述第一均衡单元 对第一接收信号进行垂直极化 V帧同步处理失败, 且所述第二均衡单元对第二 接收信号进行垂直极化 V帧同步处理失败, 则所述第二均衡单元对第二接收信 号进行水平极化 H帧同步处理, 如果同步成功, 则关闭所述微波设备的发送功
6匕
3匕。
6、 一种同波道双极化接收信号的接收方法, 其特征在于, 包括:
接收第一接收信号, 所述第一接收信号为交叉极化干扰抵消后的接收信号, 对第一接收信号进行帧同步处理, 得到第一帧同步状态信号和帧同步处理后的 第一接收信号, 对帧同步处理后的第一接收信号进行相噪免疫处理, 对相噪免 疫处理后的第一接收信号进行质量评估, 得到第一信号质量信号;
接收第二接收信号, 所述第二接收信号为未进行交叉极化干扰抵消处理的 接收信号, 对第二接收信号进行帧同步处理, 得到第二帧同步状态信号和帧同 步处理后的第二接收信号, 对帧同步处理后的第二接收信号进行相噪免疫处理, 对相噪免疫处理后的第二接收信号进行质量评估, 得到第二信号质量信号; 根据第一帧同步状态信号、 第一信号质量信号、 第二帧同步状态信号和第 二信号质量信号对相噪免疫处理后的第一接收信号和相噪免疫处理后的第二接 收信号进行选收, 根据第一帧同步状态信号和第二帧同步状态信号对选收的信 号进行延时对齐, 以实现选收过程的无损切换。
7、 根据权利要求 6所述的方法, 其特征在于,
所述对第一接收信号进行帧同步处理具体包括: 对第一接收信号进行水平 极化 H帧同步处理;
所述对第二接收信号进行帧同步处理具体包括: 对第二接收信号进行水平 极化 H帧同步处理。
8、 根据权利要求 6所述的方法, 其特征在于,
所述对第一接收信号进行帧同步处理具体包括: 对第一接收信号进行垂直 极化 V帧同步处理;
所述对第二接收信号进行帧同步处理具体包括: 对第二接收信号进行垂直 极化 V帧同步处理。
9、 根据权利要求 7所述的方法, 其特征在于, 如果对第一接收信号进行水 平极化 H帧同步处理失败,且对第二接收信号进行水平极化 H帧同步处理失败, 则对第二接收信号进行垂直极化 V帧同步处理, 如果同步成功, 则关闭接收第 一接收信号和第二接收信号的微波设备的发送功能。
10、 根据权利要求 8所述的方法, 其特征在于, 如果对第一接收信号进行 垂直极化 V帧同步处理失败, 且对第二接收信号进行垂直极化 V帧同步处理失 败, 则对第二接收信号进行水平极化 H帧同步处理, 如果同步成功, 则关闭接 收第一接收信号和第二接收信号的微波设备的发送功能。
PCT/CN2011/082231 2011-11-15 2011-11-15 一种同波道双极化微波设备和接收信号接收方法 WO2012167554A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP11867122.1A EP2770647B1 (en) 2011-11-15 2011-11-15 Co-channel dual polarized microwave device and receiving method for receiving signal
CN201180002494.1A CN102510766B (zh) 2011-11-15 2011-11-15 一种同波道双极化微波设备和接收信号接收方法
PCT/CN2011/082231 WO2012167554A1 (zh) 2011-11-15 2011-11-15 一种同波道双极化微波设备和接收信号接收方法
US14/279,048 US9049060B2 (en) 2011-11-15 2014-05-15 Co-channel dual polarized microwave device and method for receiving receive signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/082231 WO2012167554A1 (zh) 2011-11-15 2011-11-15 一种同波道双极化微波设备和接收信号接收方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/279,048 Continuation US9049060B2 (en) 2011-11-15 2014-05-15 Co-channel dual polarized microwave device and method for receiving receive signal

Publications (1)

Publication Number Publication Date
WO2012167554A1 true WO2012167554A1 (zh) 2012-12-13

Family

ID=46222761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/082231 WO2012167554A1 (zh) 2011-11-15 2011-11-15 一种同波道双极化微波设备和接收信号接收方法

Country Status (4)

Country Link
US (1) US9049060B2 (zh)
EP (1) EP2770647B1 (zh)
CN (1) CN102510766B (zh)
WO (1) WO2012167554A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105356993A (zh) * 2015-10-18 2016-02-24 中国电子科技集团公司第十研究所 Pcm/fm信号极化合成的通道时延控制方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102833199B (zh) * 2012-09-12 2014-11-05 安徽省菲特科技股份有限公司 消除交叉极化干扰的方法及装置
WO2015149373A1 (zh) * 2014-04-04 2015-10-08 华为技术有限公司 同频干扰抵消方法、装置及***
EP3139528B1 (en) 2015-09-07 2020-04-22 Intel Corporation Communication device and method for signal determination in radio communication

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0553873A1 (en) * 1992-01-31 1993-08-04 Nec Corporation Cross polarization interference compensating device comprising decision feedback cross polarization interference cancellers
JPH05291970A (ja) * 1992-04-10 1993-11-05 Fujitsu Ltd 交差偏波干渉補償器のリセット方式
EP0570166A1 (en) * 1992-05-12 1993-11-18 Hughes Aircraft Company Interference detection and cancellation system and method
CN101800678A (zh) * 2010-03-12 2010-08-11 华为技术有限公司 应用ccdp和xpic的微波传输方法、装置和***

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710799A (en) * 1992-06-01 1998-01-20 Fujitsu Limited Cross polarization interference canceler and cross polarization interference eliminating apparatus using the same
JP2000165339A (ja) * 1998-11-27 2000-06-16 Nec Corp 送信lo同期方式を用いた両偏波伝送システム
JP3565160B2 (ja) * 2000-11-17 2004-09-15 日本電気株式会社 交差偏波間干渉補償回路
US7003058B2 (en) * 2002-02-27 2006-02-21 The Boeing Company Polarization division duplexing with cross polarization interference canceller
EP1365519B1 (en) * 2002-05-20 2005-12-28 SIAE Microelettronica S.p.A. Interference erasing system with independent receivers
JP4120422B2 (ja) * 2003-02-24 2008-07-16 日本電気株式会社 交差偏波間干渉補償器回路リセット方法および交差偏波間干渉除去装置
RU2369969C1 (ru) * 2005-10-20 2009-10-10 Нек Корпорейшн Способ и устройство подавления кросс-поляризационной помехи
US8081699B2 (en) * 2006-07-15 2011-12-20 Kazimierz Siwiak Wireless communication system and method with elliptically polarized radio frequency signals
US8615061B2 (en) * 2010-07-29 2013-12-24 Entropic Communications, Inc. Method and apparatus for cross polarization and cross satellite interference cancellation
US8396177B1 (en) * 2010-09-03 2013-03-12 Dragonwave, Inc. Interference carrier regeneration and interference cancellation apparatus and methods
US8867679B2 (en) * 2010-09-28 2014-10-21 Aviat U.S., Inc. Systems and methods for cancelling cross polarization interference in wireless communication using polarization diversity
KR20140075095A (ko) * 2012-12-10 2014-06-19 한국전자통신연구원 다중 편파 안테나를 통해 송수신되는 ofdm 신호의 반송파 주파수 옵셋 측정장치 및 이의 반송파 주파수 옵셋 측정 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0553873A1 (en) * 1992-01-31 1993-08-04 Nec Corporation Cross polarization interference compensating device comprising decision feedback cross polarization interference cancellers
JPH05291970A (ja) * 1992-04-10 1993-11-05 Fujitsu Ltd 交差偏波干渉補償器のリセット方式
EP0570166A1 (en) * 1992-05-12 1993-11-18 Hughes Aircraft Company Interference detection and cancellation system and method
CN101800678A (zh) * 2010-03-12 2010-08-11 华为技术有限公司 应用ccdp和xpic的微波传输方法、装置和***

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105356993A (zh) * 2015-10-18 2016-02-24 中国电子科技集团公司第十研究所 Pcm/fm信号极化合成的通道时延控制方法
CN105356993B (zh) * 2015-10-18 2018-10-23 中国电子科技集团公司第十研究所 Pcm/fm信号极化合成的通道时延控制方法

Also Published As

Publication number Publication date
US9049060B2 (en) 2015-06-02
EP2770647A1 (en) 2014-08-27
EP2770647A4 (en) 2014-11-19
CN102510766A (zh) 2012-06-20
US20140247863A1 (en) 2014-09-04
CN102510766B (zh) 2014-02-26
EP2770647B1 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
CN106256098B (zh) 天线阵列自校准
US20150172036A1 (en) Neighbor network channel reuse with mimo capable stations
JP4523817B2 (ja) 無線中継装置
WO2015149373A1 (zh) 同频干扰抵消方法、装置及***
CN110024328B (zh) 一种具有控制平面网络的通信网络
WO2012167554A1 (zh) 一种同波道双极化微波设备和接收信号接收方法
WO2014026501A1 (zh) 通讯装置及其空分双工方法
EP3011678A1 (en) Leakage cancellation a multiple-input multiple-output transceiver
US10530458B2 (en) Communication method, terminal and communication system
WO2010035789A2 (ja) 無線通信システム、送信システム、無線端末および無線通信方法
Ameen et al. Decode and forward cooperative protocol enhancement using interference cancellation
JP5932283B2 (ja) 無線通信装置、通信方法、及びプログラム
US20130128802A1 (en) Multi-relay transmission apparatus and method using interference alignment
WO2012152020A1 (zh) 一种信道均衡方法、基站和***
JP2012147182A (ja) 無線パケット通信システムおよび中継局装置
CN108270607B (zh) 一种微波通信的方法及装置
CN103312394B (zh) 一种上行干扰处理方法及***
WO2018047560A1 (ja) 両偏波伝送遅延調整装置、両偏波伝送遅延調整方法及び両偏波伝送システム
KR101335806B1 (ko) 간섭 제거 장치 및 방법
JP2006197261A (ja) 冗長受信処理装置及び冗長受信処理方法
Xie et al. Robust channel estimation strategy for two-way multi-antenna relay networks with asynchronous transmission
WO2011144055A2 (zh) 一种合并数据的方法、服务基站、协作基站及***
WO2011157147A2 (zh) 信号的发射方法、装置及***
JPS61131635A (ja) 交差偏波干渉除去装置のリセツト方式
KR101518772B1 (ko) 단말 장치 및 중계기

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180002494.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867122

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011867122

Country of ref document: EP