WO2012163072A1 - 一种介质基板的制造方法及超材料 - Google Patents

一种介质基板的制造方法及超材料 Download PDF

Info

Publication number
WO2012163072A1
WO2012163072A1 PCT/CN2011/084500 CN2011084500W WO2012163072A1 WO 2012163072 A1 WO2012163072 A1 WO 2012163072A1 CN 2011084500 W CN2011084500 W CN 2011084500W WO 2012163072 A1 WO2012163072 A1 WO 2012163072A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric substrate
metamaterial
ceramic
fiber material
ceramic fiber
Prior art date
Application number
PCT/CN2011/084500
Other languages
English (en)
French (fr)
Inventor
刘若鹏
赵治亚
缪锡根
Original Assignee
深圳光启高等理工研究院
深圳光启创新技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光启高等理工研究院, 深圳光启创新技术有限公司 filed Critical 深圳光启高等理工研究院
Publication of WO2012163072A1 publication Critical patent/WO2012163072A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/20Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06
    • H01G4/22Dielectrics using combinations of dielectrics from more than one of groups H01G4/02 - H01G4/06 impregnated
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics

Definitions

  • the present invention relates to the field of metamaterials, and in particular to the manufacture of metamaterial dielectric substrates and the control techniques of metamaterial dielectric constants.
  • the so-called metamaterial refers to some artificial composite structures or composite materials that have extraordinary physical properties that are not possessed by natural materials. Through the orderly design of the structure at the key physical scale of the material, it is possible to break through the limitations of certain apparent natural laws, thereby obtaining the ordinary supernormal material functions inherent beyond nature.
  • the metamaterial has a multi-layered metamaterial functional plate stacked or arrayed, and the metamaterial functional plate is composed of a dielectric substrate and a plurality of metal microstructures disposed on the dielectric substrate, and the metamaterial can provide various common materials with and without Material properties.
  • a single metal microstructure typically has a size less than 1/10 wavelengths and has an electrical or magnetic response to an applied electric or magnetic field, thereby exhibiting an equivalent dielectric constant or equivalent permeability, or wave impedance.
  • the equivalent dielectric constant and equivalent permeability (or wave impedance) of a metal microstructure are determined by the element geometry parameters and can be artificially designed and controlled. Moreover, the metal microstructure can have an artificially designed electromagnetic parameter, resulting in many novel phenomena.
  • the conventional dielectric substrate generally adopts an organic resin substrate, such as FR4, F4B, etc., and is obtained by infiltrating a reinforcing material such as a glass fiber cloth, a non-woven fabric or a paper-based electronic cloth into an organic resin solution, and then solidifying and molding. .
  • the manufacturing process of the metamaterial function board is similar to that of the PCB substrate.
  • the copper or other metal is coated on the organic resin substrate, and then the artificial microstructure is etched on the metal layer by photolithography, chemical etching, ion etching, etc.
  • the organic resin substrate has good mechanical properties, the dielectric constant is small for the metamaterial, and the substrate material has a limited range of options.
  • the equivalent dielectric constant or equivalent magnetic permeability of each artificial microstructure unit is a superposition of the dielectric constant or magnetic permeability of both the dielectric substrate and the artificial microstructure, due to the dielectric substrate
  • the selection of materials is limited, and the application of metamaterials is limited, so the whole metamaterial is overall.
  • the design flexibility of dielectric constant and magnetic permeability is insufficient and has many limitations.
  • the technical problem to be solved by the present invention is to provide a method for manufacturing a dielectric substrate having a large material selection range, to provide a more flexible design method for the electromagnetic property design of the metamaterial, and to provide a dielectric substrate to which the invention is applied.
  • Super material is to provide a method for manufacturing a dielectric substrate having a large material selection range, to provide a more flexible design method for the electromagnetic property design of the metamaterial, and to provide a dielectric substrate to which the invention is applied.
  • a method for manufacturing a dielectric substrate comprising the steps of:
  • the ceramic material is a ceramic material having a high dielectric constant.
  • the electrospinning method is: placing the precursor liquid in a syringe, disposing a metal needle and a metal plate, connecting the metal needle to the syringe through a pipeline, and making the A high voltage electric field is formed between the metal needle and the metal plate, and the fibrous material is formed by pushing a syringe to cause a precursor liquid to overflow from the metal plate.
  • the different regions of the metal sheet are controlled to have different electrospinning times relative to the metal needle such that the woven fibrous material has a non-uniform thickness distribution.
  • the ceramic fiber material is used as a reinforcing material, the organic resin is formed into a solution, and the ceramic fiber material is impregnated, and then solidified and formed to form the organic resin medium substrate.
  • the organic resin is formed into a solution by mixing with a curing agent or a solvent.
  • the organic resin is an epoxy resin, an epoxy phenolic resin or a brominated epoxy resin.
  • the present invention also provides a metamaterial comprising at least one metamaterial functional panel, the metamaterial functional panel being composed of a dielectric substrate and a plurality of artificial microstructures arrayed on the dielectric substrate, the dielectric substrate being made of ceramic fiber material An organic resin dielectric substrate of a reinforcing material. More preferably, the dielectric substrate is produced by the method of manufacturing the dielectric substrate according to any one of claims 1 to 7.
  • the ceramic fiber material has a non-uniform thickness distribution.
  • the present invention is achieved by obtaining a dielectric substrate having a predetermined dielectric constant and a reinforcing material by adding a ceramic fiber material to the dielectric substrate because the ceramic fiber material has a relatively high dielectric constant and mechanical properties, when organic When a ceramic fiber material is added to the resin substrate, the mechanical strength and dielectric constant are improved.
  • the invention adopts a sol-gel process to prepare a precursor liquid for preparing a ceramic material. Since the ceramic material prepared by the sol-gel process has a large material selectivity, it is convenient to obtain a suitable dielectric constant and a ceramic fiber material reinforcement. Media substrate.
  • the precursor liquid is woven into a fiber material by electrospinning, and the obtained fiber material is sintered at a high temperature to obtain a ceramic fiber material. Since the ceramic fiber material obtained by the method has a nanometer-scale fiber particle size, In the dielectric substrate prepared by the ceramic fiber material as the reinforcing material, the bonding between the organic resin and the ceramic fiber material is tighter and has better mechanical strength.
  • Figure 1 Flow chart of the steps of the method of manufacturing the dielectric substrate.
  • FIG. 1 Schematic diagram of the electrospinning process.
  • Figure 3 Schematic diagram of the structure of the metamaterial.
  • FIG. 1 A flow chart of the steps of the method of manufacturing the dielectric substrate of the present invention is shown in Fig. 1.
  • the conventional metamaterial dielectric substrate is generally an organic resin substrate, which is a substrate having a certain mechanical strength and flexibility formed by curing an organic resin on a reinforcing material, and has a low dielectric constant, generally
  • a method for manufacturing a dielectric substrate includes the following steps: a. Taking the application requirement of the dielectric constant size range of 6-7 as an example, Ca can be selected. . 7 Mg. . 3 SiO 3 ceramic material as a reinforcing material for the metamaterial dielectric substrate;
  • This embodiment employs a ceramic material prepared in sol-gel reaction, the precursor solution is first prepared Si0 3 for preparing a ceramic material (Ca Q 7 Mg .. 3. ); 0. 7mol the calcium nitrate and magnesium nitrate dissolved 0. 3mol Dissolve 1 mol of ethyl orthosilicate in 200 ml of absolute ethanol in 500 ml of absolute ethanol, mix the above solution, add 50 m of acetic acid, stir evenly, and then slowly add 6 g of concentrated concentration of 65% to 68%.
  • HN0 3 adjust the pH of the mixed solution to 2-3, add 20g oleic acid as a dispersing agent to the mixed solution, add 4mol of deionized water to promote the hydrolysis of the orthosilicate vinegar, stir the above mixed solution and place it Statically set into a sol in a water bath of 60 degrees Celsius;
  • the above sol is woven into a fiber material by electrospinning, and the obtained fiber material is sintered at a high temperature to obtain a ceramic fiber material.
  • the schematic diagram of the electrospinning process flow is shown in FIG. 2, and the electrospinning process includes setting a syringe 1 and a metal needle. 2, the metal plate 3 and the pipeline 4, the specific process is: placing the precursor liquid in the syringe 1, the syringe 1 is connected to the metal needle 2 through the pipeline 4, and a high-voltage electric field is formed between the metal needle 2 and the metal plate 3, Pushing the syringe 1 causes the precursor liquid to overflow from the metal needle 2.
  • the precursor liquid overflowed by the metal needle 2 is stretched into fine nanofibers, and a fibrous material is formed on the metal plate.
  • the formed fiber material is sintered at a high temperature of 1000 ° C to obtain a uniform ceramic fiber material;
  • the ceramic fiber material obtained in step c is used as a reinforcing material to prepare a dielectric substrate based on epoxy resin, and the specific process is as follows: mixing and mixing dimethylformamide and ethylene glycol methyl ether to form a mixed solvent. Adding dicyandiamide as a curing agent, stirring and dissolving, adding an epoxy resin, stirring and mixing to obtain an epoxy resin mixed solution, impregnating the ceramic fiber material with a mixed solution, and then performing solidification molding to obtain a metamaterial dielectric substrate.
  • the embodiment further provides a metamaterial comprising at least one metamaterial functional panel composed of a dielectric substrate and a plurality of artificial microstructures arrayed on the dielectric substrate, and the structural schematic of the metamaterial is shown in FIG. 3, including a plurality of stacked metamaterial function boards 100, the metamaterial function board 100 includes a dielectric substrate 101 and a plurality of artificial microstructures 102 arrayed on the dielectric substrate.
  • the artificial microstructures 102 and the dielectric substrate on which they are located can be regarded as a metamaterial basic structural unit. , similar to the lattice in the crystal. 2 is a partially enlarged schematic view of the microstructure of the metamaterial.
  • the actual metamaterial is formed by an array of basic structural units of the order of the number of molecules of the material according to an artificial design.
  • Figure 1 The structure of the artificial microstructure 102 in the structure is a "work" type structure, and as an embodiment, other artificial microstructures may also be employed.
  • the overall dielectric constant of the metamaterial functional plate is greatly improved compared with the existing glass fiber organic resin plate, and can be well applied to a certain Some applications that require a higher dielectric constant.
  • the precursor material of the ceramic material can be easily selected by the sol-gel method by selecting the corresponding raw materials and reagents. Therefore, the present embodiment is The preparation of the dielectric substrate not only has a large selection range, but also the prepared metamaterial is relatively easy to satisfy in terms of electromagnetic parameters.
  • the existing metamaterial dielectric substrate is generally an organic resin substrate, which is a substrate having a certain mechanical strength and flexibility formed by curing an organic resin on a reinforcing material, and has a low dielectric constant, generally 3 to 5, for a metamaterial. For the application, in some cases, a higher dielectric constant is required.
  • the present invention is described by taking a barium titanate ceramic as an example.
  • a method for manufacturing a dielectric substrate includes the following steps:
  • the barium titanate ceramic has a dielectric constant of up to 1000 or more, when the barium titanate ceramic material is selected as the reinforcing material of the metamaterial dielectric substrate, the dielectric constant of the ultra-material functional plate as a whole is greatly improved;
  • the present invention firstly prepares a precursor liquid for preparing a barium titanate ceramic material, the specific process of which is to prepare a mixed solution of barium acetate and acetic acid A.
  • the molar ratio of cerium acetate to acetic acid is 1:4, and the mixed solution of butyl titanate and ethanol-acetic acid B is prepared.
  • the molar ratio of butyl titanate, ethanol and acetic acid is 1:4:2, and then A and B mixed, at a temperature of 40-8 CTC, the reaction gives a sol,
  • the above sol is woven into a fiber material by electrospinning, and the obtained fiber material is sintered at a high temperature to obtain a barium titanate ceramic fiber material.
  • the schematic diagram of the electrospinning process flow is shown in FIG. 2, and the electrospinning process includes setting the syringe 1 , the metal needle 2, the metal plate 3 and the pipeline 4, the specific process is: placing the precursor liquid in the syringe 1, the syringe 1 is connected to the metal needle 2 through the pipeline 4, and a high voltage is formed between the metal needle 2 and the metal plate 3.
  • the electric field can cause the precursor liquid to overflow from the metal needle 2 by pushing the syringe 1.
  • the precursor liquid overflowed by the metal needle 2 is stretched into fine nano-sized fibers, and a metal plate 3 is formed.
  • Layer fiber material in this embodiment, The metal plate 3 is movably disposed.
  • different regions of the metal plate 3 can have different electrospinning time with respect to the metal needle 2, so that the fiber material formed on the metal plate 3 has a non- a uniform thickness distribution, and then the formed fibrous material is sintered at a high temperature of 700-100 CTC to obtain a uniform ceramic fiber material having a non-uniform thickness distribution;
  • the barium titanate ceramic fiber material prepared in step c is used as a reinforcing material to prepare a dielectric substrate based on brominated epoxy resin, and the specific process is as follows: using acetone as a solvent and adding diaminodiphenylformamidine as curing The agent is stirred and dissolved, and the brominated epoxy resin is added, and the brominated epoxy resin glue is obtained by stirring and mixing, so that the ceramic fiber material is impregnated with the brominated epoxy resin glue, and then solidified and molded to obtain a metamaterial dielectric substrate.
  • the present embodiment also provides a metamaterial comprising at least one metamaterial functional panel comprised of a dielectric substrate and a plurality of artificial microstructures arrayed on the dielectric substrate.
  • the microstructure of the metamaterial functional panel has been described in the first embodiment and will not be described in detail herein.
  • the overall dielectric constant of the metamaterial functional board is improved more than that of the existing glass fiber organic resin board, and at the same time, the super material function board
  • the dielectric constants in different regions can exhibit a non-uniform distribution.
  • metamaterials are composed of a plurality of super-material functional plate arrays.
  • the artificial microstructure and the dielectric substrate on which it is located can be regarded as the basic components of the super-material function board.
  • the structural unit, the nature of the metamaterial functional board, is mainly determined by the electromagnetic properties and array laws of a plurality of basic structural units.
  • the electromagnetic properties of a single basic structural unit are mainly determined by the equivalent dielectric constant and equivalent magnetic permeability of the basic structural unit, and the equivalent dielectric constant and equivalent magnetic permeability of a single basic structural unit are determined by the artificial microstructure and
  • the dielectric substrate on which it is located is determined jointly.
  • the existing design of metamaterial functional panels is to change the equivalent dielectric constant and equivalent magnetic permeability of a single basic structural unit by changing the structure or size of the artificial microstructure. Finally, a plurality of basic structural units are subjected to a certain law. Arrangement allows the metamaterial function panel to form certain electromagnetic properties, such as electromagnetic modulation for electromagnetic wave convergence, divergence, deflection, and translation.
  • the reinforcing material in the organic resin dielectric substrate that is, the barium titanate ceramic material
  • the reinforcing material in the organic resin dielectric substrate that is, the barium titanate ceramic material
  • the barium titanate ceramic material is designed to have a predetermined thickness distribution, because the thickness of the barium titanate ceramic material in the metamaterial dielectric substrate is thick.
  • the proportion of the barium titanate ceramic material in the metamaterial basic structural unit in different regions will be different, and the equivalent dielectric constant of the metamaterial basic structural unit in different regions It will also be different. Therefore, by applying the metamaterial dielectric substrate of the present embodiment, the local dielectric constant of the metamaterial functional board can be changed to expand the application of the metamaterial in function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明提供了一种介质基板的制造方法以及应用了该介质基板的超材料。为获得具有预定介电常数和增强材料的介质基板,本发明采用在介质基板中加入陶瓷纤维材料的方法来实现,因为陶瓷纤维材料相对而言具有较高的介电常数和机械性能,当有机树脂基板中加入陶瓷纤维材料后,其机械强度和介电常数会得到提高。本发明采用溶胶凝胶的工艺配制用于制备陶瓷材料的前驱液,由于溶胶凝胶工艺制备陶瓷材料具有较大的材料选择性,所以能方便地获得具有合适介电常数和陶瓷纤维材料增强的介质基板。

Description

说 明 书
一种介质基板的制造方法及超材料
【技术领域】
本发明涉及超材料领域,具体地涉及超材料介质基板的制造以及超材料 介电常数的控制技术。
【背景技术】
所谓超材料,是指一些具有天然材料所不具备的超常物理性质的人工复 合结构或复合材料。通过在材料的关键物理尺度上的结构有序设计, 可突破 某些表观自然规律的限制, 从而获得超出自然界固有的普通的超常材料功 能。 如, 超材料有多层超材料功能板层叠或阵列而成, 超材料功能板由介质 基板和设置在介质基板上的多个金属微结构组成,超材料可以提供各种普通 材料具有和不具有的材料特性。单个金属微结构大小一般小于 1/10个波长, 其对外加电场或磁场具有电响应或磁响应,从而具有表现出等效介电常数或 等效磁导率, 或者波阻抗。 金属微结构的等效介电常数和等效磁导率(或波 阻抗) 由单元几何尺寸参数决定, 可人为设计和控制。 并且, 金属微结构可 以具有人为设计的电磁参数, 从而产生许多新奇的现象。
现有的介质基板一般采用有机树脂基板, 如 FR4、 F4B等, 是通过将增 强材料如玻璃纤维布、无纺布或者纸基电子布等浸润到有机树脂溶液中, 然 后再固化成型而制得。而超材料功能板的制造工艺也与 PCB基板类似, 通过 在有机树脂基板上覆铜或其他金属, 然后通过光刻、 化学蚀刻、 离子刻等方 法在金属层上镂刻出人造微结构, 通过对人造微结构及其排布规律的设计, 实现各种电磁功能。有机树脂基板虽然具有良好的机械性能, 但对于超材料 而言, 其介电常数较小, 基板材料的可选择范围有限。
另外, 现有超材料功能板中, 各个人造微结构单元的等效介电常数或等 效磁导率为介质基板和人造微结构两者的介电常数或磁导率的叠加,由于介 质基板的选材范围有限, 超材料功能应用也受到限制, 因此整个超材料整体 介电常数和磁导率的大小的设计灵活性不够, 具有很多局限性。 【发明内容】
本发明所要解决的技术问题是提供一种具有较大材料选择范围的介质 基板的制造方法, 为超材料的电磁特性设计提供更为灵活的设计方法, 以及 提供应用了由本发明制造的介质基板的超材料。
本发明实现发明目的采用的技术方案是, 1、一种介质基板的制造方法, 包括以下步骤:
a.根据有机树脂介质基板需要的介电常数大小选择陶瓷材料;
b.根据溶胶凝胶反应制备陶瓷材料的方法配制用于制备所述陶瓷材料 的前驱液;
c通过电纺的方法将所述前驱液纺织成纤维材料,对制得的纤维材料进 行高温烧结, 得到陶瓷纤维材料;
d.以所述陶瓷纤维材料为加强材料制备所述有机树脂介质基板。
更好地, 所述陶瓷材料为具有高介电常数的陶瓷材料。
更好地, 所述电纺的方法为: 将所述前驱液置于一注射器中, 设置一金 属针头和一金属板, 将所述金属针头与所述注射器通过管路连通, 并使所述 金属针头与所述金属板之间形成高压电场,通过推动注射器使前驱液由金属 针头溢出在所述金属板上形成所述纤维材料。
更好地,控制所述金属板的不同区域相对所述金属针头具有不同的电纺 时间, 使纺织成的所述纤维材料具有非均匀的厚度分布。
更好地, 所述 d步骤为以所述陶瓷纤维材料为加强材料, 将所述有机树 脂形成溶液后浸渍所述陶瓷纤维材料, 然后进行固化成型, 形成所述有机树 脂介质基板。
更好地, 所述有机树脂通过与固化剂、 溶剂混合形成溶液。
更好地, 所述有机树脂为环氧树脂、 环氧酚醛树脂或溴化环氧树脂。 本发明还提供一种超材料, 包括至少一个超材料功能板, 所述超材料功 能板由介质基板以及阵列在介质基板上的多个人造微结构组成,所述介质基 板为以陶瓷纤维材料为加强材料的有机树脂介质基板。 更好地,所述介质基板由权利要求 1至 7任一所述介质基板的制造方法 制得。
更好地, 所述陶瓷纤维材料具有非均匀的厚度分布。
本发明为获得具有预定介电常数和增强材料的介质基板,采用在介质基 板中加入陶瓷纤维材料的方法来实现,因为陶瓷纤维材料相对而言具有较高 的介电常数和机械性能, 当有机树脂基板中加入陶瓷纤维材料后, 其机械强 度和介电常数会得到提高。本发明采用溶胶凝胶的工艺配制用于制备陶瓷材 料的前驱液, 由于溶胶凝胶工艺制备陶瓷材料具有较大的材料选择性, 所以 能方便地获得具有合适介电常数和陶瓷纤维材料增强的介质基板。
本发明通过电纺的方法将前驱液纺织成纤维材料,对制得的纤维材料进 行高温烧结, 得到陶瓷纤维材料, 由于由该方法制得的陶瓷纤维材料具有纳 米级别的纤维粒径, 所以以陶瓷纤维材料为加强材料制备的介质基板中, 有 机树脂与陶瓷纤维材料之间的结合更为紧密, 具有更好的机械强度。
【附图说明】
图 1, 介质基板的制造方法的步骤流程图。
图 2, 电纺的工艺流程示意图。
图 3, 超材料的结构示意图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
本发明介质基板的制造方法的步骤流程图参看附图 1。
实施例 1
现有的超材料介质基板一般为有机树脂基板,是在增强材料上固化有机 树脂而形成的具有一定机械强度和柔韧性的基板, 其介电常数较低, 一般为
3至 5, 对于超材料的应用而言, 很多情况下都要求有更高的介电常数, 并 且根据不同的应用要求能对介电常数范围进行灵活的选择, 本实施例以
( Ca0.7Mgo.3 ) Si03陶瓷为例对本发明进行说明, 一种介质基板的制造方法, 包括以下步骤: a.以介电常数大小范围 6-7的应用要求为例, 可选择 Ca。.7Mg。.3Si03陶瓷 材料作为超材料介质基板的增强材料;
b.本实施例采用溶胶凝胶反应制备陶瓷材料, 首先配制用于制备 ( CaQ.7Mg。.3) Si03陶瓷材料的前驱液; 将 0. 7mol硝酸钙与 0. 3mol硝酸镁溶 于 500ml的无水乙醇中, 将 lmol的正硅酸乙酯溶于 200ml的无水乙醇中, 将上述溶液混合后加入 50m 乙酸搅拌均匀, 然后缓慢滴入 6g 浓度为 65%-68%的浓 HN03, 将混合溶液的 PH 值调至 2-3, 向混合溶液中加入 20g 油酸作为分散剂, 加入 4mol去离子水促进正硅酸乙醋的水解, 将上述混合 溶液搅拌均匀后置于 60摄氏度的水浴中静置成溶胶;
c通过电纺的方法将上述溶胶纺织成纤维材料,对制得的纤维材料进行 高温烧结, 得到陶瓷纤维材料, 电纺的工艺流程示意图参看附图 2, 电纺工 艺包括设置注射器 1、 金属针头 2、 金属板 3 以及管路 4, 其具体过程为: 将前驱液置于注射器 1中, 注射器 1通过管路 4连通金属针头 2, 金属针头 2与金属板 3之间形成有高压电场, 通过推动注射器 1可以使前驱液由金属 针头 2溢出, 在高压电场的作用下, 由金属针头 2溢出的前驱液被拉伸成很 细的纳米级纤维, 并在金属板上形成一层纤维材料, 将形成的纤维材料在 1000°C的高温下烧结, 得到均一的陶瓷纤维材料;
d.以步骤 c 制得的陶瓷纤维材料为加强材料制备以环氧树脂为基材的 介质基板, 具体过程为: 将二甲基甲酰胺和乙二醇甲醚搅拌混合, 配成混合 溶剂, 加入双氰胺作为固化剂, 搅拌溶解, 加入环氧树脂, 搅拌混合即得到 环氧树脂混合溶液, 使陶瓷纤维材料浸渍有混合溶液, 然后进行固化成型, 得到超材料介质基板。
本实施例还提供一种超材料, 包括至少一个超材料功能板, 超材料功能 板由介质基板以及阵列在介质基板上的多个人造微结构组成,超材料的结构 示意图参看附图 3, 包括多个层叠超材料功能板 100, 超材料功能板 100包 括介质基板 101以及阵列在介质基板上的多个人造微结构 102, 人造微结构 102与其所在的介质基板可以看成一个超材料基本结构单元, 类似于晶体中 的晶格。 附图 2是超材料微观结构的局部放大示意图, 实际的超材料是由物 质分子数数量级的基本结构单元按照人为设计的排布规律阵列而成。 附图 1 中的人造微结构 102的结构为 "工" 字型结构, 作为具体实施方式, 还可以 采用其他人造微结构。
应用本实施例介质基板的制造方法制得的超材料介质基板后,超材料功 能板的整体介电常数相对于现有的玻璃纤维有机树脂板有了较大提高,能很 好地应用于某些需要较高介电常数的应用场合。 同时, 由于介电常数在 6-7 范围内的陶瓷材料有很多种,而通过溶胶凝胶方法可以很容易地选择相对应 的原料和试剂制得陶瓷材料的前驱液, 因此, 本实施例的介质基板制备不仅 具有很大的选择范围, 而且制得的超材料在电磁参数上比较容易得到满足。 实施例 2
现有的超材料介质基板一般为有机树脂基板,是在增强材料上固化有机 树脂而形成的具有一定机械强度和柔韧性的基板, 其介电常数较低, 一般为 3至 5, 对于超材料的应用而言, 在某些情况下都要求有更高的介电常数, 本实施例以钛酸钡陶瓷为例对本发明进行说明, 一种介质基板的制造方法, 包括以下步骤:
a.由于钛酸钡陶瓷具有高达 1000以上的介电常数, 所以当选择钛酸钡 陶瓷材料作为超材料介质基板的增强材料时,超材料功能板整体的介电常数 将得到大幅提高;
b.而采用溶胶凝胶反应的方法来制备钛酸钡陶瓷材料相当方便,本发明 首先配制用于制备钛酸钡陶瓷材料的前驱液, 其具体过程是, 配制乙酸钡和 乙酸的混合溶液 A, 乙酸钡和乙酸的摩尔比为 1 : 4, 再配制钛酸丁酯与乙醇 一乙酸混合溶液 B, 钛酸丁酯、 乙醇、 乙酸的摩尔比为 1 : 4 : 2, 然后将混合 A和 B混合, 在温度 40-8CTC下, 反应得到溶胶,
c通过电纺的方法将上述溶胶纺织成纤维材料,对制得的纤维材料进行 高温烧结, 得到钛酸钡陶瓷纤维材料, 电纺的工艺流程示意图参看附图 2, 电纺工艺包括设置注射器 1、 金属针头 2、 金属板 3 以及管路 4, 其具体过 程为: 将前驱液置于注射器 1中, 注射器 1通过管路 4连通金属针头 2, 金 属针头 2与金属板 3之间形成有高压电场,通过推动注射器 1可以使前驱液 由金属针头 2溢出, 在高压电场的作用下, 由金属针头 2溢出的前驱液被拉 伸成很细的纳米级纤维, 并在金属板 3上形成一层纤维材料, 本实施例中, 金属板 3为可移动设置, 在电纺过程中, 通过移动金属板 3, 可以使金属板 3的不同区域相对金属针头 2具有不同的电纺时间, 使金属板 3上形成的纤 维材料具有非均匀的厚度分布, 然后将形成的纤维材料在 700— 100CTC的高 温下烧结, 得到具有非均匀的厚度分布的均一陶瓷纤维材料;
d.以步骤 c 制得的钛酸钡陶瓷纤维材料为加强材料制备以溴化环氧树 脂为基材的介质基板, 具体过程为: 以丙酮作为溶剂, 加入二氨基二苯基甲 垸作为固化剂, 搅拌溶解, 加入溴化环氧树脂, 搅拌混合即得到溴化环氧树 脂胶液, 使陶瓷纤维材料浸渍有溴化环氧树脂胶液, 然后进行固化成型, 得 到超材料介质基板。
本实施例还提供一种超材料, 包括至少一个超材料功能板, 超材料功能 板由介质基板以及阵列在介质基板上的多个人造微结构组成。超材料功能板 的微观结构在实施例 1中已有介绍, 在此不再详述。应用本实施例介质基板 的制造方法制得的超材料介质基板后,超材料功能板的整体介电常数相对于 现有的玻璃纤维有机树脂板有了更大的提高, 同时, 超材料功能板不同区域 内介电常数可以呈现出非均匀的分布,通过在电纺工艺过程中精确地控制电 纺时间, 能够实现超材料功能板不同区域具有预定的介电常数分布, 其基本 原理如下:
超材料作为一种对电磁波具有特殊响应和调制特性的新材料,是由多个 超材料功能板阵列组合而成,人造微结构及其所在的介质基板可看作是组成 超材料功能板的基本结构单元,超材料功能板的性质主要取决于多个基本结 构单元的电磁性质和阵列规律。单个基本结构单元的电磁特性主要由该基本 结构单元的等效介电常数和等效磁导率决定,而单个基本结构单元的等效介 电常数和等效磁导率又由人造微结构及其所在的介质基板所共同决定。现有 对超材料功能板的设计都是通过改变人造微结构的结构或大小来改变单个 基本结构单元的等效介电常数和等效磁导率,最后将多个基本结构单元按照 一定的规律进行排布, 可以使超材料功能板形成某些特定的电磁特性, 如对 电磁波的汇聚、 发散、 偏折和平移等电磁调制功能。 本实施例为拓展超材料 功能板的功能设计方式,将有机树脂介质基板中的增强材料即钛酸钡陶瓷材 料设计为具有预定的厚度分布,由于超材料介质基板中钛酸钡陶瓷材料的厚 度不同, 所以对超材料功能板而言, 不同区域内的超材料基本结构单元中钛 酸钡陶瓷材料所占的比例将不同,进而不同区域内的超材料基本结构单元的 等效介电常数也将不同, 因此, 应用本实施例的超材料介质基板, 可以改变 超材料功能板的局部介电常数使超材料在功能上得到应用拓展。
在上述实施例中, 仅对本发明进行了示范性描述, 但是本领域技术人员 在阅读本专利申请后可以在不脱离本发明的精神和范围的情况下对本发明 进行各种修改。

Claims

权 利 要 求 书
1、 一种介质基板的制造方法, 包括以下步骤:
a.根据有机树脂介质基板需要的介电常数大小选择陶瓷材料; b.根据溶胶凝胶反应制备陶瓷材料的方法配制用于制备所述陶 瓷材料的前驱液;
c通过电纺的方法将所述前驱液纺织成纤维材料,对制得的纤维 材料进行高温烧结, 得到陶瓷纤维材料;
d.以所述陶瓷纤维材料为加强材料制备所述有机树脂介质基板。
2、 根据权利要求 1所述的介质基板的制造方法, 其特征在于, 所述陶瓷材料为具有高介电常数的陶瓷材料。
3、 根据权利要求 1所述的介质基板的制造方法, 其特征在于, 所述电纺的方法为: 将所述前驱液置于一注射器中, 设置一金属针头 和一金属板, 将所述金属针头与所述注射器通过管路连通, 并使所述 金属针头与所述金属板之间形成高压电场,通过推动注射器使前驱液 由金属针头溢出在所述金属板上形成所述纤维材料。
4、 根据权利要求 3所述的介质基板的制造方法, 其特征在于, 控制所述金属板的不同区域相对所述金属针头具有不同的电纺时间, 使纺织成的所述纤维材料具有非均匀的厚度分布。
5、 根据权利要求 1所述的介质基板的制造方法, 其特征在于, 所述 d步骤为以所述陶瓷纤维材料为加强材料,将所述有机树脂形成 溶液后浸渍所述陶瓷纤维材料, 然后进行固化成型, 形成所述有机树 脂介质基板。
6、 根据权利要求 5所述的介质基板的制造方法, 其特征在于, 所述有机树脂通过与固化剂、 溶剂混合形成溶液。
7、 根据权利要求 1所述的介质基板的制造方法, 其特征在于, 所述有机树脂为环氧树脂、 环氧酚醛树脂或溴化环氧树脂。
8、 一种超材料, 包括至少一个超材料功能板, 所述超材料功能 板由介质基板以及阵列在介质基板上的多个人造微结构组成,其特征 在于:所述介质基板为以陶瓷纤维材料为加强材料的有机树脂介质基 板。
9、 根据权利要求 8所述的超材料, 其特征在于: 所述介质基板 由权利要求 1至 7任一所述介质基板的制造方法制得。
10、根据权利要求 9所述的超材料, 其特征在于: 所述陶瓷纤维 材料具有非均匀的厚度分布。
PCT/CN2011/084500 2011-06-01 2011-12-23 一种介质基板的制造方法及超材料 WO2012163072A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110146303.0 2011-06-01
CN 201110146303 CN102476459B (zh) 2011-06-01 2011-06-01 一种超材料介质基板的制造方法及超材料

Publications (1)

Publication Number Publication Date
WO2012163072A1 true WO2012163072A1 (zh) 2012-12-06

Family

ID=46089292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084500 WO2012163072A1 (zh) 2011-06-01 2011-12-23 一种介质基板的制造方法及超材料

Country Status (2)

Country Link
CN (1) CN102476459B (zh)
WO (1) WO2012163072A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109336630B (zh) * 2018-08-29 2021-06-11 宁波华源精特金属制品有限公司 一种支架及其制备方法
CN111546719B (zh) * 2020-04-21 2022-07-01 中国船舶重工集团公司第七二五研究所 一种磁性宽频带电磁吸波超材料

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114489A (ja) * 2004-09-14 2006-04-27 Nagoya Institute Of Technology 誘電体メタマテリアル、および磁性体メタマテリアル
US20060226580A1 (en) * 2005-03-29 2006-10-12 University Of Washington Electrospinning of fine hollow fibers
WO2010112564A1 (de) * 2009-04-01 2010-10-07 Centro De Estudios E Investigaciones Técnicas De Gipuzkoa Template-gestütztes musterbildungsverfahren von nanofasern im electrospinn-verfahren und deren anwendungen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1734068A4 (en) * 2004-03-09 2011-01-19 Polymatech Co Ltd POLYMER COMPOSITE MOLDING BODY, LADDER PLATE WITH THE MOLDING BODY AND METHOD OF MANUFACTURING THEREOF
CN101257977B (zh) * 2005-09-07 2012-11-21 阿克伦大学 柔性陶瓷纤维及其制造方法
CN101274844A (zh) * 2008-05-16 2008-10-01 湘潭大学 一种制备铁电铁磁复合纳米纤维的方法
CN101765358B (zh) * 2008-12-25 2012-05-30 西北工业大学 一种基于树枝结构的超材料吸收器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006114489A (ja) * 2004-09-14 2006-04-27 Nagoya Institute Of Technology 誘電体メタマテリアル、および磁性体メタマテリアル
US20060226580A1 (en) * 2005-03-29 2006-10-12 University Of Washington Electrospinning of fine hollow fibers
WO2010112564A1 (de) * 2009-04-01 2010-10-07 Centro De Estudios E Investigaciones Técnicas De Gipuzkoa Template-gestütztes musterbildungsverfahren von nanofasern im electrospinn-verfahren und deren anwendungen

Also Published As

Publication number Publication date
CN102476459A (zh) 2012-05-30
CN102476459B (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
Gong et al. 3D-printed carbon fiber/polyamide-based flexible honeycomb structural absorber for multifunctional broadband microwave absorption
JP6616653B2 (ja) 電磁波吸収体及び膜形成用ペースト
CN106012104B (zh) 一种一步法合成一维核壳结构BaTiO3@Al2O3的制备方法
CN111864400B (zh) 一种超材料结构及其制备方法
CN107216587A (zh) 一种三明治结构聚合物基电磁屏蔽复合材料及其制备方法
Li et al. Flexible regulation engineering of titanium nitride nanofibrous membranes for efficient electromagnetic microwave absorption in wide temperature spectrum
WO2013040839A1 (zh) 一种超材料及其制备方法
CN103085385A (zh) 一种聚四氟乙烯基板及其制备方法
CN103030927A (zh) 一种介质基板的制备方法及超材料
WO2012163072A1 (zh) 一种介质基板的制造方法及超材料
CN102683850B (zh) 玻璃钢天线罩及其制备方法
WO2015018138A1 (zh) 导电银胶及其制备方法
CN110343276B (zh) 一种具有负介电性能的石墨烯/聚乙烯醇柔性复合薄膜及其制备方法
CN102694258B (zh) 玻璃钢天线罩及其制备方法
CN106032326A (zh) 多层复合陶瓷板及其制备方法
CN109868653A (zh) 一种非金属复合材料用大厚度纤维织物预浸料的制备方法
KR102059824B1 (ko) 광경화성 절연 수지 조성물 및 이를 이용한 인쇄회로기판
CN102674847B (zh) 一种超材料谐振子及其制备方法
CN105504358A (zh) 一种生物可降解有机基板材料及其制备方法
CN102694259B (zh) 玻璃钢天线罩及其制备方法
Wu et al. MXene/BC@ CoFe2O4 aerogel with excellent electromagnetic interference shielding and enhanced mechanical property
CN102683851A (zh) 玻璃钢天线罩及其制备方法
CN109180070B (zh) 一种柔性杂化碳纳米吸波纸及其制备方法
CN112848600A (zh) 超表面嵌入式承载吸波层合板及制备方法
CN102896782B (zh) 一种介质基板的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11866558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11866558

Country of ref document: EP

Kind code of ref document: A1