WO2012162927A1 - 近光带有明暗截止线的汽车前照灯led光学组件 - Google Patents

近光带有明暗截止线的汽车前照灯led光学组件 Download PDF

Info

Publication number
WO2012162927A1
WO2012162927A1 PCT/CN2011/076926 CN2011076926W WO2012162927A1 WO 2012162927 A1 WO2012162927 A1 WO 2012162927A1 CN 2011076926 W CN2011076926 W CN 2011076926W WO 2012162927 A1 WO2012162927 A1 WO 2012162927A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
lens
mirror
light
mirrors
Prior art date
Application number
PCT/CN2011/076926
Other languages
English (en)
French (fr)
Inventor
程兴华
Original Assignee
天津方合科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201120183147U external-priority patent/CN202132878U/zh
Priority claimed from CN2011101469662A external-priority patent/CN102322603B/zh
Application filed by 天津方合科技发展有限公司 filed Critical 天津方合科技发展有限公司
Priority to US13/557,201 priority Critical patent/US8894258B2/en
Publication of WO2012162927A1 publication Critical patent/WO2012162927A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/19Attachment of light sources or lamp holders
    • F21S41/192Details of lamp holders, terminals or connectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/143Light emitting diodes [LED] the main emission direction of the LED being parallel to the optical axis of the illuminating device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/26Elongated lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/321Optical layout thereof the reflector being a surface of revolution or a planar surface, e.g. truncated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/33Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature
    • F21S41/334Multi-surface reflectors, e.g. reflectors with facets or reflectors with portions of different curvature the reflector consisting of patch like sectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings
    • F21S45/48Passive cooling, e.g. using fins, thermal conductive elements or openings with means for conducting heat from the inside to the outside of the lighting devices, e.g. with fins on the outer surface of the lighting device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • F21S41/365Combinations of two or more separate reflectors successively reflecting the light
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S45/00Arrangements within vehicle lighting devices specially adapted for vehicle exteriors, for purposes other than emission or distribution of light
    • F21S45/40Cooling of lighting devices
    • F21S45/47Passive cooling, e.g. using fins, thermal conductive elements or openings

Definitions

  • the invention belongs to a vehicle lamp, and particularly relates to an automotive headlamp LED optical component with a low-cut cut-off line.
  • Applicant discloses a vehicle headlamp LED light source with a cut-off line with a light-dark cut-off line, which is mainly composed of a lens, a bracket assembly and an LED light-emitting chip, and is characterized in that: the surface of the lens is non- The slewing aspherical surface is formed by a lens group in which a plurality of lenses having different non-rotating aspherical surfaces are sequentially connected to each other.
  • the front lens of the lens is the main lens, and the lens around the main lens is the auxiliary lens.
  • the main lens and the auxiliary lens use all the light of the light source, and the light-shielded cut-off line region without obvious dispersion can be separately formed without shading
  • the disadvantage is that only the light region formed by the main lens is directed to the positive
  • the rays emitted by the surrounding auxiliary lenses are directed in different directions of up, down, left, and right. Therefore, a mirror must be provided in addition to the light source lens. In order to reflect the light emitted by the auxiliary lens to the front, thereby increasing the volume and cost of the lamp.
  • the amount of illumination of the single LED light source is also limited, so multiple sets of the light source and the mirror are required.
  • the combination can only meet the requirements, but due to the limited space inside the lamp, it is difficult to accommodate multiple sets of the optical components.
  • the object of the present invention is to overcome the deficiencies of the above techniques, and to provide an automotive headlamp LED optical component with a cut-off line with a light-dark cut-off line.
  • the forward direct light emitted from the light source illuminator can directly form a light-dark through the main lens.
  • the optical zone of the cut-off line; at the same time, the remaining lateral divergent rays are directed to the main lens by the primary and secondary reflections of the primary and secondary mirrors.
  • a low-light automotive headlamp LED optical component with a cut-off line which is mainly composed of a lens, a lens holder, a light source bracket assembly and an LED light source, and is characterized by:
  • the lens is composed of a main lens and a mirror, the lens is a main lens directly in front of the lens, an auxiliary mirror is arranged around the main lens, and two mirrors with two shapes of left and right symmetry are arranged on the side surface of the main lens, and the back of the lens is There are two sets of six mirrors that are symmetrical in shape.
  • the range of X ⁇ ⁇ three coordinates on the curved surface of the main lens is: the center of the main lens is the coordinate system origin, the coordinate interval of the X direction is 5mn +35mm, and the coordinate interval of the Y direction is -20mn +20mm; Direction coordinate interval is -15mn +15mm
  • Three sets of mirrors are disposed on the left and right sides of the lens in the Y direction near the center point of the light source, and at least one mirror is disposed in each group.
  • the six sets of mirrors are arranged in a line, and the two sets of mirrors near the center of the light source are once The mirrors are all facing the front main lens.
  • the innermost boundary of the two sets of primary mirrors is 0mm 2mm away from the light source boundary.
  • the second position near the center of the light source is adjacent to the outermost boundary of the two sets of mirrors.
  • the two sets of secondary mirrors on the left are facing to the lower left and upper left respectively, and the two sets of secondary mirrors on the right are facing the lower right and the upper right respectively;
  • the surface shapes of the six sets of mirrors are all free-form surfaces, and each of the three groups on the left and right sides
  • the total length of the mirror is 1mm 20mm in the Y direction, each of which has a length of 53 ⁇ 4 803 ⁇ 4, each mirror has a size range of 1 10 in the X direction and a size range of 1 10 in the Z direction.
  • Each of the mirrors of the four sets of primary mirrors has at least one mirror, and one mirror in the upper left position and the upper left
  • the secondary mirrors correspond one-to-one
  • the first mirror located at the lower left position corresponds to the secondary mirror facing the lower left one-to-one.
  • the first mirror located at the upper right position corresponds to the secondary mirror facing the upper right, and is located at the lower right position.
  • the mirror is in one-to-one correspondence with the secondary mirror facing the lower right.
  • Each of the mirrors of the four sets of primary mirrors has an ellipsoidal surface or other form of surface for the same purpose, and each of the ellipsoids has a surface.
  • the focus is in the range of 0mm 5mm around the center point of the light source, and the other focus is in the range of 0mm 5mm in front of the secondary mirror corresponding to each ellipsoid.
  • the length of each ellipsoid has a length of lmm 35mm, and the length of the short axis is lmm. 30mm
  • the lens holder is composed of upper and lower lens holders, and the inner contour shape of the bracket is matched with the shape of the outer contour of the lens, and the shape of the back surface of the bracket is matched with the assembly of the light source bracket, and the outer side of the bracket is provided with heat dissipating fins.
  • the LED light source is an upper light source or a composite light source composed of an upper light source and a lower light source, wherein the upper light source is a far and near light source, and the lower light source is a high beam light source.
  • the LED light-emitting chip of the upper light source and the LED light-emitting chip of the lower light source are respectively located at one side edge of the substrate, and the upper light source and the lower light source are closely disposed on the side of the substrate on which the LED light-emitting chip is mounted.
  • the light source bracket assembly is composed of a light source bracket and a circuit board.
  • the central portion of the light source bracket is provided with an LED light source mounting slot
  • the light source mounting slot is provided with a circuit board mounting slot and a wire hole
  • the center of the circuit board is provided with a light source positioning.
  • two electrodes are disposed on the left and right sides of the light source positioning groove
  • four electrodes are also disposed on the other side of the circuit board, and are connected to the electrodes of the light source positioning groove.
  • the LED optical component can realize a straight-shaped cut-off line region with no obvious dispersion in the forward direction through the main lens.
  • the lateral auxiliary mirror can collect all lateral light of the light source and reflect the lateral light to the main lens. There is no need to provide a light-storing system between the mirror and the lens, which effectively improves the utilization of light, thereby passing the lateral light through the main lens to assist in forming an in-line cut-off line region without significant dispersion.
  • the size of the optical component is greatly reduced without the need to add an external mirror, and the lamp is sufficient to accommodate a plurality of components, and the structure of the lamp is simplified, and the cost is reduced.
  • the module can properly distribute and utilize all the light in the range of 360 ° x 80 ° which can be emitted by the LED light source. It can be used for the lamp except for the loss of about 253 ⁇ 4 light by the lens material and the surface of the mirror.
  • the light distribution of the light is close to 753 ⁇ 4, which not only greatly improves the light efficiency, but also reduces the difficulty for the optical designer to design the light-off line of the cut-off line to a certain extent, making the development of the low beam light easy. Since the lens holder itself constitutes a heat dissipation system, the heat generated by the LED light source can be dissipated in time, without the need for an external heat sink.
  • Figure 1 is a schematic view of the structure of the present invention
  • Figure 2 is a schematic view of the overall three-dimensional effect of the present invention.
  • Figure 3 is a schematic left side view of the lens of the present invention.
  • Figure 4 is a schematic rear view of the lens of the present invention.
  • Figure 5 is a schematic view showing the relative position of the lens back mirror of the present invention and peripheral optical components
  • Figure 6 is a schematic perspective view of the lens back side mirror of the present invention.
  • Figure 7 is a top plan view showing the size of the lens back mirror of the present invention.
  • Figure 8 is a rear elevational view showing the size of the lens back mirror of the present invention.
  • Figure 9 is a schematic view showing the relative position of the lens side mirror of the present invention and the peripheral optical component
  • Figure 10 is a schematic view showing the corresponding relationship between the lens side mirror and the back mirror of the present invention.
  • Figure 11 is a schematic view showing the configuration and position setting of the composite LED light source of the present invention
  • 12 is a schematic diagram showing the stereoscopic effect of a single LED light source of the present invention
  • Figure 13 is a schematic view showing the position setting of the LED light source chip of the present invention.
  • Figure 14 is a front elevational view of the light source bracket of the LED light source bracket assembly of the present invention.
  • Figure 15 is a front elevational view of the circuit board of the LED light source bracket assembly of the present invention.
  • Figure 16 is a side elevational view showing the division of the light source of the present invention.
  • 17 is a schematic view showing the principle of control of light above the light source side of the present invention.
  • 19 is a schematic view showing the control interval and principle of the light on the left and right sides of the light source according to the present invention.
  • 20 is a schematic diagram of the stereoscopic effect of the optical path tracking of the primary and secondary reflected light according to the present invention
  • 21 is a side view showing the optical path tracking of primary and secondary reflected light according to the present invention.
  • Figure 22 is a schematic view showing the shape of a light region generated by a light source of a near-and near-light source according to the present invention.
  • 23 is a schematic view showing the shape of a light region generated by the high beam light source of the present invention.
  • Figure 24 is a schematic view showing the shape of a light region generated by the composite light source lighting device of the present invention.
  • Figure 25 is a schematic view showing the optical principle of a vehicle head in the form of a single mirror
  • 26 is a schematic view showing the optical principle of a conventional vehicle lamp in the form of a projection lamp
  • Figure 27 is a schematic view showing the optical principle of a conventional vehicle lens plus mirror in the form of an LED lamp
  • Figure 28 is a perspective view showing the stereoscopic effect of the lens back light source groove and the positioning system of the present invention.
  • a car headlight LED optical component with a light-dark cut-off line the structure of which is shown in Fig. 12, mainly composed of a lens 1, a lens holder 2, an LED light source 3 and a light source bracket assembly 4. , Auxiliary parts have electrodes 5 and mounting screws 6 and so on.
  • a main lens f is disposed directly in front of the lens, and the main lens is a non-rotating aspherical curved surface.
  • the design principle and method of the main lens refer to a low beam disclosed by the applicant (Application No. 201010185383.6).
  • the XY ⁇ three coordinates of each point on the curved surface of the main lens f The value range is: the lens center point 0 is the coordinate system origin, the X direction coordinate interval 11 is 5 +35 ⁇ direction coordinate interval W is - 20mm +20mm Z direction coordinate interval V is - 15mm +15mm
  • Three sets of mirrors are arranged on the left and right sides of the Y-direction light source center point 0, and the six sets of mirrors are arranged in a word, and at least one mirror is arranged in each group.
  • only one mirror is set in each group, which is
  • the positional relationship on the lens is shown in Figure 5.6, cl dl el and c2 d2 e2, and the two sets of mirrors cl c2 near the center point O of the light source (or source S) are primary mirrors. Both are facing the front main lens, and the innermost boundary of the two sets of primary mirrors is at a distance D from the boundary of the light source S.
  • the value range of D is 0 mm 2 mm, which is close to the center of the light source and the two sets of primary mirrors.
  • the two directions of the left and right sides of the outermost boundary of cl c2 are set to the left and right sets of secondary mirrors.
  • the two sets of secondary mirrors dl el on the left side are respectively directed to the lower left and upper left, and the two sets of secondary mirrors d2 e2 on the right are respectively directed to the lower right.
  • the surface shapes of the six sets of mirrors are all free-form surfaces, and the total length range Ry of the three sets of mirrors on the left and right sides in the Y direction is 1 20, and the length of each set of mirrors Lc Ld Le occupies the full length Ry.
  • each set of mirrors in the X direction size range Rx is lmn 10
  • Rz value range is lmm 10mm
  • reflective surfaces are attached to each curved surface to form a mirror.
  • the four sets of primary mirrors are arranged on the side of the lens. As shown in FIG. 9, at least one mirror is arranged for each of the upper left a1, the lower left bl, the upper right a2, and the lower right b2. In this example, only one mirror is set in each group.
  • the four sets of primary mirrors are in one-to-one correspondence with the four sets of secondary mirrors on the back of the lens, and their corresponding concerns are as shown in FIG. 10.
  • the primary mirror a1 in the upper left position corresponds to the secondary mirror el on the upper left, located at the lower left.
  • the primary mirror bl of the position corresponds to the secondary mirror dl facing the lower left
  • the primary mirror a2 located at the upper right position corresponds to the secondary mirror e2 facing the upper right
  • the surface shape of each of the four sets of primary mirrors is an ellipsoidal surface or other form of surface that achieves the same purpose, and each ellipsoid has a focus at 0 mm 5 mm around the center point 0 of the light source.
  • the other focus is in the range of Qmm 5mm in front of the secondary mirror corresponding to each ellipsoid, and the length of each ellipsoid is in the range of lmm 35mm, short.
  • the length of the shaft is in the range of 1 30.
  • the reflector is attached to each surface to form a mirror.
  • the lens holder is composed of upper and lower lens holders, as shown in FIG. 1 and 21-2-2, the inner contour shape of the bracket is matched with the shape of the outer contour of the lens, and the shape of the back surface of the bracket is matched with the light source bracket assembly 4.
  • the lens holder 2 is thermally conductive and has a heat dissipating fin on the outer side, and the light source bracket assembly 4 constitutes a heat dissipation system and a contour of the LED optical component. The heat generated by the LED light source is first conducted to the lens holder 2 through the light source holder assembly 4, and further heat is dissipated by the lens holder 1.
  • the LED light source is a composite light source composed of an upper light source or an upper light source and a lower light source.
  • the upper light source SL is a far and near light source
  • the lower light source SH is a high beam light source, and only the upper light source is illuminated when the low beam is illuminated.
  • high beam illumination it is necessary to simultaneously illuminate the composite light source composed of the upper light source and the lower light source. If the system is only used for low beam illumination, only the upper light source SL needs to be installed.
  • the independent structure of the upper light source and the lower light source is as shown in FIG. 12, c is a light source substrate, a circuit d is arranged on the substrate, and an LED light emitting chip a is soldered on the circuit d, and the light source is characterized in that a composite light source is formed, and the LED light emitting chip is formed.
  • the size of the edge E disposed on one side of the substrate is as shown by D in FIG. 13 , and the value of D is 0.005 mm 0.4 mm.
  • the outer surface of the chip is sealed with a protective material b to surround all the LED light-emitting chips.
  • the positional relationship of the composite light sources to each other is as shown in Fig.
  • the light source bracket assembly is composed of a light source bracket 4-1 and a circuit board 4-2 as shown in FIG. 2, and the light source bracket structure is as shown in FIG. 14 , and an LED light source mounting slot TS is opened in a central area, and a light source mounting slot is provided.
  • the circuit board is provided with a circuit board mounting slot TB and a wire hole H.
  • the circuit board is as shown in FIG. 15 , and the center is provided with a light source positioning slot HS.
  • the left and right sides of the light source positioning slot are respectively provided with two electrodes P1, and the circuit board is another. At the same time, four electrodes P2 are also provided, and are connected to the electrode PI of the light source positioning groove.
  • the system divides all the light of the light source into two parts, one part is the direct light of the light source directed to the front main lens f, the light in the Af interval as shown in Fig. 16, and the other part is otherwise
  • the system controls the two parts of the light separately:
  • Direct forward light of the light source Since the design principle and method of the main lens refer to the automotive headlamp LED light source with the low-cut cut-off line disclosed by the applicant (application number 201010185383.6), it is emitted from the light source. The direct direct light is refracted by the main lens to directly form a straight-shaped cut-off line region with no apparent dispersion.
  • the lateral light of the light source is also divided into three different sections for control.
  • the first section is the light that is directed to the upper left and upper right mirrors a, as shown in Figure 16. In the Aa interval, the interval light is reflected by a and converges on the secondary mirror e, as shown in Fig. 17, and then the secondary reflection of e is directed to the main lens f to form a straight line cutoff in the forward direction without significant dispersion.
  • the second section is the light that is directed to the lower left and right lower mirror b, as shown in the Ab section of Figure 16, which is reflected by b and concentrated on the secondary mirror d, such as As shown in Fig.
  • the secondary reflection of d is further directed to the main lens f to form a straight-shaped cut-off line region having no apparent dispersion in the forward direction;
  • the third interval is a primary mirror for the lateral left-right direction, cl, c2
  • the light as shown in Fig. 19, is interrupted by cl, c2 and also directed toward the main lens f to assist in forming a flat-shaped cut-off line region with no apparent dispersion.
  • the lateral light 0C1 emitted from the light source 0 is reflected by the primary mirror c in the left-right direction, and the reflected light C1C2 is incident on the main lens f, and the light C2C3 refracted by f can be assisted.
  • the lateral light 0A1 emitted from the light source 0 is irradiated upward to the mirror ellipsoid a, since the light source 0 is a focus of the ellipsoid a or near the focus Therefore, the reflected light A1A2 will be focused at or near the other focus of the ellipsoid a, that is, it is focused in front of its corresponding secondary mirror e and reflected again by e, and its reflected light A2A3 is directed toward the main lens f,
  • the light A3A4 refracted by f can assist the formation of a straight-shaped cut-off line region with no apparent dispersion in the forward direction; similarly, the lateral light 0B1 emitted from the source 0 is irradiated downward to the mirror ellipsoid b, due to The light source 0 is a focus of the ellipsoid b or near the
  • the system divides all the light emitted by the light source and performs the above-mentioned different modes of control, and finally obtains a straight-shaped cut-off line region without obvious dispersion as shown in FIG. 22, so that the respective rays are effectively utilized. There is no waste caused by deliberately blocking light or not effectively controlling light.
  • optical forms of automotive headlamps mainly use the following optical forms:
  • a mirror a is installed laterally on the light source s.
  • the system only reflects the lateral light emitted by the light source to achieve the light distribution requirements of the light. After only one reflection control, the light from other directions emitted by the light source, the forward ray of the A1 interval and the backward ray of the A2 interval are not available, and the forward ray that cannot be used is also eliminated by the occlusion of b. Its hazard;
  • the mirror is matched with the front light barrier and the condensing lens.
  • a mirror a is installed laterally to the light source s, and a light barrier b is mounted in front of the mirror to form a clear
  • a condenser lens e is arranged in front of the light shield to condense the unobstructed light, and this form only controls the lateral light emitted by the light source, for the Al, A2, and A3 intervals in the figure.
  • the light is not available.
  • the system controls the light through three processes: one reflection, one occlusion, and one refraction.
  • Lens plus mirror form This form is a relatively new optical form used in automotive LED headlamps. As shown in Figure 27, a mirror a is added behind the side of the main lens b. The light emitted by the light source s is divided into two parts, and a part of the forward direct light is directly refracted by the main lens b to form a desired light area; for the lateral light irradiated to the side mirror a, only one reflection control is performed to form Required light distribution; the light leaked in the Al and A2 intervals between the main lens b and the mirror a is not used for control.
  • the optical control part of the LED headlight assembly of the automobile headlight should mainly consist of the following two independent optical subsystems: 1. An independent main lens is arranged in front of the system; 2. The rear side of the system is provided with Auxiliary mirrors for primary and secondary reflection functions.
  • the main lens and the auxiliary mirror are integrated into a single composite lens component, and the auxiliary mirror is coated with a reflective material at a corresponding position of the composite lens to form a mirror.
  • Another form of the system is to separate the main lens from the auxiliary mirror and combine the two separate parts to form the automotive headlamp LED optics.
  • Lens is to separate the main lens from the auxiliary mirror and combine the two separate parts to form the automotive headlamp LED optics.
  • the lens of the present example is also bilaterally symmetrical in the overall structure and shape, but can be adjusted correspondingly according to the shape of the desired light region;
  • the surface shape of the mirror, this example uses an ellipsoid, but other forms of surface that achieve the same purpose, such as a high-order surface or a free-form surface; in this case, four sets of lateral mirrors are provided with only one mirror per group.
  • the corresponding secondary mirrors must have a one-to-one correspondence with them; this example is to meet different forms of LED light sources, and a rectangular light source slot is provided in the central area of the back of the lens.
  • the LED light source can be embedded in the slot, as shown in the shaded area of Figure 28, the slot can also be changed or cancelled as needed to place the light source outside of the lens.
  • Positioning of the lens As shown in Figure 28, in order to ensure the accurate positioning of the lens and the light source, the limit column h positioned with the light source bracket assembly is arranged at the back of the lens of this example; to ensure the accuracy of the lens and the lens holder Positioning, in this example, a positioning pin k is provided at the light-free portion of the ellipsoid of the mirror on the side of the lens.
  • Cooling system
  • the heat management process of the system is:
  • Light source bracket level heat dissipation In this example, the LED light source substrate and the light source bracket adopt a substrate with good heat conduction, so the heat emitted by the LED chip can be well transmitted to the light source bracket, in order to increase the heat dissipation area, the light source bracket Covers all available areas on the back of the lens, which constitutes a primary heat dissipation of the system.
  • the lens holder of this example also uses a substrate with good thermal conductivity and good contact with the light source holder, so the heat on the light source holder can be well transmitted downward to the lens holder, and the lens holder Covering all available areas on the side of the lens to achieve maximum heat dissipation area, and further providing a plurality of heat dissipating fins on the outside of the lens holder, these constitute the secondary heat dissipation of the system.
  • External heat sink to assist heat dissipation Since the back side of the light source bracket assembly has wires except for the bottom end, there is no obstruction and smoothness in the rest, and it can be used for external auxiliary heat sink to further dissipate heat for the system.
  • the LED light source substrate circuit has two LED light-emitting chips connected in series, and the number of circuits that can be connected in series mainly depends on the required light output amount, chip size and main lens size, and the larger the main lens, the larger the number of chips that can be mounted.
  • the LED light-emitting chip is located in the central area of one side edge of the substrate, and the two chips are arranged side by side. According to the size and number of the chips, the chips can be divided into two or more rows. The distance between the chips and the edge of the substrate needs to be according to the production process capability. Make adjustments.
  • the LED light source chip is sealed with a rectangular protective material, but the shape sealed by the protective material can be arbitrary, and the chip can be protected from the LED light source and used in any other feasible manner.
  • the light source When the system is lit by the low beam, the light source is illuminated, and the light emitted by the light source can form a straight-shaped light area as shown in FIG. 22, and the upper boundary of the light area is a clear cut-off line, and the cut-off line is clear. Obvious dispersion;
  • the upper and lower light source and the lower high beam source need to be illuminated at the same time.
  • the light emitted by the separate high beam source can form the upper light area shown in Fig. 23 through the system.
  • the shape is substantially vertically symmetrical with the single low-beam region, and the light regions obtained by the upper and lower light sources are combined to obtain the high-beam region shown in FIG.
  • the system can form the light zone shown in FIG. 22 and FIG. 24, it can be used for the low beam, high beam light distribution design of the automobile and motorcycle headlights, and the front fog light distribution design of the automobile, and can also be applied to the machine.
  • the electric car is turned to an auxiliary lighting system, etc.; since the system itself is a lighting component that can exist independently, it can even be applied to any lighting requirement other than motor vehicle lighting.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种近光带有明暗截止线的汽车前照灯LED光学组件,包括透镜(1)、透镜支架(2)、光源支架总成(4)和LED光源(3)。透镜由主透镜(f)和反光镜构成,透镜正前方为主透镜,主透镜周围为辅助反光镜,主透镜侧面设有四组形状左右对称的反光镜(a1,b1,a2,b2),主透镜背面设有六组形状左右对称的反光镜(c1,d1,e1,c2,d2,e2)。LED光学组件中,通过主透镜能实现正向无明显色散的一字形明暗截止线光区,通过侧向一次反光镜能收集光源所有侧向光线,并将侧向光线通过二次反光镜反射至主透镜,反光镜与主透镜之间无需设置挡光***,从而将侧向光线通过主透镜来形成无明显色散的一字形明暗截止线光区。

Description

近光带有明暗截止线的汽车前照灯 LED光学组件
技术领域
本发明属于车灯, 尤其涉及一种近光带有明暗截止线的汽车前照灯 LED光学组件。
背景技术 说
近年来, 伴随着大功率白光 LED的迅猛发展, 高效节能的 LED照明已逐渐趋于成熟, 汽车照明 作为其中一部分, 众多业内机构也纷纷开始深入研究大功率白光 LED在车灯领域方面的应用, 并已 推出较成熟产品, LED 车灯不仅节能, 也使得车灯的外观更加多样、 更加时尚。 作为汽车前大灯, 安全照明是其最主要目的, 在城市交通中为了防止会车时前大灯给对方司机造成炫目, 世界各国都 对会车灯, 即近光灯有很严格的要求, 要求近光灯所发出光线必须形成清晰的明暗截止线, 对于该 书
线的形成, 传统车灯绝大多数均采用单一反光镜形式或反光镜配合前方的档光板及聚光透镜的投射 灯形式。 两者基本上都只有光源射向反光镜的光线可以被利用, 而剩余的杂光则必须进行遮挡或采 用漫反射的形式来消除其危害, 导致光利用效率普遍偏低。 单一反光镜形式的光利用效率一般在 40%左右, 而投射灯形式也很难超越 60¾。 可见, 汽车近光灯的光学设计是汽车前照灯的核心, 也是 难点。 目前, 市场上颇具权威的灯具厂商, 已经为部分高档轿车推出了几款以 LED为光源的汽车前 照灯, 但其近光的光学形式仍采用了上述传统的方式, 所以在光的利用方面仍难以得到有效的提 高。 由于目前照明用白光 LED的出光量还远未能达到传统光源的水准, 为了达到同样的光照强度, 必然需要更多的 LED来实现此要求, 由于目前 LED的光效较低, 其发热量较大, 如果增加 LED数量 或加大功率, 又会导致散热难, 而采用复杂良好的散热机构又会大幅增加车灯成本而导致难以普 及, 反之, 如果散热不良又会引起 LED寿命的大幅降低, 所以, 对于普及汽车近光灯以 LED为光源 的照明, 如果采用传统的设计方式来实现, 目前还存在一定困难。 申请人 (申请号为 201010185383.6 ) 公开了一种近光带有明暗截止线的汽车前照灯 LED光源, 主要由透镜、 支架总成 和 LED发光芯片构成, 其特征是: 所述透镜表面呈非回转非球面曲面, 所述透镜由多个不同朝向的 表面呈非回转非球面曲面的透镜依次相接组成的透镜组所构成。 透镜正前方透镜为主透镜, 主透镜 周围透镜为辅助透镜。 该项技术虽然主透镜及辅助透镜将光源光线全部利用, 且均不需遮光便可单 独形成无明显色散的一字形明暗截止线光区, 但缺点是只有主透镜所形成的光区射向正前方, 周围 的辅助透镜所射出的光线分别朝向上下左右不同的方向。 所以在该光源透镜之外还必须设置反光镜 来将辅助透镜所发出的光线反射至正前方, 从而增加车灯体积和成本, 由于目前 LED发光芯片技术 所限, 单颗 LED光源的发光量也很有限, 所以需要多组该光源与反光镜的组合才可达到要求, 但由 于车灯内空间有限, 所以很难容纳多组该光学组件。
发明内容
本发明的目的则在于克服上述技术的不足, 而提供一种近光带有明暗截止线的汽车前照灯 LED 光学组件, 从光源发光体发出的前向直射光线通过主透镜可以直接形成带明暗截止线的光区; 同 时, 剩余的侧向发散光线则通过一次和二次反光镜的一次反射和二次反射, 使侧向光线间接射向主 透镜。 反光镜与主透镜之间无需设置档光***, 侧向光线也可通过主透镜来形成带明暗截止线的光 区。
本发明为实现上述目的, 采用以下技术方案: 一种近光带有明暗截止线的汽车前照灯 LED光学 组件, 主要由透镜、 透镜支架、 光源支架总成和 LED光源构成, 其特征是: 所述透镜由主透镜和反 光镜构成, 所述透镜正前方为主透镜, 主透镜周围为辅助反光镜, 所述主透镜侧面设有两组形状左 右对称的四个反光镜, 所述透镜背面设有两组形状左右对称的六个反光镜。
所述主透镜曲面上各点 X Υ Ζ三座标测量值范围为: 以主透镜中心为座标系原点, X方向座 标区间为 5mn +35mm Y方向座标区间为 -20mn +20mm; Z方向座标区间为 -15mn +15mm
所述透镜背面 Y 方向靠近光源中心点位置的左右各设置三组反光镜, 每组至少设置一个反光 镜, 所述六组反光镜呈一字排列, 靠近光源中心位置的两组反光镜为一次反光镜, 均朝向前方主透 镜, 两组一次反光镜的最内侧边界距离光源边界 0mm 2mm; 靠近光源中心其次位置与两组一次反光 镜最外侧边界相邻的 Y方向设置左右各两组二次反光镜, 左边的两组二次反光镜分别朝向左下、 左 上, 右边的两组二次反光镜分别朝向右下、 右上; 六组反光镜各表面形状均为自由曲面, 左右两边 的各三组反光镜的全体长度在 Y方向均为 lmm 20mm, 其中每组反光镜各占 5¾ 80¾长度, 每组反光 镜在 X方向尺寸范围为 1 10 在 Z方向尺寸范围为 1 10 所述透镜侧面左上、左下、右 上、 右下位置设置四组一次反光镜, 每组至少设置一个反光镜, 位于左上位置的一次反光镜与朝左 上的二次反光镜一一对应, 位于左下位置的一次反光镜与朝左下的二次反光镜一一对应, 位于右上 位置的一次反光镜与朝右上的二次反光镜一一对应, 位于右下位置的一次反光镜与朝右下的二次反 光镜一一对应, 所述四组一次反光镜的每个反光镜表面形状均为椭球面或达到同等目的的其他形式 曲面, 每个椭球面均有一个焦点位于光源中心点周围 0mm 5mm 半径范围内, 另一个焦点位于各椭 球面对应的二次反光镜前方 X方向 0mm 5mm范围内, 各椭球面长轴长度范围为 lmm 35mm, 短轴长 度范围为 lmm 30mm 所述透镜支架由上、 下透镜支架构成, 支架内轮廓形状与透镜外轮廓形状相吻合, 支架背面形 状与光源支架总成相吻合, 支架外侧设有散热翅。
所述 LED 光源为上部光源或者由上部光源和下部光源构成的复合光源, 上部光源为远近光光 源, 下部光源为远光光源。
所述复合光源中上部光源的 LED发光芯片与下部光源的 LED发光芯片分别位于基板一侧边缘, 所述上部光源与下部光源在安装有 LED发光芯片的基板一侧紧贴设置。
所述光源支架总成由光源支架和电路板构成, 所述光源支架中心区开有 LED光源安装槽, 光源 安装槽***设有电路板安装槽及导线孔, 所述电路板中心设有光源定位槽, 光源定位槽的左右两侧 各设有两个电极, 电路板另一处也同时设有四个电极, 并与光源定位槽的电极对应接通。
有益效果: LED 光学组件能通过主透镜实现正向无明显色散的一字形明暗截止线光区, 侧向辅 助反光镜能收集光源所有侧向光线, 并将侧向光线再反射至主透镜, 反光镜与透镜之间无需设置档 光***, 有效地提高了光线的利用率, 从而将侧向光线通过主透镜来辅助形成无明显色散的一字形 明暗截止线光区。 无需增加外部反光镜而使得光学组件的体积大幅缩小, 车灯内足以容纳多颗该组 件, 并且简化了车灯结构, 降低了成本。 该组件对 LED光源所能发出的 360 ° xl 80 ° 范围内的所有 光线均进行了较合理的分配和利用, 除被透镜材料和反光镜表面吸收等损失掉约 25¾光线外, 可用 于车灯配光的光线接近 75¾, 不仅大幅提高了光效, 而且还在一定程度上减轻了光学设计人员设计 明暗截止线光区的困难, 使近光灯的开发变得简单易行。 透镜支架由于自身构成散热***, 可以很 好的将 LED光源所发出的热量及时散出, 无需外加散热装置。
附图说明
图 1是本发明的结构示意图;
图 2是本发明的整体立体效果示意图;
图 3是本发明的透镜左视结构示意图;
图 4是本发明的透镜后视结构示意图;
图 5是本发明的透镜背面反光镜与周边光学组件相对位置示意图;
图 6是本发明的透镜背面反光镜立体效果示意图;
图 7是本发明的透镜背面反光镜尺寸说明顶视示意图;
图 8是本发明的透镜背面反光镜尺寸说明后视示意图;
图 9是本发明的透镜侧面反光镜与周边光学组件相对位置示意图;
图 10是本发明的透镜侧面反光镜与背面反光镜对应关系示意图;
图 11是本发明的复合 LED光源构成及位置设置示意图; 图 12是本发明的单颗 LED光源构成立体效果示意图;
图 13是本发明的 LED光源芯片位置设置示意图;
图 14是本发明的 LED光源支架总成的光源支架正视示意图;
图 15是本发明的 LED光源支架总成的电路板正视示意图;
图 16是本发明对光源光线的划分区间侧视示意图;
图 17是本发明对光源侧上方光线的控制原理示意图;
图 18是本发明对光源侧下方光线的控制原理示意图;
图 19是本发明对光源左右侧光线的控制区间及原理示意图;
图 20是本发明对一次及二次反射光线的光路追踪立体效果示意图;
图 21是本发明对一次及二次反射光线的光路追踪侧视示意图;
图 22是本发明远近光光源点灯所产生光区形状示意图;
图 23是本发明远光光源点灯所产生光区形状示意图;
图 24是本发明复合光源点灯所产生光区形状示意图;
图 25是现有机动车单一反光镜形式车灯光学原理示意图;
图 26是现有机动车投射灯形式车灯光学原理示意图;
图 27是现有机动车透镜加反光镜形式 LED车灯光学原理示意图;
图 28是本发明的透镜背面光源槽及定位***说明立体效果示意图。
具体实施方式
下面结合附图及较佳实施例详细说明本发明的具体实施方式。
详见附图, 一种近光带有明暗截止线的汽车前照灯 LED光学组件, 其结构如图 1 2所示, 主 要由透镜 1、 透镜支架 2 LED光源 3和光源支架总成 4构成, 辅助零部件有电极 5和安装螺丝 6 等。 如图 3所示, 所述透镜正前方设有 1枚主透镜 f, 主透镜为非回转非球面曲面, 主透镜的设计 原理及方法参照申请人 (申请号为 201010185383.6) 公开的一种近光带有明暗截止线的汽车前照灯 LED光源, 当透镜材质折射率在 1. 4 2. 4区间时, 如图 3 4所示, 所述主透镜 f 曲面上各点 X Y Ζ三座标测量值范围为: 以透镜中心点 0为座标系原点, X方向座标区间 11为 5 +35 Υ方 向座标区间 W为— 20mm +20mm Z方向座标区间 V为— 15mm +15mm
所述透镜背面 Y方向光源中心点 0位置左右各设置三组反光镜, 此六组反光镜呈一字排列, 每 组至少设置一个反光镜, 本例每组仅设置了一个反光镜, 其在透镜上的位置关系如图 5 6 所示的 cl dl el和 c2 d2 e2, 靠近光源中心点 O (或光源 S ) 的两组反光镜 cl c2为一次反光镜, 均朝向前方主透镜, 两组一次反光镜的最内侧边界距离光源 S的边界距离为 D, 如图 7所示, D的取 值范围为 0mm 2mm, 靠近光源中心其次位置与两组一次反光镜 cl c2最外侧边界相邻的 Y方向设 置左右各两组二次反光镜, 左边的两组二次反光镜 dl el分别朝向左下、 左上, 右边的两组二次反 光镜 d2 e2分别朝向右下、右上, 六组反光镜各表面形状均为自由曲面, 左右两边的各三组反光镜 在 Y方向的全体长度范围 Ry为 1 20 其中每组反光镜长度 Lc Ld Le各占全长 Ry的 Ά〜 80%, 每组反光镜在 X方向尺寸范围 Rx为 lmn 10 在 Z方向尺寸范围 Rz如图 8所示, Rz取值范 围为 lmm 10mm, 各曲面上附着反光材, 以形成反光镜。
所述透镜侧面设置四组一次反光镜, 如图 9所示, 分别为左上 al、 左下 bl、 右上 a2、 右下 b2 每组至少设置一个反光镜, 本例每组仅设置了一个反光镜, 该四组一次反光镜与透镜背面的四组二 次反光镜一一对应, 其对应关心如图 10所示, 位于左上位置的一次反光镜 al与朝左上的二次反光 镜 el对应, 位于左下位置的一次反光镜 bl与朝左下的二次反光镜 dl对应, 位于右上位置的一次反 光镜 a2与朝右上的二次反光镜 e2对应, 位于右下位置的一次反光镜 b2与朝右下的二次反光镜 d2 对应, 所述四组一次反光镜的每个反光镜表面形状均为椭球面或达到同等目的的其他形式曲面, 每 个椭球面均有一个焦点位于光源中心点 0周围 0mm 5mm半径范围内, 另一个焦点位于各椭球面对 应的二次反光镜前方 X方向 Qmm 5mm范围内, 各椭球面长轴长度范围为 lmm 35mm, 短轴长度范围 为 1 30 各曲面上附着反光材, 以形成反光镜。
所述透镜支架由上、 下透镜支架构成, 如图 1中的 2-1 2-2所示, 支架内轮廓形状与透镜外轮 廓形状相吻合, 支架背面形状与光源支架总成 4相吻合, 透镜支架 2导热良好并外侧设有散热翅, 与光源支架总成 4构成该 LED光学组件的散热***及外形轮廓。 LED光源所发出的热量先通过光源 支架总成 4传导到透镜支架 2, 再利用透镜支架 1进一步散热。
所述 LED光源为上部光源或上部光源和下部光源构成的复合光源,如图 11所示,上部光源 S-L 为远近光光源, 下部光源 S-H为远光光源, 近光照明时仅点亮上部光源, 远光照明时, 则需要同时 点亮上部光源和下部光源构成的复合光源, 如该***仅用于近光照明, 则仅需安装上部光源 S-L即 可。
所述上部光源和下部光源的独立结构如图 12所示, c为光源基板, 基板上布有电路 d, 电路 d 上焊有 LED发光芯片 a,该光源特征是为了形成复合光源, LED发光芯片设置于基板一侧的边缘 E 距离边缘 E的尺寸如图 13中 D所示, D的取值范围为 0.005mm 0.4mm, 芯片外部封有保护材料 b 将所有 LED发光芯片包围在内, 所述复合光源相互安装位置关系如图 11所示, 上部光源 S-L与下 部光源 S-H在 E边紧贴设置。 所述光源支架总成如图 2所示, 由光源支架 4-1和电路板 4-2组成, 所述光源支架结构如图 14 所示, 中心区开有 LED光源安装槽 T-S, 光源安装槽***设有电路板安装槽 T-B及导线孔 H, 所述 电路板如图 15所示, 中心设有光源定位槽 H-S, 光源定位槽的左右两侧各设有两个电极 Pl, 电路板 另一处也同时设有四个电极 P2, 并与光源定位槽的电极 PI对应接通。
一、 ***光学原理:
1. 该***光学原理: 该***将光源的所有光线分为两部分, 一部分为光源射向正前方主透镜 f 的直射光, 如图 16所示 Af 区间的光线, 另一部分为除此之外的所有侧向光线, ***对这两部分 光线分别进行了不同的控制:
1) . 光源正向直射光: 由于主透镜的设计原理及方法参照了申请人 (申请号为 201010185383.6) 公开的一种近光带有明暗截止线的汽车前照灯 LED光源, 所以从光源发出的正向 直射光线经主透镜折射后可以直接形成正向无明显色散的一字形明暗截止线光区。
2) . 光源侧向光: 对于光源的侧向光线, 也分成了三个不同区间进行分别控制, 第一个区 间是射向侧向左上、 右上一次反光镜 a的光线, 如图 16所示的 Aa区间, 该区间光线经 a反射后汇 聚到二次反光镜 e上, 如图 17所示, 再经 e的二次反射射向主透镜 f 辅助形成正向无明显色散的一 字形明暗截止线光区; 第二个区间是射向侧向左下、 右下一次反光镜 b的光线, 如图 16所示的 Ab 区间, 该区间光线经 b反射后汇聚到二次反光镜 d上, 如图 18所示, 再经 d的二次反射射向主透镜 f 辅助形成正向无明显色散的一字形明暗截止线光区; 第三个区间是射向侧向左右方向一次反光镜 cl、 c2的光线, 如图 19所示的 Ac区间, 该区间光线经 cl、 c2反射后也射向主透镜 f 辅助形成正 向无明显色散的一字形明暗截止线光区。 对于上述三个区间光线的控制, 其光路详述如下:
如图 20、 21所示, 从光源 0所发出的侧向光 0C1在左右方向照射到一次反光镜 c后形成反射, 反射光线 C1C2射向主透镜 f, 经 f 折射后的光线 C2C3便可辅助形成正向无明显色散的一字形明暗 截止线光区; 从光源 0所发出的侧向光 0A1向上照射到一次反光镜椭球面 a, 由于光源 0为椭球面 a 的一个焦点或在焦点附近位置,所以经反射的光线 A1A2会在椭球面 a的另一个焦点或附近聚焦, 也 就是在其对应的二次反光镜 e前方聚焦并被 e所再次反射, 其反射光线 A2A3射向主透镜 f, 经 f 折 射后的光线 A3A4便可辅助形成正向无明显色散的一字形明暗截止线光区; 同理, 从光源 0所发出的 侧向光 0B1向下照射到一次反光镜椭球面 b, 由于光源 0为椭球面 b的一个焦点或在焦点附近位置, 所以经反射的光线 B1B2会在椭球面 b的另一个焦点或附近聚焦, 也就是在其对应的二次反光镜 d前 方聚焦并被 d所再次反射, 其反射光线 B2B3射向主透镜 f, 经 f 折射后的光线 B3B4便可辅助形成 正向无明显色散的一字形明暗截止线光区。 该***通过对光源所发出的所有光线进行划分, 并进行了上述不同方式的控制, 最终得到如图 22所示无明显色散的一字形明暗截止线光区, 使得各向光线均得到有效利用, 不存在刻意遮挡光线 或不能有效控制光线而造成的浪费。
2. 与其他可形成明暗截止线的车灯光学形式的区别:
目前, 作为汽车前照灯的光学形式主要采用以下几种光学形式:
i) .单一反光镜形式: 如图 25所示, 即在光源 s侧向安装一个反光镜 a, ***仅对光源所发 出的侧向光线进行反射控制以达到车灯的配光要求, 其中光线仅经过了一次反射控制, 光源所发出 其他方向的光线, 如图中 A1区间的前向光线和 A2区间的后向光线则无法利用, 对于无法利用的前 向光线还要通过 b的遮挡来消除其危害;
ϋ) .反光镜配合前方的档光板及聚光透镜的投射灯形式: 如图 26所示, 即在光源 s侧向安装 一个反光镜 a, 反光镜的前方安装一块档光板 b 以形成清晰的明暗截止线, 档光板前方再设置一枚 聚光透镜 e, 对未被遮挡的光线进行聚光, 该形式也仅对光源所发出的侧向光线进行控制, 对于图 中 Al、 A2、 A3 区间的光线则无法利用, 该***对于光线的控制经过了一次反射、 一次遮挡、 一次 折射三个过程控制;
H i) .透镜加反光镜形式: 该形式是目前汽车 LED前照灯所采用的较新的一种光学形式, 如图 27所示, 即在主透镜 b的侧后方加设反光镜 a, 将光源 s发出的光线分为两部分处理, 一部分前向 直射光线经主透镜 b折射后直接形成所需光区; 对于照射到侧向反光镜 a的侧向光线则仅进行一次 反射控制以形成所需配光; 对于主透镜 b与反光镜 a之间的 Al、 A2区间所漏掉的光线则不进行控制 利用。
通过上述比较, 可以看出目前已有主要汽车前照灯的光学形式均或多或少存在对光线的非有效 利用, 而对于以 LED 为光源的汽车前照灯, 如果仍然采用上述光学形式, 也同样不可避免上述弊 端。
二、 ***说明:
由该***的光学原理可知: 该汽车前照灯 LED 光学组件的光学控制部分主要应该由以下两个 独立光学分***构成: 1.***前方设置一个独立的主透镜; 2.***侧后方设置具有一次和二次反射功 能的辅助反光镜。 本例为简化产品结构, 集主透镜、 辅助反光镜于一体, 成为一个独立的复合透镜 零部件, 所述辅助反光镜即在该复合透镜的相应位置表层涂覆反光材料以形成反光镜。 该***的另 一种形式是将主透镜和辅助反光镜分开, 成为两个独立的零件组合起来, 同样可构成该汽车前照灯 LED光学组件。 1. 透镜:
1) .透镜的结构: 为达到所形成光区形状的左右对称, 本例透镜在整体结构及形状上也左右 对称, 但可随所需光区形状进行相应调整; 所述侧向四组一次反光镜的表面形状, 本例采用了椭球 面, 但也可采用达到同等目的的其他形式曲面, 如高次曲面或者自由曲面; 本例四组侧向一次反光 镜每组仅设置了一个反光镜, 也可根据需要细分, 设置多个反光镜, 但其所对应的二次反光镜必须 与其保持一一对应; 本例为满足不同形式的 LED光源, 在透镜背面中心区域设有矩形光源槽 g, 可 将 LED光源嵌入该槽中, 如图 28阴影区所示, 该槽也可根据需要改变形状或取消, 而将光源置于透 镜之外。
2) .透镜的定位: 如图 28 所示, 为保证透镜和光源的准确定位, 本例透镜背面多处设置了与 光源支架总成定位的限位柱 h ; 为保证透镜和透镜支架的准确定位, 本例在透镜侧面一次反光镜椭 球面的无光线处设置了定位销 k。
2. 散热***:
由于 LED光源在工作时会发出大量的热, 所以对***而言良好的散热非常关键, 该***对热量 的管理过程为:
1) .光源支架一级散热: 本例 LED光源基板及光源支架均采用了导热良好的基材, 所以 LED芯 片所发出的热量可以很好地传导到光源支架, 为增大散热面积, 光源支架覆盖了透镜背面全部可利 用的区域, 构成了***的一级散热。
2) .透镜支架二级散热: 本例透镜支架也采用了导热良好的基材, 并且与光源支架有良好接 触, 所以光源支架上的热可以向下很好地传导到透镜支架, 并且透镜支架覆盖透镜侧面全部可利用 区域以达到最大散热面积,更进一步透镜支架外侧设有多枚散热翅,这些均构成了***的二级散热。
3) .外接散热装置辅助散热: 由于光源支架总成的背面除底端有导线外, 其余地方无任何遮 挡物且平整光滑, 可用于外接辅助散热装置以进一步为***散热。
3. LED光源:
本例 LED光源基板电路串联有 2枚 LED发光芯片, 电路可串联芯片的数量主要取决于所需出光 量、 芯片大小及主透镜大小, 主透镜越大允许安装的芯片数量越多。 本例 LED发光芯片位于基板一 侧边缘的中心区域, 2枚芯片并列一字排开, 根据芯片大小及数量也可分为 2排或多排设置, 芯片 距离基板边缘的距离需根据生产工艺能力进行调整。本例 LED光源芯片外部封有矩形保护材料, 但 保护材料所封成的形状可以任意,并且也可不在 LED光源上对芯片进行保护而改用其他任何可行的 方式。 4. 近光、 远光所形成的光区描述:
该***近光点灯时, 点亮远近光光源, 光源所发出的光经该***后可形成图 22所示一字形光 区, 该光区上边界为清晰的明暗截止线, 且明暗截止线无明显色散; 该***远光点灯时, 需同时点 亮上部的远近光光源和下部的远光光源, 单独的远光光源所发出的光线经该***后可形成图 23所 示上部光区, 其形状与单独的近光光区基本上上下对称, 上下两光源所得光区合成即得图 24所示 远光光区。
5. ***的应用领域:
由于该***可以形成图 22、 图 24所示光区, 所以可以用于汽车、 摩托车前照灯的近光、 远光配 光设计及汽车的前雾灯配光设计, 还可以应用于机动车转向辅助照明***等; 另外由于该***本身 为一个可以独立存在的照明组件, 所以甚至可以应用于机动车照明以外的任何照明需求。
以上所述, 仅是本发明的较佳实施例而已, 并非对本发明的结构作任何形式上的限制。 凡是依 据本发明的技术实质对以上实施例所作的任何简单修改、 等同变化与修饰, 均仍属于本发明的技术 方案的范围内。

Claims

权 利 要 求 书
1、 一种近光带有明暗截止线的汽车前照灯 LED光学组件, 主要由透镜、 透镜支架、 光源支架 总成和 LED光源构成, 其特征是: 所述透镜由主透镜和反光镜构成, 所述透镜正前方为主透镜, 主 透镜周围为辅助反光镜, 所述主透镜侧面设有四组形状左右对称的反光镜, 所述透镜背面设有六组 形状左右对称的反光镜。
2、 根据权利要求 1所述的近光带有明暗截止线的汽车前照灯 LED光学组件, 其特征是: 所述 主透镜曲面上各点 X Υ Ζ三座标测量值范围为: 以主透镜中心为座标系原点, X方向座标区间为 5mm~+35mm Y方向座标区间为- 20mm +20mm; Z方向座标区间为- 15mm +15mm
3、 根据权利要求 1所述的近光带有明暗截止线的汽车前照灯 LED光学组件, 其特征是: 所述 透镜背面 Y方向靠近光源中心点位置的左右各设置三组反光镜, 每组至少设置一个反光镜, 所述六 组反光镜呈一字排列, 靠近光源中心位置的两组反光镜为一次反光镜, 均朝向前方主透镜, 两组一 次反光镜的最内侧边界距离光源边界 0mm 2mm; 靠近光源中心其次位置与两组一次反光镜最外侧边 界相邻的 Y方向设置左右各两组二次反光镜, 左边的两组二次反光镜分别朝向左下、 左上, 右边的 两组二次反光镜分别朝向右下、 右上; 六组反光镜各表面形状均为自由曲面, 左右两边的各三组反 光镜的全体长度在 Y方向均为 lmm 20mm, 其中每组反光镜各占 5¾ 80¾长度, 每组反光镜在 X方向 尺寸范围为 1 10 在 Z方向尺寸范围为 1 10 所述透镜侧面左上、 左下、 右上、 右下位 置设置四组一次反光镜, 每组至少设置一个反光镜, 位于左上位置的一次反光镜与朝左上的二次反 光镜一一对应, 位于左下位置的一次反光镜与朝左下的二次反光镜一一对应, 位于右上位置的一次 反光镜与朝右上的二次反光镜一一对应, 位于右下位置的一次反光镜与朝右下的二次反光镜一一对 应, 所述四组一次反光镜的每个反光镜表面形状均为椭球面或达到同等目的的其他形式曲面, 每个 椭球面均有一个焦点位于光源中心点周围 0mm 5mm 半径范围内, 另一个焦点位于各椭球面对应的 二次反光镜前方 X方向 0mm 5mm范围内, 各椭球面长轴长度范围为 lmm 35mm, 短轴长度范围为 lmm 30mm
4、 根据权利要求 1所述的近光带有明暗截止线的汽车前照灯 LED光学组件, 其特征是: 所述 透镜支架由上、 下透镜支架构成, 支架内轮廓形状与透镜外轮廓形状相吻合, 支架背面形状与光源 支架总成相吻合, 支架外侧设有散热翅。
5、 根据权利要求 1所述的近光带有明暗截止线的汽车前照灯 LED光学组件, 其特征是: 所述 LED光源为上部光源或者由上部光源和下部光源构成的复合光源, 上部光源为远近光光源, 下部光 源为远光光源。
6、 根据权利要求 5所述的近光带有明暗截止线的汽车前照灯 LED光学组件, 其特征是: 所述 复合光源中上部光源的 LED发光芯片与下部光源的 LED发光芯片分别位于基板一侧边缘, 所述上 部光源与下部光源在安装有 LED发光芯片的基板一侧紧贴设置。
7、 根据权利要求 1所述的近光带有明暗截止线的汽车前照灯 LED光学组件, 其特征是: 所述光源 支架总成由光源支架和电路板构成, 所述光源支架中心区开有 LED光源安装槽, 光源安装槽***设 有电路板安装槽及导线孔, 所述电路板中心设有光源定位槽, 光源定位槽的左右两侧各设有两个电 极, 电路板另一处也同时设有四个电极, 并与光源定位槽的电极对应接通。
PCT/CN2011/076926 2011-06-02 2011-07-06 近光带有明暗截止线的汽车前照灯led光学组件 WO2012162927A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/557,201 US8894258B2 (en) 2011-06-02 2012-07-24 LED optical assembly for automotive headlamp

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201120183147U CN202132878U (zh) 2011-06-02 2011-06-02 近光带有明暗截止线的汽车前照灯led光学组件
CN2011101469662A CN102322603B (zh) 2011-06-02 2011-06-02 近光带有明暗截止线的汽车前照灯led光学组件
CN201110146966.2 2011-06-02
CN201120183147.0 2011-06-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/557,201 Continuation-In-Part US8894258B2 (en) 2011-06-02 2012-07-24 LED optical assembly for automotive headlamp

Publications (1)

Publication Number Publication Date
WO2012162927A1 true WO2012162927A1 (zh) 2012-12-06

Family

ID=47258294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076926 WO2012162927A1 (zh) 2011-06-02 2011-07-06 近光带有明暗截止线的汽车前照灯led光学组件

Country Status (2)

Country Link
US (1) US8894258B2 (zh)
WO (1) WO2012162927A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6442871B2 (ja) * 2014-05-23 2018-12-26 市光工業株式会社 車両用灯具
JP6369128B2 (ja) * 2014-05-23 2018-08-08 市光工業株式会社 車両用灯具
CN104180269B (zh) * 2014-09-05 2017-05-17 广东雷腾智能光电有限公司 一种汽车前照灯光学***
CN105222051A (zh) * 2015-10-30 2016-01-06 江苏亿诺车辆部件有限公司 一种汽车前照灯用透镜结构
CN105351848A (zh) * 2015-11-25 2016-02-24 海盐丽光电子科技有限公司 一种集成于led汽车透镜内部的转向辅助灯
JP6738532B2 (ja) * 2016-05-27 2020-08-12 東芝ライテック株式会社 車両用照明装置、および車両用灯具
JP6718601B2 (ja) * 2016-08-30 2020-07-08 東芝ライテック株式会社 車両用照明装置、および車両用灯具
WO2019194276A1 (ja) 2018-04-06 2019-10-10 株式会社小糸製作所 車両用灯具、空間光変調ユニットおよび灯具ユニット
DE102018133061A1 (de) * 2018-12-20 2020-06-25 HELLA GmbH & Co. KGaA Linsenhalter zur Aufnahme einer Linse in einem Scheinwerfer
US11391429B2 (en) * 2019-05-20 2022-07-19 Hasco Vision Technology Co., Ltd. Vehicle lamp optical element assembly, vehicle illumination module, vehicle lamp, and vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251478A (ja) * 2004-03-02 2005-09-15 Ichikoh Ind Ltd ヘッドランプ
JP2006156191A (ja) * 2004-11-30 2006-06-15 Koito Mfg Co Ltd 車両用前照灯
JP2006156045A (ja) * 2004-11-26 2006-06-15 Koito Mfg Co Ltd 車両用前照灯
CN101761847A (zh) * 2008-12-25 2010-06-30 市光工业株式会社 车辆用前照灯
CN101858550A (zh) * 2010-05-28 2010-10-13 程兴华 近光带有明暗截止线的汽车前照灯led光源

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6367949B1 (en) * 1999-08-04 2002-04-09 911 Emergency Products, Inc. Par 36 LED utility lamp
JP4640962B2 (ja) * 2005-07-29 2011-03-02 株式会社小糸製作所 車両用前照灯
FR2919378B1 (fr) * 2007-07-27 2009-10-23 Valeo Vision Sa Module d'eclairage pour projecteur de vehicule automobile.
JP5145190B2 (ja) * 2008-03-13 2013-02-13 株式会社小糸製作所 車両用前照灯
US8419244B2 (en) * 2009-08-27 2013-04-16 Honda Motor Co., Ltd. Motorcycle lamp for vehicle
US8845161B2 (en) * 2011-02-09 2014-09-30 Truck-Lite Co., Llc Headlamp assembly with heat sink structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005251478A (ja) * 2004-03-02 2005-09-15 Ichikoh Ind Ltd ヘッドランプ
JP2006156045A (ja) * 2004-11-26 2006-06-15 Koito Mfg Co Ltd 車両用前照灯
JP2006156191A (ja) * 2004-11-30 2006-06-15 Koito Mfg Co Ltd 車両用前照灯
CN101761847A (zh) * 2008-12-25 2010-06-30 市光工业株式会社 车辆用前照灯
CN101858550A (zh) * 2010-05-28 2010-10-13 程兴华 近光带有明暗截止线的汽车前照灯led光源

Also Published As

Publication number Publication date
US8894258B2 (en) 2014-11-25
US20120307511A1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
WO2012162927A1 (zh) 近光带有明暗截止线的汽车前照灯led光学组件
CN102322603B (zh) 近光带有明暗截止线的汽车前照灯led光学组件
EP2366940B1 (en) Motorcycle projector headlight
TWI391267B (zh) 汽、機車之頭燈或霧燈
WO2014059708A1 (zh) 一种led型的机动车前照灯
WO2014139285A1 (zh) 一种组合式光学透镜led摩托车前照灯
TWM536321U (zh) 照明結構
CN107062119A (zh) 一种出光透镜及双光车灯
CN102330936B (zh) 一种投射式led汽车近光灯
CN100549501C (zh) 投射式光学***结构
JP2013171710A (ja) 車両用前照灯
JP6340696B2 (ja) 照明装置及び自動車
CN205227128U (zh) 一种光线收集装置及前照灯
CN201885116U (zh) Led车头灯
TWM587725U (zh) 照明結構
KR102099793B1 (ko) 차량용 헤드 램프
CN206469175U (zh) 一种出光透镜及双光车灯
CN202132878U (zh) 近光带有明暗截止线的汽车前照灯led光学组件
WO2018040808A1 (zh) 直射式汽车前照灯模组及汽车前照灯
CN210601443U (zh) 一种汽车前照灯
CN202266959U (zh) 一种投射式led汽车近光灯
CN112303580A (zh) 一种多曲面反射聚光式led近光透镜模组
TW202106537A (zh) 微型化光線投射裝置
CN216244082U (zh) 一种车灯照明***
CN216361356U (zh) 一种车灯照明***

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11867023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.03.2014)

122 Ep: pct application non-entry in european phase

Ref document number: 11867023

Country of ref document: EP

Kind code of ref document: A1