WO2012156442A1 - Method for producing carbon fillers having covalently bonded amino groups - Google Patents

Method for producing carbon fillers having covalently bonded amino groups Download PDF

Info

Publication number
WO2012156442A1
WO2012156442A1 PCT/EP2012/059113 EP2012059113W WO2012156442A1 WO 2012156442 A1 WO2012156442 A1 WO 2012156442A1 EP 2012059113 W EP2012059113 W EP 2012059113W WO 2012156442 A1 WO2012156442 A1 WO 2012156442A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon
reaction
fillers
carbon fillers
amino groups
Prior art date
Application number
PCT/EP2012/059113
Other languages
German (de)
French (fr)
Inventor
Christof W. Wigbers
Marion Kristina BRINKS
Johann-Peter Melder
Original Assignee
Basf Se
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201280030927.9A priority Critical patent/CN103619964A/en
Priority to CA2836399A priority patent/CA2836399A1/en
Priority to KR1020137030312A priority patent/KR20140037844A/en
Priority to EA201391704A priority patent/EA201391704A1/en
Priority to MX2013013311A priority patent/MX2013013311A/en
Priority to JP2014510791A priority patent/JP2014523926A/en
Application filed by Basf Se filed Critical Basf Se
Priority to AU2012258241A priority patent/AU2012258241A1/en
Priority to EP12723430.0A priority patent/EP2710077A1/en
Priority to BR112013029652A priority patent/BR112013029652A2/en
Publication of WO2012156442A1 publication Critical patent/WO2012156442A1/en
Priority to IL229311A priority patent/IL229311A0/en
Priority to ZA2013/09441A priority patent/ZA201309441B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • C09C1/56Treatment of carbon black ; Purification
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/44Carbon
    • C09C1/48Carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/13Nanotubes
    • C01P2004/133Multiwall nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/19Oil-absorption capacity, e.g. DBP values

Definitions

  • the invention relates to a process for the preparation of carbon-containing covalently bound amino groups.
  • Carbon fillers have long been used, in particular in plastic molding compositions as a filler. Examples of such carbon fillers are (conductivity) carbon black, graphite, carbon nanotubes or graphene. Activated carbon or carbon fibers can also be used. The use is not limited to common filler applications, but also applications, for example in the field of electronics and storage media, such as electrical conductors and transistors, electrode materials, storage media, etc. imaginable.
  • CNTs carbon nanotubes
  • CNTs are understood in the prior art mainly cylindrical carbon tubes having a diameter of about 3 to 100 nm and a length which is a multiple of the diameter.
  • These tubes consist of one or more layers of ordered carbon atoms and have a different nucleus in morphology.
  • they are also referred to as “carbon fibrils” or “hollow carbon fibers” and are available in various forms (eg bamboo or onion shape).
  • Typical structures of these carbon nanotubes are of the cylinder type.
  • cylindrical structures a distinction is made between single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), and multi-walled cylindrical carbon nanotubes (Multi Wall Carbon Nano Tubes, (MWCNT)).
  • SWCNTs single-walled carbon nanotubes
  • DWCNTs double-walled carbon nanotubes
  • MWCNT multi-walled cylindrical carbon nanotubes
  • Common methods for their preparation are for. Arc discharge, laser ablation, chemical vapor deposition (CVD), and chemical vapor deposition (CCVD process).
  • Carbon nanotubes are lightweight, tensile and conduct electricity. They have hitherto been used mainly as additives for polymers.
  • CNTs are prone to strong agglomeration and are poorly soluble in polar or non-polar solvents.
  • One way to compensate for this disadvantage is the application of functional groups, eg. As amino groups, on the outer surface of the CNTs.
  • functional groups eg. As amino groups
  • amino groups-containing CNTs for example, K. Karousis, N. Tagmatarchis, D. Tasis, Chem. Rev. 2010. 1 10, pages 5366 to 5397).
  • the CNT must be pretreated prior to the application of amino groups.
  • the pretreatment may be a chemical reaction leading to a functional group such as As a carboxyl group leads. Only in one or more further chemical steps, this functional group is converted into an amino group.
  • the pretreatment can also be in a physical action such. As a temperature, plasma or ultrasonic treatment or mechanical treatment by crushing the carbon compound exist.
  • CN-A-101774573 a process for the amination of carbon nanotubes is described in which carbon nanotubes are first pretreated by heat, acids and / or ultrasound treatment and subsequently with ammonia or ethylenediamine at a temperature of 340 to 350 ° C and be implemented at a pressure of 6 to 1 1 MPa.
  • the pretreatment makes the process very expensive.
  • US Pat. No. 7,794,683 likewise describes the preparation of aminated carbon nanotubes, in which first carboxylic acid groups are introduced by acid treatment with sulfuric acid and nitric acid, which groups are then converted into acylazides by reaction with diphenylphosphoryl azide. The further reaction leads via isocyanate groups by hydrolysis to the formation of amino-functionalized carbon nanotubes.
  • a disadvantage of the process is the large number of reaction steps, which also sometimes require high-priced reagents.
  • Lithium amide is prepared from n-butyllithium and propylamine in dry THF. The reaction takes place at room temperature. After the reaction, oxygen is passed through the reaction mixture, thereby obtaining carbon nanotubes substituted by groups of the structure -NH-CH 2 -CH 2 -CH 3 -.
  • WO 2005/090233 describes the reductive functionalization of carbon nanotubes.
  • carbon nanotubes are introduced into liquid ammonia, into which lithium is also introduced as metal.
  • alkyl halide or aryl halide which leads to an alkylation of the outer surfaces of the carbon nanotubes, see Figure 1 and Example 1.
  • the reaction is carried out under cooling with the aid of acetone / T rockeneis, being heated to room temperature at the end of the reaction. Aminated carbon nanotubes are not described.
  • the invention of the above-described methods requires the chemical and / or physical pretreatment of the carbon nanotubes prior to functionalization.
  • the disadvantage of such pretreatment is that the structure of the carbon compounds can be damaged by the pretreatment. For example, damage may occur by sonicating the carbon nanotubes, as described in WO 2005/090233 in paragraph [0009].
  • the surface of the carbon nanotubes is attacked by the oxidizing agents, which leads to defects on the surface.
  • the object of the present invention is to provide a process for the preparation of carbon-containing covalently bound amino groups, such as carbon nanotubes, in which pretreatment of the carbon fillers can be dispensed with, damage to the carbon fillers, such as carbon nanotubes, is avoided, and the functionalization can be carried out in a reaction step with inexpensive reagents.
  • the functionalization should preferably not reduce the electrical conductivity of carbon nanotubes or reduce them only to a small extent.
  • the object is achieved by a process for the preparation of covalently bound amino groups having carbon fillers, by reacting a mixture containing carbon fillers and alkali and / or alkaline earth metals and / or their amides in liquid anhydrous ammonia, optionally together with an inert Solvent at temperatures of 35 to 500 ° C and a pressure of 30 to 250 bar.
  • carbon fillers can be functionalized by reaction with liquid ammonia containing alkali metals and / or alkaline earth metals or their amides with covalently bound amino groups.
  • WO 2005/090233 disclosed only alkylation by reaction with alkyl halides in the presence of lithium in liquid ammonia.
  • carbon filler refers to a particulate solid carbon material that is wholly or predominantly composed of carbon as a single element, examples of such materials being carbon nanotubes, graphene, carbon black, graphite, activated carbon These may be superficially modified, thereby introducing further chemical elements, yet their character is largely attributed to a carbon-only backbone, meaning that the term “carbon filler” does not imply a particular application in the present invention but rather the structure and state of matter of the particulate carbon material.
  • particulate carbon materials in addition to filler applications, are also conceivable and encompassed in electronics and storage media applications such as electrical conductors and transistors, electrode materials, storage media, etc.
  • modified Leitruß serves to provide thermoplastic molding compositions electrically conductive.
  • the use of the functionalized carbon fillers is not restricted to fillers. All advantageous applications are included.
  • the term “carbon filler” the term “particulate carbon material” may be used.
  • the carbon fillers are not pretreated.
  • reaction is preferably carried out in the absence of halogen-containing compounds, in particular organic halides, such as alkyl or aryl halides.
  • ammonia is preferably removed from the mixture, then excess alkali and / or alkaline earth metals or their amides are reacted with alcohols and / or water, and the carbon-containing covalently bound carbon atoms are separated from the reaction mixture.
  • the excess alkali and / or alkaline earth metals or their amides are preferential as implemented with Ci -4 -alkanols.
  • the carbon fillers used in the process are preferably selected from single- or multi-walled carbon nanotubes, graphenes, carbon black, graphite, activated carbon, carbon fibers or mixtures thereof.
  • the carbon fillers used in the process according to the invention may be selected from any suitable carbon fillers.
  • the fillers contain essentially only carbon as a chemical element, apart from possible impurities.
  • the carbon fillers have in particular a graphitic surface structure.
  • single- or multi-walled carbon nanotubes are single-walled, double-walled or multi-walled carbon nanotubes (SWCNT, DWCNT, MWNT), as described above, for example.
  • Suitable carbon nanotubes and graphenes are known to those skilled in the art.
  • suitable carbon nanotubes CNT
  • suitable carbon nanotubes are described in WO 2006/026691, paragraphs [0069] to [0074].
  • overall Suitable carbon nanotubes are also described in WO 2009/000408, page 2, lines 28 to page 3, line 11.
  • carbon nanotubes are understood as meaning carbon-containing macromolecules in which the carbon has (mainly) graphite structure and the individual graphite layers are arranged in a tubular manner.
  • Nanotubes and their synthesis are already known in the literature (for example J. Hu et al., Acc. Chem. Res. 32 (1999), 435-445). In principle, any type of nanotube can be used in the context of the present invention.
  • the diameter of the individual tubular graphite layers is preferably from 0.3 to 100 nm, in particular from 0.3 to 30 nm.
  • Nanotubes can be divided into so-called single-walled nanotubes (SWCNTs) and multi-waved nanotubes (MWCNTs) ; "Multi-faceted” nanotubes). In the MWCNTs several graphite tubes are thus placed one above the other.
  • the outer shape of the tubes may vary, this may have uniform diameter inside and outside, but there are also knot-shaped tubes and worm-like structures (vermicular) produced.
  • the aspect ratio (length of the respective graphite tube to its diameter) is at least> 10, preferably> 5.
  • the nanotubes have a length of at least 10 nm.
  • MWCNTs are preferred as component B).
  • the MWCNTs have an aspect ratio of about 500: 1 and an average length in the range of 1 to 500 ⁇ m.
  • the BET specific surface area is usually from 50 to 2000 m 2 / g, preferably from 130 to 1200 m 2 / g.
  • the impurities (eg metal oxides) produced during the catalytic preparation are generally from 0.1 to 12%, preferably from 0.2 to 10%, according to HRTEM.
  • Suitable nanotubes can be obtained under the name "multiwall” from Hyperion Catalytic Int., Cambridge MA (USA) (see also EP 205 556, EP 969 128, EP 270 666, US Pat. No. 6,844,061), as well as from Bayer Material Science, Nanocyl, Arkema and FutureCarbon.
  • Suitable graphenes are described, for example, in Macromolecules 2010, 43, pages 6515 to 6530.
  • (conductivity) carbon black, graphite or mixtures thereof are used.
  • Suitable carbon blacks and graphites are known to those skilled in the art.
  • the carbon black is in particular a Leitruß or conductivity soot, z. B. acetylene carbon.
  • Leitruß any common form of carbon black can be used, suitable, for example, the commercial product Ketjenblack 300 Akzo.
  • Conductivity can also be used for conductivity modification. Due to graphitic layers embedded in amorphous carbon, carbon black conducts electrons (F. Camona, Ann. Chim., Fr., 13, 395 (1988)). The power line takes place within the aggregates of soot particles and between the aggregates, if the distances between the aggregates are small enough. In order to achieve conductivity with the lowest possible dosage, preference is given to using carbon blacks with anisotropic structure (G. Wehner, Advances in Plastics Technology, APT 2005, Paper 1, Katowice 2005). In such Russians, the primary particles combine to form anisotropic structures, so that the distances required to achieve the conductivity of the carbon black particles in compounds are achieved even at comparatively low loading (C. Van Bellingen, N. Probst, E. Grivei, Advances in Plastics Technology , APT 2005, Paper 13, Katowice 2005).
  • Suitable carbon black types have, for example, an oil absorption (measured according to ASTM D 2414-01) of at least 60 ml / 100 g, preferably more than 90 ml / 100 g.
  • the BET surface area of suitable products is more than 50, preferably more than 60 m 2 g (measured according to ASTM D 3037-89).
  • the Leitrusse can be prepared by various methods (G. Wehner, Advances in Plastics Technology, APT 2005, Paper 1 1, Katowice 2005).
  • graphite can also be used as a filler.
  • Graphite is a modification of the carbon as described, for example, in AF Hollemann, E.
  • Graphite consists of planar carbon layers arranged one above the other Graphite can be comminuted by milling
  • the particle size is in the range from 0.01 ⁇ m to 1 mm, preferably in the range from 1 to 250 ⁇ m.
  • Carbon black and graphite are described, for example, in Donnet, J.B. et al., Carbon Black Science and Technology, Second Edition, Marcel Dekker, Inc., New York 1993. Conductivity soot based on highly ordered carbon black can also be used. This is described, for example, in DE-A-102 43 592, in particular [0028] to [0030], in EP-A-2 049 597, in particular page 17, lines 1 to 23, in DE-A-102 59 498 , in particular in paragraphs [0136] to [0140], as well as in EP-A-1 999 201, in particular page 3, lines 10 to 17.
  • the particle size is dependent on the respective carbon material and is preferably in the range from 1 nm to 1 mm, particularly preferably from 2 nm to 250 ⁇ m.
  • Carbon fibers preferably have a diameter in the range from 1 to 20 ⁇ m, particularly preferably from 5 to 10 ⁇ m.
  • the fibers may also be in the form of fiber bundles.
  • the reaction is carried out in the presence of alkali and / or alkaline earth metals or their amides.
  • Alkaline earth metals are preferably Ca or Mg.
  • Alkali metals are preferably selected from Li, Na, K and mixtures thereof. Particular preference is given to using Li or Na, in particular Na.
  • the alkali and alkaline earth metals it is also possible to use the corresponding amides, which are prepared in an independent reaction step.
  • preferred are Li, Na, K, Ca, Mg amide, Li, Na, Ca amide, more preferably Li and Na amide, most preferably Na amide.
  • the alkali metal and alkaline earth metal amides can be prepared by reacting the metals in liquid ammonia, if appropriate in the presence of catalysts.
  • Sodium amide is technically synthesized by passing gaseous ammonia over molten sodium (Ullmanns Encyclopedia of Technical Chemistry, 5th Ed., A 2, pages 151-161).
  • Ammonia is used as anhydrous liquid ammonia.
  • anhydrous is meant a water content of less than 1000 ppm.
  • the reaction can be carried out in liquid anhydrous ammonia.
  • a solvent or diluent which is inert under the reaction conditions may additionally be used.
  • ethers such as tetrahydrofuran, dioxane, methyl tert-butyl ether, and aliphatic, cycloaliphatic, aromatic hydrocarbons such as hexanes, cyclohexane and toluene, dimethylformamide or mixtures of these solvents in question.
  • the amount of said solvents is 0 to 20,000 wt .-%, in particular 0 to 2000 wt .-%, based on the carbon compound used.
  • the carbon fillers can be suspended in the said solvents are introduced into the reactor. After the amination they can be obtained after separation of ammonia suspended or dissolved in the solvents. Due to the use of solvents dusts occur only to a very small extent. This allows safe working.
  • the weight ratio of carbon fillers to ammonia is preferably 1 to 200, more preferably 1 to 20 to 1 to 90.
  • the molar ratio of alkali metal and alkaline earth metal or alkali metal amide and alkaline earth metal amide to ammonia is preferably 1 to 1000, more preferably 1 to 50 to 1 to 400.
  • the amination of the carbon compounds is carried out at temperatures of 35 to 500 ° C, preferably 50 to 250 ° C, particularly preferably 80 to 180 ° C. Work is carried out at total pressures, under which the ammonia is present in liquid form. The pressures are 30 to 250 MPa (bar), in particular 70 to 150 MPa (bar).
  • the reaction can be carried out in any suitable reactor which can withstand said pressure and temperatures. Preferably, in the reaction, the reaction mixture is mixed or stirred in the reactor.
  • the reaction mixture is preferably stirred vigorously under the reaction conditions mentioned in a reactor.
  • the stirrer speeds are 50 to 1000 rpm, in particular 250 to 350 rpm.
  • the reactor is preferably purged with an inert gas, for example nitrogen or argon, before use.
  • the reaction according to the invention is preferably carried out for 2 to 24 hours, more preferably 4 to 8 hours, preferably batchwise or else continuously.
  • reaction mixture is preferably expanded and cooled to 20 to 40 ° C. During the expansion of the ammonia can be evaporated and recovered by cooling back. It is also possible to separate the ammonia in a distillation column.
  • Unreacted alkali metals, alkaline earth metals or corresponding amides contained in the reaction effluent are preferably converted into safely separable compounds.
  • Alcohols or water preferably linear or branched alkyl alcohols having one to four carbon atoms, particularly preferably methanol or ethanol, very particularly preferably methanol suitable.
  • the alcoholates formed as reaction products can be separated from the aminated carbon compounds together with the corresponding excess alcohols and, if appropriate, solvents. This is preferably done by aspirating the carbon compounds on a suction filter, z. B. a glass filter.
  • the pore size of the filter is preferably 10 to 16 ⁇ .
  • the carbon fillers can be washed with an alcohol until the filtrate is no longer alkaline.
  • a dry carbon compound may, for. B. at 50 to 100 ° C in vacuo to constant weight.
  • the resulting aminated carbon fillers were tested after preparation by XPS analysis to determine the nitrogen content.
  • Functionalization is determined from detail spectra (measuring range ⁇ 5 - 10 eV from the peak maximum, 0.1 eV energy resolution, pass energy 20 - 30 eV) by comparison of the peak maxima of the carbon and the heteroatoms with known comparative data (eg Beamson G., Briggs D. High Resolution XPS of Organic Polymers: the Scienta ESCA300 Database (1992).).
  • the carbon line shape of the educt is determined under identical measuring conditions on the same spectrometer as for the product. (Details spectrum, Shirley background print)
  • the peak maximum of the carbon is corrected to 284.5 eV (aromatic carbon) and the change in the functionalization is determined by the fit of the line form of the starting material and various reference peaks in the measured spectrum of the product. example 1
  • the reaction was carried out in a stirred autoclave (3.5 l reaction volume with disk stirrer).
  • the autoclave was purged with argon.
  • 30 g MWCNT Baytubes ® C 150 P (with 140 ml of tetrahydrofuran moistened) and 8 g of sodium were charged.
  • 1200 ml (720 g) of ammonia were added in liquid form.
  • the autoclave was heated to 120 ° C. It set a pressure of 84 bar.
  • the autoclave was cooled to 40 ° C.
  • 0.5 l of methanol were pumped in to react with any remaining sodium and sodium amide.
  • the autoclave was slowly decompressed and held at 40 ° C for one hour for outgassing. After renewed pumping of 0.5 l of methanol, the autoclave was emptied via a riser.
  • the reaction product was filtered off with suction through a glass suction filter (10-16 ⁇ m) and washed with one liter of methanol. After transferring the CNTs into an 11 Erlenmeyer flask, they were stirred with one liter of methanol for 15 minutes and sucked off again. This process was repeated three times. Subsequently, the CNTs were dried at 70 ° C in vacuo to constant weight.
  • the detailed spectra of nitrogen from the XPS analysis show amine at 400.6 eV. The nitrogen content was determined to be 0.6 at% (average of 3 measuring points).
  • the autoclave was cooled to 40 ° C.
  • the aminated graphene was rinsed with methanol from the autoclave and aspirated through a 0.5 micron Teflon membrane. Then the graphene was suspended in 100 ml of methanol, stirred for 30 minutes and sucked off again.
  • the pressing on of nitrogen is not absolutely necessary.
  • Example 4 Analogously to Example 2 were reacted liquid ammonia in the presence of 10 ml of tetrahydrofuran, 250 mg of sodium amide and 120 ml of 500 mg MWCNT Baytubes ® C 150 P. After the workup and drying described in Example 2, the XPS analysis was performed. The detailed spectra of nitrogen from the XPS analysis show amine at 400.4 eV and imine at 398.9 eV. The amine nitrogen content was determined to be 1, 1 at% and the imine nitrogen content to 0.9 at% (for each average of 5 measurement points).
  • Example 4 Example 4:
  • Example 5 Analogously to Example 1, 10 g of MWCNT Nanocyl 7000 were reacted in the presence of 140 ml of tetrahydrofuran, 5 g of sodium and 1200 ml (720 g) of ammonia. The work-up and drying was carried out as described in Example 1. The detailed spectra of nitrogen from the XPS analysis show amine at 400.7 eV. The nitrogen content was determined to be 1, 1 at% (average of 3 measuring points).
  • Example 5 Example 5:
  • Example 2 Analogously to Example 1, 30 g of MWCNT Arkema C100 were reacted in the presence of 140 ml of tetrahydrofuran, 15 g of sodium and 1200 ml (720 g) of ammonia. The work-up and drying was carried out as described in Example 1.
  • Example 2 Analogously to Example 2, 500 mg of acetylene carbon (ABCR - 50% compressed, average particle size: 0.042 ⁇ , density: 0.100 g / cm 3 , surface area: 80 m 2 / g) in the presence of 10 ml of tetrahydrofuran, 500 mg of sodium and 120 ml (72 g) of liquid ammonia and reacted after pressing 30 bar of nitrogen. The work-up and drying was carried out as described in Example 2.
  • acetylene carbon ABCR - 50% compressed, average particle size: 0.042 ⁇ , density: 0.100 g / cm 3 , surface area: 80 m 2 / g
  • the detailed spectra of nitrogen from the XPS analysis show amine at 399.7 eV.
  • the nitrogen content was determined to be 1, 1 at% (average of 5 measuring points).
  • Example 2 Analogously to Example 2, 500 mg SWCNT, z. B. available from nanocyl in the presence of 10 ml of tetrahydrofuran, 500 mg of sodium and 120 ml (72 g) of liquid ammonia and after pressing of 30 bar of nitrogen. The work-up and drying was carried out as described in Example 2.
  • the detailed spectra of nitrogen from the XPS analysis show amine at 399.7 eV.
  • the nitrogen content was determined to be 0.9 at% (average of 5 measuring points).

Abstract

The invention relates to a method for producing carbon fillers having covalently bonded amino groups by reacting a mixture, which contains carbon fillers and alkali and/or alkaline-earth metals and/or amides thereof in liquid water-free ammonia, optionally together with an inert solvent, at temperatures of 35 to 500 °C and a pressure of 30 to 250 bar.

Description

Verfahren zur Herstellung von kovalent gebundene Aminogruppen aufweisenden Kohlenstoff- Füllstoffen Beschreibung  Process for the preparation of covalently bonded amino-containing carbon fillers Description
Die Erfindung betrifft ein Verfahren zur Herstellung von kovalent gebundene Aminogruppen aufweisenden Kohlenstoff-Füllstoffen. Kohlenstoff-Füllstoffe werden seit längerer Zeit, insbesondere in Kunststoff-Formmassen als Füllstoff eingesetzt. Beispiele von derartigen Kohlenstoff-Füllstoffen sind (Leitfähigkeits)ruß, Graphit, Kohlenstoff-Nanoröhren oder Graphene. Auch Aktivkohle oder Kohlenstofffasern können eingesetzt werden. Der Einsatz ist nicht auf übliche Füllstoffanwendungen beschränkt, sondern es sind auch Anwendungen, beispielsweise im Bereich von Elektronik und Speicher- medien, wie elektrischen Leitern und Transistoren, Elektrodenmaterialien, Speichermedien usw., vorstellbar. The invention relates to a process for the preparation of carbon-containing covalently bound amino groups. Carbon fillers have long been used, in particular in plastic molding compositions as a filler. Examples of such carbon fillers are (conductivity) carbon black, graphite, carbon nanotubes or graphene. Activated carbon or carbon fibers can also be used. The use is not limited to common filler applications, but also applications, for example in the field of electronics and storage media, such as electrical conductors and transistors, electrode materials, storage media, etc. imaginable.
Unter Kohlenstoff-Nanoröhrchen (Carbon Nano Tubes, CNT) werden nach dem Stand der Technik hauptsächlich zylinderförmige Kohlenstoffröhren mit einem Durchmesser von etwa 3 bis 100 nm verstanden und einer Länge, die ein Vielfaches des Durchmessers beträgt. Diese Röhrchen bestehen aus einer oder mehreren Lagen geordneter Kohlenstoffatome und weisen einen in der Morphologie unterschiedlichen Kern auf. Sie werden beispielsweise auch als„car- bon fibrils" oder„hollow carbon fibres" bezeichnet und sind in unterschiedlichen Formen( z. B. Bambus- oder Zwiebelform) verfügbar. By carbon nanotubes (CNTs) are understood in the prior art mainly cylindrical carbon tubes having a diameter of about 3 to 100 nm and a length which is a multiple of the diameter. These tubes consist of one or more layers of ordered carbon atoms and have a different nucleus in morphology. For example, they are also referred to as "carbon fibrils" or "hollow carbon fibers" and are available in various forms (eg bamboo or onion shape).
Übliche Strukturen dieser Kohlenstoff-Nanoröhrchen sind solche vom Zylinder-Typ. Bei den zylindrischen Strukturen unterscheidet man zwischen den einwandigen Monokohlenstoff- Nanoröhrchen (Single Wall Carbon Nano Tubes, (SWCNT)), doppelwandigen Kohlenstoff- Nanoröhren (Double Wall Carbon Nano Tubes, (DWCNT)) und den mehrwandigen zylindri- sehen Kohlenstoff-Nanoröhrchen (Multi Wall Carbon Nano Tubes, (MWCNT)). Gängige Verfahren zu ihrer Herstellung sind z. B. Lichtbogenverfahren (arc discharge), Laser Ablation (laser ablation), chemische Abscheidung aus der Dampfphase (CVD process) und katalytische chemische Abscheidung aus der Dampfphase (CCVD process). Kohlenstoff-Nanoröhrchen sind leicht, zugfest und leiten den elektrischen Strom. Sie werden bisher vor allem als Additive für Polymere verwendet. Typical structures of these carbon nanotubes are of the cylinder type. In cylindrical structures, a distinction is made between single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), and multi-walled cylindrical carbon nanotubes (Multi Wall Carbon Nano Tubes, (MWCNT)). Common methods for their preparation are for. Arc discharge, laser ablation, chemical vapor deposition (CVD), and chemical vapor deposition (CCVD process). Carbon nanotubes are lightweight, tensile and conduct electricity. They have hitherto been used mainly as additives for polymers.
Die vorteilhaften Eigenschaften der CNTs werden jedoch durch eine Reihe von Nachteilen beeinträchtigt. CNTs neigen zu starker Agglomeration und sind in polaren oder unpolaren Lö- sungsmitteln schlecht löslich. Eine Möglichkeit, diesen Nachteil auszugleichen, besteht in der Aufbringung von funktionellen Gruppen, z. B. von Aminogruppen, auf die äußere Oberfläche der CNTs. Zur Funktionalisierung von CNTs besteht schon umfangreiche Literatur. Auch die Herstellung von Aminogruppen enthaltenden CNTs ist schon bekannt (z. B. N. Karousis, N. Tagmatarchis, D. Tasis, Chem. Rev. 2010. 1 10, Seiten 5366 bis 5397). Meist muss das CNT jedoch vor der Aufbringung von Aminogruppen vorbehandelt werden. However, the advantageous properties of CNTs are affected by a number of disadvantages. CNTs are prone to strong agglomeration and are poorly soluble in polar or non-polar solvents. One way to compensate for this disadvantage is the application of functional groups, eg. As amino groups, on the outer surface of the CNTs. For the functionalization of CNTs there is already extensive literature. The preparation of amino groups-containing CNTs is already known (for example, K. Karousis, N. Tagmatarchis, D. Tasis, Chem. Rev. 2010. 1 10, pages 5366 to 5397). Usually, however, the CNT must be pretreated prior to the application of amino groups.
Bei der Vorbehandlung kann es sich um eine chemische Umsetzung handeln, die zu einer funktionellen Gruppe, wie z. B. einer Carboxylgruppe, führt. Erst in einem oder mehreren weiteren chemischen Schritten wird diese funktionelle Gruppe in eine Aminogruppe umgewandelt. Die Vorbehandlung kann aber auch in einer physikalischen Maßnahme wie z. B. einer Temperatur-, Plasma- oder Ultraschallbehandlung oder einer mechanischen Behandlung durch Zer- mahlen der Kohlenstoffverbindung bestehen. The pretreatment may be a chemical reaction leading to a functional group such as As a carboxyl group leads. Only in one or more further chemical steps, this functional group is converted into an amino group. The pretreatment can also be in a physical action such. As a temperature, plasma or ultrasonic treatment or mechanical treatment by crushing the carbon compound exist.
Kombinationen aus chemischer und physikalischer Vorbehandlung sind ebenfalls möglich. Combinations of chemical and physical pretreatment are also possible.
Die vorstehend genannte Literaturstelle gibt einen guten Überblick über die unterschiedlichen Arten der Funktionalisierung von Kohlenstoff-Nanoröhren. Das Einbringen von Aminogruppen ist beispielsweise in Figur 2 dargestellt. Dabei wird ausgehend von Säurechloridgruppen mit Natriumazid umgesetzt. Alternativ kann die Herstellung über die Säureamide erfolgen. Es kann auch eine direkte Amidierung von Acylchloriden erfolgen. The above reference gives a good overview of the different types of functionalization of carbon nanotubes. The introduction of amino groups is shown for example in FIG. It is reacted starting from acid chloride groups with sodium azide. Alternatively, the preparation can take place via the acid amides. There may also be a direct amidation of acyl chlorides.
In der CN-A-101774573 ist ein Verfahren zur Aminierung von Kohlenstoff-Nanoröhren beschrieben, bei dem Kohlenstoff-Nanoröhren zunächst durch Wärme, Säuren und/oder Ultraschallbehandlung vorbehandelt werden und nachfolgend mit Ammoniak oder Ethylendiamin bei einer Temperatur von 340 bis 350 °C und einem Druck von 6 bis 1 1 MPa umgesetzt werden. Die Vorbehandlung macht das Verfahren sehr aufwendig. In CN-A-101774573 a process for the amination of carbon nanotubes is described in which carbon nanotubes are first pretreated by heat, acids and / or ultrasound treatment and subsequently with ammonia or ethylenediamine at a temperature of 340 to 350 ° C and be implemented at a pressure of 6 to 1 1 MPa. The pretreatment makes the process very expensive.
In der US 7,794,683 ist ebenfalls die Herstellung von aminierten Kohlenstoff-Nanoröhren beschrieben, wobei zunächst durch Säurebehandlung mit Schwefelsäure und Salpetersäure Car- bonsäuregruppen eingeführt werden, die sodann durch Umsetzung mit Diphenylphosphorylazid in Acylazide umgesetzt werden. Die weitere Umsetzung führt über Isocyanatgruppen durch Hydrolyse zur Bildung von Amino-funktionalisierten Kohlenstoff-Nanoröhren. Nachteilig an dem Verfahren ist die große Zahl an Reaktionsschritten, die ferner zum Teil hochpreisige Reagenzien erfordern. US Pat. No. 7,794,683 likewise describes the preparation of aminated carbon nanotubes, in which first carboxylic acid groups are introduced by acid treatment with sulfuric acid and nitric acid, which groups are then converted into acylazides by reaction with diphenylphosphoryl azide. The further reaction leads via isocyanate groups by hydrolysis to the formation of amino-functionalized carbon nanotubes. A disadvantage of the process is the large number of reaction steps, which also sometimes require high-priced reagents.
In Eur. J. Org. Chem. 2008, Seiten 2544 bis 2550 ist die kovalente Seitenwandfunktionalisie- rung von einwändigen Kohlenstoff-Nanoröhren durch nukleophile Addition von Lithiumamiden in THF beschrieben. Lithiumamid wird aus n-Butyllithium und Propylamin in trockenem THF hergestellt. Die Umsetzung erfolgt bei Raumtemperatur. Nach der Umsetzung wird Sauerstoff durch das Reaktionsgemisch geleitet, wodurch Kohlenstoff-Nanoröhren erhalten werden, die durch Gruppen der Struktur -NH-CH2-CH2-CH3- substituiert sind. Eur. J. Org. Chem. 2008, pages 2544 to 2550 describes the covalent sidewall functionalization of single-walled carbon nanotubes by nucleophilic addition of lithium amides to THF. Lithium amide is prepared from n-butyllithium and propylamine in dry THF. The reaction takes place at room temperature. After the reaction, oxygen is passed through the reaction mixture, thereby obtaining carbon nanotubes substituted by groups of the structure -NH-CH 2 -CH 2 -CH 3 -.
Die WO 2005/090233 beschreibt die reduktive Funktionalisierung von Kohlenstoff-Nanoröhren. Dazu werden Kohlenstoff-Nanoröhren in flüssigen Ammoniak eingebracht, in den zudem Lithi- um als Metall eingebracht wird. Anschließend erfolgt der Zusatz von Alkylhalogenid oder Aryl- halogenid, wodurch es zu einer Alkylierung der äußeren Oberflächen der Kohlenstoff- Nanoröhren kommt, siehe Figur 1 und Beispiel 1. Die Umsetzung wird unter Kühlung mit Hilfe von Aceton/T rockeneis durchgeführt, wobei am Ende der Umsetzung auf Raumtemperatur erwärmt wird. Aminierte Kohlenstoff-Nanoröhren sind nicht beschrieben. WO 2005/090233 describes the reductive functionalization of carbon nanotubes. For this purpose, carbon nanotubes are introduced into liquid ammonia, into which lithium is also introduced as metal. Subsequently, the addition of alkyl halide or aryl halide, which leads to an alkylation of the outer surfaces of the carbon nanotubes, see Figure 1 and Example 1. The reaction is carried out under cooling with the aid of acetone / T rockeneis, being heated to room temperature at the end of the reaction. Aminated carbon nanotubes are not described.
Die Erfindung der vorbeschriebenen Verfahren erfordert die chemische und/oder physikalische Vorbehandlung der Kohlenstoff-Nanoröhren vor einer Funktionalisierung. Nachteil einer derartigen Vorbehandlung ist, dass die Struktur der Kohlenstoffverbindungen durch die Vorbehandlung beschädigt werden kann. Zum Beispiel kann durch Ultraschallbehandlung der Kohlenstoff- Nanoröhren eine Schädigung eintreten, wie in WO 2005/090233 in Absatz [0009] beschrieben. Bei der oxidativen Vorbehandlung wird die Oberfläche der Kohlenstoff-Nanoröhren durch die Oxidationsmittel angegriffen, was zu Defektstellen auf der Oberfläche führt. The invention of the above-described methods requires the chemical and / or physical pretreatment of the carbon nanotubes prior to functionalization. The disadvantage of such pretreatment is that the structure of the carbon compounds can be damaged by the pretreatment. For example, damage may occur by sonicating the carbon nanotubes, as described in WO 2005/090233 in paragraph [0009]. In the oxidative pretreatment, the surface of the carbon nanotubes is attacked by the oxidizing agents, which leads to defects on the surface.
Aufgabe der vorliegenden Erfindung ist die Bereitstellung eines Verfahrens zur Herstellung von kovalent gebundene Aminogruppen aufweisenden Kohlenstoff-Füllstoffen, wie Kohlenstoff- Nanoröhren, bei dem auf eine Vorbehandlung der Kohlenstoff-Füllstoffe verzichtet werden kann, eine Schädigung der Kohlenstoff-Füllstoffe, wie Kohlenstoff-Nanoröhren, vermieden wird, und die Funktionalisierung in einem Reaktionsschritt mit kostengünstigen Reagenzien erfolgen kann. Vorzugsweise soll durch die Funktionalisierung die elektrische Leitfähigkeit von Kohlen- stoff-Nanoröhren nicht oder nur im geringen Maße vermindert werden. The object of the present invention is to provide a process for the preparation of carbon-containing covalently bound amino groups, such as carbon nanotubes, in which pretreatment of the carbon fillers can be dispensed with, damage to the carbon fillers, such as carbon nanotubes, is avoided, and the functionalization can be carried out in a reaction step with inexpensive reagents. The functionalization should preferably not reduce the electrical conductivity of carbon nanotubes or reduce them only to a small extent.
Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Herstellung von kovalent gebundene Aminogruppen aufweisenden Kohlenstoff-Füllstoffen, durch Umsetzung eines Gemisches, enthaltend Kohlenstoff-Füllstoffe und Alkali- und/oder Erdalkalimetalle und/oder deren Amide in flüssigem wasserfreiem Ammoniak, gegebenenfalls zusammen mit einem inerten Lösungsmittel bei Temperaturen von 35 bis 500 °C und einem Druck von 30 bis 250 bar. The object is achieved by a process for the preparation of covalently bound amino groups having carbon fillers, by reacting a mixture containing carbon fillers and alkali and / or alkaline earth metals and / or their amides in liquid anhydrous ammonia, optionally together with an inert Solvent at temperatures of 35 to 500 ° C and a pressure of 30 to 250 bar.
Es wurde erfindungsgemäß gefunden, dass Kohlenstoff-Füllstoffe durch Umsetzung mit flüssigem Ammoniak, der Alkali- und/oder Erdalkalimetalle oder deren Amide enthält, mit kovalent gebundenen Aminogruppen funktionalisiert werden können. It has been found according to the invention that carbon fillers can be functionalized by reaction with liquid ammonia containing alkali metals and / or alkaline earth metals or their amides with covalently bound amino groups.
Aus der WO 2005/090233 war nur eine Alkylierung durch Umsetzung mit Alkylhalogeniden in Gegenwart von Lithium in flüssigem Ammoniak bekannt. Eur. J. Org. Chem. 2008, Seiten 2544 bis 2550, beschreibt die Funktionalisierung von Kohlenstoff-Nanoröhren mit Lithium-n- propylamid, wobei Propylaminogruppen an die Kohlenstoff-Nanoröhren angebunden wurden. Die Umsetzung wurde zudem bei Raumtemperatur in Tetrahydrofuran durchgeführt. WO 2005/090233 disclosed only alkylation by reaction with alkyl halides in the presence of lithium in liquid ammonia. Eur. J. Org. Chem. 2008, pages 2544 to 2550, describes the functionalization of carbon nanotubes with lithium n-propylamide, wherein propylamino groups were attached to the carbon nanotubes. The reaction was also carried out at room temperature in tetrahydrofuran.
In der vorliegenden Anmeldung bezeichnet der Begriff „Kohlenstoff-Füllstoff" ein teilchenförmi- ges, festes Kohlenstoff-Material, das ganz überwiegend oder vollständig aus Kohlenstoff als einzigem Element aufgebaut ist. Beispiele derartiger Materialien sind Kohlenstoff-Nanoröhren, Graphene, Ruß, Graphit, Aktivkohle oder Kohlenstofffasern. Diese können oberflächlich modifiziert sein, wodurch weitere chemische Elemente eingeführt werden. Dennoch wird ihr Charakter maßgeblich durch ein ausschließlich auf Kohlenstoff basierendes Grundgerüst zurückgeführt. Der Begriff„Kohlenstoff-Füllstoff' impliziert damit erfindungsgemäß keine spezielle Anwendung, sondern die Struktur und den Aggregatzustand des teilchenformigen Kohlenstoff-Materials. Für diese teilchenförmigen Kohlenstoff-Materialien sind neben Füllstoffanwendungen auch Anwendungen im Bereich von Elektronik und Speichermedien, wie elektrischen Leitern und Transistoren, Elektrodenmaterialien, Speichermedien usw. vorstellbar und mitumfasst. Beispielsweise dient modifizierter Leitruß dazu, thermoplastische Formmassen elektrisch leitfähig auszurüsten. In the present application, the term "carbon filler" refers to a particulate solid carbon material that is wholly or predominantly composed of carbon as a single element, examples of such materials being carbon nanotubes, graphene, carbon black, graphite, activated carbon These may be superficially modified, thereby introducing further chemical elements, yet their character is largely attributed to a carbon-only backbone, meaning that the term "carbon filler" does not imply a particular application in the present invention but rather the structure and state of matter of the particulate carbon material These particulate carbon materials, in addition to filler applications, are also conceivable and encompassed in electronics and storage media applications such as electrical conductors and transistors, electrode materials, storage media, etc. For example, modified Leitruß serves to provide thermoplastic molding compositions electrically conductive.
Erfindungsgemäß ist damit die Anwendung der funktionalisierten Kohlenstoff-Füllstoffe nicht auf Füllstoffe beschränkt. Jegliche vorteilhaften Anwendungen sind mitumfasst. Alternativ kann für den Begriff „Kohlenstoff-Füllstoff" der Begriff „teilchenformiges Kohlenstoff-Material" verwendet werden. Thus, according to the invention, the use of the functionalized carbon fillers is not restricted to fillers. All advantageous applications are included. Alternatively, for the term "carbon filler", the term "particulate carbon material" may be used.
Im erfindungsgemäßen Verfahren ist eine Vorbehandlung der eingesetzten Kohlenstoff- Füllstoffe nicht notwendig. Daher werden die Kohlenstoff-Füllstoffe gemäß einer Ausführungsform der Erfindung nicht vorbehandelt. Dabei erfolgt insbesondere keine Vorbehandlung mit Säuren, Wärme, Plasma und/oder Ultraschall, wie es im Stand der Technik der Fall ist. In the process according to the invention, a pretreatment of the carbon fillers used is not necessary. Therefore, according to one embodiment of the invention, the carbon fillers are not pretreated. In particular, there is no pretreatment with acids, heat, plasma and / or ultrasound, as is the case in the prior art.
Ferner wird die Umsetzung vorzugsweise in Abwesenheit von halogenhaltigen Verbindungen, insbesondere organischen Halogeniden, wie Alkyl- oder Arylhalogeniden durchgeführt. Furthermore, the reaction is preferably carried out in the absence of halogen-containing compounds, in particular organic halides, such as alkyl or aryl halides.
Nach der Umsetzung wird vorzugsweise aus dem Gemisch Ammoniak entfernt, sodann werden überschüssige Alkali- und/oder Erdalkalimetalle oder deren Amide mit Alkoholen und/oder Wasser umgesetzt, und die kovalent gebundene Aminogruppen aufweisenden Kohlenstoff- Füllstoffe werden aus dem Reaktionsgemisch abgetrennt. After the reaction, ammonia is preferably removed from the mixture, then excess alkali and / or alkaline earth metals or their amides are reacted with alcohols and / or water, and the carbon-containing covalently bound carbon atoms are separated from the reaction mixture.
Dabei werden die überschüssigen Alkali- und/oder Erdalkalimetalle oder deren Amide vorzugs- weise mit Ci-4-Alkanolen umgesetzt. The excess alkali and / or alkaline earth metals or their amides are preferential as implemented with Ci -4 -alkanols.
Die im Verfahren eingesetzten Kohlenstoff-Füllstoffe sind vorzugsweise ausgewählt aus ein- oder mehrwandigen Kohlenstoff-Nanoröhren, Graphenen, Ruß, Graphit, Aktivkohle, Kohlenstofffasern oder Gemischen davon. The carbon fillers used in the process are preferably selected from single- or multi-walled carbon nanotubes, graphenes, carbon black, graphite, activated carbon, carbon fibers or mixtures thereof.
Die erfindungsgemäß im Verfahren eingesetzten Kohlenstoff-Füllstoffe können aus beliebigen geeigneten Kohlenstoff-Füllstoffen ausgewählt sein. Die Füllstoffe enthalten dabei im Wesentlichen nur Kohlenstoff als chemisches Element, abgesehen von möglichen Verunreinigungen. Die Kohlenstoff-Füllstoffe weisen insbesondere eine graphitische Oberflächenstruktur auf. The carbon fillers used in the process according to the invention may be selected from any suitable carbon fillers. The fillers contain essentially only carbon as a chemical element, apart from possible impurities. The carbon fillers have in particular a graphitic surface structure.
Beispiele ein- oder mehrwandiger Kohlenstoff-Nanoröhren sind einwandige, zweiwandige oder mehrwandige Kohlenstoff-Nanoröhren (SWCNT, DWCNT, MWNT), wie sie beispielsweise vorstehend beschrieben sind. Examples of single- or multi-walled carbon nanotubes are single-walled, double-walled or multi-walled carbon nanotubes (SWCNT, DWCNT, MWNT), as described above, for example.
Geeignete Kohlenstoff-Nanoröhren und Graphene sind dem Fachmann bekannt. Für eine Beschreibung geeigneter Kohlenstoff-Nanotubes (CNT) kann auf DE-A-102 43 592, insbesondere die Absätze [0025] bis [0027] verwiesen werden, ferner auf WO 2008/012233, insbesondere auf Seite 16, Zeilen 1 1 bis 41 , oder auf DE-A-102 59 498, Absätze [0131 ] bis [0135]. Ferner sind geeignete Carbon Nanotubes beschrieben in WO 2006/026691 , Absätze [0069] bis [0074]. Ge- eignete Kohlenstoff-Nanotubes sind ferner in WO 2009/000408, Seite 2, Zeilen 28 bis Seite 3, Zeile 1 1 , beschrieben. Suitable carbon nanotubes and graphenes are known to those skilled in the art. For a description of suitable carbon nanotubes (CNT), reference may be made to DE-A-102 43 592, in particular paragraphs [0025] to [0027], furthermore to WO 2008/012233, in particular to page 16, lines 11 to 41 or DE-A-102 59 498, paragraphs [0131] to [0135]. Furthermore, suitable carbon nanotubes are described in WO 2006/026691, paragraphs [0069] to [0074]. overall Suitable carbon nanotubes are also described in WO 2009/000408, page 2, lines 28 to page 3, line 11.
Im Rahmen der vorliegenden Erfindung versteht man unter Carbon-Nanotubes kohlenstoffhalti- ge Makromoleküle, in denen der Kohlenstoff (hauptsächlich) Graphitstruktur aufweist und die einzelnen Graphitschichten schlauchförmig angeordnet sind. Nanotubes sowie deren Synthese sind in der Literatur bereits bekannt (beispielsweise J. Hu et al., Acc. Chem. Res. 32 (1999), 435 - 445). Im Rahmen der vorliegenden Erfindung kann grundsätzlich jegliche Art von Nanotubes eingesetzt werden. In the context of the present invention, carbon nanotubes are understood as meaning carbon-containing macromolecules in which the carbon has (mainly) graphite structure and the individual graphite layers are arranged in a tubular manner. Nanotubes and their synthesis are already known in the literature (for example J. Hu et al., Acc. Chem. Res. 32 (1999), 435-445). In principle, any type of nanotube can be used in the context of the present invention.
Vorzugsweise beträgt der Durchmesser der einzelnen schlauchförmigen Graphitschichten (Graphitschläuche) 0,3 bis 100 nm, insbesondere 0,3 bis 30 nm. Nanotubes lassen sich prinzipiell in sogenannte Single walled nanotubes (SWCNTs;„einwändige" Nanotubes) und multiwal- led nanotubes (MWCNTs; „mehrwändige" Nanotubes) unterscheiden. In den MWCNTs sind somit mehrere Graphitschläuche übereinander gestülpt. The diameter of the individual tubular graphite layers (graphite tubes) is preferably from 0.3 to 100 nm, in particular from 0.3 to 30 nm. Nanotubes can be divided into so-called single-walled nanotubes (SWCNTs) and multi-waved nanotubes (MWCNTs) ; "Multi-faceted" nanotubes). In the MWCNTs several graphite tubes are thus placed one above the other.
Ferner kann die äußere Form der Schläuche variieren, diese kann gleichförmigen Durchmesser innen und außen aufweisen, es sind aber auch knotenförmige Schläuche und wurmähnliche Strukturen (vermicular) herstellbar. Furthermore, the outer shape of the tubes may vary, this may have uniform diameter inside and outside, but there are also knot-shaped tubes and worm-like structures (vermicular) produced.
Das Aspektverhältnis (Länge des jeweiligen Graphitschlauches zu dessen Durchmesser) beträgt mindestens > 10, vorzugsweise > 5. Die Nanotubes haben eine Länge von mindestens 10 nm. Im Rahmen der vorliegenden Erfindung werden als Komponente B) MWCNTs bevorzugt. Insbesondere weisen die MWCNTs ein Aspektverhältnis von ca. 500 : 1 sowie eine Durch- schnittslänge im Bereich von 1 bis 500 μηη auf. The aspect ratio (length of the respective graphite tube to its diameter) is at least> 10, preferably> 5. The nanotubes have a length of at least 10 nm. In the context of the present invention, MWCNTs are preferred as component B). In particular, the MWCNTs have an aspect ratio of about 500: 1 and an average length in the range of 1 to 500 μm.
Die spezifische Oberfläche gemäß BET beträgt in der Regel 50 bis 2000 m2/g, vorzugsweise von 130 bis 1200 m2/g. Die bei der katalytischen Herstellung entstehenden Unreinheiten (z. B. Metalloxide) betragen in der Regel gemäß HRTEM von 0,1 bis 12 %, vorzugsweise von 0,2 bis 10 %. The BET specific surface area is usually from 50 to 2000 m 2 / g, preferably from 130 to 1200 m 2 / g. The impurities (eg metal oxides) produced during the catalytic preparation are generally from 0.1 to 12%, preferably from 0.2 to 10%, according to HRTEM.
Geeignete Nanotubes können unter der Bezeichnung„multiwall" von der Firma Hyperion Cata- lysis Int., Cambridge MA (USA) bezogen werden (siehe auch EP 205 556, EP 969 128, EP 270 666, US 6,844,061 ), wie auch von Bayer Material Science, Nanocyl, Arkema und FutureCarbon. Suitable nanotubes can be obtained under the name "multiwall" from Hyperion Catalytic Int., Cambridge MA (USA) (see also EP 205 556, EP 969 128, EP 270 666, US Pat. No. 6,844,061), as well as from Bayer Material Science, Nanocyl, Arkema and FutureCarbon.
Bei der erfindungsgemäßen Herstellung ist keine Vorbehandlung oder Oberflächenmodifizierung der Kohlenstoff-Nanoröhren notwendig. In the preparation according to the invention, no pretreatment or surface modification of the carbon nanotubes is necessary.
Geeignete Graphene sind beispielsweise beschrieben in Macromolecules 2010, 43, Seiten 6515 bis 6530. Suitable graphenes are described, for example, in Macromolecules 2010, 43, pages 6515 to 6530.
Alternativ kommen (Leitfähigkeits)ruß, Graphit oder Gemische davon zum Einsatz. Geeignete Ruße und Graphite sind dem Fachmann bekannt. Der Ruß ist insbesondere ein Leitruß oder Leitfähigkeitsruß, z. B. Acetylencarbon. Als Leitruß kann jede gängige Form von Ruß eingesetzt werden, geeignet ist beispielsweise das Handelsprodukt Ketjenblack 300 der Firma Akzo. Alternatively, (conductivity) carbon black, graphite or mixtures thereof are used. Suitable carbon blacks and graphites are known to those skilled in the art. The carbon black is in particular a Leitruß or conductivity soot, z. B. acetylene carbon. As Leitruß any common form of carbon black can be used, suitable, for example, the commercial product Ketjenblack 300 Akzo.
Zur Leitfähigkeitsmodifizierung kann auch Leitruß eingesetzt werden. Bedingt durch graphitartige Schichten, die in amorphem Kohlenstoff eingebettet sind, leitet Russ Elektronen (F. Camo- na, Ann. Chim. Fr. 13, 395 (1988)). Die Stromleitung erfolgt innerhalb der Aggregate aus Rußpartikeln und zwischen den Aggregaten, wenn die Abstände zwischen den Aggregaten klein genug sind. Um Leitfähigkeit bei möglichst geringer Dosierung zu erzielen, werden vorzugsweise Ruße mit anisotroper Struktur verwendet (G. Wehner, Advances in Plastics Technology, APT 2005, Paper 1 1 , Katowice 2005). Bei solchen Russen lagern sich die Primärpartikel zu anisotropen Strukturen zusammen, so dass die zum Erreichen der Leitfähigkeit nötigen Abstände der Rußpartikel in Compounds schon bei vergleichsweise geringer Beladung erreicht werden (C. Van Bellingen, N. Probst, E. Grivei, Advances in Plastics Technology, APT 2005, Paper 13, Katowice 2005). Conductivity can also be used for conductivity modification. Due to graphitic layers embedded in amorphous carbon, carbon black conducts electrons (F. Camona, Ann. Chim., Fr., 13, 395 (1988)). The power line takes place within the aggregates of soot particles and between the aggregates, if the distances between the aggregates are small enough. In order to achieve conductivity with the lowest possible dosage, preference is given to using carbon blacks with anisotropic structure (G. Wehner, Advances in Plastics Technology, APT 2005, Paper 1, Katowice 2005). In such Russians, the primary particles combine to form anisotropic structures, so that the distances required to achieve the conductivity of the carbon black particles in compounds are achieved even at comparatively low loading (C. Van Bellingen, N. Probst, E. Grivei, Advances in Plastics Technology , APT 2005, Paper 13, Katowice 2005).
Geeignete Rußtypen weisen beispielsweise eine Öl-Absorption (gemessen nach ASTM D 2414- 01 ) von mindestens 60 ml/100g, bevorzugt mehr als 90 ml/100 g auf. Die BET-Oberfläche ge- eigneter Produkte beträgt mehr als 50, bevorzugt mehr als 60 m2g (gemessen nach ASTM D 3037-89). Auf der Rußoberfläche können sich verschiedene funktionelle Gruppen befinden. Die Herstellung der Leitrusse kann nach verschiedenen Verfahren erfolgen (G. Wehner, Advances in Plastics Technology, APT 2005, Paper 1 1 , Katowice 2005). Weiterhin kann auch Graphit als Füllstoff verwendet werden. Unter Graphit versteht man eine Modifikation des Kohlenstoffs wie sie beispielsweise in A. F. Hollemann, E. Wiberg,„Lehrbuch der anorganischen Chemie", 91 .-100. Aufl., S 701 -702 beschrieben ist. Graphit besteht aus planaren Kohlenstoffschichten, die übereinander angeordnet sind. Graphit kann durch Mahlen zerkleinert werden. Die Partikelgröße liegt im Bereich von 0,01 μηη bis 1 mm, bevorzugt im Be- reich 1 bis 250 [Ji m . Suitable carbon black types have, for example, an oil absorption (measured according to ASTM D 2414-01) of at least 60 ml / 100 g, preferably more than 90 ml / 100 g. The BET surface area of suitable products is more than 50, preferably more than 60 m 2 g (measured according to ASTM D 3037-89). There may be various functional groups on the carbon black surface. The Leitrusse can be prepared by various methods (G. Wehner, Advances in Plastics Technology, APT 2005, Paper 1 1, Katowice 2005). Furthermore, graphite can also be used as a filler. Graphite is a modification of the carbon as described, for example, in AF Hollemann, E. Wiberg, "Lehrbuch der anorganischen Chemie", 91st-100th ed., S701 -702. Graphite consists of planar carbon layers arranged one above the other Graphite can be comminuted by milling The particle size is in the range from 0.01 μm to 1 mm, preferably in the range from 1 to 250 μm.
Ruß (Carbon Black) und Graphit sind beispielsweise beschrieben in Donnet, J. B. et al., Carbon Black Science and Technology, Second Edition, Marcel Dekker, Inc., New York 1993. Es kann auch Leitfähigkeitsruß eingesetzt werden, der auf hochgeordnetem Ruß basiert. Dieser ist bei- spielsweise beschrieben in DE-A-102 43 592, insbesondere [0028] bis [0030], in EP-A-2 049 597, insbesondere Seite 17, Zeilen 1 bis 23, in DE-A-102 59 498, insbesondere in Absätzen [0136] bis [0140], sowie in EP-A-1 999 201 , insbesondere Seite 3, Zeilen 10 bis 17. Carbon black and graphite are described, for example, in Donnet, J.B. et al., Carbon Black Science and Technology, Second Edition, Marcel Dekker, Inc., New York 1993. Conductivity soot based on highly ordered carbon black can also be used. This is described, for example, in DE-A-102 43 592, in particular [0028] to [0030], in EP-A-2 049 597, in particular page 17, lines 1 to 23, in DE-A-102 59 498 , in particular in paragraphs [0136] to [0140], as well as in EP-A-1 999 201, in particular page 3, lines 10 to 17.
Die Teilchengröße ist abhängig vom jeweiligen Kohlenstoffmaterial und liegt vorzugsweise im Bereich von 1 nm bis 1 mm, besonders bevorzugt von 2 nm bis 250 μηη. Kohlenstofffasern weisen vorzugsweise einen Durchmesser im Bereich von 1 bis 20 μηη, besonders bevorzugt von 5 bis 10 μηη auf. Die Fasern können auch in Form von Faserbündeln vorliegen. Die Umsetzung wird in Gegenwart von Alkali- und/oder Erdalkalimetallen oder deren Amiden durchgeführt. Erdalkalimetalle sind bevorzugt Ca oder Mg. Alkalimetalle sind vorzugsweise ausgewählt aus Li, Na, K und deren Gemischen. Besonders bevorzugt werden Li oder Na, insbesondere Na eingesetzt. The particle size is dependent on the respective carbon material and is preferably in the range from 1 nm to 1 mm, particularly preferably from 2 nm to 250 μm. Carbon fibers preferably have a diameter in the range from 1 to 20 μm, particularly preferably from 5 to 10 μm. The fibers may also be in the form of fiber bundles. The reaction is carried out in the presence of alkali and / or alkaline earth metals or their amides. Alkaline earth metals are preferably Ca or Mg. Alkali metals are preferably selected from Li, Na, K and mixtures thereof. Particular preference is given to using Li or Na, in particular Na.
Anstelle der Alkali- und Erdalkalimetalle lassen sich auch die entsprechenden Amide verwenden, die in einem unabhängigen Reaktionsschritt hergestellt werden. Von ihnen sind Li-, Na-, K- , Ca-, Mg-Amid , Li-, Na-, Ca- Amid bevorzugt, besonders bevorzugt Li-und Na-Amid, ganz besonders bevorzugt Na-Amid geeignet. Instead of the alkali and alkaline earth metals, it is also possible to use the corresponding amides, which are prepared in an independent reaction step. Among them, preferred are Li, Na, K, Ca, Mg amide, Li, Na, Ca amide, more preferably Li and Na amide, most preferably Na amide.
Die Alkali- und Erdalkaliamide lassen sich durch Umsetzung der Metalle in flüssigem Ammoniak, gegebenenfalls in Gegenwart von Katalysatoren, herstellen. Natriumamid wird technisch durch Überleiten von gasförmigem Ammoniak über geschmolzenes Natrium synthetisiert (U II- manns Encyclopedia of Technical Chemistry, 5. Auflage, A 2, Seiten 151 bis 161 ). The alkali metal and alkaline earth metal amides can be prepared by reacting the metals in liquid ammonia, if appropriate in the presence of catalysts. Sodium amide is technically synthesized by passing gaseous ammonia over molten sodium (Ullmanns Encyclopedia of Technical Chemistry, 5th Ed., A 2, pages 151-161).
Ammoniak wird als wasserfreier flüssiger Ammoniak verwendet. Unter wasserfrei ist dabei ein Wassergehalt von weniger als 1000 ppm zu verstehen. Ammonia is used as anhydrous liquid ammonia. By anhydrous is meant a water content of less than 1000 ppm.
Die Umsetzung kann in flüssigem wasserfreien Ammoniak erfolgen. Alternativ kann zusätzlich ein unter den Reaktionsbedingungen inertes Lösungs- oder Verdünnungsmittel mitverwendet werden. The reaction can be carried out in liquid anhydrous ammonia. Alternatively, a solvent or diluent which is inert under the reaction conditions may additionally be used.
Als unter den Reaktionsbedingungen inerte Lösungsmittel kommen Ether wie Tetrahydrofuran, Dioxan, Methyl-tert.-butylether, und aliphatische, cycloaliphatische, aromatische Kohlenwasser- Stoffe wie Hexane, Cyclohexan und Toluol, Dimethylformamid oder Gemische dieser Lösungsmittel in Frage. As inert solvents under the reaction conditions are ethers such as tetrahydrofuran, dioxane, methyl tert-butyl ether, and aliphatic, cycloaliphatic, aromatic hydrocarbons such as hexanes, cyclohexane and toluene, dimethylformamide or mixtures of these solvents in question.
Die Menge der genannten Lösungsmittel beträgt 0 bis 20.000 Gew.-%, insbesondere 0 bis 2000 Gew.-%, bezogen auf eingesetzte Kohlenstoffverbindung. The amount of said solvents is 0 to 20,000 wt .-%, in particular 0 to 2000 wt .-%, based on the carbon compound used.
Die Kohlenstoff-Füllstoffe können suspendiert in den genannten Lösungsmitteln in den Reaktor eingebracht werden. Nach der Aminierung können sie nach Abtrennung von Ammoniak suspendiert oder gelöst in den Lösungsmitteln erhalten werden. Durch die Verwendung von Lösungsmitteln treten Stäube nur in sehr geringem Maße auf. Dies ermöglicht ein sicheres Arbei- ten. The carbon fillers can be suspended in the said solvents are introduced into the reactor. After the amination they can be obtained after separation of ammonia suspended or dissolved in the solvents. Due to the use of solvents dusts occur only to a very small extent. This allows safe working.
Das Gewichtsverhältnis von Kohlenstoff-Füllstoffen zu Ammoniak beträgt vorzugsweise 1 zu 200, besonders bevorzugt 1 zu 20 bis 1 zu 90. The weight ratio of carbon fillers to ammonia is preferably 1 to 200, more preferably 1 to 20 to 1 to 90.
Das Molverhältnis von Alkalimetall- und Erdalkalimetall bzw. Alkalimetallamid und Erdalkalime- tallamid zu Ammoniak beträgt vorzugsweise 1 zu 1000, besonders bevorzugt 1 zu 50 bis 1 zu 400. The molar ratio of alkali metal and alkaline earth metal or alkali metal amide and alkaline earth metal amide to ammonia is preferably 1 to 1000, more preferably 1 to 50 to 1 to 400.
Die Aminierung der Kohlenstoffverbindungen erfolgt bei Temperaturen von 35 bis 500 °C, bevorzugt 50 bis 250 °C, besonders bevorzugt 80 bis 180 °C. Gearbeitet wird bei Gesamtdrücken, unter denen der Ammoniak in flüssiger Form vorliegt. Die Drücke betragen 30 bis 250 MPa (bar), insbesondere 70 bis 150 MPa (bar). Die Umsetzung kann in jedem geeigneten Reaktor durchgeführt werden, der dem genannten Druck und den genannten Temperaturen standhält. Vorzugsweise wird bei der Umsetzung das Reaktionsgemisch im Reaktor vermischt oder gerührt. The amination of the carbon compounds is carried out at temperatures of 35 to 500 ° C, preferably 50 to 250 ° C, particularly preferably 80 to 180 ° C. Work is carried out at total pressures, under which the ammonia is present in liquid form. The pressures are 30 to 250 MPa (bar), in particular 70 to 150 MPa (bar). The reaction can be carried out in any suitable reactor which can withstand said pressure and temperatures. Preferably, in the reaction, the reaction mixture is mixed or stirred in the reactor.
Das Reaktionsgemisch wird vorzugsweise unter den genannten Reaktionsbedingungen in ei- nem Reaktor intensiv gerührt. Die Rührerdrehzahlen betragen dabei 50 bis 1000 rpm, insbesondere 250 bis 350 rpm. Bevorzugt wird der Reaktor vor seiner Verwendung mit einen Inertgas, beispielsweise Stickstoff oder Argon, gespült. The reaction mixture is preferably stirred vigorously under the reaction conditions mentioned in a reactor. The stirrer speeds are 50 to 1000 rpm, in particular 250 to 350 rpm. The reactor is preferably purged with an inert gas, for example nitrogen or argon, before use.
Die erfindungsgemäße Umsetzung wird vorzugsweise für 2 bis 24 Stunden, besonders bevor- zugt 4 bis 8 Stunden, bevorzugt diskontinuierlich oder aber auch kontinuierlich durchgeführt. The reaction according to the invention is preferably carried out for 2 to 24 hours, more preferably 4 to 8 hours, preferably batchwise or else continuously.
Zur Aufarbeitung wird das Reaktionsgemisch vorzugsweise entspannt und auf 20 bis 40 °C abgekühlt. Bei der Entspannung kann der Ammoniak verdampft und durch Kühlung zurück gewonnen werden. Es ist auch möglich, den Ammoniak in einer Destillationskolonne abzutrennen. For workup, the reaction mixture is preferably expanded and cooled to 20 to 40 ° C. During the expansion of the ammonia can be evaporated and recovered by cooling back. It is also possible to separate the ammonia in a distillation column.
Im Reaktionsaustrag enthaltene, nicht umgesetzte Alkali-, Erdalkalimetalle oder entsprechende Amide werden bevorzugt zu gefahrlos abtrennbaren Verbindungen umgesetzt. Für diese Umsetzung sind z. B. Alkohole oder Wasser, bevorzugt lineare oder verzweigte Alkylalkohole mit einem bis vier Kohlenstoffatomen, besonders bevorzugt Methanol oder Ethanol, ganz beson- ders bevorzugt Methanol geeignet. Die als Reaktionsprodukte entstehenden Alkoholate können zusammen mit den entsprechenden überschüssigen Alkoholen und gegebenenfalls Lösungsmitteln von den aminierten Kohlenstoffverbindungen abgetrennt werden. Dies erfolgt bevorzugt durch Absaugen der Kohlenstoffverbindungen auf einer Nutsche, z. B. einer Glasfilternutsche. Die Porengröße der Nutsche beträgt dabei vorzugsweise 10 bis 16 μηη. Die Kohlenstoff- Füllstoffe können solange mit einem Alkohol gewaschen werden, bis das Filtrat nicht mehr alkalisch reagiert. Unreacted alkali metals, alkaline earth metals or corresponding amides contained in the reaction effluent are preferably converted into safely separable compounds. For this implementation z. As alcohols or water, preferably linear or branched alkyl alcohols having one to four carbon atoms, particularly preferably methanol or ethanol, very particularly preferably methanol suitable. The alcoholates formed as reaction products can be separated from the aminated carbon compounds together with the corresponding excess alcohols and, if appropriate, solvents. This is preferably done by aspirating the carbon compounds on a suction filter, z. B. a glass filter. The pore size of the filter is preferably 10 to 16 μηη. The carbon fillers can be washed with an alcohol until the filtrate is no longer alkaline.
Wenn eine trockene Kohlenstoffverbindung benötigt wird, kann sie z. B. bei 50 bis 100 °C im Vakuum bis zur Gewichtskonstanz getrocknet werden. If a dry carbon compound is needed, it may, for. B. at 50 to 100 ° C in vacuo to constant weight.
Die Erfindung wird durch die nachstehenden Beispiele näher erläutert. Beispiele The invention is further illustrated by the following examples. Examples
Die erhaltenen aminierten Kohlenstoff-Füllstoffe wurden nach der Herstellung mittels XPS- Analyse untersucht, wobei der Stickstoffgehalt bestimmt wurde. The resulting aminated carbon fillers were tested after preparation by XPS analysis to determine the nitrogen content.
Die Methodenbeschreibung für XPS für die Untersuchung von CNT-Funktionalisierungsgraden wird im Folgenden beschrieben: Die Funktionalisierung wird mittels XPS an einem laborüblichen Spektrometer mit monochromatischer Aluminium K alpha-Strahlung (z.B. Phi 5600 LS, Phi VersaProbe oder Kratos Axis Nova) unter Verwendung einer typischen Ladungsneutralisierungsmethode ermittelt. Die Quan- tifizierung der elementaren Zusammensetzung erfolgt über ein Übersichtsspektrum (1350 eV bis - 5 eV, Schrittweite 0,5 eV, Pass Energy 1 12 - 160 eV). Für die Quantifizierung werden die für das jeweilige Gerät ermittelten relativen Sensitivitätsfaktoren (RSF) verwendet und ein Shir- ley Hintergrund-Abzug durchgeführt. Die Ermittlung der Funktionalisierung erfolgt aus Detailspektren (Messbereich ± 5 - 10 eV vom Peakmaximum, 0.1 eV Energieauflösung, Pass Energy 20 - 30 eV) über einen Vergleich der Peakmaxima des Kohlenstoffs und der Heteroatome mit bekannten Vergleichsdaten (z. B. Beamson G., Briggs D. High Resolution XPS of Organic Polymers: the Scienta ESCA300 Data- base (1992).). The method description for XPS for examining CNT functionalization levels is described below: Functionalization is determined by XPS on a standard laboratory spectrometer with monochromatic aluminum K alpha radiation (eg Phi 5600 LS, Phi VersaProbe or Kratos Axis Nova) using a typical charge neutralization method. The quantification of the elemental composition takes place over an overview spectrum (1350 eV to - 5 eV, increment 0.5 eV, Pass Energy 1 12 - 160 eV). For the quantification, the relative sensitivity factors (RSF) determined for the respective device are used and a background background subtraction is carried out. Functionalization is determined from detail spectra (measuring range ± 5 - 10 eV from the peak maximum, 0.1 eV energy resolution, pass energy 20 - 30 eV) by comparison of the peak maxima of the carbon and the heteroatoms with known comparative data (eg Beamson G., Briggs D. High Resolution XPS of Organic Polymers: the Scienta ESCA300 Database (1992).).
Für die Quantifizierung wird die Kohlenstoff-Linienform des Eduktes unter identischen Messbedingungen am gleichen Spektrometer ermittelt, wie für das Produkt. (Detailspektrum, Shirley- Hintergrundabzug) Das Peakmaximum des Kohlenstoffs wird auf 284,5 eV (arom. Kohlenstoff) korrigiert und die Veränderung der Funktionalisierung über den Fit der Linienform des Eduktes und diverser Refe- renzpeaks in das gemessene Spektrum des Produktes ermittelt. Beispiel 1 For quantification, the carbon line shape of the educt is determined under identical measuring conditions on the same spectrometer as for the product. (Details spectrum, Shirley background print) The peak maximum of the carbon is corrected to 284.5 eV (aromatic carbon) and the change in the functionalization is determined by the fit of the line form of the starting material and various reference peaks in the measured spectrum of the product. example 1
Aminierung von MWCNTs in Gegenwart von Natrium in flüssigem Ammoniak Amination of MWCNTs in the presence of sodium in liquid ammonia
Die Umsetzung wurde in einem Rührautoklaven (3,5 I Reaktionsvolumen mit Scheibenrührer) durchgeführt. Der Autoklav wurde mit Argon gespült. 30 g MWCNT Baytubes® C 150 P (mit 140 ml Tetrahydrofuran angefeuchtet) und 8 g Natrium wurden eingefüllt. Nach Schließen des Autoklaven wurden 1200 ml (720 g) Ammoniak flüssig zudosiert. Bei einer Rührerdrehzahl von 300 rpm wurde der Autoklav auf 120°C erhitzt. Es stellte sich ein Druck von 84 bar ein. Nach 3 Stunden wurde der Autoklav auf 40°C abgekühlt. 0,5 I Methanol wurden zugepumpt, um gege- benenfalls Rest-Natrium und Natriumamid umzusetzen. Der Autoklav wurde langsam entspannt und eine Stunde zum Ausgasen bei 40°C gehalten. Nach nochmaligem Zupumpen von 0,5 I Methanol wurde der Autoklav über eine Steigleitung entleert. The reaction was carried out in a stirred autoclave (3.5 l reaction volume with disk stirrer). The autoclave was purged with argon. 30 g MWCNT Baytubes ® C 150 P (with 140 ml of tetrahydrofuran moistened) and 8 g of sodium were charged. After closing the autoclave, 1200 ml (720 g) of ammonia were added in liquid form. At a stirrer speed of 300 rpm, the autoclave was heated to 120 ° C. It set a pressure of 84 bar. After 3 hours, the autoclave was cooled to 40 ° C. 0.5 l of methanol were pumped in to react with any remaining sodium and sodium amide. The autoclave was slowly decompressed and held at 40 ° C for one hour for outgassing. After renewed pumping of 0.5 l of methanol, the autoclave was emptied via a riser.
Der Reaktionsaustrag wurde über eine Glasfilternutsche(10-16 μηη) abgenutscht und mit einem Liter Methanol gewaschen. Nach Überführung der CNTs in einen 11 Erlenmeyerkolben wurden sie mit einem Liter Methanol 15 Minuten gerührt und wieder abgesaugt. Dieser Vorgang wurde drei Mal wiederholt. Anschließend wurden die CNTs bei 70°C im Vakuum bis zur Gewichtskonstanz getrocknet. Die Detailspektren des Stickstoffs aus der XPS-Analyse zeigen Amin bei 400,6 eV. Der Stickstoffgehalt wurde zu 0,6 at % bestimmt (Mittelwert aus 3 Messpunkten). Beispiel 2 The reaction product was filtered off with suction through a glass suction filter (10-16 μm) and washed with one liter of methanol. After transferring the CNTs into an 11 Erlenmeyer flask, they were stirred with one liter of methanol for 15 minutes and sucked off again. This process was repeated three times. Subsequently, the CNTs were dried at 70 ° C in vacuo to constant weight. The detailed spectra of nitrogen from the XPS analysis show amine at 400.6 eV. The nitrogen content was determined to be 0.6 at% (average of 3 measuring points). Example 2
Aminierung von Graphen in Gegenwart von Natrium in flüssigem Ammoniak Amination of graphene in the presence of sodium in liquid ammonia
Analog zu Beispiel 1 wurden 100 mg Graphen(Vor-X) in 10 ml Tetrahydrofuran suspendiert und in einem 300 ml Autoklaven in Gegenwart von 120 ml (72 g) Ammoniak und 800 mg Natrium 5 Stunden bei 120°C und 300 rpm gerührt. Es stellte sich ein Gesamtdruck von 100 bar ein. Analogously to Example 1, 100 mg of graphene (Vor-X) were suspended in 10 ml of tetrahydrofuran and stirred in a 300 ml autoclave in the presence of 120 ml (72 g) of ammonia and 800 mg of sodium for 5 hours at 120 ° C. and 300 rpm. It set a total pressure of 100 bar.
Der Autoklav wurde auf 40°C abgekühlt. Das aminierte Graphen wurde mit Methanol aus dem Autoklaven gespült und über eine 0,5 μηη Teflon-Membran abgesaugt. Dann wurde das Gra- phen in 100 ml Methanol suspendiert, 30 Minuten gerührt und erneut abgesaugt. The autoclave was cooled to 40 ° C. The aminated graphene was rinsed with methanol from the autoclave and aspirated through a 0.5 micron Teflon membrane. Then the graphene was suspended in 100 ml of methanol, stirred for 30 minutes and sucked off again.
Dieser Vorgang wurde noch einmal wiederholt, bevor das Graphen bei 70 °C im Vakuum bis zur Gewichtskonstanz getrocknet wurde. Die Detailspektren des Stickstoffs aus der XPS-Analyse zeigen Amin bei 400,7 eV und Imin bei 398,9 eV. Der Amin-Stickstoffgehalt wurde zu 0,6 at % bestimmt und der Imin-Stickstoffgehalt zu 0,9 at % bestimmt (je Mittelwert aus 5 Messpunkten). This process was repeated again before the graph was dried at 70 ° C in vacuo to constant weight. The detailed spectra of nitrogen from the XPS analysis show amine at 400.7 eV and imine at 398.9 eV. The amine nitrogen content was determined to be 0.6 at% and the imine nitrogen content was determined to be 0.9 at% (per average of 5 measurement points).
Das Aufpressen von Stickstoff ist nicht zwingend nötig. The pressing on of nitrogen is not absolutely necessary.
Beispiel 3 Example 3
Aminierung von MWCNTs in Gegenwart von Natriumamid in flüssigem Ammoniak Amination of MWCNTs in the presence of sodium amide in liquid ammonia
Analog zu Beispiel 2 wurden 500 mg MWCNT Baytubes®C 150 P in Gegenwart von 10 ml Tetrahydrofuran, 250mg Natriumamid und 120 ml flüssigem Ammoniak umgesetzt. Nach der in Beispiel 2 beschriebenen Aufarbeitung und Trocknung wurde die XPS-Analyse durchgeführt. Die Detailspektren des Stickstoffs aus der XPS-Analyse zeigen Amin bei 400,4 eV und Imin bei 398,9 eV. Der Amin-Stickstoffgehalt wurde zu 1 ,1 at % und der Imin-Stickstoffgehalt zu 0,9 at % bestimmt (je Mittelwert aus 5 Messpunkten). Beispiel 4: Analogously to Example 2 were reacted liquid ammonia in the presence of 10 ml of tetrahydrofuran, 250 mg of sodium amide and 120 ml of 500 mg MWCNT Baytubes ® C 150 P. After the workup and drying described in Example 2, the XPS analysis was performed. The detailed spectra of nitrogen from the XPS analysis show amine at 400.4 eV and imine at 398.9 eV. The amine nitrogen content was determined to be 1, 1 at% and the imine nitrogen content to 0.9 at% (for each average of 5 measurement points). Example 4:
Analog zu Beispiel 1 wurden 10 g MWCNT Nanocyl 7000 in Gegenwart von 140 ml Tetrahydrofuran, 5 g Natrium und 1200 ml (720 g) Ammoniak umgesetzt. Die Aufarbeitung und Trocknung erfolgte so wie in Beispiel 1 beschrieben. Die Detailspektren des Stickstoffs aus der XPS-Analyse zeigen Amin bei 400,7 eV. Der Stickstoffgehalt wurde zu 1 ,1 at % bestimmt (Mittelwert aus 3 Messpunkten). Beispiel 5: Analogously to Example 1, 10 g of MWCNT Nanocyl 7000 were reacted in the presence of 140 ml of tetrahydrofuran, 5 g of sodium and 1200 ml (720 g) of ammonia. The work-up and drying was carried out as described in Example 1. The detailed spectra of nitrogen from the XPS analysis show amine at 400.7 eV. The nitrogen content was determined to be 1, 1 at% (average of 3 measuring points). Example 5:
Analog zu Beispiel 1 wurden 30 g MWCNT Arkema C100 in Gegenwart von 140 ml Tetrahydro- furan, 15 g Natrium und 1200 ml (720 g) Ammoniak umgesetzt. Die Aufarbeitung und Trocknung erfolgte wie in Beispiel 1 beschrieben. Analogously to Example 1, 30 g of MWCNT Arkema C100 were reacted in the presence of 140 ml of tetrahydrofuran, 15 g of sodium and 1200 ml (720 g) of ammonia. The work-up and drying was carried out as described in Example 1.
Die Detailspektren des Stickstoffs aus der XPS-Analyse zeigen Amin bei 400,5 eV. Der Stickstoffgehalt wurde zu 1 ,0 at % bestimmt (Mittelwert aus 5 Messpunkten). Beispiel e: The detailed spectra of nitrogen from the XPS analysis show amine at 400.5 eV. The nitrogen content was determined to be 1.0 at% (average of 5 measuring points). Example e:
Analog zu Beispiel 2 wurden 500 mg Acetylen Carbon (ABCR - 50 % komprimiert, durchschnittliche Partikelgröße: 0,042 μηη, Dichte: 0,100 g/cm3, Oberfläche: 80 m2/g) in Gegenwart von 10 ml Tetrahydrofuran, 500 mg Natrium und 120 ml (72 g) flüssigem Ammoniak und nach Aufpres- sen von 30 bar Stickstoff umgesetzt. Die Aufarbeitung und Trocknung erfolgte wie in Beispiel 2 beschrieben. Analogously to Example 2, 500 mg of acetylene carbon (ABCR - 50% compressed, average particle size: 0.042 μηη, density: 0.100 g / cm 3 , surface area: 80 m 2 / g) in the presence of 10 ml of tetrahydrofuran, 500 mg of sodium and 120 ml (72 g) of liquid ammonia and reacted after pressing 30 bar of nitrogen. The work-up and drying was carried out as described in Example 2.
Die Detailspektren des Stickstoffs aus der XPS-Analyse zeigen Amin bei 399,7 eV. Der Stickstoffgehalt wurde zu 1 ,1 at % bestimmt (Mittelwert aus 5 Messpunkten). The detailed spectra of nitrogen from the XPS analysis show amine at 399.7 eV. The nitrogen content was determined to be 1, 1 at% (average of 5 measuring points).
Beispiel 7: Example 7:
Analog zu Beispiel 2 wurden 500 mg SWCNT, z. B. erhältlich von Nanocyl in Gegenwart von 10 ml Tetrahydrofuran, 500 mg Natrium und 120 ml (72 g) flüssigem Ammoniak und nach Aufpressen von 30 bar Stickstoff umgesetzt. Die Aufarbeitung und Trocknung erfolgte so wie in Beispiel 2 beschrieben. Analogously to Example 2, 500 mg SWCNT, z. B. available from nanocyl in the presence of 10 ml of tetrahydrofuran, 500 mg of sodium and 120 ml (72 g) of liquid ammonia and after pressing of 30 bar of nitrogen. The work-up and drying was carried out as described in Example 2.
Die Detailspektren des Stickstoffs aus der XPS-Analyse zeigen Amin bei 399,7 eV. Der Stick- stoffgehalt wurde zu 0,9 at % bestimmt (Mittelwert aus 5 Messpunkten). The detailed spectra of nitrogen from the XPS analysis show amine at 399.7 eV. The nitrogen content was determined to be 0.9 at% (average of 5 measuring points).

Claims

Patentansprüche claims
1 . Verfahren zur Herstellung von kovalent gebundene Aminogruppen aufweisenden Kohlen- stoff-Fül Istoffen, durch Umsetzung eines Gemisches, enthaltend Kohlenstoff-Füllstoffe und Alkali- und/oder Erdalkalimetalle und/oder deren Amide in flüssigem wasserfreiem Ammoniak, gegebenenfalls zusammen mit einem inerten Lösungsmittel, bei Temperaturen von 35 bis 500 °C und einem Druck von 30 bis 250 bar.  1 . Process for the preparation of covalently bonded amino groups having carbon-Füloffenoffen, by reacting a mixture containing carbon fillers and alkali and / or alkaline earth metals and / or their amides in liquid anhydrous ammonia, optionally together with an inert solvent, at temperatures from 35 to 500 ° C and a pressure of 30 to 250 bar.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man nach der Umsetzung aus dem Gemisch Ammoniak entfernt, überschüssige Alkali- und/oder Erdalkalimetalle oder deren Amide mit Alkoholen und/oder Wasser umsetzt und die kovalent gebundene Aminogruppen aufweisenden Kohlenstoffe-Füllstoffe aus dem Reaktionsgemisch abtrennt. 2. The method according to claim 1, characterized in that removed after the reaction from the mixture of ammonia, excess alkali and / or alkaline earth metals or their amides with alcohols and / or water and the covalently bound amino groups having carbon fillers from the reaction mixture separates.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die überschüssigen Alkali- und/oder Erdalkalimetalle oder deren Amide mit Ci-4-Alkanolen umgesetzt werden. 3. The method according to claim 2, characterized in that the excess alkali and / or alkaline earth metals or their amides are reacted with Ci -4 alkanols.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Kohlenstoff-Füllstoffe ausgewählt sind aus ein- oder mehrwandigen Kohlenstoff-Nanoröhren, Graphenen, Ruß, Graphit, Aktivkohle, Kohlenstofffasern und Gemischen davon. 4. The method according to any one of claims 1 to 3, characterized in that the carbon fillers are selected from single- or multi-walled carbon nanotubes, graphenes, carbon black, graphite, activated carbon, carbon fibers and mixtures thereof.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Umsetzung in Gegenwart eines Alkalimetalls, ausgewählt aus Li, Na, K oder deren Gemischen durchgeführt wird. 5. The method according to any one of claims 1 to 4, characterized in that the reaction in the presence of an alkali metal, selected from Li, Na, K or mixtures thereof is carried out.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Umsetzung bei einer Temperatur von 50 bis 250 °C durchgeführt wird. 6. The method according to any one of claims 1 to 5, characterized in that the reaction is carried out at a temperature of 50 to 250 ° C.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Umset- zung bei einem Druck von 30 bis 250 bar durchgeführt wird. 7. The method according to any one of claims 1 to 6, characterized in that the implementation tion is carried out at a pressure of 30 to 250 bar.
8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Umsetzung in Abwesenheit von halogenhaltigen Verbindungen, insbesondere von organischen Halogeniden, wie Alkyl- oder Arylhalogeniden, durchgeführt wird. 8. The method according to any one of claims 1 to 7, characterized in that the reaction in the absence of halogen-containing compounds, in particular of organic halides, such as alkyl or aryl halides, is performed.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die eingesetzten Kohlenstoff-Füllstoffe nicht vorbehandelt sind. 9. The method according to any one of claims 1 to 8, characterized in that the carbon fillers used are not pretreated.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die eingesetzten Kohlenstoff- Füllstoffe nicht mit Säuren, Wärme, Plasma und/oder Ultraschall vorbehandelt sind. 10. The method according to claim 9, characterized in that the carbon fillers used are not pretreated with acids, heat, plasma and / or ultrasound.
PCT/EP2012/059113 2011-05-18 2012-05-16 Method for producing carbon fillers having covalently bonded amino groups WO2012156442A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CA2836399A CA2836399A1 (en) 2011-05-18 2012-05-16 Process for producing carbon fillers having covalently bonded amino groups
KR1020137030312A KR20140037844A (en) 2011-05-18 2012-05-16 Method for producing carbon fillers having covalently bonded amino groups
EA201391704A EA201391704A1 (en) 2011-05-18 2012-05-16 A METHOD FOR OBTAINING CARBON FILLERS, DETECTING THE UNITED AMONOGROUP COVALENT CONNECTION
MX2013013311A MX2013013311A (en) 2011-05-18 2012-05-16 Method for producing carbon fillers having covalently bonded amino groups.
JP2014510791A JP2014523926A (en) 2011-05-18 2012-05-16 Method for producing carbon fillers having covalently bonded amino groups
CN201280030927.9A CN103619964A (en) 2011-05-18 2012-05-16 Method for producing carbon fillers having covalently bonded amino groups
AU2012258241A AU2012258241A1 (en) 2011-05-18 2012-05-16 Method for producing carbon fillers having covalently bonded amino groups
EP12723430.0A EP2710077A1 (en) 2011-05-18 2012-05-16 Method for producing carbon fillers having covalently bonded amino groups
BR112013029652A BR112013029652A2 (en) 2011-05-18 2012-05-16 "process for the production of carbon filler materials"
IL229311A IL229311A0 (en) 2011-05-18 2013-11-07 Process for producing carbon fillers having covalently bonded amino groups
ZA2013/09441A ZA201309441B (en) 2011-05-18 2013-12-13 Method for producing carbon fillers having covalently bonded amino groups

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11166537 2011-05-18
EP11166537.8 2011-05-18

Publications (1)

Publication Number Publication Date
WO2012156442A1 true WO2012156442A1 (en) 2012-11-22

Family

ID=46149428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/059113 WO2012156442A1 (en) 2011-05-18 2012-05-16 Method for producing carbon fillers having covalently bonded amino groups

Country Status (12)

Country Link
EP (1) EP2710077A1 (en)
JP (1) JP2014523926A (en)
KR (1) KR20140037844A (en)
CN (1) CN103619964A (en)
AU (1) AU2012258241A1 (en)
BR (1) BR112013029652A2 (en)
CA (1) CA2836399A1 (en)
EA (1) EA201391704A1 (en)
IL (1) IL229311A0 (en)
MX (1) MX2013013311A (en)
WO (1) WO2012156442A1 (en)
ZA (1) ZA201309441B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015071441A3 (en) * 2013-11-14 2015-07-23 Imperial Innovations Limited Preparation of functionalised carbon nanomaterials
CN114450249A (en) * 2019-07-10 2022-05-06 弗劳恩霍夫应用研究促进协会 Treatment and purification of carbonaceous materials
CN115466482A (en) * 2022-06-01 2022-12-13 湖南碳导新材料科技有限公司 Light composite material with excellent mechanical property at high temperature and preparation method thereof

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0205556A1 (en) 1984-12-06 1986-12-30 Hyperion Catalysis Int Carbon fibrils, method for producing same, and compositions containing same.
EP0270666A1 (en) 1986-06-06 1988-06-15 Hyperion Catalysis Int Novel carbon fibrils, method for producing same, and compositions containing same.
EP0969128A2 (en) 1988-01-28 2000-01-05 Hyperion Catalysis International, Inc. Carbon fibrils
DE10243592A1 (en) 2002-09-19 2004-04-01 Basf Future Business Gmbh Bipolar plate for PEM fuel cells
DE10259498A1 (en) 2002-12-19 2004-07-01 Bayer Ag Conductive thermoplastics with soot and carbon nanofibrils
US6844061B2 (en) 2001-08-03 2005-01-18 Showa Denko K.K. Fine carbon fiber and composition thereof
WO2005090233A2 (en) 2004-03-12 2005-09-29 William Marsh Rice University Reductive functionalization of carbon nanotubes
WO2006026691A2 (en) 2004-08-31 2006-03-09 Hyperion Catalysis International, Inc. Conductive thermosets by extrusion
WO2007051071A2 (en) * 2005-10-28 2007-05-03 William Marsh Rice University Two-step method of functionalizing carbon allotropes and pegylated carbon allotropes made by such methods
WO2008012233A2 (en) 2006-07-26 2008-01-31 Basf Se Thermoplastic moulding compositions with high stiffness
EP1999201A1 (en) 2006-03-30 2008-12-10 Ticona LLC Electrically conductive resin compounds based on polyoxymethlene and highly structured carbon black
WO2009000408A1 (en) 2007-06-23 2008-12-31 Bayer Materialscience Ag Method for the production of a conductive polymer composite material
CN101774573A (en) 2010-02-08 2010-07-14 哈尔滨工业大学 Method for amination of carbon nano tube
US7794683B1 (en) 2006-04-14 2010-09-14 The United States Of America As Represented By The Secretary Of The Navy Method of making functionalized carbon nanotubes

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4835074A (en) * 1987-09-25 1989-05-30 The Electrosynthesis Company, Inc. Modified carbons and electrochemical cells containing the same
JP4692740B2 (en) * 2005-06-24 2011-06-01 東海カーボン株式会社 Carbon black aqueous dispersion and method for producing the same
CN101948106B (en) * 2010-09-28 2013-03-27 华东理工大学 Preparation method of blocky porous carbon with high specific surface area

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0205556A1 (en) 1984-12-06 1986-12-30 Hyperion Catalysis Int Carbon fibrils, method for producing same, and compositions containing same.
EP0270666A1 (en) 1986-06-06 1988-06-15 Hyperion Catalysis Int Novel carbon fibrils, method for producing same, and compositions containing same.
EP0969128A2 (en) 1988-01-28 2000-01-05 Hyperion Catalysis International, Inc. Carbon fibrils
US6844061B2 (en) 2001-08-03 2005-01-18 Showa Denko K.K. Fine carbon fiber and composition thereof
DE10243592A1 (en) 2002-09-19 2004-04-01 Basf Future Business Gmbh Bipolar plate for PEM fuel cells
DE10259498A1 (en) 2002-12-19 2004-07-01 Bayer Ag Conductive thermoplastics with soot and carbon nanofibrils
WO2005090233A2 (en) 2004-03-12 2005-09-29 William Marsh Rice University Reductive functionalization of carbon nanotubes
WO2006026691A2 (en) 2004-08-31 2006-03-09 Hyperion Catalysis International, Inc. Conductive thermosets by extrusion
WO2007051071A2 (en) * 2005-10-28 2007-05-03 William Marsh Rice University Two-step method of functionalizing carbon allotropes and pegylated carbon allotropes made by such methods
EP1999201A1 (en) 2006-03-30 2008-12-10 Ticona LLC Electrically conductive resin compounds based on polyoxymethlene and highly structured carbon black
US7794683B1 (en) 2006-04-14 2010-09-14 The United States Of America As Represented By The Secretary Of The Navy Method of making functionalized carbon nanotubes
WO2008012233A2 (en) 2006-07-26 2008-01-31 Basf Se Thermoplastic moulding compositions with high stiffness
EP2049597A2 (en) 2006-07-26 2009-04-22 Basf Se Thermoplastic moulding compositions with high stiffness
WO2009000408A1 (en) 2007-06-23 2008-12-31 Bayer Materialscience Ag Method for the production of a conductive polymer composite material
CN101774573A (en) 2010-02-08 2010-07-14 哈尔滨工业大学 Method for amination of carbon nano tube

Non-Patent Citations (13)

* Cited by examiner, † Cited by third party
Title
"Ullmanns Encyclopedia of Technical Chemistry, 5. Auflage,", vol. A 2, pages: 151 - 161
A. F. HOLLEMANN; E. WIBERG: "Lehrbuch der anorganischen Chemie, 91.-100. Aufl.,", vol. 91.-100., pages: 701 - 702
C. VAN BELLINGEN; N. PROBST; E. GRIVEI, ADVANCES IN PLASTICS TECHNOLOGY, APT 2005, 2005
DONNET, J. B. ET AL.: "Carbon Black Science and Technology, Second Edition,", 1993, MARCEL DEKKER, INC.
EUR. J. ORG. CHEM., 2008, pages 2544 - 2550
F. CAMONA, ANN. CHIM. FR., vol. 13, 1988, pages 395
G. WEHNER, ADVANCES IN PLASTICS TECHNOLOGY, 2005
G. WEHNER, ADVANCES IN PLASTICS TECHNOLOGY, APT 2005, 2005
J. HU ET AL., ACC. CHEM. RES., vol. 32, 1999, pages 435 - 445
MACROMOLECULES, vol. 43, 2010, pages 6515 - 6530
N. KAROUSIS; N. TAGMATARCHIS; D. TASIS, CHEM. REV., vol. 110, 2010 - 15 June 2010 (2010-06-15), pages 5366 - 5397, XP002684390 *
N. KAROUSIS; N. TAGMATARCHIS; D. TASIS, CHEM. REV., vol. 110, 2010, pages 5366 - 5397
TASIS DIMITRIOS ET AL: "SOLUBLE CARBON NANOTUBES", CHEMISTRY - A EUROPEAN JOURNAL, WILEY - V C H VERLAG GMBH & CO. KGAA, WEINHEIM, DE, vol. 9, no. 17, 5 September 2003 (2003-09-05), pages 4000 - 4008, XP008075908, ISSN: 0947-6539, DOI: 10.1002/CHEM.200304800 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015071441A3 (en) * 2013-11-14 2015-07-23 Imperial Innovations Limited Preparation of functionalised carbon nanomaterials
CN114450249A (en) * 2019-07-10 2022-05-06 弗劳恩霍夫应用研究促进协会 Treatment and purification of carbonaceous materials
CN115466482A (en) * 2022-06-01 2022-12-13 湖南碳导新材料科技有限公司 Light composite material with excellent mechanical property at high temperature and preparation method thereof
CN115466482B (en) * 2022-06-01 2023-11-24 湖南碳导新材料科技有限公司 Light composite material with excellent mechanical property at high temperature and preparation method thereof

Also Published As

Publication number Publication date
JP2014523926A (en) 2014-09-18
CA2836399A1 (en) 2012-11-22
CN103619964A (en) 2014-03-05
ZA201309441B (en) 2016-02-24
IL229311A0 (en) 2014-01-30
BR112013029652A2 (en) 2019-09-24
MX2013013311A (en) 2014-02-20
AU2012258241A1 (en) 2013-12-19
EA201391704A1 (en) 2014-05-30
EP2710077A1 (en) 2014-03-26
KR20140037844A (en) 2014-03-27

Similar Documents

Publication Publication Date Title
US8986512B2 (en) Process for producing chemically functionalized nano graphene materials
DE60223374T2 (en) FIBERS FROM ALIGNED CARBON NANOTUBES AND MANUFACTURING METHOD
Bourlinos et al. Surface functionalized carbogenic quantum dots
US8501147B2 (en) Method and system for producing graphene and graphenol
EP1937590A2 (en) Modified carbon nanoparticles, method for the production thereof and use thereof
DE102015223936A1 (en) Polypropylene and graphene composite and method of making same
JP2007530400A (en) Reductive functionalization of carbon nanotubes
WO2010102759A1 (en) Method for dispersing graphite-like nanoparticles
DE102008005005A1 (en) Carbon aerogels, process for their preparation and their use
EP1879965A2 (en) Method for further processing the residue obtained during the production of fullerene and carbon nanostructures
WO2015113781A1 (en) Condensed silicon-carbon composite
EP2417192A1 (en) Polymer-functionalized carbon nanotube, method for the production thereof and use thereof
JP2007169112A (en) Modified carbon material and its producing method
US20230002235A1 (en) Elastomer compositions comprising an adduct between an sp2 hybridized carbon allotrope and a dicarboxylic acid derivative
EP2710077A1 (en) Method for producing carbon fillers having covalently bonded amino groups
Kausar Properties and applications of nanodiamond nanocomposite
DE102017223892A1 (en) Process for the preparation of a functionalized semiconductor or conductor material and its use
CN101863463A (en) Method for preparing water dispersible carbon nano tube
DE102011000662A1 (en) Process for the preparation of graphene nanolayers
US8921600B2 (en) Process for producing carbon fillers having covalently bonded amino groups
US10385461B2 (en) Functionalization of carbon-based nanomaterials
RU2474534C2 (en) Method of activating carbon nanofiller
KR102145538B1 (en) Method for preparation of functionalized carbon nanotube
DE202022103888U1 (en) A system for fabricating a film of functionalized multiwalled carbon nanotubes for use as a gas sensor
CN112074503A (en) Adducts between pyrrole compounds and inorganic oxide hydroxides, superaddites between pyrrole compounds, inorganic oxide hydroxides and carbon allotropes, elastomeric compositions comprising said superaddites and process for preparing them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12723430

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/013311

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2836399

Country of ref document: CA

Ref document number: 20137030312

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2014510791

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012723430

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 201391704

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: A201314815

Country of ref document: UA

ENP Entry into the national phase

Ref document number: 2012258241

Country of ref document: AU

Date of ref document: 20120516

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013029652

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013029652

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20131118