WO2013038891A1 - Electroconductive member, process for producing electro- conductive member, touch panel and solar cell - Google Patents

Electroconductive member, process for producing electro- conductive member, touch panel and solar cell Download PDF

Info

Publication number
WO2013038891A1
WO2013038891A1 PCT/JP2012/071507 JP2012071507W WO2013038891A1 WO 2013038891 A1 WO2013038891 A1 WO 2013038891A1 JP 2012071507 W JP2012071507 W JP 2012071507W WO 2013038891 A1 WO2013038891 A1 WO 2013038891A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive
group
conductive member
general formula
member according
Prior art date
Application number
PCT/JP2012/071507
Other languages
French (fr)
Japanese (ja)
Inventor
加藤 隆志
田中 智史
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2013038891A1 publication Critical patent/WO2013038891A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • H10K30/821Transparent electrodes, e.g. indium tin oxide [ITO] electrodes comprising carbon nanotubes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a conductive member, a method for manufacturing a conductive member, a touch panel, and a solar cell.
  • This conductive member includes a conductive layer including a plurality of carbon nanotubes on a base material.
  • the film strength of the conductive layer is weak and the durability against point load is not sufficient. Therefore, it has also been proposed to improve the durability of the conductive layer by providing a hard film on the surface of the conductive layer.
  • a protective layer in a silicon oxide layer formed by hydrolysis and polycondensation of an alkoxysilane such as tetra-n-butoxysilane with a solvent containing water, a silicone graft resin, a silicone resin resin, and A material containing at least one selected from the group consisting of modified silicone resins has been proposed (Japanese Patent Laid-Open No. 2011-102003).
  • the above-described conductive member is still unsatisfactory from the viewpoint that it has excellent conductivity and high transparency and high film strength.
  • a conductive member provided with a conductive layer containing carbon nanotubes it is difficult to satisfy the conductivity, transparency and film strength at the same time, and a conductive member excellent in both of these performances has been desired.
  • the problem to be solved by the present invention is to provide a conductive member having excellent conductivity and high transparency and film strength, a method for producing the same, and a touch panel and a solar cell using the conductive member. is there.
  • a conductive member having a conductive layer containing carbon nanotubes and a conductive fiber bundle having an average minor axis diameter of 90 nm or less and silicon oxide on a substrate.
  • Si (OR 1 ) a R 2 4-a (I) (In the general formula (I), a represents an integer of 1 to 3, a R 1 s each independently represent a hydrogen atom or a hydrocarbon group, and (4-a) R 2 s independently carbonized.
  • a represents an integer of 1 to 3
  • a R 1 s each independently represent a hydrogen atom or a hydrocarbon group
  • (4-a) R 2 s independently carbonized.
  • ⁇ 4> The conductive member according to ⁇ 2> or ⁇ 3>, wherein a in the general formula (I) is 3.
  • the hydrocarbon group containing the epoxy group is a glycidyl group, a 2-epoxypropyl group, a 3-epoxypropyl group, a 3-glycidoxypropyl group, or 2- (3,4-epoxycyclohexyl) ethyl.
  • the mass ratio of the structural unit derived from the organoalkoxysilane to the structural unit derived from the tetraalkoxysilane in the sol-gel cured product is in the range of 0.01 / 1 to 100/1.
  • ⁇ 3> to ⁇ The conductive member according to any one of 5>.
  • ⁇ 7> The conductive member according to any one of ⁇ 1> to ⁇ 6>, wherein the carbon nanotube and the silicon oxide are connected by a covalent bond.
  • ⁇ 8> The conductive member according to ⁇ 7>, wherein the covalent bond is derived from a reaction between a hydroxy group of the carbon nanotube and an epoxy group of the organoalkoxysilane.
  • ⁇ 9> The conductive member according to any one of ⁇ 1> to ⁇ 8>, wherein the conductive layer includes a conductive region and a non-conductive region.
  • a represents an integer of 1 to 3
  • a R 1 s each independently represent a hydrogen atom or a hydrocarbon group
  • (4-a) R 2 s independently carbonized. Represents a hydrogen group, provided that at least one of (4-a) R 2 represents a hydrocarbon group containing an epoxy group.
  • ⁇ 12> The method for producing a conductive member according to ⁇ 11>, wherein a mass ratio of the organoalkoxysilane / tetraalkoxysilane in the aqueous solution of the alkoxide compound is in a range of 0.01 / 1 to 100/1.
  • ⁇ 13> The method for producing a conductive member according to any one of ⁇ 10> to ⁇ 12>, further comprising (iv) forming a conductive region and a non-conductive region in the conductive layer.
  • a touch panel including the conductive member according to any one of ⁇ 1> to ⁇ 9>.
  • a solar cell comprising the conductive member according to any one of ⁇ 1> to ⁇ 9>.
  • a conductive member having excellent conductivity and high transparency and high film strength, a method for producing the same, and a touch panel and a solar cell using the conductive member are provided.
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the term “light” is used as a concept including not only visible light but also high energy rays such as ultraviolet rays, X-rays, and gamma rays, particle rays such as electron beams, and the like.
  • (meth) acrylic acid is used to indicate either or both of acrylic acid and methacrylic acid
  • (meth) acrylate” is used to indicate either or both of acrylate and methacrylate.
  • the content is expressed in terms of mass, and unless otherwise specified, mass% represents a ratio to the total amount of the composition, and “solid content” is a component excluding the solvent in the composition. Represents.
  • the conductive member of the present invention has a conductive layer containing carbon nanotubes and a conductive fiber bundle having an average minor axis diameter of 90 nm or less and silicon oxide on a substrate.
  • carbon nanotubes are excellent in electrical conductivity, they have the property of being very easily aggregated due to their high surface energy. Therefore, when a dispersion (including fiber bundles having an average minor axis diameter of about 10 nm) in which carbon nanotubes are dispersed in a solvent using a dispersant is applied to a substrate and dried, the carbon nanotubes remain on the substrate surface as they are. Although fixed, slight agglomeration also occurs in the above-described coating and drying processes, and a layer including conductive fiber bundles including fiber bundles having an average minor axis diameter of about 30 nm is formed.
  • a curable resin that can be patterned by exposure for example, a photopolymerizable composition containing a polyfunctional acrylate, a photopolymerization initiator, and a solvent is applied and dried.
  • a photopolymerizable composition containing a polyfunctional acrylate, a photopolymerization initiator, and a solvent is applied and dried.
  • the carbon nanotubes that form the conductive fiber bundle described above Aggregation proceeds, and the conductive fiber bundle has an average minor axis diameter of at least about 120 nm.
  • the average minor axis diameter of the conductive fiber bundle included in the conductive layer is 90 nm or less. That is, the conductive fiber bundle composed of the bundle of carbon nanotubes contained in the conductive layer has an average minor axis diameter of 90 nm or less, so that the conductive layer has excellent conductivity and high transparency and film strength. Is obtained.
  • the conductive layer of the conductive member according to the present invention preferably includes a silicon oxide having an organic and inorganic partial structure, and in that case, the average of the conductive fiber bundles included in the conductive layer The minor axis diameter tends to be 90 nm or less.
  • such a conductive layer is preferably selected from the compounds represented by the general formula (I), for example, having the organic and inorganic partial structures as the silicon oxide.
  • a sol-gel cured product obtained by hydrolysis and polycondensation of at least one organoalkoxysilane, or at least one alkoxysilane selected from the above-mentioned organoalkoxysilane and the compound represented by the general formula (II) is hydrolyzed.
  • the conductive layer according to the present invention includes, for example, an organic and inorganic partial structure on a conductive fiber layer including a conductive fiber bundle composed of carbon nanotubes.
  • the general formula (I) It is obtained by applying an aqueous solution of a hydroxide compound containing an organoalkoxysilane selected from the compounds represented by the following, followed by hydrolysis and polycondensation of the organoalkoxysilane to form a silicon oxide. According to this method, when the aqueous solution of the hydroxide compound containing the organoalkoxysilane is applied on the conductive fiber layer including the conductive fiber bundle, the sol-gel reaction is suppressed while the aggregation of the conductive fiber bundle is suppressed.
  • silicon oxide containing sol-gel cured product is formed while the average minor axis diameter of the conductive fiber bundle contained in the conductive layer is maintained at 90 nm or less.
  • the conductive fiber bundle is fixed by covalent bonding, and has an advantage that a conductive member having a conductive layer excellent in conductivity and excellent in transparency and film strength can be easily obtained.
  • Base material various materials can be used according to the purpose as long as the base material can bear the conductive layer.
  • a plate or sheet is used.
  • the substrate may be transparent or opaque.
  • the material constituting the substrate include transparent glass such as white plate glass, blue plate glass, and silica coated blue plate glass; polycarbonate, polyethersulfone, polyester, acrylic resin, vinyl chloride resin, aromatic polyamide resin, polyamideimide, polyimide Examples thereof include synthetic resins such as cellulose resin, metals such as aluminum, copper, nickel, and stainless steel; other ceramics, and silicon wafers used for semiconductor substrates.
  • the surface of the base material on which the conductive layer is formed may be subjected to a pretreatment such as chemical treatment such as a silane coupling agent, plasma treatment, ion plating, sputtering, gas phase reaction method, and vacuum deposition, if desired. Can do.
  • the thickness of the substrate is in a desired range depending on the application. Generally, it is selected from the range of 1 ⁇ m to 500 ⁇ m, more preferably 3 ⁇ m to 400 ⁇ m, and even more preferably 5 ⁇ m to 300 ⁇ m.
  • the substrate is selected from those having a total visible light transmittance of 70% or more, more preferably 85% or more, and still more preferably 90% or more. .
  • polycarbonate and polyester are particularly preferable from the viewpoint of cost and transparency.
  • the conductive layer includes carbon nanotubes, and includes a conductive fiber bundle having an average minor axis diameter of 90 nm or less and silicon oxide.
  • a carbon nanotube is a substance in which a graphite-like carbon atomic surface (graphene sheet) is a single-layer or multilayer coaxial tube.
  • Single-walled carbon nanotubes are called single-walled nanotubes (SWNT)
  • multi-walled carbon nanotubes are called multi-walled nanotubes (MWNT)
  • DWNT double-walled nanotubes
  • the carbon nanotubes may be single-walled or multi-walled, but those having a single-layer to five-layer are preferable in terms of excellent conductivity and thermal conductivity. A single layer is particularly preferable.
  • the carbon nanotubes used as a raw material have a tube having an outer diameter (diameter) in the range of 0.1 nm to 10 nm and a length in the range of 0.1 ⁇ m to 20 ⁇ m. And it is preferable from the point that it is easy to obtain a highly transparent conductive member.
  • the outer diameter is in the range of 0.5 nm to 5 nm and the length is in the range of 0.1 ⁇ m to 10 ⁇ m.
  • the carbon nanotube is preferably subjected to dope treatment.
  • This doping treatment can further improve the conductivity of the semiconductor carbon nanotube, in particular.
  • the dope treatment can usually be performed by causing an oxidizing agent to act on the carbon nanotubes.
  • the oxidizing agent include acids such as nitric acid and sulfuric acid, and metal oxidizing agents such as chloroplatinic acid and iron (III) chloride.
  • carbon nanotubes are added to concentrated nitric acid, then heated and refluxed in a temperature range of about 20 ° C. to 140 ° C. for about 1 hour to 25 hours, diluted with ion-exchanged water, and suction filtered. There is a method of washing with methanol and then drying.
  • the oxidized carbon nanotubes become cationic as a whole, and the aggregation of fiber bundles is suppressed by the charge repulsion, which is expected to have an advantageous effect on reducing the average minor axis diameter. Is done.
  • the conductive fiber bundle included in the conductive layer is composed of a bundle containing two or more carbon nanotubes, and the average minor axis diameter of the bundle (hereinafter, the average minor axis diameter of the bundle is also referred to as “average bundle diameter”). ) Is 90 nm or less.
  • Carbon nanotubes have a small average minor axis diameter, for example, about 10 nm in the state of a dispersion liquid dispersed in an aqueous medium using a dispersant.
  • carbon nanotubes have a high surface energy, and aggregate due to a slight change in the external environment, resulting in a bundle of many carbon nanotubes.
  • the average minor axis diameter may increase to about 120 nm. Therefore, the carbon nanotubes contained in the conductive layer formed by applying a dispersion containing even a small amount of such an organic solvent on the substrate have an average minor axis diameter of 120 nm even if it is the smallest.
  • the conductive fiber bundle included in the conductive layer according to the present invention includes two or more carbon nanotubes and has an average minor axis diameter of 90 nm or less.
  • the average minor axis diameter exceeds 90 nm, it becomes difficult to obtain a conductive member that satisfies both the performance of conductivity and transparency. That is, when the conductivity is increased, the transparency is inferior, and when the transparency is increased, the conductivity is decreased. In any case, a conductive member having excellent conductivity and high transparency cannot be obtained.
  • a more preferable range of the average minor axis diameter is 10 nm to 50 nm.
  • the electroconductive member which is excellent in electroconductivity, and has high transparency and film
  • the average minor axis diameter was applied to a carbon nanotube dispersion on a glass substrate and dried to prepare a sample having a thickness of 100 nm, and this sample was increased 10,000 times with a TEM (transmission electron microscope). This is a value obtained by measuring the width of one fiber observed in an enlarged photograph and measuring the average value at 100 arbitrary positions.
  • the coating thickness of the dispersion liquid of the above sample is thicker than the thickness of the conductive layer in the conductive member, but is for facilitating observation with a transmission electron microscope.
  • the dispersion state of the carbon nanotubes is the thickness in the conductive member. It has been confirmed that this is equivalent to
  • the average long axis length of the conductive fiber bundle composed of the bundle containing carbon nanotubes is in the range of 0.1 ⁇ m to 10 ⁇ m.
  • the conductive fiber bundle is caused by physical impact caused by the operation of the fingertip on the touch panel. The risk that the wire breaks is reduced or the contact point between the conductive fiber bundles is increased, so that the contact resistance between the conductive fiber bundles is reduced, and the conductivity of the conductive layer can be improved. preferable.
  • the aspect ratio of the conductive fiber bundle composed of bundles containing carbon nanotubes is preferably 10 or more. In particular, it is preferably 100 or more.
  • the aspect ratio generally means the ratio between the long side and the short side of the fibrous material (ratio of average major axis length / average minor axis length).
  • a measuring method of an aspect ratio According to the objective, it can select suitably, For example, the method etc. which measure with an electron microscope etc. are mentioned.
  • the aspect ratio of the entire conductive fiber bundle can be estimated by measuring the major axis length and the minor axis length of the conductive fiber bundle separately.
  • the aspect ratio of the conductive fiber bundle is not particularly limited as long as it is 10 or more, and can be appropriately selected according to the purpose, but is preferably 50 to 1,000,000, and preferably 100 to 1,000,000. Is more preferable. By setting it as such a range, the electroconductive layer excellent in electroconductivity can be manufactured easily.
  • the silicon oxide contained in the conductive layer contains a three-dimensional crosslink of —Si—O—Si—.
  • a silicon oxide is excellent in conductivity because it is a sol-gel cured product obtained by hydrolysis and polycondensation of at least one organoalkoxysilane selected from the compound represented by the following general formula (I).
  • a conductive member excellent in transparency and film strength can be easily obtained, which is preferable.
  • Si (OR 1 ) a R 2 4-a (I) (In the general formula (I), a represents an integer of 1 to 3, a R 1 s each independently represent a hydrogen atom or a hydrocarbon group, and (4-a) R 2 s independently carbonized.
  • R 1 and R 2 represent a hydrocarbon group containing an epoxy group.
  • the hydrocarbon group for R 1 and R 2 is preferably an alkyl group or an aryl group.
  • the carbon number in the case of showing an alkyl group is preferably 1 to 18, more preferably 1 to 8, and still more preferably 1 to 4.
  • a phenyl group is preferable.
  • the alkyl group or aryl group may have a substituent, and examples of the substituent that can be introduced include a halogen atom, an amino group, a mercapto group, a hydroxy group, and an epoxy group.
  • Examples of the hydrocarbon group containing an epoxy group represented by at least one of (4-a) R 2 include a glycidyl group, a 2-epoxypropyl group, a 3-epoxypropyl group, and a 3-glycidoxypropyl group. 2- (3,4-epoxycyclohexyl) ethyl group and the like.
  • the compound shown by the said general formula (I) is a low molecular weight compound, and it is preferable that molecular weight is 1000 or less.
  • Specific examples of the compound represented by the general formula (I) include glycidyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 2- (3,4-epoxy). Cyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, and the like.
  • the organic partial structure is a carbon nanotube. Since the affinity for water is ensured by the inorganic partial structure, aggregation of carbon nanotubes in the aqueous medium is suppressed, and the conductive fiber bundle has an average minor axis diameter of 90 nm. It is assumed that the following will be maintained.
  • tetraalkoxysilane selected from the compound represented by the following general formula (II) together with the compound represented by the above general formula (I)
  • hydrolysis and polycondensation of these two compounds When the obtained sol-gel cured product is used as a silicon oxide, it is preferable from the viewpoint that a conductive member having excellent conductivity and further excellent transparency and film strength can be obtained.
  • Si (OR 3 ) 4 (II) (In the general formula (II), four R 3 s each independently represent a hydrogen atom or a hydrocarbon group.)
  • the hydrocarbon group for R 3 is preferably an alkyl group or an aryl group.
  • the carbon number in the case of showing an alkyl group is preferably 1 to 18, more preferably 1 to 8, and still more preferably 1 to 4.
  • a phenyl group is preferable.
  • the alkyl group or aryl group may have a substituent, and examples of the substituent that can be introduced include a halogen atom, an amino group, and a mercapto group.
  • the compound shown by the said general formula (II) is a low molecular compound, and it is preferable that molecular weight is 1000 or less.
  • Specific examples of the compound represented by the general formula (II) include, for example, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methoxytriethoxysilane, ethoxytrimethoxysilane, methoxytripropoxysilane, ethoxytri Examples include propoxysilane, propoxytrimethoxysilane, propoxytriethoxysilane, and dimethoxydiethoxysilane. Of these, tetramethoxysilane, tetraethoxysilane and the like are particularly preferable.
  • the ratio is selected from the range of 0.01 / 1 to 100/1 in terms of the former / the latter mass ratio. This is preferable in that the effect of the above-described combination can be obtained.
  • the method for producing a conductive member according to the present invention includes the following steps (i) to (iii).
  • Step (iii): The alkoxide compound in the aqueous solution of the alkoxide compound applied in the step (ii) is hydrolyzed and polycondensed to form a sol-gel cured product.
  • the liquid medium of the dispersion liquid applied on the base material is heated and dried and removed as necessary.
  • the coating method is not particularly limited and can be appropriately selected depending on the purpose. For example, roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method. Method, gravure coating method, curtain coating method, spray coating method, doctor coating method, and the like.
  • the dispersion step of dispersing the carbon nanotubes in the liquid medium is preferably performed in a low oxygen atmosphere, particularly in a nitrogen atmosphere because decomposition of the carbon nanotubes can be suppressed.
  • the solvent used as the liquid medium include water and alcohol.
  • a conductive fiber bundle composed of a bundle containing a plurality of carbon nanotubes Therefore, it is preferable to avoid the use of these solvents.
  • a dispersing agent is contained in the solvent, and the carbon nanotubes are added to the carbon nanotubes using a known dispersing machine such as a mechanical homogenizer or an ultrasonic dispersion recorder. It is obtained by dispersing.
  • the dispersing agent it is used in order to disperse
  • the dispersant is not particularly limited as long as the carbon nanotubes can be dispersed, and can be appropriately selected according to the purpose.
  • the dispersant examples include a cationic surfactant which is an ionic surfactant, an amphoteric surfactant and an anionic surfactant, a nonionic surfactant, glucose, ribose, deoxyribose and the like.
  • a cationic surfactant which is an ionic surfactant, an amphoteric surfactant and an anionic surfactant, a nonionic surfactant, glucose, ribose, deoxyribose and the like.
  • examples thereof include disaccharides such as sugar, sucrose, maltose, lactose, cellobiose and trehalose, oligosaccharides such as cyclodextrin, steroid derivatives such as bile acid, cholesterol and cholic acid, DNA, ⁇ -conjugated polymers and phthalocyanine derivatives.
  • particularly preferred dispersants are carbon nanotube dispersibility, conductive to anionic surfactants and steroid derivatives, for example, sodium cholate, sodium deoxycholate, sodium taurocholate, lithocol. Examples include sodium acid, sodium dodecylbenzenesulfonate, and DNA.
  • the amount of the dispersant is preferably selected from the range of 0.1% by mass to 10% by mass based on the amount of the solvent.
  • the content of the dispersant in the dispersion is not particularly limited, but is preferably 30 to 1500 parts by mass, more preferably 30 to 1000 parts by mass, and still more preferably 100 parts by mass of the carbon nanotubes. It is 50 to 1000 parts by mass, preferably 50 to 500 parts by mass, particularly preferably 80 to 300 parts by mass.
  • the carbon nanotube concentration in the dispersion is preferably 0.01 mg / mL or more and 200 mg / mL or less, and more preferably 0.1 mg / mL to 100 mg / mL. From the viewpoint that a conductive layer having excellent transparency can be easily obtained, it is preferably about 20 mg / mL or less, more preferably 10 mg / mL or less, and most preferably 5 mg / mL or less. It is of course possible to prepare a dispersion with a higher concentration and dilute it to an appropriate concentration for use. Alternatively, the dispersion prepared as described above can be applied on a substrate and dried by heating if necessary. May be.
  • the conductive fiber layer thus obtained is composed of a bundle containing one or at least two carbon nanotubes, and includes a conductive fiber bundle having a bundle diameter of 90 nm or less.
  • an aqueous solution of an alkoxide compound containing at least one organoalkoxysilane selected from the compounds represented by the general formula (I) or An aqueous solution of an alkoxide compound containing at least one tetraalkoxysilane selected from the compounds represented by the above general formula (II) together with the above organoalkoxysilane (hereinafter referred to as the above “organoalkoxysilane” and “tetraalkoxysilane”) are also collectively referred to as “specific alkoxide compound”, and the above “aqueous solution containing an alkoxide compound” is also referred to as “sol-gel coating solution”).
  • organoalkoxysilane, or organoalkoxysilane and tetraalkoxysilane enter the gaps between the plurality of conductive fiber bundles in the conductive fiber layer.
  • ⁇ Process (iii)> The organoalkoxysilane or the organoalkoxysilane and the tetraalkoxysilane soaked in this way are converted into a sol-gel hardened material at the place by hydrolysis and polycondensation in the gaps between the plurality of conductive fiber bundles.
  • a conductive layer including carbon nanotubes and including a conductive fiber bundle having an average minor axis diameter of 90 nm or less and silicon oxide is formed on the substrate.
  • Carbon nanotubes are known to have hydroxyl groups on their surfaces. Therefore, it is considered that a reaction occurs between the epoxy group of the organoalkoxysilane and the hydroxyl group of the carbon nanotube during the hydrolysis and polycondensation of the specific alkoxide compound. As a result, it is considered that a carbon nanotube and silicon oxide are covalently bonded while suppressing aggregation of carbon nanotubes, and a conductive layer having high conductivity and high transparency and film strength is obtained. .
  • heating and drying are preferable.
  • the heating temperature for promoting such a reaction is suitably in the range of 30 ° C. to 200 ° C., more preferably in the range of 50 ° C. to 180 ° C.
  • the heating and drying time is preferably 10 seconds to 300 minutes, more preferably 1 minute to 120 minutes.
  • an acidic catalyst or a basic catalyst in the sol-gel coating liquid because the reaction efficiency can be improved.
  • this catalyst will be described.
  • any catalyst that promotes the hydrolysis and polycondensation reactions described above can be used.
  • Such a catalyst includes an acid or a basic compound and is used as it is or dissolved in a solvent such as water or alcohol (hereinafter referred to as an acidic catalyst and a basic compound, respectively). Also referred to as a catalyst).
  • the concentration at which the acid or basic compound is dissolved in the solvent is not particularly limited, and may be appropriately selected depending on the characteristics of the acid or basic compound used, the desired content of the catalyst, and the like.
  • concentration of the acid or basic compound constituting the catalyst is high, the hydrolysis and polycondensation rates tend to increase.
  • a basic catalyst with a too high concentration is used, a precipitate may be generated and appear as a defect in the protective layer. Therefore, when a basic catalyst is used, the concentration is 1 N or less in terms of concentration in an aqueous solution. It is desirable that
  • the kind of the acidic catalyst or the basic catalyst is not particularly limited, but when it is necessary to use a catalyst having a high concentration, a catalyst composed of an element that hardly remains in the protective layer is preferable.
  • the acidic catalyst include hydrogen halides such as hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, hydrogen sulfide, perchloric acid, hydrogen peroxide, carbonic acid, carboxylic acids such as formic acid and acetic acid, and the structure represented by RCOOH.
  • Examples thereof include substituted carboxylic acids in which R in the formula is substituted with other elements or substituents, sulfonic acids such as benzenesulfonic acid, etc., and basic catalysts include ammoniacal bases such as aqueous ammonia and amines such as ethylamine and aniline Is mentioned.
  • a Lewis acid catalyst containing a metal complex can also be preferably used.
  • Particularly preferred catalysts are metal complex catalysts, metal elements selected from groups 2A, 3B, 4A and 5A of the periodic table and ⁇ -diketones, ketoesters, hydroxycarboxylic acids or esters thereof, amino alcohols, enolic active hydrogen compounds It is a metal complex comprised from the oxo or hydroxy oxygen containing compound chosen from these.
  • 2A group elements such as Mg, Ca, St and Ba
  • 3B group elements such as Al and Ga
  • 4A group elements such as Ti and Zr
  • 5A group elements such as V, Nb and Ta are preferable.
  • the oxo- or hydroxy-oxygen-containing compound constituting the ligand of the metal complex is a ⁇ -diketone such as acetylacetone (2,4-pentanedione) or 2,4-heptanedione, methyl acetoacetate, acetoacetic acid Ketoesters such as ethyl and butyl acetoacetate, hydroxycarboxylic acids such as lactic acid, methyl lactate, salicylic acid, ethyl salicylate, phenyl salicylate, malic acid, tartaric acid and methyl tartrate, and esters thereof, 4-hydroxy-4-methyl-2-pentanone , 4-hydroxy-2-pentanone, 4-hydroxy-4-methyl-2-heptanone, ketoalcohols such as 4-hydroxy-2-heptanone, monoethanolamine, N, N-dimethylethanolamine, N-methyl- Monoethanolamine, diethanolamine Amino alcohols such as ethanol, triethanolamine,
  • a preferred ligand is an acetylacetone derivative.
  • the acetylacetone derivative refers to a compound having a substituent on the methyl group, methylene group or carbonyl carbon of acetylacetone.
  • Substituents for substitution on the methyl group of acetylacetone are all straight-chain or branched alkyl groups having 1 to 3 carbon atoms, acyl groups, hydroxyalkyl groups, carboxyalkyl groups, alkoxy groups, alkoxyalkyl groups, and acetylacetone
  • the substituents that substitute for the methylene group are carboxyl groups, both straight-chain or branched carboxyalkyl groups and hydroxyalkyl groups having 1 to 3 carbon atoms, and the substituents that substitute for the carbonyl carbon of acetylacetone are carbon atoms.
  • acetylacetone derivatives include ethylcarbonylacetone, n-propylcarbonylacetone, i-propylcarbonylacetone, diacetylacetone, 1-acetyl-1-propionyl-acetylacetone, hydroxyethylcarbonylacetone, hydroxypropylcarbonylacetone, acetoacetate Acetopropionic acid, diacetacetic acid, 3,3-diacetpropionic acid, 4,4-diacetbutyric acid, carboxyethylcarbonylacetone, carboxypropylcarbonylacetone, diacetone alcohol. Of these, acetylacetone and diacetylacetone are particularly preferred.
  • the complex of the above acetylacetone derivative and the above metal element is a mononuclear complex in which 1 to 4 molecules of the acetylacetone derivative are coordinated per metal element, and the coordinateable bond of the acetylacetone derivative is the coordinateable bond of the metal element.
  • ligands commonly used for ordinary complexes such as water molecules, halogen ions, nitro groups, and ammonio groups may coordinate.
  • Examples of preferred metal complexes include tris (acetylacetonato) aluminum complex, di (acetylacetonato) aluminum / aco complex, mono (acetylacetonato) aluminum / chloro complex, di (diacetylacetonato) aluminum complex, ethylacetate Acetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), cyclic aluminum oxide isopropylate, tris (acetylacetonato) barium complex, di (acetylacetonato) titanium complex, tris (acetylacetonato) titanium complex, di-i -Propoxy bis (acetylacetonato) titanium complex salt, zirconium tris (ethyl acetoacetate), zirconium tris (benzoic acid) complex salt, etc.
  • ethyl acetoacetate aluminum diisopropylate aluminum tris (ethyl acetoacetate), di ( Acetylacetonato) titanium complex and zirconium tris (ethylacetoacetate) are preferred.
  • the type of the counter salt is arbitrary as long as it is a water-soluble salt that maintains the neutrality of the charge as the complex compound, such as nitrate, Salt forms such as halogenates, sulfates, phosphates, etc., that ensure stoichiometric neutrality are used.
  • nitrate nitrate
  • Salt forms such as halogenates, sulfates, phosphates, etc., that ensure stoichiometric neutrality are used.
  • the metal complex in the coating solution, has a coordinated structure and is stable, and in the dehydration condensation reaction that starts in the heat drying process after coating, it is considered that crosslinking is promoted by a mechanism similar to an acid catalyst.
  • the above metal complex catalyst can be easily obtained as a commercial product, and can also be obtained by a known synthesis method, for example, reaction of each metal chloride with an alcohol.
  • the catalyst according to the present invention is used in the sol-gel coating solution in an amount of preferably 0 to 50% by mass, more preferably 5 to 25% by mass, based on the nonvolatile components.
  • a catalyst may be used independently or may be used in combination of 2 or more type.
  • the sol-gel coating liquid may contain an organic solvent as desired in order to ensure the formation of a uniform coating liquid film on the conductive fiber layer.
  • organic solvents include ketone solvents such as acetone, methyl ethyl ketone, and diethyl ketone, alcohol solvents such as methanol, ethanol, 2-propanol, 1-propanol, 1-butanol, and tert-butanol, chloroform, and chloride.
  • Chlorine solvents such as methylene, aromatic solvents such as benzene and toluene, ester solvents such as ethyl acetate, butyl acetate and isopropyl acetate, ether solvents such as diethyl ether, tetrahydrofuran and dioxane, ethylene glycol monomethyl ether, ethylene glycol Examples thereof include glycol ether solvents such as dimethyl ether.
  • VOC volatile organic solvent
  • the sol-gel coating solution may contain an organosilane compound different from both compounds represented by the general formula (I) and the general formula (II).
  • organosilane compounds include organodialkoxysilanes such as dimethyldimethoxysilane, diethyldimethoxysilane, dimethyldiethoxysilane, and diethyldiethoxysilane, such as methyltrimethoxysilane, ethyltrimethoxysilane, methyltriethoxysilane, And organotrialkoxysilanes such as ethyltriethoxysilane.
  • the thickness of the conductive layer is preferably 0.01 ⁇ m to 50 ⁇ m, more preferably 0.05 ⁇ m to 20 ⁇ m, more preferably 0.05 ⁇ m to 5 ⁇ m, and even more preferably 0.1 ⁇ m to 1 ⁇ m.
  • the film thickness is preferably 0.01 ⁇ m or more and 50 ⁇ m or less, sufficient durability and film strength can be obtained, and a dense film without defects as a conductive layer can be obtained.
  • a range of 0.1 ⁇ m to 1 ⁇ m is preferable because an allowable range in manufacturing is secured.
  • a laminate for forming a conductive layer in which the conductive layer is formed on the surface of the transfer substrate is prepared separately.
  • a method of transferring the conductive layer to an arbitrary substrate surface is included.
  • Such a laminate for forming a conductive layer has a basic configuration in which a conductive layer is formed on a transfer substrate as described above, but if necessary, between the transfer substrate and the conductive layer.
  • a configuration in which the cushion layer, the intermediate layer, or both of these layers are formed in this order, or a configuration in which a cover film is formed on the conductive layer may be used.
  • the method for forming the above-described conductive layer on the surface of the transfer substrate can be performed by the same coating method as in the method for forming the conductive layer on the substrate described above.
  • the shape, structure, size and the like of the transfer substrate are not particularly limited and may be appropriately selected depending on the purpose.
  • the shape may be a film shape, a sheet (film) shape, a plate shape, etc. Is mentioned.
  • Examples of the structure include a single layer structure and a laminated structure.
  • the size can be appropriately selected according to the application.
  • transfer According to the objective, it can select suitably, For example, the silicon wafer etc. which are used as a transparent glass, a synthetic resin, a metal, ceramics, a semiconductor substrate, etc. are mentioned. .
  • the surface of the transfer substrate may be subjected to a pretreatment such as chemical treatment such as a silane coupling agent, plasma treatment, ion plating, sputtering, gas phase reaction method, vacuum deposition and the like.
  • a pretreatment such as chemical treatment such as a silane coupling agent, plasma treatment, ion plating, sputtering, gas phase reaction method, vacuum deposition and the like.
  • the transparent glass include white plate glass, blue plate glass, and silica-coated blue plate glass.
  • a thin glass plate having a thickness of 10 ⁇ m to several hundred ⁇ m may be used.
  • the synthetic resin include polyethylene terephthalate (PET), polycarbonate, triacetyl cellulose (TAC), polyethersulfone, polyester, acrylic resin, vinyl chloride resin, aromatic polyamide resin, polyamideimide, and polyimide.
  • the metal include aluminum, copper, nickel, and stainless steel.
  • the average thickness of the transfer substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 ⁇ m to 500 ⁇ m, more preferably 3 ⁇ m to 400 ⁇ m, and even more preferably 5 ⁇ m to 300 ⁇ m. When the average thickness is within the above range, the handling is good and the flexibility is excellent, so that the transfer uniformity is good.
  • the laminate for forming a conductive layer may have a cushion layer for improving transferability between the transfer substrate and the conductive layer.
  • a cushion layer for improving transferability between the transfer substrate and the conductive layer.
  • a cushion layer for improving transferability between the transfer substrate and the conductive layer.
  • membrane form, a sheet form, etc. are mentioned as said shape.
  • the structure include a single-layer structure and a laminated structure, and the size and thickness can be appropriately selected according to the application.
  • the cushion layer is a layer that plays a role of improving transferability with the transfer target, and contains at least a polymer, and further contains other components as necessary.
  • the polymer used for the cushion layer is not particularly limited as long as it is a thermoplastic resin that softens when heated, and can be appropriately selected according to the purpose.
  • the polymer used for the cushion layer is preferably a thermoplastic resin that is softened by heating.
  • the glass transition temperature of the cushion layer is preferably 40 ° C to 150 ° C. By setting the glass transition temperature in such a range, it is easy to handle and excellent transferability can be achieved.
  • the cushion layer can be formed by applying and drying a cushion layer-use cloth liquid containing the polymer and, if necessary, the other components on a transfer substrate.
  • the average thickness of the cushion layer is preferably 1 ⁇ m to 50 ⁇ m, more preferably 1 ⁇ m to 30 ⁇ m, and even more preferably 5 ⁇ m to 20 ⁇ m.
  • the ratio (S / N) between the total average thickness S of the conductive layer and the cushion layer and the average thickness N of the transfer base material satisfies the following formula (4).
  • S / N 0.01-0.7 Formula (4)
  • the S / N is more preferably in the range of 0.02 to 0.6. When the S / N is 0.01 or more, the transfer uniformity to the transfer medium is good, and when it is 0.7 or less, the curl balance is excellent.
  • the intermediate layer is preferably made of polyvinyl alcohol, polyvinyl pyrrolidone, or the like, and the thickness is suitably in the range of 0.1 ⁇ m to 5 ⁇ m.
  • the film thickness (average thickness) of the conductive layer is preferably 0.001 ⁇ m to 2 ⁇ m, and more preferably 0.005 ⁇ m to 1 ⁇ m. When the average thickness is 0.001 ⁇ m or more, the in-plane conductivity distribution is uniform, and when it is 2 ⁇ m or less, good transparency is obtained.
  • the above-mentioned cover film is provided for the purpose of protecting the conductive layer from being contaminated or damaged when the conductive layer forming laminate is handled as a single body.
  • This cover film is peeled off before the laminate is laminated on the substrate.
  • the cover film for example, a polyethylene film, a polypropylene film or the like is preferable, and the thickness is suitably in the range of 20 ⁇ m to 200 ⁇ m.
  • the conductive member according to the present invention is preferably adjusted so that the surface resistance is 1,000 ⁇ / ⁇ or less.
  • the surface resistance is a value obtained by measuring the surface of the conductive layer in the conductive member according to the present invention by the four-probe method.
  • the surface resistance measurement method by the four-probe method can be measured in accordance with, for example, JIS K 7194: 1994 (resistivity test method by the four-probe method for conductive plastics), and a commercially available surface resistivity meter. Can be easily measured.
  • the surface resistance of the conductive member according to the present invention is more preferably in the range of 0.1 ⁇ / ⁇ to 900 ⁇ / ⁇ .
  • the conductive layer according to the present invention includes carbon nanotubes, and in addition to the conductive fiber bundle having an average minor axis diameter of 90 nm or less, other conductive materials such as conductive fine particles are impaired in the effect of the present invention.
  • the ratio of the carbon nanotubes described above is preferably 50% or more, more preferably 60% or more, and particularly preferably 75% or more in terms of volume ratio.
  • the ratio of these conductive fiber bundles may be referred to as “the ratio of conductive fiber bundles”. If the ratio of the conductive fiber bundle is less than 50%, the conductive material contributing to the conductivity may decrease and the conductivity may decrease. At the same time, a dense network cannot be formed. And durability may be reduced.
  • the measurement method of the average minor axis length and the average major axis length of the conductive fiber bundle is as described above.
  • the entire region of the conductive layer is a conductive region (hereinafter referred to as “non-conductive layer”). Also referred to as a “patterned conductive layer.”)
  • the first embodiment and the conductive layer include a conductive region and a non-conductive region (hereinafter, this conductive layer is also referred to as a “patterned conductive layer”). Any of the second embodiment may be used. In the case of the second aspect, the conductive fiber bundle may or may not be included in the nonconductive region.
  • the conductive fiber bundle included in the non-conductive region is disconnected.
  • the electroconductive member which concerns on a 1st aspect can be used as a transparent electrode of a solar cell, for example.
  • the electroconductive member which concerns on a 2nd aspect is used, for example when producing a touch panel. In this case, a conductive region and a non-conductive region having a desired shape are formed.
  • the patterned conductive layer is manufactured, for example, by the following patterning method.
  • a non-patterned conductive layer is formed in advance, and a conductive fiber bundle included in a desired region of the non-patterned conductive layer is irradiated with a high-energy laser beam such as a carbon dioxide laser or a YAG laser. Then, a patterning method in which a part of the conductive fiber bundle is disconnected or disappeared to make the desired region a non-conductive region. This method is described in, for example, Japanese Patent Application Laid-Open No. 2010-496.
  • a photoresist layer is provided on a previously formed non-patterned conductive layer, and a desired pattern exposure and development are performed on the photoresist layer to form the patterned resist.
  • patterning methods (1) to (2) can be applied to any of the non-patterned conductive layer on the substrate and the non-patterned conductive layer on the transfer substrate. . Further, in any of the above cases, the above patterning method may be applied before forming a protective layer described later or after forming the protective layer. When the patterned conductive layer is formed on the transfer substrate, the patterned conductive layer is transferred onto the substrate.
  • the light source used for the pattern exposure is selected in relation to the photosensitive wavelength range of the photoresist composition, but generally ultraviolet rays such as g-line, h-line, i-line, and j-line are preferably used.
  • a blue LED may be used.
  • the pattern exposure method is not particularly limited, and may be performed by surface exposure using a photomask, or may be performed by scanning exposure using a laser beam or the like. At this time, refractive exposure using a lens or reflection exposure using a reflecting mirror may be used, and exposure methods such as contact exposure, proximity exposure, reduced projection exposure, and reflection projection exposure can be used.
  • an appropriate developer is selected according to the photoresist composition.
  • the photoresist composition is a photopolymerizable composition containing an alkali-soluble resin as a binder
  • an alkaline aqueous solution is preferable.
  • an alkaline aqueous solution is preferable.
  • coating, immersion, spraying etc. are mentioned.
  • dip development in which a substrate or substrate having a photosensitive layer after exposure in an alkaline solution is immersed, paddle development in which the developer is stirred during immersion, a shower in which the developer is poured using a shower or spray
  • Examples include development and a development method in which the surface of the photosensitive layer is rubbed with a sponge or a fiber lump impregnated with an alkaline solution.
  • the method of immersing in an alkaline solution is particularly preferable.
  • the immersion time of the alkaline solution is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 seconds to 5 minutes.
  • the non-patterned conductive layer is used as a patterned conductive layer.
  • dissolves the said conductive fiber bundle was provided in pattern form from the said protective layer to the electrically conductive film, and this solution was provided.
  • the viscosity of the solution for dissolving the conductive fiber bundle is preferably 5 mPa ⁇ s to 300,000 mPa ⁇ s at 25 ° C., more preferably 10 mPa ⁇ s to 150,000 mPa ⁇ s.
  • the viscosity is preferably 5 mPa ⁇ s to 300,000 mPa ⁇ s at 25 ° C., more preferably 10 mPa ⁇ s to 150,000 mPa ⁇ s.
  • the application of the pattern of the solution for dissolving the conductive fiber bundle is not particularly limited as long as the solution can be applied in a pattern, and can be appropriately selected according to the purpose.
  • screen printing, inkjet printing Examples thereof include a method in which an etching mask is formed with a resist agent or the like, and a solution is coated thereon by coater coating, roller coating, dipping coating or spray coating.
  • screen printing, ink jet printing, coater coating, and dip coating are particularly preferable.
  • the ink jet printing for example, either a piezo method or a thermal method can be used.
  • the photoresist composition includes a photoresist composition suitable for a lithographic process.
  • a photopolymerizable composition is particularly preferable.
  • Such a photopolymerizable composition contains (a) an addition-polymerizable unsaturated compound and (b) a photopolymerization initiator that generates radicals when irradiated with light as basic components. )
  • these components will be described.
  • the component (a) addition-polymerizable unsaturated compound is a compound that undergoes an addition-polymerization reaction in the presence of a radical to form a polymer, and usually has a molecular end.
  • a compound having at least one, more preferably two or more, more preferably four or more, still more preferably six or more ethylenically unsaturated double bonds is used. These have chemical forms such as monomers, prepolymers, i.e. dimers, trimers and oligomers, or mixtures thereof.
  • Various kinds of such polymerizable compounds are known, and they can be used as the component (a).
  • particularly preferred polymerizable compounds are trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) from the viewpoint of film strength.
  • Acrylate is particularly preferred.
  • the content of the component (a) is preferably 2.6% by mass or more and 37.5% by mass or less, and 5.0% by mass or more and 20.50% by mass or less based on the total mass of the solid content of the photopolymerizable composition. It is more preferably 0% by mass or less.
  • the photopolymerization initiator of component (b) is a compound that generates radicals when irradiated with light.
  • photopolymerization initiators include compounds that generate acid radicals that ultimately become acids upon irradiation with light, and compounds that generate other radicals.
  • the former is referred to as “photoacid generator”, and the latter is referred to as “photoradical generator”.
  • -Photoacid generator- Photoacid generator includes photoinitiator for photocationic polymerization, photoinitiator for photoradical polymerization, photodecoloring agent for dyes, photochromic agent, irradiation of actinic ray or radiation used for micro resist, etc.
  • known compounds that generate acid radicals and mixtures thereof can be appropriately selected and used.
  • Such a photoacid generator is not particularly limited and may be appropriately selected depending on the intended purpose.
  • triazine or 1,3,4-oxadi having at least one di- or tri-halomethyl group may be selected.
  • examples thereof include azole, naphthoquinone-1,2-diazido-4-sulfonyl halide, diazonium salt, phosphonium salt, sulfonium salt, iodonium salt, imide sulfonate, oxime sulfonate, diazodisulfone, disulfone, and o-nitrobenzyl sulfonate.
  • imide sulfonate, oxime sulfonate, and o-nitrobenzyl sulfonate which are compounds that generate sulfonic acid, are particularly preferable.
  • the photoradical generator is a compound that has a function of generating radicals by directly absorbing light or being photosensitized to cause a decomposition reaction or a hydrogen abstraction reaction.
  • the photo radical generator is preferably one having absorption in a wavelength region of 300 nm to 500 nm.
  • Many compounds are known as such photo radical generators. For example, carbonyl compounds, ketal compounds, benzoin compounds, acridine compounds, organic peroxide compounds as described in JP-A-2008-268884 are known.
  • Azo compounds, coumarin compounds, azide compounds, metallocene compounds, hexaarylbiimidazole compounds, organic boric acid compounds, disulfonic acid compounds, oxime ester compounds, and acylphosphine (oxide) compounds can be appropriately selected according to the purpose.
  • benzophenone compounds, acetophenone compounds, hexaarylbiimidazole compounds, oxime ester compounds, and acylphosphine (oxide) compounds are particularly preferable from the viewpoint of exposure sensitivity.
  • the photopolymerization initiator of component (b) may be used alone or in combination of two or more, and the content thereof is based on the total mass of the solid content of the photopolymerizable composition.
  • the content is preferably 0.1% by mass to 50% by mass, more preferably 0.5% by mass to 30% by mass, and still more preferably 1% by mass to 20% by mass. In such a numerical range, when a pattern including a conductive region and a non-conductive region described later is formed on the conductive layer, good sensitivity and pattern formability can be obtained.
  • the binder is a linear organic high molecular polymer, and at least one group that promotes alkali solubility in a molecule (preferably a molecule having an acrylic copolymer or a styrene copolymer as a main chain) (for example, it can be appropriately selected from alkali-soluble resins having a carboxyl group, a phosphoric acid group, a sulfonic acid group, and the like.
  • the acid dissociable group represents a functional group that can dissociate in the presence of an acid.
  • a known radical polymerization method can be applied. Polymerization conditions such as temperature, pressure, type and amount of radical initiator, type of solvent, etc. when producing an alkali-soluble resin by the radical polymerization method can be easily set by those skilled in the art, and the conditions are determined experimentally. Can be determined.
  • a polymer having a carboxylic acid in the side chain is preferable.
  • the polymer having a carboxylic acid in the side chain include, for example, JP-A-59-44615, JP-B-54-34327, JP-B-58-12777, JP-B-54-25957, JP-A-59-53836, As described in JP-A-59-71048, methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partial ester A maleic acid copolymer, etc., an acidic cellulose derivative having a carboxylic acid in the side chain, a polymer having a hydroxyl group with an acid anhydride added, and a polymer having a (meth) acryloyl group in the side chain Polymers are also preferred.
  • benzyl (meth) acrylate / (meth) acrylic acid copolymers and multi-component copolymers formed from benzyl (meth) acrylate / (meth) acrylic acid / other monomers are particularly preferable.
  • a high molecular polymer having a (meth) acryloyl group in the side chain and a multi-component copolymer formed from (meth) acrylic acid / glycidyl (meth) acrylate / other monomers are also useful.
  • the polymer can be used by mixing in an arbitrary amount.
  • (meth) acrylic acid and other monomers copolymerizable with the (meth) acrylic acid are suitable.
  • the weight average molecular weight of the binder is preferably from 1,000 to 500,000, more preferably from 3,000 to 300,000, and even more preferably from 5,000 to 200,000, from the viewpoints of alkali dissolution rate, film physical properties and the like. .
  • the weight average molecular weight is measured by gel permeation chromatography and can be determined using a standard polystyrene calibration curve.
  • the content of the component (c) binder is preferably 5% by mass to 90% by mass, more preferably 10% by mass to 85% by mass, based on the total mass of the solid content of the photopolymerizable composition.
  • 20% by mass to 80% by mass is more preferable.
  • additives other than the above components (a) to (c) include, for example, a chain transfer agent, a crosslinking agent, a dispersant, a solvent, a surfactant, an antioxidant, an antisulfurizing agent, a metal corrosion inhibitor, a viscosity.
  • Various additives such as regulators and preservatives are listed.
  • a method for forming the conductive layer on the substrate can be performed by a general coating method, and is not particularly limited and can be appropriately selected according to the purpose.
  • a roll coating method or a bar coating method Dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method, and the like.
  • the conductive member according to the present invention includes a conductive fiber bundle that is formed of a bundle including at least two carbon nanotubes and that includes a conductive fiber bundle having an average minor axis diameter of 90 nm or less and silicon oxide.
  • the silicon oxide is composed of a sol-gel cured product obtained by hydrolysis and polycondensation of the above-mentioned specific alkoxide compound
  • the carbon nanotube and silicon constituting the bundle of carbon nanotubes described above Since the oxide and the oxide are bonded by a covalent bond, even when a physical impact such as a keystroke operation is applied to the conductive layer, the conductive fiber bundle does not break, and as a result, the film strength It is presumed that a high conductive layer is obtained.
  • the conductive member according to the present invention has excellent durability against scratches and abrasion of the conductive layer and has low surface resistance, for example, a touch panel, a display electrode, an electromagnetic wave shield, an organic EL display electrode, and an inorganic EL display It is widely applied to electrodes, electronic paper, electrodes for flexible displays, integrated solar cells, liquid crystal display devices, display devices with a touch panel function, and other various devices. Among these, application to a touch panel and a solar cell is particularly preferable.
  • the conductive member according to the present invention can be applied to, for example, a touch panel, and is used for various touch panels such as a surface capacitive type, a projected capacitive type, and a resistive film type.
  • the touch panel includes so-called touch sensors and touch pads.
  • the layer structure of the touch panel sensor electrode part in the touch panel is a bonding method in which two transparent electrodes are bonded, a method in which transparent electrodes are provided on both surfaces of a single substrate, a single-sided jumper or a through-hole method, or a single-area layer method. Either of these may be used.
  • the surface capacitive touch panel is described in, for example, JP-T-2007-533044.
  • the conductive member according to the present invention can be used as a transparent electrode in an integrated solar cell (hereinafter sometimes referred to as a solar cell device).
  • a solar cell device There is no restriction
  • Group III-V compound semiconductor solar cell devices II-VI compound semiconductor solar cell devices such as cadmium telluride (CdTe), copper / indium / selenium system (so-called CIS system), copper / indium / gallium / selenium system ( So-called CIGS-based), copper / indium / gallium / selenium / sulfur-based (so-called CIGS-based) I-III-VI group compound semiconductor solar cell devices, dye-sensitized solar cell devices, organic solar cell devices, etc. Can be mentioned.
  • CdTe cadmium telluride
  • CIS system copper / indium / selenium system
  • So-called CIGS-based copper / indium / gallium / selenium system
  • I-III-VI group compound semiconductor solar cell devices dye-sensitized solar cell devices, organic solar cell devices, etc.
  • the solar cell device is an amorphous silicon solar cell device constituted by a tandem structure type or the like, a copper / indium / selenium system (so-called CIS system), copper / indium / gallium / A selenium-based (so-called CIGS-based), copper / indium / gallium / selenium / sulfur-based (so-called CIGS-based) I-III-VI group compound semiconductor solar cell device is preferable.
  • CIS system copper / indium / selenium system
  • CIGS-based copper / indium / gallium / A selenium-based
  • I-III-VI group compound semiconductor solar cell device is preferable.
  • the conductive member according to the present invention can be applied to all the solar cell devices.
  • the conductive member may be included in any part of the solar cell device, but it is preferable that a conductive layer or a protective layer is disposed adjacent to the photoelectric conversion layer.
  • a conductive layer or a protective layer is disposed adjacent to the photoelectric conversion layer.
  • the following structure is preferable regarding the positional relationship with a photoelectric converting layer, it is not limited to this.
  • the structure described below does not describe all the parts that constitute the solar cell device, but describes the range in which the positional relationship of the transparent conductive layer can be understood.
  • the configuration surrounded by [] corresponds to the conductive member according to the present invention.
  • A [base material-conductive layer] -photoelectric conversion layer
  • B [base material-conductive layer] -photoelectric conversion layer- [conductive layer-base material]
  • C Substrate-electrode-photoelectric conversion layer- [conductive layer-base material]
  • D Back electrode-photoelectric conversion layer- [conductive layer-base material] Details of such a solar cell are described in, for example, Japanese Patent Application Laid-Open No. 2010-87105.
  • a carbon nanotube dispersion is applied to a glass substrate and dried to produce a sample with a thickness of 100 nm. This sample is observed with a TEM (transmission electron microscope) photographed at a magnification of 10,000 times. The width of each fiber was measured at 100 arbitrary points, and the average value was calculated.
  • Step 1 Preparation of carbon nanotube dispersion
  • 0.1 g of single-walled carbon nanotubes ILJIN, each carbon nanotube has an outer diameter of 1.4 nm
  • an aqueous solution of 0.5 g of the dispersant shown in Table 1 below nitrogen bubbling was performed for 1 hour immediately before.
  • the obtained solution was dispersed for 4 hours at room temperature with a mechanical homogenizer (manufactured by IKA, Ultra Tarrax) under a nitrogen atmosphere at a stirring speed of 30,000 rpm.
  • a mechanical homogenizer manufactured by IKA, Ultra Tarrax
  • a bath type ultrasonic disperser (Branson 5510) was used for dispersion treatment at room temperature for 1 hour in a nitrogen atmosphere to obtain dispersions A to C in which carbon nanotubes were uniformly dispersed in an aqueous solution.
  • the dispersants indicated by abbreviations are as follows.
  • ⁇ SC Sodium cholate (Wako Pure Chemical Industries)
  • SDBS sodium dodecylbenzenesulfonate (manufactured by Tokyo Chemical Industry)
  • SDOC Sodium deoxycholate (Wako Pure Chemical Industries)
  • the obtained carbon nanotube dispersion was centrifuged (Tommy MX-305, 16,000 g, 1 hour) to obtain a supernatant.
  • the obtained supernatant solution was subjected to absorbance measurement (Shimadzu visible absorption spectrum copy UV3100, diluted 14-fold) and TEM observation (freezing the dispersion and observing at 10,000-fold).
  • the dispersion concentration in the carbon nanotube dispersion was converted from the absorbance.
  • the average minor axis diameter was determined from TEM observation. The obtained results are shown in Table 1. It was confirmed that the dispersion obtained from Table 1 had a high dispersion concentration and the average minor axis diameter was 10 nm.
  • Step 2 Carbon nanotube thin film formation
  • a glass substrate as a support
  • the surface was treated with aminopropyltriethoxylane.
  • samples 1 to 3 were obtained through the nip between a pair of rollers.
  • a coating means a die coater using an extrusion type coating head was used. The wet thickness of the coating solution was adjusted so that the transmittance was 85% (excluding absorption of the support).
  • a drying means a hot air circulation type drying apparatus was used. The temperature of the hot air was 100 ° C.
  • nip roller As the nip roller, a pair of rollers having a diameter of 200 mm and a silicon rubber layer having a rubber hardness of 90 formed on the surface was used. Next, after immersing Samples 1 to 3 in concentrated nitric acid at room temperature for 1 hour, washing with methanol and drying (hereinafter, this treatment is also referred to as “dope treatment”), Samples 4 to 6 were used. Got.
  • Step 3 Preparation of sol-gel solution, application and curing
  • a sol-gel solution A formed from the following composition was prepared.
  • the sol-gel solution A was applied on the carbon nanotube layers of Samples 1 to 6 and dried to obtain Samples 11 to 16, respectively.
  • a coating means a die coater using an extrusion type coating head was used.
  • a drying means a hot air circulation type drying apparatus was used. The temperature of the hot air was 100 ° C.
  • Table 3 shows the results of measuring the transmittance, sheet resistance, haze, and average minor axis diameter of the conductive layers containing carbon nanotubes and silicon oxide of Samples 11 to 16 in the same manner as in Sample 1.
  • the sample 14 according to the present invention shows high heat resistance with little or no change in sheet resistance, transmittance, and haze before and after the heat test.
  • the pencil hardness was measured with a hardness meter (Shimadzu hardness meter). The results are shown in Table 5.
  • a sol-gel solution B formed from the following composition was prepared. Tetraethoxysilane 10g Al (acac) 3 40mg Acetic acid 20mg 30 ml of water
  • the sol-gel solution B was applied on the carbon nanotube layers of the samples 1 to 6 and dried as in the case of the preparation of the sample 11, and samples C11 to C16 were obtained, respectively.
  • the transmittance, sheet resistance, haze, and average minor axis diameter were measured, and the results are shown in Table 6.
  • a sol-gel solution C formed from the following composition was prepared.
  • Methyl silicate Coldcoat Co., solid content 53%) 6g Methyltrimethoxysilane 10g Al (acac) 3 40mg Acetic acid 20mg 30 ml of water
  • the sol-gel solution C was applied and cured in the same manner as in the preparation of Sample 11, and Samples C17 and C18 were obtained, respectively.
  • transmittance, sheet resistance and haze were measured, and the results are shown in Table 9.
  • the glycidyl group reacts with a very few hydroxy groups present in the carbon nanotube, It is considered that the compatibility between the carbon nanotube and the sol-gel film is improved, and further, the interaction with the support is increased, thereby improving the adhesion between the carbon nanotube thin film and the support and improving the film strength.
  • the reason why the heat resistance is improved can be considered as a result of improved compatibility between the carbon nanotube and the sol-gel film.
  • a sol-gel solution D formed from the following composition was prepared by stirring at room temperature for 2 hours.
  • Tetra-n-butoxysilane 2g 1g of ethanol 0.1N hydrochloric acid 0.5ml Isopropyl alcohol 50ml Toluene 24ml n-Butanol 24ml
  • 0.1 g of the following silicone graft resin, 50 ml of ethyl acetate and 50 ml of toluene were added to prepare sol-gel solution D.
  • a sol-gel solution E formed from the following composition was prepared. Tetra-n-butoxysilane 10g Al (acac) 3 40mg Acetic acid 20mg 30 ml of water
  • the sol-gel coating liquid D was applied and cured in the same manner as in the preparation of Sample 11, and Samples C21 and C22 were obtained.
  • the transmittance, sheet resistance, haze, and average minor axis diameter were measured in the same manner as described above, and the measurement results are shown in Table 11.
  • ⁇ Comparative Example 5> A coating solution of a photocurable composition formed from the following composition was prepared.
  • Polymerizable monomer (A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.) 11.2 g
  • Photopolymerization initiator Irgacure 907 (trade name: Ciba Specialty Chemicals) 0.1 g 20 ml of methyl ethyl ketone
  • the above coating solution is applied onto the carbon nanotube layers of Samples 1 and 4 described above, irradiated with ultraviolet rays in a nitrogen atmosphere, heated at 120 ° C. for 10 minutes, and then allowed to cool to room temperature to form a cured film.
  • Sample C23 and C24 For these samples C23 and C24, the transmittance, sheet resistance, haze, and average minor axis diameter were measured in the same manner as described above, and the results are shown in Table 12.
  • Example 2 -Fabrication of integrated solar cells- -Fabrication of amorphous solar cells (super straight type)-
  • the electroconductive layer was formed like Example 1, and the transparent conductive film was formed.
  • a p-type film with a film thickness of about 15 nm, an i-type film with a film thickness of about 350 nm, and an n-type amorphous silicon film with a film thickness of about 30 nm are formed thereon by a plasma CVD method.
  • the photoelectric conversion element 101 was produced.
  • Example 3 -Fabrication of CIGS solar cells (substrate type)- On a soda lime glass substrate, a molybdenum electrode having a film thickness of about 500 nm by a direct current magnetron sputtering method and Cu (In 0.6 Ga 0.4 ) Se which is a chalcopyrite semiconductor material having a film thickness of about 2.5 ⁇ m by a vacuum deposition method. Two thin films, a cadmium sulfide thin film having a film thickness of about 50 nm, were formed by a solution deposition method. A conductive layer of Example 1 was formed thereon, a transparent conductive film was formed on a glass substrate, and a photoelectric conversion element 201 was manufactured.
  • conversion efficiency was evaluated as follows in each produced solar cell. And assessment of each solar cell of the solar cell characteristics (conversion efficiency) were measured efficiency) by irradiation with artificial sunlight of AM 1.5, 100 mW / cm 2. As a result, it was confirmed that any photoelectric conversion element has a conversion efficiency of around 10%. From this result, it was found that high conversion efficiency can be obtained in any integrated solar cell system by using the conductive member of the present invention for forming a transparent conductive film.
  • Example 4 -Fabrication of touch panel-
  • the conductive layer of Example 1 was formed on a glass substrate.
  • "latest touch panel technology” (issued July 6, 2009, Techno Times Co., Ltd.), supervised by Yuji Mitani, “Technology and Development of Touch Panel", CM Publishing (December 2004) Issued), “FPD International 2009 Forum T-11 Lecture Textbook”, “Cypress Semiconductor Corporation Application Note AN2292” and the like, and so on.
  • the manufactured touch panel is used, it is excellent in visibility by improving the light transmittance, and for input of characters etc. or screen operation by at least one of bare hands, gloves-fitted hands, pointing tools by improving conductivity It was found that a touch panel with excellent responsiveness can be manufactured.
  • the conductive element of the present invention includes, for example, a patterned transparent conductive film, a touch panel, an antistatic material for display, an electromagnetic wave shield, an electrode for organic EL display, an electrode for inorganic EL display, electronic paper, an electrode for flexible display, and charging for flexible display. It can be suitably used for the production of a protective film, a display element, and an integrated solar cell.

Abstract

This electroconductive member has, on the substrate, an electroconductive layer which contains: electroconductive fiber bundles that comprise carbon nanotubes and that have a mean minor axis of 90nm or less; and a silicon oxide.

Description

導電性部材、導電性部材の製造方法、タッチパネル及び太陽電池Conductive member, method for producing conductive member, touch panel, and solar cell
 本発明は、導電性部材、導電性部材の製造方法、タッチパネル及び太陽電池に関する。 The present invention relates to a conductive member, a method for manufacturing a conductive member, a touch panel, and a solar cell.
 近年、カーボンナノチューブを含む導電性層を有する導電性部材が提案されている。この導電性部材は、基材上に、複数のカーボンナノチューブを含む導電性層を備えるものである。
 上記の導電性部材は、例えばタッチパネルとして使用される場合には、導電性層の膜強度が弱く、点荷重に対する耐久性が十分とはいえない。そのため、導電性層の表面に硬質皮膜を設けて、導電性層の耐久性を向上させることも提案されている。このような保護層として、テトラ-n-ブトキシシランのようなアルコキシシランを水を含む溶剤にて加水分解および重縮合して形成した珪素酸化物の層中に、シリコーングラフト樹脂、シリコーンレジン樹脂及び変性シリコーン樹脂からなる群より選ばれた少なくとも一種を含有させてなるものが提案されている(特開2011-102003号公報)。
In recent years, a conductive member having a conductive layer containing carbon nanotubes has been proposed. This conductive member includes a conductive layer including a plurality of carbon nanotubes on a base material.
For example, when the conductive member is used as a touch panel, the film strength of the conductive layer is weak and the durability against point load is not sufficient. Therefore, it has also been proposed to improve the durability of the conductive layer by providing a hard film on the surface of the conductive layer. As such a protective layer, in a silicon oxide layer formed by hydrolysis and polycondensation of an alkoxysilane such as tetra-n-butoxysilane with a solvent containing water, a silicone graft resin, a silicone resin resin, and A material containing at least one selected from the group consisting of modified silicone resins has been proposed (Japanese Patent Laid-Open No. 2011-102003).
 しかしながら、上記の導電性部材においても、導電性に優れ、かつ透明度と膜強度が共に高いという性能を有するという点からは、依然として不満足なものであった。
 カーボンナノチューブを含む導電性層を備えた導電性部材において、導電性、透明度及び膜強度を同時に満足させることは困難であり、これらの性能が共に優れる導電性部材が要望されていた。
However, the above-described conductive member is still unsatisfactory from the viewpoint that it has excellent conductivity and high transparency and high film strength.
In a conductive member provided with a conductive layer containing carbon nanotubes, it is difficult to satisfy the conductivity, transparency and film strength at the same time, and a conductive member excellent in both of these performances has been desired.
 従って、本発明が解決しようとする課題は、導電性に優れ、かつ透明性及び膜強度の高い導電性部材、その製造方法、並びに当該導電性部材を用いたタッチパネルおよび太陽電池を提供することにある。 Therefore, the problem to be solved by the present invention is to provide a conductive member having excellent conductivity and high transparency and film strength, a method for producing the same, and a touch panel and a solar cell using the conductive member. is there.
 前記課題を解決する本発明は、以下のとおりである。
<1> 基材上に、カーボンナノチューブを含み、平均短軸径が90nm以下の導電性繊維束と、珪素酸化物と、を含む導電性層を有する導電性部材。
The present invention for solving the above problems is as follows.
<1> A conductive member having a conductive layer containing carbon nanotubes and a conductive fiber bundle having an average minor axis diameter of 90 nm or less and silicon oxide on a substrate.
<2> 前記珪素酸化物が、下記一般式(I)で示されるオルガノアルコキシシランを加水分解及び重縮合して得られるゾルゲル硬化物を含む<1>に記載の導電性部材。
   Si(OR 4-a    (I)
 (一般式(I)中、aは1~3の整数を示し、a個のRはそれぞれ独立に水素原子または炭化水素基を示し、(4-a)個のRはそれぞれ独立に炭化水素基を示す。但し、(4-a)個のRのうちの少なくとも一つはエポキシ基を含む炭化水素基を示す。)
<3> 前記珪素酸化物が、下記一般式(I)で示されるオルガノアルコキシシランと、下記一般式(II)で示されるテトラアルコキシシランとを加水分解及び重縮合して得られるゾルゲル硬化物を含む<1>または<2>に記載の導電性部材。
   Si(OR 4-a    (I)
 (一般式(I)中、aは1~3の整数を示し、a個のRはそれぞれ独立に水素原子または炭化水素基を示し、(4-a)個のRはそれぞれ独立に炭化水素基を示す。但し、(4-a)個のRのうちの少なくとも一つはエポキシ基を含む炭化水素基を示す。) 
   Si(OR    (II)
 (一般式(II)中、4個のRはそれぞれ独立に水素原子または炭化水素基を示す。)
<2> The conductive member according to <1>, wherein the silicon oxide includes a sol-gel cured product obtained by hydrolysis and polycondensation of an organoalkoxysilane represented by the following general formula (I).
Si (OR 1 ) a R 2 4-a (I)
(In the general formula (I), a represents an integer of 1 to 3, a R 1 s each independently represent a hydrogen atom or a hydrocarbon group, and (4-a) R 2 s independently carbonized. Represents a hydrogen group, provided that at least one of (4-a) R 2 represents a hydrocarbon group containing an epoxy group.)
<3> A sol-gel cured product obtained by hydrolysis and polycondensation of organoalkoxysilane represented by the following general formula (I) and tetraalkoxysilane represented by the following general formula (II): The electroconductive member as described in <1> or <2> containing.
Si (OR 1 ) a R 2 4-a (I)
(In the general formula (I), a represents an integer of 1 to 3, a R 1 s each independently represent a hydrogen atom or a hydrocarbon group, and (4-a) R 2 s independently carbonized. Represents a hydrogen group, provided that at least one of (4-a) R 2 represents a hydrocarbon group containing an epoxy group.)
Si (OR 3 ) 4 (II)
(In the general formula (II), four R 3 s each independently represent a hydrogen atom or a hydrocarbon group.)
<4> 前記一般式(I)におけるaが、3である<2>または<3>に記載の導電性部材。
<5> 前記エポキシ基を含む炭化水素基が、グリシジル基、2-エポキシプロピル基、3-エポキシプロピル基、3-グリシドキシプロピル基、または、2-(3,4-エポキシシクロキシル)エチル基である<2>~<4>のいずれか一項に記載の導電性部材。
<6> 前記ゾルゲル硬化物における前記オルガノアルコキシシランに由来する構成単位/前記テトラアルコキシシランに由来する構成単位の質量比が、0.01/1~100/1の範囲にある<3>~<5>のいずれか一項に記載の導電性部材。
<4> The conductive member according to <2> or <3>, wherein a in the general formula (I) is 3.
<5> The hydrocarbon group containing the epoxy group is a glycidyl group, a 2-epoxypropyl group, a 3-epoxypropyl group, a 3-glycidoxypropyl group, or 2- (3,4-epoxycyclohexyl) ethyl. The conductive member according to any one of <2> to <4>, which is a group.
<6> The mass ratio of the structural unit derived from the organoalkoxysilane to the structural unit derived from the tetraalkoxysilane in the sol-gel cured product is in the range of 0.01 / 1 to 100/1. <3> to < The conductive member according to any one of 5>.
<7> 前記カーボンナノチューブと前記珪素酸化物とが、共有結合によって連結されている<1>~<6>のいずれか一項に記載の導電性部材。
<8> 前記共有結合が、前記カーボンナノチューブが有するヒドロキシ基と、前記オルガノアルコキシシランのエポキシ基との反応に由来する<7>に記載の導電性部材。
<9> 前記導電性層が、導電性領域および非導電性領域を含む<1>~<8>のいずれか一項に記載の導電性部材。
<7> The conductive member according to any one of <1> to <6>, wherein the carbon nanotube and the silicon oxide are connected by a covalent bond.
<8> The conductive member according to <7>, wherein the covalent bond is derived from a reaction between a hydroxy group of the carbon nanotube and an epoxy group of the organoalkoxysilane.
<9> The conductive member according to any one of <1> to <8>, wherein the conductive layer includes a conductive region and a non-conductive region.
<10> (i)基材上に、カーボンナノチューブを含む分散液を塗布して、導電性繊維層を形成すること、(ii)前記導電性繊維層上に、下記一般式(I)で示されるオルガノアルコキシシランを含むアルコキシド化合物のアルコキシド化合物水溶液を塗布すること、および(iii)で塗布されたアルコキシド化合物の水溶液のアルコキシド化合物を加水分解および重縮合させてゾルゲル硬化物を形成すること、を含む、カーボンナノチューブを含み平均短軸径が90nm以下の導電性繊維束と珪素酸化物とを含む導電性層を前記基材上に形成するための、導電性部材の製造方法。
   Si(OR 4-a    (I)
 (一般式(I)中、aは1~3の整数を示し、a個のRはそれぞれ独立に水素原子または炭化水素基を示し、(4-a)個のRはそれぞれ独立に炭化水素基を示す。但し、(4-a)個のRのうちの少なくとも一つはエポキシ基を含む炭化水素基を示す。)
<10> (i) Applying a dispersion containing carbon nanotubes on a substrate to form a conductive fiber layer; (ii) Shown by the following general formula (I) on the conductive fiber layer Applying an alkoxide compound aqueous solution of an alkoxide compound containing an organoalkoxysilane, and hydrolyzing and polycondensing the alkoxide compound of the aqueous alkoxide compound applied in (iii) to form a sol-gel cured product. A method for producing a conductive member for forming a conductive layer containing carbon nanotubes and containing a conductive fiber bundle having an average minor axis diameter of 90 nm or less and silicon oxide on the substrate.
Si (OR 1 ) a R 2 4-a (I)
(In the general formula (I), a represents an integer of 1 to 3, a R 1 s each independently represent a hydrogen atom or a hydrocarbon group, and (4-a) R 2 s independently carbonized. Represents a hydrogen group, provided that at least one of (4-a) R 2 represents a hydrocarbon group containing an epoxy group.)
<11> 前記アルコキシド化合物の水溶液が、更に下記一般式(II)で示されるテトラアルコキシシランを含む<10>に記載の導電性部材の製造方法。
   Si(OR    (II)
 (一般式(II)中、4個のRはそれぞれ独立に水素原子または炭化水素基を示す。)
<11> The method for producing a conductive member according to <10>, wherein the aqueous solution of the alkoxide compound further contains a tetraalkoxysilane represented by the following general formula (II).
Si (OR 3 ) 4 (II)
(In the general formula (II), four R 3 s each independently represent a hydrogen atom or a hydrocarbon group.)
<12> 前記アルコキシド化合物の水溶液における前記オルガノアルコキシシラン/前記テトラアルコキシシランの質量比が、0.01/1~100/1の範囲にある<11>に記載の導電性部材の製造方法。
<13> さらに、(iv)前記導電性層に、導電性領域および非導電性領域を形成すること、を含む<10>~<12>のいずれか一項に記載の導電性部材の製造方法。
<14> <1>~<9>のいずれか一項に記載の導電性部材を含むタッチパネル。
<15> <1>~<9>のいずれか一項に記載の導電性部材を含む太陽電池。
<12> The method for producing a conductive member according to <11>, wherein a mass ratio of the organoalkoxysilane / tetraalkoxysilane in the aqueous solution of the alkoxide compound is in a range of 0.01 / 1 to 100/1.
<13> The method for producing a conductive member according to any one of <10> to <12>, further comprising (iv) forming a conductive region and a non-conductive region in the conductive layer. .
<14> A touch panel including the conductive member according to any one of <1> to <9>.
<15> A solar cell comprising the conductive member according to any one of <1> to <9>.
 本発明によれば、導電性に優れ、かつ透明性及び膜強度の高い導電性部材、その製造方法、並びに当該導電性部材を用いたタッチパネルおよび太陽電池が提供される。 According to the present invention, a conductive member having excellent conductivity and high transparency and high film strength, a method for producing the same, and a touch panel and a solar cell using the conductive member are provided.
 以下、本発明の導電性部材について詳細に説明する。
 以下、本発明の代表的な実施形態に基づいて記載されるが、本発明の主旨を超えない限りにおいて、本発明は記載された実施形態に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
Hereinafter, the conductive member of the present invention will be described in detail.
Hereinafter, although described based on typical embodiment of this invention, unless it exceeds the main point of this invention, this invention is not limited to described embodiment.
In the present specification, a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
 本明細書において「光」という語は、可視光線のみならず、紫外線、エックス線、ガンマ線などの高エネルギー線、電子線のような粒子線等を含む概念として用いる。
 本明細書中、アクリル酸、メタクリル酸のいずれか或いは双方を示すため「(メタ)アクリル酸」と、アクリレート、メタクリレートのいずれか或いは双方を示すため「(メタ)アクリレート」と、それぞれ表記することがある。
 また、含有量は特に断りのない限り、質量換算で示し、特に断りのない限り、質量%は、組成物の総量に対する割合を表し、「固形分」とは、組成物中の溶剤を除く成分を表す。
In this specification, the term “light” is used as a concept including not only visible light but also high energy rays such as ultraviolet rays, X-rays, and gamma rays, particle rays such as electron beams, and the like.
In this specification, “(meth) acrylic acid” is used to indicate either or both of acrylic acid and methacrylic acid, and “(meth) acrylate” is used to indicate either or both of acrylate and methacrylate. There is.
In addition, unless otherwise specified, the content is expressed in terms of mass, and unless otherwise specified, mass% represents a ratio to the total amount of the composition, and “solid content” is a component excluding the solvent in the composition. Represents.
<<<導電性部材>>>
 本発明の導電性部材は、基材上に、カーボンナノチューブを含み、平均短軸径が90nm以下の導電性繊維束と、珪素酸化物と、を含む導電性層を有する。
<<< Conductive Member >>>
The conductive member of the present invention has a conductive layer containing carbon nanotubes and a conductive fiber bundle having an average minor axis diameter of 90 nm or less and silicon oxide on a substrate.
 カーボンナノチューブは導電性に優れているものの、高い表面エネルギーを有するためか極めて凝集しやすいという性質を有している。そのため、カーボンナノチューブを分散剤を用いて溶媒中に分散させた分散液(平均短軸径が10nm前後の繊維束を含む)を基材に塗布し、乾燥すると、カーボンナノチューブはそのまま基材表面に固定化されるが、上記の塗布及び乾燥の過程においても僅かな凝集が生じ、平均短軸径が30nm前後の繊維束を含む導電性繊維束を含む層が形成される。
 このような導電性繊維束を含む層の上に、露光によりパターニングが可能な硬化性樹脂、例えば、多官能アクリレート、光重合開始剤及び溶剤を含む光重合性組成物を塗布し、乾燥してパターン形成のためのレジスト層を形成すると、前述の導電性繊維束を形成するカーボンナノチューブの凝集が更に進行してしまい、形成された導電性繊維束は平均短軸径が少なくとも120nm程度となってしまう。そのため、このような凝集体を含む導電性層は、透明性が低く、更に導電性も低いものとなってしまう。
 同様に、導電性繊維束を含む層の上に、テトラブトキシシラン溶液を塗布し、加水分解及び重縮合してゾルゲル硬化物を形成した場合においても、前述の導電性繊維束を形成するカーボンナノチューブの凝集が進行してしまい、導電性繊維束は平均短軸径が少なくとも120nm程度となってしまう。
Although carbon nanotubes are excellent in electrical conductivity, they have the property of being very easily aggregated due to their high surface energy. Therefore, when a dispersion (including fiber bundles having an average minor axis diameter of about 10 nm) in which carbon nanotubes are dispersed in a solvent using a dispersant is applied to a substrate and dried, the carbon nanotubes remain on the substrate surface as they are. Although fixed, slight agglomeration also occurs in the above-described coating and drying processes, and a layer including conductive fiber bundles including fiber bundles having an average minor axis diameter of about 30 nm is formed.
On the layer containing the conductive fiber bundle, a curable resin that can be patterned by exposure, for example, a photopolymerizable composition containing a polyfunctional acrylate, a photopolymerization initiator, and a solvent is applied and dried. When the resist layer for pattern formation is formed, aggregation of the carbon nanotubes forming the conductive fiber bundle described above proceeds further, and the formed conductive fiber bundle has an average minor axis diameter of at least about 120 nm. End up. Therefore, the conductive layer containing such an aggregate has low transparency and further low conductivity.
Similarly, when a tetrabutoxysilane solution is applied on the layer containing the conductive fiber bundle, and the sol-gel cured product is formed by hydrolysis and polycondensation, the carbon nanotubes that form the conductive fiber bundle described above Aggregation proceeds, and the conductive fiber bundle has an average minor axis diameter of at least about 120 nm.
 本発明に係る導電性部材の導電性層は、カーボンナノチューブとともに、珪素酸化物を含むことで、導電性層に含まれる導電性繊維束の平均短軸径は90nm以下のものとなる。即ち、導電性層に含まれるカーボンナノチューブの束で構成される導電性繊維束は、平均短軸径が90nm以下となるために、導電性に優れ、且つ透明性と膜強度の高い導電性層が得られる。本発明に係る導電性部材の導電性層は、好ましくは、有機性と無機性の部分構造を備える珪素酸化物を含む場合であり、その場合、導電性層に含まれる導電性繊維束の平均短軸径は90nm以下のものとなる傾向がある。この作用機構は明確ではないが、有機性と無機性の部分構造を備える珪素酸化物を含有することで、カーボンナノチューブの凝集が抑制され、導電性繊維束は、平均短軸径が90nm以下に維持されるものと考えている。
 本発明の好ましい態様では、このような導電性層は、上記の珪素酸化物として、好ましくは、有機性と無機性の部分構造を備える、例えば前記一般式(I)で示される化合物から選ばれた少なくとも一つのオルガノアルコキシシランを加水分解及び重縮合して得られるゾルゲル硬化物、又は、上記オルガノアルコキシシラン及び前記一般式(II)で示される化合物から選ばれた少なくとも一つのアルコキシシランとを加水分解及び重縮合して得られるゾルゲル硬化物を含むものを使用することにより、導電性繊維束を構成するカーボンナノチューブの凝集の抑制が効果的になされる。
When the conductive layer of the conductive member according to the present invention contains silicon oxide together with carbon nanotubes, the average minor axis diameter of the conductive fiber bundle included in the conductive layer is 90 nm or less. That is, the conductive fiber bundle composed of the bundle of carbon nanotubes contained in the conductive layer has an average minor axis diameter of 90 nm or less, so that the conductive layer has excellent conductivity and high transparency and film strength. Is obtained. The conductive layer of the conductive member according to the present invention preferably includes a silicon oxide having an organic and inorganic partial structure, and in that case, the average of the conductive fiber bundles included in the conductive layer The minor axis diameter tends to be 90 nm or less. Although this mechanism of action is not clear, the aggregation of carbon nanotubes is suppressed by containing a silicon oxide having an organic and inorganic partial structure, and the conductive fiber bundle has an average minor axis diameter of 90 nm or less. I think it will be maintained.
In a preferred embodiment of the present invention, such a conductive layer is preferably selected from the compounds represented by the general formula (I), for example, having the organic and inorganic partial structures as the silicon oxide. A sol-gel cured product obtained by hydrolysis and polycondensation of at least one organoalkoxysilane, or at least one alkoxysilane selected from the above-mentioned organoalkoxysilane and the compound represented by the general formula (II) is hydrolyzed. By using a sol-gel cured product obtained by decomposition and polycondensation, the aggregation of carbon nanotubes constituting the conductive fiber bundle is effectively suppressed.
 本発明の係る前記導電性層は、例えば、カーボンナノチューブで構成される導電性繊維束を含む導電性繊維層の上に、有機性と無機性の部分構造を備える、例えば前記一般式(I)で示される化合物から選ばれたオルガノアルコキシシランを含むヒドロキシド化合物の水溶液を塗布し、その後、上記オルガノアルコキシシランを加水分解及び重縮合させて珪素酸化物を形成することにより得られる。この方法によれば、上記オルガノアルコキシシランを含むヒドロキシド化合物の水溶液を導電性繊維束を含む導電性繊維層の上に塗布した場合には、上記導電性繊維束の凝集が抑制されつつゾルゲル反応が進行するために、導電性層に含まれる導電性繊維束の平均短軸径が90nm以下に維持されたままでゾルゲル硬化物を含む珪素酸化物が形成されて、珪素酸化物を含む硬化物中に前記導電性繊維束が共有結合により固定化され、導電性に優れ、かつ透明度と膜強度に優れた導電性層を有する導電性部材が簡易に得られるという利点を有するものである。 The conductive layer according to the present invention includes, for example, an organic and inorganic partial structure on a conductive fiber layer including a conductive fiber bundle composed of carbon nanotubes. For example, the general formula (I) It is obtained by applying an aqueous solution of a hydroxide compound containing an organoalkoxysilane selected from the compounds represented by the following, followed by hydrolysis and polycondensation of the organoalkoxysilane to form a silicon oxide. According to this method, when the aqueous solution of the hydroxide compound containing the organoalkoxysilane is applied on the conductive fiber layer including the conductive fiber bundle, the sol-gel reaction is suppressed while the aggregation of the conductive fiber bundle is suppressed. In the cured product containing silicon oxide, silicon oxide containing sol-gel cured product is formed while the average minor axis diameter of the conductive fiber bundle contained in the conductive layer is maintained at 90 nm or less. In addition, the conductive fiber bundle is fixed by covalent bonding, and has an advantage that a conductive member having a conductive layer excellent in conductivity and excellent in transparency and film strength can be easily obtained.
<<基材>>
 上記基材としては、導電性層を担うことができるものである限り、目的に応じて種々のもの使用することができる。一般的には、板状またはシート状のものが使用される。
 基材は、透明であっても、不透明であってもよい。基材を構成する素材としては、例えば、白板ガラス、青板ガラス、シリカコート青板ガラス等の透明ガラス;ポリカーボネート、ポリエーテルスルホン、ポリエステル、アクリル樹脂、塩化ビニル樹脂、芳香族ポリアミド樹脂、ポリアミドイミド、ポリイミド等の合成樹脂、セルロース樹脂;アルミニウム、銅、ニッケル、ステンレス等の金属;その他セラミック、半導体基板に使用されるシリコンウエハーなどを挙げることができる。これらの基材の導電性層が形成される表面は、所望により、シランカップリング剤などの薬品処理、プラズマ処理、イオンプレーティング、スパッタリング、気相反応法、真空蒸着などの前処理を行うことができる。
 基材の厚さは、用途に応じて所望の範囲のものが使用される。一般的には、1μm~500μmの範囲から選択され、3μm~400μmがより好ましく、5μm~300μmが更に好ましい。
 導電性部材に透明性が要求される場合には、基材の全可視光透過率が70%以上のもの、より好ましくは85%以上のもの、更に好ましくは、90%以上のものから選ばれる。 基材としては、特に、コストと透明性の観点から、ポリカーボネート、ポリエステルが好ましい。
<< Base material >>
As the base material, various materials can be used according to the purpose as long as the base material can bear the conductive layer. Generally, a plate or sheet is used.
The substrate may be transparent or opaque. Examples of the material constituting the substrate include transparent glass such as white plate glass, blue plate glass, and silica coated blue plate glass; polycarbonate, polyethersulfone, polyester, acrylic resin, vinyl chloride resin, aromatic polyamide resin, polyamideimide, polyimide Examples thereof include synthetic resins such as cellulose resin, metals such as aluminum, copper, nickel, and stainless steel; other ceramics, and silicon wafers used for semiconductor substrates. The surface of the base material on which the conductive layer is formed may be subjected to a pretreatment such as chemical treatment such as a silane coupling agent, plasma treatment, ion plating, sputtering, gas phase reaction method, and vacuum deposition, if desired. Can do.
The thickness of the substrate is in a desired range depending on the application. Generally, it is selected from the range of 1 μm to 500 μm, more preferably 3 μm to 400 μm, and even more preferably 5 μm to 300 μm.
When transparency is required for the conductive member, the substrate is selected from those having a total visible light transmittance of 70% or more, more preferably 85% or more, and still more preferably 90% or more. . As the substrate, polycarbonate and polyester are particularly preferable from the viewpoint of cost and transparency.
<<導電性層>>
 導電性層は、カーボンナノチューブを含み、平均短軸径が90nm以下の導電性繊維束と、珪素酸化物とを含んで構成される。
<カーボンナノチューブ>
 カーボンナノチューブ(CNT)は、グラファイト状炭素原子面(グラフェンシート)が、単層あるいは多層の同軸管状になった物質である。単層のカーボンナノチューブはシングルウォールナノチューブ(SWNT)、多層のカーボンナノチューブはマルチウォールナノチューブ(MWNT)と呼ばれ、特に、2層のカーボンナノチューブはダブルウォールナノチューブ(DWNT)とも呼ばれる。本発明で用いられる導電性繊維束において、カーボンナノチューブは、単層であってもよく、多層であってもよいが、導電性及び熱伝導性に優れる点で単層~5層のものが好ましく、単層のものが特に好ましい。
 原料として使用するカーボンナノチューブは、一本当たりのチューブの外径(直径)が0.1nm~10nmの範囲にあり、かつその長さは0.1μm~20μmの範囲のものが、導電性が高く、且つ透明度の高い導電性部材を得ることが容易であるという点から好ましい。特に、外径が0.5nm~5nmの範囲、長さは0.1μm~10μmの範囲のものが好ましい。
<< Conductive layer >>
The conductive layer includes carbon nanotubes, and includes a conductive fiber bundle having an average minor axis diameter of 90 nm or less and silicon oxide.
<Carbon nanotube>
A carbon nanotube (CNT) is a substance in which a graphite-like carbon atomic surface (graphene sheet) is a single-layer or multilayer coaxial tube. Single-walled carbon nanotubes are called single-walled nanotubes (SWNT), multi-walled carbon nanotubes are called multi-walled nanotubes (MWNT), and in particular, double-walled carbon nanotubes are also called double-walled nanotubes (DWNT). In the conductive fiber bundle used in the present invention, the carbon nanotubes may be single-walled or multi-walled, but those having a single-layer to five-layer are preferable in terms of excellent conductivity and thermal conductivity. A single layer is particularly preferable.
The carbon nanotubes used as a raw material have a tube having an outer diameter (diameter) in the range of 0.1 nm to 10 nm and a length in the range of 0.1 μm to 20 μm. And it is preferable from the point that it is easy to obtain a highly transparent conductive member. In particular, it is preferable that the outer diameter is in the range of 0.5 nm to 5 nm and the length is in the range of 0.1 μm to 10 μm.
 カーボンナノチューブは、ドープ処理を施すことが好ましい。このドープ処理により、特に半導体のカーボンナノチューブの導電性を一段と向上させることができる。
 ドープ処理は、通常、カーボンナノチューブに酸化剤を作用させることにより行うことができる。酸化剤としては、硝酸、硫酸などの酸、塩化白金酸、塩化鉄(III)などの金属酸化剤が挙げられる。例えばカーボンナノチューブを濃硝酸に添加し、その後、20℃から140℃程度の温度範囲において、1時間から25時間程度の範囲で加熱還流した後に、イオン交換水で希釈してから吸引ろ過し、さらにメタノール洗浄してから乾燥する、という方法が挙げられる。このドープ処理により、酸化された後のカーボンナノチューブは全体がカチオン性となるため、その電荷反発により繊維束の凝集が抑制されて、平均短軸径を小さくすることに有利に作用することが期待される。
The carbon nanotube is preferably subjected to dope treatment. This doping treatment can further improve the conductivity of the semiconductor carbon nanotube, in particular.
The dope treatment can usually be performed by causing an oxidizing agent to act on the carbon nanotubes. Examples of the oxidizing agent include acids such as nitric acid and sulfuric acid, and metal oxidizing agents such as chloroplatinic acid and iron (III) chloride. For example, carbon nanotubes are added to concentrated nitric acid, then heated and refluxed in a temperature range of about 20 ° C. to 140 ° C. for about 1 hour to 25 hours, diluted with ion-exchanged water, and suction filtered. There is a method of washing with methanol and then drying. As a result of this dope treatment, the oxidized carbon nanotubes become cationic as a whole, and the aggregation of fiber bundles is suppressed by the charge repulsion, which is expected to have an advantageous effect on reducing the average minor axis diameter. Is done.
<導電性繊維束>
 導電性層に含まれる導電性繊維束は、2本以上のカーボンナノチューブを含む束で構成され且つ当該束の平均短軸径(以下、束の平均短軸径を「平均バンドル径」ともいう。)が90nm以下である。
 カーボンナノチューブは、水媒体中に分散剤を用いて分散された分散液の状態では、平均短軸径が小さく、例えば10nm程度である。しかし、カーボンナノチューブは表面エネルギーが高く、少しの外部環境の変化により凝集して多数のカーボンナノチューブが集まった束となってしまう。例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、トルエン、メチルエチルケトンのような有機溶剤を作用させた分散液の場合、その平均短軸径は120nm程度に増加してしまうことがある。従って、このような有機溶剤を少しでも含む分散液を基材上に塗布して形成した導電性層に含まれるカーボンナノチューブは、その平均短軸径は最も小さいものでも120nmとなってしまう。
<Conductive fiber bundle>
The conductive fiber bundle included in the conductive layer is composed of a bundle containing two or more carbon nanotubes, and the average minor axis diameter of the bundle (hereinafter, the average minor axis diameter of the bundle is also referred to as “average bundle diameter”). ) Is 90 nm or less.
Carbon nanotubes have a small average minor axis diameter, for example, about 10 nm in the state of a dispersion liquid dispersed in an aqueous medium using a dispersant. However, carbon nanotubes have a high surface energy, and aggregate due to a slight change in the external environment, resulting in a bundle of many carbon nanotubes. For example, in the case of a dispersion liquid in which an organic solvent such as propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, toluene, or methyl ethyl ketone is allowed to act, the average minor axis diameter may increase to about 120 nm. Therefore, the carbon nanotubes contained in the conductive layer formed by applying a dispersion containing even a small amount of such an organic solvent on the substrate have an average minor axis diameter of 120 nm even if it is the smallest.
 これに対して、本発明に係る導電性層に含まれる導電性繊維束は、2本以上のカーボンナノチューブを含み、平均短軸径が90nm以下とされる。平均短軸径が90nmを超えると、導電性と透明性との両者の性能を満足させる導電性部材を得ることが難しくなる。即ち、導電性を上げようとすると透明度が劣ってしまい、他方透明度を上げようとすると導電性が低下してしまい、いずれにせよ導電性に優れかつ透明度の高い導電性部材は得られない。
 上記の平均短軸径のより好ましい範囲は、10nm~50nmである。このような範囲とすることにより、導電性に優れ、且つ透明性および膜強度の高い導電性部材が得られる。導電性繊維束には、より詳しくは、2~50本のカーボンナノチューブが含まれると推測され、その本数は平均短軸径に依存するが、3~40本のカーボンナノチューブの束や5~30本のカーボンナノチューブの束が存在すると推測される。
On the other hand, the conductive fiber bundle included in the conductive layer according to the present invention includes two or more carbon nanotubes and has an average minor axis diameter of 90 nm or less. When the average minor axis diameter exceeds 90 nm, it becomes difficult to obtain a conductive member that satisfies both the performance of conductivity and transparency. That is, when the conductivity is increased, the transparency is inferior, and when the transparency is increased, the conductivity is decreased. In any case, a conductive member having excellent conductivity and high transparency cannot be obtained.
A more preferable range of the average minor axis diameter is 10 nm to 50 nm. By setting it as such a range, the electroconductive member which is excellent in electroconductivity, and has high transparency and film | membrane intensity | strength is obtained. More specifically, the conductive fiber bundle is presumed to contain 2 to 50 carbon nanotubes, and the number thereof depends on the average minor axis diameter, but a bundle of 3 to 40 carbon nanotubes or 5 to 30 carbon nanotubes. It is estimated that a bundle of carbon nanotubes exists.
 ここで、平均短軸径は、カーボンナノチューブの分散液をガラス基板上に塗布、乾燥して、100nmの厚みのサンプルを作製し、このサンプルのTEM(透過型電子顕微鏡)で10,000倍に拡大して撮影した写真で観察される1本当たりの繊維の幅を任意の100箇所で測定し、その平均値を算出した値である。上記サンプルの分散液の塗布厚は、導電性部材における導電性層の厚みに比べて厚いが、透過型電子顕微鏡による観察を容易とするためであり、カーボンナノチューブの分散状態は導電性部材における厚さの場合と同等であることが確認されている。 Here, the average minor axis diameter was applied to a carbon nanotube dispersion on a glass substrate and dried to prepare a sample having a thickness of 100 nm, and this sample was increased 10,000 times with a TEM (transmission electron microscope). This is a value obtained by measuring the width of one fiber observed in an enlarged photograph and measuring the average value at 100 arbitrary positions. The coating thickness of the dispersion liquid of the above sample is thicker than the thickness of the conductive layer in the conductive member, but is for facilitating observation with a transmission electron microscope. The dispersion state of the carbon nanotubes is the thickness in the conductive member. It has been confirmed that this is equivalent to
 カーボンナノチューブを含む束で構成される導電性繊維束の平均長軸長は、0.1μm~10μmの範囲であることが、例えばタッチパネルにおける指先での操作に起因する物理的衝撃により導電性繊維束が断線してしまう危険性が低減する、もしくは導電性繊維束間の接触点が増加するため導電性繊維束間の接触抵抗が小さくなり、導電性層の導電性を向上させることができる点で好ましい。 The average long axis length of the conductive fiber bundle composed of the bundle containing carbon nanotubes is in the range of 0.1 μm to 10 μm. For example, the conductive fiber bundle is caused by physical impact caused by the operation of the fingertip on the touch panel. The risk that the wire breaks is reduced or the contact point between the conductive fiber bundles is increased, so that the contact resistance between the conductive fiber bundles is reduced, and the conductivity of the conductive layer can be improved. preferable.
 カーボンナノチューブを含む束で構成される導電性繊維束のアスペクト比としては、10以上であることが好ましい。特に、100以上であることが好ましい。アスペクト比とは、一般的には繊維状の物質の長辺と短辺との比(平均長軸長さ/平均短軸長さの比)を意味する。
 アスペクト比の測定方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、電子顕微鏡等により測定する方法などが挙げられる。
 前記導電性繊維束のアスペクト比を電子顕微鏡で測定する場合、前記導電性繊維束のアスペクト比が10以上であるか否かは、電子顕微鏡の1視野で確認できればよい。また、前記導電性繊維束の長軸長さと短軸長さとを各々別に測定することによって、前記導電性繊維束全体のアスペクト比を見積もることができる。
 前記導電性繊維束のアスペクト比としては、10以上であれば特に制限はなく、目的に応じて適宜選択することができるが、50~1,000,000が好ましく、100~1,000,000がより好ましい。このような範囲とすることで、導電性に優れる導電性層を容易に製造することができる。
The aspect ratio of the conductive fiber bundle composed of bundles containing carbon nanotubes is preferably 10 or more. In particular, it is preferably 100 or more. The aspect ratio generally means the ratio between the long side and the short side of the fibrous material (ratio of average major axis length / average minor axis length).
There is no restriction | limiting in particular as a measuring method of an aspect ratio, According to the objective, it can select suitably, For example, the method etc. which measure with an electron microscope etc. are mentioned.
When measuring the aspect ratio of the conductive fiber bundle with an electron microscope, it is only necessary to confirm whether the aspect ratio of the conductive fiber bundle is 10 or more with one field of view of the electron microscope. Further, the aspect ratio of the entire conductive fiber bundle can be estimated by measuring the major axis length and the minor axis length of the conductive fiber bundle separately.
The aspect ratio of the conductive fiber bundle is not particularly limited as long as it is 10 or more, and can be appropriately selected according to the purpose, but is preferably 50 to 1,000,000, and preferably 100 to 1,000,000. Is more preferable. By setting it as such a range, the electroconductive layer excellent in electroconductivity can be manufactured easily.
<珪素酸化物>
 導電性層に含まれる珪素酸化物は、-Si-O-Si-の三次元架橋結合を含むものである。このような珪素酸化物は、下記一般式(I)で示される化合物から選ばれた少なくとも一つのオルガノアルコキシシランを加水分解及び重縮合して得られるゾルゲル硬化物であることが、導電性に優れ、且つ透明度と膜強度に優れた導電性部材を容易に得ることができるので好ましい。
   Si(OR 4-a    (I)
 (一般式(I)中、aは1~3の整数を示し、a個のRはそれぞれ独立に水素原子または炭化水素基を示し、(4-a)個のRはそれぞれ独立に炭化水素基を示す。但し、(4-a)個のRのうちの少なくとも一つはエポキシ基を含む炭化水素基を示す。)
 上記RおよびRの炭化水素基としては、好ましくはアルキル基又はアリール基が挙げられる。
 アルキル基を示す場合の炭素数は好ましくは1~18、より好ましくは1~8であり、さらにより好ましくは1~4である。また、アリール基を示す場合は、フェニル基が好ましい。
 アルキル基又はアリール基は置換基を有していてもよく、導入可能な置換基としては、ハロゲン原子、アミノ基、メルカプト基、ヒドロキシ基、エポキシ基などが挙げられる。
 (4-a)個のRのうちの少なくとも一つが示す、エポキシ基を含む炭化水素基としては、例えばグリシジル基、2-エポキシプロピル基、3-エポキシプロピル基、3-グリシドキシプロピル基、2-(3,4-エポキシシクロキシル)エチル基等が挙げられる。なお、上記一般式(I)で示される化合物は低分子化合物であることが好ましく、分子量1000以下であることが好ましい。
<Silicon oxide>
The silicon oxide contained in the conductive layer contains a three-dimensional crosslink of —Si—O—Si—. Such a silicon oxide is excellent in conductivity because it is a sol-gel cured product obtained by hydrolysis and polycondensation of at least one organoalkoxysilane selected from the compound represented by the following general formula (I). In addition, a conductive member excellent in transparency and film strength can be easily obtained, which is preferable.
Si (OR 1 ) a R 2 4-a (I)
(In the general formula (I), a represents an integer of 1 to 3, a R 1 s each independently represent a hydrogen atom or a hydrocarbon group, and (4-a) R 2 s independently carbonized. Represents a hydrogen group, provided that at least one of (4-a) R 2 represents a hydrocarbon group containing an epoxy group.)
The hydrocarbon group for R 1 and R 2 is preferably an alkyl group or an aryl group.
The carbon number in the case of showing an alkyl group is preferably 1 to 18, more preferably 1 to 8, and still more preferably 1 to 4. Moreover, when showing an aryl group, a phenyl group is preferable.
The alkyl group or aryl group may have a substituent, and examples of the substituent that can be introduced include a halogen atom, an amino group, a mercapto group, a hydroxy group, and an epoxy group.
Examples of the hydrocarbon group containing an epoxy group represented by at least one of (4-a) R 2 include a glycidyl group, a 2-epoxypropyl group, a 3-epoxypropyl group, and a 3-glycidoxypropyl group. 2- (3,4-epoxycyclohexyl) ethyl group and the like. In addition, it is preferable that the compound shown by the said general formula (I) is a low molecular weight compound, and it is preferable that molecular weight is 1000 or less.
 上記一般式(I)で示される化合物の具体例としては、例えばグリシジルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシランなどが挙げられる。 Specific examples of the compound represented by the general formula (I) include glycidyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 2- (3,4-epoxy). Cyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, and the like.
 上記一般式(I)で示される化合物のうち、特に、有機性のグリシジル基を含む部分構造と無機性アルコキシ基を含む部分構造を備える珪素酸化物での場合、有機性の部分構造がカーボンナノチューブとの親和性を有し、無機性の部分構造により水との親和性が確保されるので、水性媒体中でのカーボンナノチューブの凝集が抑制され、導電性繊維束は、平均短軸径が90nm以下に維持されるものと推察される。 Among the compounds represented by the general formula (I), in particular, in the case of silicon oxide having a partial structure containing an organic glycidyl group and a partial structure containing an inorganic alkoxy group, the organic partial structure is a carbon nanotube. Since the affinity for water is ensured by the inorganic partial structure, aggregation of carbon nanotubes in the aqueous medium is suppressed, and the conductive fiber bundle has an average minor axis diameter of 90 nm. It is assumed that the following will be maintained.
 上記一般式(I)で示される化合物と共に、下記一般式(II)で示される化合物から選ばれた少なくとも一つのテトラアルコキシシランを併用し、これらの二種の化合物を加水分解および重縮合して得られたゾルゲル硬化物を珪素酸化物として使用した場合には、導電性に優れ、かつ透明性と膜強度に一段と優れた導電性部材が得られるという点から好ましい。
   Si(OR    (II)
 (一般式(II)中、4個のRはそれぞれ独立に水素原子または炭化水素基を示す。)
 上記Rの炭化水素基としては、好ましくはアルキル基又はアリール基が挙げられる。
 アルキル基を示す場合の炭素数は好ましくは1~18、より好ましくは1~8であり、さらにより好ましくは1~4である。また、アリール基を示す場合は、フェニル基が好ましい。
 アルキル基又はアリール基は置換基を有していてもよく、導入可能な置換基としては、ハロゲン原子、アミノ基、メルカプト基などが挙げられる。なお、上記一般式(II)で示される化合物は低分子化合物であることが好ましく、分子量1000以下であることが好ましい。
Using at least one tetraalkoxysilane selected from the compound represented by the following general formula (II) together with the compound represented by the above general formula (I), hydrolysis and polycondensation of these two compounds When the obtained sol-gel cured product is used as a silicon oxide, it is preferable from the viewpoint that a conductive member having excellent conductivity and further excellent transparency and film strength can be obtained.
Si (OR 3 ) 4 (II)
(In the general formula (II), four R 3 s each independently represent a hydrogen atom or a hydrocarbon group.)
The hydrocarbon group for R 3 is preferably an alkyl group or an aryl group.
The carbon number in the case of showing an alkyl group is preferably 1 to 18, more preferably 1 to 8, and still more preferably 1 to 4. Moreover, when showing an aryl group, a phenyl group is preferable.
The alkyl group or aryl group may have a substituent, and examples of the substituent that can be introduced include a halogen atom, an amino group, and a mercapto group. In addition, it is preferable that the compound shown by the said general formula (II) is a low molecular compound, and it is preferable that molecular weight is 1000 or less.
 一般式(II)で示される化合物の具体例としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシラン、メトキシトリエトキシシラン、エトキシトリメトキシシラン、メトキシトリプロポキシシラン、エトキシトリプロポキシシラン、プロポキシトリメトキシシラン、プロポキシトリエトキシシラン、ジメトキシジエトキシシラン等を挙げることができる。これらのうち特に好ましいものとしては、テトラメトキシシラン、テトラエトキシシラン等を挙げることができる。
 一般式(I)で示される化合物と一般式(II)で示される化合物を組み合わせて使用する場合、その比率は前者/後者の質量比で0.01/1~100/1の範囲から選ばれることが、前述の組合せによる効果が得られる点で好ましい。
Specific examples of the compound represented by the general formula (II) include, for example, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, methoxytriethoxysilane, ethoxytrimethoxysilane, methoxytripropoxysilane, ethoxytri Examples include propoxysilane, propoxytrimethoxysilane, propoxytriethoxysilane, and dimethoxydiethoxysilane. Of these, tetramethoxysilane, tetraethoxysilane and the like are particularly preferable.
When the compound represented by the general formula (I) and the compound represented by the general formula (II) are used in combination, the ratio is selected from the range of 0.01 / 1 to 100/1 in terms of the former / the latter mass ratio. This is preferable in that the effect of the above-described combination can be obtained.
<<<導電性部材の製造方法>>>
 本発明に係る導電性部材の製造方法は、以下の(i)~(iii)の各工程を含む。
 工程(i):基材上に、カーボンナノチューブを含む分散液を塗布して、導電性繊維束を含む導電性繊維層を形成する。
 工程(ii):前記導電性繊維層上に、下記一般式(I)で示される化合物から選ばれた少なくとも一つのオルガノアルコキシシランを含むアルコキシド化合物のアルコキシド化合物水溶液を塗布する。
 工程(iii):前記工程(ii)で塗布されたアルコキシド化合物の水溶液のアルコキシド化合物を加水分解および重縮合させてゾルゲル硬化物を形成する。
 以下、各工程について、順に説明する。
<工程(i)>
 先ず、基材上にカーボンナノチューブを液媒体中に分散させた分散液を塗布したのち、基材上に塗布された分散液の液媒体を必要に応じて加熱して乾燥、除去する。
 塗布方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えばロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法、などが挙げられる。
 カーボンナノチューブを液媒体中に分散させる分散工程は、酸素の低い雰囲気、特に窒素雰囲気下で行うことが、カーボンナノチューブの分解を抑えることができるので、好ましい。
 上記液媒体として使用される溶剤の好適なものとしては、例えば水、アルコールなどが挙げられる。
<<< Method for Manufacturing Conductive Member >>>
The method for producing a conductive member according to the present invention includes the following steps (i) to (iii).
Step (i): A dispersion containing carbon nanotubes is applied on a substrate to form a conductive fiber layer containing conductive fiber bundles.
Step (ii): An alkoxide compound aqueous solution of an alkoxide compound containing at least one organoalkoxysilane selected from the compounds represented by the following general formula (I) is applied on the conductive fiber layer.
Step (iii): The alkoxide compound in the aqueous solution of the alkoxide compound applied in the step (ii) is hydrolyzed and polycondensed to form a sol-gel cured product.
Hereinafter, each process is demonstrated in order.
<Process (i)>
First, after applying a dispersion liquid in which carbon nanotubes are dispersed in a liquid medium on a base material, the liquid medium of the dispersion liquid applied on the base material is heated and dried and removed as necessary.
The coating method is not particularly limited and can be appropriately selected depending on the purpose. For example, roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method. Method, gravure coating method, curtain coating method, spray coating method, doctor coating method, and the like.
The dispersion step of dispersing the carbon nanotubes in the liquid medium is preferably performed in a low oxygen atmosphere, particularly in a nitrogen atmosphere because decomposition of the carbon nanotubes can be suppressed.
Preferable examples of the solvent used as the liquid medium include water and alcohol.
 溶媒として、例えばトルエン、シクロヘキサノン、メチルエチルケトン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテートを単独でまたは二種以上を組み合わせて使用した場合には複数のカーボンナノチューブを含む束で構成された導電性繊維束の平均バンドル径が90nmより大きい、例えば120nmのものとなってしまうので、これらの溶媒の使用は避けることが好ましい。
 水のような溶媒中にカーボンナノチューブを分散させるに際しては、溶媒中に分散剤を含有させておき、この中にカーボンナノチューブをメカニカルホモゲナイザー、超音波分散記機等の公知の分散機を利用して分散させることにより得られる。
 上記の分散剤としては、カーボンナノチューブが凝集することを極力防止しつつ分散させるために用いられる。分散剤としては、前記カーボンナノチューブを分散させることができれば特に制限はなく、目的に応じて適否選択することができる。
When the solvent is used, for example, toluene, cyclohexanone, methyl ethyl ketone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate alone or in combination of two or more kinds, a conductive fiber bundle composed of a bundle containing a plurality of carbon nanotubes Therefore, it is preferable to avoid the use of these solvents.
When dispersing the carbon nanotubes in a solvent such as water, a dispersing agent is contained in the solvent, and the carbon nanotubes are added to the carbon nanotubes using a known dispersing machine such as a mechanical homogenizer or an ultrasonic dispersion recorder. It is obtained by dispersing.
As said dispersing agent, it is used in order to disperse | distribute, preventing that a carbon nanotube aggregates as much as possible. The dispersant is not particularly limited as long as the carbon nanotubes can be dispersed, and can be appropriately selected according to the purpose.
 分散剤としては、例えばイオン性界面活性剤である陽イオン性界面活性剤、両イオン性界面活性剤および陰イオン性界面活性剤、非イオン性界面活性剤、グルコース、リボース、デオキシリボースなどの単糖、スクロース、マルトース、ラクトース、セロビオース、トレハロースなどの二糖、シクロデキストリンなどのオリゴ糖、胆汁酸やコレステロール、コール酸などのステロイド誘導体、DNA、π共役ポリマー、フタロシアニン誘導体などがあげられる。
 このうち、特に好ましい分散剤としては、中でも、カーボンナノチューブ分散性、導電性から陰イオン性界面活性剤およびステロイド誘導体が好ましく用いられ、例えば、コール酸ナトリウム、デオキシコール酸ナトリウム、タウロコール酸ナトリウム、リトコール酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウム、DNAなど挙げられる。
 分散剤の量は、溶媒の量を基準として、0.1質量%~10質量%の範囲から選ばれることが好ましい。
 分散剤の分散液中の含有量としては、特に限定されるものではないが、好ましくは、カーボンナノチューブ100質量部に対して30~1500質量部、より好ましくは30~1000質量部、さらに好ましくは50~1000質量部、なかでも好ましくは50~500質量部、特に好ましくは80~300質量部である。
Examples of the dispersant include a cationic surfactant which is an ionic surfactant, an amphoteric surfactant and an anionic surfactant, a nonionic surfactant, glucose, ribose, deoxyribose and the like. Examples thereof include disaccharides such as sugar, sucrose, maltose, lactose, cellobiose and trehalose, oligosaccharides such as cyclodextrin, steroid derivatives such as bile acid, cholesterol and cholic acid, DNA, π-conjugated polymers and phthalocyanine derivatives.
Among these, particularly preferred dispersants are carbon nanotube dispersibility, conductive to anionic surfactants and steroid derivatives, for example, sodium cholate, sodium deoxycholate, sodium taurocholate, lithocol. Examples include sodium acid, sodium dodecylbenzenesulfonate, and DNA.
The amount of the dispersant is preferably selected from the range of 0.1% by mass to 10% by mass based on the amount of the solvent.
The content of the dispersant in the dispersion is not particularly limited, but is preferably 30 to 1500 parts by mass, more preferably 30 to 1000 parts by mass, and still more preferably 100 parts by mass of the carbon nanotubes. It is 50 to 1000 parts by mass, preferably 50 to 500 parts by mass, particularly preferably 80 to 300 parts by mass.
 分散液中でのカーボンナノチューブ濃度は0.01mg/mL以上、200mg/mL以下が好ましく、さらに、0.1mg/mL~100mg/mLであることが好ましい。透明性の優れた導電性層が容易に得られるという点から、20mg/mL以下程度であることが好ましく、更に10mg/mL以下がより好ましく、5mg/mL以下が最も好ましい。さらに高濃度の分散液を作製して適切な濃度に希釈して用いることも勿論可能であるし、上記のようにして調製された分散液を基材上の塗布および必要により加熱して乾燥してもよい。このようにして得られた導電性繊維層は、1本もしくは、少なくとも2本のカーボンナノチューブを含む束で構成され、そのバンドル径が90nm以下である導電性繊維束を含んでいる。 The carbon nanotube concentration in the dispersion is preferably 0.01 mg / mL or more and 200 mg / mL or less, and more preferably 0.1 mg / mL to 100 mg / mL. From the viewpoint that a conductive layer having excellent transparency can be easily obtained, it is preferably about 20 mg / mL or less, more preferably 10 mg / mL or less, and most preferably 5 mg / mL or less. It is of course possible to prepare a dispersion with a higher concentration and dilute it to an appropriate concentration for use. Alternatively, the dispersion prepared as described above can be applied on a substrate and dried by heating if necessary. May be. The conductive fiber layer thus obtained is composed of a bundle containing one or at least two carbon nanotubes, and includes a conductive fiber bundle having a bundle diameter of 90 nm or less.
<工程(ii)> 
 上記のようにして基材上に形成された導電性繊維層の上には、前述の一般式(I)で示される化合物から選ばれた少なくとも一つのオルガノアルコキシシランを含むアルコキシド化合物の水溶液、または上記オルガノアルコキシシランと共に、更に前述の一般式(II)で示される化合物から選ばれた少なくとも一つのテトラアルコキシシランを含むアルコキシド化合物の水溶液(以下、上記の「オルガノアルコキシシラン」及び「テトラアルコキシシラン」を包括的に「特定アルコキシド化合物」とも呼び、そして上記の「アルコキシド化合物を含む水溶液」のことを「ゾルゲル塗布液」とも呼ぶ。)が塗布される。これにより、前記の導電性繊維層中の複数の導電性繊維束の間の間隙にオルガノアルコキシシラン、またはオルガノアルコキシシランとテトラアルコキシシランとが浸入する。
<工程(iii)>
 このようにして浸入したオルガノアルコキシシラン、またはオルガノアルコキシシランとテトラアルコキシシランは、前記の複数の導電性繊維束の間の隙間において加水分解および重縮合させることにより、その場所でゾルゲル硬化物となる。その結果、カーボンナノチューブを含み、平均短軸径が90nm以下の導電性繊維束と、珪素酸化物とを含んで構成される導電性層が基材上に形成される。
<Process (ii)>
On the conductive fiber layer formed on the substrate as described above, an aqueous solution of an alkoxide compound containing at least one organoalkoxysilane selected from the compounds represented by the general formula (I), or An aqueous solution of an alkoxide compound containing at least one tetraalkoxysilane selected from the compounds represented by the above general formula (II) together with the above organoalkoxysilane (hereinafter referred to as the above “organoalkoxysilane” and “tetraalkoxysilane”) Are also collectively referred to as “specific alkoxide compound”, and the above “aqueous solution containing an alkoxide compound” is also referred to as “sol-gel coating solution”). As a result, organoalkoxysilane, or organoalkoxysilane and tetraalkoxysilane enter the gaps between the plurality of conductive fiber bundles in the conductive fiber layer.
<Process (iii)>
The organoalkoxysilane or the organoalkoxysilane and the tetraalkoxysilane soaked in this way are converted into a sol-gel hardened material at the place by hydrolysis and polycondensation in the gaps between the plurality of conductive fiber bundles. As a result, a conductive layer including carbon nanotubes and including a conductive fiber bundle having an average minor axis diameter of 90 nm or less and silicon oxide is formed on the substrate.
 カーボンナノチューブは、その表面に水酸基を有することが知られている。そのため、上記の特定アルコキシド化合物の加水分解および重縮合の際に、オルガノアルコキシシランが有するエポキシ基とカーボンナノチューブが有する水酸基との間で反応が生じるものと思われる。その結果、カーボンナノチューブが凝集することを抑制しつつ、カーボンナノチューブと珪素酸化物とが共有結合で結合し、導電性が高く、且つ透明度及び膜強度の高い導電性層が得られるものと思われる。 Carbon nanotubes are known to have hydroxyl groups on their surfaces. Therefore, it is considered that a reaction occurs between the epoxy group of the organoalkoxysilane and the hydroxyl group of the carbon nanotube during the hydrolysis and polycondensation of the specific alkoxide compound. As a result, it is considered that a carbon nanotube and silicon oxide are covalently bonded while suppressing aggregation of carbon nanotubes, and a conductive layer having high conductivity and high transparency and film strength is obtained. .
 特定アルコキシド化合物の加水分解及び縮合の反応を促進させるために、加熱、乾燥することが好ましい。このような反応を促進させるための加熱温度は、30℃~200℃の範囲が適しており、50℃~180℃の範囲がより好ましい。加熱、乾燥時間は10秒間~300分間が好ましく、1分間~120分間がより好ましい。 In order to promote the hydrolysis and condensation reaction of the specific alkoxide compound, heating and drying are preferable. The heating temperature for promoting such a reaction is suitably in the range of 30 ° C. to 200 ° C., more preferably in the range of 50 ° C. to 180 ° C. The heating and drying time is preferably 10 seconds to 300 minutes, more preferably 1 minute to 120 minutes.
 上記の加水分解及び重縮合反応を促進させるために、ゾルゲル塗布液には、酸性触媒または塩基性触媒を含有させておくことが反応効率を高められるので、実用上好ましい。以下、この触媒について、説明する。
〔触媒〕
 触媒としては、上記の加水分解および重縮合の反応を促進させるものであれば使用することができる。
 このような触媒としては、酸、あるいは塩基性化合物が含まれ、そのまま用いるか、又は、水またはアルコールなどの溶媒に溶解させた状態のもの(以下、これらを包括してそれぞれ酸性触媒、塩基性触媒とも称する)で使用される。
 酸、あるいは塩基性化合物を溶媒に溶解させる際の濃度については特に限定はなく、用いる酸、或いは塩基性化合物の特性、触媒の所望の含有量などに応じて適宜選択すればよい。ここで、触媒を構成する酸或いは塩基性化合物の濃度が高い場合は、加水分解、重縮合速度が速くなる傾向がある。但し、濃度の高過ぎる塩基性触媒を用いると、沈殿物が生成して保護層に欠陥となって現れる場合があるので、塩基性触媒を用いる場合、その濃度は水溶液での濃度換算で1N以下であることが望ましい。
In order to promote the hydrolysis and polycondensation reactions described above, it is practically preferable to contain an acidic catalyst or a basic catalyst in the sol-gel coating liquid because the reaction efficiency can be improved. Hereinafter, this catalyst will be described.
〔catalyst〕
As the catalyst, any catalyst that promotes the hydrolysis and polycondensation reactions described above can be used.
Such a catalyst includes an acid or a basic compound and is used as it is or dissolved in a solvent such as water or alcohol (hereinafter referred to as an acidic catalyst and a basic compound, respectively). Also referred to as a catalyst).
The concentration at which the acid or basic compound is dissolved in the solvent is not particularly limited, and may be appropriately selected depending on the characteristics of the acid or basic compound used, the desired content of the catalyst, and the like. Here, when the concentration of the acid or basic compound constituting the catalyst is high, the hydrolysis and polycondensation rates tend to increase. However, if a basic catalyst with a too high concentration is used, a precipitate may be generated and appear as a defect in the protective layer. Therefore, when a basic catalyst is used, the concentration is 1 N or less in terms of concentration in an aqueous solution. It is desirable that
 酸性触媒あるいは塩基性触媒の種類は特に限定されないが、濃度の濃い触媒を用いる必要がある場合には、保護層中にほとんど残留しないような元素から構成される触媒がよい。具体的には、酸性触媒としては、塩酸などのハロゲン化水素、硝酸、硫酸、亜硫酸、硫化水素、過塩素酸、過酸化水素、炭酸、蟻酸や酢酸などのカルボン酸、そのRCOOHで示される構造式のRを他元素または置換基によって置換した置換カルボン酸、ベンゼンスルホン酸などのスルホン酸などが挙げられ、塩基性触媒としては、アンモニア水などのアンモニア性塩基、エチルアミンやアニリンなどのアミン類などが挙げられる。 The kind of the acidic catalyst or the basic catalyst is not particularly limited, but when it is necessary to use a catalyst having a high concentration, a catalyst composed of an element that hardly remains in the protective layer is preferable. Specifically, examples of the acidic catalyst include hydrogen halides such as hydrochloric acid, nitric acid, sulfuric acid, sulfurous acid, hydrogen sulfide, perchloric acid, hydrogen peroxide, carbonic acid, carboxylic acids such as formic acid and acetic acid, and the structure represented by RCOOH. Examples thereof include substituted carboxylic acids in which R in the formula is substituted with other elements or substituents, sulfonic acids such as benzenesulfonic acid, etc., and basic catalysts include ammoniacal bases such as aqueous ammonia and amines such as ethylamine and aniline Is mentioned.
 金属錯体を含むルイス酸触媒もまた好ましく使用できる。特に好ましい触媒は、金属錯体触媒であり、周期律表の2A,3B,4A及び5A族から選ばれる金属元素とβ-ジケトン、ケトエステル、ヒドロキシカルボン酸又はそのエステル、アミノアルコール、エノール性活性水素化合物の中から選ばれるオキソ又はヒドロキシ酸素含有化合物から構成される金属錯体である。
 構成金属元素の中では、Mg,Ca,St,Baなどの2A族元素、Al,Gaなどの3B族元素,Ti,Zrなどの4A族元素及びV,Nb及びTaなどの5A族元素が好ましく、それぞれ触媒効果の優れた錯体を形成する。その中でもZr、Al及びTiから得られる錯体が優れており、好ましい。
A Lewis acid catalyst containing a metal complex can also be preferably used. Particularly preferred catalysts are metal complex catalysts, metal elements selected from groups 2A, 3B, 4A and 5A of the periodic table and β-diketones, ketoesters, hydroxycarboxylic acids or esters thereof, amino alcohols, enolic active hydrogen compounds It is a metal complex comprised from the oxo or hydroxy oxygen containing compound chosen from these.
Among constituent metal elements, 2A group elements such as Mg, Ca, St and Ba, 3B group elements such as Al and Ga, 4A group elements such as Ti and Zr, and 5A group elements such as V, Nb and Ta are preferable. , Each forming a complex with excellent catalytic effect. Of these, complexes obtained from Zr, Al and Ti are excellent and preferred.
 上記金属錯体の配位子を構成するオキソ又はヒドロキシ酸素含有化合物は、本発明においては、アセチルアセトン(2,4-ペンタンジオン)、2,4-ヘプタンジオンなどのβジケトン、アセト酢酸メチル、アセト酢酸エチル、アセト酢酸ブチルなどのケトエステル類、乳酸、乳酸メチル、サリチル酸、サリチル酸エチル、サリチル酸フェニル、リンゴ酸,酒石酸、酒石酸メチルなどのヒドロキシカルボン酸及びそのエステル、4-ヒドロキシ-4-メチル-2-ペンタノン、4-ヒドロキシ-2-ペンタノン、4-ヒドロキシ-4-メチル-2-ヘプタノン、4-ヒドロキシ-2-ヘプタノンなどのケトアルコール類、モノエタノールアミン、N,N-ジメチルエタノールアミン、N-メチル-モノエタノールアミン、ジエタノールアミン、トリエタノールアミンなどのアミノアルコール類、メチロールメラミン、メチロール尿素、メチロールアクリルアミド、マロン酸ジエチルエステルなどのエノール性活性化合物、アセチルアセトン(2,4-ペンタンジオン)のメチル基、メチレン基またはカルボニル炭素に置換基を有する化合物が挙げられる。 In the present invention, the oxo- or hydroxy-oxygen-containing compound constituting the ligand of the metal complex is a β-diketone such as acetylacetone (2,4-pentanedione) or 2,4-heptanedione, methyl acetoacetate, acetoacetic acid Ketoesters such as ethyl and butyl acetoacetate, hydroxycarboxylic acids such as lactic acid, methyl lactate, salicylic acid, ethyl salicylate, phenyl salicylate, malic acid, tartaric acid and methyl tartrate, and esters thereof, 4-hydroxy-4-methyl-2-pentanone , 4-hydroxy-2-pentanone, 4-hydroxy-4-methyl-2-heptanone, ketoalcohols such as 4-hydroxy-2-heptanone, monoethanolamine, N, N-dimethylethanolamine, N-methyl- Monoethanolamine, diethanolamine Amino alcohols such as ethanol, triethanolamine, enol active compounds such as methylol melamine, methylol urea, methylol acrylamide, diethyl malonate, methyl group, methylene group or carbonyl carbon of acetylacetone (2,4-pentanedione) The compound which has a substituent is mentioned.
 好ましい配位子はアセチルアセトン誘導体であり、アセチルアセトン誘導体は、本発明においては、アセチルアセトンのメチル基、メチレン基またはカルボニル炭素に置換基を有する化合物を指す。アセチルアセトンのメチル基に置換する置換基としては、いずれも炭素数が1~3の直鎖又は分岐のアルキル基、アシル基、ヒドロキシアルキル基、カルボキシアルキル基、アルコキシ基、アルコキシアルキル基であり、アセチルアセトンのメチレン基に置換する置換基としてはカルボキシル基、いずれも炭素数が1~3の直鎖又は分岐のカルボキシアルキル基及びヒドロキシアルキル基であり、アセチルアセトンのカルボニル炭素に置換する置換基としては炭素数が1~3のアルキル基であってこの場合はカルボニル酸素には水素原子が付加して水酸基となる。 A preferred ligand is an acetylacetone derivative. In the present invention, the acetylacetone derivative refers to a compound having a substituent on the methyl group, methylene group or carbonyl carbon of acetylacetone. Substituents for substitution on the methyl group of acetylacetone are all straight-chain or branched alkyl groups having 1 to 3 carbon atoms, acyl groups, hydroxyalkyl groups, carboxyalkyl groups, alkoxy groups, alkoxyalkyl groups, and acetylacetone The substituents that substitute for the methylene group are carboxyl groups, both straight-chain or branched carboxyalkyl groups and hydroxyalkyl groups having 1 to 3 carbon atoms, and the substituents that substitute for the carbonyl carbon of acetylacetone are carbon atoms. Is an alkyl group of 1 to 3, in which case a hydrogen atom is added to the carbonyl oxygen to form a hydroxyl group.
 好ましいアセチルアセトン誘導体の具体例としては、エチルカルボニルアセトン、n-プロピルカルボニルアセトン、i-プロピルカルボニルアセトン、ジアセチルアセトン、1―アセチル-1-プロピオニル-アセチルアセトン、ヒドロキシエチルカルボニルアセトン、ヒドロキシプロピルカルボニルアセトン、アセト酢酸、アセトプロピオン酸、ジアセト酢酸、3,3-ジアセトプロピオン酸、4,4-ジアセト酪酸、カルボキシエチルカルボニルアセトン、カルボキシプロピルカルボニルアセトン、ジアセトンアルコールが挙げられる。中でも、アセチルアセトン及びジアセチルアセトンがとくに好ましい。上記のアセチルアセトン誘導体と上記金属元素の錯体は、金属元素1個当たりにアセチルアセトン誘導体が1~4分子配位する単核錯体であり、金属元素の配位可能の手がアセチルアセトン誘導体の配位可能結合手の数の総和よりも多い場合には、水分子、ハロゲンイオン、ニトロ基、アンモニオ基など通常の錯体に汎用される配位子が配位してもよい。 Specific examples of preferred acetylacetone derivatives include ethylcarbonylacetone, n-propylcarbonylacetone, i-propylcarbonylacetone, diacetylacetone, 1-acetyl-1-propionyl-acetylacetone, hydroxyethylcarbonylacetone, hydroxypropylcarbonylacetone, acetoacetate Acetopropionic acid, diacetacetic acid, 3,3-diacetpropionic acid, 4,4-diacetbutyric acid, carboxyethylcarbonylacetone, carboxypropylcarbonylacetone, diacetone alcohol. Of these, acetylacetone and diacetylacetone are particularly preferred. The complex of the above acetylacetone derivative and the above metal element is a mononuclear complex in which 1 to 4 molecules of the acetylacetone derivative are coordinated per metal element, and the coordinateable bond of the acetylacetone derivative is the coordinateable bond of the metal element. When the number of hands is larger than the total number of hands, ligands commonly used for ordinary complexes such as water molecules, halogen ions, nitro groups, and ammonio groups may coordinate.
 好ましい金属錯体の例としては、トリス(アセチルアセトナト)アルミニウム錯塩、ジ(アセチルアセトナト)アルミニウム・アコ錯塩、モノ(アセチルアセトナト)アルミニウム・クロロ錯塩、ジ(ジアセチルアセトナト)アルミニウム錯塩、エチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、環状アルミニウムオキサイドイソプロピレート、トリス(アセチルアセトナト)バリウム錯塩、ジ(アセチルアセトナト)チタニウム錯塩、トリス(アセチルアセトナト)チタニウム錯塩、ジ-i-プロポキシ・ビス(アセチルアセトナト)チタニウム錯塩、ジルコニウムトリス(エチルアセトアセテート)、ジルコニウムトリス(安息香酸)錯塩、等が挙げられる。これらは水系塗布液での安定性及び、加熱乾燥時のゾルゲル反応でのゲル化促進効果に優れているが、中でも、特にエチルアセトアセテートアルミニウムジイソプロピレート、アルミニウムトリス(エチルアセトアセテート)、ジ(アセチルアセトナト)チタニウム錯塩、ジルコニウムトリス(エチルアセトアセテート)が好ましい。 Examples of preferred metal complexes include tris (acetylacetonato) aluminum complex, di (acetylacetonato) aluminum / aco complex, mono (acetylacetonato) aluminum / chloro complex, di (diacetylacetonato) aluminum complex, ethylacetate Acetate aluminum diisopropylate, aluminum tris (ethylacetoacetate), cyclic aluminum oxide isopropylate, tris (acetylacetonato) barium complex, di (acetylacetonato) titanium complex, tris (acetylacetonato) titanium complex, di-i -Propoxy bis (acetylacetonato) titanium complex salt, zirconium tris (ethyl acetoacetate), zirconium tris (benzoic acid) complex salt, etc. These are excellent in stability in aqueous coating solutions and in gelation promotion effect in sol-gel reaction during heat drying, and among them, ethyl acetoacetate aluminum diisopropylate, aluminum tris (ethyl acetoacetate), di ( Acetylacetonato) titanium complex and zirconium tris (ethylacetoacetate) are preferred.
 上記した金属錯体の対塩の記載を本明細書においては省略しているが、対塩の種類は、錯体化合物としての電荷の中性を保つ水溶性塩である限り任意であり、例えば硝酸塩、ハロゲン酸塩、硫酸塩、燐酸塩などの化学量論的中性が確保される塩の形が用いられる。
金属錯体のシリカゾルゲル反応での挙動については、J.Sol-Gel.Sci.and Tec.16.209(1999)に詳細な記載がある。反応メカニズムとしては以下のスキームを推定している。すなわち、塗布液中では、金属錯体は、配位構造を取って安定であり、塗布後の加熱乾燥過程に始まる脱水縮合反応では、酸触媒に似た機構で架橋を促進させるものと考えられる。いずれにしても、この金属錯体を用いたことにより塗布液の経時安定性、並びに保護層の皮膜面質および高耐久性に優れるものを得られる。
 上記の金属錯体触媒は、市販品として容易に入手でき、また公知の合成方法、例えば各金属塩化物とアルコールとの反応によっても得られる。
 本発明に係る触媒は、前記ゾルゲル塗布液中に、その不揮発性成分に対して、好ましくは0~50質量%、更に好ましくは5~25質量%の範囲で使用される。触媒は、単独で用いても二種以上を組み合わせて使用してもよい。
Although the description of the counter salt of the metal complex described above is omitted in this specification, the type of the counter salt is arbitrary as long as it is a water-soluble salt that maintains the neutrality of the charge as the complex compound, such as nitrate, Salt forms such as halogenates, sulfates, phosphates, etc., that ensure stoichiometric neutrality are used.
For the behavior of the metal complex in the silica sol-gel reaction, see J.A. Sol-Gel. Sci. and Tec. There is a detailed description in 16.209 (1999). The following scheme is estimated as the reaction mechanism. That is, in the coating solution, the metal complex has a coordinated structure and is stable, and in the dehydration condensation reaction that starts in the heat drying process after coating, it is considered that crosslinking is promoted by a mechanism similar to an acid catalyst. In any case, by using this metal complex, it is possible to obtain a coating solution having excellent stability over time, the surface quality of the protective layer and high durability.
The above metal complex catalyst can be easily obtained as a commercial product, and can also be obtained by a known synthesis method, for example, reaction of each metal chloride with an alcohol.
The catalyst according to the present invention is used in the sol-gel coating solution in an amount of preferably 0 to 50% by mass, more preferably 5 to 25% by mass, based on the nonvolatile components. A catalyst may be used independently or may be used in combination of 2 or more type.
〔溶剤〕
 上記のゾルゲル塗布液には、導電性繊維層上に均一な塗布液膜の形成性を確保するために、所望により、有機溶剤を含有させてもよい。
 このような有機溶剤としては、例えば、アセトン、メチルエチルケトン、ジエチルケトン等のケトン系溶剤、メタノール、エタノール、2-プロパノール、1-プロパノール、1-ブタノール、tert-ブタノール等のアルコール系溶剤、クロロホルム、塩化メチレン等の塩素系溶剤、ベンゼン、トルエン等の芳香族系溶剤、酢酸エチル、酢酸ブチル、酢酸イソプロピルなどのエステル系溶剤、ジエチルエーテル、テトラヒドロフラン、ジオキサン等のエーテル系溶剤、エチレングリコールモノメチルエーテル、エチレングリコールジメチルエーテル等のグリコールエーテル系溶剤、などが挙げられる。
 この場合、VOC(揮発性有機溶剤)の関連から問題が起こらない範囲での添加が有効であり、ゾルゲル塗布液の総質量に対して50質量%以下の範囲が好ましく、更に30質量%以下の範囲がより好ましい。
〔solvent〕
The sol-gel coating liquid may contain an organic solvent as desired in order to ensure the formation of a uniform coating liquid film on the conductive fiber layer.
Examples of such organic solvents include ketone solvents such as acetone, methyl ethyl ketone, and diethyl ketone, alcohol solvents such as methanol, ethanol, 2-propanol, 1-propanol, 1-butanol, and tert-butanol, chloroform, and chloride. Chlorine solvents such as methylene, aromatic solvents such as benzene and toluene, ester solvents such as ethyl acetate, butyl acetate and isopropyl acetate, ether solvents such as diethyl ether, tetrahydrofuran and dioxane, ethylene glycol monomethyl ether, ethylene glycol Examples thereof include glycol ether solvents such as dimethyl ether.
In this case, it is effective to add VOC (volatile organic solvent) in a range that does not cause a problem, and the range is preferably 50% by mass or less, more preferably 30% by mass or less, based on the total mass of the sol-gel coating solution. A range is more preferred.
〔その他〕
 ゾルゲル塗布液には、一般式(I)及び一般式(II)で示される両化合物とは異なる有機シラン化合物を含有させておいてもよい。このような有機シラン化合物としては、例えばジメチルジメトキシシラン、ジエチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジエトキシシラン等のオルガノジアルコキシシラン、例えばメチルトリメトキシシラン、エチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリエトキシシラン等のオルガノトリアルコキシシランなどが挙げられる。
[Others]
The sol-gel coating solution may contain an organosilane compound different from both compounds represented by the general formula (I) and the general formula (II). Examples of such organosilane compounds include organodialkoxysilanes such as dimethyldimethoxysilane, diethyldimethoxysilane, dimethyldiethoxysilane, and diethyldiethoxysilane, such as methyltrimethoxysilane, ethyltrimethoxysilane, methyltriethoxysilane, And organotrialkoxysilanes such as ethyltriethoxysilane.
 導電性層の厚さは、0.01μm~50μmが好ましく、0.05μm~20μmがさらに好ましく、0.05μm~5μmがより好まく、0.1μm~1μmがさらにより好ましい。膜厚を0.01μm以上50μm以下とすることで、十分な耐久性、膜強度が得られ、導電性層としての欠陥のない緻密な膜が得られる。特に、0.1μm~1μmの範囲とすれば、製造上の許容範囲が確保されるので好ましい。 The thickness of the conductive layer is preferably 0.01 μm to 50 μm, more preferably 0.05 μm to 20 μm, more preferably 0.05 μm to 5 μm, and even more preferably 0.1 μm to 1 μm. By setting the film thickness to 0.01 μm or more and 50 μm or less, sufficient durability and film strength can be obtained, and a dense film without defects as a conductive layer can be obtained. In particular, a range of 0.1 μm to 1 μm is preferable because an allowable range in manufacturing is secured.
 前述の導電性層を基材上に形成する別の方法としては、別途、前述の導電性層を転写用基材表面に形成した導電性層形成用積層体を準備しておき、この積層体の導電性層を、任意の基材表面に転写する方法が含まれる。
 このような導電性層形成用積層体は、上記のとおり転写用基材上に導電性層を形成した構成を基本構成とするが、必要に応じて、転写用基材と導電性層の間に、クッション層、中間層又はこれら両者の層をこの順で形成した構成、更には、導電性層上にカバーフィルムを形成した構成であってもよい。
 転写用基材表面に前述の導電性層を形成する方法は、上記に記載した基材上に導電性層を形成する方法の場合と同様の塗布方法で行うことができる。
As another method for forming the conductive layer on the substrate, a laminate for forming a conductive layer in which the conductive layer is formed on the surface of the transfer substrate is prepared separately. A method of transferring the conductive layer to an arbitrary substrate surface is included.
Such a laminate for forming a conductive layer has a basic configuration in which a conductive layer is formed on a transfer substrate as described above, but if necessary, between the transfer substrate and the conductive layer. In addition, a configuration in which the cushion layer, the intermediate layer, or both of these layers are formed in this order, or a configuration in which a cover film is formed on the conductive layer may be used.
The method for forming the above-described conductive layer on the surface of the transfer substrate can be performed by the same coating method as in the method for forming the conductive layer on the substrate described above.
<転写用基材>
 前記転写用基材の形状、構造、大きさ等については特に制限はなく、目的に応じて適宜選択することができ、例えば、前記形状としては、膜状、シート(フィルム)状、板状などが挙げられる。前記構造としては、単層構造、積層構造などが挙げられる。前記大きさとしては、用途等に応じて適宜選択することができる。
 前記転写用基材の材質としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、透明ガラス、合成樹脂、金属、セラミックス、半導体基板として使用されるシリコンウェハなどが挙げられる。転写用基板の表面には、所望により、シランカップリング剤等の薬品処理、プラズマ処理、イオンプレーティング、スパッタリング、気相反応法、真空蒸着などの前処理を行うことができる。
 前記透明ガラスとしては、例えば、白板ガラス、青板ガラス、シリカコート青板ガラスなどが挙げられる。このような透明ガラスを使用した転写用基材の場合、その厚みが10μm~数百μmの薄層ガラス板でもよい。
 前記合成樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリカーボネート、トリアセチルセルロース(TAC)、ポリエーテルスルホン、ポリエステル、アクリル樹脂、塩化ビニル樹脂、芳香族ポリアミド樹脂、ポリアミドイミド、ポリイミドなどが挙げられる。
 前記金属としては、例えば、アルミニウム、銅、ニッケル、ステンレスなどが挙げられる。
<Transfer base material>
The shape, structure, size and the like of the transfer substrate are not particularly limited and may be appropriately selected depending on the purpose. For example, the shape may be a film shape, a sheet (film) shape, a plate shape, etc. Is mentioned. Examples of the structure include a single layer structure and a laminated structure. The size can be appropriately selected according to the application.
There is no restriction | limiting in particular as a material of the said base material for transcription | transfer, According to the objective, it can select suitably, For example, the silicon wafer etc. which are used as a transparent glass, a synthetic resin, a metal, ceramics, a semiconductor substrate, etc. are mentioned. . If desired, the surface of the transfer substrate may be subjected to a pretreatment such as chemical treatment such as a silane coupling agent, plasma treatment, ion plating, sputtering, gas phase reaction method, vacuum deposition and the like.
Examples of the transparent glass include white plate glass, blue plate glass, and silica-coated blue plate glass. In the case of a transfer substrate using such transparent glass, a thin glass plate having a thickness of 10 μm to several hundred μm may be used.
Examples of the synthetic resin include polyethylene terephthalate (PET), polycarbonate, triacetyl cellulose (TAC), polyethersulfone, polyester, acrylic resin, vinyl chloride resin, aromatic polyamide resin, polyamideimide, and polyimide.
Examples of the metal include aluminum, copper, nickel, and stainless steel.
 前記転写用基材の平均厚みは、特に制限はなく、目的に応じて適宜選択することができるが、1μm~500μmが好ましく、3μm~400μmがより好ましく、5μm~300μmが更に好ましい。
 前記平均厚みが、上記範囲において、ハンドリングが良好であり、可撓性に優れることから、転写均一性が良好となる。
The average thickness of the transfer substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1 μm to 500 μm, more preferably 3 μm to 400 μm, and even more preferably 5 μm to 300 μm.
When the average thickness is within the above range, the handling is good and the flexibility is excellent, so that the transfer uniformity is good.
<クッション層>
 導電性層形成用積層体は、転写用基材と導電性層との間に、転写性向上のためクッション層を有していてもよい。クッション層の形状、構造、大きさ等については特に制限はなく、目的に応じて適宜選択することができ、例えば、前記形状としては、膜状、シート状などが挙げられる。
 構造としては、単層構造、積層構造などが挙げられ、大きさ及び厚みは、用途等に応じて適宜選択することができる。
 前記クッション層は、被転写体との転写性を向上させる役割を果たす層であり、少なくともポリマーを含有し、更に必要に応じてその他の成分を含有してなる。
<Cushion layer>
The laminate for forming a conductive layer may have a cushion layer for improving transferability between the transfer substrate and the conductive layer. There is no restriction | limiting in particular about the shape, structure, size, etc. of a cushion layer, According to the objective, it can select suitably, For example, a film | membrane form, a sheet form, etc. are mentioned as said shape.
Examples of the structure include a single-layer structure and a laminated structure, and the size and thickness can be appropriately selected according to the application.
The cushion layer is a layer that plays a role of improving transferability with the transfer target, and contains at least a polymer, and further contains other components as necessary.
 クッション層に用いられるポリマーとしては、加熱時に軟化する熱可塑性樹脂であれば特に制限はなく、目的に応じて適宜選択することができ、例えばアクリル樹脂、スチレン-アクリル共重合体、ポリビニルアルコール、ポリエチレン、エチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-メタクリル酸共重合体、ポリ塩化ビニルゼラチン;セルロースナイトレート、セルローストリアセテート、セルロースジアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート等のセルロースエステル;塩化ビニリデン、塩化ビニル、スチレン、アクリロニトリル、酢酸ビニル、アルキル(炭素数1~4)アクリレート、ビニルピロリドン等を含むホモポリマー又は共重合体、可溶性ポリエステル、ポリカーボネート、可溶性ポリアミドなどが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
 前記クッション層に用いるポリマーは、加熱により軟化する熱可塑性樹脂が好ましい。クッション層のガラス転移温度は40℃から150℃であることが好ましい。このようなガラス転移温度の範囲とすることにより、ハンドリングし易く、かつ転写性の優れたものとすることができる。
The polymer used for the cushion layer is not particularly limited as long as it is a thermoplastic resin that softens when heated, and can be appropriately selected according to the purpose. For example, acrylic resin, styrene-acrylic copolymer, polyvinyl alcohol, polyethylene , Ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-methacrylic acid copolymer, polyvinyl chloride gelatin; cellulose nitrate, cellulose triacetate, cellulose diacetate, cellulose acetate butyrate, cellulose acetate propio Cellulose esters such as nitrates; homopolymers or copolymers containing vinylidene chloride, vinyl chloride, styrene, acrylonitrile, vinyl acetate, alkyl (carbon number 1-4) acrylate, vinyl pyrrolidone, etc., soluble polymers Esters, polycarbonates, soluble polyamide. These may be used individually by 1 type and may use 2 or more types together.
The polymer used for the cushion layer is preferably a thermoplastic resin that is softened by heating. The glass transition temperature of the cushion layer is preferably 40 ° C to 150 ° C. By setting the glass transition temperature in such a range, it is easy to handle and excellent transferability can be achieved.
 クッション層に含ませることができる、前記その他の成分としては、特に制限はなく、目的に応じて適宜選択することができる。例えば、フィラー、界面活性剤、酸化防止剤、硫化防止剤、金属腐食防止剤、粘度調整剤、防腐剤等の各種添加剤などが挙げられる。また、特開平5-72724号公報の段落0007以降に記載されている有機高分子物質、前記転写用基材との接着力を調節するための各種可塑剤、過冷却物質、密着改良剤、界面活性剤、離型剤、熱重合禁止剤、溶剤などが挙げられる。
 前記クッション層は、前記ポリマー、及び必要に応じて前記その他の成分を含有するクッション層用途布液を転写用基材上に塗布し、乾燥させることにより形成することができる。
There is no restriction | limiting in particular as said other component which can be contained in a cushion layer, According to the objective, it can select suitably. Examples thereof include various additives such as fillers, surfactants, antioxidants, sulfurization inhibitors, metal corrosion inhibitors, viscosity modifiers, and preservatives. Further, organic polymer substances described in paragraphs 0007 and after of JP-A-5-72724, various plasticizers for adjusting the adhesive force with the transfer substrate, supercooling substances, adhesion improvers, interfaces Activators, mold release agents, thermal polymerization inhibitors, solvents and the like can be mentioned.
The cushion layer can be formed by applying and drying a cushion layer-use cloth liquid containing the polymer and, if necessary, the other components on a transfer substrate.
 クッション層の平均厚みは、1μm~50μmであることが好ましく、1μm~30μmであることがより好ましく、5μm~20μmであることがより好ましい。平均厚みを前記範囲とすることで、均一な転写性が得られ、転写材料のカールバランスも良好となる。
 さらに、導電性層とクッション層の合計平均厚みSと、前記転写用基材の平均厚みNとの比(S/N)が、下記式(4)を満たすことが好ましい。
   S/N=0.01~0.7  式(4)
 S/Nは0.02~0.6の範囲であることがより好ましい。S/Nを、0.01以上とすることで被転写体への転写均一性が良好となり、0.7以下とすることでカールバランスに優れたものとなる。
The average thickness of the cushion layer is preferably 1 μm to 50 μm, more preferably 1 μm to 30 μm, and even more preferably 5 μm to 20 μm. By setting the average thickness within the above range, uniform transferability can be obtained and the curl balance of the transfer material can be improved.
Furthermore, it is preferable that the ratio (S / N) between the total average thickness S of the conductive layer and the cushion layer and the average thickness N of the transfer base material satisfies the following formula (4).
S / N = 0.01-0.7 Formula (4)
The S / N is more preferably in the range of 0.02 to 0.6. When the S / N is 0.01 or more, the transfer uniformity to the transfer medium is good, and when it is 0.7 or less, the curl balance is excellent.
 前述の中間層は、ポリビニルアルコール、ポリビニルピロリドン等で構成されるものであることが好ましく、その厚さは、0.1μm~5μmの範囲が適当である。
 導電性層の膜厚(平均厚み)は、0.001μm~2μmであることが好ましく、0.005μm~1μmであることがより好ましい。前記平均厚みを0.001μm以上とすることで導電性の面内分布が均一とされ、2μm以下とすることで良好な透明性が得られる。
The intermediate layer is preferably made of polyvinyl alcohol, polyvinyl pyrrolidone, or the like, and the thickness is suitably in the range of 0.1 μm to 5 μm.
The film thickness (average thickness) of the conductive layer is preferably 0.001 μm to 2 μm, and more preferably 0.005 μm to 1 μm. When the average thickness is 0.001 μm or more, the in-plane conductivity distribution is uniform, and when it is 2 μm or less, good transparency is obtained.
 前述のカバーフィルムは、導電性層形成用積層体を単体として取り扱う際に、導電性層が汚染されたり、傷つけられたりすることから保護することを目的に設けられる。このカバーフィルムは、基材上に上記積層体をラミネートする前に剥離される。
 カバーフィルムとしては、例えばポリエチレンフィルム、ポリプロピレンフィルム等が好ましく、その厚さは、20μm~200μmの範囲が適当である。
The above-mentioned cover film is provided for the purpose of protecting the conductive layer from being contaminated or damaged when the conductive layer forming laminate is handled as a single body. This cover film is peeled off before the laminate is laminated on the substrate.
As the cover film, for example, a polyethylene film, a polypropylene film or the like is preferable, and the thickness is suitably in the range of 20 μm to 200 μm.
<導電性層の特性、形状>
 本発明に係る導電性部材は、表面抵抗が1,000Ω/□以下となるように調整されることが好ましい。
 上記表面抵抗は、本発明に係る導電性部材における導電性層の表面を四探針法により測定した値である。四探針法による表面抵抗の測定方法は、例えばJIS K 7194:1994(導電性プラスチックの4探針法による抵抗率試験方法)などに準拠して測定することができ、市販の表面抵抗率計を用いて、簡便に測定することができる。表面抵抗を1,000Ω/□以下とするには、導電性層に含まれる導電性繊維束の種類および含有量、並びに、マトリックスの種類および含有量の少なくとも一つを調整すればよい。
 本発明に係る導電性部材の表面抵抗は、0.1Ω/□~900Ω/□の範囲とすることが更に好ましい。
<Characteristics and shape of conductive layer>
The conductive member according to the present invention is preferably adjusted so that the surface resistance is 1,000 Ω / □ or less.
The surface resistance is a value obtained by measuring the surface of the conductive layer in the conductive member according to the present invention by the four-probe method. The surface resistance measurement method by the four-probe method can be measured in accordance with, for example, JIS K 7194: 1994 (resistivity test method by the four-probe method for conductive plastics), and a commercially available surface resistivity meter. Can be easily measured. In order to set the surface resistance to 1,000 Ω / □ or less, it is only necessary to adjust at least one of the type and content of the conductive fiber bundle included in the conductive layer and the type and content of the matrix.
The surface resistance of the conductive member according to the present invention is more preferably in the range of 0.1Ω / □ to 900Ω / □.
 本発明に係る導電性層には、カーボンナノチューブを含み、平均短軸径が90nm以下である導電性繊維束に加え、他の導電性材料、例えば、導電性微粒子などを本発明の効果を損なわない限りにおいて併用しうるが、効果の観点からは、前記したカーボンナノチューブの比率は、体積比で、50%以上が好ましく、60%以上がより好ましく、75%以上が特に好ましい。これらの導電性繊維束の割合を、以下、「導電性繊維束の比率」と呼ぶことがある。
 前記導電性繊維束の比率が、50%未満であると、導電性に寄与する導電性物質が減少し導電性が低下してしまうことがあり、同時に密なネットワークを形成できないために電圧集中が生じ、耐久性が低下してしまうことがある。
 導電性繊維束の平均短軸長さ及び平均長軸長さの測定方法は既述の通りである。
 本発明に係る導電性部材における導電性層の基材表面に垂直な方向から観察した場合の形状としては、導電性層の全領域が導電性領域である(以下、この導電性層を「非パターン化導電性層」ともいう。)第一の態様、及び導電性層が導電性領域と非導電性領域とを含む(以下、この導電性層を「パターン化導電性層」ともいう。)第二の態様の何れであっても良い。第二の態様の場合には、非導電性領域に導電性繊維束が含まれていても含まれていなくても良い。非導電性領域に導電性繊維束が含まれている場合、非導電性領域に含まれる導電性繊維束は断線される。
 第一の態様に係る導電性部材は、例えば太陽電池の透明電極として使用することができる。
 また、第二の態様に係る導電性部材は、例えばタッチパネルを作製する場合に使用される。この場合、所望の形状を有する導電性領域と非導電性領域が形成される。
The conductive layer according to the present invention includes carbon nanotubes, and in addition to the conductive fiber bundle having an average minor axis diameter of 90 nm or less, other conductive materials such as conductive fine particles are impaired in the effect of the present invention. However, from the viewpoint of the effect, the ratio of the carbon nanotubes described above is preferably 50% or more, more preferably 60% or more, and particularly preferably 75% or more in terms of volume ratio. Hereinafter, the ratio of these conductive fiber bundles may be referred to as “the ratio of conductive fiber bundles”.
If the ratio of the conductive fiber bundle is less than 50%, the conductive material contributing to the conductivity may decrease and the conductivity may decrease. At the same time, a dense network cannot be formed. And durability may be reduced.
The measurement method of the average minor axis length and the average major axis length of the conductive fiber bundle is as described above.
As the shape of the conductive member according to the present invention when observed from the direction perpendicular to the substrate surface of the conductive layer, the entire region of the conductive layer is a conductive region (hereinafter referred to as “non-conductive layer”). Also referred to as a “patterned conductive layer.”) The first embodiment and the conductive layer include a conductive region and a non-conductive region (hereinafter, this conductive layer is also referred to as a “patterned conductive layer”). Any of the second embodiment may be used. In the case of the second aspect, the conductive fiber bundle may or may not be included in the nonconductive region. When the conductive fiber bundle is included in the non-conductive region, the conductive fiber bundle included in the non-conductive region is disconnected.
The electroconductive member which concerns on a 1st aspect can be used as a transparent electrode of a solar cell, for example.
Moreover, the electroconductive member which concerns on a 2nd aspect is used, for example when producing a touch panel. In this case, a conductive region and a non-conductive region having a desired shape are formed.
〔導電性領域と非導電性領域とを含む導電性層(パターン化導電性層)〕
 パターン化導電性層は、例えば下記パターニング方法により製造される。
(1)予め非パターン化導電性層を形成しておき、この非パターン化導電性層の所望の領域に含まれる導電性繊維束に炭酸ガスレーザー、YAGレーザー等の高エネルギーのレーザー光線を照射して、導電性繊維束の一部を断線または消失させて当該所望の領域を非導電性領域とするパターニング方法。この方法は、例えば、特開2010-4496号公報に記載されている。
(2)予め形成した非パターン化導電性層上にフォトレジスト層を設け、このフォトレジスト層に所望のパターン露光および現像を行って、当該パターン状のレジストを形成したのちに、導電性繊維束をエッチング可能なエッチング液で処理するウェットプロセスか、または反応性イオンエッチングのようなドライプロセスにより、レジストで保護されていない領域の導電性層中の導電性繊維束をエッチング除去するパターニング方法。
[Conductive layer including conductive region and non-conductive region (patterned conductive layer)]
The patterned conductive layer is manufactured, for example, by the following patterning method.
(1) A non-patterned conductive layer is formed in advance, and a conductive fiber bundle included in a desired region of the non-patterned conductive layer is irradiated with a high-energy laser beam such as a carbon dioxide laser or a YAG laser. Then, a patterning method in which a part of the conductive fiber bundle is disconnected or disappeared to make the desired region a non-conductive region. This method is described in, for example, Japanese Patent Application Laid-Open No. 2010-496.
(2) A photoresist layer is provided on a previously formed non-patterned conductive layer, and a desired pattern exposure and development are performed on the photoresist layer to form the patterned resist. A patterning method of etching away conductive fiber bundles in a conductive layer in a region not protected by a resist by a wet process in which the substrate is etched with an etchable etchant or a dry process such as reactive ion etching.
 これらの(1)~(2)のパターニング方法は、基材上の非パターン化導電性層、及び、転写用基材上の非パターン化導電性層のいずれに対しても適用することができる。
 更に、上記のいずれの場合においても、上記のパターニング方法を、後述の保護層を形成する前に適用しても、保護層形成後に適用しても良い。
 なお、転写用基材上でパターン化導電性層の形成を行った場合には、パターン化導電性層が基材上に転写されることになる。
These patterning methods (1) to (2) can be applied to any of the non-patterned conductive layer on the substrate and the non-patterned conductive layer on the transfer substrate. .
Further, in any of the above cases, the above patterning method may be applied before forming a protective layer described later or after forming the protective layer.
When the patterned conductive layer is formed on the transfer substrate, the patterned conductive layer is transferred onto the substrate.
 上記パターン露光に用いる光源は、フォトレジスト組成物の感光波長域との関連で選定されるが、一般的にはg線、h線、i線、j線等の紫外線が好ましく用いられる。また、青色LEDを用いてもよい。
 パターン露光の方法にも特に制限はなく、フォトマスクを利用した面露光で行ってもよいし、レーザービーム等による走査露光で行ってもよい。この際、レンズを用いた屈折式露光でも反射鏡を用いた反射式露光でもよく、コンタクト露光、プロキシミティー露光、縮小投影露光、反射投影露光などの露光方式を用いることができる。
The light source used for the pattern exposure is selected in relation to the photosensitive wavelength range of the photoresist composition, but generally ultraviolet rays such as g-line, h-line, i-line, and j-line are preferably used. A blue LED may be used.
The pattern exposure method is not particularly limited, and may be performed by surface exposure using a photomask, or may be performed by scanning exposure using a laser beam or the like. At this time, refractive exposure using a lens or reflection exposure using a reflecting mirror may be used, and exposure methods such as contact exposure, proximity exposure, reduced projection exposure, and reflection projection exposure can be used.
 現像液は、フォトレジスト組成物に応じて、適切なものが選定される。例えば、フォトレジスト組成物がアルカリ可溶性樹脂をバインダーとして含有する光重合性組成物の場合には、アルカリ水溶液が好ましい。
 前記アルカリ溶液による付与方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば塗布、浸漬、噴霧などが挙げられる。具体的には、アルカリ溶液中に露光後の感光性層を有する基材あるいは基板を浸漬するディップ現像、浸漬中に現像液を攪拌するパドル現像、シャワーやスプレーを用いて現像液をかけ流すシャワー現像、また、アルカリ溶液を含浸させたスポンジや繊維塊状体等で感光性層表面を擦る現像方法などが挙げられる。これらの中でも、アルカリ溶液中に浸漬する方法が特に好ましい。
 前記アルカリ溶液の浸漬時間は、特に制限はなく、目的に応じて適宜選択することができるが、10秒間~5分間であることが好ましい。
An appropriate developer is selected according to the photoresist composition. For example, when the photoresist composition is a photopolymerizable composition containing an alkali-soluble resin as a binder, an alkaline aqueous solution is preferable.
There is no restriction | limiting in particular as the provision method by the said alkaline solution, According to the objective, it can select suitably, For example, application | coating, immersion, spraying etc. are mentioned. Specifically, dip development in which a substrate or substrate having a photosensitive layer after exposure in an alkaline solution is immersed, paddle development in which the developer is stirred during immersion, a shower in which the developer is poured using a shower or spray Examples include development and a development method in which the surface of the photosensitive layer is rubbed with a sponge or a fiber lump impregnated with an alkaline solution. Among these, the method of immersing in an alkaline solution is particularly preferable.
The immersion time of the alkaline solution is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 10 seconds to 5 minutes.
 更に、非パターン化導電性層上に後述の保護層を形成した後に、当該非パターン化導電性層をパターン化導電性層とする、前記の(1)~(2)以外のパターンニング方法(3)として、前記保護層上から導電膜に、前記導電性繊維束を溶解する溶解液をパターン状に付与し、該溶解液を付与された領域の導電性層中に存在する導電性繊維束を断線して非導電領域にする方法がある。
 前記導電性繊維束を溶解する溶解液としては、導電性繊維束に応じて適宜選択することができる。
Furthermore, after forming a protective layer described later on the non-patterned conductive layer, the non-patterned conductive layer is used as a patterned conductive layer. 3) As a conductive fiber bundle which exists in the conductive layer of the area | region to which the solution which melt | dissolves the said conductive fiber bundle was provided in pattern form from the said protective layer to the electrically conductive film, and this solution was provided. There is a method of making a non-conductive region by disconnecting.
The solution for dissolving the conductive fiber bundle can be appropriately selected according to the conductive fiber bundle.
 前記導電性繊維束を溶解する溶解液の粘度は、25℃で、5mPa・s~300,000mPa・sであることが好ましく、10mPa・s~150,000mPa・sであることがより好ましい。前記粘度を、5mPa・sとすることで、溶解液の拡散を所望の範囲に制御することが容易となって、導電性領域と非導電性領域との境界が明瞭なパターニングが確保され、他方、300,000mPa・s以下とすることで、溶解液の印刷を負荷なく行うことが確保されると共に、導電性繊維束の溶解に要する処理時間を所望の時間内で完了させることができる。 The viscosity of the solution for dissolving the conductive fiber bundle is preferably 5 mPa · s to 300,000 mPa · s at 25 ° C., more preferably 10 mPa · s to 150,000 mPa · s. By setting the viscosity to 5 mPa · s, it becomes easy to control the diffusion of the solution to a desired range, and the patterning with a clear boundary between the conductive region and the non-conductive region is ensured. By setting it to 300,000 mPa · s or less, it is ensured that printing of the solution is performed without load, and the processing time required for dissolving the conductive fiber bundle can be completed within a desired time.
 前記導電性繊維束を溶解する溶解液のパターン状の付与としては、溶解液をパターン状に付与できれば特に制限はなく、目的に応じて適宜選択することができ、例えばスクリーン印刷、インクジェット印刷、予めレジスト剤などによりエッチングマスクを形成しておきその上に溶解液をコーター塗布、ローラー塗布、ディッピング塗布、スプレー塗布する方法、などが挙げられる。これらの中でも、スクリーン印刷、インクジェット印刷、コーター塗布、ディップ(浸漬)塗布が特に好ましい。
 前記インクジェット印刷としては、例えばピエゾ方式及びサーマル方式のいずれも使用可能である。
 前記パターンの種類としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、文字、記号、模様、図形、配線パターン、などが挙げられる。
 前記パターンの大きさとしては、特に制限はなく、目的に応じて適宜選択することができるが、ナノサイズからミリサイズのいずれの大きさであっても構わない。
The application of the pattern of the solution for dissolving the conductive fiber bundle is not particularly limited as long as the solution can be applied in a pattern, and can be appropriately selected according to the purpose. For example, screen printing, inkjet printing, Examples thereof include a method in which an etching mask is formed with a resist agent or the like, and a solution is coated thereon by coater coating, roller coating, dipping coating or spray coating. Among these, screen printing, ink jet printing, coater coating, and dip coating are particularly preferable.
As the ink jet printing, for example, either a piezo method or a thermal method can be used.
There is no restriction | limiting in particular as a kind of said pattern, According to the objective, it can select suitably, For example, a character, a symbol, a pattern, a figure, a wiring pattern, etc. are mentioned.
There is no restriction | limiting in particular as the magnitude | size of the said pattern, Although it can select suitably according to the objective, You may be any magnitude | size from nano size to millimeter size.
 上記フォトレジスト組成物には、リソグラフィック・プロセスに好適なフォトレジスト組成物が含まれる。このようなフォトレジスト組成物のうち、特に好ましいものとして、光重合性組成物が挙げられる。このような光重合性組成物は、(a)付加重合性不飽和化合物と、(b)光に照射されるとラジカルを発生する光重合開始剤とを基本成分として含み、更に所望により(c)バインダー、(d)その他、上記成分(a)~(c)以外の添加剤を含むものである。 
 以下、これらの成分について、説明する。
The photoresist composition includes a photoresist composition suitable for a lithographic process. Among such photoresist compositions, a photopolymerizable composition is particularly preferable. Such a photopolymerizable composition contains (a) an addition-polymerizable unsaturated compound and (b) a photopolymerization initiator that generates radicals when irradiated with light as basic components. ) A binder, (d) and other additives other than the above components (a) to (c).
Hereinafter, these components will be described.
[(a)付加重合性不飽和化合物]
 成分(a)の付加重合性不飽和化合物(以下、「重合性化合物」ともいう。)は、ラジカルの存在下で付加重合反応を生じて高分子化される化合物であり、通常、分子末端に少なくとも一つの、より好ましくは二つ以上の、更に好ましくは四つ以上の、更により好ましくは六つ以上のエチレン性不飽和二重結合を有する化合物が使用される。
 これらは、例えば、モノマー、プレポリマー、即ち2量体、3量体及びオリゴマー、又はそれらの混合物などの化学的形態をもつ。
 このような重合性化合物としては、種々のものが知られており、それらは成分(a)として使用することができる。
 このうち、特に好ましい重合性化合物としては、膜強度の観点から、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリトリトールテトラ(メタ)アクリレート、ジペンタエリトリトールヘキサ(メタ)アクリレート、ジペンタエリトリトールペンタ(メタ)アクリレートが特に好ましい。
 成分(a)の含有量は、光重合性組成物の固形分の総質量を基準として、2.6質量%以上37.5質量%以下であることが好ましく、5.0質量%以上20.0質量%以下であることがより好ましい。
[(A) Addition polymerizable unsaturated compound]
The component (a) addition-polymerizable unsaturated compound (hereinafter also referred to as “polymerizable compound”) is a compound that undergoes an addition-polymerization reaction in the presence of a radical to form a polymer, and usually has a molecular end. A compound having at least one, more preferably two or more, more preferably four or more, still more preferably six or more ethylenically unsaturated double bonds is used.
These have chemical forms such as monomers, prepolymers, i.e. dimers, trimers and oligomers, or mixtures thereof.
Various kinds of such polymerizable compounds are known, and they can be used as the component (a).
Among these, particularly preferred polymerizable compounds are trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) from the viewpoint of film strength. Acrylate is particularly preferred.
The content of the component (a) is preferably 2.6% by mass or more and 37.5% by mass or less, and 5.0% by mass or more and 20.50% by mass or less based on the total mass of the solid content of the photopolymerizable composition. It is more preferably 0% by mass or less.
[(b)光重合開始剤]
 成分(b)の光重合開始剤は、光に照射されるとラジカルを発生する化合物である。このよう光重合開始剤には、光照射により、最終的には酸となる酸ラジカルを発生する化合物及びその他のラジカルを発生する化合物などが挙げられる。以下、前者を「光酸発生剤」と呼び、後者を「光ラジカル発生剤」と呼ぶ。
-光酸発生剤-
 光酸発生剤としては、光カチオン重合の光開始剤、光ラジカル重合の光開始剤、色素類の光消色剤、光変色剤、あるいはマイクロレジスト等に使用されている活性光線又は放射線の照射により酸ラジカルを発生する公知の化合物及びそれらの混合物を適宜に選択して使用することができる。
[(B) Photopolymerization initiator]
The photopolymerization initiator of component (b) is a compound that generates radicals when irradiated with light. Examples of such photopolymerization initiators include compounds that generate acid radicals that ultimately become acids upon irradiation with light, and compounds that generate other radicals. Hereinafter, the former is referred to as “photoacid generator”, and the latter is referred to as “photoradical generator”.
-Photoacid generator-
Photoacid generator includes photoinitiator for photocationic polymerization, photoinitiator for photoradical polymerization, photodecoloring agent for dyes, photochromic agent, irradiation of actinic ray or radiation used for micro resist, etc. Thus, known compounds that generate acid radicals and mixtures thereof can be appropriately selected and used.
 このような光酸発生剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ジ-又はトリ-ハロメチル基を少なくとも一つ有するトリアジン又は1,3,4-オキサジアゾール、ナフトキノン-1,2-ジアジド-4-スルホニルハライド、ジアゾニウム塩、ホスホニウム塩、スルホニウム塩、ヨードニウム塩、イミドスルホネート、オキシムスルホネート、ジアゾジスルホン、ジスルホン、o-ニトロベンジルスルホネートなどが挙げられる。これらの中でも、スルホン酸を発生する化合物であるイミドスルホネート、オキシムスルホネート、o-ニトロベンジルスルホネートが特に好ましい。 Such a photoacid generator is not particularly limited and may be appropriately selected depending on the intended purpose. For example, triazine or 1,3,4-oxadi having at least one di- or tri-halomethyl group may be selected. Examples thereof include azole, naphthoquinone-1,2-diazido-4-sulfonyl halide, diazonium salt, phosphonium salt, sulfonium salt, iodonium salt, imide sulfonate, oxime sulfonate, diazodisulfone, disulfone, and o-nitrobenzyl sulfonate. Among these, imide sulfonate, oxime sulfonate, and o-nitrobenzyl sulfonate, which are compounds that generate sulfonic acid, are particularly preferable.
-光ラジカル発生剤-
 光ラジカル発生剤は、光を直接吸収し、又は光増感されて分解反応若しくは水素引き抜き反応を起こし、ラジカルを発生する機能を有する化合物である。光ラジカル発生剤としては、波長300nm~500nmの領域に吸収を有するものであることが好ましい。
 このような光ラジカル発生剤としては、多数の化合物が知られており、例えば特開2008-268884号公報に記載されているようなカルボニル化合物、ケタール化合物、ベンゾイン化合物、アクリジン化合物、有機過酸化化合物、アゾ化合物、クマリン化合物、アジド化合物、メタロセン化合物、ヘキサアリールビイミダゾール化合物、有機ホウ酸化合物、ジスルホン酸化合物、オキシムエステル化合物、アシルホスフィン(オキシド)化合物、が挙げられる。これらは目的に応じて適宜選択することができる。これらの中でも、ベンゾフェノン化合物、アセトフェノン化合物、ヘキサアリールビイミダゾール化合物、オキシムエステル化合物、及びアシルホスフィン(オキシド)化合物が露光感度の観点から特に好ましい。
-Photoradical generator-
The photoradical generator is a compound that has a function of generating radicals by directly absorbing light or being photosensitized to cause a decomposition reaction or a hydrogen abstraction reaction. The photo radical generator is preferably one having absorption in a wavelength region of 300 nm to 500 nm.
Many compounds are known as such photo radical generators. For example, carbonyl compounds, ketal compounds, benzoin compounds, acridine compounds, organic peroxide compounds as described in JP-A-2008-268884 are known. Azo compounds, coumarin compounds, azide compounds, metallocene compounds, hexaarylbiimidazole compounds, organic boric acid compounds, disulfonic acid compounds, oxime ester compounds, and acylphosphine (oxide) compounds. These can be appropriately selected according to the purpose. Among these, benzophenone compounds, acetophenone compounds, hexaarylbiimidazole compounds, oxime ester compounds, and acylphosphine (oxide) compounds are particularly preferable from the viewpoint of exposure sensitivity.
 成分(b)の光重合開始剤は、1種単独で用いてもよく、2種以上を併用してもよく、その含有量は、光重合性組成物の固形分の総質量を基準として、0.1質量%~50質量%であることが好ましく、0.5質量%~30質量%がより好ましく、1質量%~20質量%が更に好ましい。このような数値範囲において、後述の導電性領域と非導電性領域とを含むパターンを導電性層に形成する場合に、良好な感度とパターン形成性が得られる。 The photopolymerization initiator of component (b) may be used alone or in combination of two or more, and the content thereof is based on the total mass of the solid content of the photopolymerizable composition. The content is preferably 0.1% by mass to 50% by mass, more preferably 0.5% by mass to 30% by mass, and still more preferably 1% by mass to 20% by mass. In such a numerical range, when a pattern including a conductive region and a non-conductive region described later is formed on the conductive layer, good sensitivity and pattern formability can be obtained.
[(c)バインダー]
 バインダーとしては、線状有機高分子重合体であって、分子(好ましくは、アクリル系共重合体、スチレン系共重合体を主鎖とする分子)中に少なくとも1つのアルカリ可溶性を促進する基(例えばカルボキシル基、リン酸基、スルホン酸基など)を有するアルカリ可溶性樹脂の中から適宜選択することができる。
 これらの中でも、有機溶剤に可溶でアルカリ水溶液に可溶なものが好ましく、また、酸解離性基を有し、酸の作用により酸解離性基が解離した時にアルカリ可溶となるものが特に好ましい。
 ここで、前記酸解離性基とは、酸の存在下で解離することが可能な官能基を表す。
 前記バインダーの製造には、例えば公知のラジカル重合法による方法を適用することができる。前記ラジカル重合法でアルカリ可溶性樹脂を製造する際の温度、圧力、ラジカル開始剤の種類及びその量、溶媒の種類等々の重合条件は、当業者において容易に設定可能であり、実験的に条件を定めることができる。
[(C) Binder]
The binder is a linear organic high molecular polymer, and at least one group that promotes alkali solubility in a molecule (preferably a molecule having an acrylic copolymer or a styrene copolymer as a main chain) ( For example, it can be appropriately selected from alkali-soluble resins having a carboxyl group, a phosphoric acid group, a sulfonic acid group, and the like.
Among these, those that are soluble in an organic solvent and soluble in an aqueous alkali solution are preferable, and those that have an acid-dissociable group and become alkali-soluble when the acid-dissociable group is dissociated by the action of an acid are particularly preferable. preferable.
Here, the acid dissociable group represents a functional group that can dissociate in the presence of an acid.
For production of the binder, for example, a known radical polymerization method can be applied. Polymerization conditions such as temperature, pressure, type and amount of radical initiator, type of solvent, etc. when producing an alkali-soluble resin by the radical polymerization method can be easily set by those skilled in the art, and the conditions are determined experimentally. Can be determined.
 前記線状有機高分子重合体としては、側鎖にカルボン酸を有するポリマーが好ましい。
 前記側鎖にカルボン酸を有するポリマーとしては、例えば特開昭59-44615号、特公昭54-34327号、特公昭58-12577号、特公昭54-25957号、特開昭59-53836号、特開昭59-71048号の各公報に記載されているような、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体等、並びに側鎖にカルボン酸を有する酸性セルロース誘導体、水酸基を有するポリマーに酸無水物を付加させたもの等であり、更に側鎖に(メタ)アクリロイル基を有する高分子重合体も好ましいものとして挙げられる。
As the linear organic polymer, a polymer having a carboxylic acid in the side chain is preferable.
Examples of the polymer having a carboxylic acid in the side chain include, for example, JP-A-59-44615, JP-B-54-34327, JP-B-58-12777, JP-B-54-25957, JP-A-59-53836, As described in JP-A-59-71048, methacrylic acid copolymer, acrylic acid copolymer, itaconic acid copolymer, crotonic acid copolymer, maleic acid copolymer, partial ester A maleic acid copolymer, etc., an acidic cellulose derivative having a carboxylic acid in the side chain, a polymer having a hydroxyl group with an acid anhydride added, and a polymer having a (meth) acryloyl group in the side chain Polymers are also preferred.
 これらの中でも、ベンジル(メタ)アクリレート/(メタ)アクリル酸共重合体、ベンジル(メタ)アクリレート/(メタ)アクリル酸/他のモノマーから形成される多元共重合体が特に好ましい。
 更に、側鎖に(メタ)アクリロイル基を有する高分子重合体や(メタ)アクリル酸/グリシジル(メタ)アクリレート/他のモノマーから形成される多元共重合体も有用なものとして挙げられる。該ポリマーは任意の量で混合して用いることができる。
 前記アルカリ可溶性樹脂における具体的な構成単位としては、(メタ)アクリル酸と、該(メタ)アクリル酸と共重合可能な他の単量体とが好適である。
Among these, benzyl (meth) acrylate / (meth) acrylic acid copolymers and multi-component copolymers formed from benzyl (meth) acrylate / (meth) acrylic acid / other monomers are particularly preferable.
Furthermore, a high molecular polymer having a (meth) acryloyl group in the side chain and a multi-component copolymer formed from (meth) acrylic acid / glycidyl (meth) acrylate / other monomers are also useful. The polymer can be used by mixing in an arbitrary amount.
As specific structural units in the alkali-soluble resin, (meth) acrylic acid and other monomers copolymerizable with the (meth) acrylic acid are suitable.
 前記バインダーの重量平均分子量は、アルカリ溶解速度、膜物性等の点から、1,000~500,000が好ましく、3,000~300,000がより好ましく、5,000~200,000が更に好ましい。
 ここで、前記重量平均分子量は、ゲルパーミエイションクロマトグラフィー法により測定し、標準ポリスチレン検量線を用いて求めることができる。
 成分(c)のバインダーの含有量は、前述の光重合性組成物の固形分の総質量を基準として、5質量%~90質量%であることが好ましく、10質量%~85質量%がより好ましく、20質量%~80質量%が更に好ましい。
The weight average molecular weight of the binder is preferably from 1,000 to 500,000, more preferably from 3,000 to 300,000, and even more preferably from 5,000 to 200,000, from the viewpoints of alkali dissolution rate, film physical properties and the like. .
Here, the weight average molecular weight is measured by gel permeation chromatography and can be determined using a standard polystyrene calibration curve.
The content of the component (c) binder is preferably 5% by mass to 90% by mass, more preferably 10% by mass to 85% by mass, based on the total mass of the solid content of the photopolymerizable composition. Preferably, 20% by mass to 80% by mass is more preferable.
[(d)その他、上記成分(a)~(c)以外の添加剤]
 上記成分(a)~(c)以外のその他の添加剤としては、例えば、連鎖移動剤、架橋剤、分散剤、溶媒、界面活性剤、酸化防止剤、硫化防止剤、金属腐食防止剤、粘度調整剤、防腐剤等の各種の添加剤などが挙げられる。
[(D) Other additives other than the above components (a) to (c)]
Examples of other additives other than the above components (a) to (c) include, for example, a chain transfer agent, a crosslinking agent, a dispersant, a solvent, a surfactant, an antioxidant, an antisulfurizing agent, a metal corrosion inhibitor, a viscosity. Various additives such as regulators and preservatives are listed.
 前述の導電性層を基材上に形成する方法としては一般的な塗布方法で行うことができ、特に制限はなく、目的に応じて適宜選択することができ、例えばロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法、などが挙げられる。 A method for forming the conductive layer on the substrate can be performed by a general coating method, and is not particularly limited and can be appropriately selected according to the purpose. For example, a roll coating method or a bar coating method. Dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method, and the like.
 本発明に係る導電性部材は、少なくとも2本のカーボンナノチューブを含む束で構成され且つ当該束の平均短軸径が90nm以下の導電性繊維束と、珪素酸化物とを含む導電性層を有することにより、導電性に優れ、且つ透明度及び膜強度に優れるという効果を奏する。特に、珪素酸化物が前述の特定アルコキシド化合物を加水分解及び重縮合して得られるゾルゲル硬化物で構成されるものである場合には、上記のカーボンナノチューブの束を構成しているカーボンナノチューブと珪素酸化物とが共有結合によって結合しているので、打鍵操作等の物理的な衝撃が導電性層に加えられた場合においても、導電性繊維束が断線することがなく、その結果として、膜強度が高い導電性層が得られているものと推定される。 The conductive member according to the present invention includes a conductive fiber bundle that is formed of a bundle including at least two carbon nanotubes and that includes a conductive fiber bundle having an average minor axis diameter of 90 nm or less and silicon oxide. By this, it is excellent in electroconductivity and there exists an effect that it is excellent in transparency and film | membrane intensity | strength. In particular, when the silicon oxide is composed of a sol-gel cured product obtained by hydrolysis and polycondensation of the above-mentioned specific alkoxide compound, the carbon nanotube and silicon constituting the bundle of carbon nanotubes described above Since the oxide and the oxide are bonded by a covalent bond, even when a physical impact such as a keystroke operation is applied to the conductive layer, the conductive fiber bundle does not break, and as a result, the film strength It is presumed that a high conductive layer is obtained.
 本発明に係る導電性部材は、導電性層のキズ及び磨耗に対する耐久性に優れ、併せて表面抵抗が低いので、例えばタッチパネル、ディスプレイ用電極、電磁波シールド、有機ELディスプレイ用電極、無機ELディスプレイ用電極、電子ペーパー、フレキシブルディスプレイ用電極、集積型太陽電池、液晶表示装置、タッチパネル機能付表示装置、その他の各種デバイスなどに幅広く適用される。これらの中でも、タッチパネルおよび太陽電池への適用が特に好ましい。 Since the conductive member according to the present invention has excellent durability against scratches and abrasion of the conductive layer and has low surface resistance, for example, a touch panel, a display electrode, an electromagnetic wave shield, an organic EL display electrode, and an inorganic EL display It is widely applied to electrodes, electronic paper, electrodes for flexible displays, integrated solar cells, liquid crystal display devices, display devices with a touch panel function, and other various devices. Among these, application to a touch panel and a solar cell is particularly preferable.
<<タッチパネル>>
 本発明に係る導電性部材は、例えば、タッチパネルに適用でき、表面型静電容量方式、投影型静電容量方式、抵抗膜式などの各種タッチパネルに利用される。ここで、タッチパネルとは、いわゆるタッチセンサ及びタッチパッドを含む。
 前記タッチパネルにおけるタッチパネルセンサー電極部の層構成は、2枚の透明電極を貼合する貼合方式、1枚の基材の両面に透明電極を具備する方式、片面ジャンパーあるいはスルーホール方式あるいは片面積層方式のいずれでもよい。
 前記表面型静電容量方式タッチパネルについては、例えば特表2007-533044号公報に記載されている。
<< Touch panel >>
The conductive member according to the present invention can be applied to, for example, a touch panel, and is used for various touch panels such as a surface capacitive type, a projected capacitive type, and a resistive film type. Here, the touch panel includes so-called touch sensors and touch pads.
The layer structure of the touch panel sensor electrode part in the touch panel is a bonding method in which two transparent electrodes are bonded, a method in which transparent electrodes are provided on both surfaces of a single substrate, a single-sided jumper or a through-hole method, or a single-area layer method. Either of these may be used.
The surface capacitive touch panel is described in, for example, JP-T-2007-533044.
<<太陽電池>>
 本発明に係る導電性部材は、集積型太陽電池(以下、太陽電池デバイスと称することもある)における透明電極として利用できる。
 集積型太陽電池としては、特に制限はなく、太陽電池デバイスとして一般的に用いられるものを使用することができる。例えば、単結晶シリコン系太陽電池デバイス、多結晶シリコン系太陽電池デバイス、シングル接合型、又はタンデム構造型等で構成されるアモルファスシリコン系太陽電池デバイス、ガリウムヒ素(GaAs)やインジウム燐(InP)等のIII-V族化合物半導体太陽電池デバイス、カドミウムテルル(CdTe)等のII-VI族化合物半導体太陽電池デバイス、銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI-III-VI族化合物半導体太陽電池デバイス、色素増感型太陽電池デバイス、有機太陽電池デバイスなどが挙げられる。これらの中でも、本発明においては、前記太陽電池デバイスが、タンデム構造型等で構成されるアモルファスシリコン系太陽電池デバイス、及び銅/インジウム/セレン系(いわゆる、CIS系)、銅/インジウム/ガリウム/セレン系(いわゆる、CIGS系)、銅/インジウム/ガリウム/セレン/硫黄系(いわゆる、CIGSS系)等のI-III-VI族化合物半導体太陽電池デバイスであることが好ましい。
<< Solar cell >>
The conductive member according to the present invention can be used as a transparent electrode in an integrated solar cell (hereinafter sometimes referred to as a solar cell device).
There is no restriction | limiting in particular as an integrated solar cell, What is generally used as a solar cell device can be used. For example, a single crystal silicon solar cell device, a polycrystalline silicon solar cell device, an amorphous silicon solar cell device composed of a single junction type or a tandem structure type, gallium arsenide (GaAs), indium phosphorus (InP), etc. Group III-V compound semiconductor solar cell devices, II-VI compound semiconductor solar cell devices such as cadmium telluride (CdTe), copper / indium / selenium system (so-called CIS system), copper / indium / gallium / selenium system ( So-called CIGS-based), copper / indium / gallium / selenium / sulfur-based (so-called CIGS-based) I-III-VI group compound semiconductor solar cell devices, dye-sensitized solar cell devices, organic solar cell devices, etc. Can be mentioned. Among these, in the present invention, the solar cell device is an amorphous silicon solar cell device constituted by a tandem structure type or the like, a copper / indium / selenium system (so-called CIS system), copper / indium / gallium / A selenium-based (so-called CIGS-based), copper / indium / gallium / selenium / sulfur-based (so-called CIGS-based) I-III-VI group compound semiconductor solar cell device is preferable.
 本発明に係る導電性部材は、前記全ての太陽電池デバイスに関して適用できる。導電性部材は、太陽電池デバイスのどの部分に含まれてもよいが、光電変換層に隣接して導電性層または保護層が配置されていることがいることが好ましい。光電変換層との位置関係に関しては下記の構成が好ましいが、これに限定されるものではない。また、下記に記した構成は太陽電池デバイスを構成する全ての部分を記載しておらず、前記透明導電層の位置関係が分かる範囲の記載としている。ここで、[ ]で括られた構成が、本発明に係る導電性部材に相当する。
(A)[基材-導電性層]-光電変換層
(B)[基材-導電性層]-光電変換層-[導電性層-基材]
(C)基板-電極-光電変換層-[導電性層-基材]
(D)裏面電極-光電変換層-[導電性層-基材]
 このような太陽電池の詳細については、例えば特開2010-87105号公報に記載されている。
The conductive member according to the present invention can be applied to all the solar cell devices. The conductive member may be included in any part of the solar cell device, but it is preferable that a conductive layer or a protective layer is disposed adjacent to the photoelectric conversion layer. Although the following structure is preferable regarding the positional relationship with a photoelectric converting layer, it is not limited to this. Moreover, the structure described below does not describe all the parts that constitute the solar cell device, but describes the range in which the positional relationship of the transparent conductive layer can be understood. Here, the configuration surrounded by [] corresponds to the conductive member according to the present invention.
(A) [base material-conductive layer] -photoelectric conversion layer (B) [base material-conductive layer] -photoelectric conversion layer- [conductive layer-base material]
(C) Substrate-electrode-photoelectric conversion layer- [conductive layer-base material]
(D) Back electrode-photoelectric conversion layer- [conductive layer-base material]
Details of such a solar cell are described in, for example, Japanese Patent Application Laid-Open No. 2010-87105.
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。なお、実施例中の含有率としての「%」、及び、「部」は、いずれも質量基準に基づくものである。
 以下の例において、カーボンナノチューブの束の平均短軸径は、以下のようにして測定した。
Examples of the present invention will be described below, but the present invention is not limited to these examples. In the examples, “%” and “parts” as the contents are based on mass.
In the following examples, the average minor axis diameter of a bundle of carbon nanotubes was measured as follows.
<平均短軸径の測定>
 カーボンナノチューブの分散液をガラス基板上に塗布、乾燥して、100nmの厚みのサンプルを作製し、このサンプルのTEM(透過型電子顕微鏡)で10,000倍に拡大して撮影した写真で観察される1本当たりの繊維の幅を任意の100箇所で測定し、その平均値を算出した。
<Measurement of average minor axis diameter>
A carbon nanotube dispersion is applied to a glass substrate and dried to produce a sample with a thickness of 100 nm. This sample is observed with a TEM (transmission electron microscope) photographed at a magnification of 10,000 times. The width of each fiber was measured at 100 arbitrary points, and the average value was calculated.
<実施例1> 
(ステップ1:カーボンナノチューブ分散液の調製)
シングルウォールカーボンナノチューブ(ILJIN社製、1本当たりのカーボンナノチューブの外径は1.4nm)0.1gを、下記表1に記載の分散剤0.5gの水溶液(直前に窒素バブリング1時間行ったもの。120mL)中に、室温下、添加した。得られた溶液を、窒素雰囲気下メカニカルホモジナイザー(IKA社製、ウルトラタラックス)にて攪拌速度30,000rpm、室温にて4時間分散させた。次に、バス式超音波分散機(ブランソン製5510)で室温にて窒素雰囲気下1時間分散処理を行い、カーボンナノチューブが水溶液中に均一に分散された分散液A~Cを得た。
 表1において、略号で記載された分散剤は下記の通りである。
・SC:コール酸ナトリウム(和光純薬製)
・SDBS:ドデシルベンゼンスルホン酸ナトリウム(東京化成製)
・SDOC:デオキシコール酸ナトリウム(和光純薬製)
<Example 1>
(Step 1: Preparation of carbon nanotube dispersion)
0.1 g of single-walled carbon nanotubes (ILJIN, each carbon nanotube has an outer diameter of 1.4 nm) and an aqueous solution of 0.5 g of the dispersant shown in Table 1 below (nitrogen bubbling was performed for 1 hour immediately before). In 120 mL) at room temperature. The obtained solution was dispersed for 4 hours at room temperature with a mechanical homogenizer (manufactured by IKA, Ultra Tarrax) under a nitrogen atmosphere at a stirring speed of 30,000 rpm. Next, a bath type ultrasonic disperser (Branson 5510) was used for dispersion treatment at room temperature for 1 hour in a nitrogen atmosphere to obtain dispersions A to C in which carbon nanotubes were uniformly dispersed in an aqueous solution.
In Table 1, the dispersants indicated by abbreviations are as follows.
・ SC: Sodium cholate (Wako Pure Chemical Industries)
SDBS: sodium dodecylbenzenesulfonate (manufactured by Tokyo Chemical Industry)
・ SDOC: Sodium deoxycholate (Wako Pure Chemical Industries)
 得られたカーボンナノチューブ分散液を、遠心分離処理(トミー製MX-305、16,000g、1時間)を行い上澄みを得た。得られた上澄み溶液について、吸光度測定(島津製可視吸収スペクトルスコピーUV3100、14倍に希釈)、TEM観察(分散液を凍結させて10,000倍にて観察)を行った。吸光度からカーボンナノチューブの分散液中における分散濃度を換算した。TEM観察から平均短軸径を求めた。得られた結果を表1に示す。表1より得られた分散液は、高い分散濃度を有し、かつ平均短軸径は10nmであることが確認できた The obtained carbon nanotube dispersion was centrifuged (Tommy MX-305, 16,000 g, 1 hour) to obtain a supernatant. The obtained supernatant solution was subjected to absorbance measurement (Shimadzu visible absorption spectrum copy UV3100, diluted 14-fold) and TEM observation (freezing the dispersion and observing at 10,000-fold). The dispersion concentration in the carbon nanotube dispersion was converted from the absorbance. The average minor axis diameter was determined from TEM observation. The obtained results are shown in Table 1. It was confirmed that the dispersion obtained from Table 1 had a high dispersion concentration and the average minor axis diameter was 10 nm.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
(ステップ2:カーボンナノチューブ薄膜の成膜) 
 上記で得られた分散液A~Cの各々を、支持体としてのガラス基板(表面をアミノプロピルトリエトキシランを用いて処理した)の表面に、実施例1で作製した分散液A~Cを塗布し、乾燥してから、一対のローラのニップ間を通して、それぞれ試料1~3を得た。塗布手段として、エクストルージョンタイプの塗布ヘッドを用いたダイコータを使用した。塗布液の湿潤状態の厚さは、透過率85%(支持体の吸収は除く)になるように調整した。乾燥手段としては、熱風循環式の乾燥装置を用いた。熱風の温度は100℃とした。ニップローラとして、直径が200mmで、表面にゴム硬度が90のシリコンゴムの層を形成した一対のローラを使用した。
 次に、上記試料1~3を、濃硝酸中に室温下1時間浸漬させた後、メタノール洗浄を行い、乾燥を行い(以下、この処理を「ドープ処理」ともいう)、それぞれ試料4~6を得た。
(Step 2: Carbon nanotube thin film formation)
Each of the dispersions A to C obtained above was dispersed on the surface of a glass substrate as a support (the surface was treated with aminopropyltriethoxylane). After coating and drying, samples 1 to 3 were obtained through the nip between a pair of rollers. As a coating means, a die coater using an extrusion type coating head was used. The wet thickness of the coating solution was adjusted so that the transmittance was 85% (excluding absorption of the support). As a drying means, a hot air circulation type drying apparatus was used. The temperature of the hot air was 100 ° C. As the nip roller, a pair of rollers having a diameter of 200 mm and a silicon rubber layer having a rubber hardness of 90 formed on the surface was used.
Next, after immersing Samples 1 to 3 in concentrated nitric acid at room temperature for 1 hour, washing with methanol and drying (hereinafter, this treatment is also referred to as “dope treatment”), Samples 4 to 6 were used. Got.
 試料1~6のカーボンナノチューブ薄膜について、透過率、シート抵抗(三菱化学製ロレスタ)、ヘイズ(ヘイズメーター)及び平均短軸径を測定した。なお、平均短軸径はTEM観察から求めた。結果を表2に示す。 For the carbon nanotube thin films of Samples 1 to 6, the transmittance, sheet resistance (Mitsubishi Chemical Loresta), haze (haze meter), and average minor axis diameter were measured. The average minor axis diameter was determined from TEM observation. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
 表2の結果から、ドープ処理していない場合に比べて、ドープ処理することにより、シート抵抗が低くなり、且つ、ヘイズが少なくなる一方、平均短軸径は変化がないことが分かる。 From the results shown in Table 2, it can be seen that the sheet resistance is reduced and the haze is reduced while the average minor axis diameter is not changed by doping as compared with the case where the doping is not performed.
(ステップ3:ゾルゲル溶液の調製、並びに塗布及び硬化)
 以下の組成から形成されるゾルゲル溶液Aを調製した。
  グリシジルトリメトキシシラン 4g
  テトラエトキシシラン     6g
  Al(acac)     40mg
  酢酸           20mg
  水            30ml
  (上記の「acac」はアセチルアセトナート配位子を意味する。)
 試料1~6のカーボンナノチューブ層の上に、上記ゾルゲル溶液Aを塗布し、乾燥して、それぞれ試料11~16を得た。塗布手段として、エクストルージョンタイプの塗布ヘッドを用いたダイコータを使用した。乾燥手段としては、熱風循環式の乾燥装置を用いた。熱風の温度は100℃とした。試料11~16のカーボンナノチューブ及び珪素酸化物を含む導電性層の透過率、シート抵抗、ヘイズ、及び平均短軸径を試料1の場合と同様にして測定した結果を表3に示す。
(Step 3: Preparation of sol-gel solution, application and curing)
A sol-gel solution A formed from the following composition was prepared.
Glycidyltrimethoxysilane 4g
Tetraethoxysilane 6g
Al (acac) 3 40mg
Acetic acid 20mg
30 ml of water
(The above “acac” means an acetylacetonate ligand.)
The sol-gel solution A was applied on the carbon nanotube layers of Samples 1 to 6 and dried to obtain Samples 11 to 16, respectively. As a coating means, a die coater using an extrusion type coating head was used. As a drying means, a hot air circulation type drying apparatus was used. The temperature of the hot air was 100 ° C. Table 3 shows the results of measuring the transmittance, sheet resistance, haze, and average minor axis diameter of the conductive layers containing carbon nanotubes and silicon oxide of Samples 11 to 16 in the same manner as in Sample 1.
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000003

 
 表3と前述の表2の結果から、試料1~6に比べて、本発明による試料11~16は、透過率、シート抵抗およびヘイズが改善されていることが分かる。そしてカーボンナノチューブの平均短軸径については、変化がないことが分かる。 From the results of Table 3 and Table 2 described above, it can be seen that Samples 11 to 16 according to the present invention have improved transmittance, sheet resistance and haze as compared to Samples 1 to 6. And it turns out that there is no change about the average minor axis diameter of a carbon nanotube.
・耐熱性の評価
 上記の試料4(珪素酸化物を含まないカーボンナノチューブ層を有する)及び試料14(カーボンナノチューブと珪素酸化物を含む導電性層を有する)について、100℃で3時間加熱する耐熱テストを行い、その前後における透過率、シート抵抗及びヘイズを試料1の場合と同様にして測定し、その結果を表4に示した。
-Evaluation of heat resistance The above-mentioned sample 4 (having a carbon nanotube layer not containing silicon oxide) and sample 14 (having a conductive layer containing carbon nanotubes and silicon oxide) were heated at 100 ° C for 3 hours. Tests were conducted, and the transmittance, sheet resistance, and haze before and after the measurement were measured in the same manner as in the case of Sample 1, and the results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000004

 
 本発明による試料14は、耐熱テストの前後でシート抵抗、透過率及びヘイズのいずれについても変動が少ないか又は変動がなく、高い耐熱性を示すことが理解できる。
・膜強度の評価
 上記の試料4~6(いずれも珪素酸化物を含まないカーボンナノチューブ層を有する)及び試料14~16(カーボンナノチューブと珪素酸化物を含む導電性層を有する)の各サンプルについて、膜硬度を測定するため、硬度計(島津製硬度計)にて鉛筆硬度を測定した。結果を表5に示す。
It can be understood that the sample 14 according to the present invention shows high heat resistance with little or no change in sheet resistance, transmittance, and haze before and after the heat test.
・ Evaluation of film strength Regarding each sample of the above samples 4 to 6 (all having a carbon nanotube layer containing no silicon oxide) and samples 14 to 16 (having a conductive layer containing carbon nanotubes and silicon oxide) In order to measure the film hardness, the pencil hardness was measured with a hardness meter (Shimadzu hardness meter). The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005

 
Figure JPOXMLDOC01-appb-T000005

 
 本発明による試料14~16の導電性部材は、高い膜強度を示すことが分かる。 It can be seen that the conductive members of Samples 14 to 16 according to the present invention exhibit high film strength.
<比較例1>
 以下の組成から形成されるゾルゲル溶液Bを調製した。
  テトラエトキシシラン 10g
  Al(acac)  40mg
  酢酸   20mg
  水     30ml
 前述の試料1~6のカーボンナノチューブ層の上に、前述の試料11の作製の場合と同様に、上記ゾルゲル溶液Bを塗布し、乾燥して、それぞれ試料C11~C16を得た。これらの試料C11~C16について、透過率、シート抵抗、ヘイズ、及び平均短軸径を測定し、その結果を表6に示した。
<Comparative Example 1>
A sol-gel solution B formed from the following composition was prepared.
Tetraethoxysilane 10g
Al (acac) 3 40mg
Acetic acid 20mg
30 ml of water
The sol-gel solution B was applied on the carbon nanotube layers of the samples 1 to 6 and dried as in the case of the preparation of the sample 11, and samples C11 to C16 were obtained, respectively. For these samples C11 to C16, the transmittance, sheet resistance, haze, and average minor axis diameter were measured, and the results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000006

 
 表6の結果から、一般式(I)で示される化合物に該当しないアルコキシシランを用いて作製された珪素酸化物をカーボンナノチューブと共に含む導電性層の場合には、カーボンナノチューブの平均短軸径が90nmを超えてしまい、透過率が低くヘイズが高い導電性部材しか得られないことがわかった。
・膜強度の評価
 上記で得られた試料C14~C16について、前述と同様にして鉛筆硬度を測定し、その結果を表7に示した。
From the results shown in Table 6, in the case of a conductive layer containing silicon oxide produced with an alkoxysilane not corresponding to the compound represented by the general formula (I) together with carbon nanotubes, the average minor axis diameter of the carbon nanotubes is It exceeded 90 nm and it turned out that only the electroconductive member with a low transmittance | permeability and a high haze is obtained.
Evaluation of film strength Pencil hardness was measured in the same manner as described above for the samples C14 to C16 obtained above, and the results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007

 
Figure JPOXMLDOC01-appb-T000007

 
 表7の結果から、試料C14~C16は膜強度が低いことが分かる。
・耐熱性の評価
 試料C14について、前述と同様の耐熱テストを行い、その前後における透過率、シート抵抗およびヘイズの結果を表8に示す。
From the results in Table 7, it can be seen that Samples C14 to C16 have low film strength.
-Evaluation of heat resistance About the sample C14, the heat resistance test similar to the above was done, and the result of the transmittance | permeability, sheet resistance, and haze before and behind is shown in Table 8.
Figure JPOXMLDOC01-appb-T000008

 
Figure JPOXMLDOC01-appb-T000008

 
<比較例2>
  以下の組成から形成されるゾルゲル溶液Cを調製した。
  メチルシリケート(コルコート社製、固形分53%) 6g
  メチルトリメトキシシラン            10g
  Al(acac)                40mg
  酢酸                       20mg
  水                        30ml
 前述の試料1及び4のカーボンナノチューブ層の上に、前述の試料11の作製の場合と同様に、上記ゾルゲル溶液Cを塗布し、硬化して、それぞれ試料C17及びC18を得た。これらの試料C17及びC18について、透過率、シート抵抗及びヘイズを測定し、その結果を表9に示した。
<Comparative example 2>
A sol-gel solution C formed from the following composition was prepared.
Methyl silicate (Colcoat Co., solid content 53%) 6g
Methyltrimethoxysilane 10g
Al (acac) 3 40mg
Acetic acid 20mg
30 ml of water
On the carbon nanotube layers of Samples 1 and 4, the sol-gel solution C was applied and cured in the same manner as in the preparation of Sample 11, and Samples C17 and C18 were obtained, respectively. For these samples C17 and C18, transmittance, sheet resistance and haze were measured, and the results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000009

 
Figure JPOXMLDOC01-appb-T000009

 
 表9の結果から、一般式(I)で示される化合物に該当しないメチルシリケートとメチルトリメトキシシランを用いて作製された珪素酸化物をカーボンナノチューブと共に含む導電性層の場合には、透過率が低くヘイズが高い導電性部材しか得られないことがわかった。
・膜強度の評価
 上記試料C17について、前述と同様にして鉛筆硬度を測定したところ、2Bであった。試料C17は膜強度が低いことが分かる。
From the results shown in Table 9, in the case of a conductive layer containing silicon oxide produced using methyl silicate and methyltrimethoxysilane not corresponding to the compound represented by the general formula (I) together with carbon nanotubes, the transmittance is It was found that only a conductive member having a low haze and a high haze can be obtained.
-Evaluation of film | membrane strength About the said sample C17, it was 2B when the pencil hardness was measured like the above. It can be seen that Sample C17 has low film strength.
 比較例1及び2の結果から、一般式(I)で示される化合物には該当しないアルコキシシランを用いて作製された珪素酸化物をカーボンナノチューブと共に含む導電性層の場合には、透過率、ヘイズ、耐熱性及び膜強度のいずれもが劣る導電性部材しか得られないことが分かる。このようにグリシジル基を有する化合物を添加するとカーボンナノチューブ薄膜の性能が向上する効果について、詳細は不明ではあるが、グリシジル基とカーボンナノチューブ中に存在するごくわずかなヒドロキシ基とが反応することにより、カーボンナノチューブとゾルゲル膜との相溶性が向上し、さらには、支持体との相互作用が増加することで、カーボンナノチューブ薄膜と支持体との密着性が向上し膜強度が向上するものと考える。耐熱性が向上する理由については、カーボンナノチューブとゾルゲル膜との相溶性が向上した結果と考えることができる。 From the results of Comparative Examples 1 and 2, in the case of a conductive layer containing a silicon oxide produced using an alkoxysilane not corresponding to the compound represented by the general formula (I) together with carbon nanotubes, transmittance, haze It can be seen that only conductive members with poor heat resistance and film strength can be obtained. As for the effect of improving the performance of the carbon nanotube thin film by adding a compound having a glycidyl group in this way, the details are unknown, but the glycidyl group reacts with a very few hydroxy groups present in the carbon nanotube, It is considered that the compatibility between the carbon nanotube and the sol-gel film is improved, and further, the interaction with the support is increased, thereby improving the adhesion between the carbon nanotube thin film and the support and improving the film strength. The reason why the heat resistance is improved can be considered as a result of improved compatibility between the carbon nanotube and the sol-gel film.
<比較例3>
 以下の組成から形成されるゾルゲル溶液Dを室温で2時間攪拌し調製した。
  テトラ-n-ブトキシシラン 2g
  エタノール         1g
  0.1規定塩酸     0.5ml
  イソプロピルアルコール 50ml
  トルエン        24ml
  n-ブタノール     24ml
 このゾルゲル溶液に対して、下記のシリコーングラフト樹脂0.1g、酢酸エチルエステル50ml、トルエン50mlを添加し、ゾルゲル溶液Dを調製した。
<Comparative Example 3>
A sol-gel solution D formed from the following composition was prepared by stirring at room temperature for 2 hours.
Tetra-n-butoxysilane 2g
1g of ethanol
0.1N hydrochloric acid 0.5ml
Isopropyl alcohol 50ml
Toluene 24ml
n-Butanol 24ml
To this sol-gel solution, 0.1 g of the following silicone graft resin, 50 ml of ethyl acetate and 50 ml of toluene were added to prepare sol-gel solution D.
Figure JPOXMLDOC01-appb-C000010

 
Figure JPOXMLDOC01-appb-C000010

 
 上記の式において、l/m=80/20であり、nは45である。
 前述の試料1及び4のカーボンナノチューブ層の上に、前述の試料11の作製の場合と同様に、上記ゾルゲル塗布液Dを塗布し、硬化して、試料C19及びC20を得た。これらの試料C19及びC20について、透過率、シート抵抗、ヘイズ及び平均短軸径を前述と同様にして測定し、そのの測定結果を表10に示した。
In the above formula, l / m = 80/20 and n is 45.
On the carbon nanotube layers of Samples 1 and 4, the sol-gel coating liquid D was applied and cured in the same manner as in the preparation of Sample 11, and Samples C19 and C20 were obtained. For these samples C19 and C20, the transmittance, sheet resistance, haze, and average minor axis diameter were measured in the same manner as described above, and the measurement results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000011

 
Figure JPOXMLDOC01-appb-T000011

 
 表10の結果から、一般式(I)で示される化合物に該当しないテトラ-n-ブトキシシランを用いて作製された珪素酸化物と上記のシリコーングラフト樹脂とをカーボンナノチューブと共に含む導電性層の場合には、カーボンナノチューブの平均短軸径が90nmを超えてしまい、透過率が低くヘイズが高い導電性部材しか得られないことがわかった。
・膜強度の評価
 上記の試料C-19及びC-20について、前述と同様にして鉛筆硬度を測定したところ、いずれの試料も3Bであり、膜強度も弱いことが分かった。
From the results shown in Table 10, in the case of a conductive layer containing silicon oxide prepared using tetra-n-butoxysilane not corresponding to the compound represented by the general formula (I) and the above silicone graft resin together with carbon nanotubes Thus, it was found that the average minor axis diameter of the carbon nanotubes exceeded 90 nm, and only a conductive member having low transmittance and high haze was obtained.
-Evaluation of film strength Pencil hardness of the above samples C-19 and C-20 was measured in the same manner as described above, and it was found that all samples were 3B and the film strength was weak.
<比較例4>
 以下の組成から形成されるゾルゲル溶液Eを調製した。
  テトラ-n-ブトキシシラン 10g
  Al(acac)     40mg
  酢酸            20mg
  水             30ml
 前述の試料1及び4のカーボンナノチューブ層の上に、前述の試料11の作製の場合と同様に、上記ゾルゲル塗布液Dを塗布し、硬化して、試料C21及びC22を得た。これらの試料C21及びC22について、透過率、シート抵抗、ヘイズ及び平均短軸径を前述と同様にして測定し、そのの測定結果を表11に示した。
<Comparative Example 4>
A sol-gel solution E formed from the following composition was prepared.
Tetra-n-butoxysilane 10g
Al (acac) 3 40mg
Acetic acid 20mg
30 ml of water
On the carbon nanotube layers of Samples 1 and 4, the sol-gel coating liquid D was applied and cured in the same manner as in the preparation of Sample 11, and Samples C21 and C22 were obtained. For these samples C21 and C22, the transmittance, sheet resistance, haze, and average minor axis diameter were measured in the same manner as described above, and the measurement results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000012

 
Figure JPOXMLDOC01-appb-T000012

 
 表11の結果から、一般式(I)で示される化合物に該当しないテトラ-n-ブトキシシランを用いて作製された珪素酸化物をカーボンナノチューブと共に含む導電性層の場合には、カーボンナノチューブの平均短軸径が90nmを超えてしまい、透過率が低くヘイズが高い導電性部材しか得られないことがわかった。
・膜強度の評価
 上記の試料C-21及びC-22について、前述と同様にして鉛筆硬度を測定したところ、いずれの試料も3Bであり、膜強度も弱いことが分かった。
From the results shown in Table 11, in the case of a conductive layer containing together with carbon nanotubes a silicon oxide prepared using tetra-n-butoxysilane that does not correspond to the compound represented by the general formula (I), the average of the carbon nanotubes It was found that the minor axis diameter exceeded 90 nm, and only a conductive member having low transmittance and high haze was obtained.
-Evaluation of film strength Pencil hardness of the above samples C-21 and C-22 was measured in the same manner as described above, and it was found that all samples were 3B and the film strength was weak.
<比較例5>
 以下の組成から形成される光硬化性組成物の塗布液を調製した。
  重合性モノマー(A-DPH、新中村化学工業株式会社製)     11.2g
  光重合開始剤イルガキュア907(商品名:チバ・スペシャルティ・ケミカルズ)                                    0.1g
  メチルエチルケトン                        20ml
 前述の試料1及び4のカーボンナノチューブ層の上に、上記の塗布液を塗布し、窒素雰囲気下、紫外線を照射し、120℃で10分間加熱後、室温まで放冷して、硬化膜を形成させて、試料C23及びC24を得た。これらの試料C23及びC24について、前述と同様にして透過率、シート抵抗、ヘイズ、及び平均短軸径を測定し、その結果を表12に示した。
<Comparative Example 5>
A coating solution of a photocurable composition formed from the following composition was prepared.
Polymerizable monomer (A-DPH, manufactured by Shin-Nakamura Chemical Co., Ltd.) 11.2 g
Photopolymerization initiator Irgacure 907 (trade name: Ciba Specialty Chemicals) 0.1 g
20 ml of methyl ethyl ketone
The above coating solution is applied onto the carbon nanotube layers of Samples 1 and 4 described above, irradiated with ultraviolet rays in a nitrogen atmosphere, heated at 120 ° C. for 10 minutes, and then allowed to cool to room temperature to form a cured film. Sample C23 and C24. For these samples C23 and C24, the transmittance, sheet resistance, haze, and average minor axis diameter were measured in the same manner as described above, and the results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000013

 
Figure JPOXMLDOC01-appb-T000013

 
 表12の結果から、光硬化性組成物の硬化物を使用した場合においては、平均短軸径が90nmを超えてしまい、シート抵抗が高くヘイズが高いことがわかった。
・膜強度の評価
 上記の試料C-21及びC-22について、前述と同様にして鉛筆硬度を測定したところ、いずれの試料も1Hであり、高い膜強度を得ることができないことが分かった。
From the results in Table 12, it was found that when the cured product of the photocurable composition was used, the average minor axis diameter exceeded 90 nm, and the sheet resistance was high and the haze was high.
-Evaluation of film strength Pencil hardness of the above samples C-21 and C-22 was measured in the same manner as described above, and it was found that all samples were 1H and high film strength could not be obtained.
<実施例2>
-集積型太陽電池の作製-
-アモルファス太陽電池(スーパーストレート型)の作製-
 ガラス基板上に、実施例1と同様にして導電性層を形成し、透明導電膜を形成した。その上部にプラズマCVD法により膜厚約15nmのp型、膜厚約350nmのi型、膜厚約30nmのn型アモルファスシリコンを形成し、裏面反射電極としてガリウム添加酸化亜鉛層20nm、銀層200nmを形成し、光電変換素子101を作製した。
<Example 2>
-Fabrication of integrated solar cells-
-Fabrication of amorphous solar cells (super straight type)-
On the glass substrate, the electroconductive layer was formed like Example 1, and the transparent conductive film was formed. A p-type film with a film thickness of about 15 nm, an i-type film with a film thickness of about 350 nm, and an n-type amorphous silicon film with a film thickness of about 30 nm are formed thereon by a plasma CVD method. The photoelectric conversion element 101 was produced.
<実施例3>
-CIGS太陽電池(サブストレート型)の作製-
 ソーダライムガラス基板上に、直流マグネトロンスパッタ法により膜厚500nm程度のモリブデン電極、真空蒸着法により膜厚約2.5μmのカルコパイライト系半導体材料であるCu(In0.6Ga0.4)Se薄膜、溶液析出法により膜厚約50nmの硫化カドミニウム薄膜を形成した。
 その上に実施例1の導電性層を形成し、ガラス基板上に透明導電膜を形成し、光電変換素子201を作製した。
 次に、作製した各太陽電池において、以下のようにして変換効率を評価した。
・太陽電池特性(変換効率)の評価
 各太陽電池について、AM1.5、100mW/cmの疑似太陽光を照射することで効率)を測定した。
 その結果、何れの光電変換素子についても、10%前後の変換効率を有していることが確認された。
 この結果から、本発明の導電性部材を透明導電膜の形成に用いることで、いずれの集積型太陽電池方式においても高い変換効率が得られることが分かった。
<Example 3>
-Fabrication of CIGS solar cells (substrate type)-
On a soda lime glass substrate, a molybdenum electrode having a film thickness of about 500 nm by a direct current magnetron sputtering method and Cu (In 0.6 Ga 0.4 ) Se which is a chalcopyrite semiconductor material having a film thickness of about 2.5 μm by a vacuum deposition method. Two thin films, a cadmium sulfide thin film having a film thickness of about 50 nm, were formed by a solution deposition method.
A conductive layer of Example 1 was formed thereon, a transparent conductive film was formed on a glass substrate, and a photoelectric conversion element 201 was manufactured.
Next, conversion efficiency was evaluated as follows in each produced solar cell.
And assessment of each solar cell of the solar cell characteristics (conversion efficiency) were measured efficiency) by irradiation with artificial sunlight of AM 1.5, 100 mW / cm 2.
As a result, it was confirmed that any photoelectric conversion element has a conversion efficiency of around 10%.
From this result, it was found that high conversion efficiency can be obtained in any integrated solar cell system by using the conductive member of the present invention for forming a transparent conductive film.
<実施例4>
-タッチパネルの作製-
 ガラス基板上に、実施例1の導電性層を形成した。得られた透明導電膜を用いて、『最新タッチパネル技術』(2009年7月6日発行、株式会社テクノタイムズ)、三谷雄二監修、“タッチパネルの技術と開発”、シーエムシー出版(2004年12月発行)、「FPD International 2009 Forum T-11講演テキストブック」、「Cypress Semiconductor Corporation アプリケーションノートAN2292」等に記載の方法により、タッチパネルを作製した。
 作製したタッチパネルを使用した場合、光透過率の向上により視認性に優れ、かつ導電性の向上により素手、手袋を嵌めた手、指示具のうち少なくとも一つによる文字等の入力又は画面操作に対し応答性に優れるタッチパネルを製作できることが分かった。
<Example 4>
-Fabrication of touch panel-
The conductive layer of Example 1 was formed on a glass substrate. Using the resulting transparent conductive film, "latest touch panel technology" (issued July 6, 2009, Techno Times Co., Ltd.), supervised by Yuji Mitani, "Technology and Development of Touch Panel", CM Publishing (December 2004) Issued), “FPD International 2009 Forum T-11 Lecture Textbook”, “Cypress Semiconductor Corporation Application Note AN2292” and the like, and so on.
When the manufactured touch panel is used, it is excellent in visibility by improving the light transmittance, and for input of characters etc. or screen operation by at least one of bare hands, gloves-fitted hands, pointing tools by improving conductivity It was found that a touch panel with excellent responsiveness can be manufactured.
 本発明の導電性要素は、例えばパターン状透明導電膜、タッチパネル、ディスプレイ用帯電防止材、電磁波シールド、有機ELディスプレイ用電極、無機ELディスプレイ用電極、電子ペーパー、フレキシブルディスプレイ用電極、フレキシブルディスプレイ用帯電防止膜、表示素子、集積型太陽電池の作製に好適に用いることができる。
 日本出願2011-203221の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記載された場合と同程度に、本明細書中に参照により取り込まれる。
The conductive element of the present invention includes, for example, a patterned transparent conductive film, a touch panel, an antistatic material for display, an electromagnetic wave shield, an electrode for organic EL display, an electrode for inorganic EL display, electronic paper, an electrode for flexible display, and charging for flexible display. It can be suitably used for the production of a protective film, a display element, and an integrated solar cell.
The disclosure of Japanese application 2011-203221 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (15)

  1.  基材上に、カーボンナノチューブを含み平均短軸径が90nm以下の導電性繊維束と、珪素酸化物と、を含む導電性層を有する導電性部材。 A conductive member having a conductive layer including a conductive fiber bundle containing carbon nanotubes and having an average minor axis diameter of 90 nm or less and silicon oxide on a substrate.
  2.  前記珪素酸化物が、下記一般式(I)で示されるオルガノアルコキシシランを加水分解及び重縮合して得られるゾルゲル硬化物を含む請求項1に記載の導電性部材。
       Si(OR 4-a    (I)
     (一般式(I)中、aは1~3の整数を示し、a個のRはそれぞれ独立に水素原子または炭化水素基を示し、(4-a)個のRはそれぞれ独立に炭化水素基を示す。但し、(4-a)個のRのうちの少なくとも一つはエポキシ基を含む炭化水素基を示す。)
    The conductive member according to claim 1, wherein the silicon oxide includes a sol-gel cured product obtained by hydrolysis and polycondensation of an organoalkoxysilane represented by the following general formula (I).
    Si (OR 1 ) a R 2 4-a (I)
    (In the general formula (I), a represents an integer of 1 to 3, a R 1 s each independently represent a hydrogen atom or a hydrocarbon group, and (4-a) R 2 s independently carbonized. Represents a hydrogen group, provided that at least one of (4-a) R 2 represents a hydrocarbon group containing an epoxy group.)
  3.  前記珪素酸化物が、下記一般式(I)で示されるオルガノアルコキシシランと、下記一般式(II)で示されるテトラアルコキシシランとを加水分解及び重縮合して得られるゾルゲル硬化物を含む請求項1または請求項2に記載の導電性部材。
       Si(OR 4-a    (I)
     (一般式(I)中、aは1~3の整数を示し、a個のRはそれぞれ独立に水素原子または炭化水素基を示し、(4-a)個のRはそれぞれ独立に炭化水素基を示す。但し、(4-a)個のRのうちの少なくとも一つはエポキシ基を含む炭化水素基を示す。) 
       Si(OR    (II)
     (一般式(II)中、4個のRはそれぞれ独立に水素原子または炭化水素基を示す。)
    The silicon oxide includes a sol-gel cured product obtained by hydrolysis and polycondensation of an organoalkoxysilane represented by the following general formula (I) and a tetraalkoxysilane represented by the following general formula (II). The electroconductive member of Claim 1 or Claim 2.
    Si (OR 1 ) a R 2 4-a (I)
    (In the general formula (I), a represents an integer of 1 to 3, a R 1 s each independently represent a hydrogen atom or a hydrocarbon group, and (4-a) R 2 s independently carbonized. Represents a hydrogen group, provided that at least one of (4-a) R 2 represents a hydrocarbon group containing an epoxy group.)
    Si (OR 3 ) 4 (II)
    (In the general formula (II), four R 3 s each independently represent a hydrogen atom or a hydrocarbon group.)
  4.  前記一般式(I)におけるaが、3である請求項2または3に記載の導電性部材。 The conductive member according to claim 2 or 3, wherein a in the general formula (I) is 3.
  5.  前記エポキシ基を含む炭化水素基が、グリシジル基、2-エポキシプロピル基、3-エポキシプロピル基、3-グリシドキシプロピル基、または、2-(3,4-エポキシシクロキシル)エチル基である請求項2~請求項4のいずれか一項に記載の導電性部材。 The hydrocarbon group containing an epoxy group is a glycidyl group, a 2-epoxypropyl group, a 3-epoxypropyl group, a 3-glycidoxypropyl group, or a 2- (3,4-epoxycyclohexyl) ethyl group. The conductive member according to any one of claims 2 to 4.
  6.  前記ゾルゲル硬化物における前記オルガノアルコキシシランに由来する構成単位/前記テトラアルコキシシランに由来する構成単位の質量比が、0.01/1~100/1の範囲にある請求項3~請求項5のいずれか一項に記載の導電性部材。 The mass ratio of the structural unit derived from the organoalkoxysilane to the structural unit derived from the tetraalkoxysilane in the cured sol-gel product is in the range of 0.01 / 1 to 100/1. The electroconductive member as described in any one.
  7.  前記カーボンナノチューブと前記珪素酸化物とが、共有結合によって連結されている請求項1~請求項6のいずれか一項に記載の導電性部材。 The conductive member according to any one of claims 1 to 6, wherein the carbon nanotube and the silicon oxide are connected by a covalent bond.
  8.  前記共有結合が、前記カーボンナノチューブが有するヒドロキシ基と、前記オルガノアルコキシシランのエポキシ基との反応に由来する請求項7に記載の導電性部材。 The conductive member according to claim 7, wherein the covalent bond is derived from a reaction between a hydroxy group of the carbon nanotube and an epoxy group of the organoalkoxysilane.
  9.  前記導電性層が、導電性領域および非導電性領域を含む請求項1~請求項8のいずれか一項に記載の導電性部材。 The conductive member according to any one of claims 1 to 8, wherein the conductive layer includes a conductive region and a non-conductive region.
  10.  (i)基材上に、カーボンナノチューブを含む分散液を塗布して、導電性繊維束を含む導電性繊維層を形成すること、
     (ii)前記導電性繊維層上に、下記一般式(I)で示されるオルガノアルコキシシランを含むアルコキシド化合物のアルコキシド化合物水溶液を塗布すること、および
     (iii)塗布されたアルコキシド化合物の水溶液のアルコキシド化合物を加水分解および重縮合させてゾルゲル硬化物を形成すること、
     を含む、カーボンナノチューブを含み平均短軸径が90nm以下の導電性繊維束と珪素酸化物とを含む導電性層を前記基材上に形成するための、導電性部材の製造方法。
       Si(OR 4-a    (I)
     (一般式(I)中、aは1~3の整数を示し、a個のRはそれぞれ独立に水素原子または炭化水素基を示し、(4-a)個のRはそれぞれ独立に炭化水素基を示す。但し、(4-a)個のRのうちの少なくとも一つはエポキシ基を含む炭化水素基を示す。)
    (I) applying a dispersion containing carbon nanotubes on a substrate to form a conductive fiber layer containing a conductive fiber bundle;
    (Ii) applying an alkoxide compound aqueous solution of an alkoxide compound containing an organoalkoxysilane represented by the following general formula (I) on the conductive fiber layer; and (iii) an alkoxide compound of an aqueous solution of the applied alkoxide compound. Hydrolysis and polycondensation to form a sol-gel cured product,
    The manufacturing method of the electroconductive member for forming the electroconductive layer containing the carbon fiber and the electroconductive fiber bundle with an average minor axis diameter of 90 nm or less and silicon oxide on the said base material.
    Si (OR 1 ) a R 2 4-a (I)
    (In the general formula (I), a represents an integer of 1 to 3, a R 1 s each independently represent a hydrogen atom or a hydrocarbon group, and (4-a) R 2 s independently carbonized. Represents a hydrogen group, provided that at least one of (4-a) R 2 represents a hydrocarbon group containing an epoxy group.)
  11.  前記アルコキシド化合物の水溶液が、更に下記一般式(II)で示されるテトラアルコキシシランを含む請求項10に記載の導電性部材の製造方法。
       Si(OR    (II)
     (一般式(II)中、4個のRはそれぞれ独立に水素原子または炭化水素基を示す。)
    The method for producing a conductive member according to claim 10, wherein the aqueous solution of the alkoxide compound further contains a tetraalkoxysilane represented by the following general formula (II).
    Si (OR 3 ) 4 (II)
    (In the general formula (II), four R 3 s each independently represent a hydrogen atom or a hydrocarbon group.)
  12.  前記アルコキシド化合物の水溶液における前記オルガノアルコキシシラン/前記テトラアルコキシシランの質量比が、0.01/1~100/1の範囲にある請求項11に記載の導電性部材の製造方法。 The method for producing a conductive member according to claim 11, wherein a mass ratio of the organoalkoxysilane / the tetraalkoxysilane in the aqueous solution of the alkoxide compound is in a range of 0.01 / 1 to 100/1.
  13.  さらに、(iv)前記導電性層に、導電性領域および非導電性領域を形成すること、を含む請求項10~請求項12のいずれか一項に記載の導電性部材の製造方法。 The method for producing a conductive member according to any one of claims 10 to 12, further comprising: (iv) forming a conductive region and a non-conductive region in the conductive layer.
  14.  請求項1~請求項9のいずれか一項に記載の導電性部材を含むタッチパネル。 A touch panel comprising the conductive member according to any one of claims 1 to 9.
  15.  請求項1~請求項9のいずれか一項に記載の導電性部材を含む太陽電池。 A solar cell comprising the conductive member according to any one of claims 1 to 9.
PCT/JP2012/071507 2011-09-16 2012-08-24 Electroconductive member, process for producing electro- conductive member, touch panel and solar cell WO2013038891A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011203221A JP2013065450A (en) 2011-09-16 2011-09-16 Conductive member, method for manufacturing conductive member, touch panel, and solar cell
JP2011-203221 2011-09-16

Publications (1)

Publication Number Publication Date
WO2013038891A1 true WO2013038891A1 (en) 2013-03-21

Family

ID=47883125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/071507 WO2013038891A1 (en) 2011-09-16 2012-08-24 Electroconductive member, process for producing electro- conductive member, touch panel and solar cell

Country Status (2)

Country Link
JP (1) JP2013065450A (en)
WO (1) WO2013038891A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103555015A (en) * 2013-11-01 2014-02-05 苏州泰科尼光伏材料有限公司 Preparation method of EVA adhesive film surface nano paint

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6164587B2 (en) * 2013-09-06 2017-07-19 国立大学法人 千葉大学 Solubilizer and carbon nanomaterial layer forming method using the same
CN103571248B (en) * 2013-11-01 2015-11-18 苏州泰科尼光伏材料有限公司 A kind of preparation method of sun power packaged battery eva film nano surface coating
JP2015103468A (en) * 2013-11-27 2015-06-04 デクセリアルズ株式会社 Method for producing transparent conductive film
KR20170081003A (en) * 2015-12-31 2017-07-11 엘지디스플레이 주식회사 Conductive Coated Composition Comprising The Same, Antistatic Film And Display Device Using The Same
JP2020021700A (en) * 2018-08-03 2020-02-06 ナガセケムテックス株式会社 Transparent conductive laminate
JP7348654B2 (en) 2020-03-04 2023-09-21 平岡織染株式会社 Antistatic deodorizing sheet material and manufacturing method thereof
WO2022180889A1 (en) * 2021-02-25 2022-09-01 ハドラスホールディングス株式会社 Antistatic coating film structure and coating material for prevention of static charge

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546090A (en) * 2005-06-02 2008-12-18 イーストマン コダック カンパニー Touch screen with one carbon nanotube conductive layer
WO2009119563A1 (en) * 2008-03-25 2009-10-01 東レ株式会社 Electrically conductive complex and process for production thereof
JP2010271479A (en) * 2009-05-20 2010-12-02 Tokai Kogaku Kk Optical product and plastic spectacle lens
JP2011508039A (en) * 2007-12-27 2011-03-10 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Curable coating composition based on carbon nanotubes to provide antistatic wear resistant coated articles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008546090A (en) * 2005-06-02 2008-12-18 イーストマン コダック カンパニー Touch screen with one carbon nanotube conductive layer
JP2011508039A (en) * 2007-12-27 2011-03-10 エシロール アテルナジオナール カンパニー ジェネラーレ デ オプティック Curable coating composition based on carbon nanotubes to provide antistatic wear resistant coated articles
WO2009119563A1 (en) * 2008-03-25 2009-10-01 東レ株式会社 Electrically conductive complex and process for production thereof
JP2010271479A (en) * 2009-05-20 2010-12-02 Tokai Kogaku Kk Optical product and plastic spectacle lens

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103555015A (en) * 2013-11-01 2014-02-05 苏州泰科尼光伏材料有限公司 Preparation method of EVA adhesive film surface nano paint

Also Published As

Publication number Publication date
JP2013065450A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
WO2013038891A1 (en) Electroconductive member, process for producing electro- conductive member, touch panel and solar cell
WO2013047147A1 (en) Conductive composition, method for producing same, conductive member, touch panel, and solar cell
JP5868771B2 (en) Conductive member, manufacturing method thereof, touch panel and solar cell
JP5788923B2 (en) Conductive composition, conductive member, method for manufacturing conductive member, touch panel and solar cell
TWI504702B (en) Electroconductive member, method for manufacturing the same, touch panel, solar cell and composition containing metal nanowire
JP5888976B2 (en) Conductive composition, conductive member and method for producing the same, touch panel and solar cell
JP5832943B2 (en) Conductive composition, conductive member, method for manufacturing conductive member, touch panel and solar cell
WO2012141058A1 (en) Conductive member, method for producing conductive member, touch panel, and solar cell
WO2012147815A1 (en) Electroconductive member, method for manufacturing same, touch panel, and solar cell
JP5646671B2 (en) Conductive member, manufacturing method thereof, touch panel, and solar cell
JP2012022844A (en) Laminate for conductive film formation and method of manufacturing the same, and method of forming pattern, touch panel and integrated solar battery
WO2013140971A1 (en) Conductive member and method for manufacturing same
JP2013200997A (en) Conductive member, manufacturing method therefor, and touch panel
JP2013201005A (en) Conductive pattern member manufacturing method, conductive pattern member, touch panel and solar cell
JP2014036002A (en) Method of forming conductive member
JP2013201003A (en) Conductive pattern member, manufacturing method of the same, touch panel and solar battery
JP2013200999A (en) Transparent conductive member,manufacturing method of transparent conductive member, touch panel, and solar battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12831391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12831391

Country of ref document: EP

Kind code of ref document: A1