WO2012136180A2 - Verfahren zur steuerung eines hybridischen antriebsstrangs und akkumulatoreinrichtung in diesem - Google Patents

Verfahren zur steuerung eines hybridischen antriebsstrangs und akkumulatoreinrichtung in diesem Download PDF

Info

Publication number
WO2012136180A2
WO2012136180A2 PCT/DE2012/000243 DE2012000243W WO2012136180A2 WO 2012136180 A2 WO2012136180 A2 WO 2012136180A2 DE 2012000243 W DE2012000243 W DE 2012000243W WO 2012136180 A2 WO2012136180 A2 WO 2012136180A2
Authority
WO
WIPO (PCT)
Prior art keywords
accumulator
electric machine
accumulators
switches
control unit
Prior art date
Application number
PCT/DE2012/000243
Other languages
English (en)
French (fr)
Other versions
WO2012136180A3 (de
Inventor
Carsten Angrick
Matthias Gramann
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to DE112012001560.6T priority Critical patent/DE112012001560A5/de
Priority to CN201280016518.3A priority patent/CN103608208B/zh
Publication of WO2012136180A2 publication Critical patent/WO2012136180A2/de
Publication of WO2012136180A3 publication Critical patent/WO2012136180A3/de
Priority to US14/039,657 priority patent/US20140025248A1/en
Priority to US15/208,260 priority patent/US10343550B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K6/485Motor-assist type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • B60L2210/42Voltage source inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/20Reducing vibrations in the driveline
    • B60W2030/206Reducing vibrations in the driveline related or induced by the engine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/60Control of electric machines, e.g. problems related to electric motors or generators
    • B60Y2300/65Reduce shocks on mode change, e.g. during engine shutdown
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/11Electric energy storages
    • B60Y2400/112Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/907Electricity storage, e.g. battery, capacitor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Definitions

  • the invention relates to a method for controlling a hybrid powertrain in a motor vehicle having an internal combustion engine with a crankshaft and with an operable as a motor and generator electric machine with a crankshaft in operative connection with the rotor, a crankshaft effectively connected torsional vibration damper, an accumulator for exchanging electrical energy with the electric machine and a control device for controlling the accumulator device and the electric machine and a corresponding accumulator device.
  • Hybrid powertrains are known from series applications in motor vehicles.
  • an electric machine which serves as a starter for the internal combustion engine, as an additional or temporary sole drive and for recuperation of kinetic energy of the motor vehicle, used as a motor and generator, wherein the electric machine is in operative connection with an accumulator unit which stores electrical energy and give up.
  • DE 197 09 299 A1 further discloses a device for reducing rotational irregularities of an internal combustion engine, in which half-waves lying above an average torque of the internal combustion engine are damped by the electric machine connected in generator operation and the energy released is stored in the accumulator unit and Filling of lying below a mean moment half-waves, the electric machine is driven, the accumulator energy is removed.
  • the cycle of rotational nonuniformities of the internal combustion engine charge and discharge currents to the accumulator means high, so that this may not have sufficient Umladungskinetik and is permanently damaged due to the transhipment.
  • the object of the invention is therefore to operate a hybrid drive train so that, on the one hand dampens the torsional vibrations of the internal combustion engine in a satisfactory manner and on the other hand, the accumulator device is spared.
  • a further object of the invention is to design a corresponding accumulator device such that it has a longer and better functionality, in particular in the case of high-frequency transhipment processes between charge and discharge.
  • the object is achieved by a method for controlling a hybrid powertrain in a motor vehicle having an internal combustion engine with a crankshaft and with an electric machine operable as a motor and generator with a rotor operatively connected to the crankshaft, a torsional vibration damper operatively connected to the crankshaft, an accumulator device Replacement of electrical energy with the electric machine and a control unit for controlling the accumulator and the electric machine solved, wherein the electric machine with at least two electric accumulators of the accumulator is in operative connection and at least temporarily loaded to the beat of residual vibrations of the torsional vibration damper of the accumulators during the others unloaded.
  • the high-frequency Umlade- currents are controlled at the accumulator so that one accumulator only charged and the other is only discharged. Such an operation is gentler for the accumulators of the accumulator, so that their life can be extended.
  • the accumulators can be switched into a charging or discharging state by the control device, whose function can be provided in one or more physical control devices and control units, depending on their state of charge.
  • the control device which controls in particular for the charging and discharging to operate the residual vibrations damping electric machine. It goes without saying that during operation states of the electric machine, for example during startup, recuperation or the like, both accumulators can be charged or discharged at the same time.
  • a damping of the residual vibrations can be suspended by means of the electric machine when the state of charge or operating state of the batteries, for example, at very low temperatures, long trips with the support of the Electric machine or the like falls below a predetermined residual charge or residual capacity.
  • the control of the electric machine is effected by the accumulator connected to the charge state by means of half-waves converted by the electric machine via an average moment of the residual oscillations and switched to the discharge state Accumulator the electric machine in phases of lying below a mean moment of the residual vibrations half-waves to compensate the electric machine drives.
  • the operating data for controlling the electric machine and the accumulator are thereby of corresponding sensor devices for detecting rotational characteristics such as rotation angles and their time derivatives of waves such as the crankshaft of the internal combustion engine, the transmission input shaft (s) of a transmission, the rotor shaft of the electric machine, internal sizes of the engine control Internal combustion engine such as engine maps, top dead center and the like provided.
  • an accumulator device for carrying out the proposed method in a hybrid powertrain, which contains two accumulators alternately connectable by means of current direction sensitive switches and a control device for controlling the switches and a converter.
  • the negative poles are preferably connected to ground and the positive poles connected by means of the switch.
  • the ground paths of the accumulators can be connected by means of the proposed switches.
  • the control unit preferably outputs a control signal to two alternately switching logic switch, which switch the switch itself, wherein in an advantageous embodiment, a switch for the charging current and a switch for the discharge is provided at each positive pole of a battery and these alternately against each other are switched.
  • the switches are switched alternately with respect to the accumulators, so that only one accumulator is charged and the other is discharged. If the electric machine is to start the internal combustion engine during engine operation or to provide an additional drive torque in a boost mode, the discharge switches of both accumulators can be switched and the charge switches can be deactivated. In the case of recuperation in overrun mode of the motor vehicle, however, both charging switches of the batteries can be switched and the discharge switch can be deactivated. It is understood that the wiring of the switches can be designed so that, for example, for simultaneous discharge or simultaneous La tion of both accumulators, the switches connected accordingly, for example, the charging switch can be switched on simultaneously and the discharge switch simultaneously.
  • Accumulators each means be provided for determining the state of charge, which are in signal communication with the controller and communicate the current state of charge of the accumulators up to individual states of charge of the battery cells.
  • the control unit detects the charge states and determines a charging concept for the various operating states of the motor vehicle, in particular for damping the residual vibrations of the torsional vibration damper by means of the electric machine.
  • the control unit detects and / or receives for this purpose data for assessing the operating conditions such as the start of the internal combustion engine, gears of the transmission, push and pull operation of the motor vehicle and the like.
  • the switches can be made of active electronic components such as
  • MOSFETS metal oxide semiconductor field effect transistor
  • IGBT insulated-gate bipolar transistor
  • IGBT insulated-gate bipolar transistor
  • accumulators for example, lead-acid batteries and the like can be used. Because of their low power output, the time-dependent charging and discharging behavior, however, Li-ion batteries have proven to be particularly advantageous.
  • the wiring of these by means of the switch prevents damage, which can occur in particular by the application of this microcycles, as they are required in the damping of residual vibrations by means of the electric machine.
  • long charging cycles are generated which can be set as macrocycles per accumulator from a low state of charge to a predetermined state of charge.
  • Figure 1 is a circuit diagram for controlling the state of charge of accumulators a accumulator
  • FIG. 2 shows an illustration of charging processes of a conventional accumulator device with an accumulator and the proposed accumulator device over time
  • Figure 3 is a representation of the in a hybrid powertrain during a
  • Figure 4 is a comparison with the circuit diagram of Figure 1 similar circuit diagram for controlling the state of charge of batteries of a battery device.
  • the inverter 6 forms the interface to the electric machine, not shown, and converts the direct current of the accumulators 3, 4 in preferably a plurality of alternating current phases, of which only a phase w is symbolically represented here, for driving the electric machine.
  • inverter 6 and the rechargeable batteries 3, 4 are each two parallel, with respect to their switch position connected switches 8, 9, 10, 11 arranged in the form of IGBTs, so that when connected through the logic switches 12, 13 each with the same signal level gates of Switch 8, 9, 10, 11 are each a switch of a rechargeable battery 3, 4 permeable and the other is switched off.
  • the gates are connected such that, for example, at accumulator 3 at the output Out1 of the control unit 5 positive level of the switch 8 of the accumulator 3 and the switch 11 of the accumulator 4 is connected, so that when applied to the access line 14 AC signal only the Accumulator 3 via the closed switch 8 charging current receives while the responsible for the charging current of the accumulator 4 switch 10 remains open.
  • the switch 9 of the rechargeable battery 3 is opened and via the closed switch 11, a discharge current can flow from the rechargeable battery 4.
  • the inversely-connected logic switches 12, 13 When the level at the output Out1 is set to low, the inversely-connected logic switches 12, 13 output a level to the gates of the switches 9, 10, so that through the Switch 9, the discharge current from the accumulator 3 and the charging current for the accumulator 4 is switched while the switches 8, 11 remain open.
  • the sonication of the output Out1 of the control unit 5 is dependent on the determined in the accumulators 3, 4 of the devices 15, 16 charge states, which formed from the charge states of the individual cells and by means of the signal lines 17, 18 the inputs In1, In2 of the control unit. 5 be supplied.
  • Figure 2 shows the diagram 19 in which the curves 20, 21, 22 represent the charge states of accumulators against time in the range of, for example, several minutes to several hours, where these charging times can vary and among other things the capacity of the accumulators and their Depend on electrode kinetics.
  • the actual suggestions of the drive train which does not adequately attenuate the torsional vibration damper located in the drive train, cause small waves in the range of approximately 100 Hz in the DC component connected downstream of the converter.
  • the representation of the long-term charging process and the representation of the alternating voltage components of the excitations are shown in diagram 19 To illustrate the effects shown exaggerated.
  • the curve 22 marked with the symbols '+' shows a conventional accumulator device with a charge state of approximately 30% during a compensation of residual vibrations of a torsional vibration damper by means of an electric machine which is connected to the single accumulator of the accumulator device.
  • the accumulator is charged and discharged with microcycles, which may be in the range of the frequency of the residual vibrations of the torsional vibration damper occurring. By such microcycles, the accumulator can be damaged and have a short life.
  • the curves 20, 21 marked with the symbols 'o' or ' sacrifice' represent the state of charge of the accumulator device 1 of FIG. 1, the two accumulators 3, 4 having different capacities, as shown in FIG.
  • the accumulator with the curve 20 has the smaller capacity, so that this determines the macrocycles, which can last in the range of a few minutes to a few hours.
  • the charge states are measured on the accumulators and detected by the control unit 5, which is the Circuit of the switches 8, 9, 10, 11 controls for setting the macrocycles.
  • the accumulator is loaded with the curve 20 to a state of charge of 80% of the total capacity and discharged to 20% of this, resulting in the accumulator with the larger capacity, a recharge between 20% and 32% of its total charge capacity results.
  • FIG. 3 shows the diagram 23 with currents occurring cyclically at accumulator devices during a compensation of residual oscillations of a torsional vibration damper by means of an electrical machine connected to the accumulators of the accumulator devices over time.
  • the curve 24 marked with the symbols ' ⁇ ' shows the currents of a conventional accumulator device with a single accumulator which is reloaded in the frequency of the alternating currents in a microcyclical manner.
  • the accumulators connected in accordance with the circuit diagram 2 of FIG. 1 are only charged or discharged, that is to say they experience only positive or negative current cycles over a longer macrocycle, such as those indicated by the symbols 'o' or '+', respectively representing the current of an accumulator Curves 25, 26 can be seen.
  • the converter 6a forms the interface to the electric machine 27 and converts the direct current of the accumulators 3a, 4a into preferably a plurality of alternating current phases u, v, w for driving the electric machine 27.
  • phase-selective commutation currents or commutation voltages in the range of 100 Hz to 1 kHz are output, while those recuperated by the electric machine 27 for vibration damping of the drive train voltage modulations via the inverter 6a on the DC network, ie via the access line 14a and the ground line 7a on the batteries be transferred, in the range of about 60 to 100 Hz.
  • the switches 8a, 9a, 10a, 11a are controlled directly by means of the control lines 28, 29, 30, 31 of the controller 5a and thus set in a switched or open state.
  • Controller 5a may be charged to one of the accumulators 3a, 4a while the other is being discharged.
  • the switch 8a in the direction of the accumulator 3a and the switch 11a is turned on in the direction of the inverter 6a while the switches 9a, 10a are opened.
  • the accumulator 3a is charged and the accumulator 4a is discharged.
  • both accumulators 3a, 4a are loaded during a recuperation of the drive train in overrun mode of the motor vehicle and by the same direction closing the switch 9a, 11a both accumulators 3a, 4a discharged simultaneously, for example during a start of the engine or in boost mode of the powertrain.
  • the control device 5a is in signal connection with the accumulators 3a, 4a and the converter 6a by means of the signal lines 17a, 18a, 32 and thus controls the charge of the accumulators and the commutation of the electric machine 27.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Steuerung eines hybridischen Antriebsstrangs in einem Kraftfahrzeug mit einer Brennkraftmaschine mit einer Kurbelwelle und mit einer als Motor und Generator betreibbaren Elektromaschine mit einem mit der Kurbelwelle in Wirkverbindung stehenden Rotor, einem mit der Kurbelwelle wirksam verbundenen Drehschwingungsdämpfer, einer Akkumulatoreinrichtung zum Austausch von elektrischer Energie mit der Elektromaschine sowie einem Steuergerät zur Steuerung der Akkumulatoreinrichtung und der Elektromaschine sowie eine entsprechende Akkumulatoreinrichtung. Um die Elektromaschine mit schnellwechselnden Motor- und Generatoreinsätzen ohne Schädigung der Akkumulatoreinrichtung betreiben zu können, wird die Elektromaschine mit zumindest zwei elektrischen Akkumulatoren der Akkumulatoreinrichtung in Wirkverbindung geschaltet, wobei zumindest zeitweise im Takt von auftretenden Restschwingungen des Drehschwingungsdämpfers einer der Akkumulatoren geladen wird, während der andere entladen wird.

Description

Verfahren zur Steuerung eines hybridischen Antriebsstranqs und Akkumulatoreinrichtung in diesem
Die Erfindung betrifft ein Verfahren zur Steuerung eines hybridischen Antriebsstrangs in einem Kraftfahrzeug mit einer Brennkraftmaschine mit einer Kurbelwelle und mit einer als Motor und Generator betreibbaren Elektromaschine mit einem mit der Kurbelwelle in Wirkverbindung stehenden Rotor, einem mit der Kurbelwelle wirksam verbundenen Drehschwin- gungsdämpfer, einer Akkumulatoreinrichtung zum Austausch von elektrischer Energie mit der Elektromaschine sowie einem Steuergerät zur Steuerung der Akkumulatoreinrichtung und der Elektromaschine sowie eine entsprechende Akkumulatoreinrichtung.
Hybridische Antriebsstränge sind aus Serienanwendungen in Kraftfahrzeugen bekannt. In diesen wird beispielsweise eine Elektromaschine, die als Starter für die Brennkraftmaschine, als zusätzlicher oder zeitweise alleiniger Antrieb und zur Rekuperation von kinetischer Energie des Kraftfahrzeugs dient, als Motor und Generator eingesetzt, wobei die Elektromaschine in Wirkverbindung mit einer Akkumulatoreinheit steht, die elektrische Energie speichert und abgibt.
Aus der DE 197 09 299 A1 ist weiterhin eine Vorrichtung zur Verringerung von Drehungleich- förmigkeiten einer Brennkraftmaschine bekannt, bei der über einem mittleren Moment der Brennkraftmaschine liegende Halbwellen von der im Generatorbetrieb geschalteten Elektromaschine gedämpft und die frei werdende Energie in der Akkumufatoreinheit gespeichert werden und zur Auffüllung von unter einem mittleren Moment liegenden Halbwellen die Elektromaschine angetrieben wird, wobei der Akkumulatoreinrichtung Energie entnommen wird. Insgesamt sind hierbei die im Takt der Drehungleichförmigkeiten der Brennkraftmaschine erfolgenden Ladungs- und Entladungsströme an der Akkumulatoreinrichtung hoch, so dass diese gegebenenfalls keine ausreichende Umladungskinetik aufweist und auf Dauer infolge der Umladungen geschädigt wird.
Weiterhin sind die Drehungleichförmigkeiten wie Drehschwingungen in modernen
Brennkraftmaschinen insbesondere durch Downsizing und dergleichen so hoch, dass herkömmlich eingesetzte Drehschwingungsdämpfer an ihre Kapazitäten stoßen.
BESTÄTIGUNGSKOPIE Aufgabe der Erfindung ist daher, einen hybridischen Antriebsstrang so zu betreiben, dass zum Einen die Drehschwingungen der Brennkraftmaschine in befriedigender Weise gedämpft und zum Anderen die Akkumulatoreinrichtung geschont wird. Weiterhin ist Aufgabe der Erfindung eine entsprechende Akkumulatoreinrichtung so auszulegen, dass diese eine längere und bessere Funktionsfähigkeit aufweist, insbesondere bei hochfrequenten Umladungsvorgängen zwischen Ladung und Entladung.
Die Aufgabe wird durch ein Verfahren zur Steuerung eines hybridischen Antriebsstrangs in einem Kraftfahrzeug mit einer Brennkraftmaschine mit einer Kurbelwelle und mit einer als Motor und Generator betreibbaren Elektromaschine mit einem mit der Kurbelwelle in Wirkverbindung stehenden Rotor, einem mit der Kurbelwelle wirksam verbundenen Drehschwingungsdämpfer, einer Akkumulatoreinrichtung zum Austausch von elektrischer Energie mit der Elektromaschine sowie einem Steuergerät zur Steuerung der Akkumulatoreinrichtung und der Elektromaschine gelöst, wobei die Elektromaschine mit zumindest zwei elektrischen Akkumulatoren der Akkumulatoreinrichtung in Wirkverbindung steht und zumindest zeitweise im Takt von auftretenden Restschwingungen des Drehschwingungsdämpfers einer der Akkumulatoren geladen wird, während der andere entladen wird. Insbesondere zur Dämpfung der Restschwingungen des Drehschwingungsdämpfers durch wechselweisen Betrieb der Elektromaschine im Motor- und Generatorbetrieb können die mit hoher Frequenz auftretenden Umlade- ströme an der Akkumulatoreinrichtung so gesteuert werden, dass ein Akkumulator nur geladen und der andere nur entladen wird. Eine derartige Betriebsweise ist für die Akkumulatoren der Akkumulatoreinrichtung schonender, so dass deren Lebensdauer verlängert werden kann.
Um einen Lade- beziehungsweise Entladezustand der Akkumulatoren zu berücksichtigen, ist weiterhin vorgesehen, diese abhängig von deren Ladezustand von dem Steuergerät, dessen Funktion in einem oder mehreren physikalischen Steuergeräten und Steuereinheiten vorgesehen sein kann, in einen Lade- oder Entladezustand zu schalten. Hierbei können technisch bekannte, beispielsweise bereits in den Akkumulatoren in vorteilhafter Weise für jede einzelne Zelle vorhandene Einrichtungen zur Feststellung des Ladezustands an das Steuergerät übermittelt werden, das insbesondere für die Lade- und Entladeströme zum Betrieb der die Restschwingungen dämpfenden Elektromaschine steuert. Es versteht sich, dass während Be- triebszuständen der Elektromaschine beispielsweise während des Starts, einer Rekuperation oder dergleichen auch beide Akkumulatoren gleichzeitig geladen beziehungsweise entladen werden können. Weiterhin kann eine Dämpfung der Restschwingungen mittels der Elektromaschine ausgesetzt werden, wenn der Ladezustand oder Betriebszustand der Akkumulatoren beispielsweise bei sehr geringen Temperaturen, langen Fahrten mit Unterstützung durch die Elektromaschine oder dergleichen eine vorgegebene Restladung beziehungsweise Restkapazität unterschreitet.
Hierbei erfolgt durch das Steuergerät neben der Steuerung der Akkumulatoreinheit die Steuerung der Elektromaschine, wobei der in den Ladezustand geschaltete Akkumulator mittels über einem mittleren Moment der Restschwingungen liegenden, durch Antrieb der Elektromaschine in elektrische Energie gewandelte Halbwellen geladen wird und der in den Entla- dezustand geschaltete Akkumulator die Elektromaschine in Phasen von unter einem mittleren Moment der Restschwingungen liegenden Halbwellen zu deren Kompensation die Elektromaschine antreibt. Die Betriebsdaten zur Steuerung der Elektromaschine und der Akkumulatoreinrichtung werden dabei von entsprechenden Sensoreinrichtungen zur Erfassung von Drehkennwerten wie Drehwinkeln und deren zeitliche Ableitungen von Wellen wie der Kurbelwelle der Brennkraftmaschine, der Getriebeeingangswelle(n) eines Getriebes, der Rotorwelle der Elektromaschine, inneren Größen der Motorsteuerung der Brennkraftmaschine wie Motorkennfeldern, oberer Totpunkt und dergleichen bereitgestellt.
Die Aufgabe wird weiterhin durch eine Akkumulatoreinrichtung zur Durchführung des vorgeschlagenen Verfahrens in einem hybridischen Antriebsstrang gelöst, die zwei wechselweise mittels stromrichtungsempfindlichen Schaltern beschaltbare Akkumulatoren und ein Steuergerät zur Steuerung der Schalter sowie einen Umrichter enthält. Hierbei werden bevorzugt die Minuspole auf Masse gelegt und die Pluspole mittels der Schalter beschaltet. Alternativ können die Massepfade der Akkumulatoren mittels der vorgeschlagenen Schalter beschaltet sein. Hierzu gibt das Steuergerät in bevorzugter Weise ein Steuersignal auf zwei wechselweise schaltende Logikschalter aus, die die Schalter selbst schalten, wobei in einer vorteilhaften Ausführungsform an jedem Pluspol eines Akkumulators ein Schalter für den Ladestrom und ein Schalter für den Entladestrom vorgesehen ist und diese jeweils wechselweise gegeneinander geschaltet sind. Um die Restschwingungen des Drehschwingungsdämpfers zu dämpfen, sind hierbei die Schalter bezüglich der Akkumulatoren wechselweise geschaltet, so dass nur ein Akkumulator geladen und der andere entladen wird. Soll die Elektromaschine im Motorbetrieb die Brennkraftmaschine starten oder in einem Boost-Betrieb ein zusätzliches Antriebsmoment leisten, können die Entladeschalter beider Akkumulatoren geschaltet und die Ladeschalter deaktiviert sein. Im Falle einer Rekuperation im Schubbetrieb des Kraftfahrzeugs können hingegen beide Ladeschalter der Akkumulatoren geschaltet und die Entladeschalter deaktiviert sein. Es versteht sich, dass die Beschaltung der Schalter so ausgelegt sein kann, dass beispielsweise zur gleichzeitigen Entladung oder gleichzeitigen La- dung beider Akkumulatoren die Schalter entsprechend geschaltet, beispielsweise die Ladeschalter gleichzeitig und die Entladeschalter gleichzeitig durchgeschaltet sein können.
In einer vorteilhaften Ausführungsform einer Akkumulatoreinrichtung können in den
Akkumulatoren jeweils Einrichtungen zur Ermittlung des Ladezustands vorgesehen sein, die in Signalverbindung mit dem Steuergerät stehen und den aktuellen Ladezustand der Akkumulatoren bis hin zu einzelnen Ladezuständen der Akkumulatorzellen mitteilen. Das Steuergerät erfasst die Ladezustände und ermittelt ein Ladekonzept für die verschiedenen Be- triebszustände des Kraftfahrzeugs, insbesondere für die Dämpfung der Restschwingungen des Drehschwingungsdämpfers mittels der Elektromaschine. Das Steuergerät erfasst und/oder erhält hierzu Daten zur Beurteilung der Betriebszustände wie beispielsweise Start der Brennkraftmaschine, Schaltungen des Getriebes, Schub- und Zugbetrieb des Kraftfahrzeugs und dergleichen.
Die Schalter können beispielsweise aus aktiven elektronischen Bauelementen wie
beispielsweise MOSFETS (Metall-Oxid-Halbleiter-Feldeffekttransistor) gebildet sein. Als besonders vorteilhaft haben sich jedoch Bipolartransistoren mit isolierter Gate-Elektrode (IGBT, insulated-gate bipolar transistor) erwiesen, die infolge der gegenüber MOSFETS fehlenden Freilaufdioden gegen die Schaltrichtung komplett sperren.
Als Akkumulatoren können beispielsweise Bleiakkumulatoren und dergleichen eingesetzt werden. Wegen ihres günstigen Leistungsgewichts, des zeitabhängigen Lade- und Entladeverhaltens haben sich jedoch Li-Ionen-Akkumulatoren als besonders vorteilhaft erwiesen. Die Beschaltung dieser mittels der Schalter beugt dabei Schädigungen vor, die insbesondere durch die Beaufschlagung dieser mit Mikrozyklen, wie Sie bei der Dämpfung von Restschwingungen mittels der Elektromaschine erforderlich sind, auftreten können. Durch die über den Umrichter und die Schalter in den entsprechenden Akkumulator nur in eine Flussrichtung gerichteten Ströme werden dabei lange Ladezyklen erzeugt, die als Makrozyklen pro Akkumulator von einem niedrigen Ladezustand bis zu einem vorgegebenen Ladezustand eingestellt werden können. Bei Auslegung der Akkumulatoren mit gleicher Kapazität kann dabei jeder Akkumulator wechselweise annähernd bis zur Maximalkapazität geladen werden.
Die Erfindung wird anhand der in den Figuren 1 bis 4 dargestellten Ausführungsbeispiele näher erläutert. Dabei zeigen:
Figur 1 einen Schaltplan zur Steuerung der Ladezustände von Akkumulatoren einer Akkumulatoreinrichtung,
Figur 2 eine Darstellung von Ladevorgängen einer konventionellen Akkumulatoreinrichtung mit einem Akkumulator und der vorgeschlagenen Akkumulatoreinrichtung über die Zeit,
Figur 3 eine Darstellung der in einem hybridischen Antriebsstrang während einer
Kompensation von Restschwingungen eines Drehschwingungsdämpfers an einer konventionellen und der vorgeschlagenen Akkumulatoreinrichtung auftretenden Ströme über die Zeit
und
Figur 4 einen gegenüber dem Schaltplan der Figur 1 ähnlichen Schaltplan zur Steuerung der Ladezustände von Akkumulatoren einer Akkumulatoreinrichtung.
Die Figur 1 zeigt den Schaltplan 2 der Akkumulatoreinrichtung 1 mit den beiden Akkumulatoren 3, 4 mit gleicher oder unterschiedlicher Kapazität, dem Steuergerät 5 und dem Umrichter 6, welche mittels der asseleitung 7 miteinander verbunden sind. Der Umrichter 6 bildet die Schnittstelle zu der nicht dargestellten Elektromaschine und wandelt den Gleichstrom der Akkumulatoren 3, 4 in bevorzugt mehrere Wechselstromphasen, von denen hier nur ein Phase w symbolisch dargestellt ist, zum Antrieb der Elektromaschine.
Zwischen Umrichter 6 und die Akkumulatoren 3, 4 sind jeweils zwei parallel geschaltete, bezüglich ihrer Schaltstellung umgekehrt beschaltete Schalter 8, 9, 10, 11 in Form von IGBTs angeordnet, so dass bei durch die Logikschalter 12, 13 jeweils mit gleichem Signalpegel beschalteten Gates der Schalter 8, 9, 10, 11 jeweils ein Schalter eines Akkumulators 3, 4 durchlässig und der andere sperrend geschaltet ist. Hierbei sind die Gates so beschaltet, dass beispielsweise an Akkumulator 3 bei an dem Ausgang Out1 des Steuergeräts 5 anliegendem positivem Pegel der Schalter 8 des Akkumulators 3 und der Schalter 11 des Akkumulators 4 geschaltet ist, so dass bei an der Zugangsleitung 14 anliegendem Wechselstromsignal lediglich der Akkumulator 3 über den geschlossenen Schalter 8 Ladestrom aufnimmt, während der für den Ladestrom des Akkumulators 4 verantwortliche Schalter 10 geöffnet bleibt. Bezüglich des Entladestroms ist der Schalter 9 des Akkumulators 3 geöffnet und über den geschlossenen Schalter 11 kann aus dem Akkumulator 4 ein Entladestrom fließen.
Wird der Pegel an dem Ausgang Out1 auf Low gestellt, geben die invers geschalteten Logikschalter 12, 13 einen Pegel an die Gates der Schalter 9, 10 aus, so dass durch den Schalter 9 der Entladestrom aus dem Akkumulator 3 und der Ladestrom für den Akkumulator 4 geschaltet wird, während die Schalter 8, 11 geöffnet bleiben.
Die Beschallung des Ausgangs Out1 des Steuergeräts 5 erfolgt abhängig von den in den Akkumulatoren 3, 4 von den Einrichtungen 15, 16 ermittelten Ladungszuständen, die aus den Ladungszuständen der einzelnen Zellen gebildet und mittels der Signalleitungen 17, 18 den Eingängen In1 , In2 des Steuergeräts 5 zugeführt werden.
Figur 2 zeigt das Diagramm 19, in dem die Kurven 20, 21 , 22 die Ladungszustände von Akkumulatoren gegen die Zeit im Bereich von beispielsweise mehreren Minuten bis zu mehreren Stunden wiedergeben, wo diese Ladezeiten variieren können und unter Anderem von der Kapazität der Akkumulatoren und deren Elektrodenkinetik abhängen. Die eigentlichen Anregungen des Antriebsstrangs, die der im Antriebsstrang befindliche Drehschwingungsdämpfer nicht ausreichend dämpft, verursachen in dem dem Umrichter nachgeschalteten Gleichspannungsteil kleine Wellen im Bereich von ca. 100 Hz. Die Darstellung des langzeitigen Ladevorgangs und die Darstellung der Wechselspannungsanteile der Anregungen sind in dem Diagramm 19 zur Erläuterung der Effekte überzeichnet dargestellt.
Die mit den Symbolen ,+' gekennzeichnete Kurve 22 zeigt eine konventionelle Akkumulatoreinrichtung mit einem Ladezustand von ca. 30% während einer Kompensation von Restschwingungen eines Drehschwingungsdämpfers mittels einer Elektromaschine, die mit dem einzigen Akkumulator der Akkumulatoreinrichtung verbunden ist. Hierbei wird der Akkumulator mit Mikrozyklen ge- und entladen, die im Bereich der Frequenz der auftretenden Restschwingungen des Drehschwingungsdämpfers liegen können. Durch derartige Mikrozyklen kann der Akkumulator geschädigt werden und eine geringe Lebensdauer aufweisen.
Die mit den Symbolen ,ο' beziehungsweise ,χ' gekennzeichneten Kurven 20, 21 geben den Ladungszustand der Akkumulatoreinrichtung 1 der Figur 1 wieder, wobei die beiden Akkumulatoren 3, 4 - wie aus Figur 2 hervorgeht - unterschiedliche Kapazitäten aufweisen. Durch die Beschaltung der Akkumulatoren 3, 4 entsprechend Schaltplan 2 ist eine gleichmäßige Ladung und Entladung der Akkumulatoren über Makrozyklen gegeben, die den vom Hersteller empfohlenen Ladungs- und Entladungsvorgängen angenähert werden können. Hierbei hat der Akkumulator mit der Kurve 20 die kleinere Kapazität, so dass dieser die Makrozyklen, die im Bereich weniger Minuten bis zu einigen Stunden dauern können, bestimmt. Die Ladungszustände werden an den Akkumulatoren gemessen und vom Steuergerät 5 erfasst, das die Schaltung der Schalter 8, 9, 10, 11 zur Einstellung der Makrozyklen steuert. In dem gezeigten Ausführungsbeispiel wird der Akkumulator mit der Kurve 20 bis zu einem Ladezustand von 80% der gesamten Kapazität geladen und bis zu 20% dieser entladen, woraus sich für den Akkumulator mit der größeren Kapazität eine Umladung zwischen 20% und 32% seiner gesamten Ladekapazität ergibt.
Figur 3 zeigt das Diagramm 23 mit an Akkumulatoreinrichtungen zyklisch auftretenden Strömen während einer Kompensation von Restschwingungen eines Drehschwingungsdämpfers mittels einer mit den Akkumulatoren der Akkumulatoreinrichtungen verbundenen E- lektromaschine über die Zeit. Hierbei zeigt die mit den Symbolen ,χ' kennzeichnete Kurve 24 die Ströme einer konventionellen Akkumulatoreinrichtung mit einem einzigen Akkumulator, der in der Frequenz der Wechselströme mikrozyklisch umgeladen wird. Die gemäß des Schaltplans 2 der Figur 1 beschalteten Akkumulatoren werden dagegen jeweils nur geladen beziehungsweise entladen, erfahren also über einen längeren Makrozyklus lediglich positive beziehungsweise negative Stromzyklen, wie den mit den Symbolen ,ο' beziehungsweise ,+' bezeichneten, jeweils den Strom eines Akkumulators wiedergebenden Kurven 25, 26 zu entnehmen ist.
Die Figur 4 zeigt den Schaltplan 2a den beiden Akkumulatoren 3a, 4a mit gleicher oder unterschiedlicher Kapazität, dem Steuergerät 5a und dem Umrichter 6a, welche mittels der Masseleitung 7a und der Zugangsleitung 14a miteinander verbunden sind. Der Umrichter 6a bildet die Schnittstelle zu der Elektromaschine 27 und wandelt den Gleichstrom der Akkumulatoren 3a, 4a in bevorzugt mehrere Wechselstromphasen u, v, w zum Antrieb der Elektromaschine 27 an. Hierbei werden phasenselektiv Kommutierungsströme beziehungsweise Kommutierungsspannungen im Bereich von 100 Hz bis 1 kHz ausgegeben, während die von der Elektromaschine 27 zur Schwingungsdämpfung des Antriebsstrangs rekuperierten Spannungsmodulationen, die über den Umrichter 6a auf das Gleichspannungsnetz, also über die Zugangsleitung 14a und die Masseleitung 7a auf die Akkumulatoren übertragen werden, im Bereich von ca. 60 bis 100 Hz liegen. Die Schalter 8a, 9a, 10a, 11a werden direkt mittels der Steuerleitungen 28, 29, 30, 31 von dem Steuergerät 5a angesteuert und damit in einen durch geschalteten oder offenen Zustand gesetzt.
Durch die freie Ausbildung der Beschaltung der Schalter 8a, 9a, 10a, 11a durch das
Steuergerät 5a kann einer der Akkumulatoren 3a, 4a geladen werden, während der andere entladen wird. Hierzu sind beispielsweise der Schalter 8a in Richtung des Akkumulators 3a und der Schalter 11a in Richtung Umrichter 6a durchgeschaltet, während die Schalter 9a, 10a geöffnet sind. Hierdurch wird der Akkumulator 3a geladen und der Akkumulator 4a entladen. Durch gleichsinniges Schließen der Schalter 8a, 10a werden beide Akkumulatoren 3a, 4a beispielsweise während einer Rekuperation des Antriebsstrangs im Schubbetrieb des Kraftfahrzeugs geladen und durch gleichsinniges Schließen der Schalter 9a, 11a werden beide Akkumulatoren 3a, 4a gleichzeitig entladen, beispielsweise während eines Starts der Brennkraftmaschine oder im Boostbetrieb des Antriebsstrangs.
Das Steuergerät 5a steht mittels der Signalleitungen 17a, 18a, 32 mit den Akkumulatoren 3a, 4a sowie dem Umrichter 6a in Signalverbindung und steuert damit die Ladung der Akkumulatoren und die Kommutierung der Elektromaschine 27.
Bezuqszeichenliste
Akkumulatoreinnchtung
Schaltplan
a Schaltplan
Akkumulator
a Akkumulator
Akkumulator
a Akkumulator
Steuergerät
a Steuergerät
Umrichter
a Umrichter
Masseleitung
a Masseleitung
Schalter
a Schalter
Schalter
a Schalter
0 Schalter
0a Schalter
1 Schalter
1a Schalter
2 Logikschalter
3 Logikschalter
4 Zugangsleitung
4a Zugangsleitung
5 Einrichtung
6 Einrichtung
7 Signalleitung
7a Signalleitung
8 Signalleitung
8a Signalleitung
9 Diagramm
0 Kurve 1 Kurve
2 Kurve
3 Diagramm 4 Kurve
5 Kurve
6 Kurve
7 Elektromaschine 8 Steuerleitung
29 Steuerleitung
30 Steuerleitung
31 Steuerleitung
32 Signalleitung
In1 Eingang
In2 Eingang
Out1 Ausgang u Phase
V Phase w Phase

Claims

Patentansprüche
1. Verfahren zur Steuerung eines hybridischen Antriebsstrangs in einem Kraftfahrzeug mit einer Brennkraftmaschine mit einer Kurbelwelle und mit einer als Motor und Generator betreibbaren Elektromaschine (27) mit einem mit der Kurbelwelle in Wirkverbindung stehenden Rotor, einem mit der Kurbelwelle wirksam verbundenen Drehschwingungsdämpfer, einer Akkumulatoreinrichtung (1) zum Austausch von elektrischer E- nergie mit der Elektromaschine (27) sowie einem Steuergerät (5, 5a) zur Steuerung der Akkumulatoreinrichtung (1) und der Elektromaschine (27), dadurch gekennzeichnet, dass die Elektromaschine (27) mit zumindest zwei elektrischen Akkumulatoren (3, 3a, 4, 4a) der Akkumulatoreinrichtung ( ) in Wirkverbindung steht und zumindest zeitweise im Takt von auftretenden Restschwingungen des Drehschwingungsdämpfers einer der Akkumulatoren (3, 3a, 4, 4a) geladen wird, während der andere entladen wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Akkumulatoren (3, 3a, 4, 4a) abhängig von deren Ladezustand von dem Steuergerät (5, 5a) in einen Ladeoder Entladungszustand geschaltet werden.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass der in den Ladezustand geschaltete Akkumulator (3, 3a, 4, 4a) mittels über einem mittleren Moment der Restschwingungen liegenden, durch Antrieb der Elektromaschine (27) in elektrische Energie gewandelte Halbwellen geladen wird und der in den Entladezustand geschaltete Akkumulator (4, 4a, 3, 3a) die Elektromaschine in Phasen von unter einem mittleren Moment der Restschwingungen liegenden Halbwellen zu deren Kompensation die E- lektromaschine antreibt.
4. Akkumulatoreinrichtung (1 ) zur Durchführung des Verfahrens nach den Ansprüchen 1 bis 3 mit zwei mittels stromrichtungsempfindlicher Schalter (8, 8a, 9, 9a, 10, 10a, 11 , 11a) beschaltbaren Akkumulatoren (3, 3a, 4, 4a) und einem Steuergerät (5, 5a) zur Steuerung der Schalter (8, 8a, 9, 9a, 10, 10a, 11 , 11a) sowie einem Umrichter (6, 6a),
5. Akkumulatoreinrichtung (1) nach Anspruch 4, dadurch gekennzeichnet, dass in den Akkumulatoren (3, 3a, 4, 4a) jeweils eine Einrichtung (15, 16) zur Ermittlung des Ladezustands vorgesehen ist, die in Signalverbindung mit dem Steuergerät (5, 5a) steht.
6. Akkumulatoreinrichtung (1 ) nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass jeder Akkumulator (3, 3a, 4, 4a) jeweils mittels eines Schalters (8, 8a, 11 , 1a; 9, 9a, 10, 10a) zur Ladung und Entladung versehen ist und die Schalter (8, 8a, 11 , 1 1a; 9, 9a, 10, 10a) wechselweise vom Steuergerät (5, 5a) betätigbar sind.
7. Akkumulatoreinrichtung (1 ) nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass die Schalter (8, 8a, 9, 9a, 10, 10a, 11 , 10a) vom Steuergerät (5, 5a) geschaltete Bipolartransistoren mit isolierter Gate-Elektrode sind.
8. Akkumulatoreinrichtung (1) nach Anspruch 7, dadurch gekennzeichnet, dass zwischen jeweils einem Schalter (9, 10) und einem Ausgang (Out1 ) des Steuergeräts (5) ein invertierender Logikschalter (12, 13) angeordnet und die anderen beiden Schalter (8, 11 ) direkt mit einem Ausgang (Out1 ) verbunden sind.
9. Akkumulatoreinrichtung (1 ) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Schalter (8a, 9a, 10a, 11a) einzeln ansprechbar von dem Steuergerät (5a) gesteuert sind.
10. Akkumulatoreinrichtung (1 ) nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, dass die Akkumulatoren (3, 3a, 4, 4a) Li-Ionen-Akkumulatoren sind.
1 1. Akkumulatoreinrichtung (1 ) nach einem der Ansprüche 4 bis 10, dadurch gekennzeichnet, dass die Akkumulatoren (3, 3a, 4, 4a) unterschiedliche Kapazitäten aufweisen.
PCT/DE2012/000243 2011-04-04 2012-03-12 Verfahren zur steuerung eines hybridischen antriebsstrangs und akkumulatoreinrichtung in diesem WO2012136180A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112012001560.6T DE112012001560A5 (de) 2011-04-04 2012-03-12 Verfahren zur Steuerung eines hybridischen Antriebsstrangs und Akkumulatoreneinrichtung in diesem
CN201280016518.3A CN103608208B (zh) 2011-04-04 2012-03-12 用于控制混合驱动系的方法和这种混合驱动系中的蓄电池装置
US14/039,657 US20140025248A1 (en) 2011-04-04 2013-09-27 Method for controlling a hybrid drivetrain and battery device in the hybrid drivetrain
US15/208,260 US10343550B2 (en) 2011-04-04 2016-07-12 Method for controlling a hybrid drivetrain and battery device in the hybrid drivetrain

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011016012 2011-04-04
DE102011016012.4 2011-04-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/039,657 Continuation US20140025248A1 (en) 2011-04-04 2013-09-27 Method for controlling a hybrid drivetrain and battery device in the hybrid drivetrain

Publications (2)

Publication Number Publication Date
WO2012136180A2 true WO2012136180A2 (de) 2012-10-11
WO2012136180A3 WO2012136180A3 (de) 2013-07-25

Family

ID=46275615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2012/000243 WO2012136180A2 (de) 2011-04-04 2012-03-12 Verfahren zur steuerung eines hybridischen antriebsstrangs und akkumulatoreinrichtung in diesem

Country Status (4)

Country Link
US (2) US20140025248A1 (de)
CN (1) CN103608208B (de)
DE (2) DE112012001560A5 (de)
WO (1) WO2012136180A2 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3000713B1 (fr) * 2013-01-07 2015-02-20 Peugeot Citroen Automobiles Sa Procede et systeme de correction d’oscillations de regime d’un train roulant
JP6448643B2 (ja) 2013-12-03 2019-01-09 シェフラー テクノロジーズ アー・ゲー ウント コー. カー・ゲーSchaeffler Technologies AG & Co. KG 分割されたくさびエレメントと面取りされた係合面とを備えるくさびクラッチ
US9037334B1 (en) * 2014-01-15 2015-05-19 Robert L. Cole Electric vehicle having a dual battery system
DE102014205136A1 (de) 2014-03-19 2015-09-24 Zf Friedrichshafen Ag Hybridmodul sowie Antriebsstrang mit dem Hybridmodul
DE102014016224A1 (de) * 2014-10-31 2016-03-10 Audi Ag Verfahren zum Betreiben eines Kraftfahrzeugs
JP2017154637A (ja) * 2016-03-02 2017-09-07 トヨタ自動車株式会社 自動車
IT201600073261A1 (it) * 2016-07-13 2018-01-13 Nuovo Pignone Tecnologie Srl Apparato e metodo per la gestione di un impianto industriale comprendente macchine elettriche interagenti con convertitori di energia
JP6834448B2 (ja) * 2016-12-14 2021-02-24 株式会社デンソー 電池ユニット、及び電源システム
DE102016225316A1 (de) 2016-12-16 2018-06-21 Volkswagen Aktiengesellschaft Verfahren zur Schwingungsreduktion in einem Hybridantrieb
MX2019002991A (es) * 2019-03-14 2020-09-15 Ceja Brian Alejandro Franco Sistema para la producción de energía eléctrica a partir de energía cinética.
DE102020123983A1 (de) 2019-09-18 2021-03-18 Schaeffler Technologies AG & Co. KG Schaltung zum Entladen von einem Energiespeicher eines Antriebssystems
WO2023168628A1 (zh) * 2022-03-09 2023-09-14 宁德时代新能源科技股份有限公司 动力电池电压调节***及其控制方法和控制装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532163A1 (de) * 1995-08-31 1997-03-06 Clouth Gummiwerke Ag System zur aktiven Verringerung von Drehungleichförmigkeiten einer Welle, insbesondere der Triebwelle eines Verbrennungsmotors, und Verfahren hierzu
WO1997008439A1 (de) * 1995-08-31 1997-03-06 Isad Electronic Systems Gmbh & Co. Kg Antriebssystem mit antriebsmotor, elektrischer maschine und batterie
DE19709134A1 (de) * 1997-03-06 1998-09-17 Isad Electronic Sys Gmbh & Co Antriebssystem, insbesondere für ein Kraftfahrzeug und Verfahren zur Steuerung der Leerlaufdrehzahl eines Verbrennungsmotors
US20110025124A1 (en) * 2009-07-31 2011-02-03 Ladislaus Joseph Brabec Bi-directional battery voltage converter

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313080A (en) * 1978-05-22 1982-01-26 Battery Development Corporation Method of charge control for vehicle hybrid drive batteries
US4674609A (en) * 1985-06-03 1987-06-23 Borg-Warner Corporation Torsional vibration dampening system
US5397991A (en) * 1988-07-13 1995-03-14 Electronic Development Inc. Multi-battery charging system for reduced fuel consumption and emissions in automotive vehicles
US5602459A (en) * 1988-07-13 1997-02-11 Electronic Development Inc. Fuel saving multi-battery charging system and method
US5359308A (en) * 1993-10-27 1994-10-25 Ael Defense Corp. Vehicle energy management system using superconducting magnetic energy storage
US6138629A (en) * 1995-08-31 2000-10-31 Isad Electronic Systems Gmbh & Co. Kg System for actively reducing radial vibrations in a rotating shaft, and method of operating the system to achieve this
DE19532164A1 (de) * 1995-08-31 1997-03-06 Clouth Gummiwerke Ag Antriebssystem, insbesondere für ein Kraftfahrzeug, und Verfahren zum Betreiben desselben
US5749909A (en) * 1996-11-07 1998-05-12 Sulzer Intermedics Inc. Transcutaneous energy coupling using piezoelectric device
DE19709299A1 (de) 1997-03-06 1998-09-17 Isad Electronic Sys Gmbh & Co Vorrichtung zur Verringerung von Drehungleichförmigkeiten und Verfahren hierzu
JP3292113B2 (ja) * 1997-09-25 2002-06-17 トヨタ自動車株式会社 動力出力装置およびこの装置における原動機の停止方法
US6184659B1 (en) 1999-02-16 2001-02-06 Microchip Technology Incorporated Microcontroller with integral switch mode power supply controller
US6310523B1 (en) 2000-05-08 2001-10-30 National Science Council Wide-range and low-power consumption voltage-controlled oscillator
JP2003153597A (ja) * 2001-11-14 2003-05-23 Toyota Motor Corp 電源装置
US6962223B2 (en) * 2003-06-26 2005-11-08 George Edmond Berbari Flywheel-driven vehicle
US7339347B2 (en) 2003-08-11 2008-03-04 Reserve Power Cell, Llc Apparatus and method for reliably supplying electrical energy to an electrical system
US7495403B2 (en) * 2004-03-30 2009-02-24 Continental Automotive Systems Us, Inc. Method, apparatus and article for vibration compensation in electric drivetrains
US8860377B2 (en) 2006-02-09 2014-10-14 Karl F. Scheucher Scalable intelligent power supply system and method
US7838142B2 (en) * 2006-02-09 2010-11-23 Scheucher Karl F Scalable intelligent power supply system and method
DE102006040118A1 (de) * 2006-08-26 2008-04-10 Zf Friedrichshafen Ag Hybridantriebseinheit
US8863540B2 (en) * 2006-11-15 2014-10-21 Crosspoint Solutions, Llc HVAC system controlled by a battery management system
US8030880B2 (en) * 2006-11-15 2011-10-04 Glacier Bay, Inc. Power generation and battery management systems
DE102007055336A1 (de) 2007-01-15 2008-08-21 GIF Gesellschaft für Industrieforschung mbH Flugzeugpropellerantrieb, Verfahren zum Antreiben eines Flugzeugpropellers und Verwendung eines Lagers eines Flugzeugpropellerantriebs sowie Verwendung einer Elektromaschine
JP5254568B2 (ja) * 2007-05-16 2013-08-07 日立ビークルエナジー株式会社 セルコントローラ、電池モジュールおよび電源システム
DE102007027505B3 (de) * 2007-06-11 2009-01-08 Minebea Co., Ltd. Ansteuerschaltkreis für einen High-Side-Halbleiterschalter zum Schalten einer Versorgungsspannung
US8102142B2 (en) * 2007-07-30 2012-01-24 GM Global Technology Operations LLC Double ended inverter system for a vehicle having two energy sources that exhibit different operating characteristics
JP5250230B2 (ja) * 2007-09-28 2013-07-31 株式会社日立製作所 車両用電源システムおよび電池セル制御用集積回路
WO2009052783A1 (de) * 2007-10-25 2009-04-30 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Antriebsstrang
JP5386155B2 (ja) * 2008-11-28 2014-01-15 株式会社日立製作所 蓄電装置
US8350528B2 (en) * 2009-02-04 2013-01-08 Samsung Sdi Co., Ltd. Battery pack and balancing method of battery cells
US9018802B2 (en) * 2009-07-10 2015-04-28 National Research Council Of Canada Pulsed power supply for plasma electrolytic deposition and other processes
US8339100B2 (en) * 2009-09-29 2012-12-25 O2Micro Inc Systems and methods for cell balancing
CN102035010B (zh) * 2009-09-29 2013-05-01 凹凸电子(武汉)有限公司 电池单元均衡电路及方法
JP5204073B2 (ja) * 2009-09-30 2013-06-05 三菱重工業株式会社 電動車両用制御装置、並びに、これを備えた電動車両及びフォークリフト
CN102055042B (zh) * 2009-10-29 2013-10-02 比亚迪股份有限公司 一种车辆用电池加热控制***及其控制方法
US20110149611A1 (en) * 2009-12-21 2011-06-23 Intersil Americas Inc. Bidirectional signal conversion
DE102010009832A1 (de) 2010-03-02 2011-09-08 Ivd Prof. Hohenberg Gmbh Kraftfahrzeug mit kombiniertem Antrieb
US8285679B2 (en) * 2010-03-11 2012-10-09 International Business Machines Corporation Creating a buffer point-in-time copy relationship for a point-in-time copy function executed to create a point-in-time copy relationship
JP5051264B2 (ja) * 2010-04-08 2012-10-17 株式会社デンソー 電池電圧監視装置
US8427107B2 (en) 2010-06-22 2013-04-23 A 123 Systems, Inc. System and method for extending the usable capacity of a battery pack via controlling battery current through different current paths
US8981710B2 (en) * 2010-09-20 2015-03-17 Indy Power Systems Llc Energy management system
JP5307847B2 (ja) * 2011-04-19 2013-10-02 三菱電機株式会社 車両用電源システム
US9331498B2 (en) * 2012-09-07 2016-05-03 Kohler Co. Power generation system that provides efficient battery charger selection
US9093929B2 (en) * 2012-12-17 2015-07-28 Infineon Technologies Ag Circuit arrangements and methods for operating an electrical machine
DE112014001017A5 (de) * 2013-02-27 2015-11-05 Schaeffler Technologies AG & Co. KG Betätigungseinrichtung für ein Kraftfahrzeug

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19532163A1 (de) * 1995-08-31 1997-03-06 Clouth Gummiwerke Ag System zur aktiven Verringerung von Drehungleichförmigkeiten einer Welle, insbesondere der Triebwelle eines Verbrennungsmotors, und Verfahren hierzu
WO1997008439A1 (de) * 1995-08-31 1997-03-06 Isad Electronic Systems Gmbh & Co. Kg Antriebssystem mit antriebsmotor, elektrischer maschine und batterie
DE19709134A1 (de) * 1997-03-06 1998-09-17 Isad Electronic Sys Gmbh & Co Antriebssystem, insbesondere für ein Kraftfahrzeug und Verfahren zur Steuerung der Leerlaufdrehzahl eines Verbrennungsmotors
US20110025124A1 (en) * 2009-07-31 2011-02-03 Ladislaus Joseph Brabec Bi-directional battery voltage converter

Also Published As

Publication number Publication date
DE112012001560A5 (de) 2014-01-16
DE102012203778A1 (de) 2012-10-04
CN103608208A (zh) 2014-02-26
US20140025248A1 (en) 2014-01-23
US10343550B2 (en) 2019-07-09
US20160339796A1 (en) 2016-11-24
CN103608208B (zh) 2017-04-05
WO2012136180A3 (de) 2013-07-25

Similar Documents

Publication Publication Date Title
WO2012136180A2 (de) Verfahren zur steuerung eines hybridischen antriebsstrangs und akkumulatoreinrichtung in diesem
DE102011084777B4 (de) Fahrzeugstromversorgungssystem
DE102019114701A1 (de) Selbstausgleichende Schaltsteuerung eines wiederaufladbaren Doppelpack-Energiespeichersystems mit Reihen- und Parallelmodi
DE102011110906B4 (de) Verfahren zum Betreiben eines Hybridantriebsstrangsystems und Hybridantriebsstrangsystem
DE102008002666B4 (de) Verfahren und Vorrichtung zum Starten eines Verbrennungsmotors eines Hybridantriebsstranges
DE112010005574B4 (de) Fahrzeugsteuersystem
DE102016112194B4 (de) Hybridauto
DE102005041154A1 (de) Verfahren und Anordnung zum Einstz bei einem Fahrzeug mit elektrischer Speichervorrichtung
WO2009043804A1 (de) Hybridantrieb mit notstart- und fremdstartmöglichkeit
DE102004052457A1 (de) Kraftfahrzeug-Stromversorgungssystem zur Sicherung der Stabilität der Aufladung von Speicherbatterien
EP2714485B1 (de) Verfahren zum betrieb eines kraftfahrzeugs
DE102006018624A1 (de) Parallelhybridantrieb
EP2418115A2 (de) Verfahren und System zum Betreiben einer durch einen Wechselrichter angesteuerten elektrischen Maschine in einem Kraftfahrzeug im Fehlerfall
DE112012007192T5 (de) Elektrizitätsspeichersystem
EP3720733B1 (de) Verfahren zum steuern einer elektrischen anlage eines elektrisch antreibbaren kraftfahrzeugs mit mehreren batterien sowie elektrische anlage eines elektrisch antreibbaren kraftfahrzeugs
DE102017108396A1 (de) Fehlerabschaltsteuerung einer elektrischen maschine in einem fahrzeug oder anderen gleichstromdrehmomentsystemen
DE102019203647A1 (de) Fahrzeug
DE102014203984A1 (de) Einschalt-Abfolgesteuerung eines elektrischen Hybridfahrzeugs mit VVC-Test
DE102013210047A1 (de) Steuerung der Leistungsgrenze einer Hybridbatterie
DE102011079566A1 (de) Verfahren zum Betreiben eines elektrischen Netzes und Vorrichtung zum Steuern eines elektrischen Netzes
DE102014005391A1 (de) Batterie-Lade/Entlade-Steuerungsvorrichtung
DE102007020935A1 (de) Verfahren und Vorrichtung für die Antriebssteuerung von Hybridfahrzeugen bei hoher Belastung eines elektronischen Energiespeichers
DE102013220643A1 (de) Verfahren zum Betreiben eines Kraftfahrzeug-Bordnetzes, sowie Kraftfahrzeug-Bordnetz
EP2877364B1 (de) Antriebssystem für ein elektrofahrzeug und verfahren zum laden einer batterie mit verbrennungsmotor
AT513476B1 (de) Verfahren zum Betrieb eines Range Extanders für Elektrofahrzeuge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12727236

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 1120120015606

Country of ref document: DE

Ref document number: 112012001560

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12727236

Country of ref document: EP

Kind code of ref document: A2