WO2012133698A1 - リチウムイオン二次電池及びリチウムイオン二次電池用非水電解液 - Google Patents

リチウムイオン二次電池及びリチウムイオン二次電池用非水電解液 Download PDF

Info

Publication number
WO2012133698A1
WO2012133698A1 PCT/JP2012/058459 JP2012058459W WO2012133698A1 WO 2012133698 A1 WO2012133698 A1 WO 2012133698A1 JP 2012058459 W JP2012058459 W JP 2012058459W WO 2012133698 A1 WO2012133698 A1 WO 2012133698A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorine
hcf
ocf
secondary battery
ion secondary
Prior art date
Application number
PCT/JP2012/058459
Other languages
English (en)
French (fr)
Inventor
坂田 英郎
明天 高
昭佳 山内
瞳 中澤
知世 佐薙
葵 中園
有希 足立
恭平 澤木
明範 谷
真裕 冨田
みちる 賀川
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP12765720.3A priority Critical patent/EP2693558B1/en
Priority to PL12765720T priority patent/PL2693558T3/pl
Priority to US14/008,285 priority patent/US10720664B2/en
Priority to KR1020137027417A priority patent/KR20140003601A/ko
Priority to CN201280015785.9A priority patent/CN103460496B/zh
Publication of WO2012133698A1 publication Critical patent/WO2012133698A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium ion secondary battery including a nonaqueous solvent in which the content of a specific compound is reduced and a nonaqueous electrolytic solution containing an electrolyte salt.
  • the present invention also relates to a non-aqueous electrolyte used for a lithium ion secondary battery.
  • lithium-ion secondary batteries having high energy density is in progress. Further, as the application field of lithium ion secondary batteries expands, improvement of battery characteristics is desired. In particular, when lithium ion secondary batteries are used in vehicles, safety and battery characteristics will become increasingly important.
  • the lithium ion secondary battery is not sufficient for safety such as when the battery is overcharged, when it is internally short-circuited, and when it is pierced with a nail, etc. Furthermore, it is necessary to make the battery highly safe. In addition, in the case of in-vehicle use, it is necessary to further increase the voltage used at present in order to increase the capacity.
  • Patent Document 1 As a method for improving the safety and increasing the voltage of a non-aqueous electrolyte secondary battery, it has been proposed to use a fluorinated ether having a specific structure (see, for example, Patent Document 1).
  • the non-aqueous electrolyte secondary battery of Patent Document 1 has a problem in that the discharge capacity decreases when the battery is left in a high temperature environment or repeatedly charged and discharged.
  • An object of the present invention is to provide a lithium ion secondary battery excellent in high temperature storage characteristics and high voltage cycle characteristics, and a non-aqueous electrolyte used therein.
  • the present invention is a lithium ion secondary battery comprising a positive electrode, a negative electrode, and a nonaqueous electrolyte solution containing a nonaqueous solvent and an electrolyte salt
  • the non-aqueous solvent is represented by the general formula (1): Rf 1 -O-Rf 2 (1) (Wherein Rf 1 and Rf 2 are the same or different and are an alkyl group having 1 to 10 carbon atoms or a fluoroalkyl group having 1 to 10 carbon atoms; provided that at least one of Rf 1 and Rf 2 is a fluoroalkyl group) Containing the indicated fluorine-containing ether, and
  • the present invention relates to a lithium ion secondary battery comprising a total of 5000 ppm or less of the compounds represented by the following (I) and (II) with respect to the fluorine-containing ether.
  • (I) Fluorine-containing unsaturated compound (II) General formula (2): Rf 1 OH (2) (Where
  • the hydroxyl group-containing compound (II) is (II-1) HCF 2 CF 2 CH 2 OH It is preferable that
  • the hydroxyl group-containing compound (II) is (II-1) HCF 2 CF 2 CH 2 OH It is preferable that
  • the content of the fluorine-containing ether represented by the general formula (1) is preferably 0.01 to 90% by weight in the non-aqueous solvent.
  • the present invention is a non-aqueous electrolyte for a lithium ion secondary battery containing a non-aqueous solvent and an electrolyte salt
  • the non-aqueous solvent is represented by the general formula (1): Rf 1 -O-Rf 2 (1) (Wherein Rf 1 and Rf 2 are the same or different and are an alkyl group having 1 to 10 carbon atoms or a fluoroalkyl group having 1 to 10 carbon atoms; provided that at least one of Rf 1 and Rf 2 is a fluoroalkyl group) Containing the indicated fluorine-containing ether, and
  • the present invention relates to a non-aqueous electrolyte for a lithium ion secondary battery characterized in that it contains a total of 5000 ppm or less of the compounds represented by the following (I) and (II) with respect to the fluorine-containing ether.
  • (I) Fluorine-containing unsaturated compound (II) General formula (2): Rf 1
  • the present invention can provide a lithium ion secondary battery excellent in storage characteristics at high temperatures and high voltage cycle characteristics, and a non-aqueous electrolyte used therein.
  • the lithium ion secondary battery of the present invention includes a positive electrode, a negative electrode, and a nonaqueous electrolyte solution containing a nonaqueous solvent and an electrolyte salt
  • the non-aqueous solvent is represented by the general formula (1): Rf 1 -O-Rf 2 (1) (Wherein Rf 1 and Rf 2 are the same or different and are an alkyl group having 1 to 10 carbon atoms or a fluoroalkyl group having 1 to 10 carbon atoms; provided that at least one of Rf 1 and Rf 2 is a fluoroalkyl group) Containing the indicated fluorine-containing ether, and The compounds represented by the following (I) and (II) are contained in a total of 5000 ppm or less with respect to the fluorine-containing ether.
  • (I) Fluorine-containing unsaturated compound (II)
  • fluorine-containing ether represented by the general formula (1) include, for example, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CF 2 H, and HCF 2 CF 2 CH 2.
  • HCF 2 CF 2 CH 2 OCF 2 CF 2 H and HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 One or more compounds selected from the group consisting of HCF 2 CF 2 CH 2 OCF 2 CF 2 H are more preferable.
  • the fluorine content of the fluorinated ether used in the present invention is preferably 50% by weight or more from the viewpoint of good oxidation resistance and safety.
  • a particularly preferred fluorine content is 55 to 66% by weight.
  • the fluorine content is calculated from the structural formula.
  • the content of the fluorine-containing ether represented by the general formula (1) is preferably 0.01 to 90% by weight in the non-aqueous solvent.
  • the fluorine-containing ether content is less than 0.01% by weight, there is a tendency that almost no improvement in safety and high voltage is observed.
  • it exceeds 90% by weight the electrolyte solution is separated into two layers or the viscosity becomes high. Too much, the load characteristics at low temperatures tend to deteriorate.
  • 0.1 weight% is more preferable and 0.5 weight% is still more preferable.
  • 80 weight% is more preferable, 60 weight% is still more preferable, and 20 weight% is especially preferable.
  • the fluorine-containing unsaturated compound (I) is derived from a by-product generated when the fluorine-containing ether represented by the general formula (1) is synthesized. Specifically, hydrogen fluoride (HF) is eliminated from the fluorine-containing ether represented by the general formula (1) and an unsaturated bond is generated.
  • HF hydrogen fluoride
  • the hydroxyl group-containing compound (II) is derived from a raw material when the fluorine-containing ether represented by the general formula (1) is synthesized, and the general formula (2): Rf 1 OH (2) It is shown by.
  • Rf 1 can include the same compounds as in general formula (1), and specific examples of the hydroxyl group-containing compound (II) include (II-1) HCF 2 CF 2 CH 2 OH. Can do.
  • (I) a fluorine-containing unsaturated compound (II) a hydroxyl group-containing compound, and the specific compounds (I-1) to (I-6) and (II-1) are simply referred to as a compound (I ), Compound (II), compounds (I-1) to (I-6), and compound (II-1).
  • Compound (I) is Compound (I-1) and Compound (I-2), Compound (II) is Compound (II-1), or Compound (I) is Compound (I-3), Compound (I-4), Compound (I-5) and Compound (I-6), and a combination wherein Compound (II) is Compound (II-1) is preferred.
  • the compounds (I) and (II) are impurities contained in the fluorinated ether. Accordingly, the fluorine-containing ether used in the present invention is purified in advance, and the content of the compounds (I) and (II) in the non-aqueous solvent is within the above range (total of 5000 ppm or less with respect to the fluorine-containing ether). It can be.
  • ppm is based on weight, and 5000 ppm or less with respect to the fluorinated ether indicates 0.5 parts by weight or less with respect to 100 parts by weight of the fluorinated ether.
  • the discharge characteristics after high-temperature storage tend to be lowered, or the cycle deterioration tends to increase when the voltage is increased.
  • the capacity tends to decrease when the hydroxyl group-containing compound (II) remains.
  • the fluorine-containing unsaturated compound (I) has a double bond, when many of these remain, there is a tendency that they easily react with moisture and the like in the electrolytic solution and decompose.
  • the lower limit of the total amount of compounds (I) and (II) is, for example, 100 ppm.
  • the lower limit is preferably 300 ppm, more preferably 500 ppm.
  • the HOMO energy of the compounds (I) and (II) obtained by molecular activation calculation is higher than that of the fluorinated ether represented by the general formula (1), the oxidation resistance is weak. Therefore, it is considered that when the voltage is increased, it is decomposed and becomes a cause of deterioration. From this, it is considered that the smaller the content of the compounds (I) and (II) in the fluorinated ether, the smaller the storage characteristics of the lithium ion secondary battery and the decrease in high voltage cycle.
  • Examples of the method for purifying the fluorinated ether represented by the general formula (1) include a method of rectifying using a distillation column having 5 or more theoretical plates. Specifically, for example, a method of subjecting a fluorine-containing ether containing impurities (hereinafter sometimes referred to as a fluorine-containing ether crude liquid) to countercurrent extraction using water as an extraction solvent (separating agent) for the fluorine-containing alkyl alcohol. Is mentioned.
  • the countercurrent extraction method is a type of liquid-liquid extraction method.
  • a vertical extraction device is used for extraction, and a crude liquid having a large specific gravity (for example, a specific gravity of about 1.5) is injected from the top of the extraction device. Then, water (specific gravity 1.0) is injected from the lower part, and if necessary, it is allowed to float above the apparatus as water droplets while stirring, and in the meantime, the fluorinated ether crude liquid and water are sufficiently brought into contact with each other. Is extracted with individual water droplets. The water used for extraction is extracted from above the apparatus.
  • a typical countercurrent extraction device is a mixer-settler type extraction device provided with a stirrer in multiple stages.
  • HCF 2 CF 2 CH 2 OCF 2 CF 2 H and HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 which are more preferable specific examples will be described.
  • the fluorine-containing ether represented by the general formula (1) is HCF 2 CF 2 OCH 2 CF 2 CF 2 H
  • the compound (I) is converted into the compound (I-1) and the compound (I-2).
  • the compound (II) is preferably a combination of the compound (II-1), and the fluorine-containing ether represented by the general formula (1) is HCF 2 CF 2 CH 2 OCF 2 CFHCF 3
  • the compound (I) is the compound (I-3), the compound (I-4), the compound (I-5) and the compound (I-6), and the compound (II) is the compound (II- The combination which is 1) is preferable.
  • any known components can be used as the solvent for the non-aqueous electrolyte secondary battery.
  • alkylene carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate
  • dialkyl carbonates such as dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, and ethylmethyl carbonate
  • Cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran
  • chain ethers such as dimethoxyethane and dimethoxymethane
  • cyclic carboxylic acid ester compounds such as ⁇ -butyrolactone and ⁇ -valerolactone
  • methyl acetate and propionic acid examples thereof include chain carboxylic acid esters such as methyl and ethyl propionate. Two or more of these may be used in combination.
  • One preferable non-aqueous solvent is mainly composed of alkylene carbonate and dialkyl carbonate.
  • a mixed solvent containing 20 to 45% by volume of an alkylene carbonate having an alkylene group having 2 to 4 carbon atoms and 55 to 80% by volume of a dialkyl carbonate having an alkyl group having 1 to 4 carbon atoms is an electrolytic solution. It is preferable because the electric conductivity of the liquid is high, and the cycle characteristics and high current discharge characteristics are high.
  • alkylene carbonate having an alkylene group having 2 to 4 carbon atoms examples include ethylene carbonate, propylene carbonate, butylene carbonate and the like. Among these, ethylene carbonate or propylene carbonate is preferable.
  • dialkyl carbonate having an alkyl group having 1 to 4 carbon atoms examples include dimethyl carbonate, diethyl carbonate, di-n-propyl carbonate, ethyl methyl carbonate, methyl-n-propyl carbonate, and ethyl-n-propyl carbonate. Among these, dimethyl carbonate, diethyl carbonate, or ethyl methyl carbonate is preferable.
  • non-aqueous solvent contains at least one organic solvent selected from the group consisting of ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, and ⁇ -valerolactone, and the total of these organic solvents is 60. It is preferably at least volume%, more preferably at least 85 volume%.
  • An electrolytic solution in which a lithium salt is dissolved in this non-aqueous solvent causes less solvent evaporation and liquid leakage even when used at high temperatures.
  • a mixture containing 5 to 45% by volume of ethylene carbonate and 55 to 95% by volume of ⁇ -butyrolactone, or a solvent containing 30 to 60% by volume of ethylene carbonate and 40 to 70% by volume of propylene carbonate has cycle characteristics and large current discharge. This is preferable because the balance of characteristics and the like is good.
  • Still another example of a preferable non-aqueous solvent includes a phosphorus-containing organic solvent.
  • the phosphorus-containing organic solvent include trimethyl phosphate, triethyl phosphate, dimethyl ethyl phosphate, methyl diethyl phosphate, ethylene methyl phosphate, ethylene ethyl phosphate, and the like.
  • the phosphorus-containing organic solvent is contained in the nonaqueous solvent so as to be 10% by volume or more, the flammability of the electrolytic solution can be reduced.
  • the content of the phosphorus-containing organic solvent is 10 to 80% by volume
  • the other components are mainly at least one organic solvent selected from the group consisting of ⁇ -butyrolactone, ⁇ -valerolactone, alkylene carbonate and dialkyl carbonate. It is preferable to dissolve the lithium salt in a non-aqueous solvent to obtain an electrolytic solution because the balance between cycle characteristics and large current discharge characteristics is improved.
  • the cyclic carbonate having a carbon-carbon unsaturated bond in the molecule is preferably contained in the non-aqueous solvent in an amount of 8% by weight or less, more preferably 0.01 to 8% by weight.
  • the cyclic carbonate exceeds 8% by weight, the battery characteristics after storage tend to deteriorate, or the internal pressure of the battery tends to increase due to gas generation.
  • a more preferred lower limit is 0.1% by weight, and a more preferred upper limit is 3% by weight.
  • Examples of the cyclic carbonate having a carbon-carbon unsaturated bond in the molecule include vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate, 4,5-dimethyl vinylene carbonate, 4,5-diethyl vinylene carbonate, fluoro vinylene carbonate, trifluoro Vinylene carbonate compounds such as methyl vinylene carbonate; 4-vinylethylene carbonate, 4-methyl-4-vinylethylene carbonate, 4-ethyl-4-vinylethylene carbonate, 4-n-propyl-4-vinylethylene carbonate, 5-methyl -4-vinylethylene carbonate, 4,4-divinylethylene carbonate, 4,5-divinylethylene carbonate, 4,4-dimethyl-5-methyleneethylene carbonate, 4,4- Vinyl ethylene carbonate compounds such as ethyl-5-methylene-ethylene carbonate.
  • vinylene carbonate 4-vinylethylene carbonate, 4-methyl-4-vinylethylene carbonate or 4,5-divinylethylene carbonate, particularly vinylene carbonate or 4-vinylethylene carbonate are preferred. Two or more of these may be used in combination.
  • non-aqueous solvent may contain other useful compounds, for example, conventionally known additives, dehydrating agents, deoxidizing agents, and overcharge preventing agents as required.
  • carbonate compounds such as fluoroethylene carbonate, trifluoropropylene carbonate, phenylethylene carbonate and erythritan carbonate; succinic anhydride, glutaric anhydride, maleic anhydride, citraconic anhydride, glutaconic anhydride, itaconic anhydride, Carboxylic anhydrides such as diglycolic anhydride, cyclohexanedicarboxylic anhydride, cyclopentanetetracarboxylic dianhydride and phenylsuccinic anhydride; ethylene sulfite, 1,3-propane sultone, 1,4-butane sultone, methane Sulfur-containing compounds such as methyl sulfonate, busulfan, sulfolane, sulfolene, dimethyl sulfone, and tetramethylthiuram monosulfide; 1-methyl-2-pyrrolidinone, 1-methyl-2-piperidone
  • aromatic compounds such as cyclohexylbenzene, biphenyl, alkylbiphenyl, terphenyl, terphenyl partial hydride, t-butylbenzene, t-amylbenzene, diphenyl ether, benzofuran and dibenzofuran; 2-fluorobiphenyl And partially fluorinated products of the aromatic compounds such as fluorinated anisole compounds such as 2,4-difluoroanisole, 2,5-difluoroanisole and 2,6-difluoroanisole.
  • the battery can be prevented from bursting or igniting during overcharge or the like.
  • lithium salts include inorganic lithium salts such as LiClO 4 , LiPF 6 and LiBF 4 ; LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (CF 3 SO 2 ) 2 , LiPF 4 (C 2 F 5 SO 2 ) 2 , LiBF 2 (CF 3 ) 2 , LiBF 2 (C 2 F 5 ) 2 , LiBF 2 (CF 3 SO 2 ) 2 and LiBF 2 (C 2 F 5 SO 2 ) 2 Fluorine-containing organic acid lithium salts such as these can be used, and these can be used alone or in combination of two or more.
  • inorganic lithium salts such as LiClO 4 , LiPF 6 and LiBF 4 ; LiCF 3 SO 3
  • LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 or LiN (C 2 F 5 SO 2 ) 2 , particularly LiPF 6 or LiBF 4 are preferred.
  • an inorganic lithium salt such as LiPF 6 or LiBF 4 and a fluorine-containing organic lithium salt such as LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 or LiN (C 2 F 5 SO 2 ) 2 are used in combination, This is preferable because deterioration after storage at high temperature is reduced.
  • LiBF 4 accounts for 50% by weight or more of the total lithium salt.
  • LiBF 4 and 5 lithium salt selected from the group consisting of LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 and LiN (C 2 F 5 SO 2 ) 2 Those that account for ⁇ 50% by weight are particularly preferred.
  • the electrolyte salt concentration in the electrolytic solution is preferably 0.5 to 3 mol / liter. Outside this range, the electrical conductivity of the electrolytic solution tends to be low, and the battery performance tends to deteriorate.
  • Examples of the material of the negative electrode constituting the battery according to the present invention include carbonaceous materials capable of occluding and releasing lithium, such as organic pyrolysis products under various pyrolysis conditions, artificial graphite, and natural graphite; tin oxide, silicon oxide Metal oxide materials that can occlude and release lithium, such as lithium metal, and various lithium alloys can be used. Two or more of these negative electrode materials may be mixed and used.
  • Carbonaceous materials capable of occluding and releasing lithium include artificial graphite or purified natural graphite produced by high-temperature treatment of graphitizable pitch obtained from various raw materials, or surface treatment with pitch or other organic substances on these graphites. Those obtained by carbonization after application are preferred.
  • the negative electrode may be manufactured by a conventional method. For example, a method of adding a binder, a thickener, a conductive material, a solvent, and the like to the negative electrode material to form a slurry, applying the slurry to the current collector, drying, and pressing to increase the density can be given.
  • any material can be used as long as it is a material that is safe with respect to the solvent and the electrolyte used in manufacturing the electrode.
  • examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene-acrylic acid copolymer, and ethylene-methacrylic acid copolymer.
  • thickener examples include carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, oxidized starch, phosphorylated starch, and casein.
  • Examples of the conductive material include metal materials such as copper and nickel; carbon materials such as graphite and carbon black.
  • Examples of the material of the negative electrode current collector include copper, nickel, and stainless steel. Of these, copper foil is preferred from the viewpoint of easy processing into a thin film and cost.
  • a lithium-containing transition metal composite oxide that produces a high voltage is particularly preferable.
  • Formula (1) Li a Mn 2-b M 1 b O 4 9 ⁇ a; 0 ⁇ b ⁇ 1.5; M 1 is Fe, Co, Ni, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si, and Ge Lithium / manganese spinel composite oxide represented by the formula (2): LiNi 1-c M 2 c O 2 (where 0 ⁇ c ⁇ 0.5; at least one metal selected from the group consisting of M 2 is at least one metal selected from the group consisting of Fe, Co, Mn, Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si, and Ge) in the lithium-nickel composite oxide expressed, or LiCo 1-d M d O 2 (where, 0 ⁇ d ⁇ 0.5; M 3
  • LiCoO 2 , LiMnO 2 , LiNiO 2 , LiMn 2 O 4 , LiNi 0.8 Co 0.15 Al 0.05 O 2 , or LiNi 1/3 Co 1/3 Mn 1/3 O 2 is preferable from the viewpoint of providing a lithium ion secondary battery with high energy density and high output.
  • positive electrode actives such as LiFePO 4 , LiNi 0.8 Co 0.2 O 2 , Li 1.2 Fe 0.4 Mn 0.4 O 2 , LiNi 0.5 Mn 0.5 O 2 , LiV 3 O 6, etc. It may be a substance.
  • the blending amount of the positive electrode active material is preferably 50 to 99% by mass, more preferably 80 to 99% by mass of the positive electrode mixture, from the viewpoint of high battery capacity.
  • the particles of the positive electrode active material mainly consist of secondary particles, and the secondary particles. It is preferable to contain 0.5 to 7.0% by volume of fine particles having an average particle size of 40 ⁇ m or less and an average primary particle size of 1 ⁇ m or less. By containing fine particles having an average primary particle diameter of 1 ⁇ m or less, the contact area with the electrolytic solution is increased, and the diffusion of lithium ions between the electrode and the electrolytic solution can be accelerated, and the output performance can be improved. .
  • the binder for the positive electrode the same material as that for the negative electrode can be used, and any material can be used as long as it is a safe material for the solvent and the electrolyte used in the production of the electrode.
  • examples thereof include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene-acrylic acid copolymer, and ethylene-methacrylic acid copolymer.
  • the thickener of a positive electrode the thing similar to a negative electrode can be used, and carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, an oxidized starch, phosphorylated starch, casein, etc. are mentioned.
  • Examples of the conductive material include carbon materials such as graphite and carbon black.
  • Examples of the material for the positive electrode current collector include metals such as aluminum, titanium, and tantalum, and alloys thereof. Of these, aluminum or an alloy thereof is preferable.
  • the material and shape of the separator used in the lithium ion secondary battery of the present invention are arbitrary as long as they are stable in the electrolyte and excellent in liquid retention.
  • a porous sheet or nonwoven fabric made of polyolefin such as polyethylene and polypropylene is preferred.
  • the shape of the battery is arbitrary, and examples thereof include a cylindrical shape, a square shape, a laminate shape, a coin shape, and a large size.
  • the shape and structure of a positive electrode, a negative electrode, and a separator can be changed and used according to the shape of each battery.
  • the present invention is a non-aqueous electrolyte for a lithium ion secondary battery containing a non-aqueous solvent and an electrolyte salt
  • the non-aqueous solvent is represented by the general formula (1): Rf 1 -O-Rf 2 (1) (Wherein Rf 1 and Rf 2 are the same or different and are an alkyl group having 1 to 10 carbon atoms or a fluoroalkyl group having 1 to 10 carbon atoms; provided that at least one of Rf 1 and Rf 2 is a fluoroalkyl group) Containing the indicated fluorine-containing ether, and
  • the present invention relates to a non-aqueous electrolyte for a lithium ion secondary battery, which contains a total of 5000 ppm or less of the compounds represented by the following (I) and (II) with respect to the fluorine-containing ether.
  • (I) Fluorine-containing unsaturated compound (II) General formula (2): Rf 1 OH (2)
  • the non-aqueous solvent, the electrolyte salt, and the amount of each added used in the non-aqueous electrolyte for a lithium ion secondary battery of the present invention are the same as described above.
  • the measurement method employed in the present invention is as follows.
  • the lower layer fluorine-containing ether of the product liquid is HCF 2 CF 2 CH 2 OCF 2 CF 2 H (boiling point 92 ° C., specific gravity 1.52), and the composition of the lower layer fluorine-containing ether product liquid analyzed by GC is fluorine-containing.
  • the ether concentration is 98.7%
  • Compound (II-1) HCF 2 CF 2 CH 2 OH is 1.02%
  • Compound (I-2) HCF 2 CF ⁇ CHOCF 2 CF 2 H was 0.23%.
  • Synthesis Example 2 Synthesis of HCF 2 CF 2 CH 2 OCF 2 CFHCF 3
  • the inside of a 3 L autoclave made of stainless steel was evacuated to 84 g (1.35 mol) of potassium hydroxide, 800 ml of water, and fluorine-containing alkyl alcohol.
  • 2,3,3-tetrafluoro-1-propanol HCF 2 CF 2 CH 2 OH (boiling point 109 ° C., specific gravity 1.4) 600 g (4.5 mol) was injected, and then vacuum-nitrogen replacement was performed at room temperature. 20 times.
  • the lower layer fluorine-containing ether of the product liquid is HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 (boiling point 108 ° C., specific gravity 1.61), and the composition of the lower layer fluorine-containing ether generation liquid analyzed by GC is fluorine-containing ether.
  • Example 1 Under a dry argon atmosphere, 3 parts by weight of rectified liquid C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H was added to 97 parts by weight of a mixture of ethylene carbonate and ethyl methyl carbonate (volume ratio 3: 7). The dried LiPF 6 was dissolved in a ratio of 1 mol / liter to obtain an electrolytic solution.
  • LiNi 1/3 Mn 1/3 Co 1/3 O 2 , carbon black, and polyvinylidene fluoride manufactured by Kureha Chemical Co., Ltd., trade name: KF-7200
  • a positive electrode mixture slurry was prepared by dispersing the positive electrode active material in N-methyl-2-pyrrolidone to form a slurry.
  • the obtained positive electrode mixture slurry is uniformly applied on an aluminum current collector, dried to form a positive electrode mixture layer (thickness 50 ⁇ m), and then compression molded by a roller press machine to form a positive electrode laminate.
  • the positive electrode laminate was punched into a diameter of 1.6 mm with a punching machine to produce a circular positive electrode.
  • a negative electrode current collector (thickness 10 ⁇ m) was prepared by adding styrene-butadiene rubber dispersed in distilled water to artificial graphite powder to a solid content of 6% by mass and mixing with a disperser to form a slurry. On the copper foil) and dried to form a negative electrode mixture layer. After that, compression molding was performed with a roller press machine, and a circular negative electrode was produced with a punching machine having a diameter of 1.6 mm.
  • the above-mentioned circular positive electrode is opposed to the positive electrode and the negative electrode through a microporous polyethylene film (separator) having a thickness of 20 ⁇ m, the electrolytic solution is injected, and the electrolytic solution sufficiently permeates the separator, and then sealed. Precharging and aging were performed to produce a coin-type lithium ion secondary battery.
  • the coin-type lithium ion secondary battery was examined for high voltage cycle characteristics and high temperature storage characteristics as follows.
  • Example 2 HCF seminal distillate C for 2 CF 2 CH 2 OCF 2 CF 2 H, to prepare a battery except for the seminal effusion B of HCF 2 CF 2 CH 2 OCF 2 CF 2 H in the same manner as in Example 1 Test Went.
  • Example 3 A battery was fabricated and tested in the same manner as in Example 1 except that the rectified liquid C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H was changed to the rectified F of HCF 2 CF 2 CH 2 OCF 2 CFHCF 3. It was.
  • Example 4 A battery was fabricated and tested in the same manner as in Example 1 except that the rectified liquid C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H was changed to the rectified liquid E of HCF 2 CF 2 CH 2 OCF 2 CFHCF 3. went.
  • Comparative Example 1 A battery was produced and tested in the same manner as in Example 1 except that the rectified liquid C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H was changed to the fluorinated ether crude liquid 1.
  • Comparative Example 3 Seminal distillate C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CF 2 H rectification distillate C in compound (I-1) to that added in an amount of 7000ppm A battery was produced and tested in the same manner as in Example 1 except that.
  • Comparative Example 4 Seminal distillate C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CF 2 H rectification distillate C to compound (II-1) to that added in an amount of 7000ppm A battery was produced and tested in the same manner as in Example 1 except that.
  • Comparative Example 5 A battery was produced and tested in the same manner as in Example 1 except that the rectified liquid C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H was changed to the fluorinated ether crude liquid 2.
  • Comparative Example 6 A battery was fabricated and tested in the same manner as in Example 1 except that the rectified liquid C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H was changed to a rectified liquid D of HCF 2 CF 2 CH 2 OCF 2 CFHCF 3. went.
  • Comparative Example 7 The rectified liquid C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H was prepared by adding the compound (I-3) to the rectified liquid F of HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 at a ratio of 7000 ppm. A battery was prepared and tested in the same manner as in Example 1 except for the above.
  • Comparative Example 8 The rectified liquid C of HCF 2 CF 2 CH 2 OCF 2 CF 2 H was prepared by adding the compound (I-4) to the rectified liquid F of HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 at a ratio of 7000 ppm. A battery was prepared and tested in the same manner as in Example 1 except for the above.
  • the total content of the compounds (I-1), (I-2) and (II-1) in the rectified liquid of HCF 2 CF 2 CH 2 OCF 2 CF 2 H is calculated as HCF 2 CF 2 CH 2 OCF. It can be seen that the storage characteristics at high temperature and the high voltage cycle characteristics are improved by setting it to 5000 ppm or less with respect to 2 CF 2 H. Similarly, the total content of the compounds (I-3) to (I-6) and (II-1) in the rectified liquid of HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 is changed to HCF 2 CF 2 CH 2 OCF 2 by the 5000ppm or less with respect to CFHCF 3, it can be seen that improved storage characteristics and high-voltage cycle characteristics at high temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明は、高温での保存特性及び高電圧サイクル特性に優れるリチウムイオン二次電池、及び、それに用いられる非水電解液を提供する。 本発明は、正極、負極、並びに、非水溶媒及び電解質塩を含む非水電解液を備えるリチウムイオン二次電池であって、 前記非水溶媒が、一般式(1): Rf-O-Rf (1) (式中、Rf及びRfは同じか又は異なり、炭素数1~10のアルキル基又は炭素数1~10のフルオロアルキル基;ただし、Rf及びRfの少なくとも一方はフルオロアルキル基)で示される含フッ素エーテルを含有し、かつ、 下記(I)、(II)で示される化合物を、前記含フッ素エーテルに対して合計で5000ppm以下含有することを特徴とする、リチウムイオン二次電池である。 (I)含フッ素不飽和化合物 (II)一般式(2): RfOH (2) (式中、Rfは前記同様) で示される水酸基含有化合物である。

Description

リチウムイオン二次電池及びリチウムイオン二次電池用非水電解液
本発明は、特定の化合物の含有量を低下させた非水溶媒、及び、電解質塩を含む非水電解液を備えるリチウムイオン二次電池に関する。また、本発明は、リチウムイオン二次電池に用いる非水電解液に関する。
近年の電気製品の軽量化、小型化にともない、高いエネルギー密度をもつリチウムイオン二次電池の開発が進められている。また、リチウムイオン二次電池の適用分野が拡大するにつれて電池特性の改善が要望されている。特に今後、車載用にリチウムイオン二次電池が使われた場合、安全性及び電池特性はますます重要となる。
しかしながら、リチウムイオン二次電池は、電池が過充電された場合、内部短絡した場合、及び、釘刺しされた場合などの安全性については十分とはいえないため、車載用とする場合には、更に安全性の高い電池とする必要がある。更に、車載用とする場合、容量をあげるために現状使われている電圧よりも更に上げる必要がある。
非水電解液二次電池の安全性の向上及び高電圧化させる方法として、特定の構造を有する含フッ素エーテルを使用することが提案されている(例えば、特許文献1参照)。しかしながら、特許文献1の非水電解液二次電池では、高温の環境に放置したり、充放電を繰り返したりすると、放電容量が低下したりする問題があった。
特許第3807459号明細書
本発明は、高温での保存特性及び高電圧サイクル特性に優れるリチウムイオン二次電池、及び、それに用いられる非水電解液を提供することを課題とする。
本発明者らは、上記課題を解決するために種々の検討を重ねた結果、特定の不純物含有量を低下させた非水溶媒を用いることにより、上記課題を解決できることを見いだし、本発明を完成させるに至った。
すなわち、本発明は、正極、負極、並びに、非水溶媒及び電解質塩を含む非水電解液を備えるリチウムイオン二次電池であって、
前記非水溶媒が、一般式(1):
Rf-O-Rf     (1)
(式中、Rf及びRfは同じか又は異なり、炭素数1~10のアルキル基又は炭素数1~10のフルオロアルキル基;ただし、Rf及びRfの少なくとも一方はフルオロアルキル基)で示される含フッ素エーテルを含有し、かつ、
下記(I)、(II)で示される化合物を、前記含フッ素エーテルに対して合計で5000ppm以下含有することを特徴とする、リチウムイオン二次電池に関する。
(I)含フッ素不飽和化合物
(II)一般式(2):
RfOH         (2)
(式中、Rfは前記同様)
で示される水酸基含有化合物。
一般式(1)で示される含フッ素エーテルが、HCFCFCHOCFCFHであり、
含フッ素不飽和化合物(I)が、
(I-1)CF=CFCHOCFCFH、及び、
(I-2)HCFCF=CHOCFCF
であり、
水酸基含有化合物(II)が、
(II-1)HCFCFCHOH
であることが好ましい。
一般式(1)で示される含フッ素エーテルが、HCFCFCHOCFCFHCFであり、
含フッ素不飽和化合物(I)が、
(I-3)CF=CFCHOCFCFHCF
(I-4)HCFCFCHOCF=CFCF
(I-5)HCFCFCHOCFCF=CF、及び、
(I-6)HCFCF=CHOCFCFHCF
であり、
水酸基含有化合物(II)が、
(II-1)HCFCFCHOH
であることが好ましい。
一般式(1)で示される含フッ素エーテルの含有量が、非水溶媒中0.01~90重量%であることが好ましい。
更に、本発明は、非水溶媒、及び、電解質塩を含むリチウムイオン二次電池用非水電解液であって、
前記非水溶媒が、一般式(1):
Rf-O-Rf     (1)
(式中、Rf及びRfは同じか又は異なり、炭素数1~10のアルキル基又は炭素数1~10のフルオロアルキル基;ただし、Rf及びRfの少なくとも一方はフルオロアルキル基)で示される含フッ素エーテルを含有し、かつ、
下記、(I)、(II)で示される化合物を、前記含フッ素エーテルに対して合計で5000ppm以下含有することを特徴とするリチウムイオン二次電池用非水電解液に関する。
(I)含フッ素不飽和化合物
(II)一般式(2):
RfOH         (2)
(式中、Rfは前記同様)
で示される水酸基含有化合物。
本発明は、高温での保存特性及び高電圧サイクル特性に優れるリチウムイオン二次電池、及び、それに用いられる非水電解液を提供することができる。
本発明のリチウムイオン二次電池は、正極、負極、並びに、非水溶媒及び電解質塩を含む非水電解液を備え、
前記非水溶媒が、一般式(1):
Rf-O-Rf     (1)
(式中、Rf及びRfは同じか又は異なり、炭素数1~10のアルキル基又は炭素数1~10のフルオロアルキル基;ただし、Rf及びRfの少なくとも一方はフルオロアルキル基)で示される含フッ素エーテルを含有し、かつ、
下記(I)、(II)で示される化合物を、前記含フッ素エーテルに対して合計で5000ppm以下含有することを特徴とするものである。
(I)含フッ素不飽和化合物
(II)一般式(2):
RfOH         (2)
(式中、Rfは前記同様)
で示される水酸基含有化合物。
前記一般式(1)で示される含フッ素エーテルの具体例としては、例えば、HCFCFCHOCFCFH、CFCFCHOCFCFH、HCFCFCHOCFCFHCF、CFCFCHOCFCFHCF、C13OCH、C13OC、C17OCH、C17OC、CFCFHCFCH(CH)OCFCFHCF、HCFCFOCH(C、HCFCFOC、HCFCFOCHCH(C、HCFCFOCHCH(CHなどがあげられる。これらの中でも、耐酸化性、LiPF等の電解質塩との相溶性、安全性の点から、HCFCFCHOCFCFH、及び、HCFCFCHOCFCFHCFからなる群から選ばれる1種以上の化合物であることが好ましく、HCFCFCHOCFCFHがより好ましい。
また、本発明で用いる含フッ素エーテルのフッ素含有率は50重量%以上であることが、耐酸化性、安全性が良好な点から好ましい。特に好ましいフッ素含有率は55~66重量%である。フッ素含有率は構造式から算出したものである。
前記一般式(1)で示される含フッ素エーテルの含有量は、非水溶媒中0.01~90重量%であることが好ましい。含フッ素エーテルの含有量が、0.01重量%未満では安全性及び高電圧化の向上がほとんど見られない傾向があり、90重量%を超えると電解液が二層分離したり粘度が高くなりすぎて低温での負荷特性が悪くなる傾向がある。下限値としては、0.1重量%がより好ましく、0.5重量%が更に好ましい。上限値としては80重量%がより好ましく、60重量%が更に好ましく、20重量%が特に好ましい。
含フッ素不飽和化合物(I)は、一般式(1)で示される含フッ素エーテルを合成する際に発生する副生成物に由来するものである。具体的には、一般式(1)で示される含フッ素エーテルからフッ化水素(HF)が脱離して不飽和結合が生じたものである。更に具体的には、例えば、(I-1)CF=CFCHOCFCFH、(I-2)HCFCF=CHOCFCFH、(I-3)CF=CFCHOCFCFHCF、(I-4)HCFCFCHOCF=CFCF、(I-5)HCFCFCHOCFCF=CF、(I-6)HCFCF=CHOCFCFHCFを挙げることができる。
また、水酸基含有化合物(II)としては、一般式(1)で示される含フッ素エーテルを合成する際の原料に由来するものであり、一般式(2):
RfOH         (2)
で示されるものである。ここで、Rfとしては、一般式(1)と同様のものを挙げることができ、水酸基含有化合物(II)として具体的には、(II-1)HCFCFCHOHを挙げることができる。
本明細書においては、(I)含フッ素不飽和化合物、(II)水酸基含有化合物、上記特定の化合物(I-1)~(I-6)、(II-1)を、単に、化合物(I)、化合物(II)、化合物(I-1)~(I-6)、化合物(II-1)ということがある。
本発明においては、化合物(I)が、化合物(I-1)及び化合物(I-2)であり、化合物(II)が、化合物(II-1)である組み合わせ、又は、化合物(I)が、化合物(I-3)、化合物(I-4)、化合物(I-5)及び化合物(I-6)であり、化合物(II)が、化合物(II-1)である組み合わせが好ましい。
前述の通り、化合物(I)、(II)は、含フッ素エーテルに含まれる不純物である。従って、本発明で用いる含フッ素エーテルを予め精製して用いることにより、非水溶媒中の化合物(I)、(II)の含有量を前記範囲内(含フッ素エーテルに対して合計で5000ppm以下)とすることができる。ここで、ppmは、重量基準であり、含フッ素エーテルに対して5000ppm以下とは、含フッ素エーテル100重量部に対して、0.5重量部以下であることを示す。
化合物(I)、(II)の合計量が5000ppmより多いと、高温保存後の放電特性が低下したり、高電圧化した場合にサイクル劣化が大きくなる傾向がある。化合物(I)、(II)の中でも、水酸基含有化合物(II)は、Liと容易に反応をしてしまうため、水酸基含有化合物(II)が残っている場合は容量が落ちてしまう傾向がある。また、含フッ素不飽和化合物(I)は二重結合を有するため、これらが多く残っている場合、容易に電解液中の水分等と反応し分解してしまう傾向がある。
化合物(I)、(II)の含有量の上限値としては、前記含フッ素エーテルに対して合計で3500ppmであることが好ましく、2000ppmであることがより好ましい。化合物(I)、(II)の合計量の下限値としては、例えば、100ppmである。下限値としては、好ましくは300ppmであり、より好ましくは500ppmである。
更に、分子起動計算により求めた化合物(I)、(II)のHOMOエネルギーは、一般式(1)で示される含フッ素エーテルよりも高いため、耐酸化性が弱い。そのため、高電圧化した場合に分解してしまい、劣化の要因になると考えられる。このことから含フッ素エーテル中の化合物(I)、(II)の含有量が少ないほど、リチウムイオン二次電池の保存特性及び高電圧サイクルでの低下は少なくなると考えられる。
一般式(1)で示される含フッ素エーテルの精製方法としては、例えば、理論段数5段以上の蒸留塔を用いて精留する方法が挙げられる。具体的には、例えば、不純物を含む含フッ素エーテル(以下、含フッ素エーテル粗液ということもある)に、含フッ素アルキルアルコールの抽出溶媒(分離剤)として水を用いて向流抽出を施す方法が挙げられる。
向流抽出法は、液-液抽出法の一種であり、抽出に縦型の抽出装置を用い、比重の大きな含フッ素エーテル(例えば、比重1.5程度)粗液を抽出装置の上部から注入し、下部から水(比重1.0)を注入し、要すれば攪拌しながら、水滴として装置上方に浮かび上がらせ、その間に含フッ素エーテル粗液と水を十分に接触させることで含フッ素アルキルアルコールの抽出を個々の水滴で行う方法である。抽出に供された水は装置上方から抜き取られる。
向流抽出装置としては、攪拌機を多段に設けたミキサー-セトラー型抽出装置が代表的なものである。
ここで、一般式(1)で示される含フッ素エーテルの中でも、より好ましい具体例である、HCFCFCHOCFCFHとHCFCFCHOCFCFHCFについて説明をする。
HCFCFCHOCFCFHは、通常、HCFCFCHOH(化合物(II-1))とCF=CFとを反応させることにより合成される。そのため、精製の仕方によっては原料物質であるHCFCFCHOH(化合物(II-1))や副生成物であるCF=CFCHOCFCFH(化合物(I-1))やHCFCF=CHOCFCFH(化合物(I-2))が残る場合がある。
また、HCFCFCHOCFCFHCFは、通常、HCFCFCHOH(化合物(II-1))とCFCF=CFとを反応させることにより合成される。そのため、精製の仕方によっては原料物質であるHCFCFCHOH(化合物(II-1))や副生成物であるCF=CFCHOCFCFHCF(化合物(I-3))、HCFCFCHOCF=CFCF(化合物(I-4))、HCFCFCHOCFCF=CF(化合物(I-5))、HCFCF=CHOCFCFHCF(化合物(I-6))が残る場合がある。
従って、前記一般式(1)で示される含フッ素エーテルが、HCFCFOCHCFCFHである場合、化合物(I)が、化合物(I-1)及び化合物(I-2)であり、化合物(II)が、化合物(II-1)である組み合わせであることが好ましく、また、前記一般式(1)で示される含フッ素エーテルが、HCFCFCHOCFCFHCFである場合、化合物(I)が、化合物(I-3)、化合物(I-4)、化合物(I-5)及び化合物(I-6)であり、化合物(II)が、化合物(II-1)である組み合わせが好ましい。
本発明で用いる非水溶媒のその他の成分としては、非水電解液二次電池の溶媒として公知の任意のものを用いることができる。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等のアルキレンカーボネート;ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、エチルメチルカーボネート等のジアルキルカーボネート(ジアルキルカーボネートが有するアルキル基としては、炭素数1~4のアルキル基が好ましい);テトラヒドロフラン、2-メチルテトラヒドロフラン等の環状エーテル;ジメトキシエタン、ジメトキシメタン等の鎖状エーテル;γ-ブチロラクトン、γ-バレロラクトン等の環状カルボン酸エステル化合物;酢酸メチル、プロピオン酸メチル、プロピオン酸エチル等の鎖状カルボン酸エステルなどが挙げられる。これらは2種類以上を併用してもよい。
非水溶媒として好ましいものの一つは、アルキレンカーボネートとジアルキルカーボネートとを主体とするものである。なかでも、炭素数2~4のアルキレン基を有するアルキレンカーボネートを20~45容量%、及び、炭素数1~4のアルキル基を有するジアルキルカーボネートを55~80容量%で含有する混合溶媒が、電解液の電気伝導率が高く、サイクル特性と大電流放電特性が高いため、好ましい。
炭素数2~4のアルキレン基を有するアルキレンカーボネートとしては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等が挙げられる。これらの中でも、エチレンカーボネート又はプロピレンカーボネートが好ましい。
炭素数1~4のアルキル基を有するジアルキルカーボネートとしては、ジメチルカーボネート、ジエチルカーボネート、ジ-n-プロピルカーボネート、エチルメチルカーボネート、メチル-n-プロピルカーボネート、エチル-n-プロピルカーボネート等が挙げられる。これらの中でも、ジメチルカーボネート、ジエチルカーボネート又はエチルメチルカーボネートが好ましい。
好ましい非水溶媒の他の例は、エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン、及び、γ-バレロラクトンからなる群より選ばれる少なくとも1種の有機溶媒を含有し、これらの有機溶媒の合計が60容量%以上であることが好ましく、85容量%以上であることがより好ましい。この非水溶媒にリチウム塩を溶解した電解液は、高温で使用しても溶媒の蒸発や液漏れが少ない。なかでも、エチレンカーボネート5~45容量%とγ-ブチロラクトン55~95容量%を含む混合物、又はエチレンカーボネート30~60容量%とプロピレンカーボネート40~70容量%を含む溶媒が、サイクル特性と大電流放電特性等のバランスがよいため、好ましい。
非水溶媒として好ましいものの更に他の例は、含燐有機溶媒を含むものである。含燐有機溶媒としては、リン酸トリメチル、リン酸トリエチル、リン酸ジメチルエチル、リン酸メチルジエチル、リン酸エチレンメチル、リン酸エチレンエチル等が挙げられる。含燐有機溶媒を非水溶媒中に10容量%以上となるように含有させると、電解液の燃焼性を低下させることができる。特に含燐有機溶媒の含有率が10~80容量%で、他の成分が主として、γ-ブチロラクトン、γ-バレロラクトン、アルキレンカーボネート及びジアルキルカーボネートからなる群より選ばれる少なくとも1種の有機溶媒である非水溶媒に、リチウム塩を溶解して電解液とすると、サイクル特性と大電流放電特性とのバランスがよくなるため好ましい。
更に、分子内に炭素-炭素不飽和結合を有する環状炭酸エステルを、非水溶媒中に8重量%以下含有させることが好ましく、0.01~8重量%がより好ましい。前記範囲内で含有させると、一般式(1)で示される含フッ素エーテルの負極での副反応を抑制し、保存特性及び電池のサイクル特性を更に向上させることができるため好ましい。前記環状炭酸エステルが8重量%を超えると保存後の電池特性が低下したり、ガス発生により電池の内圧が上昇する傾向がある。より好ましい下限値としては0.1重量%であり、より好ましい上限値としては3重量%である。
分子内に炭素-炭素不飽和結合を有する環状炭酸エステルとしては、ビニレンカーボネート、メチルビニレンカーボネート、エチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、4,5-ジエチルビニレンカーボネート、フルオロビニレンカーボネート、トリフルオロメチルビニレンカーボネート等のビニレンカーボネート化合物;4-ビニルエチレンカーボネート、4-メチル-4-ビニルエチレンカーボネート、4-エチル-4-ビニルエチレンカーボネート、4-n-プロピル-4-ビニルエチレンカーボネート、5-メチル-4-ビニルエチレンカーボネート、4,4-ジビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、4,4-ジメチル-5-メチレンエチレンカーボネート、4,4-ジエチル-5-メチレンエチレンカーボネート等のビニルエチレンカーボネート化合物などが挙げられる。このうち、ビニレンカーボネート、4-ビニルエチレンカーボネート、4-メチル-4-ビニルエチレンカーボネート又は4,5-ジビニルエチレンカーボネート、特にビニレンカーボネート又は4-ビニルエチレンカーボネートが好ましい。これらの2種類以上を併用してもよい。
更に、非水溶媒中には、必要に応じて他の有用な化合物、例えば、従来公知の添加剤、脱水剤、脱酸剤、過充電防止剤を含有させてもよい。
添加剤としては、フルオロエチレンカーボネート、トリフルオロプロピレンカーボネート、フェニルエチレンカーボネート及びエリスリタンカーボネート等のカーボネート化合物;無水コハク酸、無水グルタル酸、無水マレイン酸、無水シトラコン酸、無水グルタコン酸、無水イタコン酸、無水ジグリコール酸、シクロヘキサンジカルボン酸無水物、シクロペンタンテトラカルボン酸二無水物及びフェニルコハク酸無水物等のカルボン酸無水物;エチレンサルファイト、1,3-プロパンスルトン、1,4-ブタンスルトン、メタンスルホン酸メチル、ブサルファン、スルホラン、スルホレン、ジメチルスルホン及びテトラメチルチウラムモノスルフィド等の含硫黄化合物;1-メチル-2-ピロリジノン、1-メチル-2-ピペリドン、3-メチル-2-オキサゾリジノン、1,3-ジメチル-2-イミダゾリジノン及びN-メチルスクシイミド等の含窒素化合物;へプタン、オクタン、シクロヘプタン及びフルオロベンゼン等の炭化水素化合物などが挙げられる。これらを非水溶媒中に0.1~5重量%含有させると、高温保存後の容量維持特性やサイクル特性が良好となる。
過充電防止剤としては、シクロヘキシルベンゼン、ビフェニル、アルキルビフェニル、ターフェニル、ターフェニルの部分水素化物、t-ブチルベンゼン、t-アミルベンゼン、ジフェニルエーテル、ベンゾフラン及びジベンゾフラン等の芳香族化合物;2-フルオロビフェニル等の前記芳香族化合物の部分フッ素化物;2,4-ジフルオロアニソール、2,5-ジフルオロアニソール及び2,6-ジフルオロアニソール等の含フッ素アニソール化合物などが挙げられる。これらを非水溶媒中に0.1~5重量%含有させると、過充電等のときに電池の破裂・発火を抑制することができる。
本発明で用いる電解質塩としては、任意のものを用いることができるが、リチウム塩が好ましい。リチウム塩としては、例えば、LiClO、LiPF及びLiBF等の無機リチウム塩;LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiPF(CF、LiPF(C、LiPF(CFSO、LiPF(CSO、LiBF(CF、LiBF(C、LiBF(CFSO及びLiBF(CSO等の含フッ素有機酸リチウム塩などが挙げられ、これらを単独又は2種以上を組み合わせて用いることができる。これらのうち、LiPF、LiBF、LiCFSO、LiN(CFSO又はLiN(CSO、特にLiPF又はLiBFが好ましい。また、LiPF又はLiBF等の無機リチウム塩と、LiCFSO、LiN(CFSO又はLiN(CSO等の含フッ素有機リチウム塩とを併用すると、高温保存した後の劣化が少なくなるので、好ましい。
なお、非水溶媒がγ-ブチロラクトンを55容量%以上含むものである場合には、LiBFがリチウム塩全体の50重量%以上を占めることが好ましい。リチウム塩中、LiBFが50~95重量%、LiPF、LiCFSO、LiN(CFSO及びLiN(CSOよりなる群から選ばれるリチウム塩が5~50重量%占めるものが特に好ましい。
電解液中の電解質塩濃度は、0.5~3モル/リットルが好ましい。この範囲以外では、電解液の電気伝導率が低くなり、電池性能が低下してしまう傾向がある。
本発明に係る電池を構成する負極の材料としては、様々な熱分解条件での有機物の熱分解物や人造黒鉛、天然黒鉛等のリチウムを吸蔵・放出可能な炭素質材料;酸化錫、酸化珪素等のリチウムを吸蔵・放出可能な金属酸化物材料;リチウム金属;種々のリチウム合金などを用いることができる。これらの負極材料の2種類以上を混合して用いてもよい。
リチウムを吸蔵・放出可能な炭素質材料としては、種々の原料から得た易黒鉛性ピッチの高温処理によって製造された人造黒鉛若しくは精製天然黒鉛、又はこれらの黒鉛にピッチその他の有機物で表面処理を施した後炭化して得られるものが好ましい。
負極の製造は、常法によればよい。例えば、負極材料に、結着剤、増粘剤、導電材、溶媒等を加えてスラリー状とし、集電体に塗布し、乾燥した後にプレスして高密度化する方法が挙げられる。
結着剤としては、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン-アクリル酸共重合体及びエチレン-メタクリル酸共重合体等が挙げられる。
増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ及びカゼイン等が挙げられる。
導電材としては、銅やニッケル等の金属材料;グラファイト、カーボンブラック等の炭素材料などが挙げられる。
負極用集電体の材質としては、銅、ニッケル又はステンレス等が挙げられる。これらのうち、薄膜に加工しやすい点及びコストの点から銅箔が好ましい。
電池を構成する正極の材料としては、特に、高電圧を産み出すリチウム含有遷移金属複合酸化物が好ましく、たとえば式(1):LiMn2-b (式中、0.9≦a;0≦b≦1.5;MはFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・マンガンスピネル複合酸化物、式(2):LiNi1-c (式中、0≦c≦0.5;MはFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・ニッケル複合酸化物、又はLiCo1-d (式中、0≦d≦0.5;MはFe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeよりなる群から選ばれる少なくとも1種の金属)で表されるリチウム・コバルト複合酸化物が好ましい。
なかでも具体的には、LiCoO、LiMnO、LiNiO、LiMn、LiNi0.8Co0.15Al0.05、又はLiNi1/3Co1/3Mn1/3が、エネルギー密度が高く、高出力なリチウムイオン二次電池を提供できる点から好ましい。
そのほか、LiFePO、LiNi0.8Co0.2、Li1.2Fe0.4Mn0.4、LiNi0.5Mn0.5、LiVなどの正極活物質でもよい。
正極活物質の配合量は、電池容量が高い点から、正極合剤の50~99質量%であることが好ましく、80~99質量%であることがより好ましい。
本発明において、特にハイブリッド自動車用や分散電源用の大型リチウムイオン二次電池に使用される場合は、高出力が要求されるため、正極活物質の粒子は二次粒子が主体となり、その二次粒子の平均粒子径が40μm以下で平均一次粒子径1μm以下の微粒子を0.5~7.0体積%含有することが好ましい。平均一次粒子径が1μm以下の微粒子を含有させることにより電解液との接触面積が大きくなり電極と電解液の間でのリチウムイオンの拡散をより早くすることができ出力性能を向上させることができる。
正極の結着剤としては、負極と同様の物を用いることが出来、電極製造時に使用する溶媒や電解液に対して安全な材料であれば、任意のものを使用することができる。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、スチレン・ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン-アクリル酸共重合体及びエチレン-メタクリル酸共重合体等が挙げられる。
また、正極の増粘剤についても、負極と同様の物を用いることが出来、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ及びカゼイン等が挙げられる。
導電材としては、グラファイト、カーボンブラック等の炭素材料などが挙げられる。
正極用集電体の材質としては、アルミニウム、チタン若しくはタンタル等の金属又はその合金が挙げられる。これらのうち、アルミニウム又はその合金が、好ましい。
本発明のリチウムイオン二次電池に使用するセパレーターの材質や形状は、電解液に安定であり、かつ保液性に優れていれば任意である。ポリエチレン、ポリプロピレン等のポリオレフィンを原料とする多孔性シート又は不織布等が好ましい。
また、電池の形状は任意であり、例えば、円筒型、角型、ラミネート型、コイン型、大型等の形状が挙げられる。なお、正極、負極、セパレーターの形状及び構成は、それぞれの電池の形状に応じて変更して使用することができる。
更に、本発明は、非水溶媒、及び、電解質塩を含むリチウムイオン二次電池用非水電解液であって、
前記非水溶媒が、一般式(1):
Rf-O-Rf     (1)
(式中、Rf及びRfは同じか又は異なり、炭素数1~10のアルキル基又は炭素数1~10のフルオロアルキル基;ただし、Rf及びRfの少なくとも一方はフルオロアルキル基)で示される含フッ素エーテルを含有し、かつ、
下記(I)、(II)で示される化合物を、前記含フッ素エーテルに対して合計で5000ppm以下含有することを特徴とする、リチウムイオン二次電池用非水電解液に関する。
(I)含フッ素不飽和化合物
(II)一般式(2):
RfOH         (2)
(式中、Rfは前記同様)
で示される水酸基含有化合物。
本発明のリチウムイオン二次電池用非水電解液に用いる非水溶媒、電解質塩、及び、それぞれの添加量については、前記と同様である。
以下に、実施例及び比較例を挙げて本発明を更に具体的に説明するが、本発明はかかる実施例のみに限定されるものではない。
本発明で採用した測定法は、以下のとおりである。
(1)組成分析
NMR法:BRUKER社製のAC-300を使用。
 19F-NMR:
 測定条件:282MHz(トリクロロフルオロメタン=0ppm)
 H-NMR:
 測定条件:300MHz(テトラメチルシラン=0ppm)
(2)濃度(GC%)分析
ガスクロマトグラフィ(GC)法:(株)島津製作所製のGC-17Aを使用。
 カラム:DB624(Length 60m、I.D. 0.32mm、Film 1.8μm)
 測定限界:0.001%
合成例1 HCFCFCHOCFCFHの合成
ステンレススチール製の6Lオートクレーブの系内を真空状態にし、水酸化カリウム 401g(7.15モル)、水 1604mL、含フッ素アルキルアルコールとして、2,2,3,3-テトラフルオロ-1-プロパノール:HCFCFCHOH(沸点109℃、比重1.4)1716g(13モル)を注入した後、室温で真空-窒素置換を20回行った。系内を真空にした後、テトラフルオロエチレン(TFE)を0.1MPaとなるように満たし、反応系内が85℃になるよう加熱した。内温が85℃に達してから、反応圧が0.5~0.8MPaを保つようにTFEを少しずつ加えていった。系内温は75~95℃を保つように調節した。
TFEの添加量が、含フッ素アルキルアルコール1モルに対する比率として0.5モル量になった時点で供給を止め、攪拌しながら反応を継続した。オートクレーブ内の圧力低下が見られなくなった時点でオートクレーブの内温を室温に戻し、未反応のTFEを放出して反応を終了した。時間は5時間を要した。
生成液の下層の含フッ素エーテルは、HCFCFCHOCFCFH(沸点92℃、比重1.52)であり、GCで分析した下層の含フッ素エーテル生成液の組成は含フッ素エーテル濃度が98.7%、化合物(II-1)HCFCFCHOHが1.02%、化合物(I-1)CF=CFCHOCFCFHが0.05%、化合物(I-2)HCFCF=CHOCFCFHが0.23%であった。
上記合成例1で得た含フッ素エーテル生成液1500gを含フッ素エーテル粗液1とし、ミキサー-セトラー型抽出装置を用いて、以下の条件で向流抽出処理を行った。
ミキサー-セトラー型抽出装置:(塔高3300mm、内径200mm)
段数:24段
撹拌速度:285rpm
重液供給速度:160kg/hr
軽液:純水
軽液供給速度:100kg/hr
処理温度:27℃
処理時間:0.01時間
初留約5%を廃棄し、留出順にほぼ等量をサンプリングすることにより、化合物(I-1)、(I-2)、(II-1)の含有量の異なる含フッ素エーテル(HCFCFCHOCFCFH)の精留液A、B、Cを得た。
Figure JPOXMLDOC01-appb-T000001
合成例2 HCFCFCHOCFCFHCFの合成
ステンレススチール製の3Lオートクレーブの系内を真空状態にし、水酸化カリウム 84g(1.35モル)、水800ml、含フッ素アルキルアルコールとして、2,2,3,3-テトラフルオロ-1-プロパノール:HCFCFCHOH(沸点109℃、比重1.4)600g(4.5モル)を注入した後、室温で真空-窒素置換を20回行った。系内を真空にした後、ヘキサフルオロプロペン:CF=CFCF3 681g(4.5モル)を0.1MPaとなるように満たし、反応系内が85℃になるよう加熱した。内温が85℃に達してから、反応圧が0.5~0.8MPaを保つようにCF=CFCFを少しずつ加えていった。系内温は91~111℃を保つように調節した。
CF=CFCFの添加量が、含フッ素アルキルアルコール1モルに対する比率として0.5モル量になった時点で供給を止め、攪拌しながら反応を継続した。オートクレーブ内の圧力低下が見られなくなった時点でオートクレーブの内温を室温に戻し、未反応のCF=CFCFを放出して反応を終了した。時間は6時間を要した。
生成液の下層の含フッ素エーテルは、HCFCFCHOCFCFHCF(沸点108℃、比重1.61)であり、GCで分析した下層の含フッ素エーテル生成液の組成は含フッ素エーテル濃度が98.4%、化合物(II-1)HCFCFCHOHが0.92%、化合物(I-3)CF=CFCHOCFCFHCFが0.05%、化合物(I-4)HCFCF2CHOCF=CFCFが0.24%、化合物(I-5)HCFCFCHOCFCF=CFが0.27%、化合物(I-6)HCFCF=CHOCFCFHCFが0.12%であった。
上記合成例2で得た含フッ素エーテル生成液725gを含フッ素エーテル粗液2とし、ミキサー-セトラー型抽出装置を用いて、以下の条件で向流抽出処理を行った。
ミキサー-セトラー型抽出装置:(塔高3300mm、内径200mm)
段数:24段
撹拌速度:285rpm
重液供給速度:160kg/hr
軽液:純水
軽液供給速度:100kg/hr
処理温度:27℃
処理時間:0.01時間
初留約5%を廃棄し、留出順にほぼ等量をサンプリングすることにより、化合物(I-3)、(I-4)、(I-5)、(I-6)、(II-1)の含有量の異なる含フッ素エーテル(HCFCFCHOCFCFHCF)の精留液D、E、Fを得た。
実施例1
乾燥アルゴン雰囲気下、エチレンカーボネート及びエチルメチルカーボネートの混合物(容量比3:7)97重量部に、HCFCFCHOCFCFHの精留液C 3重量部を添加し、次いで十分に乾燥したLiPFを1モル/リットルの割合となるように溶解して電解液とした。
(コイン型電池の作製)
LiNi1/3Mn1/3Co1/3とカーボンブラックとポリフッ化ビニリデン(呉羽化学(株)製、商品名:KF-7200)を92/3/5(質量%比)で混合した正極活物質をN-メチル-2-ピロリドンに分散してスラリー状とした正極合剤スラリーを準備した。アルミ集電体上に、得られた正極合剤スラリーを均一に塗布し、乾燥して正極合剤層(厚さ50μm)を形成し、その後、ローラプレス機により圧縮成形して、正極積層体を製造した。正極積層体を打ち抜き機で直径1.6mmの大きさに打ち抜き、円状の正極を作製した。
別途、人造黒鉛粉末に、蒸留水で分散させたスチレン-ブタジエンゴムを固形分で6質量%となるように加え、ディスパーザーで混合してスラリー状としたものを負極集電体(厚さ10μmの銅箔)上に均一に塗布し、乾燥し、負極合剤層を形成した。その後、ローラプレス機により圧縮成形し、打ち抜き機で直径1.6mmの大きさに打ち抜き円状の負極を作製した。
上記の円状の正極を厚さ20μmの微孔性ポリエチレンフィルム(セパレータ)を介して正極と負極を対向させ、電解液を注入し、電解液がセパレータなどに充分に浸透した後、封止し予備充電、エージングを行い、コイン型のリチウムイオン二次電池を作製した。
(電池特性の測定)
コイン型リチウムイオン二次電池について、つぎの要領で高電圧でのサイクル特性と高温保存特性を調べた。
充放電条件
充電:0.5C、4.3Vにて充電電流が1/10Cになるまでを保持(CC・CV充電)
放電:0.5C 3.0Vcut(CC放電)
(高電圧サイクル特性)
サイクル特性については、上記の充放電条件(1.0Cで所定の電圧にて充電電流が1/10Cになるまで充電し1C相当の電流で3.0Vまで放電する)で行う充放電サイクルを1サイクルとし、5サイクル後の放電容量と100サイクル後の放電容量を測定する。サイクル特性は、つぎの計算式で求められた値を容量維持率の値とする。その結果を表3に示す。
Figure JPOXMLDOC01-appb-M000003
(高温保存特性)
高温保存特性については上記の充放電条件(1.0Cで所定の電圧にて充電電流が1/10Cになるまで充電し1C相当の電流で3.0Vまで放電する)により充放電を行い、放電容量を調べた。その後、再度上記の充電条件で充電をし、85℃の恒温槽の中に1日保存した。保存後の電池を25℃において、上記の放電条件で放電終止電圧3Vまで放電させて残存容量を測定し、更に上記の充電条件で充電した後、上記の放電条件での定電流で放電終止電圧3Vまで放電を行って回復容量を測定した。保存前の放電容量を100とした場合の回復容量を表3に示す。
実施例2
HCFCFCHOCFCFHの精留液Cを、HCFCFCHOCFCFHの精留液Bにした以外は実施例1と同様にして電池を作製し試験を行った。
実施例3
HCFCFCHOCFCFHの精留液Cを、HCFCFCHOCFCFHCFの精留Fにした以外は実施例1と同様にして電池を作製し試験を行った。
実施例4
HCFCFCHOCFCFHの精留液Cを、HCFCFCHOCFCFHCFの精留液Eにした以外は実施例1と同様にして電池を作製し試験を行った。
比較例1
HCFCFCHOCFCFHの精留液Cを、含フッ素エーテル粗液1にした以外は実施例1と同様にして電池を作製し試験を行った。
比較例2
HCFCFCHOCFCFHの精留液Cを、HCFCFCHOCFCFHの精留液Aにした以外は実施例1と同様にして電池を作製し試験を行った。
比較例3
HCFCFCHOCFCFHの精留液Cを、HCFCFCHOCFCFHの精留液Cに化合物(I-1)を7000ppmの割合で添加したものにした以外は実施例1と同様にして電池を作製し試験を行った。
比較例4
HCFCFCHOCFCFHの精留液Cを、HCFCFCHOCFCFHの精留液Cに化合物(II-1)を7000ppmの割合で添加したものにした以外は実施例1と同様にして電池を作製し試験を行った。
比較例5
HCFCFCHOCFCFHの精留液Cを、含フッ素エーテル粗液2にした以外は実施例1と同様にして電池を作製し試験を行った。
比較例6
HCFCFCHOCFCFHの精留液Cを、HCFCFCHOCFCFHCFの精留液Dにした以外は実施例1と同様にして電池を作製し試験を行った。
比較例7
HCFCFCHOCFCFHの精留液Cを、HCFCFCHOCFCFHCFの精留液Fに化合物(I-3)を7000ppmの割合で添加したものにした以外は実施例1と同様にして電池を作製し試験を行った。
比較例8
HCFCFCHOCFCFHの精留液Cを、HCFCFCHOCFCFHCFの精留液Fに化合物(I-4)を7000ppmの割合で添加したものにした以外は実施例1と同様にして電池を作製し試験を行った。
比較例9
HCFCFCHOCFCFHの精留液Cを、HCFCFCHOCFCFHCFの精留液Fに化合物(I-5)を7000ppmの割合で添加したものにした以外は実施例1と同様にして電池を作製し試験を行った。
比較例10
HCFCFCHOCFCFHの精留液Cを、HCFCFCHOCFCFHCFの精留液Fに化合物(I-6)を7000ppmの割合で添加したものにした以外は実施例1と同様にして電池を作製し試験を行った。
Figure JPOXMLDOC01-appb-T000004
表3から、HCFCFCHOCFCFHの精留液中の化合物(I-1)、(I-2)(II-1)の合計含有量をHCFCFCHOCFCFHに対して5000ppm以下にすることにより、高温での保存特性や高電圧サイクル特性が向上することがわかる。同様に、HCFCFCHOCFCFHCFの精留液中の化合物(I-3)~(I-6)、(II-1)の合計含有量をHCFCFCHOCFCFHCFに対して5000ppm以下にすることにより、高温での保存特性や高電圧サイクル特性が向上することがわかる。

Claims (5)

  1. 正極、負極、並びに、非水溶媒及び電解質塩を含む非水電解液を備えるリチウムイオン二次電池であって、
    前記非水溶媒が、一般式(1):
    Rf-O-Rf     (1)
    (式中、Rf及びRfは同じか又は異なり、炭素数1~10のアルキル基又は炭素数1~10のフルオロアルキル基;ただし、Rf及びRfの少なくとも一方はフルオロアルキル基)で示される含フッ素エーテルを含有し、かつ、
    下記(I)、(II)で示される化合物を、前記含フッ素エーテルに対して合計で5000ppm以下含有することを特徴とする、リチウムイオン二次電池。
    (I)含フッ素不飽和化合物
    (II)一般式(2):
    RfOH         (2)
    (式中、Rfは前記同様)
    で示される水酸基含有化合物。
  2. 一般式(1)で示される含フッ素エーテルが、HCFCFCHOCFCFHであり、
    含フッ素不飽和化合物(I)が、
    (I-1)CF=CFCHOCFCFH、及び、
    (I-2)HCFCF=CHOCFCF
    であり、
    水酸基含有化合物(II)が、
    (II-1)HCFCFCHOH
    である請求項1記載のリチウムイオン二次電池。
  3. 一般式(1)で示される含フッ素エーテルが、HCFCFCHOCFCFHCFであり、
    含フッ素不飽和化合物(I)が、
    (I-3)CF=CFCHOCFCFHCF
    (I-4)HCFCFCHOCF=CFCF
    (I-5)HCFCFCHOCFCF=CF、及び、
    (I-6)HCFCF=CHOCFCFHCF
    であり、
    水酸基含有化合物(II)が、
    (II-1)HCFCFCHOH
    である請求項1記載のリチウムイオン二次電池。
  4. 一般式(1)で示される含フッ素エーテルの含有量が、非水溶媒中0.01~90重量%である請求項1~3のいずれかに記載のリチウムイオン二次電池。
  5. 非水溶媒、及び、電解質塩を含むリチウムイオン二次電池用非水電解液であって、
    前記非水溶媒が、一般式(1):
    Rf-O-Rf     (1)
    (式中、Rf及びRfは同じか又は異なり、炭素数1~10のアルキル基又は炭素数1~10のフルオロアルキル基;ただし、Rf及びRfの少なくとも一方はフルオロアルキル基)で示される含フッ素エーテルを含有し、かつ、
    下記(I)、(II)で示される化合物を、前記含フッ素エーテルに対して合計で5000ppm以下含有することを特徴とする、リチウムイオン二次電池用非水電解液。
    (I)含フッ素不飽和化合物
    (II)一般式(2):
    RfOH         (2)
    (式中、Rfは前記同様)
    で示される水酸基含有化合物。
PCT/JP2012/058459 2011-03-31 2012-03-29 リチウムイオン二次電池及びリチウムイオン二次電池用非水電解液 WO2012133698A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP12765720.3A EP2693558B1 (en) 2011-03-31 2012-03-29 Lithium ion secondary battery and nonaqueous electrolyte for lithium ion secondary battery
PL12765720T PL2693558T3 (pl) 2011-03-31 2012-03-29 Litowo-jonowa bateria akumulatorowa i niewodny elektrolit do litowo-jonowej baterii akumulatorowej
US14/008,285 US10720664B2 (en) 2011-03-31 2012-03-29 Lithium ion secondary battery and nonaqueous electrolyte for lithium ion secondary battery
KR1020137027417A KR20140003601A (ko) 2011-03-31 2012-03-29 리튬 이온 2차 전지 및 리튬 이온 2차 전지용 비수 전해액
CN201280015785.9A CN103460496B (zh) 2011-03-31 2012-03-29 锂离子二次电池和锂离子二次电池用非水电解液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011080298 2011-03-31
JP2011-080298 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133698A1 true WO2012133698A1 (ja) 2012-10-04

Family

ID=46931400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058459 WO2012133698A1 (ja) 2011-03-31 2012-03-29 リチウムイオン二次電池及びリチウムイオン二次電池用非水電解液

Country Status (9)

Country Link
US (1) US10720664B2 (ja)
EP (1) EP2693558B1 (ja)
JP (1) JP5120513B2 (ja)
KR (1) KR20140003601A (ja)
CN (1) CN103460496B (ja)
HU (1) HUE054535T2 (ja)
PL (1) PL2693558T3 (ja)
TW (1) TW201246656A (ja)
WO (1) WO2012133698A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103633371A (zh) * 2013-12-13 2014-03-12 深圳新宙邦科技股份有限公司 一种用于锂离子电池的非水电解液和锂离子电池
JPWO2015080102A1 (ja) * 2013-11-28 2017-03-16 日本電気株式会社 二次電池用電解液およびこれを用いた二次電池
US10243234B2 (en) 2014-10-24 2019-03-26 Nec Corporation Secondary battery
WO2022070646A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 リチウム二次電池

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9666905B2 (en) * 2013-03-04 2017-05-30 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
TW201349633A (zh) * 2013-04-23 2013-12-01 Yih Shan New Tech Co Ltd 鋰離子電池、其陰極、其陰極材料及該陰極材料之製造方法
KR102350368B1 (ko) 2014-02-27 2022-01-14 도다 고교 가부시끼가이샤 정극 합제 및 비수 전해질 이차 전지
JP2015201310A (ja) * 2014-04-07 2015-11-12 旭化成株式会社 非水蓄電デバイス用電解液及びリチウムイオン二次電池
CN103928709B (zh) * 2014-04-23 2016-09-28 中国科学院宁波材料技术与工程研究所 一种非水电解液和锂离子电池
CN107394269B (zh) * 2016-05-17 2020-10-02 宁德新能源科技有限公司 电解液及锂离子电池
CN108808084B (zh) 2017-04-28 2020-05-08 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN108808065B (zh) 2017-04-28 2020-03-27 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN108808086B (zh) 2017-04-28 2020-03-27 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN108808066B (zh) * 2017-04-28 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN108933292B (zh) 2017-05-27 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液和锂离子电池
CN109326824B (zh) 2017-07-31 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液及锂离子电池
CN109326823B (zh) 2017-07-31 2020-04-21 深圳新宙邦科技股份有限公司 锂离子电池非水电解液及锂离子电池
JP6787496B2 (ja) * 2017-08-25 2020-11-18 ダイキン工業株式会社 リチウムイオン二次電池用電解液、リチウムイオン二次電池及びモジュール
CN109148960B (zh) * 2018-10-10 2020-10-02 杉杉新材料(衢州)有限公司 一种锂离子电池用非水电解液及使用该电解液的锂离子电池
JP7086880B2 (ja) * 2019-03-18 2022-06-20 株式会社東芝 二次電池、電池パック及び車両
US20210013545A1 (en) * 2019-07-12 2021-01-14 Honeywell International Inc. Electrolyte solution for a lithium ion cell
GB201916217D0 (en) * 2019-10-03 2019-12-25 Mexichem Fluor Sa De Cv Composition
CN111584936A (zh) * 2020-06-29 2020-08-25 四川东为氢源科技有限公司 电解液及其制备方法
JP2023552607A (ja) * 2020-12-11 2023-12-18 メキシケム フロー エセ・ア・デ・セ・ヴェ 組成物
KR20230121074A (ko) * 2020-12-11 2023-08-17 멕시켐 플루어 소시에다드 아노니마 데 카피탈 바리아블레 조성물
WO2022172951A1 (ja) 2021-02-10 2022-08-18 ダイキン工業株式会社 化合物、組成物、電気化学デバイス、リチウムイオン二次電池及びモジュール
WO2023002341A1 (en) * 2021-07-20 2023-01-26 3M Innovative Properties Company Hydrofluoroolefins and uses thereof
CN114520369A (zh) * 2022-02-18 2022-05-20 湖北亿纬动力有限公司 一种高压体系的电解液及制备方法和含有其的锂离子电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3807459B2 (ja) 1997-06-30 2006-08-09 ダイキン工業株式会社 非水電解液電池用電解液およびこれを用いた非水電解液電池
JP2009508304A (ja) * 2005-09-08 2009-02-26 スリーエム イノベイティブ プロパティズ カンパニー 電解質組成物
JP2010146740A (ja) * 2008-12-16 2010-07-01 Daikin Ind Ltd 電解液
WO2010147105A1 (ja) * 2009-06-15 2010-12-23 ダイキン工業株式会社 高純度含フッ素エーテルの製造方法
WO2011001985A1 (ja) * 2009-06-30 2011-01-06 旭硝子株式会社 帯電デバイス用電解液、リチウム二次イオン電池用電解液、および二次電池
JP2011040311A (ja) * 2009-08-13 2011-02-24 Asahi Glass Co Ltd 二次電池用電解液およびリチウムイオン二次電池
JP2012074135A (ja) * 2010-09-27 2012-04-12 Tosoh F-Tech Inc ジフルオロエチルエーテルを含有する非水電解液

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5754393A (en) 1995-03-07 1998-05-19 Asahi Glass Company Ltd. Electric double layer capacitor
JP4000603B2 (ja) 1995-03-07 2007-10-31 旭硝子株式会社 電気二重層コンデンサ
JP2000208372A (ja) 1999-01-08 2000-07-28 Mitsubishi Chemicals Corp 電解液及びそれを用いた電気二重層キャパシタ
JP3463926B2 (ja) 1999-11-15 2003-11-05 セントラル硝子株式会社 電気化学ディバイス用電解液
JP3482488B2 (ja) 2000-12-28 2003-12-22 独立行政法人産業技術総合研究所 含フッ素エーテル化合物の製造方法
JP4416991B2 (ja) 2002-08-22 2010-02-17 三星エスディアイ株式会社 リチウム二次電池用の非水電解液及びリチウム二次電池
US7229718B2 (en) 2002-08-22 2007-06-12 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery and rechargeable lithium battery comprising same
JPWO2006123563A1 (ja) 2005-05-17 2008-12-25 旭硝子株式会社 含フッ素アルキルエーテルの処理方法
JP5321063B2 (ja) 2006-12-22 2013-10-23 ダイキン工業株式会社 非水系電解液
WO2008084846A1 (ja) 2007-01-12 2008-07-17 Daikin Industries, Ltd. 電気二重層キャパシタ
JP5234000B2 (ja) 2007-09-12 2013-07-10 ダイキン工業株式会社 電解液
RU2463286C1 (ru) * 2008-06-20 2012-10-10 Дайкин Индастриз, Лтд. Способ получения фторсодержащих простых эфиров
WO2010055762A1 (ja) 2008-11-14 2010-05-20 ダイキン工業株式会社 電気二重層キャパシタ
JP2010135431A (ja) 2008-12-02 2010-06-17 Daikin Ind Ltd 電気二重層キャパシタ
EP2693455A4 (en) 2011-03-31 2014-12-31 Daikin Ind Ltd ELECTRIC DOUBLE-LAYER CAPACITOR AND NON-AQUEOUS ELECTROLYTIC FOR ELECTRIC DOUBLE-LAYER CAPACITOR

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3807459B2 (ja) 1997-06-30 2006-08-09 ダイキン工業株式会社 非水電解液電池用電解液およびこれを用いた非水電解液電池
JP2009508304A (ja) * 2005-09-08 2009-02-26 スリーエム イノベイティブ プロパティズ カンパニー 電解質組成物
JP2010146740A (ja) * 2008-12-16 2010-07-01 Daikin Ind Ltd 電解液
WO2010147105A1 (ja) * 2009-06-15 2010-12-23 ダイキン工業株式会社 高純度含フッ素エーテルの製造方法
WO2011001985A1 (ja) * 2009-06-30 2011-01-06 旭硝子株式会社 帯電デバイス用電解液、リチウム二次イオン電池用電解液、および二次電池
JP2011040311A (ja) * 2009-08-13 2011-02-24 Asahi Glass Co Ltd 二次電池用電解液およびリチウムイオン二次電池
JP2012074135A (ja) * 2010-09-27 2012-04-12 Tosoh F-Tech Inc ジフルオロエチルエーテルを含有する非水電解液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2693558A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015080102A1 (ja) * 2013-11-28 2017-03-16 日本電気株式会社 二次電池用電解液およびこれを用いた二次電池
US20170170520A1 (en) * 2013-11-28 2017-06-15 Nec Corporation Electrolyte solution for secondary battery and secondary battery using same
US10587008B2 (en) * 2013-11-28 2020-03-10 Nec Corporation Electrolyte solution for secondary battery and secondary battery using same
CN103633371A (zh) * 2013-12-13 2014-03-12 深圳新宙邦科技股份有限公司 一种用于锂离子电池的非水电解液和锂离子电池
US10243234B2 (en) 2014-10-24 2019-03-26 Nec Corporation Secondary battery
WO2022070646A1 (ja) * 2020-09-30 2022-04-07 パナソニックIpマネジメント株式会社 リチウム二次電池

Also Published As

Publication number Publication date
JP2012216539A (ja) 2012-11-08
CN103460496A (zh) 2013-12-18
JP5120513B2 (ja) 2013-01-16
KR20140003601A (ko) 2014-01-09
US10720664B2 (en) 2020-07-21
EP2693558A4 (en) 2014-08-27
PL2693558T3 (pl) 2021-10-18
HUE054535T2 (hu) 2021-09-28
EP2693558A1 (en) 2014-02-05
EP2693558B1 (en) 2021-03-24
TW201246656A (en) 2012-11-16
CN103460496B (zh) 2016-11-16
US20140017560A1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5120513B2 (ja) リチウムイオン二次電池及びリチウムイオン二次電池用非水電解液
JP5436512B2 (ja) 非水電解液
WO2014050877A1 (ja) 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
WO2010004952A1 (ja) 非水系電解液
CN112074986A (zh) 非水性液体电解质组合物
JP5590192B2 (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP2014072102A (ja) 非水電解液、電気化学デバイス、リチウムイオン二次電池、及び、モジュール
JP2004111359A (ja) 非水系電解液二次電池および非水系電解液
JP6143410B2 (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP2012216391A (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP2012216390A (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP2012216387A (ja) 電気化学デバイス及び電気化学デバイス用非水電解液
JP5849526B2 (ja) 非水電解液、リチウムイオン二次電池、及び、モジュール
JP4219127B2 (ja) 非水系電解液二次電池および非水系電解液
JP2009026766A (ja) シクロへキシルベンゼン
JP2012216389A (ja) 電気化学デバイス及び電気化学デバイス用非水電解液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765720

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14008285

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012765720

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137027417

Country of ref document: KR

Kind code of ref document: A