WO2012132924A1 - 熱交換器 - Google Patents

熱交換器 Download PDF

Info

Publication number
WO2012132924A1
WO2012132924A1 PCT/JP2012/056679 JP2012056679W WO2012132924A1 WO 2012132924 A1 WO2012132924 A1 WO 2012132924A1 JP 2012056679 W JP2012056679 W JP 2012056679W WO 2012132924 A1 WO2012132924 A1 WO 2012132924A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat
opening
heat exchanger
tube
hole
Prior art date
Application number
PCT/JP2012/056679
Other languages
English (en)
French (fr)
Inventor
俊 吉岡
鉉永 金
芳正 菊池
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2012132924A1 publication Critical patent/WO2012132924A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels

Definitions

  • the present invention relates to a heat exchanger for causing heat exchange between a high-pressure refrigerant and a low-pressure refrigerant.
  • a water heat exchanger that performs heat exchange between CO 2 and water is used.
  • water heat exchangers such as a plate type heat exchanger and a double pipe type heat exchanger.
  • Patent Document 1 Japanese Patent Laid-Open No. 10-288480
  • Patent Document 2 Japanese Patent Laid-Open No. 2002-228370
  • Japanese Patent Laid-Open No. 2002-228370 describes a double-pipe heat exchanger.
  • the double-pipe heat exchanger has, for example, a structure in which a heat medium tube is wound spirally around a core tube.
  • the flow path in which the heat exchange is performed is long, but in the case of a double-tube heat exchanger, the core tube If the length becomes longer, it is necessary to bend the core tube when it is installed in the apparatus. When bending the core tube, it is necessary to bend with a certain radius of curvature so that the core tube does not break. growing.
  • An object of the present invention is to provide a lightweight and compact heat exchanger that supports heat exchange between a high pressure fluid and a low pressure fluid, such as heat exchange between CO 2 and water.
  • a heat exchanger includes a plurality of flat tubes having first and second openings connected to a first flow path and a first flow path, and one flat tube adjacent to each other.
  • a first fluid inlet / outlet portion formed by joining the first opening and the second opening of the other flat tube and a plurality of flat tubes are alternately stacked, and the second fluid is higher in pressure than the first fluid.
  • a plurality of flat multi-hole tubes in which a plurality of second flow paths through which fluid flows are formed.
  • the 1st opening part and 2nd opening part of flat tubes are directly joined, and an entrance / exit part is formed, Between the 1st opening part and the 2nd opening part There is no need to provide a separate member, and the heat exchanger can be made compact. Moreover, since the entrance / exit part is formed by the 1st opening part or 2nd opening part of a flat tube, weight reduction can be achieved. On the other hand, since the flat tube through which the low-pressure first fluid flows and the flat multi-hole tube through which the high-pressure second fluid flows are alternately stacked, the heat exchanger has a structure suitable for heat exchange between the high-pressure fluid and the low-pressure fluid Can be.
  • a heat exchanger is the heat exchanger according to the first aspect, wherein the flat tube is formed by overlapping and joining the first plate and the second plate, and the first plate and the second plate At least one of the plates has a concave surface portion that extends to an arrangement position of the first opening and the second opening to form the first flow path.
  • corrosion is generated by configuring the flow paths of the first fluid and the second fluid as separate members such as a flat tube made of the first plate and the second plate and a flat multi-hole tube. When this is done, mixing of the first fluid and the second fluid can be prevented.
  • the entrance / exit part can be comprised with a 1st plate and a 2nd plate, the manufacturing cost of a heat exchanger can be suppressed.
  • a heat exchanger is the heat exchanger according to the first aspect or the second aspect, wherein at least one of the plurality of flat tubes and the plurality of flat multi-hole tubes is a flat tube and a flat multi-hole.
  • a concave groove having a length protruding from the contact area is formed in a contact area where the tubes come into contact with each other. According to the heat exchanger of the third aspect, this concave groove can guide the first fluid out of the contact area when a hole is opened in the flat tube. Thereby, it becomes easy to discover that a hole has opened in the flat tube.
  • a heat exchanger is the heat exchanger according to any one of the first to third aspects, wherein the plurality of flat tubes generate a turbulent flow of the first fluid inside the first flow path. It has at least one of the recessed part and convex part for making it. According to the heat exchanger of the 4th viewpoint, heat transfer is accelerated
  • a heat exchanger according to a fifth aspect of the present invention is the heat exchanger according to any one of the first to fourth aspects, wherein the plurality of flat multi-hole tubes are arranged two by two between each of the plurality of flat tubes. Configured. According to the heat exchanger of the fifth aspect, since two flat multi-hole tubes come into contact with one flat tube, the number of flat multi-hole tubes that exchange heat with one flat tube is increased to two. Can do.
  • a heat exchanger according to a sixth aspect of the present invention is the heat exchanger according to any one of the first to fifth aspects, wherein the plurality of flat multi-hole tubes are formed straight in a top view, and the inlet / outlet portion is It is arranged beside a plurality of flat multi-hole tubes. According to the heat exchanger of the sixth aspect, it is possible to provide a heat exchanger having a structure in which an inlet / outlet portion is located beside a flat multi-hole tube.
  • a heat exchanger according to a seventh aspect of the present invention is the heat exchanger according to any one of the first to fifth aspects, wherein the plurality of flat tubes are formed straight in a top view, and the plurality of flat multi-hole tubes In order to distribute the second fluid to the plurality of second flow paths, a plurality of flat multi-hole pipes are further provided, and an inlet / outlet distribution pipe disposed on the side of the flat pipe is further provided. According to the heat exchanger of the seventh aspect, it is possible to provide a heat exchanger having a structure in which an inlet / outlet distribution pipe is provided beside the flat tube.
  • a heat exchanger is the heat exchanger according to any one of the first to seventh aspects, wherein the inlet / outlet portion is a partition member that blocks the flow of the first fluid in the direction in which the flat tubes are adjacent to each other. In the flat tube, the flow direction of the first fluid changes between the upper layer and the lower layer above the partition member.
  • the first fluid is reciprocated using the upper layer and the lower layer by changing the flow direction of the first fluid between the upper layer and the lower layer above the partition member. The portion where heat exchange is performed between the first fluid and the second fluid can be lengthened.
  • a heat exchanger is the heat exchanger according to the second aspect, wherein the first opening is formed on the right first opening and the left first formed at the right end and the left end of the first plate. 1 opening portion, the second opening portion includes a right side second opening portion and a left side second opening portion formed at the right end portion and the left end portion of the second plate, and the doorway portion includes the right side first opening portion and the right opening portion.
  • a right-side entrance / exit portion formed by joining the right-side second opening and a left-side entrance / exit portion formed by joining the left-side first opening and the left-side second opening.
  • the outlet and the inlet of the first fluid can be configured by a right inlet / outlet part and a left inlet / outlet part formed by joining the first opening and the second opening.
  • a heat exchanger according to a tenth aspect of the present invention is the heat exchanger according to any one of the first to ninth aspects, wherein the first fluid includes water, the second fluid is carbon dioxide, and the flat tube Is made of stainless steel or copper alloy, and the flat multi-hole tube is made of aluminum.
  • the flat tube can be given good thermal conductivity as well as corrosion resistance.
  • a large number of flow paths can be easily formed by using aluminum which is easy to process.
  • the heat exchanger according to the first aspect of the present invention provides a lightweight and compact heat exchanger that supports heat exchange between a low-pressure first fluid and a high-pressure second fluid, such as heat exchange between water and CO 2. be able to.
  • a low-pressure first fluid such as heat exchange between water and CO 2.
  • heat transfer is promoted by the concave portions and the convex portions, and the heat exchanger efficiency is improved.
  • the number of flat multi-hole tubes that exchange heat with respect to one flat tube can be increased, so that the efficiency of heat exchange can be increased.
  • the heat exchanger which concerns on the 6th viewpoint of this invention, it can respond to the case where an entrance / exit part is to be provided beside a flat multi-hole pipe. In the heat exchanger which concerns on the 7th viewpoint of this invention, it can respond to the case where it is desired to provide an inlet / outlet distribution pipe beside the flat tube.
  • the heat exchange efficiency can be increased by elongating the portion where heat exchange is performed by the partition member.
  • the outlet and the inlet of the first fluid can be formed by joining the first opening and the second opening, and the size and weight can be reduced.
  • FIG. 5 is a cross-sectional view taken along the line II of FIG.
  • the top view which shows the metal plate of the one structural member of a heat exchanger. II-II sectional view taken on the line of FIG. Sectional drawing which shows the state which turned up the metal plate of FIG.
  • the top view which shows typically the planar structure of a heat exchanger.
  • Sectional drawing which shows the other structural example of the periphery of the right side entrance / exit part of the heat exchanger of 1st Embodiment.
  • Typical sectional drawing which shows the other aspect of the lamination
  • Typical sectional drawing which shows the other aspect of the lamination
  • FIG. 23 is a sectional view taken along line III-III in FIG. 22.
  • FIG. 1 shows a heat pump type hot water supply device including a heat exchanger according to the first embodiment.
  • the heat pump hot water supply apparatus 1 includes a refrigeration apparatus 2 that is a hot water heat source apparatus and a hot water storage unit 3.
  • the refrigeration apparatus 2 includes a compressor 4 that compresses CO 2 that is a refrigerant, a heat exchanger 10 that performs heat exchange between CO 2 and water, an expansion valve 5 that serves as a means for reducing CO 2 , An air heat exchanger 6 for exchanging heat between outside air and CO 2 is provided.
  • the compressor 4, the heat exchanger 10, the expansion valve 5, and the air heat exchanger 6 are connected to form a refrigerant circuit in which CO 2 circulates.
  • the hot water storage unit 3 includes a hot water storage tank 8 and a water circulation pump 9.
  • the water heat exchanger 10, the hot water storage tank 8, and the water circulation pump 9 are connected to constitute a water circulation circuit for circulating water.
  • FIG. 2 schematically shows the internal structure of the refrigeration device. In FIG.
  • the right compartment of the heat insulation wall 2c is the machine room 2a
  • the left compartment of the heat insulation wall 2c is the blower room 2b.
  • a compressor 4 and an expansion valve 5 are arranged in the machine room 2a.
  • a fan 7 driven by a motor (not shown) is disposed in the blower chamber 2b.
  • a heat exchanger 10 is disposed below the blower chamber 2b with a heat insulating wall 2d therebetween. In the heat exchanger 10, heat exchange is performed between CO 2 circulating in the refrigerant circuit and water circulating in the water circulation circuit.
  • the air heat exchanger 6 is arrange
  • the heat exchanger 10 includes a large number of flat tubes 20 and a large number of flat multi-hole tubes. 40, the entrance / exit part 30, and the entrance / exit distribution pipe 50 are comprised. 3 to 5 show an example in which five flat tubes 20 and four flat multi-hole tubes 40 are alternately stacked. However, the number of the flat tubes 20 and flat multi-hole tubes 40 to be laminated is appropriately selected according to required performance. Further, in this example, the flat tubes 20 are disposed at the lowermost and uppermost stages, but the flat multi-hole tube 40 may be disposed at the lowermost and uppermost stages. In addition, in FIG.
  • corrugation of the outer surface of the flat tube 20 is abbreviate
  • the flat multi-hole tube 40 is required to have high pressure resistance, the flat tube 20 through which water flows is required to have high corrosion resistance. For this reason, the flat multi-hole tube 40 requiring high pressure resistance is provided with a large number of thin flow paths 41.
  • the flat multi-hole tube 40 is made of aluminum, an aluminum alloy, a copper alloy, stainless steel, or the like.
  • aluminum or aluminum alloy drawing or extrusion is preferably used. When such processing is used, the flat multi-hole tube is inexpensively used. 40 can be manufactured.
  • the base material of the flat tube 20 it is preferable to use stainless steel or a copper alloy in consideration of the corrosiveness of water.
  • the stainless steel include SUS304 and SUS316.
  • the flat tube 20 can be made of aluminum or an aluminum alloy, but in that case, it is preferable to apply anticorrosion treatment such as alumite processing or resin coating on the inner surface.
  • the heat exchanger 10 is a right-side inlet / outlet that is disposed at the right end of the flat tube 20 as the inlet / outlet portion 30.
  • positioned at the left end part are included.
  • An entrance / exit port 34 connected to piping or the like is provided at the end of the left entrance / exit 32 and the end of the right entrance 31 shown in FIG.
  • the heat exchanger 10 must be used in the state of FIG. 3. It is not a thing. For example, it is possible to use the heat exchanger 10 with the right inlet / outlet portion 31 disposed above and the left inlet / outlet portion 32 disposed below.
  • the water On the side of the flat tube 20, the water first enters the left inlet / outlet port 32, is divided into five flat tubes 20, flows from the left to the right through the flat tube 20, and exits from the right inlet / outlet port 31. The water is heated by heat given from CO 2 of the flat multi-hole tube 40 while flowing through the flat tube 20.
  • the heat exchanger 10 includes, as the inlet / outlet distribution pipe 50, a right side inlet / outlet distribution pipe 51 arranged at the right end of the flat multi-hole pipe 40 and a left side inlet / outlet distribution pipe 52 arranged at the left end.
  • FIG. 6 is a plan view of a metal plate for forming a flat tube and an entrance / exit part.
  • the planar shape of the metal plate 80 is a substantially rectangular shape that is long to the left and right, and four bulging portions are formed at both left and right ends of the first long side 81 and the second long side 82.
  • the metal plate 80 is formed by integrally connecting a first plate 801 and a second plate 802.
  • the four bulging portions are a right first bulging portion 86, a left first bulging portion 87, a right second bulging portion 88, and a left second bulging portion 89.
  • a right first opening 91 is formed in the right first bulging portion 86
  • a left first opening 92 is formed in the left first bulging portion 87
  • a right second opening is formed in the right second bulging portion 88.
  • An opening 93 is formed, and a left second opening 94 is formed in the left second bulging portion 89.
  • right first opening 91, left first opening 92, right second opening 93 and left second opening 94 are circular and all have the same size. Further, the right first opening 91 and the left first opening 92 are disposed so as to protrude outward from the extension line of the first long side 81, and the right second opening 93 and the left second opening 94 are The two long sides 82 are arranged so as to protrude outside the extended line. However, these shapes may be the same shape to make it difficult to leak water, and are not limited to a circle. Further, the position and size to be arranged are set according to the flow rate and the flow path. 7 is a cross-sectional view taken along the line II of FIG. As shown in FIG.
  • the metal plate 80 has a concave surface portion 95 formed by pressing.
  • the concave surface portion 95 occupies a region inside the peripheral edge portion 84 having a predetermined width formed along the outer periphery 83 of the metal plate 80.
  • a central portion 85 that is in the middle of the first long side 81 and the second long side 82 and is formed in parallel with them is not a concave surface, and is formed at the same height as the peripheral portion 84. That is, the concave portion 95 is divided into a first concave portion 96 formed on the first plate 801 and a second concave portion 97 formed on the second plate 802 with the central portion 85 as a boundary.
  • the right first opening 91 and the left first opening 92 are formed in the first concave surface portion 96, and the right second opening 93 and the left second opening 94 are formed in the second concave surface portion 97.
  • the right first opening 91, the left first opening 92, the right second opening 93, and the left second opening 94 are recessed portions 98 that are further deepened in the first concave portion 96 and the second concave portion 97. Is arranged.
  • FIG. 8 shows a state after the metal plate 80 shown in FIGS. 6 and 7 is bent.
  • the metal plate 80 is bent along a straight line 100 extending left and right through the center of the central portion 85.
  • the peripheral edge 84 overlaps so that the first long side 81 and the second long side 82 coincide with each other, and the first plate 801 and the second plate 802 are brought together.
  • the flow path 21 is formed by the first concave surface portion 96 and the second concave surface portion 97 when the first plate 801 and the second plate 802 are combined.
  • the flow path 21 continues to the right first opening 91, the left first opening 92, the right second opening 93, and the left second opening 94.
  • the right first opening 91 and the right second opening 93, and the left first opening 92 and the left second opening 94 are arranged to face each other.
  • the entrance / exit part 30 is formed straight by arrange
  • the peripheral edge portion 84 that overlaps the bent metal plate 80 is sealed by winding or brazing to form one flat tube 20.
  • the first concave surface portion 96 is formed with the ridge 22 protruding from the bottom surface side of the first concave surface portion 96 toward the peripheral edge portion 84 side. .
  • the ridge 23 is formed that protrudes from the bottom surface side of the second concave surface portion 97 toward the peripheral edge portion 84 during pressing.
  • the ridge 22 and the ridge 23 are inclined at the same angle with respect to the first long side 81 and the second long side 82 in FIG. 6. Therefore, when the metal plate 80 is bent, the protrusions 22 and the protrusions 23 are arranged so as to intersect with each other in plan view.
  • ridges 22 and 23 generate a turbulent flow when water flows through the flow path 21, improving the efficiency of heat transfer between the water and the metal plate 80. Since the ridges 22 and 23 are formed on the bottom surface of the concave surface portion 95, the opposite surface of the concave surface portion 95, that is, the outer surface 29 of the flat tube 20 is dented, and the concave ridges 24 and 25 appear. The function of these concave stripes 24 and 25 will be described later.
  • FIG. 9 schematically shows the configuration of the heat exchanger 10. 20 and the flat multi-hole tube 40 have a straight shape. 9, the description of the uppermost flat tube 20 shown in FIG. 4 is omitted in order to explain the configuration of the recess 24.
  • a right side entrance 31 and a left side entrance 32 are formed on the side of the flat multi-hole tube 40.
  • the right inlet / outlet pipe 51 and the left inlet / outlet pipe 52 are provided at both ends of the flat multi-hole pipe 40. Therefore, since the flat multi-hole tube 40 can be formed straight at the time of manufacture, it is difficult to cause problems such as breakage of the flat multi-hole tube 40 due to stress when the flat multi-hole tube 40 is bent, and manufacture is easy. is there.
  • FIG. 10 is a process diagram showing an outline of manufacturing a heat exchanger.
  • FIG. 10A is a partial plan view showing a metal plate formed by a press working process.
  • the metal plate 80 having the shape shown in FIG. 10A is formed by pressing a metal flat plate. That is, a flat metal flat plate is punched along the outer periphery 83 by a single press work, and the right first opening 91, the left first opening 92, the right second opening 93, and the left second opening 94. Is formed.
  • the concave portion 95, the ridges 22 and 23, the ridges 24 and 25 (see FIG. 7), and the recess 98 are formed.
  • FIG. 10B is a partial plan view showing the metal plate processed by the bending process.
  • a state in which the metal plate 80 is bent and the first plate 801 and the second plate 802 are overlapped is shown.
  • the peripheral edge 84 of the metal plate 80 is not yet joined.
  • FIG.10 (c) is sectional drawing which shows the flat tube by which the peripheral part was joined by the 1st joining process.
  • the overlapped peripheral portions 84 of the first plate 801 and the second plate 802 are joined by brazing or welding. A portion where the peripheral edge portion 84 is joined is the first joint portion 101.
  • FIG. 10B is a partial plan view showing the metal plate processed by the bending process.
  • 10D is a cross-sectional view showing the flat tube and the entrance / exit port in which the flat tubes and the entrance / exit port are joined by the second joining step.
  • the flat tubes 20 are joined together by brazing or welding.
  • the inlet / outlet port 34 is connected to the uppermost flat tube 20 by brazing or welding.
  • a portion where the flat tubes 20 are joined together, that is, a joining portion between the right first opening 91 and the right second opening 93 and a joining portion between the left first opening 92 and the left second opening 94 are the second joining portions. 102.
  • the joined body of the flat tube 20 is formed through the process of FIG.
  • FIG.10 (e) is a fragmentary perspective view for demonstrating the assembly process of the joined body of the flat tube in which the entrance / exit part was formed, a flat multi-hole pipe, and the entrance / exit distribution pipe.
  • the flat multi-hole tube 40, the right inlet / outlet pipe 51 and the left inlet / outlet pipe 52 are joined by brazing or welding such as hand brazing or high frequency brazing. Bonding is performed to prepare a bonded body shown in FIG.
  • the assembly of the flat tube 20 and the flat multi-hole tube 40 is combined to form an assembly.
  • FIG. 10F is a partial perspective view showing the heat exchanger in which the flat tube and the flat multi-hole tube are joined in the joining step.
  • the heat exchanger 10 is formed by integral brazing such as a 600 ° C. sawlock brazing.
  • FIG. 11 shows the structure around the right entrance 31. Since the structure around the left side entrance / exit part 32 is the same as that of the right side entrance / exit part 31, the description thereof is omitted.
  • the flat tubes 20a and 20b are one flat tube and the other flat tube adjacent to each other. In the state where the metal wall (metal plate 80) constituting the flow path 21 of the flat tubes 20a and 20b and the flat multi-hole tube 40 are in contact, the right first opening 91 of the flat tube 20a and the right side of the flat tube 20b The second opening 93 comes into contact.
  • the flat tubes 20b and 20c as in the case of the flat tubes 20a and 20b, the right first opening 91 of the flat tube 20b (one flat tube) and the right second opening of the flat tube 20c (the other flat tube).
  • the portion 93 is joined, and the flat multi-hole tube 40b is sandwiched between the flat tubes 20b and 20c.
  • the flat tubes 20a, 20b, and 20c shown in FIG. 11 are made of a metal that can be easily brazed, such as aluminum. Therefore, even if it matches any surface, such as the surface of metal plate 80 which forms flat tube 20a, 20b, 20c, and the back surfaces, it can join. (5) Features (5-1) As shown in FIG.
  • the flat tubes 20 and the flat multi-hole tubes 40 are alternately stacked.
  • Low-pressure water (first fluid) flows through one flow channel 21 (first flow channel) of the flat tube 20, and high-pressure CO 2 (second flow channel) flows through the flow channel 41 (second flow channel) of the flat multi-hole tube 40.
  • the second fluid) is flowing.
  • the high-pressure fluid flows through the flat multi-hole tube 40 and the low-pressure fluid flows through the flat tube 20, so that a plurality of the flow paths 41 of the flat multi-hole tube 40 can be formed to be thin.
  • the exchanger 10 may be suitable for heat exchange between a high pressure fluid and a low pressure fluid.
  • the right first opening 91 (first opening) of the adjacent flat tubes 20a (one flat tube) and the right second opening 93 (second opening) of the flat tubes 20b (the other flat tube). are directly brazed. Therefore, a separate member is not required for connection between the right first opening 91 and the right second opening 93, the arrangement interval between the flat tubes 20 adjacent to each other is reduced, and the flat tube 20 and the flat multi-hole tube 40 are stacked. The size of the directional heat exchanger 10 can be reduced. The same applies to the joining of the left first opening 92 and the left second opening 94. (5-2) As shown in FIG.
  • the flat multi-hole tubes 40a and 40b are disposed, for example, between the adjacent flat tubes 20a and 20b or between the flat tubes 20b and 20c.
  • the flat tubes 20a, 20b, and 20c are formed from a metal plate 80 that is a separate member from the flat multi-hole tubes 40a and 40b. Therefore, for example, even if a hole is opened due to corrosion or the like in any of the flat tubes 20a, 20b, 20c and water leaks, the leaked water passes through the flat multi-hole tubes 40a, 40b and reaches the flow path 41. And water and CO2 are prevented from being mixed.
  • the flow path 21, the right first opening 91, and the right second opening 93 can be easily formed by pressing a metal plate such as the flat tubes 20a, 20b, and 20c, the heat exchanger is inexpensive. 10 can be provided.
  • the concave strip 24 (concave groove) shown in FIG. 9 protrudes outward from the flat multi-hole tube 40 in a top view. That is, the groove 24 (concave groove) has a length that protrudes beyond the contact region where the flat multi-hole tube 40 and the flat tube 20 are joined. Therefore, when a hole is opened in the flat tube 20, the water is guided to the visible portion of the heat exchanger 10 through the recess 24. It can be detected that a hole has been opened in the flat tube 20 by the water appearing in the appearance of the heat exchanger 10. Thereby, it becomes easy to prevent generation
  • a concave groove may be formed on the outer surface of the flat multi-hole tube 40.
  • the concave groove can be formed on the outer surface of the flat multi-hole tube 40 by machining such as scraping a part of the outer surface of the flat multi-hole tube 40 with an end mill.
  • the above-mentioned concave stripes 24 and 25 are formed by pressing, they can be manufactured at low cost.
  • the forming method is not limited to pressing, and chemical processing such as machining such as cutting or etching can also be used. . (5-4) As shown in FIG.
  • the flat multi-hole tube 40 is made of aluminum and can form a large number of thin channels 41 by drawing or extrusion. Therefore, it is easy to process the flat multi-hole tube 40 into a shape suitable for a high-pressure fluid.
  • the flat tube 20 is formed of stainless steel or a copper alloy, a flat tube suitable for a corrosive low-pressure fluid such as water can be provided.
  • stainless steel and copper alloy have good thermal conductivity, it is possible to increase the efficiency of heat exchange between water and CO 2 .
  • a filler material may be clad on the peripheral portion 84 of the metal plate 80 in FIG. That is, the filler material is clad on the surface where the peripheral portions 84 of the first plate 801 and the second plate 802 come into contact when bent as shown in FIG.
  • the base material is made of stainless steel, copper alloy or the like, and the part where the filler material is clad is brought to the joint surface, the step of bending the metal plate 80 as in the first joint part 101 of FIG. It can be omitted.
  • An aluminum filler material 140 is also clad in the third joint portion 103 of FIG. 13, that is, in a region in contact with the flat multi-hole tubes 40 and 40 b made of aluminum.
  • the flat tubes 20a, 20b, 20c and the flat multi-hole tubes 40a, 40b that are alternately stacked by the filler material 140 are joined, the flat tubes 20a, 20b, 20c and the flat multi-hole tube 40a, The adhesiveness of 40b can be improved. Thereby, the heat conduction resistance between the flat tubes 20a, 20b, 20c and the flat multi-hole tubes 40a, 40b can be reduced.
  • the flat tube 20 and the flat multi-hole tube 40 are alternately stacked with the wide surfaces in contact with each other, and as shown in FIG.
  • stacked alternately is demonstrated.
  • the mode in which the flat tubes 20 and the flat multi-hole tubes 40 are alternately stacked is not limited thereto, and includes, for example, the modes illustrated in FIGS. 14 and 15.
  • the heat exchanger 10B shown in FIG. 14 has a structure in which two flat multi-hole tubes 40 stacked on one flat tube 20B are alternately stacked vertically. However, the flat multi-hole tube 40 arranged in the uppermost stage and the lowermost stage is one layer. By being arranged in this way, water in one flat tube 20B is heated by CO 2 flowing in the two flat multi-hole tubes 40 sandwiching it, so that the heat exchanger 10B is related to heating water. It has a higher capacity than the heat exchanger 10.
  • the flat tube 20B forms an interval corresponding to two flat multi-hole tubes 40 between the flat tubes 20B adjacent to each other, the right first opening 91 of the flat tube 20 and the left first The recess 98 in which the opening 92, the right second opening 93, and the left second opening 94 are formed is further deepened.
  • the flat tube 20 ⁇ / b> C and the flat multi-hole tube 40 are formed as a set of a laminated body P ⁇ b> 1 in which one flat tube 20 ⁇ / b> C is stacked so that two flat multi-hole tubes are sandwiched therebetween.
  • a large number of laminates P1 may be arranged side by side. Although only three sets are shown in FIG.
  • the metal plate 80d in FIG. 16A corresponds to the first plate 801 in FIG. 6, but includes a right first bulging portion 86, a left first bulging portion 87, a right second bulging portion 88, and A left second bulging portion 89 is provided. Then, the right first bulging portion 86, the left first bulging portion 87, the right second bulging portion 88, and the left second bulging portion 89 have a right first opening 91, a left first opening 92, respectively.
  • a right second opening 93 and a left second opening 94 are formed.
  • such metal plates 80d are arranged so that the concave surface portions 95 are alternately directed upward and downward.
  • the concave portion 95 of the metal plate 80d at the left end and the right end faces upward, and the concave portion 95 of the central metal plate 80d faces downward.
  • the right first opening 91, the left first opening 92, the right second opening 93, and the left second opening 94 of the three metal plates 80d are fitted together.
  • the metal plate 80e is covered and brazed.
  • flat multi-hole tubes 40 are stacked on the upper and lower sides of flat tubes 20 arranged in a plane as shown in FIG.
  • the flat multi-hole tube 40 and the flat tube 20 may be joined simultaneously with the brazing of the metal plates 80d and 80e.
  • FIG. 18 is a process diagram showing an outline of another manufacturing process of the heat exchanger.
  • FIG. 18A is a plan view showing a metal plate formed by press working.
  • FIG. 18B is a partial plan view of the metal plate formed in the bending process.
  • FIG. 18D is a partial perspective view for explaining an assembly process of the flat multi-hole pipe and the inlet / outlet pipe.
  • FIG. 18 (e) is a partial perspective view showing a flat tube, a flat multi-hole tube, and an inlet / outlet pipe that are integrally brazed.
  • the steps shown in FIGS. 18A and 18B are the same as the steps described with reference to FIGS. 10A and 10B, and thus the description thereof is omitted. In parallel with the step of FIG.
  • the flat multi-hole pipe 40, the right inlet / outlet pipe 51 and the left inlet / outlet pipe 52 shown in FIG. 18D are assembled.
  • the flat multi-hole tube 40 is fitted into a plurality of openings (not shown) of the right-side inlet / outlet distribution pipe 51 and the left-side inlet / outlet distribution pipe 52 formed in accordance with the outer shape of the flat multi-hole pipe 40.
  • an assembly is formed in which a plurality of flat multi-hole pipes 40 are fitted in the right side inlet / outlet distribution pipe 51 and the left side inlet / outlet distribution pipe 52 in a state where they are not fixed to each other.
  • the bent metal plates 80 are placed on an assembly (see FIG. 18E) composed of the flat multi-hole tube 40, the right inlet / outlet distribution pipe 51, and the like. .
  • a final assembly including the right inlet / outlet pipe 51, the left inlet / outlet pipe 52, the flat multi-hole pipe 40, and the flat pipe 20 is formed.
  • the members are not joined together.
  • Each part of the final assembly is placed in a furnace, and the heat exchanger 10 shown in FIG. 18E is formed by, for example, integral brazing such as a 600 ° C. sawlock brazing.
  • the parts to be joined by brazing are the first joining part 101 (peripheral part 84 of the metal plate 80) and the second joining part 102 (the right side first entrance part 31 and the right side first entrance part 32 that constitute the left side entrance part 32). 91, right second opening 93 and left first opening 92 and left second opening 94), third joint 103 (right inlet / outlet distribution pipe 51 and left inlet / outlet distribution pipe 52 and flat multi-hole pipe 40), and It is the 4th junction part 104 (surface in which the flat tube 20 and the flat multi-hole tube 40 contact each other).
  • the direction in which water flows through the flat tube 20D is all from left to right, and CO 2 flows through the flat multi-hole tube 40D. All directions are from right to left.
  • the sum of the cross-sectional areas of the flow paths 21 of the five flat tubes 20D is simply five times that of one flat tube 20D.
  • the sum of the cross-sectional areas of the flow paths 41 of the flat multi-hole tube 40D is also proportional to the number of flat multi-hole tubes 40D.
  • FIG. 19 is a conceptual diagram schematically showing the configuration of the heat exchanger according to the second embodiment.
  • the heat exchanger 10D of the second embodiment has an advantageous configuration when it is desired to make the contact portion for heat exchange longer than the flow rate of the refrigerant.
  • a heat exchanger 10D shown in FIG. 19 includes a partition member 32a that closes the left inlet / outlet portion 32 between the second and third flat tubes 20D from the top, and the fourth and fifth flat portions from the top.
  • a partition member 31a that closes the right entrance / exit portion 31 between the pipes 20D and a partition member 32b that closes the left entrance / exit portion 31 between the sixth and seventh flat tubes 20D from above are provided. Thereby, the flow path through which water flows can be reciprocated. Specifically, water enters from above the left entrance 32 and flows from the left to the right through the first and second flat tubes 20D from the top, and the third and fourth flat tubes from the top.
  • the heat exchanger 10D includes a partition member 52a that closes the left inlet / outlet distribution pipe 52 between the second and third flat multi-hole pipes 40D from the bottom, and the fourth and fifth flat multi-holes from the bottom.
  • a partition member 51a for closing the right-side entrance / exit pipe 51 between the pipes 40D and a partition member 52b for closing the left-side entrance / exit pipe 52 between the sixth and seventh flat multi-hole pipes 40D from the bottom are provided.
  • CO 2 enters from the bottom of the left inlet / outlet distribution pipe 52, flows from the left to the right in the first and second flat multi-hole pipes 40D from the bottom, and the third and fourth stages from the bottom.
  • Flows from right to left in the flat multi-hole tube 40D of the eye flows from left to right in the fifth and sixth flat multi-hole tubes 40D from the bottom, and from the top to the seventh and eighth steps Flowed from right to left through the flat multi-hole tube 40D of the eye, cooled CO 2 comes out from above the left inlet / outlet distribution pipe 52.
  • FIGS. 20 (a), 20 (b), 20 (c) and 20 (d) four types are provided.
  • the metal plates 80f, 80g, 80h, and 80i can be arranged as shown in FIG.
  • the right second opening 93 and the left second opening 94 of the metal plate 80g are fitted into the right first opening 91 and the left first opening 92 of the metal plate 80f.
  • the metal plate 80h is overlaid on the metal plate 80f
  • the metal plate 80i is overlaid on the metal plate 80g and brazed.
  • the flat tube 20D shown in FIG. 21 is formed.
  • a flat multi-hole tube 40D is laminated above and below the flat tube 20D as shown in FIG.
  • the heat exchanger 10D of FIG. 21 flows through the adjacent flat tube 20D.
  • the entrance / exit part 30D and the flat multi-hole tube 40D intersect in plan view. Therefore, as shown in FIG. 22, the flat multi-hole tube 40D is slightly bent so as to avoid the inlet / outlet portion 30D, and is connected to the inlet / outlet pipe 50D.
  • the partition members 31a, 32a, and 32b can be easily formed by not opening the first opening and the second opening. This is the same for CO 2 , and CO 2 is divided into the first and second stages from the bottom by the partition members 52a and 52b that block the left inlet / outlet distribution pipe 52 and the partition member 51a that blocks the right inlet / outlet distribution pipe 51. To the right, the 3rd and 4th steps from the bottom to the left, the 5th and 6th steps from the bottom to the right, and the 7th and 8th steps from the bottom to the left.
  • the flat multi-hole tube 40D is reciprocated twice.
  • the flat multi-hole tube 40D flows four times as much distance, and the CO 2 heat is sufficiently absorbed.
  • the heat exchange efficiency can be increased.
  • the partition members 31a, 32a, and 32b are arranged so that the flow direction changes for each of the two stages of the flat tubes 20D. Alternatively, the flow direction may be changed every three or more stages. The same applies to the partition members 51a, 52a, and 52b.
  • the water is entered from the left entrance / exit portion 32 and exits from the left entrance / exit portion 32.
  • the water may enter from the left entrance / exit portion 32 and exit from the right entrance / exit portion 31. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

CO2と水との熱交換など、高圧流体と低圧流体の熱交換に対応した軽量コンパクトな熱交換器を提供する。水などの低圧流体が流れる扁平管(20a,20b,20c)の右側第1開口部(91)と右側第2開口部(93)とが接合されて出入口部(31)が形成されている。この出入口部(31)は、流路(21)に繋がっている。これら扁平管(20a,20b,20c)と、CO2などの高圧流体が流れる扁平多穴管(40a,40b)が交互に積層されている。

Description

熱交換器
 本発明は、高圧の冷媒と低圧の冷媒との間で熱交換を行わせるための熱交換器に関する。
 従来からあるヒートポンプ式給湯装置の冷媒回路においては、例えば、CO2と水との間で熱交換を行わせる水熱交換器が利用されている。このような水熱交換器には、プレート型熱交換器や二重管型熱交換器などの幾つかのタイプがある。例えば、特許文献1(特開平10-288480号公報)には、高耐圧かつコンパクトなプレート型熱交換器が記載されている。また、特許文献2(特開2002-228370号公報)には、二重管型熱交換器が記載されている。
 特許文献1に記載されているようなプレート型熱交換器では、CO2などの高圧流体に対応するため、流路内に伝熱プレート同士を接合する箇所を増やさなければならず、高圧流体の流動抵抗が増加するという問題点がある。このような問題を解消しようとすると、流動抵抗を下げるために高圧流体の流路を増やさなければならなくなり、熱交換器が大型化してしまう。また、プレート型熱交換器では、水とCO2の間を隔てる隔壁に水による腐食等によって穴が開いてしまうと、水とCO2などの異なる流体が混合して流体の品質が低下する。また、伝熱プレート間で二相冷媒の偏流が発生するという問題がある。
 一方、特許文献2に記載されているように、二重管型熱交換器は、例えば、芯管の周りに螺旋状に熱媒管が巻き付けられた構造を持っている。熱交換後の水温が冷媒温度に近づくように熱交換器効率を高めるためには、熱交換が行われる流路が長い方が好ましいが、二重管型熱交換器の場合には、芯管が長くなると装置内に設置する場合に芯管を曲げる必要が生じる。芯管を曲げる際には、芯管が折れないようにある程度の曲率半径を持たせて曲げることが必要になるため、曲げ部内側や重ね合わせ部に空洞ができ、熱交換器設置占有容積が大きくなる。
 本発明の課題は、CO2と水との熱交換など、高圧流体と低圧流体の熱交換に対応した軽量コンパクトな熱交換器を提供することにある。
 本発明の第1観点に係る熱交換器は、第1流路と第1流路に繋がる第1開口部及び第2開口部とを有する複数の扁平管と、互いに隣接する一方の扁平管の第1開口部と他方の扁平管の第2開口部とが接合されて形成されている第1流体の出入口部と、複数の扁平管と交互に積層され、第1流体よりも高圧の第2流体が流れる複数の第2流路が内部に形成されている複数の扁平多穴管とを備える。
 第1観点の熱交換器によれば、扁平管同士の第1開口部と第2開口部が直接接合されて出入口部が形成されることで、第1開口部と第2開口部の間に別部材を設ける必要がなく、熱交換器のコンパクト化を図ることができる。また、扁平管の第1開口部や第2開口部で出入口部を形成するので軽量化が図れる。一方、低圧の第1流体が流れる扁平管と高圧の第2流体が流れる扁平多穴管が交互に積層されるため、熱交換器が高圧流体と低圧流体の熱交換に適した構造を持つものにすることができる。
 本発明の第2観点に係る熱交換器は、第1観点に係る熱交換器において、扁平管は、第1プレート及び第2プレートを重ね合わせて接合して形成され、第1プレート及び第2プレートのうちの少なくとも一方は、第1流路を形成するために第1開口部及び第2開口部の配置位置まで延びている凹面部を有する。
 第2観点の熱交換器によれば、第1流体と第2流体の流路を第1プレート及び第2プレートからなる扁平管と扁平多穴管という別部材で構成することにより、腐食が発生した際に、第1流体と第2流体との混合を防止することができる。また、第1プレートと第2プレートで出入口部を構成できるので、熱交換器の製造コストを抑制することができる。
 本発明の第3観点に係る熱交換器は、第1観点又は第2観点の熱交換器において、複数の扁平管及び複数の扁平多穴管のうちの少なくとも一方は、扁平管と扁平多穴管とが互いに接触する接触領域に、接触領域からはみ出す長さの凹溝が形成されている。
 第3観点の熱交換器によれば、この凹溝により、扁平管に穴が開いたときに第1流体を接触領域の外に誘導することができる。それにより、扁平管に穴が開いたことを発見し易くなる。
 本発明の第4観点に係る熱交換器は、第1観点から第3観点のいずれかの熱交換器において、複数の扁平管は、第1流路の内部に第1流体の乱流を発生させるための凹部及び凸部のうちの少なくとも一方を有する。
 第4観点の熱交換器によれば、凹部や凸部で発生する乱流により伝熱が促進される。
 本発明の第5観点に係る熱交換器は、第1観点から第4観点のいずれかの熱交換器において、複数の扁平多穴管は、複数の扁平管の各間に2つずつ配置されて構成されている。
 第5観点の熱交換器によれば、一つの扁平管に対して二つの扁平多穴管が接触する勘定になるので、1つの扁平管と熱交換する扁平多穴管を2つに増やすことができる。
 本発明の第6観点に係る熱交換器は、第1観点から第5観点のいずれかの熱交換器において、複数の扁平多穴管は、上面視において、真直ぐに形成され、出入口部は、複数の扁平多穴管の脇に配置されている。
 第6観点の熱交換器によれば、扁平多穴管の脇に出入口部がある構造を持つ熱交換器を提供できる。
 本発明の第7観点に係る熱交換器は、第1観点から第5観点のいずれかの熱交換器において、複数の扁平管は、上面視において、真直ぐに形成され、複数の扁平多穴管の複数の第2流路に第2流体を分配するため複数の扁平多穴管に取り付けられ、扁平管の脇に配置されている出入口分配管をさらに備える。
 第7観点の熱交換器によれば、扁平管の脇に出入口分配管がある構造を持つ熱交換器を提供できる。
 本発明の第8観点に係る熱交換器は、第1観点から第7観点のいずれかの熱交換器において、出入口部は、扁平管が隣接する方向の第1流体の流れを遮断する仕切部材を有し、扁平管は、仕切部材より上の層と下の層とで第1流体の流れの向きが変わる。
 第8観点の熱交換器によれば、仕切部材より上の層と下の層とで第1流体の流れの向きを変えることによって上の層と下の層とを使って第1流体を往復させることができ、第1流体と第2流体との間で熱交換が行われる部分を長くすることができる。
 本発明の第9観点に係る熱交換器は、第2観点の熱交換器において、第1開口部は、第1プレートの右端部及び左端部に形成されている右側第1開口部及び左側第1開口部を含み、第2開口部は、第2プレートの右端部及び左端部に形成されている右側第2開口部及び左側第2開口部を含み、出入口部は、右側第1開口部と右側第2開口部とが接合されて形成されている右側出入口部及び左側第1開口部と左側第2開口部とが接合されて形成されている左側出入口部を含む。
 第9観点の熱交換器によれば、第1流体の出口と入口を第1開口部と第2開口部の接合によって形成されている右側出入口部と左側出入口部とで構成できる。
 本発明の第10観点に係る熱交換器は、第1観点から第9観点のいずれかの熱交換器において、第1流体は、水を含み、第2流体は、二酸化炭素であり、扁平管は、ステンレス又は銅合金で構成され、扁平多穴管は、アルミニウムで構成されている。
 第10観点の熱交換器によれば、腐食性の高い水に対して、ステンレスや銅合金を用いることで、扁平管に耐腐食性とともに良好な熱伝導性を持たせることができる。一方、扁平多穴管には、加工が容易なアルミニウムを用いることで多数の流路が容易に形成できる。
 本発明の第1観点に係る熱交換器では、水とCO2との熱交換などの低圧の第1流体と高圧の第2流体との熱交換に対応した軽量コンパクトな熱交換器を提供することができる。
 本発明の第2観点に係る熱交換器では、腐食が発生した際に第1流体と第2流体との混合が防止できる熱交換器の製造コストを抑制することができる。
 本発明の第3観点に係る熱交換器では、凹溝により扁平管に穴が開いたことを発見し易くなり、腐食性の高い冷媒を使い易くなる。
 本発明の第4観点に係る熱交換器では、凹部や凸部によって伝熱が促進され、熱交換器効率が向上する。
 本発明の第5観点に係る熱交換器では、1つの扁平管に対して熱交換する扁平多穴管の数を増やせるので、熱交換の効率を上げることができる。
 本発明の第6観点に係る熱交換器では、扁平多穴管の脇に出入口部を設けたい場合に対応できる。
 本発明の第7観点に係る熱交換器では、扁平管の脇に出入口分配管を設けたい場合に対応できる。
 本発明の第8観点に係る熱交換器では、仕切部材によって熱交換が行われる部分を長くして、熱交換の効率を上げることができる。
 本発明の第9観点に係る熱交換器では、第1開口部と第2開口部の接合によって第1流体の出口と入口が形成でき、コンパクト化と軽量化が図れる。
 本発明の第10観点に係る熱交換器では、第2流体に対する耐圧を上げるとともに第1流体と第2流体の熱交換の高効率化を図ることができる。
第1実施形態の熱交換器を含むヒートポンプ式給湯装置の概要を示す回路図。 冷凍装置の内部構造を模式的に示す断面図。 第1実施形態に係る熱交換器の構成の概要を示す概念図。 熱交換器の外観を示す部分斜視図。 図4のI-I線断面図。 熱交換器の一構成部材の金属プレートを示す平面図。 図6のII-II線断面図。 図7の金属プレートを折り返した状態を示す断面図。 熱交換器の平面構成を模式的に示す平面図。 (a)プレス加工工程を経た金属プレートを示す部分平面図、(b)折り曲げ工程を経た金属プレートを示す部分平面図、(c)第1接合工程を経た扁平管を示す断面図、(d)第2接合工程における扁平管及び出入口ポートを示す断面図、(e)接合体の組立工程を示す部分斜視図、(f)接合後の熱交換器を示す部分斜視図。 右側出入口部の周辺の構造を示す断面図。 第1実施形態の熱交換器の平面構成の他の例を模式的に示す平面図。 第1実施形態の熱交換器の右側出入口部の周辺の他の構造例を示す断面図。 第1実施形態の熱交換器の積層の他の態様を示す模式的な断面図。 第1実施形態の熱交換器の積層の他の態様を示す模式的な断面図。 (a)図15の積層構造に用いられる金属プレートの平面図、(b)図15の積層構造に用いられる金属プレートの平面図。 図16(a)の金属プレートの配置を示す平面図、(b)扁平管の配置を示す平面図。 (a)プレス加工工程を経た金属プレートを示す平面図、(b)折り曲げ工程を経た金属プレートの部分平面図、(c)第1接合工程を経た扁平管を示す断面図、(d)扁平多穴管と出入口分配管の組立体を示す部分斜視図、(e)一体ロウ付された熱交換器を示す部分斜視図。 第2実施形態に係る熱交換器の構成の概要を示す概念図。 (a)図19の熱交換器に用いられる金属プレートの一例を示す平面図、(b)図20(a)の金属プレートと対をなす金属プレートの平面図、(c)図20(a)の金属プレートと対をなす金属プレートの平面図、(d)図20(b)の金属プレートと対をなす金属プレートの平面図。 第2実施形態の熱交換器の一構成例を説明するための平面図。 図22のIII-III線断面図。
 以下、図面を参照しながら、本発明の実施形態について説明する。なお、本発明にかかる熱交換器の実施形態は、以下に説明する実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で変更可能である。本発明に係る熱交換器は、R410A、R407Cなどのフロン系冷媒から二酸化炭素(CO2)冷媒を含む自然冷媒を対象としているが、以下においては、CO2冷媒を対象とする熱交換器を例に挙げて説明する。
 <第1実施形態>
 (1)ヒートポンプ式給湯装置の構成
 図1には、第1実施形態に係る熱交換器を含むヒートポンプ式給湯装置が示されている。ヒートポンプ式給湯装置1は、温水熱源装置である冷凍装置2と、貯湯ユニット3とを備える。
 冷凍装置2は、冷媒であるCO2を圧縮する圧縮機4と、CO2と水との間で熱交換を行うための熱交換器10と、CO2の減圧手段としての膨張弁5と、外気とCO2との間で熱交換を行うための空気熱交換器6とを有している。圧縮機4と熱交換器10と膨張弁5と空気熱交換器6とが接続されて、CO2の循環する冷媒回路が構成される。また、貯湯ユニット3は、貯湯タンク8と、水循環ポンプ9とを備える。水熱交換器10と貯湯タンク8と水循環ポンプ9とが接続されて、水の循環する水循環回路が構成される。
 (1-2)冷凍装置
 図2には、冷凍装置の内部構造が模式的に示されている。図2において、断熱壁2cの右側区画が機械室2aであり、断熱壁2cの左側区画が送風機室2bである。機械室2aには、圧縮機4や膨張弁5が配置されている。送風機室2bには、モータ(図示省略)によって駆動されるファン7が配置されている。送風機室2bの下方には、断熱壁2dを隔てて熱交換器10が配置されている。熱交換器10内にて、冷媒回路を循環するCO2と、水循環回路を循環する水との間で熱交換が行われる。また、図2において、空気熱交換器6は、送風機室2bの左側と背面側に配置されている。
 (2)熱交換器の構成の概要
 本発明の第1実施形態に係る熱交換器10は、図3乃至図5に示されているように、多数の扁平管20と多数の扁平多穴管40と出入口部30と出入口分配管50とを含んで構成される。図3乃至図5には、5つの扁平管20と4つの扁平多穴管40とが交互に積層されている例が示されている。ただし、これら積層される扁平管20や扁平多穴管40の数は、要求される性能などに応じて適宜選定されるものである。また、この例では、最下段と最上段に扁平管20が配置されているが、扁平多穴管40を最下段や最上段に配置することもできる。なお、図4では、扁平管20の外面の凹凸の記載が省かれている。
 扁平管20には低圧の水が流れ、扁平多穴管40には高圧によって超臨界状態になっているCO2が流れる。扁平多穴管40には高い耐圧が要求される一方、水が流れる扁平管20には高い耐食性が要求される。そのため、高い耐圧が要求される扁平多穴管40には、多数の細い流路41が設けられている。扁平多穴管40は、アルミニウム、アルミニウム合金、銅合金、ステンレスなどで形成される。このような細い多数の流路41を有する扁平多穴管40の形成には、アルミニウム及びアルミニウム合金の引き抜き加工や押し出し加工が好適に用いられ、このような加工を用いると安価に扁平多穴管40を製造することができる。
 扁平管20の母材には、水の腐食性を考慮して、ステンレスや銅合金を用いることが好ましい。ステンレスの種類としては、例えば、SUS304やSUS316などがある。扁平管20をアルミニウムやアルミニウム合金からつくることもできるが、その場合には、内面に、アルマイト加工や樹脂コーティングなどの防食処理を施すことが好ましい。
 熱交換器10は、図3に示されているように扁平管20及び扁平多穴管40が水平に配置された状態において、出入口部30として、扁平管20の右端部に配置される右側出入口部31と、左端部に配置される左側出入口部32とを含んでいる。左側出入口部32の端部や図4に示されている右側出入口部31の端部には、配管などと接続される出入口ポート34が設けられる。なお、ここでは、説明を分かり易くするために図3の状態に熱交換器10を置いた場合について説明しているが、この熱交換器10は、必ずしも図3の状態で使用されなければならないものではない。例えば、右側出入口部31を上に配置すると共に左側出入口部32を下に配置して熱交換器10を使用することもできる。
 扁平管20の側においては、水は、まず、左側出入口部32に入り、5つの扁平管20に分かれてその中を左から右に向かって流れ、右側出入口部31から出る。そして、水は、扁平管20の中を流れる間に扁平多穴管40のCO2から与えられる熱で加熱される。
 また、熱交換器10は、出入口分配管50として、扁平多穴管40の右端部に配置される右側出入口分配管51と、左端部に配置される左側出入口分配管52とを含んでいる。CO2は、左側出入口分配管52に入り、4つの扁平多穴管40に分かれてその中を左から右に向かって流れ、右側出入口分配管51から出る。そして、CO2は、扁平多穴管40の中を流れる間に扁平管20の水に熱を奪われて冷却される。
 (3)金属プレートの構造
 図6は、扁平管と出入口部を形成するための金属プレートの平面図である。金属プレート80の平面形状が、左右に長い略長方形であって、第1長辺81と第2長辺82の左右の両端部に4つの膨出部が形成されている。金属プレート80は、第1プレート801と第2プレート802が一体に接続されてなる。4つの膨出部は、右側第1膨出部86、左側第1膨出部87、右側第2膨出部88及び左側第2膨出部89である。右側第1膨出部86には右側第1開口部91が形成され、左側第1膨出部87には左側第1開口部92が形成され、右側第2膨出部88には右側第2開口部93が形成され、左側第2膨出部89には左側第2開口部94が形成されている。
 これら右側第1開口部91、左側第1開口部92、右側第2開口部93及び左側第2開口部94は、円形であって、全て同じ大きさである。また、右側第1開口部91及び左側第1開口部92は、第1長辺81の延長線よりも外側にはみ出して配置され、右側第2開口部93及び左側第2開口部94は、第2長辺82の延長線よりも外側にはみ出して配置されている。ただし、これらの形状は、水漏れし難くするために同じ形状であればよく、円形には限られない。また、配置される位置や大きさは流量や流路に合わせて設定される。
 図7は図6のI-I線断面図である。図6に示されているように、金属プレート80には、凹面部95がプレス加工によって形成されている。凹面部95は、金属プレート80の外周83に沿って形成されている所定幅の周縁部84の内側の領域を占める。ただし、第1長辺81と第2長辺82との中間に在ってこれらに平行に形成されている中央部85は、凹面ではなく、周縁部84と同じ高さに形成されている。つまり、凹面部95は、中央部85を境に、第1プレート801に形成されている第1凹面部96と第2プレート802に形成されている第2凹面部97とに分かれる。そして、右側第1開口部91及び左側第1開口部92は第1凹面部96に形成され、右側第2開口部93及び左側第2開口部94は第2凹面部97に形成されている。これら右側第1開口部91、左側第1開口部92、右側第2開口部93及び左側第2開口部94は、第1凹面部96及び第2凹面部97の中でもさらに一段深くなった凹部98に配置されている。
 図8には、図6及び図7に示されている金属プレート80が折り曲げられた後の状態が示されている。図6に示されているように、金属プレート80は、中央部85の中心を通って左右に伸びる直線100で折り曲げられる。図8のように折り曲げられると、第1長辺81と第2長辺82が一致するように周縁部84が重なり、第1プレート801と第2プレート802が合わさる。第1プレート801と第2プレート802が合わさったときの第1凹面部96と第2凹面部97とによって流路21が形成される。そして、この流路21は、右側第1開口部91、左側第1開口部92、右側第2開口部93及び左側第2開口部94まで続いている。金属プレート80が折り曲げられることにより、右側第1開口部91と右側第2開口部93及び左側第1開口部92と左側第2開口部94がそれぞれ対向して配置される。対向して配置されることで、出入口部30が真直ぐに形成される。折り曲げられた金属プレート80において重なっている周縁部84が巻締めやロウ付によってシールされて1本の扁平管20が形成される。
 また、凹面部95が形成されるプレス加工の際に、第1凹面部96には、第1凹面部96の底面側から周縁部84の側に向かって突出している凸条22が形成される。同様に、プレス加工時に、第2凹面部97の底面側から周縁部84の側に向かって突出している凸条23が形成される。凸条22と凸条23は、図6においては、第1長辺81や第2長辺82に対して同じ角度で傾斜している。そのため、金属プレート80が折り曲げられたときには、平面視において、凸条22と凸条23とが交わるように配置される。これら凸条22,23によって、流路21を水が流れるときに乱流が発生し、水と金属プレート80との間の熱伝達の効率が良くなる。
 凸条22,23が凹面部95の底面に形成されるため、凹面部95の反対すなわち扁平管20の外面29がへこんで凹条24,25が現れる。これら凹条24,25の機能については後述する。
 (4)扁平管と扁平多穴管の積層構造
 (4-1)熱交換器の平面構造
 図9には、熱交換器10の構成が模式的に示されており、平面視において、扁平管20及び扁平多穴管40が真直ぐな形状を有している。図9においては、凹条24の構成を説明するため、図4に示されている最上段の扁平管20の記載が省かれている。右側出入口部31及び左側出入口部32が扁平多穴管40の脇に形成されている。一方、右側出入口分配管51及び左側出入口分配管52は、扁平多穴管40の両端部に設けられている。そのため、製造時に、扁平多穴管40を真直ぐに成形できるため、扁平多穴管40を曲げる際に応力が作用して扁平多穴管40が破損するなどの不具合が生じ難く、製造が容易にある。
 扁平管20と扁平多穴管40との接合領域、すなわち図9においては扁平多穴管40の投影部分から凹条24がはみ出している。図9には示されていないが、底面側から見ると、凹条25が扁平管20と扁平多穴管40との接合領域からはみ出す。これら凹条24,25により、腐食などが原因で、扁平管20に亀裂が生じて水漏れが生じたときに凹条24,25を伝って水が接合部分の外に染み出すため、亀裂などによる水漏れを発見できるようになる。
 (4-2)熱交換器の製造工程
 図10は、熱交換器の製造の概略を示す工程図である。図10(a)は、プレス加工工程によって成形された金属プレートを示す部分平面図である。既に説明したように、金属製平板のプレス加工を行なうことによって、図10(a)に示されている形状の金属プレート80が成形される。すなわち、一度のプレス加工によって、平面状の金属製平板が外周83に沿って打ち抜かれ、右側第1開口部91、左側第1開口部92、右側第2開口部93及び左側第2開口部94が形成される。このとき同時に、凹面部95と凸条22,23及び凹条24,25(図7参照)や凹部98が形成される。
 図10(b)は、折り曲げ工程によって加工された金属プレートを示す部分平面図である。次に、金属プレート80が折り曲げられて第1プレート801と第2プレート802が重ね併せられた状態が示されている。ただし、図10(b)に示されている状態では、金属プレート80の周縁部84は未だ接合されていない。折り曲げ工程では、このように、折り曲げられただけでまだ接合されていない金属プレート80が多数形成される。
 図10(c)は、第1接合工程によって周縁部が接合された扁平管を示す断面図である。重ね合わせられた第1プレート801と第2プレート802の周縁部84がロウ付又は溶接によって接合される。この周縁部84が接合された箇所が第1接合部101である。
 図10(d)は、第2接合工程によって扁平管同士及び出入口ポートが接合された扁平管及び出入口ポートを示す断面図である。扁平管20同士がロウ付又は溶接によって接合される。また、最上段の扁平管20に出入口ポート34がロウ付又は溶接によって接続される。扁平管20同士が接合される部分、すなわち右側第1開口部91と右側第2開口部93の接合部分及び、左側第1開口部92と左側第2開口部94の接合部分が第2接合部102である。この図10(d)の工程を経て扁平管20の接合体が形成される。
 図10(e)は、出入口部が形成された扁平管と扁平多穴管及び出入口分配管の接合体の組立工程を説明するための部分斜視図である。図10(d)に示した扁平管の接合工程と並行して、手ロウ付や高周波ロウ付などのロウ付や溶接によって扁平多穴管40と右側出入口分配管51及び左側出入口分配管52の接合が行なわれ、図10(e)に示されている接合体が準備される。上述の扁平管20の接合体と扁平多穴管40の接合体が組み合わされて組立体が形成される。
 図10(f)は、接合工程で扁平管と扁平多穴管が接合された熱交換器を示す部分斜視図である。図10(e)の組立体、すなわち扁平管20と右側出入口部31と左出入口部32と扁平多穴管40と右側出入口分配管51と左側出入口分配管52とからなる組立体から、例えば、600℃のノコロックロウ付などの一体ロウ付によって、熱交換器10が形成される。
 (4-3)出入口部の構造
 ここで、右側出入口部31及び左側出入口部32の接合部分の周辺の構造について説明する。図11には、右側出入口部31の周辺の構造が示されている。左側出入口部32の周辺の構造は右側出入口部31と同じであるため説明を省略する。図11において、扁平管20a,20bが互いに隣接する一方の扁平管と他方の扁平管である。扁平管20a,20bの流路21を構成する金属壁(金属プレート80)と扁平多穴管40とが接触している状態で、扁平管20aの右側第1開口部91と扁平管20bの右側第2開口部93とが接触する。このように、扁平管20a,20bの間に扁平多穴管40aが挟み込まれた状態で右側第1開口部91と右側第2開口部93で接触する構成とするために、プレス加工の際に、右側第1開口部91や右側第2開口部93の周囲だけさらに深い凹部98が形成されている。
 扁平管20b,20cについても、扁平管20a,20bの場合と同様に、扁平管20b(一方の扁平管)の右側第1開口部91と扁平管20c(他方の扁平管)の右側第2開口部93が接合され、扁平管20b,20cの隙間に扁平多穴管40bが挟み込まれる。
 図11に示されている扁平管20a,20b,20cは、アルミニウムなどのロウ付が容易な金属を母材としている。そのため、扁平管20a,20b,20cを形成する金属プレート80の表面同士や裏面同士などいずれの面を合わせても接合することができる。
 (5)特徴
 (5-1)
 図11などに示されているように、上述の熱交換器10においては、扁平管20と扁平多穴管40とが交互に積層されている。扁平管20の1つの流路21(第1流路)に圧力の低い水(第1流体)が流れ、扁平多穴管40の流路41(第2流路)には高圧のCO2(第2流体)が流れている。このように扁平多穴管40に高圧流体が流れ、扁平管20に低圧流体が流れる構成としていることで、扁平多穴管40の流路41を複数にして細く形成することができ、この熱交換器10を、高圧流体と低圧流体の熱交換に適したものとすることができる。
 例えば、互いに隣接する扁平管20a(一方の扁平管)の右側第1開口部91(第1開口部)と扁平管20b(他方の扁平管)の右側第2開口部93(第2開口部)とが直接ロウ付される。そのため、右側第1開口部91と右側第2開口部93との接続に別部材を必要とせず、互いに隣接する扁平管20の配置間隔が小さくなり、扁平管20と扁平多穴管40の積層方向の熱交換器10の寸法を小さくすることができる。この点については、左側第1開口部92と左側第2開口部94の接合に関しても同様である。
 (5-2)
 図11に示されているように、扁平多穴管40a,40bは、例えば、互いに隣接する扁平管20aと扁平管20bとの間や扁平管20bと扁平管20cとの間に配置されている。そして、扁平管20a,20b,20cは、扁平多穴管40a,40bとは別部材の金属プレート80から形成されている。そのため、例えば、扁平管20a,20b,20cのいずれかに腐食などによって穴が開いて水漏れがしても、漏れた水は扁平多穴管40a,40bを通過して流路41にまで達することができず、水とCO2とが混じることが防止される。また、扁平管20a,20b,20cのような金属板のプレス加工で簡単に流路21や右側第1開口部91や右側第2開口部93を形成することができるので、安価に熱交換器10を提供できる。
 (5-3)
 図9に示されている凹条24(凹溝)は、上面視において扁平多穴管40よりも外側にはみ出している。つまり、扁平多穴管40と扁平管20とが接合される接触領域よりもはみ出す長さを凹条24(凹溝)が有しているということである。そのため、扁平管20に穴が開いた場合に、水がこの凹条24を伝って熱交換器10の外観上の見える部分に導かれる。この熱交換器10の外観に現れた水によって扁平管20に穴が開いたことを検知できる。それにより、水漏れが内部で進行して、扁平多穴管40に腐食を生じるなどの不具合の発生を防止し易くなる。図9においては、熱交換器10を上から見ているため、底面側に配置される凹条25(凹溝)は見えないが、底面側に配置される凹条25についても、上述の凹条24と同様の効果を奏する。
 なお、上記実施形態では、扁平管20に凹条24,25を形成する場合について説明したが、扁平多穴管40の外表面に凹溝を形成してもよい。例えば、扁平多穴管40の外表面の一部をエンドミルで削り取るなどの機械加工によって、扁平多穴管40の外表面に凹溝を形成することができる。上述の凹条24,25はプレス加工によって形成されているので安価に製造できるが、形成方法はプレス加工に限られるものではなく、切削などの機械加工やエッチングなどの化学加工を用いることもできる。
 (5-4)
 図8に示されているように、扁平管20の流路21に凸条22,23(凸部)が形成されるため、流路21を流れる水が、これら凸条22,23によって生じる乱流でかき混ぜられる。そのため、流路21を流れる水に層流が生じて、水と扁平管20との間の熱の伝達効率が悪くなるのを防止することができる。
 図8では、凸条22,23(凸部)によって乱流を発生させる場合について説明したが、凹条(凹部)を設けても乱流を発生させることができ、同様の効果を期待できる。また、凸部や凹部は、凸条22,23のように長く繋がっていなくてもよく、例えばディンプルのような形状であってもよい。
 (5-5)
 扁平多穴管40は、アルミニウムで形成されており、引き抜き加工や押し出し加工によって細い流路41を多数形成できる。そのため、扁平多穴管40を高圧流体に適した形状に加工することが容易である。一方、扁平管20がステンレス又は銅合金で形成される場合には、水などの腐食性のある低圧流体に対して適した扁平管を提供できる。また、ステンレスや銅合金は熱伝導性が良いので、水とCO2の熱交換の高効率化を図ることができる。
 (6)変形例
 (6-1)
 上記実施形態では、図9に示されているように、右側出入口部31と左側出入口部32(出入口部30)が扁平多穴管40の脇に配置される場合について説明した。しかし、出入口部30が配置される位置は、扁平多穴管40の脇には限られない。例えば、図12に示されている熱交換器10Aように、右側出入口部31Aと左側出入口部32Aを扁平管20Aの両端部に配置するとともに出入口分配管50A(右側出入口分配管51A,左側出入口分配管52A)が扁平管20Aの脇に配置されるように構成されてもよい。
 (6-2)
 水を冷媒とするため、母材に耐食性に優れたステンレスや銅合金を用いる場合にはロウ付が難しくなる。そこで、図13に示されているように、ステンレス又は銅合金の扁平管20a,20b,20cの外側にフィラー材140としてアルミニウムがクラッドされる。母材にステンレスや銅合金などの接合が難しい材料を用いた場合でも、外側のフィラー材140が溶融して接合される。このような接合を行なうため、図13の第1接合部101では、フィラー材140同士が接触するように折り曲げられている。
 (6-3)
 変形例5-2と同様に母材にステンレスや銅合金を用いる場合に、図6の金属プレート80の周縁部84にフィラー材をクラッドするように構成することもできる。つまり、図8のように折り曲げたときに第1プレート801と第2プレート802の周縁部84同士が接触する面にフィラー材がクラッドされる。母材にステンレスや銅合金などを用いた場合にフィラー材がクラッドされている部分を接合面にもってくると、上述の図13の第1接合部101のように、金属プレート80を曲げる工程を省くことができる。
 (6-4)
 ステンレスや銅合金を扁平管20a,20b,20cの母材として用い、シート状またはペースト状のロウ材及びフラックス塗布により、第2接合部、第3接合部及び第4接合部を接合するようにしてもよい。
 (6-5)
 図13の第3接合部103、すなわちアルミニウム製の扁平多穴管40,40bに接触する領域にもアルミニウムのフィラー材140がクラッドされている。このように、フィラー材140によって交互に積層される扁平管20a,20b,20cと扁平多穴管40a,40bとの接合が行なわれると、扁平管20a,20b,20cと扁平多穴管40a,40bの密着性を向上させることができる。それにより、扁平管20a,20b,20cと扁平多穴管40a,40bの間の熱伝導抵抗を低減することができる。
 (6-6)
 上記実施形態においては、扁平管20と扁平多穴管40が幅広の面を接触させて交互に積層され縦に積み上げられる態様として、図5に示されているように、一つの扁平管20と一つの扁平多穴管40が交互に積層される場合が説明されている。しかし、扁平管20と扁平多穴管40が交互に積層される態様はこれだけには限られず、例えば、図14や図15に示されている態様も含まれる。
 図14に示されている熱交換器10Bは、一つの扁平管20Bに対して積層された2つの扁平多穴管40が交互に縦に積層された構造を有している。ただし、最上段と最下段に配置される扁平多穴管40は1層である。このように配置されることにより、一つの扁平管20Bの中の水がそれを挟む二つの扁平多穴管40に流れるCO2によって加熱されるので、水を加熱することに関して熱交換器10Bは熱交換器10よりも高い能力を有している。なお、この扁平管20Bは、互いに隣接する扁平管20B同士の間に扁平多穴管40の2個分に相当する間隔を形成するため、扁平管20の右側第1開口部91、左側第1開口部92、右側第2開口部93及び左側第2開口部94が形成される凹部98がさらに深くなっている。
 また、図15に示されているように、一つの扁平管20Cを二つの扁平多穴管が挟むように積層されている積層体P1を一組として、この扁平管20Cと扁平多穴管40の積層体P1を多数組み横に並べてもよい。図15には、3組しか示されていないが、2組であってもよく、また4組以上であってもよい。このように、横に並べるには、例えば、図16(a)及び図16(b)に示されている金属プレート80d,80eを用いて構成することができる。図16(a)の金属プレート80dは、図6の第1プレート801に相当するものであるが、右側第1膨出部86、左側第1膨出部87、右側第2膨出部88及び左側第2膨出部89を備えている。そして、右側第1膨出部86、左側第1膨出部87、右側第2膨出部88及び左側第2膨出部89に、それぞれ右側第1開口部91、左側第1開口部92、右側第2開口部93及び左側第2開口部94が形成されている。このような金属プレート80dは、図17(a)に示されるように、凹面部95が上下に交互に向くように並べられる。図17(a)においては、左端と右端の金属プレート80dの凹面部95が上を向いており、中央の金属プレート80dの凹面部95が下を向いている。図17(a)では、3枚の金属プレート80dの右側第1開口部91、左側第1開口部92、右側第2開口部93及び左側第2開口部94を嵌め合わせる。そして、図17(b)に示されているように金属プレート80eを被せてロウ付する。図17(b)のように平面的に並んだ扁平管20の上下に、図15に示されているように扁平多穴管40が積層される。扁平多穴管40と扁平管20との接合も、金属プレート80d,80eのロウ付と同時に行ってもよい。
 (6-7)
 図18は、熱交換器の他の製造工程の概略を示す工程図である。図18(a)は、プレス加工によって形成された金属プレートを示す平面図である。図18(b)は、折り曲げ工程で形成された金属プレートの部分平面図である。図18(d)は扁平多穴管と出入口分配管の組立工程を説明するための部分斜視図である。図18(e)は、一体ロウ付された扁平管と扁平多穴管と出入口分配管を示す部分斜視図である。
 図18(a)及び図18(b)に示されている工程は、図10(a)及び図10(b)について説明した工程と同じであるので説明を省略する。
 図18(c)の工程と並行して、図18(d)に示されている扁平多穴管40と右側出入口分配管51及び左側出入口分配管52の組み立てが行なわれる。扁平多穴管40の外形に合わせて形成された右側出入口分配管51及び左側出入口分配管52の複数の開口部(図示省略)に扁平多穴管40が嵌め込まれる。それにより、互いに固定されていない状態で、右側出入口分配管51及び左側出入口分配管52に複数の扁平多穴管40が嵌め込まれた組立体が形成される。
 次に、折り曲げられた複数の金属プレート80(図18(b)参照)が、扁平多穴管40と右側出入口分配管51などからなる組立体(図18(e)参照)に載置される。それにより、右側出入口分配管51と左側出入口分配管52と扁平多穴管40と扁平管20からなる最終組立体が形成される。最終組立体は、組み立てられた状態では、各部材同士が結合されているものではない。この最終組立体の各部を炉中に入れて、例えば、600℃のノコロックロウ付などの一体ロウ付により、図18(e)に示されている熱交換器10が形成される。ロウ付によって接合される部分は、第一接合部101(金属プレート80の周縁部84)、第2接合部102(右側出入口部31及び左側出入口部32を構成する互いに隣接する右側第1開口部91と右側第2開口部93及び左側第1開口部92と左側第2開口部94)、第3接合部103(右側出入口分配管51及び左側出入口分配管52と扁平多穴管40)、並びに第4接合部104(扁平管20と扁平多穴管40とが互いに接触する面)である。
 <第2実施形態>
 (1)熱交換器の構成
 上記第1実施形態では、図3に示されているように、扁平管20Dを水が流れる向きは全て左から右で、扁平多穴管40DをCO2が流れる向きは全て右から左である。図3のような構成を持つ熱交換器10Dは、5つの扁平管20Dの流路21の断面積の総和は、単純に一つの扁平管20Dの5倍になる。同様に、扁平多穴管40Dの流路41の断面積の総和も扁平多穴管40Dの数に比例する。そのため、冷媒の流量が多い場合には有利であるが、熱交換が行われる接触部分の長さは扁平管20Dや扁平多穴管40Dの長さにほぼ等しくなる。
 図19は、第2実施形態に係る熱交換器の構成を模式的に示す概念図である。第2実施形態の熱交換器10Dは、冷媒の流量よりも熱交換のための接触部分を長くしたい場合に有利な構成を持っている。
 図19に示されている熱交換器10Dは、上から2段目と3段目の扁平管20Dの間の左側出入口部32を塞ぐ仕切部材32a、上から4段目と5段目の扁平管20Dの間の右側出入口部31を塞ぐ仕切部材31a、及び上から6段目と7段目の扁平管20Dの間の左側出入口部31を塞ぐ仕切部材32bを備えている。それにより、水が流れる流路を往復させることができる。具体的には、左側出入口部32の上から水が入り、上から1段目と2段目の扁平管20Dの中を左から右へ流れ、上から3段目と4段目の扁平管20Dの中を右から左へ流れ、上から5段目と6段目の扁平管20Dの中を左から右に流れ、そして、上から7段目と8段目の扁平管20Dの中を右から左に流れて左側出入口部31の下から湯が出る。
 また、熱交換器10Dは、下から2段目と3段目の扁平多穴管40Dの間の左側出入口分配管52を塞ぐ仕切部材52a、下から4段目と5段目の扁平多穴管40Dの間の右側出入口分配管51を塞ぐ仕切部材51a、及び下から6段目と7段目の扁平多穴管40Dの間の左側出入口分配管52を塞ぐ仕切部材52bを備えている。それにより、CO2が流れる流路を往復させることができる。具体的には、左側出入口分配管52の下からCO2が入り、下から1段目と2段目の扁平多穴管40Dの中を左から右へ流れ、下から3段目と4段目の扁平多穴管40Dの中を右から左へ流れ、下から5段目と6段目の扁平多穴管40Dの中を左から右に流れ、そして、上から7段目と8段目の扁平多穴管40Dの中を右から左に流れて左側出入口分配管52の上から冷やされたCO2が出る。
 (2)扁平管の配置
 扁平管20を平面的に並べる場合、図20(a)、図20(b)、図20(c)及び図20(d)に示されているように、4種類の金属プレート80f,80g,80h,80iを用いて、図21に示されているように並べることもできる。そのためには、まず、金属プレート80fの右側第1開口部91及び左側第1開口部92に、金属プレート80gの右側第2開口部93及び左側第2開口部94を嵌め合わせる。そして、金属プレート80fに金属プレート80hを重ね合わせ、金属プレート80gに金属プレート80iを重ね合わせてロウ付する。それにより、図21に示されている扁平管20Dが形成される。この扁平管20Dの上下に、図15に示されているように扁平多穴管40Dが積層される。図21の熱交換器10Dは、隣接する扁平管20Dを流れる。
 このように構成する場合には、図21に示されているように、出入口部30Dと扁平多穴管40Dとが平面視において交差する。そのため、図22に示されているように、扁平多穴管40Dが出入口部30Dを避けるように少し曲げられ、出入口分配管50Dに接続される。
 (3)特徴
 左側出入口部32を塞ぐ仕切部材32a,32b及び右側出入口部31を塞ぐ仕切部材31aによって、水は、上から1段目と2段目で右へ流れ、上から3段目と4段目で左へ流れ、上から5段目と6段目で右に流れ、そして、上から7段目と8段目で左に流れて、扁平管20Dを2回往復する。そのため、第1実施形態の熱交換器10Dのように一方向にしか流れない場合に比べて、扁平管20D中を4倍の距離も流れることになり、水の温度をCO2の温度により近づけることができ、熱交換の効率を上げることができる。
 仕切部材31a,32a,32bは、第1開口部や第2開口部の開口を行なわないことにより、簡単に形成できる。
 この点は、CO2に関しても同様であり、左側出入口分配管52を塞ぐ仕切部材52a,52b及び右側出入口分配管51を塞ぐ仕切部材51aによって、CO2は、下から1段目と2段目で右へ流れ、下から3段目と4段目で左へ流れ、下から5段目と6段目で右に流れ、そして、下から7段目と8段目で左に流れて、扁平多穴管40Dを2回往復する。そのため、第1実施形態の熱交換器10Dのように一方向にしか流れない場合に比べて、扁平多穴管40D中を4倍の距離も流れることになり、CO2の熱を十分に水に与えることができ、熱交換の効率を上げることができる。
 (4)変形例
 (4-1)
 上記実施形態では、仕切部材31a,32a,32bを2つの段の扁平管20D毎に流れの向きが変わるように配置しているが、1段毎に流れの向きが変わるように配置してもよく、或いは3つ以上の段毎に流れの向きが変わるように配置してもよい。仕切部材51a,52a,52bについても同様である。
 (4-2)
 上記実施形態では、左側出入口部32から水が入って左側出入口部32から出るように構成されているが、左側出入口部32から水が入って右側出入口部31から出るように構成されてもよい。
10 熱交換器
20,20a,20b,20c 扁平管
30,31,32 出入口部
40,40a,40b 扁平多穴管
特開平10-288480号公報 特開2002-228370号公報

Claims (10)

  1.  第1流路(21)と前記第1流路に繋がる第1開口部(91,92)及び第2開口部(93,94)とを有する複数の扁平管(20,20a,20b,20c)と、
     互いに隣接する一方の前記扁平管の前記第1開口部と他方の前記扁平管の前記第2開口部とが接合されて形成されている前記第1流体の出入口部(30,31,32)と、
     複数の前記扁平管と交互に積層され、前記第1流体よりも高圧の第2流体が流れる複数の第2流路が内部に形成されている複数の扁平多穴管(40,40a,40b)と、
    を備える、熱交換器。
  2.  前記扁平管は、第1プレート(801)及び第2プレート(802)を重ね合わせて接合して形成され、
     前記第1プレート及び前記第2プレートのうちの少なくとも一方は、前記第1流路を形成するために前記第1開口部及び前記第2開口部の配置位置まで延びている凹面部(95,96,97)を有する、
    請求項1に記載の熱交換器。
  3.  複数の前記扁平管及び複数の前記扁平多穴管のうちの少なくとも一方は、前記扁平管と前記扁平多穴管とが互いに接触する接触領域に、前記接触領域からはみ出す長さの凹溝(24,25)が形成されている、
    請求項1又は請求項2に記載の熱交換器。
  4.  複数の前記扁平管は、前記第1流路の内部に前記第1流体の乱流を発生させるための凹部及び凸部(22,23)のうちの少なくとも一方を有する、
    請求項1から3のいずれか一項に記載の熱交換器。
  5.  複数の前記扁平多穴管は、複数の前記扁平管の各間に2つずつ配置されて構成されている、
    請求項1から4のいずれか一項に記載の熱交換器。
  6.  複数の前記扁平多穴管は、上面視において、真直ぐに形成され、
     前記出入口部は、複数の前記扁平多穴管の脇に配置されている、
    請求項1から5のいずれか一項に記載の熱交換器。
  7.  複数の前記扁平管は、上面視において、真直ぐに形成され、
     複数の前記扁平多穴管の複数の前記第2流路に前記第2流体を分配するため複数の前記扁平多穴管に取り付けられ、前記扁平管の脇に配置されている出入口分配管をさらに備える、請求項1から6のいずれか一項に記載の熱交換器。
  8.  前記出入口部は、前記扁平管が隣接する方向の前記第1流体の流れを遮断する仕切部材(31a,32a,32b)を有し、
     前記扁平管は、前記仕切部材より上の層と下の層とで前記第1流体の流れの向きが変わる、
    請求項1から7のいずれか一項に記載の熱交換器。
  9.  前記第1開口部は、前記第1プレートの右端部及び左端部に形成されている右側第1開口部及(91)び左側第1開口部(92)を含み、
     前記第2開口部は、前記第2プレートの右端部及び左端部に形成されている右側第2開口部(93)及び左側第2開口部(94)を含み、
     前記出入口部は、前記右側第1開口部と前記右側第2開口部とが接合されて形成されている右側出入口部(31)及び前記左側第1開口部と前記左側第2開口部とが接合されて形成されている左側出入口部(32)を含む、
    請求項2に記載の熱交換器。
  10.  前記第1流体は、水を含み、
     前記第2流体は、二酸化炭素であり、
     前記扁平管は、ステンレス又は銅合金で構成され、
     前記扁平多穴管は、アルミニウムで構成されている、
    請求項1から9のいずれか一項に記載の熱交換器。
PCT/JP2012/056679 2011-03-25 2012-03-15 熱交換器 WO2012132924A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011067477A JP5206830B2 (ja) 2011-03-25 2011-03-25 熱交換器
JP2011-067477 2011-03-25

Publications (1)

Publication Number Publication Date
WO2012132924A1 true WO2012132924A1 (ja) 2012-10-04

Family

ID=46930659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056679 WO2012132924A1 (ja) 2011-03-25 2012-03-15 熱交換器

Country Status (2)

Country Link
JP (1) JP5206830B2 (ja)
WO (1) WO2012132924A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014095572A1 (fr) * 2012-12-21 2014-06-26 Valeo Systemes Thermiques Echangeur de chaleur, notamment pour fluide refrigerant circulant dans un vehicule automobile
EP3068941A1 (en) * 2013-11-13 2016-09-21 Electrolux Appliances Aktiebolag Heat pump washing apparatus
EP2942594A4 (en) * 2012-12-25 2016-10-26 Daikin Ind Ltd Heat Exchanger
WO2016198536A1 (fr) * 2015-06-12 2016-12-15 Valeo Systemes Thermiques Echangeur de chaleur pour vehicule automobile
WO2017213164A1 (ja) * 2016-06-10 2017-12-14 サンデンホールディングス株式会社 車両用熱交換器
US11054192B2 (en) 2017-03-27 2021-07-06 Daikin Industries, Ltd. Heat exchanger and air conditioner
US11181328B2 (en) 2017-03-27 2021-11-23 Daikin Industries, Ltd. Heat exchanger and air conditioner
EP4134610A4 (en) * 2020-08-26 2023-10-18 GD Midea Heating & Ventilating Equipment Co., Ltd. HEAT EXCHANGER, ELECTRICAL CONTROL BOX AND AIR CONDITIONING SYSTEM

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2878912T3 (en) * 2013-11-28 2016-12-12 Alfa Laval Corp Ab System and method for dynamic management of a heat exchange
JP2016017737A (ja) * 2014-07-07 2016-02-01 現代自動車株式会社Hyundaimotor Company Ted熱交換器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932877U (ja) * 1982-08-23 1984-02-29 カルソニックカンセイ株式会社 熱交換器
JP2001050681A (ja) * 1999-08-06 2001-02-23 Matsushita Electric Ind Co Ltd 熱交換器およびその熱交換器を用いた冷凍サイクル装置
JP2003329378A (ja) * 2002-05-09 2003-11-19 Denso Corp 熱交換器
JP2007017133A (ja) * 2005-07-11 2007-01-25 Denso Corp 熱交換器
JP2007017132A (ja) * 2005-07-11 2007-01-25 Denso Corp 熱交換用チューブおよび熱交換器
JP2008134016A (ja) * 2006-11-29 2008-06-12 Denso Corp 熱交換器および熱交換器の製造方法。
JP2010216773A (ja) * 2009-03-18 2010-09-30 Daikin Ind Ltd 水熱交換器および水熱交換器の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5932877U (ja) * 1982-08-23 1984-02-29 カルソニックカンセイ株式会社 熱交換器
JP2001050681A (ja) * 1999-08-06 2001-02-23 Matsushita Electric Ind Co Ltd 熱交換器およびその熱交換器を用いた冷凍サイクル装置
JP2003329378A (ja) * 2002-05-09 2003-11-19 Denso Corp 熱交換器
JP2007017133A (ja) * 2005-07-11 2007-01-25 Denso Corp 熱交換器
JP2007017132A (ja) * 2005-07-11 2007-01-25 Denso Corp 熱交換用チューブおよび熱交換器
JP2008134016A (ja) * 2006-11-29 2008-06-12 Denso Corp 熱交換器および熱交換器の製造方法。
JP2010216773A (ja) * 2009-03-18 2010-09-30 Daikin Ind Ltd 水熱交換器および水熱交換器の製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3000187A1 (fr) * 2012-12-21 2014-06-27 Valeo Systemes Thermiques Echangeur de chaleur, notamment pour fluide refrigerant circulant dans un vehicule automobile
CN104995472A (zh) * 2012-12-21 2015-10-21 法雷奥热***公司 热交换器,特别地用于在机动车辆中循环的制冷剂
WO2014095572A1 (fr) * 2012-12-21 2014-06-26 Valeo Systemes Thermiques Echangeur de chaleur, notamment pour fluide refrigerant circulant dans un vehicule automobile
CN104995472B (zh) * 2012-12-21 2017-08-04 法雷奥热***公司 热交换器,特别地用于在机动车辆中循环的制冷剂
US9791213B2 (en) 2012-12-25 2017-10-17 Daikin Industries, Ltd. Heat exchanger
EP2942594A4 (en) * 2012-12-25 2016-10-26 Daikin Ind Ltd Heat Exchanger
EP3068941A1 (en) * 2013-11-13 2016-09-21 Electrolux Appliances Aktiebolag Heat pump washing apparatus
EP3068941B1 (en) * 2013-11-13 2022-04-06 Electrolux Appliances Aktiebolag Heat pump washing apparatus
FR3037387A1 (fr) * 2015-06-12 2016-12-16 Valeo Systemes Thermiques Echangeur de chaleur pour vehicule automobile
WO2016198536A1 (fr) * 2015-06-12 2016-12-15 Valeo Systemes Thermiques Echangeur de chaleur pour vehicule automobile
WO2017213164A1 (ja) * 2016-06-10 2017-12-14 サンデンホールディングス株式会社 車両用熱交換器
US11054192B2 (en) 2017-03-27 2021-07-06 Daikin Industries, Ltd. Heat exchanger and air conditioner
US11181328B2 (en) 2017-03-27 2021-11-23 Daikin Industries, Ltd. Heat exchanger and air conditioner
EP4134610A4 (en) * 2020-08-26 2023-10-18 GD Midea Heating & Ventilating Equipment Co., Ltd. HEAT EXCHANGER, ELECTRICAL CONTROL BOX AND AIR CONDITIONING SYSTEM

Also Published As

Publication number Publication date
JP5206830B2 (ja) 2013-06-12
JP2012202608A (ja) 2012-10-22

Similar Documents

Publication Publication Date Title
JP5206830B2 (ja) 熱交換器
JP5394405B2 (ja) 熱交換器
CN111819415B (zh) 板式热交换器、具备其的热泵装置、及具备热泵装置的热泵式供冷供暖供热水***
JP6594598B1 (ja) プレート式熱交換器、プレート式熱交換器を備えたヒートポンプ装置、及び、ヒートポンプ装置を備えたヒートポンプ式暖房給湯システム
JP6529709B1 (ja) プレート式熱交換器、ヒートポンプ装置およびヒートポンプ式冷暖房給湯システム
WO2018216245A1 (ja) プレート式熱交換器及びヒートポンプ式給湯システム
EP2676094B1 (en) Method of producing a heat exchanger and a heat exchanger
JP5661205B2 (ja) 積層型熱交換器及びそれを搭載したヒートポンプシステム、並びに積層型熱交換器の製造方法
JP2010121925A (ja) 熱交換器
JP4936546B2 (ja) 熱交換器
JP6028452B2 (ja) 水熱交換器
JP2014052147A (ja) 熱交換器及びその製造方法
JP6107017B2 (ja) 熱交換器、および、熱交換器の製造方法
JP2009079779A (ja) プレート式熱交換器及びこのプレート式熱交換器を用いた空気調和装置
JP2001133172A (ja) 熱交換器および冷凍空調装置
JP6601380B2 (ja) 熱交換器および空気調和装置
JP2014066409A (ja) 熱交換器、および、熱交換器の製造方法
JP6028473B2 (ja) 熱交換器
JP2003314975A (ja) 熱交換器
JP2012200760A (ja) 熱交換器の製造方法
JP2014066408A (ja) 熱交換器、および、熱交換器の製造方法
JP2000154978A (ja) 熱交換器
JP2009243792A (ja) 熱交換器
JP2014126237A (ja) 熱交換器
JP2015068621A (ja) 水熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765353

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765353

Country of ref document: EP

Kind code of ref document: A1