WO2012128298A1 - ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子 - Google Patents

ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2012128298A1
WO2012128298A1 PCT/JP2012/057236 JP2012057236W WO2012128298A1 WO 2012128298 A1 WO2012128298 A1 WO 2012128298A1 JP 2012057236 W JP2012057236 W JP 2012057236W WO 2012128298 A1 WO2012128298 A1 WO 2012128298A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
ring
Prior art date
Application number
PCT/JP2012/057236
Other languages
English (en)
French (fr)
Inventor
加藤 朋希
伸浩 藪ノ内
藤山 高広
Original Assignee
出光興産株式会社
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社, 三井化学株式会社 filed Critical 出光興産株式会社
Priority to CN2012800148690A priority Critical patent/CN103429570A/zh
Priority to US14/006,514 priority patent/US9564595B2/en
Priority to JP2013505994A priority patent/JPWO2012128298A1/ja
Priority to EP12759920.7A priority patent/EP2690093A4/en
Priority to KR1020137024891A priority patent/KR20140009393A/ko
Publication of WO2012128298A1 publication Critical patent/WO2012128298A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/346Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising platinum
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/348Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising osmium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission

Definitions

  • the present invention relates to a biscarbazole derivative and an organic electroluminescence device using the same.
  • a biscarbazole skeleton in which two carbazoles are directly bonded by a carbon-carbon bond, and a C-carbazolyl group (1-, 2-, 3-, or 4-carbazolyl) is attached to the nitrogen atom of one carbazole skeleton. Group), an N-carbazolyl group (9-carbazolyl group), or an N-carbazolylaryl group, and an organic electroluminescence device using the same.
  • Organic electroluminescence (EL) elements are promising for use as solid-state, inexpensive, large-area full-color display elements, and many developments have been made.
  • an organic EL element is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer. When a voltage is applied between both electrodes, electrons from the cathode side and holes from the anode side are injected into the light-emitting layer, and the injected electrons and holes recombine in the light-emitting layer, generating an excited state and being excited. When the state returns to the ground state, energy is emitted as light.
  • a phosphorescent organic EL element that uses a phosphorescent organic material for the light emitting layer of the organic EL element has been proposed.
  • This phosphorescent organic EL element achieves high luminous efficiency by utilizing the singlet excited state and the triplet excited state of the phosphorescent organic material.
  • electrons and holes are recombined in the organic EL element, it is considered that singlet excitons and triplet excitons are generated at a ratio of 1: 3 due to the difference in spin multiplicity. If a light emitting material is used, it can be considered that the light emission efficiency is 3 to 4 times that of an element using only a fluorescent light emitting material.
  • Improvement of the luminous efficiency and extension of the lifetime of organic EL elements are important issues that lead to lower power consumption and higher durability of the display, and further improvements are required.
  • various studies have been made in order to improve the light emission efficiency and the device life of an organic EL device using a phosphorescent light emitting material.
  • Patent Document 1 discloses a derivative having a 3,3′-biscarbazole skeleton as a phosphorescent host material.
  • Patent Document 2 discloses a derivative having a 6,6′-bis (9-carbazolyl) -N, N′-disubstituted-3,3′-biscarbazole skeleton as a hole transport material.
  • Patent Document 3 discloses a compound composed of a carbazole, dibenzofuran, dibenzothiophene skeleton as a phosphorescent host material, and specific examples thereof include 6,6′-bis (9-carbazolyl) -N, N′-diphenyl-3. 3,3′-biscarbazole (Compound 32) is disclosed.
  • Patent Document 1 describes an application example of a 3,3′-biscarbazole derivative to a phosphorescent light-emitting layer, but does not describe application to a hole transport layer.
  • Patent Document 2 discloses an application example of a derivative having a 6,6′-bis (9-carbazolyl) -N, N′-disubstituted-3,3′-biscarbazole skeleton as a hole transport material and high heat It describes the stability.
  • the derivative having the skeleton has a large ionization potential, and there is a problem that the driving voltage increases when used in a hole transport layer adjacent to the light emitting layer.
  • Patent Document 3 describes a derivative composed of a carbazole, dibenzofuran, and dibenzothiophene skeleton as a phosphorescent light emitting host material, but does not suggest a function as a hole transport material.
  • Patent Document 4 describes a compound having a biscarbazole skeleton in which two carbazoles are directly bonded by a carbon-carbon bond (formulas (1a) and (1b)).
  • a (hetero) arylamino group is bonded to the nitrogen atom of one carbazole skeleton via a 4,4'-biphenyldiyl group or a 9,9-dimethylfluorene-2,7-diyl group.
  • Only compound 76 is described as a compound in which two aryl groups of the amino group are bonded via a single bond.
  • Patent Document 5 describes a compound having a biscarbazole skeleton in which two carbazoles are directly bonded by a carbon-carbon bond, and a carbazolyl group bonded to a nitrogen atom of the carbazole skeleton.
  • the carbazolyl group bonded to the nitrogen atom must have a heterocyclic group selected from a dibenzofuranyl group, a dibenzothiophenyl group, and a carbazolyl group.
  • JP 2008-135498 A Japanese Patent Laid-Open No. 2001-220380 WO2007 / 0777810 WO2011 / 024451 gazette WO2007 / 119816
  • An object of the present invention is to realize a long-life organic EL element that can be driven at a low voltage.
  • the present inventors have found that a biscarbazole derivative having a specific substituent or linking group (linker) has a low ionization potential, and an organic compound containing the biscarbazole derivative. It has been found that the EL element has improved hole injection properties and can reduce the driving voltage.
  • the present invention provides a biscarbazole derivative represented by the following formula (1).
  • L 1 and L 2 are linking groups which may be the same or different and each independently represents a single bond or a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms.
  • R 1 to R 4 may be the same or different and each independently represents a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cyclohexane having 3 to 20 carbon atoms.
  • Alkyl group substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, substituted or unsubstituted haloalkoxy group having 1 to 20 carbon atoms, substituted or unsubstituted
  • the heteroaryl group is a pyrrolyl group, fu
  • a 1 represents a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms, wherein the heteroaryl group includes a pyrrolyl group, Furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, oxazolyl group, thiazolyl group, pyrazolyl group, isoxazolyl group, isothiazolyl group, oxadiazolyl group, thiadiazolyl group, triazolyl group, indolyl group , Isoindolyl group, benzofuranyl group, isobenzofuranyl group,
  • Ar 1 represents a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30 ring atoms.
  • R 5 to R 8 may be the same or different and each independently represents a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted cyclohexane having 3 to 20 carbon atoms.
  • An alkylsilyl group having 1 to 10 carbon atoms, a substituted or unsubstituted aryl group having 6 to 30 ring carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 30 ring carbon atoms, a substituted or unsubstituted carbon Represents an arylsilyl group having 6 to 30 carbon atoms, or a substituted or unsubstituted aralkyl group having 7 to 30 carbon atoms.
  • Adjacent R 5 and R 6 may be bonded to each other to form a saturated or unsaturated, substituted or unsubstituted divalent group that forms part of the ring structure.
  • f, g, and h each independently represent an integer of 0 to 4.
  • e represents an integer of 0 to 3.
  • a 2 is a group represented by the formula (2-1)
  • L 2 represents a single bond
  • a 2 is a group represented by the formula (2-2)
  • L 2 represents a single bond.
  • it represents a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms.
  • the present invention further includes an anode, a cathode, and one or more organic thin film layers disposed between the anode and the cathode, and at least one of the organic thin film layers is represented by the above formula (1).
  • An organic electroluminescence device comprising at least one derivative is provided.
  • an organic electroluminescence element that can be driven at a low voltage and has a long lifetime.
  • FIG. 1 is a schematic cross-sectional view showing an example of the organic EL element of the present invention.
  • the biscarbazole derivative of the present invention is represented by the following formula (1).
  • L 1 and L 2 are linking groups, which may be the same or different, and are each independently a single bond or a substituted or unsubstituted ring-forming carbon number of 6 to 30, preferably 6 to 18 Represents an arylene group.
  • R 1 to R 4 may be the same or different and each independently represents a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20, preferably 1 to 10 carbon atoms, a substituted or unsubstituted carbon.
  • a 1 represents a substituted or unsubstituted aryl group having 6 to 30, preferably 6 to 18 ring carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 30, preferably 6 to 18 ring atoms.
  • a 2 is a group represented by the following formula (2-1) or (2-2).
  • Ar 1 represents a substituted or unsubstituted aryl group having 6 to 30, preferably 6 to 18 ring carbon atoms, or a substituted or unsubstituted ring atom having 5 to 30, preferably 6 to 18 ring atoms.
  • R 5 to R 8 may be the same or different and each independently represents a fluorine atom, a cyano group, a substituted or unsubstituted alkyl group having 1 to 20, preferably 1 to 10 carbon atoms, a substituted or unsubstituted carbon.
  • Adjacent R 5 and R 6 may be bonded to each other to form a saturated or unsaturated, substituted or unsubstituted divalent group that forms part of the ring structure.
  • f, g, and h each independently represent an integer of 0 to 4.
  • e represents an integer of 0 to 3.
  • a 2 is a group represented by the formula (2-1)
  • L 2 represents a single bond
  • a 2 is a group represented by the formula (2-2)
  • L 2 represents a single bond.
  • a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms and preferably a substituted or unsubstituted arylene group having 6 to 30 ring carbon atoms.
  • Examples of the arylene group represented by L 1 and L 2 include benzene, naphthalene, phenanthrene, biphenyl, terphenyl (including isomers), quarterphenyl (including isomers), fluoranthene, triphenylene, fluorene, 9,9- From dimethylfluorene, benzo [c] phenanthrene, benzo [a] triphenylene, naphth [1,2-c] phenanthrene, naphth [1,2-a] triphenylene, dibenzo [a, c] triphenylene, and benzo [b] fluoranthene And divalent residues of selected aromatic compounds, preferably 1,4-phenylene group, 1,3-phenylene group, naphthalene-2,6-diyl group, naphthalene-2,7-diyl group, It is a 9,9-dimethylfluorene-2,7-diyl group.
  • alkyl groups represented by R 1 to R 4 and R 5 to R 8 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group.
  • n-pentyl group n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, n-dodecyl group, n-tridecyl group, n-tetradecyl group Group, n-pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, neopentyl group, 1-methylpentyl group, 2-methylpentyl group, 1-pentylhexyl group, 1-butylpentyl group, 1 -Heptyloctyl group, 3-methylpentyl group and the like can be mentioned, and methyl group, t-butyl group, ethyl group, n-propyl group and isopropyl group and the
  • Examples of the cycloalkyl group represented by R 1 to R 4 and R 5 to R 8 include a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cyclooctyl group, and the like, preferably a cyclopentyl group and a cyclohexyl group. It is.
  • Examples of the alkoxy group represented by R 1 to R 4 and R 5 to R 8 include a group represented by —OY (where Y is the above alkyl group), and preferably a methoxy group, an ethoxy group, or a propoxy group. It is a group.
  • haloalkyl groups represented by R 1 to R 4 and R 5 to R 8 include substitution of at least one hydrogen atom of the alkyl group with a halogen atom selected from a fluorine atom, a chlorine atom, an iodo atom, and a bromine atom. And the group obtained is preferably trifluoromethyl group, 2,2,2-trifluoroethyl group, 1,1,2,2,2-pentafluoroethyl group, 1,1,1,3. 3,3-hexafluoro-2-propyl group.
  • Examples of the haloalkoxy group represented by R 1 to R 4 and R 5 to R 8 include a group represented by —OY ′ (where Y ′ is the above haloalkyl group), preferably a trifluoromethoxy group. 2,2,2-trifluoroethoxy group, 1,1,2,2,2-pentafluoroethoxy group, 1,1,1,3,3,3-hexafluoro-2-propoxy group.
  • alkylsilyl group represented by R 1 ⁇ R 4 and R 5 ⁇ R 8 is, -SiH 2 R, -SiHR 2, or -SiR 3 (wherein R is an alkyl group of said, two or three R may be the same or different, and is preferably a trimethylsilyl group, a triethylsilyl group, or a t-butyldimethylsilyl group.
  • aryl groups represented by R 1 to R 4 , A 1 , Ar 1 , and R 5 to R 8 include phenyl group, naphthyl group, phenanthryl group, biphenyl group, terphenyl group, quarterphenyl group, fluoranthenyl.
  • Examples of the arylsilyl group represented by R 1 to R 4 and R 5 to R 8 include —SiH 2 R ′, —SiHR ′ 2 , or —SiR ′ 3 (where R ′ is the above aryl group, and 2 Or three R's may be the same or different), and is preferably a triphenylsilyl group.
  • Examples of the aralkyl group represented by R 1 to R 4 and R 5 to R 8 include a group having 7 to 30 carbon atoms obtained by substituting one hydrogen atom of the alkyl group with the aryl group, Preferably, they are a benzyl group and a naphthylmethyl group.
  • the heteroaryl groups represented by R 1 to R 4 and A 1 are pyrrolyl, furyl, thienyl, pyridyl, pyridazinyl, pyrimidinyl, pyrazinyl, triazinyl, imidazolyl, oxazolyl, thiazolyl, pyrazolyl , Isoxazolyl group, isothiazolyl group, oxadiazolyl group, thiadiazolyl group, triazolyl group, indolyl group, isoindolyl group, benzofuranyl group, isobenzofuranyl group, benzothiophenyl group, indolizinyl group, quinolidinyl group, quinolyl group, isoquinolyl group, cinnolyl group , Phthalazinyl group, quinazolinyl group, quinoxalinyl group, benzimidazolyl group, benzoxazolyl group
  • the heteroaryl group represented by Ar 1 is a heteroaryl group having 5 to 30 ring atoms containing at least one heteroatom selected from a nitrogen atom, an oxygen atom, and a sulfur atom.
  • Examples thereof include a pyrrolyl group, Furyl group, thienyl group, pyridyl group, pyridazinyl group, pyrimidinyl group, pyrazinyl group, triazinyl group, imidazolyl group, oxazolyl group, thiazolyl group, pyrazolyl group, isoxazolyl group, isothiazolyl group, oxadiazolyl group, thiadiazolyl group, triazolyl group, indolyl group , Isoindolyl group, benzofuranyl group, isobenzofuranyl group, benzothiophenyl group, indolizinyl group, quinolidinyl group, quinolyl group, isoquino
  • a butane-1,4-diyl group 1, Examples include 3-butadiene-1,4-diyl group.
  • the biscarbazole derivatives represented by the formula (1) include 2,2′-biscarbazole derivatives, 3,2′-biscarbazole derivatives represented by the following formulas (3-1) to (3-4), 2, A 3′-biscarbazole derivative or a 3,3′-biscarbazole derivative is preferable, and a 3,3′-biscarbazole derivative is more preferable.
  • a 1 , A 2 , L 1 , L 2 , R 1 to R 4 , and a to d are the same as above.
  • the group represented by the formula (2-1) is preferably represented by the following formula (2-3) or (2-4).
  • a 2 is a group represented by the formula (2-3), it is considered that the electron donating effect of A 2 works effectively and the ionization potential can be sufficiently reduced.
  • a 2 is a group represented by the formula (2-4), the hole mobility is increased, so that it is considered effective for reducing the driving voltage of the organic EL element.
  • the optional substituent in the case of “substituted or unsubstituted” described above and below is a fluorine atom, a cyano group, an alkyl group having 1 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, or an alkyl group having 1 to 20 carbon atoms.
  • substituents are as described above. These substituents may be plural, and when plural, they may be the same as or different from each other.
  • a 3,3′-biscarbazole derivative can be produced by the following synthesis route.
  • a 1 , A 2 , L 1 , L 2 , R 1 to R 4 , and ad are the same as above.
  • the organic EL device of the present invention has one or more organic thin film layers between the cathode and the anode, and at least one organic thin film layer is a light emitting layer. At least one of the organic thin film layers contains at least one biscarbazole derivative of the present invention.
  • the organic EL device preferably has a hole injection layer and / or a hole transport layer, and the hole injection layer and / or the hole transport layer preferably contains at least one biscarbazole derivative of the present invention.
  • the light emitting layer may contain at least one biscarbazole derivative of the present invention.
  • the element configuration (4) is preferably used. (1) Anode / hole transport layer / light emitting layer / cathode (2) Anode / hole injection layer / hole transport layer / light emitting layer / cathode (3) Anode / hole injection layer / hole transport layer / light emitting layer / Electron injection layer / cathode (4) anode / hole injection layer / hole transport layer / light emitting layer / electron transport layer / electron injection layer / cathode Note that, between the hole transport layer and the light emitting layer, An electron barrier layer may be provided.
  • a hole blocking layer may be provided as appropriate between the light emitting layer and the electron injection layer, or between the light emitting layer and the electron transport layer. According to the electron barrier layer or the hole barrier layer, electrons or holes can be confined in the light emitting layer, the recombination probability of charges in the light emitting layer can be increased, and the light emission efficiency can be improved.
  • the biscarbazole derivative of the present invention is used as a material for forming a single light emitting unit type (simple type) organic EL element and a laminated light emitting unit type (tandem type) organic EL element.
  • a material for forming a layer having a hole transport function provided between the light-emitting layer and the anode of these organic EL elements, and phosphorescent light-emitting that forms a light-emitting layer because triplet energy (first excited state) is large can be used as a material.
  • FIG. 1 shows a schematic configuration of an example of the organic EL element of the present invention.
  • the organic EL element 1 includes a transparent substrate 2, an anode 3, a cathode 4, and an organic thin film layer 10 disposed between the anode 3 and the cathode 4.
  • the organic thin film layer 10 has a phosphorescent light emitting layer 5 containing a phosphorescent host material and a phosphorescent dopant.
  • a hole injection / transport layer 6 or the like may be formed between the phosphorescent light emitting layer 5 and the anode 3, and an electron injection / transport layer 7 or the like may be formed between the phosphorescent light emitting layer 5 and the cathode 4.
  • an electron barrier layer may be provided on the phosphorescent light emitting layer 5 on the anode 3 side, and a hole barrier layer may be provided on the phosphorescent light emitting layer 5 on the cathode 4 side.
  • a host combined with a fluorescent dopant is referred to as a fluorescent host
  • a host combined with a phosphorescent dopant is referred to as a phosphorescent host.
  • the fluorescent host and the phosphorescent host are not distinguished only by the molecular structure. That is, the phosphorescent host means a material constituting a phosphorescent light emitting layer containing a phosphorescent dopant, and does not mean that it cannot be used as a material constituting a fluorescent light emitting layer. The same applies to the fluorescent host.
  • hole injection / transport layer means “one or both of a hole injection layer and a hole transport layer”
  • electron injection / transport layer means “electron injection layer and It means “one or both of the electron transport layers”.
  • the organic EL element of the present invention is produced on a translucent substrate.
  • the light-transmitting substrate is a substrate that supports the organic EL element, and is preferably a smooth substrate having a light transmittance in the visible region of 400 nm to 700 nm of 50% or more.
  • a glass plate, a polymer plate, etc. are mentioned.
  • the glass plate include those using soda lime glass, barium / strontium-containing glass, lead glass, aluminosilicate glass, borosilicate glass, barium borosilicate glass, quartz and the like as raw materials.
  • the polymer plate include those using polycarbonate, acrylic, polyethylene terephthalate, polyether sulfide, polysulfone and the like as raw materials.
  • the anode of the organic EL element plays a role of injecting holes into the hole injection layer, the hole transport layer, or the light emitting layer, and it is effective to have a work function of 4.5 eV or more.
  • Specific examples of the anode material include indium tin oxide alloy (ITO), tin oxide (NESA), indium zinc oxide, gold, silver, platinum, copper, and the like.
  • the anode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. When light emitted from the light emitting layer is extracted from the anode, it is preferable that the transmittance of light in the visible region of the anode is greater than 10%.
  • the sheet resistance of the anode is preferably several hundred ⁇ / ⁇ or less.
  • the film thickness of the anode depends on the material, but is usually selected in the range of 10 nm to 1 ⁇ m, preferably 10 nm to 200 nm.
  • the cathode plays a role of injecting electrons into the electron injection layer, the electron transport layer or the light emitting layer, and is preferably formed of a material having a small work function.
  • the cathode material is not particularly limited, and specifically, indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy and the like can be used.
  • the cathode can be produced by forming a thin film by a method such as vapor deposition or sputtering. Moreover, you may take out light emission from the cathode side as needed.
  • An organic layer having a light emitting function includes a host material and a dopant material.
  • the host material mainly has a function of encouraging recombination of electrons and holes and confining excitons in the light emitting layer, and the dopant material efficiently emits excitons obtained by recombination. It has a function.
  • the host material mainly has a function of confining excitons generated by the dopant in the light emitting layer.
  • the ease of injecting holes into the light emitting layer may be different from the ease of injecting electrons, and the hole transport ability and electron transport ability expressed by the mobility of holes and electrons in the light emitting layer may be different. May be different.
  • the light emitting layer can be formed by a known method such as a vapor deposition method, a spin coating method, or an LB method.
  • the light emitting layer can also be formed by thinning a solution obtained by dissolving a binder such as a resin and a material compound in a solvent by a spin coating method or the like.
  • the light emitting layer is preferably a molecular deposited film.
  • the molecular deposited film is a thin film formed by deposition from a material compound in a gas phase state or a film formed by solidifying from a material compound in a solution state or a liquid phase state.
  • the thin film (molecular accumulation film) formed by the LB method can be classified by the difference in the aggregation structure and the higher-order structure, and the functional difference resulting therefrom.
  • the phosphorescent dopant (phosphorescent material) that forms the light emitting layer is a compound that can emit light from the triplet excited state, and is not particularly limited as long as it emits light from the triplet excited state, but Ir, Pt, Os, Au, Cu, An organometallic complex containing at least one metal selected from Re and Ru and a ligand is preferable.
  • the ligand preferably has an ortho metal bond.
  • a metal complex containing a metal atom selected from Ir, Os and Pt is preferred in that the phosphorescent quantum yield is high and the external quantum efficiency of the light emitting device can be further improved, and an iridium complex, an osmium complex, or a platinum complex.
  • iridium complexes and platinum complexes are more preferable, and orthometalated iridium complexes are particularly preferable.
  • the content of the phosphorescent dopant in the light emitting layer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is preferably 0.1 to 70% by mass, more preferably 1 to 30% by mass. If the phosphorescent dopant content is 0.1% by mass or more, sufficient light emission can be obtained, and if it is 70% by mass or less, concentration quenching can be avoided.
  • the phosphorescent host is a compound having a function of causing the phosphorescent dopant to emit light as a result of energy transfer from the excited state to the phosphorescent dopant.
  • the phosphorescent host is not particularly limited as long as it is a compound capable of transferring exciton energy to the phosphorescent dopant, and can be appropriately selected according to the purpose.
  • the phosphorescent host include carbazole derivatives, triazole derivatives, oxazole derivatives, oxadiazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amino-substituted chalcone derivatives, styryl.
  • Anthracene derivatives fluorenone derivatives, hydrazone derivatives, stilbene derivatives, silazane derivatives, aromatic tertiary amine compounds, styrylamine compounds, aromatic dimethylidene compounds, porphyrin compounds, anthraquinodimethane derivatives, anthrone derivatives, diphenylquinone derivatives, thio Pyran dioxide derivatives, carbodiimide derivatives, fluorenylidene methane derivatives, distyryl pyrazine derivatives, naphthalene perylene, etc.
  • metal complex polysilane compounds represented by metal complexes of a metal ring having a metal ring having a ring-shaped tetracarboxylic anhydride, a phthalocyanine derivative, an 8-quinolinol derivative, a metal phthalocyanine, a benzoxazole or a benzothiazole, poly (N- Vinyl carbazole) derivatives, aniline copolymers, thiophene oligomers, conductive polymer oligomers such as polythiophene, polymer compounds such as polythiophene derivatives, polyphenylene derivatives, polyphenylene vinylene derivatives, polyfluorene derivatives, and the like.
  • a phosphorescent host may be used independently and may use 2 or more types together. Specific examples include the following compounds.
  • the thickness of the light emitting layer is preferably 5 to 50 nm, more preferably 7 to 50 nm, and still more preferably 10 to 50 nm.
  • the thickness is 5 nm or more, it is easy to form a light emitting layer, and when the thickness is 50 nm or less, an increase in driving voltage can be avoided.
  • the organic EL device of the present invention preferably has an electron donating dopant in the interface region between the cathode and the organic thin film layer. According to such a configuration, it is possible to improve the light emission luminance and extend the life of the organic EL element.
  • the electron donating dopant is selected from alkali metals, alkali metal complexes, alkali metal compounds, alkaline earth metals, alkaline earth metal complexes, alkaline earth metal compounds, rare earth metals, rare earth metal complexes, rare earth metal compounds, and the like. At least one kind.
  • alkali metal examples include Na (work function: 2.36 eV), K (work function: 2.28 eV), Rb (work function: 2.16 eV), Cs (work function: 1.95 eV), and the like.
  • a function of 2.9 eV or less is particularly preferable. Of these, K, Rb, and Cs are preferred, Rb and Cs are more preferred, and Cs is most preferred.
  • alkaline earth metals include Ca (work function: 2.9 eV), Sr (work function: 2.0 eV to 2.5 eV), Ba (work function: 2.52 eV), and the like. The thing below 9 eV is especially preferable.
  • rare earth metals examples include Sc, Y, Ce, Tb, Yb, and the like, and those having a work function of 2.9 eV or less are particularly preferable.
  • alkali metal compound examples include alkali oxides such as Li 2 O, Cs 2 O, and K 2 O, and alkali halides such as LiF, NaF, CsF, and KF, and LiF, Li 2 O, and NaF are preferable.
  • alkaline earth metal compound examples include BaO, SrO, CaO, and Ba x Sr 1-x O (0 ⁇ x ⁇ 1), Ba x Ca 1-x O (0 ⁇ x ⁇ 1) mixed with these. BaO, SrO, and CaO are preferable.
  • the rare earth metal compound, YbF 3, ScF 3, ScO 3, Y 2 O 3, Ce 2 O 3, GdF 3, TbF 3 and the like, YbF 3, ScF 3, TbF 3 are preferable.
  • the alkali metal complex, alkaline earth metal complex, and rare earth metal complex are not particularly limited as long as each metal ion contains at least one of an alkali metal ion, an alkaline earth metal ion, and a rare earth metal ion.
  • the ligands include quinolinol, benzoquinolinol, acridinol, phenanthridinol, hydroxyphenyloxazole, hydroxyphenylthiazole, hydroxydiaryloxadiazole, hydroxydiarylthiadiazole, hydroxyphenylpyridine, hydroxyphenylbenzimidazole, hydroxybenzotriazole, Hydroxyfulborane, bipyridyl, phenanthroline, phthalocyanine, porphyrin, cyclopentadiene, ⁇ -diketones, azomethines, and derivatives thereof are preferred, but not limited thereto.
  • the electron donating dopant it is preferable to form a layered or island shape in the interface region.
  • a forming method while depositing an electron donating dopant by resistance heating vapor deposition, an organic compound (light emitting material or electron injecting material) that forms an interface region is simultaneously deposited, and the electron donating dopant is dispersed in the organic compound.
  • the electron donating dopant in a layered form, after forming the light emitting material or the electron injecting material which is an organic layer at the interface in a layered form, the electron donating dopant is vapor-deposited by a resistance heating vapor deposition method alone. It is formed with a thickness of 0.1 nm to 15 nm.
  • the electron donating dopant is formed in an island shape, after forming the light emitting material and the electron injecting material, which are organic layers at the interface, in an island shape, the electron donating dopant is deposited by resistance heating vapor deposition alone, preferably The island is formed with a thickness of 0.05 nm to 1 nm.
  • an organic layer close to the cathode may be defined as an electron injection layer.
  • the electron injection layer has a function of efficiently injecting electrons from the cathode into the organic layer unit.
  • an aromatic heterocyclic compound containing at least one hetero atom in the molecule is preferably used, and a nitrogen-containing ring derivative is particularly preferable.
  • the nitrogen-containing ring derivative is preferably an aromatic ring having a nitrogen-containing 6-membered ring or 5-membered ring skeleton, or a condensed aromatic ring compound having a nitrogen-containing 6-membered ring or 5-membered ring skeleton.
  • a nitrogen-containing ring metal chelate complex represented by the following formula (A) is preferable.
  • R 2 to R 7 in formula (A) are each independently a hydrogen atom, a deuterium atom, a halogen atom, a hydroxyl group, an amino group, a hydrocarbon group having 1 to 40 carbon atoms, or an alkoxy group having 1 to 40 carbon atoms. , An aryloxy group having 6 to 50 carbon atoms, an alkoxycarbonyl group, or an aromatic heterocyclic group having 5 to 50 ring carbon atoms, which may be substituted.
  • halogen atom examples include fluorine, chlorine, bromine, iodine and the like.
  • Examples of the amino group which may be substituted include an alkylamino group, an arylamino group and an aralkylamino group.
  • the alkylamino group and the aralkylamino group are represented as —NQ 1 Q 2 .
  • Q 1 and Q 2 each independently represents an alkyl group having 1 to 20 carbon atoms or an aralkyl group having 1 to 20 carbon atoms.
  • One of Q 1 and Q 2 may be a hydrogen atom or a deuterium atom.
  • the arylamino group is represented as —NAr 1 Ar 2, and Ar 1 and Ar 2 each independently represent a non-condensed aromatic hydrocarbon group and a condensed aromatic hydrocarbon group having 6 to 50 carbon atoms.
  • One of Ar 1 and Ar 2 may be a hydrogen atom or a deuterium atom.
  • the hydrocarbon group having 1 to 40 carbon atoms includes an alkyl group, an alkenyl group, a cycloalkyl group, an aryl group, and an aralkyl group.
  • the alkoxycarbonyl group is represented as —COOY ′, and Y ′ represents an alkyl group having 1 to 20 carbon atoms.
  • M is aluminum (Al), gallium (Ga) or indium (In), preferably In.
  • L is a group represented by the following formula (A ′) or (A ′′).
  • R 8 to R 12 are each independently a hydrogen atom, a deuterium atom, or a substituted or unsubstituted hydrocarbon group having 1 to 40 carbon atoms, and groups adjacent to each other are cyclic structures May be formed.
  • R 13 to R 27 are each independently a hydrogen atom, a deuterium atom or a substituted or unsubstituted hydrocarbon group having 1 to 40 carbon atoms, and groups adjacent to each other are An annular structure may be formed.
  • the hydrocarbon group having 1 to 40 carbon atoms represented by R 8 to R 12 and R 13 to R 27 in the formula (A ′) and the formula (A ′′) is represented by R 2 to R 7 in the formula (A).
  • the divalent group in the case where the adjacent groups of R 8 to R 12 and R 13 to R 27 form a cyclic structure includes a tetramethylene group, a pentamethylene group, a hexamethylene group, and the like. Examples include a methylene group, diphenylmethane-2,2′-diyl group, diphenylethane-3,3′-diyl group, and diphenylpropane-4,4′-diyl group.
  • 8-hydroxyquinoline or a metal complex of its derivative, an oxadiazole derivative, or a nitrogen-containing heterocyclic derivative is preferable.
  • a metal chelate oxinoid compound containing a chelate of oxine generally 8-quinolinol or 8-hydroxyquinoline
  • tris (8-quinolinol) aluminum is used as a specific example of the metal complex of the above 8-hydroxyquinoline or a derivative thereof.
  • a metal chelate oxinoid compound containing a chelate of oxine generally 8-quinolinol or 8-hydroxyquinoline
  • tris (8-quinolinol) aluminum is used.
  • an oxadiazole derivative the following can be mentioned.
  • Ar 17 , Ar 18 , Ar 19 , Ar 21 , Ar 22 and Ar 25 each represent a substituted or unsubstituted aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 50 carbon atoms
  • Ar 17 and Ar 18 , Ar 19 and Ar 21 , Ar 22 and Ar 25 may be the same or different.
  • the aromatic hydrocarbon group or the condensed aromatic hydrocarbon group include a phenyl group, a naphthyl group, a biphenyl group, an anthranyl group, a perylenyl group, and a pyrenyl group.
  • substituents include alkyl groups having 1 to 10 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, and cyano groups.
  • Ar 20 , Ar 23, and Ar 24 each represent a substituted or unsubstituted divalent aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 50 carbon atoms, and Ar 23 and Ar 24 are identical to each other. But it can be different.
  • the divalent aromatic hydrocarbon group or condensed aromatic hydrocarbon group include a phenylene group, a naphthylene group, a biphenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group.
  • substituents include alkyl groups having 1 to 10 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, and cyano groups.
  • electron transfer compounds those having good thin film forming properties are preferably used.
  • Specific examples of these electron transfer compounds include the following.
  • the nitrogen-containing heterocyclic derivative as the electron transfer compound is a nitrogen-containing heterocyclic derivative composed of an organic compound having the following general formula, and includes a nitrogen-containing compound that is not a metal complex. Examples thereof include a 5-membered ring or 6-membered ring containing a skeleton represented by the following formula (B) and a structure represented by the following formula (C).
  • X represents a carbon atom or a nitrogen atom.
  • Z 1 and Z 2 each independently represents an atomic group capable of forming a nitrogen-containing heterocycle.
  • the nitrogen-containing heterocyclic derivative is more preferably an organic compound having a nitrogen-containing aromatic polycyclic group consisting of a 5-membered ring or a 6-membered ring. Further, in the case of such a nitrogen-containing aromatic polycyclic group having a plurality of nitrogen atoms, the nitrogen-containing compound having a skeleton in which the above formulas (B) and (C) or the above formula (B) and the following formula (D) are combined. Aromatic polycyclic organic compounds are preferred.
  • the nitrogen-containing group of the nitrogen-containing aromatic polycyclic organic compound is selected from, for example, nitrogen-containing heterocyclic groups represented by the following general formula.
  • R is an aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 40 carbon atoms, an aromatic heterocyclic group or condensed aromatic heterocyclic group having 3 to 40 carbon atoms, 1 to 20 is an alkyl group or an alkoxy group having 1 to 20 carbon atoms, n is an integer of 0 to 5, and when n is an integer of 2 or more, a plurality of R may be the same or different from each other.
  • preferred specific compounds include nitrogen-containing heterocyclic derivatives represented by the following formula.
  • HAr-L 1 -Ar 1 -Ar 2 In the above formula, HAr is a substituted or unsubstituted nitrogen-containing heterocyclic group having 3 to 40 carbon atoms, and L 1 is a single bond, a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 carbon atoms or a condensed group.
  • HAr is selected from the following group, for example.
  • L 1 is selected from the following group, for example.
  • Ar 1 is selected from, for example, the following arylanthranyl groups.
  • R 1 to R 14 each independently represents a hydrogen atom, a deuterium atom, a halogen atom, an alkyl group having 1 to 20 carbon atoms, an alkoxy group having 1 to 20 carbon atoms, or an alkyl group having 6 to 40 carbon atoms.
  • Ar 3 is a substituted or unsubstituted aromatic hydrocarbon group having 6 to 40 carbon atoms, a condensed aromatic hydrocarbon group, or a substituted or unsubstituted aromatic heterocyclic group having 3 to 40 carbon atoms, or A condensed aromatic heterocyclic group.
  • R 1 to R 8 may be nitrogen-containing heterocyclic derivatives each of which is a hydrogen atom or a deuterium atom.
  • Ar 2 is selected from the following group, for example.
  • the following compounds are also preferably used as the nitrogen-containing aromatic polycyclic organic compound as the electron transporting compound.
  • R 1 to R 4 each independently represents a hydrogen atom, a deuterium atom, a substituted or unsubstituted aliphatic group having 1 to 20 carbon atoms, or a substituted or unsubstituted aliphatic group having 3 to 20 carbon atoms.
  • X 1 and X 2 are each independently an oxygen atom Represents a sulfur atom or a dicyanomethylene group.
  • the following compounds are also preferably used as the electron transfer compound.
  • R 1 , R 2 , R 3 and R 4 are the same or different groups, and are an aromatic hydrocarbon group or a condensed aromatic hydrocarbon group represented by the following formula.
  • R 5 , R 6 , R 7 , R 8 and R 9 are the same or different from each other, and are a hydrogen atom, deuterium atom, saturated or unsaturated C 1-20 alkoxyl group, saturated Alternatively, it is an unsaturated alkyl group having 1 to 20 carbon atoms, an amino group, or an alkylamino group having 1 to 20 carbon atoms. At least one of R 5 , R 6 , R 7 , R 8 and R 9 is a group other than a hydrogen atom or a deuterium atom.
  • the electron transfer compound may be a polymer compound containing the nitrogen-containing heterocyclic group or the nitrogen-containing heterocyclic derivative.
  • the electron transport layer of the organic EL device of the present invention particularly preferably contains at least one nitrogen-containing heterocyclic derivative represented by the following formulas (60) to (62).
  • Z 1 , Z 2 and Z 3 are each independently a nitrogen atom or a carbon atom.
  • R 1 and R 2 are each independently a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms, a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms, substituted or unsubstituted carbon An alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, or a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms.
  • n is an integer of 0 to 5, and when n is an integer of 2 or more, the plurality of R 1 may be the same or different from each other. Further, two adjacent R 1 's may be bonded to each other to form a substituted or unsubstituted hydrocarbon ring.
  • Ar 1 is a substituted or unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
  • Ar 2 is a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted haloalkyl group having 1 to 20 carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 20 carbon atoms, substituted Alternatively, it is an unsubstituted aryl group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroaryl group having 5 to 50 ring atoms.
  • Ar 1 or Ar 2 is a substituted or unsubstituted condensed aromatic hydrocarbon ring group having 10 to 50 ring carbon atoms or a substituted or unsubstituted condensed aromatic group having 9 to 50 ring atoms. It is a heterocyclic group.
  • Ar 3 is a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms or a substituted or unsubstituted heteroarylene group having 5 to 50 ring atoms.
  • L 1 , L 2 and L 3 are each independently a single bond, a substituted or unsubstituted arylene group having 6 to 50 ring carbon atoms, or a divalent or substituted or unsubstituted divalent atom having 9 to 50 ring atoms.
  • aryl group having 6 to 50 ring carbon atoms examples include phenyl group, naphthyl group, anthryl group, phenanthryl group, naphthacenyl group, chrysenyl group, pyrenyl group, biphenyl group, terphenyl group, tolyl group, fluoranthenyl group, fluorenyl Groups and the like.
  • heteroaryl group having 5 to 50 ring atoms examples include pyrrolyl group, furyl group, thienyl group, silolyl group, pyridyl group, quinolyl group, isoquinolyl group, benzofuryl group, imidazolyl group, pyrimidyl group, carbazolyl group, selenophenyl Group, oxadiazolyl group, triazolyl group, pyrazinyl group, pyridazinyl group, triazinyl group, quinoxalinyl group, acridinyl group, imidazo [1,2-a] pyridinyl group, imidazo [1,2-a] pyrimidinyl group and the like.
  • Examples of the alkyl group having 1 to 20 carbon atoms include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, and a hexyl group.
  • Examples of the haloalkyl group having 1 to 20 carbon atoms include groups obtained by substituting one or more hydrogen atoms of the alkyl group with at least one halogen atom selected from fluorine, chlorine, iodine and bromine.
  • Examples of the alkoxy group having 1 to 20 carbon atoms include groups having the above alkyl group as an alkyl moiety.
  • Examples of the arylene group having 6 to 50 ring carbon atoms include groups obtained by removing one hydrogen atom from the aryl group.
  • Examples of the divalent condensed aromatic heterocyclic group having 9 to 50 ring atoms include groups obtained by removing one hydrogen atom from the condensed aromatic heterocyclic group described as the heteroaryl group.
  • the thickness of the electron injection / transport layer is not particularly limited, but is preferably 1 nm to 100 nm.
  • an insulator or a semiconductor as an inorganic compound as a constituent of the electron injection layer. If the electron injection layer is made of an insulator or a semiconductor, current leakage can be effectively prevented and the electron injection property can be improved.
  • an insulator it is preferable to use at least one metal compound selected from the group consisting of alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides and alkaline earth metal halides. If the electron injection layer is composed of these alkali metal chalcogenides or the like, it is preferable in that the electron injection property can be further improved.
  • preferable alkali metal chalcogenides include, for example, Li 2 O, K 2 O, Na 2 S, Na 2 Se, and Na 2 O
  • preferable alkaline earth metal chalcogenides include, for example, CaO, BaO. , SrO, BeO, BaS and CaSe.
  • preferable alkali metal halides include, for example, LiF, NaF, KF, LiCl, KCl, and NaCl.
  • preferable alkaline earth metal halides include fluorides such as CaF 2 , BaF 2 , SrF 2 , MgF 2 and BeF 2 , and halides other than fluorides.
  • the inorganic compound constituting the electron injection layer is preferably a microcrystalline or amorphous insulating thin film. If the electron injection layer is composed of these insulating thin films, a more uniform thin film is formed, and pixel defects such as dark spots can be reduced. Examples of such inorganic compounds include alkali metal chalcogenides, alkaline earth metal chalcogenides, alkali metal halides, and alkaline earth metal halides.
  • the preferred thickness of the layer is about 0.1 nm to 15 nm.
  • the electron injection layer in the present invention is preferable even if it contains the above-mentioned electron donating dopant.
  • an organic layer close to the anode may be defined as a hole injection layer.
  • the hole injection layer has a function of efficiently injecting holes from the anode into the organic layer unit.
  • the hole injection / transport layer of the present invention preferably contains a biscarbazole derivative represented by the formula (1).
  • a biscarbazole derivative represented by the formula (1) As another material for forming the hole injection / transport layer, an aromatic amine compound, for example, an aromatic amine derivative represented by the following general formula (I) is preferably used.
  • Ar 1 to Ar 4 represent a substituted or unsubstituted aromatic hydrocarbon group having 6 to 50 ring carbon atoms or a condensed aromatic hydrocarbon group, a substituted or unsubstituted ring forming atom number of 5 Represents an aromatic heterocyclic group or a condensed aromatic heterocyclic group of 50 to 50, or a group in which the aromatic hydrocarbon group or condensed aromatic hydrocarbon group and the aromatic heterocyclic group or condensed aromatic heterocyclic group are bonded. .
  • L represents a substituted or unsubstituted aromatic hydrocarbon group or condensed aromatic hydrocarbon group having 6 to 50 ring carbon atoms, or a substituted or unsubstituted ring atom number of 5 to 5 Represents 50 aromatic heterocyclic groups or condensed aromatic heterocyclic groups.
  • An aromatic amine represented by the following formula (II) is also preferably used for forming the hole injection / transport layer.
  • the hole transport layer of the organic EL device of the present invention may have a two-layer structure of a first hole transport layer (anode side) and a second hole transport layer (cathode side).
  • the thickness of the hole injection / transport layer is not particularly limited, but is preferably 10 to 200 nm.
  • a layer containing an electron accepting compound may be bonded to the positive hole transport layer or the anode side of the first hole transport layer. This is expected to reduce drive voltage and manufacturing costs.
  • the electron accepting compound is preferably a compound represented by the following formula (10).
  • R 7 to R 12 may be the same or different and are each independently a cyano group, —CONH 2 , carboxyl group, or —COOR 13 (R 13 is an alkyl having 1 to 20 carbon atoms) Or a cycloalkyl group having 3 to 20 carbon atoms, provided that one or more pairs of R 7 and R 8 , R 9 and R 10 , and R 11 and R 12 are combined together to form —CO—.
  • a group represented by O—CO— may be represented.
  • R 13 examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a t-butyl group, a cyclopentyl group, and a cyclohexyl group.
  • the thickness of the layer containing the electron-accepting compound is not particularly limited, but is preferably 5 to 20 nm.
  • the extract was washed with saturated brine, dried over anhydrous magnesium sulfate, filtered and concentrated.
  • the obtained solid was purified by silica gel column chromatography, and the resulting solid was washed with n-hexane and dried under reduced pressure to obtain 7.10 g of a solid.
  • the following intermediate body 3 was identified by analysis of FD-MS.
  • Synthesis Example 2 (Production of biscarbazole derivative (H2)) A reaction was conducted in the same manner as in Synthesis Example 1 except that 2.6 g of Intermediate 7 was used instead of Intermediate 2, and 3.2 g of white powder was obtained. The white powder was identified as the following biscarbazole derivative (H2) by FD-MS analysis.
  • Synthesis Example 3 (Production of biscarbazole derivative (H3)) A reaction was conducted in the same manner as in Synthesis Example 1 except that 3.6 g of intermediate 6 was used instead of intermediate 2 to obtain 3.5 g of white powder. The white powder was identified as the following biscarbazole derivative (H3) by FD-MS analysis.
  • Example 1 (Production of organic EL element) A 25 mm ⁇ 75 mm ⁇ 1.1 mm glass substrate with an ITO transparent electrode line (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and further UV (Ultraviolet) ozone cleaned for 30 minutes. A glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum deposition apparatus, and first the following electron-accepting compound (A) is deposited so as to cover the transparent electrode on the surface where the transparent electrode line is formed. Then, an A film having a thickness of 5 nm was formed.
  • ITO transparent electrode line manufactured by Geomatic
  • the following aromatic amine derivative (X1) was vapor-deposited as a 1st positive hole transport material, and the 1st positive hole transport layer with a film thickness of 157 nm was formed into a film.
  • the biscarbazole derivative (H1) obtained in Synthesis Example 1 is deposited as a second hole transport material to form a second hole transport layer having a thickness of 10 nm.
  • a compound (B) as a phosphorescent host and Ir (ppy) 3 as a phosphorescent dopant were co-evaporated with a thickness of 40 nm to obtain a phosphorescent light emitting layer.
  • the concentration of Ir (ppy) 3 was 10% by mass.
  • a compound (C) having a thickness of 20 nm, LiF having a thickness of 1 nm, and metal Al having a thickness of 80 nm were sequentially laminated on the phosphorescent light emitting layer to form a cathode. Note that LiF, which is an electron injecting electrode, was formed at a deposition rate of 1 ⁇ / min.
  • the organic EL element produced as described above is caused to emit light by direct current drive, and the luminance (L) and current density are measured to obtain the current efficiency (L / J) and drive voltage (V) at a current density of 10 mA / cm 2 . It was. Further, the device lifetime at an initial luminance of 20000 cd / m 2 was determined. The results are shown in Table 1.
  • Example 2 the biscarbazole derivative (H2) (Example 2) and the biscarbazole derivative (H3) (Example 3) were used in place of the biscarbazole derivative (H1) as the second hole transport material.
  • an organic EL element was produced.
  • the obtained organic EL device was caused to emit light by direct current driving, and the luminance (L) and current density were measured, and the current efficiency (L / J) and driving voltage (V) at a current density of 10 mA / cm 2 were obtained. Further, the device lifetime at an initial luminance of 20000 cd / m 2 was determined. The results are shown in Table 1.
  • Example 1 an organic EL device was produced in the same manner as in Example 1 except that the following comparative compound 1 or comparative compound 2 was used instead of the biscarbazole derivative (H1) as the second hole transport material.
  • the obtained organic EL device was caused to emit light by direct current driving, and the luminance (L) and current density were measured, and the current efficiency (L / J) and driving voltage (V) at a current density of 10 mA / cm 2 were obtained. Further, the device lifetime at an initial luminance of 20000 cd / m 2 was determined. The results are shown in Table 1.
  • the biscarbazole derivative of the present invention has a long life and is useful as a material for realizing an organic EL device that can be driven at a low voltage.

Abstract

 下記式(1)で表されるビスカルバゾール誘導体。 (式(1)中、A1、A2、L1、L2、R1~R4、a~dは明細書に記載したとおりである。)式(1)で表されるビスカルバゾール誘導体は有機EL素子の構成成分として有用であり、この誘導体を含む有機EL素子は低電圧駆動が可能で長寿命である。

Description

ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子
 本発明はビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子に関する。特に、2つのカルバゾールが炭素-炭素結合により直接結合したビスカルバゾール骨格を有し、かつ、一方のカルバゾール骨格の窒素原子に、C-カルバゾリル基(1-、2-、3-、又は4-カルバゾリル基)、N-カルバゾリル基(9-カルバゾリル基)、又はN-カルバゾリルアリール基が直結するビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子に関する。
 有機エレクトロルミネッセンス(EL)素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。一般に有機EL素子は、発光層及び該層をはさんだ一対の対向電極から構成されている。両電極間に電圧が印加されると、陰極側から電子、陽極側から正孔が発光層に注入され、注入された電子と正孔が発光層において再結合し、励起状態を生成し、励起状態が基底状態に戻る際にエネルギーを光として放出する。
 また、有機EL素子の発光層に燐光性有機材料を利用する、燐光型有機EL素子が提案されている。この燐光型有機EL素子は、燐光性有機材料の一重項励起状態と三重項励起状態とを利用することにより、高い発光効率が達成される。有機EL素子内で電子と正孔とが再結合する際には、スピン多重度の違いから一重項励起子と三重項励起子とが1:3の割合で生成すると考えられているので、燐光性の発光材料を用いれば、蛍光性発光材料のみを使用した素子の3~4倍の発光効率の達成が考えられる。
 初期の有機EL素子は、駆動電圧が高く、発光効率及び耐久性が不十分であり、これら問題に対して様々な技術的改良がなされてきた。
 有機EL素子の発光効率の向上及び長寿命化はディスプレイの消費電力の低下、耐久性の向上につながる重要な課題であり、さらなる改良が求められている。併せて、燐光性の発光材料を用いた有機EL素子の発光効率や素子寿命を向上させるために様々な検討がなされている。
 これら問題を解決すべく、特許文献1は、燐光性ホスト材料として3,3'-ビスカルバゾール骨格を有する誘導体を開示している。特許文献2は、正孔輸送材料として6,6'-ビス(9-カルバゾリル)-N,N'-二置換-3,3'-ビスカルバゾール骨格を有する誘導体を開示している。特許文献3は燐光性ホスト材料として、カルバゾール、ジベンゾフラン、ジベンゾチオフェン骨格で構成される化合物を開示し、その具体例として6,6'-ビス(9-カルバゾリル)-N,N'-ジフェニル-3,3'-ビスカルバゾール(化合物32)を開示している。
 特許文献1には、3,3'-ビスカルバゾール誘導体の燐光性発光層への適用例が記載されているが、正孔輸送層への適用に関する記載は無い。
 特許文献2には、6,6'-ビス(9-カルバゾリル)-N,N'-二置換-3,3'-ビスカルバゾール骨格を有する誘導体の正孔輸送材料としての適用例、及び高い熱安定性に関して記載がされている。しかし、該骨格を有する誘導体はイオン化ポテンシャルが大きく、発光層に隣接する正孔輸送層に用いると駆動電圧が上昇する問題がある。
 特許文献3には、燐光性発光ホスト材料としてカルバゾール、ジベンゾフラン、ジベンゾチオフェン骨格で構成される誘導体が記載されているが、正孔輸送材料としての機能を示唆していない。
 特許文献4には2つのカルバゾールが炭素-炭素結合により直接結合したビスカルバゾール骨格を有する化合物が記載されている(式(1a)、(1b))。一方のカルバゾール骨格の窒素原子には4,4’-ビフェニルジイル基又は9,9-ジメチルフルオレン-2,7-ジイル基を介して(ヘテロ)アリールアミノ基が結合している。アミノ基の2つのアリール基が単結合を介して結合した化合物としては、化合物76のみが記載されている。
 特許文献5には、2つのカルバゾールが炭素-炭素結合により直接結合したビスカルバゾール骨格を有し、かつ、カルバゾール骨格の窒素原子にカルバゾリル基が結合した化合物が記載されている。窒素原子に結合したカルバゾリル基はジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基から選ばれる複素環基を有することが必須である。
特開2008-135498号公報 特開2001-220380号公報 WO2007/077810号公報 WO2011/024451号公報 WO2007/119816号公報
 本発明は、低電圧駆動が可能で長寿命な有機EL素子を実現することを目的とする。
 本発明者らは、前記目的を達成するために、鋭意研究を重ねた結果、特定の置換基や連結基(リンカー)を有するビスカルバゾール誘導体はイオン化ポテンシャルが小さいこと、該ビスカルバゾール誘導体を含む有機EL素子は正孔注入性が向上し、駆動電圧を下げることができることを見出した。
 すなわち、本発明は下記式(1)で表されるビスカルバゾール誘導体を提供する。
Figure JPOXMLDOC01-appb-C000008
(式(1)において、
 L1及びL2は連結基であり、同一でも異なっていてもよく、それぞれ独立に、単結合又は置換もしくは無置換の環形成炭素数6~30のアリーレン基を表す。
 R1~R4は同一でも異なっていてもよく、それぞれ独立に、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換の炭素数1~10のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、置換もしくは無置換の炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表わし、該へテロアリール基は、ピロリル基、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、及びキサンテニル基から選ばれ、隣接するR1同士、R2同士、R3同士、及びR4同士は互いに結合して、環構造の一部を形成する飽和もしくは不飽和の、置換もしくは無置換の2価の基を形成しても良い。
 a、dは、それぞれ独立に、0~4の整数を表す。
 b、cは、それぞれ独立に、0~3の整数を表す。
 A1は、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表し、該へテロアリール基は、ピロリル基、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、及びキサンテニル基から選ばれる。
 A2は下記式(2-1)又は(2-2)で表わされる基である。
Figure JPOXMLDOC01-appb-C000009
(式中、
 Ar1は、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表わす。
 R5~R8は同一でも異なっていてもよく、それぞれ独立に、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換の炭素数1~10のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、置換もしくは無置換の炭素数6~30のアリールシリル基、又は、置換もしくは無置換の炭素数7~30のアラルキル基を表わす。隣接するR5同士及びR6同士は互いに結合して、環構造の一部を形成する飽和もしくは不飽和の、置換もしくは無置換の2価の基を形成しても良い。
 f、g、及びhは、それぞれ独立に、0~4の整数を表す。
 eは0~3の整数を表す。)
 ただし、A2が式(2-1)で表される基である場合、L2は単結合を表し、A2が式(2-2)で表される基である場合L2は単結合又は置換もしくは無置換の環形成炭素数6~30のアリーレン基を表す。)
 さらに、本発明は陽極、陰極、及び該陽極と陰極の間に配置された1層以上の有機薄膜層を含み、該有機薄膜層の少なくとも1層が上記式(1)で表されるビスカルバゾール誘導体を少なくとも1種含む有機エレクトロルミネッセンス素子を提供する。
 本発明によれば、低電圧駆動が可能で、長寿命である有機エレクトロルミネッセンス素子を提供することができる。
図1は本発明の有機EL素子の一例を示す概略断面図である。
 以下、本発明を詳細に説明する。
(ビスカルバゾール誘導体)
 本発明のビスカルバゾール誘導体は下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000010
 式(1)において、L1及びL2は連結基であり、同一でも異なっていてもよく、それぞれ独立に、単結合又は置換もしくは無置換の環形成炭素数6~30、好ましくは6~18のアリーレン基を表す。
 R1~R4は同一でも異なっていてもよく、それぞれ独立に、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20、好ましくは1~10のアルキル基、置換もしくは無置換の炭素数3~20、好ましくは3~10のシクロアルキル基、置換もしくは無置換の炭素数1~20、好ましくは1~10のアルコキシ基、置換もしくは無置換の炭素数1~20、好ましくは1~10のハロアルキル基、置換もしくは無置換の炭素数1~20、好ましくは1~10のハロアルコキシ基、置換もしくは無置換の炭素数1~10、好ましくは1~6のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30、好ましくは6~18のアリール基、置換もしくは無置換の環形成炭素数6~30、好ましくは6~18のアリールオキシ基、置換もしくは無置換の炭素数6~30、好ましくは6~18のアリールシリル基、置換もしくは無置換の炭素数7~30、好ましくは7~19のアラルキル基、又は、置換もしくは無置換の環形成原子数5~30、好ましくは6~18のヘテロアリール基を表わす。隣接するR1同士、R2同士、R3同士、及びR4同士は互いに結合して、環構造の一部を形成する飽和もしくは不飽和の、置換もしくは無置換の2価の基を形成しても良い。
 a、dは、それぞれ独立に、0~4の整数を表し、b、cは、それぞれ独立に、0~3の整数を表す。
 A1は、置換もしくは無置換の環形成炭素数6~30、好ましくは6~18のアリール基、又は、置換もしくは無置換の環形成原子数5~30、好ましくは6~18のヘテロアリール基を表す。
 A2は下記式(2-1)又は(2-2)で表わされる基である。
Figure JPOXMLDOC01-appb-C000011
 式中、Ar1は、置換もしくは無置換の環形成炭素数6~30、好ましくは6~18のアリール基、又は、置換もしくは無置換の環形成原子数5~30、好ましくは6~18のヘテロアリール基を表わす。
 R5~R8は同一でも異なっていてもよく、それぞれ独立に、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20、好ましくは1~10のアルキル基、置換もしくは無置換の炭素数3~20、好ましくは3~10のシクロアルキル基、置換もしくは無置換の炭素数1~20、好ましくは1~10のアルコキシ基、置換もしくは無置換の炭素数1~20、好ましくは1~10のハロアルキル基、置換もしくは無置換の炭素数1~20、好ましくは1~10のハロアルコキシ基、置換もしくは無置換の炭素数1~10、好ましくは1~6のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30、好ましくは6~18のアリール基、置換もしくは無置換の環形成炭素数6~30、好ましくは6~18のアリールオキシ基、置換もしくは無置換の炭素数6~30、好ましくは6~18のアリールシリル基、又は、置換もしくは無置換の炭素数7~30、好ましくは7~19のアラルキル基を表わす。隣接するR5同士及びR6同士は互いに結合して、環構造の一部を形成する飽和もしくは不飽和の、置換もしくは無置換の2価の基を形成しても良い。
 f、g、及びhは、それぞれ独立に、0~4の整数を表す。
 eは0~3の整数を表す。
 ただし、A2が式(2-1)で表される基である場合、L2は単結合を表し、A2が式(2-2)で表される基である場合L2は単結合又は置換もしくは無置換の環形成炭素数6~30のアリーレン基であり、好ましくは置換もしくは無置換の環形成炭素数6~30のアリーレン基を表す。
 上記式(1)、(2-1)、及び(2-3)において、a~d及びe~hのいずれかがゼロであるとき、(R10、(R20、(R30、(R40、(R50、(R60、(R70、及び(R80は水素原子を表す。
 L1及びL2が表すアリーレン基の例としては、ベンゼン、ナフタレン、フェナントレン、ビフェニル、ターフェニル(異性体を含む)、クォーターフェニル(異性体を含む)、フルオランテン、トリフェニレン、フルオレン、9,9-ジメチルフルオレン、ベンゾ[c]フェナントレン、ベンゾ[a]トリフェニレン、ナフト[1,2-c]フェナントレン、ナフト[1,2-a]トリフェニレン、ジベンゾ[a,c]トリフェニレン、及びベンゾ[b]フルオランテンから選ばれる芳香族化合物の2価の残基が挙げられ、好ましくは、1,4-フェニレン基、1,3-フェニレン基、ナフタレン-2,6-ジイル基、ナフタレン-2,7-ジイル基、9,9-ジメチルフルオレン-2,7-ジイル基である。
 R1~R4及びR5~R8が表すアルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、ネオペンチル基、1-メチルペンチル基、2-メチルペンチル基、1-ペンチルヘキシル基、1-ブチルペンチル基、1-ヘプチルオクチル基、3-メチルペンチル基等が挙げられ、好ましくは、メチル基、t-ブチル基、エチル基、n-プロピル基、イソプロピル基である。
 R1~R4及びR5~R8が表すシクロアルキル基の例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロオクチル基などが挙げられ、好ましくは、シクロペンチル基、シクロヘキシル基である。
 R1~R4及びR5~R8が表すアルコキシ基の例としては、-OY(ただしYは前記のアルキル基)で表される基が挙げられ、好ましくは、メトキシ基、エトキシ基、プロポキシ基である。
 R1~R4及びR5~R8が表すハロアルキル基の例としては、前記のアルキル基の少なくとも1つの水素原子をフッ素原子、塩素原子、ヨード原子、及び臭素原子から選ばれるハロゲン原子で置換して得られる基が挙げられ、好ましくは、トリフルオロメチル基、2,2,2-トリフルオロエチル基、1,1,2,2,2-ペンタフルオロエチル基、1,1,1,3,3,3-ヘキサフルオロ-2-プロピル基である。
 R1~R4及びR5~R8が表すハロアルコキシ基の例としては、-OY’(ただしY’は前記のハロアルキル基)で表される基が挙げられ、好ましくは、トリフルオロメトキシ基、2,2,2-トリフルオロエトキシ基、1,1,2,2,2-ペンタフルオロエトキシ基、1,1,1,3,3,3-ヘキサフルオロ-2-プロポキシ基である。
 R1~R4及びR5~R8が表すアルキルシリル基の例としては、-SiH2R、-SiHR2、又は-SiR3(ただしRは前記のアルキル基であり、2又は3個のRは同一でも異なっていてもよい)で表される基が挙げられ、好ましくは、トリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基である。
 R1~R4、A1、Ar1、及びR5~R8が表すアリール基の例としては、フェニル基、ナフチル基、フェナントリル基、ビフェニル基、ターフェニル基、クォーターフェニル基、フルオランテニル基、トリフェニレニル基、9,9-ジメチルフルオレニル基、ベンゾ[c]フェナントレニル基、ベンゾ[a]トリフェニレニル基、ナフト[1,2-c]フェナントレニル基、ナフト[1,2-a]トリフェニレニル基、ジベンゾ[a,c]トリフェニレニル基、ベンゾ[b]フルオランテニル基などが挙げられ、好ましくは、フェニル基、4-ビフェニル基、3-ビフェニル基、5’-m-ターフェニル基、1-ナフチル基、9,9-ジメチルフルオレン-2-イル基、2-ナフチル基、9-フェナントレニル基である。
 R1~R4及びR5~R8が表すアリールシリル基の例としては、-SiH2R’、-SiHR’2、又は-SiR’3(ただしR’は前記のアリール基であり、2又は3個のR’は同一でも異なっていてもよい)で表される基が挙げられ、好ましくは、トリフェニルシリル基である。
 R1~R4及びR5~R8が表すアラルキル基の例としては、前記アルキル基の1つの水素原子を前記アリール基で置換して得られる炭素数が7~30の基が挙げられ、好ましくは、ベンジル基、ナフチルメチル基である。
 R1~R4及びA1が表すヘテロアリール基は、ピロリル基、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、及びキサンテニル基から選ばれ、好ましくは、フリル基、チエニル基、ベンゾフラニル基、ベンゾチオフェニル基、ジベンゾフラニル基、ジベンゾチオフェニル基である。
 Ar1が表すヘテロアリール基は窒素原子、酸素原子、及び硫黄原子から選ばれる少なくとも1個のヘテロ原子を含む環形成原子数5~30のヘテロアリール基であり、その例としては、ピロリル基、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、カルバゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、及びキサンテニル基が挙げられ、好ましくはフリル基、チエニル基、ベンゾフラニル基、ベンゾチオフェニル基、ジベンゾフラニル基、ジベンゾチオフェニル基である。
 隣接するR1同士、R2同士、R3同士、R4同士、R5同士、及びR6同士が互いに結合して形成する2価の基としてはブタン-1,4-ジイル基、1,3-ブタジエン-1,4-ジイル基などが挙げられる。
 式(1)で表されるビスカルバゾール誘導体は、下記式(3-1)~(3-4)で表される2,2’-ビスカルバゾール誘導体、3,2’-ビスカルバゾール誘導体、2,3’-ビスカルバゾール誘導体、又は3,3’-ビスカルバゾール誘導体であることが好ましく、3,3’-ビスカルバゾール誘導体であることがより好ましい。
Figure JPOXMLDOC01-appb-C000012
 式(3-1)~(3-4)において、A1、A2、L1、L2、R1~R4、a~dは上記と同様である。
 式(2-1)で表される基は、好ましくは下記式(2-3)又は(2-4)で表される。
Figure JPOXMLDOC01-appb-C000013
式(2-3)及び(2-4)において、Ar1、R5、R6、e、及びfは上記と同様である。
 A2が式(2-3)で表される基であると、A2の電子供与性効果が有効に働き、イオン化ポテンシャルを十分に低減することが出来ると考えられる。A2が式(2-4)で表される基であると、正孔移動度が大きくなるので有機EL素子の駆動電圧の低減に有効であると考えられる。
 上記及び後述する「置換もしくは無置換」という場合の任意の置換基としてはフッ素原子、シアノ基、炭素数1~20のアルキル基、炭素数3~20のシクロアルキル基、炭素数1~20のアルコキシ基、炭素数1~20のハロアルキル基、炭素数1~20のハロアルコキシ基、炭素数1~10のアルキルシリル基、環形成炭素数6~30のアリール基、環形成炭素数6~30のアリールオキシ基、炭素数6~30のアリールシリル基、炭素数7~30のアラルキル基、及び環形成原子数5~30のヘテロアリール基が挙げられる。これらの置換基の具体例は上記したとおりである。また、これらの置換基は複数でも良く、複数の場合は互いに同一でも異なっていても良い。
 式(1)で表されるビスカルバゾール誘導体は、例えば、3,3’-ビスカルバゾール誘導体は下記合成ルートにより製造することができる。
Figure JPOXMLDOC01-appb-C000014
式中、A1、A2、L1、L2、R1~R4、a~dは上記と同様である。
 各素反応は公知であるので、当業者であれば各素反応の条件を容易に選択することができ、他のビスカルバゾール誘導体も容易に合成することが出来る。
 以下に式(1)で表されるビスカルバゾール誘導体の具体例を記載するが、本発明の化合物は下記化合物に限定されない。
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
(有機EL素子)
 本発明の有機EL素子は陰極と陽極との間に、1層または2層以上の有機薄膜層を有し、少なくとも1つの有機薄膜層は発光層である。該有機薄膜層の少なくとも1層が本発明のビスカルバゾール誘導体を少なくとも1種含む。有機EL素子が正孔注入層及び/又は正孔輸送層を有し、該正孔注入層及び/又は正孔輸送層が本発明のビスカルバゾール誘導体を少なくとも1種含むことが好ましい。発光層が本発明のビスカルバゾール誘導体を少なくとも1種含んでいてもよい。
 以下、本発明の有機EL素子の構成について説明する。
 本発明の有機EL素子の代表的な素子構成としては、以下の素子構成を挙げることができるが、特にこれらに限定されるものではない。なお、(4)の素子構成が好ましく用いられる。
(1)陽極/正孔輸送層/発光層/陰極
(2)陽極/正孔注入層/正孔輸送層/発光層/陰極
(3)陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極
(4)陽極/正孔注入層/正孔輸送層/発光層/電子輸送層/電子注入層/陰極
 なお、正孔輸送層と発光層との間には、適宜、電子障壁層を設けてもよい。また、発光層と電子注入層との間や、発光層と電子輸送層との間には、適宜、正孔障壁層を設けてもよい。電子障壁層や正孔障壁層によれば、電子又は正孔を発光層に閉じ込めて、発光層における電荷の再結合確率を高め、発光効率を向上させることができる。
 本発明のビスカルバゾール誘導体は、単発光ユニット型(シンプル型)有機EL素子及び積層発光ユニット型(タンデム型)有機EL素子の形成材料として用いられる。例えば、これらの有機EL素子の発光層と陽極の間に設けられる正孔輸送機能を有する層を形成する材料、及び、三重項エネルギー(第1励起状態)が大きいので発光層を形成する燐光発光材料として用いることが出来る。
 図1に、本発明の有機EL素子の一例の概略構成を示す。有機EL素子1は、透明基板2、陽極3、陰極4、陽極3と陰極4との間に配置された有機薄膜層10とを有する。有機薄膜層10は、燐光ホスト材料と燐光ドーパントを含む燐光発光層5を有する。燐光発光層5と陽極3との間に正孔注入・輸送層6等、燐光発光層5と陰極4との間に電子注入・輸送層7等を形成してもよい。また、燐光発光層5の陽極3側に電子障壁層を、燐光発光層5の陰極4側に正孔障壁層を、それぞれ設けてもよい。これにより、電子や正孔を燐光発光層5に閉じ込めて、燐光発光層5における励起子の生成確率を高めることができる。
 なお、本明細書において、蛍光ドーパントと組み合わされたホストを蛍光ホストと称し、燐光ドーパントと組み合わされたホストを燐光ホストと称する。蛍光ホストと燐光ホストは分子構造のみにより区分されるものではない。すなわち、燐光ホストとは、燐光ドーパントを含有する燐光発光層を構成する材料を意味し、蛍光発光層を構成する材料として利用できないことを意味しているわけではない。蛍光ホストについても同様である。
 また、本明細書中で「正孔注入・輸送層」は「正孔注入層及び正孔輸送層のうちの一方又は双方」を意味し、「電子注入・輸送層」は「電子注入層及び電子輸送層の一方又は双方」を意味する。
(透明性基板)
 本発明の有機EL素子は、透光性の基板上に作製する。透光性基板は有機EL素子を支持する基板であり、400nm~700nmの可視領域の光の透過率が50%以上で平滑な基板が好ましい。具体的には、ガラス板、ポリマー板等が挙げられる。ガラス板としては、特にソーダ石灰ガラス、バリウム・ストロンチウム含有ガラス、鉛ガラス、アルミノケイ酸ガラス、ホウケイ酸ガラス、バリウムホウケイ酸ガラス、石英等を原料として用いてなるものを挙げられる。またポリマー板としては、ポリカーボネート、アクリル、ポリエチレンテレフタレート、ポリエーテルサルファイド、ポリサルフォン等を原料として用いてなるものを挙げることができる。
(陽極)
 有機EL素子の陽極は、正孔を正孔注入層、正孔輸送層又は発光層に注入する役割を担うものであり、4.5eV以上の仕事関数を有することが効果的である。陽極材料の具体例としては、酸化インジウム錫合金(ITO)、酸化錫(NESA)、酸化インジウム亜鉛酸化物、金、銀、白金、銅等が挙げられる。陽極はこれらの電極物質を蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。発光層からの発光を陽極から取り出す場合、陽極の可視領域の光の透過率を10%より大きくすることが好ましい。また、陽極のシート抵抗は、数百Ω/□以下が好ましい。陽極の膜厚は、材料にもよるが、通常10nm~1μm、好ましくは10nm~200nmの範囲で選択される。
(陰極)
 陰極は電子注入層、電子輸送層又は発光層に電子を注入する役割を担うものであり、仕事関数の小さい材料により形成するのが好ましい。陰極材料は特に限定されないが、具体的にはインジウム、アルミニウム、マグネシウム、マグネシウム-インジウム合金、マグネシウム-アルミニウム合金、アルミニウム-リチウム合金、アルミニウム-スカンジウム-リチウム合金、マグネシウム-銀合金等が使用できる。陰極も、陽極と同様に、蒸着法やスパッタリング法等の方法で薄膜を形成させることにより作製することができる。また、必要に応じて、陰極側から発光を取り出してもよい。
(発光層)
 発光機能を有する有機層であって、ドーピングシステムを採用する場合、ホスト材料とドーパント材料を含んでいる。このとき、ホスト材料は、主に電子と正孔の再結合を促し、励起子を発光層内に閉じ込める機能を有し、ドーパント材料は、再結合で得られた励起子を効率的に発光させる機能を有する。
 燐光素子の場合、ホスト材料は主にドーパントで生成された励起子を発光層内に閉じ込める機能を有する。
 発光層への正孔の注入し易さと電子の注入し易さは異なっていてもよく、また、発光層中での正孔と電子の移動度で表される正孔輸送能と電子輸送能が異なっていてもよい。
 発光層は、例えば蒸着法、スピンコート法、LB法等の公知の方法により形成することができる。また、樹脂等の結着剤と材料化合物とを溶剤に溶かした溶液をスピンコート法等により薄膜化することによっても、発光層を形成することができる。
 発光層は、分子堆積膜であることが好ましい。分子堆積膜とは、気相状態の材料化合物から沈着され形成された薄膜や、溶液状態又は液相状態の材料化合物から固体化され形成された膜のことであり、通常この分子堆積膜は、LB法により形成された薄膜(分子累積膜)とは凝集構造、高次構造の相違や、それに起因する機能的な相違により区分することができる。
 発光層を形成する燐光ドーパント(燐光発光材料)は三重項励起状態から発光することのできる化合物であり、三重項励起状態から発光する限り特に限定されないが、Ir,Pt,Os,Au,Cu,Re及びRuから選択される少なくとも一つの金属と配位子とを含む有機金属錯体であることが好ましい。前記配位子は、オルトメタル結合を有することが好ましい。燐光量子収率が高く、発光素子の外部量子効率をより向上させることができるという点で、Ir,Os及びPtから選ばれる金属原子を含有する金属錯体が好ましく、イリジウム錯体、オスミウム錯体、白金錯体等の金属錯体がより好ましく、イリジウム錯体及び白金錯体がさらに好ましく、オルトメタル化イリジウム錯体が特に好ましい。
 燐光ドーパントの発光層における含有量は特に制限はなく目的に応じて適宜選択することができるが、例えば、0.1~70質量%が好ましく、1~30質量%がより好ましい。燐光ドーパントの含有量が0.1質量%以上であると十分な発光が得られ、70質量%以下であると濃度消光を避けることができる。
 好ましい有機金属錯体の具体例を、以下に示す。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000032
 燐光ホストはその励起状態から燐光ドーパントへエネルギー移動が起こる結果、燐光ドーパントを発光させる機能を有する化合物である。燐光ホストとしては励起子エネルギーを燐光ドーパントにエネルギー移動できる化合物ならば特に制限はなく、目的に応じて適宜選択することができる。
 燐光ホストの具体例としては、カルバゾール誘導体、トリアゾール誘導体、オキサゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミノ置換カルコン誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、シラザン誘導体、芳香族第三アミン化合物、スチリルアミン化合物、芳香族ジメチリデン系化合物、ポルフィリン系化合物、アントラキノジメタン誘導体、アントロン誘導体、ジフェニルキノン誘導体、チオピランジオキシド誘導体、カルボジイミド誘導体、フルオレニリデンメタン誘導体、ジスチリルピラジン誘導体、ナフタレンペリレン等の複素環テトラカルボン酸無水物、フタロシアニン誘導体、8-キノリノール誘導体の金属錯体やメタルフタロシアニン、ベンゾオキサゾールやベンゾチアゾールを配位子とする金属錯体に代表される各種金属錯体ポリシラン系化合物、ポリ(N-ビニルカルバゾール)誘導体、アニリン系共重合体、チオフェンオリゴマー、ポリチオフェン等の導電性高分子オリゴマー、ポリチオフェン誘導体、ポリフェニレン誘導体、ポリフェニレンビニレン誘導体、ポリフルオレン誘導体等の高分子化合物等が挙げられる。燐光ホストは単独で使用しても良いし、2種以上を併用しても良い。具体例としては、以下のような化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000033
 発光層の膜厚は、好ましくは5~50nm、より好ましくは7~50nm、さらに好ましくは10~50nmである。5nm以上であると発光層の形成が容易であり、50nm以下であると駆動電圧の上昇が避けられる。
(電子供与性ドーパント)
 本発明の有機EL素子は、陰極と有機薄膜層との界面領域に電子供与性ドーパントを有することも好ましい。このような構成によれば、有機EL素子における発光輝度の向上や長寿命化が図られる。電子供与性ドーパントとしては、アルカリ金属、アルカリ金属錯体、アルカリ金属化合物、アルカリ土類金属、アルカリ土類金属錯体、アルカリ土類金属化合物、希土類金属、希土類金属錯体、及び希土類金属化合物等から選ばれた少なくとも一種類が挙げられる。
 アルカリ金属としては、Na(仕事関数:2.36eV)、K(仕事関数:2.28eV)、Rb(仕事関数:2.16eV)、Cs(仕事関数:1.95eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。これらのうち好ましくはK、Rb、Cs、さらに好ましくはRb又はCsであり、最も好ましくはCsである。アルカリ土類金属としては、Ca(仕事関数:2.9eV)、Sr(仕事関数:2.0eV~2.5eV)、Ba(仕事関数:2.52eV)等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。希土類金属としては、Sc、Y、Ce、Tb、Yb等が挙げられ、仕事関数が2.9eV以下のものが特に好ましい。
 アルカリ金属化合物としては、Li2O、Cs2O、K2O等のアルカリ酸化物、LiF、NaF、CsF、KF等のアルカリハロゲン化物等が挙げられ、LiF、Li2O、NaFが好ましい。アルカリ土類金属化合物としては、BaO、SrO、CaO及びこれらを混合したBaxSr1-xO(0<x<1)、BaxCa1-xO(0<x<1)等が挙げられ、BaO、SrO、CaOが好ましい。希土類金属化合物としては、YbF3、ScF3、ScO3、Y23、Ce23、GdF3、TbF3等が挙げられ、YbF3、ScF3、TbF3が好ましい。
 アルカリ金属錯体、アルカリ土類金属錯体、希土類金属錯体としては、それぞれ金属イオンとしてアルカリ金属イオン、アルカリ土類金属イオン、希土類金属イオンの少なくとも一つ含有するものであれば特に限定はない。また、配位子にはキノリノール、ベンゾキノリノール、アクリジノール、フェナントリジノール、ヒドロキシフェニルオキサゾール、ヒドロキシフェニルチアゾール、ヒドロキシジアリールオキサジアゾール、ヒドロキシジアリールチアジアゾール、ヒドロキシフェニルピリジン、ヒドロキシフェニルベンゾイミダゾール、ヒドロキシベンゾトリアゾール、ヒドロキシフルボラン、ビピリジル、フェナントロリン、フタロシアニン、ポルフィリン、シクロペンタジエン、βージケトン類、アゾメチン類、及びそれらの誘導体などが好ましいが、これらに限定されるものではない。
 電子供与性ドーパントの添加形態としては、界面領域に層状又は島状に形成すると好ましい。形成方法としては、抵抗加熱蒸着法により電子供与性ドーパントを蒸着しながら、界面領域を形成する有機化合物(発光材料や電子注入材料)を同時に蒸着させ、有機化合物に電子供与性ドーパントを分散する方法が好ましい。分散濃度はモル比で有機化合物:電子供与性ドーパント=100:1~1:100、好ましくは5:1~1:5である。
 電子供与性ドーパントを層状に形成する場合は、界面の有機層である発光材料や電子注入材料を層状に形成した後に、電子供与性ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは層の厚み0.1nm~15nmで形成する。電子供与性ドーパントを島状に形成する場合は、界面の有機層である発光材料や電子注入材料を島状に形成した後に、電子供与性ドーパントを単独で抵抗加熱蒸着法により蒸着し、好ましくは島の厚み0.05nm~1nmで形成する。
 本発明の有機EL素子における、主成分と電子供与性ドーパントの割合は、モル比で主成分:電子供与性ドーパント=5:1~1:5であると好ましく、2:1~1:2であるとさらに好ましい。
(電子注入・輸送層)
 発光層と陰極との間に形成される有機層であって、電子を陰極から発光層へ輸送する機能を有する。電子輸送層が複数層で構成される場合、陰極に近い有機層を電子注入層と定義することがある。電子注入層は、陰極から電子を効率的に有機層ユニットに注入する機能を有する。
 電子注入・輸送層に用いる電子輸送性材料としては、分子内にヘテロ原子を1個以上含有する芳香族ヘテロ環化合物が好ましく用いられ、特に含窒素環誘導体が好ましい。また、含窒素環誘導体としては、含窒素6員環もしくは5員環骨格を有する芳香族環、又は含窒素6員環もしくは5員環骨格を有する縮合芳香族環化合物が好ましい。
 この含窒素環誘導体としては、例えば、下記式(A)で表される含窒素環金属キレート錯体が好ましい。
Figure JPOXMLDOC01-appb-C000034
 式(A)におけるR2~R7は、それぞれ独立に、水素原子、重水素原子、ハロゲン原子、ヒドロキシル基、アミノ基、炭素数1~40の炭化水素基、炭素数1~40のアルコキシ基、炭素数6~50のアリールオキシ基、アルコキシカルボニル基、または、環形成炭素数5~50の芳香族複素環基であり、これらは置換されていてもよい。
 ハロゲン原子としては、例えば、フッ素、塩素、臭素、ヨウ素等が挙げられる。
 置換されていてもよいアミノ基の例としては、アルキルアミノ基、アリールアミノ基、アラルキルアミノ基が挙げられる。
 アルキルアミノ基及びアラルキルアミノ基は-NQ12と表される。Q1及びQ2は、それぞれ独立に、炭素数1~20のアルキル基又は炭素数1~20のアラルキル基を表す。Q1及びQ2の一方は水素原子又は重水素原子であってもよい。
 アリールアミノ基は-NAr1Ar2と表され、Ar1及びAr2は、それぞれ独立に、炭素数6~50の非縮合芳香族炭化水素基及び縮合芳香族炭化水素基を表す。Ar1及びAr2の一方は水素原子又は重水素原子であってもよい。
 炭素数1~40の炭化水素基はアルキル基、アルケニル基、シクロアルキル基、アリール基、及びアラルキル基を含む。
 アルコキシカルボニル基は-COOY’と表され、Y’は炭素数1~20のアルキル基を表す。
 Mは、アルミニウム(Al)、ガリウム(Ga)又はインジウム(In)であり、Inであると好ましい。
 Lは、下記式(A’)又は(A”)で表される基である。
Figure JPOXMLDOC01-appb-C000035
 式(A’)中、R8~R12は、それぞれ独立に、水素原子、重水素原子、または置換もしくは無置換の炭素数1~40の炭化水素基であり、互いに隣接する基が環状構造を形成していてもよい。また、前記式(A”)中、R13~R27は、それぞれ独立に、水素原子、重水素原子又は置換もしくは無置換の炭素数1~40の炭化水素基であり、互いに隣接する基が環状構造を形成していてもよい。
 式(A’)及び式(A”)のR8~R12及びR13~R27が示す炭素数1~40の炭化水素基は、前記式(A)中のR2~R7が示す炭化水素基と同様である。また、R8~R12及びR13~R27の互いに隣接する基が環状構造を形成した場合の2価の基としては、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ジフェニルメタン-2,2’-ジイル基、ジフェニルエタン-3,3’-ジイル基、ジフェニルプロパン-4,4’-ジイル基等が挙げられる。
 電子注入・輸送層に用いられる電子伝達性化合物としては、8-ヒドロキシキノリン又はその誘導体の金属錯体、オキサジアゾール誘導体、含窒素複素環誘導体が好適である。上記8-ヒドロキシキノリン又はその誘導体の金属錯体の具体例としては、オキシン(一般に8-キノリノール又は8-ヒドロキシキノリン)のキレートを含む金属キレートオキシノイド化合物、例えばトリス(8-キノリノール)アルミニウムを用いることができる。そして、オキサジアゾール誘導体としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000036
 前記式中、Ar17、Ar18、Ar19、Ar21、Ar22及びAr25は、それぞれ置換もしくは無置換の炭素数6~50の芳香族炭化水素基又は縮合芳香族炭化水素基を示し、Ar17とAr18、Ar19とAr21、Ar22とAr25は、たがいに同一でも異なっていてもよい。芳香族炭化水素基又は縮合芳香族炭化水素基としては、フェニル基、ナフチル基、ビフェニル基、アントラニル基、ペリレニル基、ピレニル基などが挙げられる。これらの置換基としては炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又はシアノ基等が挙げられる。
 Ar20、Ar23及びAr24は、それぞれ置換もしくは無置換の炭素数6~50の2価の芳香族炭化水素基又は縮合芳香族炭化水素基を示し、Ar23とAr24は、たがいに同一でも異なっていてもよい。2価の芳香族炭化水素基又は縮合芳香族炭化水素基としては、フェニレン基、ナフチレン基、ビフェニレン基、アントラニレン基、ペリレニレン基、ピレニレン基などが挙げられる。これらの置換基としては炭素数1~10のアルキル基、炭素数1~10のアルコキシ基又はシアノ基等が挙げられる。
 これらの電子伝達性化合物は、薄膜形成性の良好なものが好ましく用いられる。そして、これら電子伝達性化合物の具体例としては、下記のものを挙げることができる。
Figure JPOXMLDOC01-appb-C000037
 電子伝達性化合物としての含窒素複素環誘導体は、以下の一般式を有する有機化合物からなる含窒素複素環誘導体であって、金属錯体でない含窒素化合物が挙げられる。例えば、下記式(B)に示す骨格を含有する5員環もしくは6員環や、下記式(C)に示す構造のものが挙げられる。
Figure JPOXMLDOC01-appb-C000038
 前記式(C)中、Xは炭素原子もしくは窒素原子を表す。Z1ならびにZ2は、それぞれ独立に含窒素ヘテロ環を形成可能な原子群を表す。
 含窒素複素環誘導体は、さらに好ましくは、5員環もしくは6員環からなる含窒素芳香多環族を有する有機化合物である。さらには、このような複数窒素原子を有する含窒素芳香多環族の場合は、上記式(B)と(C)もしくは上記式(B)と下記式(D)を組み合わせた骨格を有する含窒素芳香多環有機化合物が好ましい。
Figure JPOXMLDOC01-appb-C000039
 前記の含窒素芳香多環有機化合物の含窒素基は、例えば、以下の一般式で表される含窒素複素環基から選択される。
Figure JPOXMLDOC01-appb-C000040
 前記各式中、Rは、炭素数6~40の芳香族炭化水素基又は縮合芳香族炭化水素基、炭素数3~40の芳香族複素環基又は縮合芳香族複素環基、炭素数1~20のアルキル基、または炭素数1~20のアルコキシ基であり、nは0~5の整数であり、nが2以上の整数であるとき、複数のRは互いに同一又は異なっていてもよい。
 さらに、好ましい具体的な化合物として、下記式で表される含窒素複素環誘導体が挙げられる。
           HAr-L1-Ar1-Ar2
前記式中、HArは、置換もしくは無置換の炭素数3~40の含窒素複素環基であり、L1は単結合、置換もしくは無置換の炭素数6~40の芳香族炭化水素基又は縮合芳香族炭化水素基又は置換もしくは無置換の炭素数3~40の芳香族複素環基又は縮合芳香族複素環基であり、Ar1は置換もしくは無置換の炭素数6~40の2価の芳香族炭化水素基であり、Ar2は置換もしくは無置換の炭素数6~40の芳香族炭化水素基又は縮合芳香族炭化水素基又は置換もしくは無置換の炭素数3~40の芳香族複素環基又は縮合芳香族複素環基である。
 HArは、例えば、下記の群から選択される。
Figure JPOXMLDOC01-appb-C000041
 L1は、例えば、下記の群から選択される。
Figure JPOXMLDOC01-appb-C000042
 Ar1は、例えば、下記のアリールアントラニル基から選択される。
Figure JPOXMLDOC01-appb-C000043
 前記式中、R1~R14は、それぞれ独立して、水素原子、重水素原子、ハロゲン原子、炭素数1~20のアルキル基、炭素数1~20のアルコキシ基、炭素数6~40のアリールオキシ基、置換もしくは無置換の炭素数6~40の芳香族炭化水素基又は縮合芳香族炭化水素基、または置換もしくは無置換の炭素数3~40の芳香族複素環基又は縮合芳香族複素環基であり、Ar3は、置換もしくは無置換の炭素数6~40の芳香族炭化水素基又は縮合芳香族炭化水素基または置換もしくは無置換の炭素数3~40の芳香族複素環基又は縮合芳香族複素環基である。また、R1~R8は、いずれも水素原子又は重水素原子である含窒素複素環誘導体であってもよい。
 Ar2は、例えば、下記の群から選択される。
Figure JPOXMLDOC01-appb-C000044
 電子伝達性化合物としての含窒素芳香多環有機化合物には、この他、下記の化合物も好適に用いられる。
Figure JPOXMLDOC01-appb-C000045
 前記式中、R1~R4は、それぞれ独立に、水素原子、重水素原子、置換もしくは無置換の炭素数1~20の脂肪族基、置換もしくは無置換の炭素数3~20の脂肪族式環基、置換もしくは無置換の炭素数6~50の芳香族環基、置換もしくは無置換の炭素数3~50の複素環基を表し、X1、X2は、それぞれ独立に、酸素原子、硫黄原子、またはジシアノメチレン基を表す。
 また、電子伝達性化合物として、下記の化合物も好適に用いられる。
Figure JPOXMLDOC01-appb-C000046
 前記式中、R1、R2、R3及びR4は互いに同一のまたは異なる基であって、下記式で表わされる芳香族炭化水素基又は縮合芳香族炭化水素基である。
 前記式中、R5、R6、R7、R8及びR9は互いに同一または異なる基であって、水素原子、重水素原子、飽和もしくは不飽和の炭素数1~20のアルコキシル基、飽和もしくは不飽和の炭素数1~20のアルキル基、アミノ基、または炭素数1~20のアルキルアミノ基である。R5、R6、R7、R8及びR9の少なくとも1つは水素原子、重水素原子以外の基である。
 さらに、電子伝達性化合物は、該含窒素複素環基または含窒素複素環誘導体を含む高分子化合物であってもよい。
 本発明の有機EL素子の電子輸送層は、下記式(60)~(62)で表される含窒素複素環誘導体を少なくとも1種含むことが特に好ましい。
Figure JPOXMLDOC01-appb-C000048
(式中、Z1、Z2及びZ3は、それぞれ独立に、窒素原子又は炭素原子である。
 R1及びR2は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基又は置換もしくは無置換の炭素数1~20のアルコキシ基である。
 nは、0~5の整数であり、nが2以上の整数であるとき、複数のR1は互いに同一でも異なっていてもよい。また、隣接する2つのR1同士が互いに結合して、置換もしくは無置換の炭化水素環を形成していてもよい。
 Ar1は、置換もしくは無置換の環形成炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 Ar2は、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
 但し、Ar1、Ar2のいずれか一方は、置換もしくは無置換の環形成炭素数10~50の縮合芳香族炭化水素環基又は置換もしくは無置換の環形成原子数9~50の縮合芳香族複素環基である。
 Ar3は、置換もしくは無置換の環形成炭素数6~50のアリーレン基又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基である。
 L1、L2及びL3は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は置換もしくは無置換の環形成原子数9~50の2価の縮合芳香族複素環基である。)
 環形成炭素数6~50のアリール基としては、フェニル基、ナフチル基、アントリル基、フェナントリル基、ナフタセニル基、クリセニル基、ピレニル基、ビフェニル基、ターフェニル基、トリル基、フルオランテニル基、フルオレニル基などが挙げられる。
 環形成原子数5~50のヘテロアリール基としては、ピローリル基、フリル基、チエニル基、シローリル基、ピリジル基、キノリル基、イソキノリル基、べンゾフリル基、イミダゾリル基、ピリミジル基、カルバゾリル基、セレノフェニル基、オキサジアゾリル基、トリアゾーリル基、ピラジニル基、ピリダジニル基、トリアジニル基、キノキサリニル基、アクリジニル基、イミダゾ[1,2-a]ピリジニル基、イミダゾ[1,2-a]ピリミジニル基などが挙げられる。
 炭素数1~20のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、へキシル基などが挙げられる。
 炭素数1~20のハロアルキル基としては、前記アルキル基の1又は2以上の水素原子をフッ素、塩素、ヨウ素および臭素から選ばれる少なくとも1のハロゲン原子で置換して得られる基が挙げられる。
 炭素数1~20のアルコキシ基としては、前記アルキル基をアルキル部位としては有する基が挙げられる。
 環形成炭素数6~50のアリーレン基としては、前記アリール基から水素原子1個を除去して得られる基が挙げられる。
 環形成原子数9~50の2価の縮合芳香族複素環基としては、前記ヘテロアリール基として記載した縮合芳香族複素環基から水素原子1個を除去して得られる基が挙げられる。
 電子注入・輸送層の膜厚は、特に限定されないが、好ましくは1nm~100nmである。
 また、電子注入層の構成成分として、含窒素環誘導体の他に無機化合物として、絶縁体又は半導体を使用することが好ましい。電子注入層が絶縁体や半導体で構成されていれば、電流のリークを有効に防止して、電子注入性を向上させることができる。
 このような絶縁体としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物からなる群から選択される少なくとも一つの金属化合物を使用するのが好ましい。電子注入層がこれらのアルカリ金属カルコゲニド等で構成されていれば、電子注入性をさらに向上させることができる点で好ましい。具体的に、好ましいアルカリ金属カルコゲニドとしては、例えば、Li2O、K2O、Na2S、Na2Se及びNa2Oが挙げられ、好ましいアルカリ土類金属カルコゲニドとしては、例えば、CaO、BaO、SrO、BeO、BaS及びCaSeが挙げられる。また、好ましいアルカリ金属のハロゲン化物としては、例えば、LiF、NaF、KF、LiCl、KCl及びNaCl等が挙げられる。また、好ましいアルカリ土類金属のハロゲン化物としては、例えば、CaF2、BaF2、SrF2、MgF2及びBeF2等のフッ化物や、フッ化物以外のハロゲン化物が挙げられる。
 また、半導体としては、Ba、Ca、Sr、Yb、Al、Ga、In、Li、Na、Cd、Mg、Si、Ta、Sb及びZnの少なくとも一つの元素を含む酸化物、窒化物又は酸化窒化物等の一種単独又は二種以上の組み合わせが挙げられる。また、電子注入層を構成する無機化合物が、微結晶又は非晶質の絶縁性薄膜であることが好ましい。電子注入層がこれらの絶縁性薄膜で構成されていれば、より均質な薄膜が形成されるために、ダークスポット等の画素欠陥を減少させることができる。なお、このような無機化合物としては、アルカリ金属カルコゲニド、アルカリ土類金属カルコゲニド、アルカリ金属のハロゲン化物及びアルカリ土類金属のハロゲン化物等が挙げられる。
 このような絶縁体又は半導体を使用する場合、その層の好ましい厚みは、0.1nm~15nm程度である。また、本発明における電子注入層は、前述の電子供与性ドーパントを含有していても好ましい。
(正孔注入・輸送層)
 発光層と陽極との間に形成される有機層であって、正孔を陽極から発光層へ輸送する機能を有する。正孔輸送層が複数層で構成される場合、陽極に近い有機層を正孔注入層と定義することがある。正孔注入層は、陽極から正孔を効率的に有機層ユニットに注入する機能を有する。
 本発明の正孔注入・輸送層は式(1)で表されるビスカルバゾール誘導体を含むことが好ましい。正孔注入・輸送層を形成する他の材料としては、芳香族アミン化合物、例えば、下記一般式(I)で表わされる芳香族アミン誘導体が好適に用いられる。
Figure JPOXMLDOC01-appb-C000049
 前記一般式(I)において、Ar1~Ar4は置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素基又は縮合芳香族炭化水素基、置換もしくは無置換の環形成原子数5~50の芳香族複素環基又は縮合芳香族複素環基、または、それら芳香族炭化水素基又は縮合芳香族炭化水素基と芳香族複素環基又は縮合芳香族複素環基が結合した基を表す。
 また、前記一般式(I)において、Lは置換もしくは無置換の環形成炭素数6~50の芳香族炭化水素基又は縮合芳香族炭化水素基、又は置換もしくは無置換の環形成原子数5~50の芳香族複素環基又は縮合芳香族複素環基を表す。
 一般式(I)の化合物の具体例を以下に記す。
Figure JPOXMLDOC01-appb-C000050
また、下記式(II)の芳香族アミンも正孔注入・輸送層の形成に好適に用いられる。
Figure JPOXMLDOC01-appb-C000051
 前記式(II)において、Ar1~Ar3の定義は前記一般式(I)のAr1~Ar4の定義と同様である。以下に一般式(II)の化合物の具体例を記すがこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000052
 本発明の有機EL素子の正孔輸送層は第1正孔輸送層(陽極側)と第2正孔輸送層(陰極側)の2層構造にしてもよい。
 正孔注入・輸送層の膜厚は特に限定されないが、10~200nmであるのが好ましい。
 本発明の有機EL素子では、正孔輸送層または第1正孔輸送層の陽極側に電子受容性化合物を含有する層を接合してもよい。これにより駆動電圧の低下及び製造コストの低減が期待される。
 前記電子受容性化合物としては下記式(10)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000053
(上記式(10)中、R7~R12は同一でも異なっていてもよく、それぞれ独立にシアノ基、-CONH2、カルボキシル基、又は-COOR13(R13は炭素数1~20のアルキル基又は炭素数3~20のシクロアルキル基)を表す。ただし、R7及びR8、R9及びR10、及びR11及びR12の1又は2以上の対が一緒になって-CO-O-CO-で示される基を表してもよい。)
 R13としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、t-ブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。
 電子受容性化合物を含有する層の膜厚は特に限定されないが、5~20nmであるのが好ましい。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらにより何ら限定されるものではない。
中間体合成例1(中間体1の合成)
 カルバゾール15gに、エタノール70mLを加え、室温で硫酸6mL、水3mL、過ヨウ素酸2水和物8.2g、ヨウ素9.1gを加えて4時間攪拌した。反応液に水を加えて析出物をろ過し、析出物をメタノールで洗浄した。得られた固体を熱トルエンに溶かして再結晶を行った。得られた固体を減圧乾燥したところ、5.1gの白色固体を得た。FD-MSの分析により、下記中間体1と同定した。
Figure JPOXMLDOC01-appb-C000054
中間体合成例2(中間体2の合成)
 9-フェニルカルバゾール17.7g、ヨウ化カリウム6.03g、ヨウ素酸カリウム7.78gに、硫酸5.90mL及びエタノール70mLを加え、75℃にて2時間反応した。冷却後、水、酢酸エチルを加えて分液、抽出した後、重曹水、水を用いて有機層を洗浄し、濃縮し、得られた粗生成物をシリカゲルカラムクロマトグラフィーで精製し、得られた固体を減圧乾燥したところ、21.8gの白色固体を得た。FD-MSの分析により、下記中間体2と同定した。
Figure JPOXMLDOC01-appb-C000055
中間体合成例3(中間体3の合成)
 アルゴン雰囲気下、13.1gの中間体2に脱水トルエン、脱水エーテルを加え、-45℃に冷却し、1.58Mn-ブチルリチウムヘキサン溶液を25mL滴下して、攪拌しながら1時間かけて-5℃まで昇温した。再び-45℃まで冷却し、ボロン酸トリイソプロピルエステル25mLを徐々に滴下してから2時間反応させた。
 室温に戻した後、10%希塩酸溶液を加えて攪拌し、有機層を抽出した。飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、ろ別後、濃縮した。得られた固体を、シリカゲルカラムクロマトグラフィーで精製し、得られた個体をn-ヘキサンで洗浄し、減圧乾燥したところ、7.10gの固体を得た。FD-MSの分析により、下記中間体3と同定した。
Figure JPOXMLDOC01-appb-C000056
中間体合成例4(中間体4の合成)
 アルゴン雰囲気下、2.05gの中間体1、2.0gの中間体3、テトラキス(トリフェニルフォスフィン)パラジウム0.15g、トルエン20mL、2M炭酸ナトリウム水溶液10.5mLを加えて80℃で7時間攪拌した。反応液に水を加えて固体を析出させ、固体をメタノールで洗浄した。得られた固体を熱トルエンで洗浄し、減圧乾燥したところ、2.43gの白色固体を得た。FD-MSの分析により、下記中間体4と同定した。
Figure JPOXMLDOC01-appb-C000057
中間体合成例5(中間体5の合成)
 アルゴン雰囲気下、2-ブロモ-9,9-ジメチルフルオレン55gにヨウ素23g、過ヨウ素酸2水和物9.4g、水42mL、酢酸360mL、及び硫酸11mLを加え、65℃で30分撹拌した後、90℃で6時間反応させた。反応物を氷水に注入し、ろ過した。水で洗浄後、メタノールで洗浄することにより、61gの白色粉末を得た。FD-MSの分析により、該白色粉末を下記中間体5と同定した。
中間体合成例6(中間体6の合成)
 アルゴン雰囲気下、中間体5を40.0g、カルバゾール16.7g、ヨウ化銅(CuI)0.2g及び燐酸三カリウム42.4gに、trans-1,2-シクロヘキサンジアミン2mL及び1,4-ジオキサン300mLを加え、100℃にて20時間撹拌した。反応終了後、水300mLを加えた後分液し、水層を除去した。有機層を硫酸ナトリウムで乾燥させた後、濃縮した。残渣をシリカゲルカラムクロマトグラフィーで精製し、24.1gの白色結晶を得た。FD-MSの分析により、該白色結晶を下記中間体6と同定した。
Figure JPOXMLDOC01-appb-C000059
中間体合成例7(中間体7の合成)
 合成例6において、中間体5の代わりに、4-ヨードブロモベンゼン28.2gを用いた以外は同様に反応を行ったところ、17.5gの白色個体を得た。FD-MSの分析により、下記中間体7と同定した。
Figure JPOXMLDOC01-appb-C000060
合成実施例1(ビスカルバゾール誘導体(H1)の製造)
 アルゴン雰囲気下、3.0gの中間体2、3.0gの中間体4、Pd2(dba)30.14g、P(tBu)3HBF40.17g、t-ブトキシナトリウム1.1gに、無水キシレン30mLを加えて8時間加熱還流した。
 反応液に水を加えて固体を析出させ、この固体をヘキサン、次いでメタノールで洗浄した。さらに、得られた固体をシリカゲルカラムクロマトグラフィーにて精製し、3.1gの白色結晶を得た。FD-MSの分析により、白色粉末を下記ビスカルバゾール誘導体(H1)と同定した。
Figure JPOXMLDOC01-appb-C000061
合成実施例2(ビスカルバゾール誘導体(H2)の製造)
 合成実施例1において、中間体2の代わりに中間体7を2.6g用いた以外は同様に反応を行ったところ、3.2gの白色粉末を得た。FD-MSの分析により、白色粉末を下記ビスカルバゾール誘導体(H2)と同定した。
Figure JPOXMLDOC01-appb-C000062
合成実施例3(ビスカルバゾール誘導体(H3)の製造)
 合成実施例1において、中間体2の代わりに中間体6を3.6g用いた以外は同様に反応を行ったところ、3.5gの白色粉末を得た。FD-MSの分析により、白色粉末を下記ビスカルバゾール誘導体(H3)と同定した。
Figure JPOXMLDOC01-appb-C000063
実施例1
(有機EL素子の作製)
 25mm×75mm×1.1mmのITO透明電極ライン付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で5分間超音波洗浄し、さらに、30分間UV(Ultraviolet)オゾン洗浄した。
 洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている面上に前記透明電極を覆うようにして下記電子受容性化合物(A)を蒸着し、膜厚5nmのA膜を成膜した。このA膜上に、第1正孔輸送材料として下記芳香族アミン誘導体(X1)を蒸着し、膜厚157nmの第1正孔輸送層を成膜した。第1正孔輸送層の成膜に続けて、第2正孔輸送材料として前記合成実施例1で得たビスカルバゾール誘導体(H1)を蒸着し、膜厚10nmの第2正孔輸送層を成膜した。
 この正孔輸送層上に、燐光用ホストである化合物(B)と燐光用ドーパントであるIr(ppy)3とを厚さ40nmで共蒸着し、燐光発光層を得た。Ir(ppy)3の濃度は10質量%であった。
 続いて、この燐光発光層上に、厚さ20nmの化合物(C)、厚さ1nmのLiF、厚さ80nmの金属Alを順次積層し、陰極を形成した。なお、電子注入性電極であるLiFは、1Å/minの成膜速度で形成した。
Figure JPOXMLDOC01-appb-C000064
(有機EL素子の発光性能評価)
 以上のように作製した有機EL素子を直流電流駆動により発光させ、輝度(L)、電流密度を測定し、電流密度10mA/cm2における電流効率(L/J)、駆動電圧(V)を求めた。さらに初期輝度20000cd/m2における素子寿命を求めた。結果を表1に示す。
実施例2~3
 実施例1において、第2正孔輸送材料としてビスカルバゾール誘導体(H1)の代わりに、ビスカルバゾール誘導体(H2)(実施例2)、ビスカルバゾール誘導体(H3)(実施例3)を用いた以外は、実施例1と同様にして有機EL素子を作製した。得られた有機EL素子を直流電流駆動により発光させ、輝度(L)、電流密度を測定し、電流密度10mA/cm2における電流効率(L/J)、駆動電圧(V)を求めた。さらに初期輝度20000cd/m2における素子寿命を求めた。結果を表1に示す。
比較例1及び2
 実施例1において、第2正孔輸送材料としてビスカルバゾール誘導体(H1)の代わりに、下記比較化合物1又は比較化合物2を用いた以外は、実施例1と同様にして有機EL素子を作製した。得られた有機EL素子を直流電流駆動により発光させ、輝度(L)、電流密度を測定し、電流密度10mA/cm2における電流効率(L/J)、駆動電圧(V)を求めた。さらに初期輝度20000cd/m2における素子寿命を求めた。結果を表1に示す。
Figure JPOXMLDOC01-appb-C000065
Figure JPOXMLDOC01-appb-T000066
 本発明のビスカルバゾール誘導体は、長寿命であり、低電圧での駆動が可能な有機EL素子を実現する材料として有用である。

Claims (18)

  1. 下記式(1)で表されるビスカルバゾール誘導体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)において、
     L1及びL2は連結基であり、同一でも異なっていてもよく、それぞれ独立に、単結合又は置換もしくは無置換の環形成炭素数6~30のアリーレン基を表す。
     R1~R4は同一でも異なっていてもよく、それぞれ独立に、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換の炭素数1~10のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、置換もしくは無置換の炭素数6~30のアリールシリル基、置換もしくは無置換の炭素数7~30のアラルキル基、又は、置換もしくは無置換の環形成原子数5~30のアリール基を表わし、該へテロアリール基は、ピロリル基、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、及びキサンテニル基から選ばれ、隣接するR1同士、R2同士、R3同士、及びR4同士は互いに結合して、環構造の一部を形成する飽和もしくは不飽和の、置換もしくは無置換の2価の基を形成しても良い。
     a、dは、それぞれ独立に、0~4の整数を表す。
     b、cは、それぞれ独立に、0~3の整数を表す。
     A1は、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表し、該へテロアリール基は、ピロリル基、フリル基、チエニル基、ピリジル基、ピリダジニル基、ピリミジニル基、ピラジニル基、トリアジニル基、イミダゾリル基、オキサゾリル基、チアゾリル基、ピラゾリル基、イソオキサゾリル基、イソチアゾリル基、オキサジアゾリル基、チアジアゾリル基、トリアゾリル基、インドリル基、イソインドリル基、ベンゾフラニル基、イソベンゾフラニル基、ベンゾチオフェニル基、インドリジニル基、キノリジニル基、キノリル基、イソキノリル基、シンノリル基、フタラジニル基、キナゾリニル基、キノキサリニル基、ベンズイミダゾリル基、ベンズオキサゾリル基、ベンズチアゾリル基、インダゾリル基、ベンズイソキサゾリル基、ベンズイソチアゾリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、及びキサンテニル基から選ばれる。
     A2は下記式(2-1)又は(2-2)で表わされる基である。
    Figure JPOXMLDOC01-appb-C000002
    (式中、
     Ar1は、置換もしくは無置換の環形成炭素数6~30のアリール基、又は、置換もしくは無置換の環形成原子数5~30のヘテロアリール基を表わす。
     R5~R8は同一でも異なっていてもよく、それぞれ独立に、フッ素原子、シアノ基、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数3~20のシクロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のハロアルコキシ基、置換もしくは無置換の炭素数1~10のアルキルシリル基、置換もしくは無置換の環形成炭素数6~30のアリール基、置換もしくは無置換の環形成炭素数6~30のアリールオキシ基、置換もしくは無置換の炭素数6~30のアリールシリル基、又は、置換もしくは無置換の炭素数7~30のアラルキル基を表わし、隣接するR5同士及びR6同士は互いに結合して、環構造の一部を形成する飽和もしくは不飽和の、置換もしくは無置換の2価の基を形成しても良い。
     f、g、及びhは、それぞれ独立に、0~4の整数を表す。
     eは0~3の整数を表す。)
     ただし、A2が式(2-1)で表される基である場合、L2は単結合を表し、A2が式(2-2)で表される基である場合L2は単結合又は置換もしくは無置換の環形成炭素数6~30のアリーレン基を表す。)
  2. 下記式(3-1)~(3-3)で表される請求項1に記載のビスカルバゾール誘導体。
    Figure JPOXMLDOC01-appb-C000003
    (式(3-1)~(3-3)において、A1、A2、L1、L2、R1~R4、a~dは上記と同様である。)
  3. 下記式(3-4)で表される請求項1に記載のビスカルバゾール誘導体。
    Figure JPOXMLDOC01-appb-C000004
    (式(3-4)において、A1、A2、L1、L2、R1~R4、a~dは上記と同様である。)
  4. 前記A2が、下記式(2-3)又は(2-4)で表わされる請求項1~3のいずれか1項に記載のビスカルバゾール誘導体。
    Figure JPOXMLDOC01-appb-C000005
    (式(2-3)及び(2-4)において、Ar1、R5、R6、e、及びfは上記と同様である。)
  5. 前記L2が表す環形成炭素数6~30のアリーレン基がベンゼン、ビフェニル、ナフタレン、フェナントレン、フルオレン、又は9,9-ジメチルフルオレンから選ばれる芳香族化合物の2価の残基である請求項1~4のいずれか1項に記載のビスカルバゾール誘導体。
  6. 前記L2が置換もしくは無置換の1,4-フェニレン基である請求項1~5のいずれか1項に記載のビスカルバゾール誘導体。
  7. 前記L2が置換もしくは無置換の1,3-フェニレン基である請求項1~5のいずれか1項に記載のビスカルバゾール誘導体。
  8. 前記L2が置換もしくは無置換の9,9-ジメチルフルオレン-2,7-ジイル基である請求項1~5のいずれか1項に記載のビスカルバゾール誘導体。
  9. 前記R1~R4及びA1が表す環形成原子数5~30のヘテロアリール基がフリル基、チエニル基、ベンゾフラニル基、ベンゾチオフェニル基、ジベンゾフラニル基、及びジベンゾチオフェニル基から選ばれる請求項1~8のいずれか1項に記載のビスカルバゾール誘導体。
  10. 請求項1~9のいずれか1項に記載のビスカルバゾール誘導体を少なくとも1種含有する有機エレクトロルミネッセンス素子用材料。
  11. 請求項1~9のいずれか1項に記載のビスカルバゾール誘導体を少なくとも1種含有する正孔輸送材料。
  12. 陽極、陰極、及び該陽極と陰極の間に配置された1層以上の有機薄膜層を含み、該有機薄膜層の少なくとも1層が請求項1~9のいずれか1項に記載のビスカルバゾール誘導体を少なくとも1種含む有機エレクトロルミネッセンス素子。
  13. 前記有機薄膜層が正孔輸送層及び/又は正孔注入層を有し、前記正孔輸送層及び/又は正孔注入層が前記ビスカルバゾール誘導体を少なくとも1種含む請求項12に記載の有機エレクトロルミネッセンス素子。
  14. 前記正孔輸送層及び/又は正孔注入層に、下記式(10)で表される化合物を含有する層が接合されている請求項13記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000006
    (式(10)中、R7~R12は同一でも異なっていてもよく、それぞれ独立にシアノ基、-CONH2、カルボキシル基、又は-COOR13(R13は炭素数1~20のアルキル基又は炭素数3~20のシクロアルキル基)を表す。ただし、R7及びR8、R9及びR10、及びR11及びR12の1又は2以上の対が一緒になって-CO-O-CO-で示される基を表してもよい。)
  15. 前記有機薄膜層が発光層を有し、前記発光層が燐光発光性材料を含有する請求項12~14のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  16. 前記燐光発光性材料がイリジウム(Ir),オスミウム(Os)及び白金(Pt)から選ばれる金属のオルトメタル化錯体である請求項15記載の有機エレクトロルミネッセンス素子。
  17. 前記有機薄膜層が発光層を有し、前記発光層が蛍光発光性材料を含有する請求項12~14のいずれか1項に記載の有機エレクトロルミネッセンス素子。
  18. 前記有機薄膜層が電子輸送層を有し、前記電子輸送層が下記式(60)~(62)のいずれかで表される含窒素複素環誘導体を含有している請求項12~17のいずれか1項に記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000007
    (式中、Z1、Z2及びZ3は、それぞれ独立に、窒素原子又は炭素原子である。
     R1及びR2は、それぞれ独立に、置換もしくは無置換の環形成炭素数6~50のアリール基、置換もしくは無置換の環形成原子数5~50のヘテロアリール基、炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基又は置換もしくは無置換の炭素数1~20のアルコキシ基である。
     nは、0~5の整数であり、nが2以上の整数であるとき、複数のR1は互いに同一でも異なっていてもよい。また、隣接する2つのR1同士が互いに結合して、置換もしくは無置換の炭化水素環を形成していてもよい。
     Ar1は、置換もしくは無置換の環形成炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
     Ar2は、水素原子、置換もしくは無置換の炭素数1~20のアルキル基、置換もしくは無置換の炭素数1~20のハロアルキル基、置換もしくは無置換の炭素数1~20のアルコキシ基、置換もしくは無置換の環形成炭素数6~50のアリール基又は置換もしくは無置換の環形成原子数5~50のヘテロアリール基である。
     但し、Ar1、Ar2のいずれか一方は、置換もしくは無置換の環形成炭素数10~50の縮合芳香族炭化水素環基又は置換もしくは無置換の環形成原子数9~50の縮合芳香族複素環基である。
     Ar3は、置換もしくは無置換の環形成炭素数6~50のアリーレン基又は置換もしくは無置換の環形成原子数5~50のヘテロアリーレン基である。
     L1、L2及びL3は、それぞれ独立に、単結合、置換もしくは無置換の環形成炭素数6~50のアリーレン基、又は置換もしくは無置換の環形成原子数9~50の2価の縮合芳香族複素環基である。)
PCT/JP2012/057236 2011-03-24 2012-03-21 ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子 WO2012128298A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2012800148690A CN103429570A (zh) 2011-03-24 2012-03-21 双咔唑衍生物及使用其的有机电致发光元件
US14/006,514 US9564595B2 (en) 2011-03-24 2012-03-21 Bis-carbazole derivative and organic electroluminescent element using same
JP2013505994A JPWO2012128298A1 (ja) 2011-03-24 2012-03-21 ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子
EP12759920.7A EP2690093A4 (en) 2011-03-24 2012-03-21 BISCARBAZOLE DERIVATIVE AND ORGANIC ELECTROLUMINESCENT ELEMENT THEREWITH
KR1020137024891A KR20140009393A (ko) 2011-03-24 2012-03-21 비스카바졸 유도체 및 이것을 이용한 유기 전기발광 소자

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011066821 2011-03-24
JP2011-066821 2011-03-24

Publications (1)

Publication Number Publication Date
WO2012128298A1 true WO2012128298A1 (ja) 2012-09-27

Family

ID=46879440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/057236 WO2012128298A1 (ja) 2011-03-24 2012-03-21 ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US9564595B2 (ja)
EP (1) EP2690093A4 (ja)
JP (1) JPWO2012128298A1 (ja)
KR (1) KR20140009393A (ja)
CN (1) CN103429570A (ja)
TW (1) TW201245407A (ja)
WO (1) WO2012128298A1 (ja)

Cited By (77)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8652654B2 (en) 2010-04-20 2014-02-18 Idemitsu Kosan Co., Ltd. Biscarbazole derivative, material for organic electroluminescence device and organic electroluminescence device using the same
WO2014057685A1 (ja) * 2012-10-11 2014-04-17 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2014061991A1 (en) * 2012-10-17 2014-04-24 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device containing the same
WO2014104545A1 (ko) * 2012-12-31 2014-07-03 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
KR20150083017A (ko) * 2014-01-08 2015-07-16 유니버셜 디스플레이 코포레이션 유기 전계발광 물질 및 소자
US9203036B2 (en) 2012-02-03 2015-12-01 Idemitsu Kosan Co., Ltd. Carbazole compound, material for organic electroluminescence device and organic electroluminescence device
JP2016092412A (ja) * 2014-10-31 2016-05-23 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 有機光電子素子および表示装置
EP3056504A1 (en) 2015-02-16 2016-08-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3061763A1 (en) 2015-02-27 2016-08-31 Universal Display Corporation Organic electroluminescent materials and devices
EP3098229A1 (en) 2015-05-15 2016-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3101021A1 (en) 2015-06-01 2016-12-07 Universal Display Corporation Organic electroluminescent materials and devices
EP3124488A1 (en) 2015-07-29 2017-02-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3159350A1 (en) 2015-09-03 2017-04-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3205658A1 (en) 2016-02-09 2017-08-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3231809A2 (en) 2016-04-11 2017-10-18 Universal Display Corporation Organic electroluminescent materials and devices
EP3261147A1 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3261146A2 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3270435A2 (en) 2016-06-20 2018-01-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3297051A1 (en) 2016-09-14 2018-03-21 Universal Display Corporation Organic electroluminescent materials and devices
EP3301088A1 (en) 2016-10-03 2018-04-04 Universal Display Corporation Condensed pyridines as organic electroluminescent materials and devices
EP3305796A1 (en) 2016-10-07 2018-04-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3321258A1 (en) 2016-11-09 2018-05-16 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP3323822A1 (en) 2016-09-23 2018-05-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3345914A1 (en) 2017-01-09 2018-07-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3354654A2 (en) 2016-11-11 2018-08-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3381927A1 (en) 2017-03-29 2018-10-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3401318A1 (en) 2017-05-11 2018-11-14 Universal Display Corporation Organic electroluminescent materials and devices
EP3418286A1 (en) 2017-06-23 2018-12-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3444258A2 (en) 2017-08-10 2019-02-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3489243A1 (en) 2017-11-28 2019-05-29 University of Southern California Carbene compounds and organic electroluminescent devices
EP3492480A2 (en) 2017-11-29 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3492528A1 (en) 2017-11-30 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3613751A1 (en) 2018-08-22 2020-02-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3689889A1 (en) 2019-02-01 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3690973A1 (en) 2019-01-30 2020-08-05 University Of Southern California Organic electroluminescent materials and devices
EP3709376A1 (en) 2019-03-12 2020-09-16 Universal Display Corporation Oled with triplet emitter and excited state lifetime less than 200 ns
EP3715353A1 (en) 2019-03-26 2020-09-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3750897A1 (en) 2019-06-10 2020-12-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3771717A1 (en) 2019-07-30 2021-02-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3778614A1 (en) 2019-08-16 2021-02-17 Universal Display Corporation Organic electroluminescent materials and devices
US20210057652A1 (en) * 2019-08-23 2021-02-25 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
EP3816175A1 (en) 2019-11-04 2021-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3823055A1 (en) 2019-11-14 2021-05-19 Universal Display Corporation Organic electroluminescent materials and devices
EP3845545A1 (en) 2020-01-06 2021-07-07 Universal Display Corporation Organic electroluminescent materials and devices
EP3858945A1 (en) 2020-01-28 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4001286A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4001287A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4016659A1 (en) 2020-11-16 2022-06-22 Universal Display Corporation Organic electroluminescent materials and devices
WO2022131123A1 (ja) 2020-12-18 2022-06-23 日鉄ケミカル&マテリアル株式会社 有機電界発光素子及びその製造方法
EP4019526A1 (en) 2018-01-26 2022-06-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4039692A1 (en) 2021-02-03 2022-08-10 Universal Display Corporation Organic electroluminescent materials and devices
EP4053137A1 (en) 2021-03-05 2022-09-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4056578A1 (en) 2021-03-12 2022-09-14 Universal Display Corporation Organic electroluminescent materials and devices
EP4059941A1 (en) 2021-03-15 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4075530A1 (en) 2021-04-14 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4074723A1 (en) 2021-04-05 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4079743A1 (en) 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4086266A1 (en) 2021-04-23 2022-11-09 Universal Display Corporation Organic electroluminescent materials and devices
CN115490569A (zh) * 2022-02-23 2022-12-20 陕西莱特迈思光电材料有限公司 有机化合物、有机电致发光器件和电子装置
EP4112701A2 (en) 2021-06-08 2023-01-04 University of Southern California Molecular alignment of homoleptic iridium phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4185086A1 (en) 2017-07-26 2023-05-24 Universal Display Corporation Organic electroluminescent materials and devices
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4242285A1 (en) 2022-03-09 2023-09-13 Universal Display Corporation Organic electroluminescent materials and devices
US11765970B2 (en) * 2017-07-26 2023-09-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4265626A2 (en) 2022-04-18 2023-10-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4282863A1 (en) 2022-05-24 2023-11-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP4299693A1 (en) 2022-06-28 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP4326030A1 (en) 2022-08-17 2024-02-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4362631A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4362645A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4362630A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5898683B2 (ja) 2011-12-05 2016-04-06 出光興産株式会社 有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
US10321141B2 (en) * 2013-12-18 2019-06-11 Hfi Innovation Inc. Method and apparatus for palette initialization and management
US9929353B2 (en) * 2014-04-02 2018-03-27 Universal Display Corporation Organic electroluminescent materials and devices
KR102527426B1 (ko) * 2014-07-18 2023-05-03 롬엔드하스전자재료코리아유한회사 유기 전계 발광 소자
KR101512059B1 (ko) 2014-10-06 2015-04-14 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
US10418569B2 (en) * 2015-01-25 2019-09-17 Universal Display Corporation Organic electroluminescent materials and devices
WO2017056053A1 (en) 2015-10-01 2017-04-06 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
EP3150604B1 (en) 2015-10-01 2021-07-14 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying benzimidazolo[1,2-a]benzimidazolylyl groups, carbazolyl groups, benzofurane groups or benzothiophene groups for organic light emitting diodes
US20180269407A1 (en) 2015-10-01 2018-09-20 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole carrying triazine groups for organic light emitting diodes
EP3150606B1 (en) 2015-10-01 2019-08-14 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazoles carrying benzofurane or benzothiophene groups for organic light emitting diodes
CN108349987A (zh) 2015-11-04 2018-07-31 出光兴产株式会社 苯并咪唑稠合杂芳族类
US11174258B2 (en) 2015-12-04 2021-11-16 Idemitsu Kosan Co., Ltd. Benzimidazolo[1,2-a]benzimidazole derivatives for organic light emitting diodes
US20180370981A1 (en) 2015-12-21 2018-12-27 Idemitsu Kosan Co., Ltd. Hetero-condensed phenylquinazolines and their use in electronic devices
WO2017221999A1 (en) 2016-06-22 2017-12-28 Idemitsu Kosan Co., Ltd. Specifically substituted benzofuro- and benzothienoquinolines for organic light emitting diodes
KR101915716B1 (ko) * 2016-12-20 2018-11-08 희성소재 (주) 유기 발광 소자 및 유기 발광 소자의 유기물층용 조성물
EP3466954A1 (en) 2017-10-04 2019-04-10 Idemitsu Kosan Co., Ltd. Fused phenylquinazolines bridged with a heteroatom
EP3604477A1 (en) 2018-07-30 2020-02-05 Idemitsu Kosan Co., Ltd. Polycyclic compound, organic electroluminescence device, and electronic device
EP3608319A1 (en) 2018-08-07 2020-02-12 Idemitsu Kosan Co., Ltd. Condensed aza cycles as organic light emitting device and materials for use in same
CN109761877A (zh) * 2018-11-29 2019-05-17 宇瑞(上海)化学有限公司 一种有机化合物及其使用该化合物的有机电致发光器件
CN111384273B (zh) * 2018-12-29 2021-07-16 Tcl科技集团股份有限公司 一种量子点发光二极管及其制备方法
CN114068825B (zh) * 2020-07-29 2023-09-29 江苏三月科技股份有限公司 具有多空穴传输通道材料的有机电致发光器件及显示装置
CN113121553B (zh) * 2021-03-24 2023-04-07 陕西莱特光电材料股份有限公司 一种有机化合物及包含其的电子元件和电子装置
CN115368293A (zh) * 2021-05-18 2022-11-22 三星Sdi株式会社 用于有机光电装置的化合物、用于有机光电装置的组合物、有机光电装置及显示装置

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220380A (ja) 2000-02-08 2001-08-14 Samsung Sdi Co Ltd 高い熱安定性を持つ有機電界発光素子用正孔輸送性化合物及びその製造方法並びに有機電界発光素子
WO2007077810A1 (ja) 2006-01-05 2007-07-12 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007119816A1 (ja) 2006-04-19 2007-10-25 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007132678A1 (ja) * 2006-05-11 2007-11-22 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2007132886A1 (ja) * 2006-05-17 2007-11-22 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2008135498A (ja) 2006-11-28 2008-06-12 Toray Ind Inc 発光素子
JP2010135467A (ja) * 2008-12-03 2010-06-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置
WO2011024451A1 (ja) 2009-08-28 2011-03-03 保土谷化学工業株式会社 カルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
JP2011054931A (ja) * 2009-08-05 2011-03-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、及びその製造方法
WO2011055934A2 (ko) * 2009-11-03 2011-05-12 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
KR20110066766A (ko) * 2009-12-11 2011-06-17 덕산하이메탈(주) 오원자 헤테로 고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011125680A1 (ja) * 2010-03-31 2011-10-13 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2011139055A2 (ko) * 2010-05-03 2011-11-10 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3139321B2 (ja) * 1994-03-31 2001-02-26 東レ株式会社 発光素子
US7560175B2 (en) * 1999-12-31 2009-07-14 Lg Chem, Ltd. Electroluminescent devices with low work function anode
JP2007039406A (ja) * 2005-08-05 2007-02-15 Idemitsu Kosan Co Ltd 含窒素複素環誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2009114369A (ja) * 2007-11-08 2009-05-28 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009060757A1 (ja) 2007-11-08 2009-05-14 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2009104488A1 (ja) 2008-02-20 2009-08-27 コニカミノルタホールディングス株式会社 白色発光有機エレクトロルミネッセンス素子
JPWO2011016216A1 (ja) 2009-08-04 2013-01-10 パナソニック株式会社 発光素子駆動装置及び携帯機器
JP5423255B2 (ja) * 2009-09-01 2014-02-19 住友電装株式会社 電線交換機能付き電線調尺装置
EP2492985A4 (en) 2009-10-23 2017-03-29 Hodogaya Chemical Co., Ltd. Organic electroluminescent element
KR101869670B1 (ko) 2009-10-23 2018-06-20 호도가야 가가쿠 고교 가부시키가이샤 유기 일렉트로 루미네센스 소자
US8828561B2 (en) * 2009-11-03 2014-09-09 Cheil Industries, Inc. Compound for organic photoelectric device and organic photoelectric device including the same
CN102939674B (zh) * 2009-12-28 2017-02-08 新日铁住金化学株式会社 有机场致发光元件
CN104592206B (zh) 2010-04-20 2019-12-31 出光兴产株式会社 双咔唑衍生物、有机电致发光元件用材料及使用其的有机电致发光元件
JP2013201153A (ja) * 2010-06-08 2013-10-03 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
JP2013200939A (ja) * 2010-06-08 2013-10-03 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
CN102884156B (zh) * 2010-06-24 2016-01-20 东丽株式会社 发光元件材料和发光元件
KR101477614B1 (ko) * 2010-09-17 2014-12-31 롬엔드하스전자재료코리아유한회사 신규한 유기 발광 화합물 및 이를 채용하고 있는 유기 전계 발광 소자
JPWO2012090806A1 (ja) 2010-12-27 2014-06-05 東レ株式会社 発光素子材料および発光素子
KR20140043043A (ko) 2011-02-11 2014-04-08 유니버셜 디스플레이 코포레이션 유기 발광 디바이스 및 이것에 사용되는 재료
JP5747555B2 (ja) * 2011-02-24 2015-07-15 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置及び照明装置
KR101427611B1 (ko) * 2011-03-08 2014-08-11 롬엔드하스전자재료코리아유한회사 신규한 유기 전자재료용 화합물 및 이를 포함하는 유기 전계 발광 소자
EP2688120B1 (en) 2011-03-14 2017-08-23 Toray Industries, Inc. Light-emitting element material and light-emitting element

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001220380A (ja) 2000-02-08 2001-08-14 Samsung Sdi Co Ltd 高い熱安定性を持つ有機電界発光素子用正孔輸送性化合物及びその製造方法並びに有機電界発光素子
WO2007077810A1 (ja) 2006-01-05 2007-07-12 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007119816A1 (ja) 2006-04-19 2007-10-25 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
WO2007132678A1 (ja) * 2006-05-11 2007-11-22 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子
WO2007132886A1 (ja) * 2006-05-17 2007-11-22 Konica Minolta Holdings, Inc. 有機エレクトロルミネッセンス素子材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
JP2008135498A (ja) 2006-11-28 2008-06-12 Toray Ind Inc 発光素子
JP2010135467A (ja) * 2008-12-03 2010-06-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、該素子を備えた照明装置及び表示装置
JP2011054931A (ja) * 2009-08-05 2011-03-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、及びその製造方法
WO2011024451A1 (ja) 2009-08-28 2011-03-03 保土谷化学工業株式会社 カルバゾール環構造を有する化合物および有機エレクトロルミネッセンス素子
WO2011055934A2 (ko) * 2009-11-03 2011-05-12 제일모직 주식회사 유기광전소자용 화합물 및 이를 포함하는 유기광전소자
KR20110066766A (ko) * 2009-12-11 2011-06-17 덕산하이메탈(주) 오원자 헤테로 고리를 포함하는 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2011125680A1 (ja) * 2010-03-31 2011-10-13 出光興産株式会社 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2011139055A2 (ko) * 2010-05-03 2011-11-10 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2690093A4

Cited By (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8877352B2 (en) 2010-04-20 2014-11-04 Idemitsu Kosan Co., Ltd. Biscarbazole derivative, material for organic electroluminescence device and organic electroluminescence device using the same
US10193077B2 (en) 2010-04-20 2019-01-29 Idemitsu Kosan Co., Ltd. Biscarbazole derivative, material for organic electroluminescence device and organic electroluminescence device using the same
US8652654B2 (en) 2010-04-20 2014-02-18 Idemitsu Kosan Co., Ltd. Biscarbazole derivative, material for organic electroluminescence device and organic electroluminescence device using the same
US8940414B2 (en) 2010-04-20 2015-01-27 Idemitsu Kosan Co., Ltd. Biscarbazole derivative, material for organic electroluminescence device and organic electroluminescence device using the same
JP5562970B2 (ja) * 2010-04-20 2014-07-30 出光興産株式会社 ビスカルバゾール誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
US8865323B2 (en) 2010-04-20 2014-10-21 Idemitsu Kosan Co., Ltd. Biscarbazole derivative, material for organic electroluminescence device and organic electroluminescence device using the same
US9203036B2 (en) 2012-02-03 2015-12-01 Idemitsu Kosan Co., Ltd. Carbazole compound, material for organic electroluminescence device and organic electroluminescence device
WO2014057685A1 (ja) * 2012-10-11 2014-04-17 出光興産株式会社 有機エレクトロルミネッセンス素子
WO2014061991A1 (en) * 2012-10-17 2014-04-24 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescent compounds and organic electroluminescent device containing the same
WO2014104545A1 (ko) * 2012-12-31 2014-07-03 제일모직 주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
KR20150083017A (ko) * 2014-01-08 2015-07-16 유니버셜 디스플레이 코포레이션 유기 전계발광 물질 및 소자
US11005051B2 (en) 2014-01-08 2021-05-11 Universal Display Corporation Organic electroluminescent materials and devices
KR102360548B1 (ko) * 2014-01-08 2022-02-09 유니버셜 디스플레이 코포레이션 유기 전계발광 물질 및 소자
JP2016092412A (ja) * 2014-10-31 2016-05-23 三星エスディアイ株式会社Samsung SDI Co.,Ltd. 有機光電子素子および表示装置
EP3056504A1 (en) 2015-02-16 2016-08-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3061763A1 (en) 2015-02-27 2016-08-31 Universal Display Corporation Organic electroluminescent materials and devices
EP3098229A1 (en) 2015-05-15 2016-11-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3101021A1 (en) 2015-06-01 2016-12-07 Universal Display Corporation Organic electroluminescent materials and devices
EP3124488A1 (en) 2015-07-29 2017-02-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3159350A1 (en) 2015-09-03 2017-04-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3760635A1 (en) 2015-09-03 2021-01-06 Universal Display Corporation Organic electroluminescent materials and devices
EP3205658A1 (en) 2016-02-09 2017-08-16 Universal Display Corporation Organic electroluminescent materials and devices
EP3858842A1 (en) 2016-02-09 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3231809A2 (en) 2016-04-11 2017-10-18 Universal Display Corporation Organic electroluminescent materials and devices
EP4122941A1 (en) 2016-04-11 2023-01-25 Universal Display Corporation Organic electroluminescent materials and devices
EP3261146A2 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3843171A1 (en) 2016-06-20 2021-06-30 Universal Display Corporation Organic electroluminescent materials and devices
EP4349935A2 (en) 2016-06-20 2024-04-10 Universal Display Corporation Organic electroluminescent materials and devices
EP3758084A1 (en) 2016-06-20 2020-12-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3261147A1 (en) 2016-06-20 2017-12-27 Universal Display Corporation Organic electroluminescent materials and devices
EP3270435A2 (en) 2016-06-20 2018-01-17 Universal Display Corporation Organic electroluminescent materials and devices
EP3920254A1 (en) 2016-06-20 2021-12-08 Universal Display Corporation Organic electroluminescent materials and devices
EP3297051A1 (en) 2016-09-14 2018-03-21 Universal Display Corporation Organic electroluminescent materials and devices
EP3323822A1 (en) 2016-09-23 2018-05-23 Universal Display Corporation Organic electroluminescent materials and devices
EP3301088A1 (en) 2016-10-03 2018-04-04 Universal Display Corporation Condensed pyridines as organic electroluminescent materials and devices
EP3305796A1 (en) 2016-10-07 2018-04-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3858844A1 (en) 2016-10-07 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3321258A1 (en) 2016-11-09 2018-05-16 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP3789379A1 (en) 2016-11-09 2021-03-10 Universal Display Corporation 4-phenylbenzo[g]quinazoline or 4-(3,5-dimethylphenylbenzo[g]quinazoline iridium complexes for use as near-infrared or infrared emitting materials in oleds
EP3354654A2 (en) 2016-11-11 2018-08-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4092036A1 (en) 2016-11-11 2022-11-23 Universal Display Corporation Organic electroluminescent materials and devices
EP4212540A1 (en) 2017-01-09 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
EP3345914A1 (en) 2017-01-09 2018-07-11 Universal Display Corporation Organic electroluminescent materials and devices
EP3689890A1 (en) 2017-01-09 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3381927A1 (en) 2017-03-29 2018-10-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3730506A1 (en) 2017-03-29 2020-10-28 Universal Display Corporation Organic electroluminescent materials and devices
EP3985012A1 (en) 2017-03-29 2022-04-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3401318A1 (en) 2017-05-11 2018-11-14 Universal Display Corporation Organic electroluminescent materials and devices
EP4141010A1 (en) 2017-05-11 2023-03-01 Universal Display Corporation Organic electroluminescent materials and devices
EP3418286A1 (en) 2017-06-23 2018-12-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4185086A1 (en) 2017-07-26 2023-05-24 Universal Display Corporation Organic electroluminescent materials and devices
US11765970B2 (en) * 2017-07-26 2023-09-19 Universal Display Corporation Organic electroluminescent materials and devices
EP3783006A1 (en) 2017-08-10 2021-02-24 Universal Display Corporation Organic electroluminescent materials and devices
EP3444258A2 (en) 2017-08-10 2019-02-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3878855A1 (en) 2017-11-28 2021-09-15 University of Southern California Carbene compounds and organic electroluminescent devices
EP3489243A1 (en) 2017-11-28 2019-05-29 University of Southern California Carbene compounds and organic electroluminescent devices
EP3492480A2 (en) 2017-11-29 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3492528A1 (en) 2017-11-30 2019-06-05 Universal Display Corporation Organic electroluminescent materials and devices
EP4019526A1 (en) 2018-01-26 2022-06-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4206210A1 (en) 2018-08-22 2023-07-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3613751A1 (en) 2018-08-22 2020-02-26 Universal Display Corporation Organic electroluminescent materials and devices
EP3690973A1 (en) 2019-01-30 2020-08-05 University Of Southern California Organic electroluminescent materials and devices
EP4301117A2 (en) 2019-02-01 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3689889A1 (en) 2019-02-01 2020-08-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3709376A1 (en) 2019-03-12 2020-09-16 Universal Display Corporation Oled with triplet emitter and excited state lifetime less than 200 ns
EP4134371A2 (en) 2019-03-26 2023-02-15 Universal Display Corporation Organic electroluminescent materials and devices
EP3715353A1 (en) 2019-03-26 2020-09-30 Universal Display Corporation Organic electroluminescent materials and devices
EP3750897A1 (en) 2019-06-10 2020-12-16 Universal Display Corporation Organic electroluminescent materials and devices
EP4219515A1 (en) 2019-07-30 2023-08-02 Universal Display Corporation Organic electroluminescent materials and devices
EP3771717A1 (en) 2019-07-30 2021-02-03 Universal Display Corporation Organic electroluminescent materials and devices
EP3778614A1 (en) 2019-08-16 2021-02-17 Universal Display Corporation Organic electroluminescent materials and devices
US20210057652A1 (en) * 2019-08-23 2021-02-25 Samsung Display Co., Ltd. Organic electroluminescence device and polycyclic compound for organic electroluminescence device
EP3816175A1 (en) 2019-11-04 2021-05-05 Universal Display Corporation Organic electroluminescent materials and devices
EP3823055A1 (en) 2019-11-14 2021-05-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4151644A1 (en) 2020-01-06 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP3845545A1 (en) 2020-01-06 2021-07-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4294157A2 (en) 2020-01-28 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP3858945A1 (en) 2020-01-28 2021-08-04 Universal Display Corporation Organic electroluminescent materials and devices
EP3937268A1 (en) 2020-07-10 2022-01-12 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4016659A1 (en) 2020-11-16 2022-06-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4001286A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4001287A1 (en) 2020-11-24 2022-05-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4329463A2 (en) 2020-11-24 2024-02-28 Universal Display Corporation Organic electroluminescent materials and devices
WO2022131123A1 (ja) 2020-12-18 2022-06-23 日鉄ケミカル&マテリアル株式会社 有機電界発光素子及びその製造方法
KR20230121083A (ko) 2020-12-18 2023-08-17 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자 및 그 제조 방법
EP4039692A1 (en) 2021-02-03 2022-08-10 Universal Display Corporation Organic electroluminescent materials and devices
EP4060758A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4059915A2 (en) 2021-02-26 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4053137A1 (en) 2021-03-05 2022-09-07 Universal Display Corporation Organic electroluminescent materials and devices
EP4056578A1 (en) 2021-03-12 2022-09-14 Universal Display Corporation Organic electroluminescent materials and devices
EP4059941A1 (en) 2021-03-15 2022-09-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4074723A1 (en) 2021-04-05 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4075531A1 (en) 2021-04-13 2022-10-19 Universal Display Corporation Plasmonic oleds and vertical dipole emitters
EP4075530A1 (en) 2021-04-14 2022-10-19 Universal Display Corporation Organic electroluminescent materials and devices
EP4086266A1 (en) 2021-04-23 2022-11-09 Universal Display Corporation Organic electroluminescent materials and devices
EP4079743A1 (en) 2021-04-23 2022-10-26 Universal Display Corporation Organic electroluminescent materials and devices
EP4112701A2 (en) 2021-06-08 2023-01-04 University of Southern California Molecular alignment of homoleptic iridium phosphors
EP4151699A1 (en) 2021-09-17 2023-03-22 Universal Display Corporation Organic electroluminescent materials and devices
EP4212539A1 (en) 2021-12-16 2023-07-19 Universal Display Corporation Organic electroluminescent materials and devices
CN115490569A (zh) * 2022-02-23 2022-12-20 陕西莱特迈思光电材料有限公司 有机化合物、有机电致发光器件和电子装置
EP4242285A1 (en) 2022-03-09 2023-09-13 Universal Display Corporation Organic electroluminescent materials and devices
EP4265626A2 (en) 2022-04-18 2023-10-25 Universal Display Corporation Organic electroluminescent materials and devices
EP4282863A1 (en) 2022-05-24 2023-11-29 Universal Display Corporation Organic electroluminescent materials and devices
EP4293001A1 (en) 2022-06-08 2023-12-20 Universal Display Corporation Organic electroluminescent materials and devices
EP4299693A1 (en) 2022-06-28 2024-01-03 Universal Display Corporation Organic electroluminescent materials and devices
EP4326030A1 (en) 2022-08-17 2024-02-21 Universal Display Corporation Organic electroluminescent materials and devices
EP4362631A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4362645A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices
EP4362630A2 (en) 2022-10-27 2024-05-01 Universal Display Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
KR20140009393A (ko) 2014-01-22
CN103429570A (zh) 2013-12-04
US20140008633A1 (en) 2014-01-09
TW201245407A (en) 2012-11-16
JPWO2012128298A1 (ja) 2014-07-24
EP2690093A1 (en) 2014-01-29
US9564595B2 (en) 2017-02-07
EP2690093A4 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
WO2012128298A1 (ja) ビスカルバゾール誘導体およびこれを用いた有機エレクトロルミネッセンス素子
JP5926421B2 (ja) ビスカルバゾール誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5938175B2 (ja) 含窒素芳香族複素環誘導体およびそれを用いた有機エレクトロルミネッセンス素子
JP5952690B2 (ja) 芳香族アミン誘導体およびそれを用いた有機エレクトロルミネッセンス素子
JP6088161B2 (ja) 芳香族アミン誘導体及び有機エレクトロルミネッセンス素子
JP5802854B2 (ja) 縮合フルオランテン化合物、これを用いた有機エレクトロルミネッセンス素子用材料、並びにこれを用いた有機エレクトロルミネッセンス素子及び電子機器
JP6195828B2 (ja) 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子
JP6114232B2 (ja) 複素環化合物、これを用いた有機エレクトロルミネッセンス素子用材料、並びにこれを用いた有機エレクトロルミネッセンス素子及び電子機器
JP6270735B2 (ja) 芳香族アミン誘導体及び有機エレクトロルミネッセンス素子
WO2014199637A1 (ja) 有機エレクトロルミネッセンス素子用材料、これを用いた有機エレクトロルミネッセンス素子及び電子機器
JP5877273B2 (ja) 複素環化合物、これを用いた有機エレクトロルミネッセンス素子用材料、並びにこれを用いた有機エレクトロルミネッセンス素子及び電子機器
WO2012108389A1 (ja) ビスカルバゾール誘導体及びそれを用いた有機エレクトロルミネッセンス素子
EP2489664A1 (en) Fluorene-containing aromatic compound, material for organic electroluminescent element, and organic electroluminescent element using same
JPWO2013038650A1 (ja) 縮合複素芳香族誘導体、有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
WO2011108707A1 (ja) 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子
JP6182217B2 (ja) 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子および電子機器
WO2014050093A1 (ja) 有機エレクトロルミネッセンス素子用材料、及びそれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12759920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013505994

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14006514

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137024891

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012759920

Country of ref document: EP