WO2012128140A1 - 銅配線の形成方法、配線基板の製造方法及び配線基板 - Google Patents

銅配線の形成方法、配線基板の製造方法及び配線基板 Download PDF

Info

Publication number
WO2012128140A1
WO2012128140A1 PCT/JP2012/056525 JP2012056525W WO2012128140A1 WO 2012128140 A1 WO2012128140 A1 WO 2012128140A1 JP 2012056525 W JP2012056525 W JP 2012056525W WO 2012128140 A1 WO2012128140 A1 WO 2012128140A1
Authority
WO
WIPO (PCT)
Prior art keywords
suspension
copper
wiring
copper particles
forming
Prior art date
Application number
PCT/JP2012/056525
Other languages
English (en)
French (fr)
Inventor
裕司 又木
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP12761154.9A priority Critical patent/EP2690938A4/en
Priority to CN2012800144030A priority patent/CN103460817A/zh
Publication of WO2012128140A1 publication Critical patent/WO2012128140A1/ja
Priority to US14/033,412 priority patent/US20140020938A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/227Drying of printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1283After-treatment of the printed patterns, e.g. sintering or curing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4846Leads on or in insulating or insulated substrates, e.g. metallisation
    • H01L21/4867Applying pastes or inks, e.g. screen printing
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/24Reinforcing the conductive pattern
    • H05K3/245Reinforcing conductive patterns made by printing techniques or by other techniques for applying conductive pastes, inks or powders; Reinforcing other conductive patterns by such techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/5328Conductive materials containing conductive organic materials or pastes, e.g. conductive adhesives, inks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/097Inks comprising nanoparticles and specially adapted for being sintered at low temperature
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0263Details about a collection of particles
    • H05K2201/0266Size distribution
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/14Related to the order of processing steps
    • H05K2203/1476Same or similar kind of process performed in phases, e.g. coarse patterning followed by fine patterning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1241Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing
    • H05K3/125Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by ink-jet printing or drawing by dispensing by ink-jet printing

Definitions

  • the present invention relates to a method of forming a copper wiring, a method of manufacturing a wiring board, and a wiring board, and more particularly, a method of forming a copper wiring using copper particles having different particle sizes, a method of manufacturing a wiring board, and a wiring Regarding the substrate.
  • a wiring substrate having an insulating substrate and a wiring pattern made of a metal film formed on the surface of the insulating substrate has been widely used for electronic components and semiconductor elements.
  • the gap between the copper particles forming the metal film is large.
  • the conductivity of the film decreases with time.
  • the copper nanoparticles When using copper nanoparticles (for example, having a particle size of less than 100 nm) to improve the denseness of the metal film, the copper nanoparticles are easily and completely oxidized in the air in the process of forming the wiring pattern. Even if the reduction treatment is performed thereafter, the particles cannot be bonded to each other, and the wiring pattern cannot exhibit conductivity. In addition, since the cost of particles having a small particle size is high, the manufacturing cost of the wiring board increases.
  • Patent Document 1 describes a method of forming a copper wiring by applying a paste in which copper particles having different particle diameters are dispersed on a substrate and baking the paste.
  • Patent Document 2 describes a method of forming a wiring by ejecting two kinds of liquids in which conductive fine particles are dispersed in different suspension media and applying them to a substrate.
  • Patent Document 3 describes a method of forming a wiring with a plurality of metal thin films having different crystal grain sizes.
  • JP-A-10-308120 Japanese Patent Laid-Open No. 2003-311196 Japanese Patent Laid-Open No. 05-013412
  • the present invention has been made in view of such circumstances, and by reducing the voids between the copper particles, the method of forming a copper wiring and wiring capable of improving conductivity and suppressing deterioration over time
  • An object of the present invention is to provide a substrate manufacturing method and a wiring substrate.
  • a method for forming a copper wiring includes providing a first suspension in which first copper particles having an average particle diameter of 100 nm or more are dispersed on a substrate.
  • a wiring pattern forming step for forming the wiring pattern on the substrate with the first suspension, and drying for drying the first copper particles in the wiring pattern at a temperature of less than 150 ° C. after the wiring pattern forming step.
  • a second suspension for applying to the wiring pattern a second suspension in which second copper particles having an average particle size smaller than the average particle size of the first copper particles is dispersed.
  • a densification step for reducing the gap between the first and second copper particles in the wiring pattern, and after the densification step, the first and second in the wiring pattern A heating step of applying heat to the second copper particles, and a wiring after the heating step Including a reduction treatment step of performing a reduction treatment in the first and second copper particles in turn.
  • the wiring pattern is formed by the first copper particles having an average particle diameter of 100 nm or more, and then the second copper having an average particle diameter smaller than the average particle diameter of the first copper particles.
  • the second copper particles can be put in the gaps between the first copper particles in the wiring pattern. Therefore, the space
  • the contact area of the copper particles is increased and the conductivity of the copper wiring is increased. Can be improved.
  • gap between the copper particles which form a wiring pattern can be made small, the temporal stability of copper wiring can be improved.
  • the densification step includes a pressurizing step of applying pressure to the first and second copper particles in the wiring pattern.
  • the wiring pattern forming step includes a first suspension discharging step of discharging a droplet of the first suspension by an inkjet method and applying the droplet onto the substrate
  • the second suspension applying step includes: A second suspension discharge step of discharging droplets of the suspension 2 by the inkjet method and applying the droplets to the wiring pattern.
  • each process can be easily performed by using the inkjet method in the wiring pattern forming process and the second suspension applying process.
  • the first and second suspensions can be selectively applied only to the portions necessary for the formation of the wiring pattern on the substrate, the usage amount of the first and second suspensions can be suppressed.
  • the manufacturing cost of the copper wiring can be reduced.
  • the size of the first suspension droplet in the first suspension discharge step is larger than the size of the second suspension droplet in the second suspension discharge step.
  • the first suspension discharge step and the second suspension discharge step are performed using different inkjet heads.
  • the first and second suspensions can be discharged efficiently.
  • the average particle diameter of the second copper particles is 1/10 or less of the average particle diameter of the first copper particles.
  • the viscosity of the second suspension is smaller than the viscosity of the first suspension.
  • a method for manufacturing a wiring board according to one aspect of the present invention includes the above-described method for forming a copper wiring.
  • a copper wiring with improved conductivity and stability over time can be formed, which is suitable as a method for manufacturing a wiring board.
  • a wiring board according to an aspect of the present invention includes a copper wiring formed by the above-described copper wiring forming method.
  • the wiring board can have copper wiring with improved conductivity and stability over time.
  • copper particles having a relatively small particle size are placed in the voids between copper particles having a relatively large particle size, and then the voids are further reduced by densification treatment, and then the copper particles are heated. Therefore, the contact area of the copper particles can be increased, the conductivity of the copper wiring can be improved, and deterioration with time can be suppressed.
  • a first suspension 12 in which a large number of first copper particles 14 (first copper powder) is dispersed is applied onto the substrate 10.
  • a wiring pattern is formed on the substrate 10 with the first suspension 12 (see FIG. 1A).
  • the width of the wiring pattern is not particularly limited, but is preferably 50 ⁇ m or more and 100 ⁇ m or less.
  • substrates of various materials can be used without any particular limitation.
  • the first suspension 12 includes a suspension medium (continuous phase) and a large number of first copper particles 14 (first copper powder) dispersed in the suspension medium. Further, the first suspension 12 can include a dispersant having an action of keeping the first copper particles 14 in a dispersed state in the suspension medium. Furthermore, the first suspension 12 may contain an additive that evaporates or decomposes at a temperature equal to or lower than the heating temperature in the heating step described later. In FIG. 1A, only the first copper particles 14 among the components of the first suspension 12 are specifically illustrated.
  • the first copper powder 14 has a number average particle diameter (hereinafter, simply referred to as “particle diameter”) measured by observation using a scanning electron microscope (SEM) of 100 nm to 300 nm. It is preferable that it is comprised.
  • particle diameter measured by observation using a scanning electron microscope (SEM) of 100 nm to 300 nm. It is preferable that it is comprised.
  • SEM scanning electron microscope
  • the copper particles have a particle size of 100 nm or more, the copper particles are not easily oxidized in the air at normal temperature.
  • the particle size of the copper particles is smaller than 100 nm, the copper particles are easily oxidized completely in the air at normal temperature.
  • suspension medium various liquids (for example, cyclohexanone) can be used without particular limitation as long as the first copper particles 14 are dispersible.
  • the dispersant various materials can be used without particular limitation as long as the material has an action of keeping the first copper particles 14 in a dispersed state in the suspension medium.
  • the dispersant is preferably a material that improves the dispersion stability of the first copper particles 14, and is preferably a material that does not contribute to the conductivity of the completed copper wiring.
  • the first suspension 12 it is preferable to prepare the first suspension 12 in a non-oxidizing atmosphere.
  • the first copper powder composed of the first copper particles 14 having a particle diameter of 100 nm or more is used, the first copper particles 14 are easily oxidized completely in the atmosphere at room temperature. The oxidation of the first copper powder can be suppressed by preparing the first suspension 12 in a non-oxidizing atmosphere.
  • the first suspension 12 preferably has a viscosity of 1 cP to 20 cP and a surface tension of 25 mN / m to 40 mN / m.
  • the first suspension 12 can be prepared, for example, by mixing 50 wt% or more of the first copper particles and 50 wt% or less of cyclohexanone.
  • the method for applying the first suspension 12 onto the substrate 10 is not particularly limited, and various printing methods such as a spin coating method and a dip coating method, and various printing methods such as an ink jet printing method and a screen printing method are used. Can do. Among these methods, when an inkjet printing method is used, a desired wiring pattern can be directly drawn on the substrate 10 by the first suspension 12. In addition, when the inkjet printing method is used, the first suspension 12 can be selectively applied along the wiring pattern, so that the amount of the first suspension 12 used is suppressed and the manufacturing cost of the copper wiring is reduced. be able to.
  • the temperature for drying the first copper powder in the first drying step is preferably less than 150 ° C. More preferably, the first copper powder is not heated in the first drying step. As described above, by limiting the temperature of the first drying step, oxidation of the first copper powder can be suppressed.
  • drying of the first copper powder can be promoted by blowing air or lowering the atmospheric pressure.
  • the second suspension 16 includes a suspension medium (continuous phase) and a large number of second copper particles 18 (second copper powder) dispersed in the suspension medium. Further, the second suspension 16 can contain a dispersant having an action of keeping the second copper particles 18 in a dispersed state in the suspension medium. Further, the second suspension 16 may contain an additive that evaporates or decomposes at a temperature equal to or lower than the heating temperature in the heating step described later. In FIG. 1C, only the second copper particles 18 among the components of the second suspension 16 are specifically illustrated.
  • the particle size of the second copper particles 18 constituting the second copper powder is smaller than the particle size of the first copper particles 14. Thereby, the 2nd copper particle 18 can be put into the space
  • the particle diameter of the second copper particles 18 is preferably 30 nm or less, more preferably 1/10 or less of the particle diameter of the first copper particles 14. As a result, the second copper particles 18 can easily enter the voids between the first copper particles 14. On the other hand, when the particle size of the second copper particles 18 is small, the second copper particles 18 are easily oxidized during the second suspension applying step. Therefore, the second copper particles 18 preferably have a particle size that does not easily oxidize at room temperature, and preferably have a particle size of, for example, 10 nm or more.
  • the same material as the first dispersion liquid 12 can be used as a suspension medium, a dispersant, and other components included in the second suspension 16. Moreover, it is preferable to prepare the second suspension 16 in a non-oxidizing atmosphere.
  • the second suspension 16 can be prepared, for example, by mixing 25 wt% or more of the second copper particles and 75 wt% or less of cyclohexanone.
  • the viscosity of the second suspension 16 is not less than 1 cP and not more than 20 cP, and is smaller than the viscosity of the first suspension 12.
  • the surface tension of the second suspension 16 is preferably 25 mN / m or more and 40 mN / m or less.
  • the method for applying the second suspension 16 to the wiring pattern is not particularly limited, and a method similar to the method for applying the first suspension 12 can be used.
  • the second suspension 16 When the second suspension 16 is applied by the ink jet printing method, the second suspension 16 can be selectively applied along the wiring pattern, so that the amount of the second suspension 16 used can be suppressed. Thus, the manufacturing cost of the copper wiring can be reduced. At this time, it is preferable that the size of the droplets of the second suspension 16 ejected by inkjet is smaller than the width of the wiring pattern.
  • the first suspension 12 and the second suspension 16 are applied by the inkjet printing method
  • the first suspension 12 and the second suspension 16 are ejected from different inkjet heads.
  • the same suspension is used for the copper powder composed of copper particles having different particle sizes.
  • the selectivity of the physical property of the provision by the inkjet printing method can be improved.
  • the size of the droplets of the second suspension 16 ejected by inkjet is smaller than the size of the droplets of the first suspension 12 ejected by inkjet. As a result, the second suspension 16 can easily enter the voids between the first copper particles 14.
  • a second drying step of removing the suspension medium from the second suspension 16 applied to the wiring pattern and drying the copper powder can be performed.
  • the second drying step can be omitted.
  • the second copper particles 18 are left between the first copper particles 14 by leaving the suspension medium of the second suspension 16 and maintaining the fluidity of the second suspension 16. You can keep in a state where you can easily enter. Further, the process time can be shortened.
  • the copper powder can be compressed and densified by applying pressure using the pressurizing device 20.
  • the second copper particles 18 are put in the gaps between the first copper particles 14 by the step of applying the second suspension, the second copper particles 18 are not applied.
  • the densification step can be performed with a smaller gap. Therefore, the pressure applied for densification can be made relatively low, and adverse effects on the substrate 10 can be suppressed.
  • the application amount of the second copper particles 18 can be suppressed, so that the manufacturing cost of the copper wiring can be reduced.
  • An example of the pressurizing method in the densification step is calendar processing.
  • the pressure applied to the copper powder in the densification step is preferably 100 MPa or more and 300 MPa or less.
  • the first copper particles 14 and the second copper particles 18 are oxidized and simultaneously bonded to each other by applying heat in the atmosphere to the copper powder densified in the densification step (see FIG. 1E).
  • the heating temperature in the heating step it is preferable to determine the heating temperature in the heating step according to the particle diameter of the first copper particles 14 constituting the first copper powder.
  • the heating temperature in the heating process is 150 ° C. or more
  • conductivity is imparted to the wiring pattern. be able to.
  • the wiring pattern can be provided with conductivity. it can.
  • the contact area of the copper particles can be further increased by reducing the gap between the copper particles forming the wiring pattern and then oxidizing the copper particles by heating and bonding them to each other.
  • the order of the densification step and the heating step is reversed (that is, the densification step is performed after the heating step)
  • the copper particles are already bonded to each other by heating in the heating step.
  • a densification step is performed, and it is difficult to reduce the voids between the copper particles and densify the copper powder.
  • the densification step and the heating step are simultaneously performed on the copper powder, the copper particles are bonded to each other in a state where the copper powder is not sufficiently densified. It cannot be secured. Therefore, it is preferable to perform the densification step first and the heating step thereafter.
  • the oxidized copper powder can be reduced by heating at 350 ° C. to 400 ° C. in an argon atmosphere containing 3 vol% or more and 10 vol% or less of hydrogen.
  • the width of the copper wiring formed in the present embodiment is not particularly limited, and is, for example, 50 ⁇ m or more and 100 ⁇ m or less.
  • the copper wiring formed in this embodiment can be used as a wiring of a wiring board.
  • the wiring pattern in the wiring pattern forming step, is formed using the first copper particles having a large particle size, and in the subsequent application step of the second suspension, the first copper particle particles are formed.
  • the wiring pattern By providing the wiring pattern with second copper particles having a particle size smaller than the diameter, the gaps between the first copper particles are filled with the second copper particles to form a copper wiring with a small gap. Can do. Therefore, in the completed copper wiring, the conductivity can be improved and the stability with time can be improved.
  • FIG. 2A shows a first comparative example in which the second copper particles 118 having a small particle size are first applied onto the substrate 10 and the first copper particles 114 having a large particle size are then applied. .
  • the layer of the first copper particles 114 can only be on the layer of the second copper particles 118, and the effect of the second copper particles 118 filling the gaps between the first copper particles 114 is obtained. I can't.
  • FIG. 2B a suspension in which both the first copper particles 214 having a large particle size and the second copper particles 218 having a small particle size are dispersed is prepared, and the suspension is placed on the substrate 10.
  • 2 shows a second comparative example.
  • a part of the second copper particles 218 enters the gap between the first copper particles 214.
  • a part of the second copper particles 218 remains on the first copper particles 214 and is wasted without causing the effect of filling the gaps between the first copper particles 214.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

 銅配線の導電性を向上させると共に経時劣化を抑制することができる、銅配線の形成方法、配線基板の製造方法及び配線基板を提供する。銅配線の形成方法は、100nm以上の平均粒径を有する第1の銅粒子(14)が分散している第1の懸濁液(12)を基板(10)上に付与して、基板(10)上に配線パターンを第1の懸濁液(12)により形成する配線パターン形成工程と、第1の銅粒子(14)を150℃未満の温度で乾燥させる乾燥工程と、第1の銅粒子(14)の平均粒径よりも小さい平均粒径を有する第2の銅粒子(18)が分散している第2の懸濁液(16)を配線パターンに付与する第2懸濁液付与工程と、第1及び第2の銅粒子(14,18)の間の空隙を小さくする緻密化工程と、第1及び第2の銅粒子(14,18)に熱を加える加熱工程と、第1及び第2の銅粒子(14,18)に還元処理を行う還元処理工程と、を含む。

Description

銅配線の形成方法、配線基板の製造方法及び配線基板
 本発明は、銅配線の形成方法、配線基板の製造方法及び配線基板に係り、特に、異なる粒径の銅粒子を用いて銅配線を形成する銅配線の形成方法、配線基板の製造方法及び配線基板に関する。
 従来、絶縁性基板とその表面に形成された金属膜から成る配線パターンとを有する配線基板が、電子部品や半導体素子に広く用いられている。
 比較的大きい銅粒子(例えば100nm以上の粒径を有する)が分散している懸濁液を用いて配線パターンを形成する場合は、金属膜を形成する銅粒子の間の空隙が大きいので、金属膜の導電性が経時変化によって低下する。
 金属膜の緻密性を向上させるために銅ナノ粒子(例えば100nm未満の粒径を有する)を用いる場合は、配線パターンを形成する工程において銅ナノ粒子が大気中で容易に完全に酸化するので、その後に還元処理を行っても粒子を互いに結合させることができず、配線パターンに導電性を発現させることができない。また、小さい粒径を有する粒子はコストが高いので、配線基板の製造コストが上がる。
 例えば、特許文献1には、異なる粒径の銅粒子が分散しているペーストを基板上に塗布して焼成することによって、銅配線を形成する方法が記載されている。特許文献2には、互いに異なる懸濁媒に導電性微粒子が分散している二種類の液体をそれぞれ吐出して基板上に付与することによって、配線を形成する方法が記載されている。特許文献3には、異なる結晶粒径を有する複数の金属薄膜で配線を形成する方法が記載されている。
特開平10-308120号公報 特開2003-311196号公報 特開平05-013412号公報
 特許文献1に記載の方法では、異なる粒径の粒子を一つのペースト中に混合して基板上に塗布していて、特許文献2に記載の方法では、懸濁媒の物性が互いに異なるが導電性微粒子の物性は同一である2種類の液体を用いているので、いずれの場合も粒子の間の空隙を十分に埋めることはできない。また、特許文献3に記載の方法では、第1の金属薄膜の上部に第1の金属薄膜の結晶粒径よりも小さい結晶粒径を有する第2の金属薄膜を形成しているが、粒子の間の空隙を埋めることについての検討はされていない。
 本発明は、このような事情に鑑みてなされたものであり、銅粒子の間の空隙を小さくすることによって、導電性を向上させると共に経時劣化を抑制することができる銅配線の形成方法、配線基板の製造方法及び配線基板を提供することを目的とする。
 上記目的を達成するために、本発明の一態様に係る銅配線の形成方法は、100nm以上の平均粒径を有する第1の銅粒子が分散している第1の懸濁液を基板上に付与して、基板上に配線パターンを第1の懸濁液により形成する配線パターン形成工程と、配線パターン形成工程後に、配線パターン中の第1の銅粒子を150℃未満の温度で乾燥させる乾燥工程と、乾燥工程後に、第1の銅粒子の平均粒径よりも小さい平均粒径を有する第2の銅粒子が分散している第2の懸濁液を配線パターンに付与する第2懸濁液付与工程と、第2懸濁液付与工程後に、配線パターン中の第1及び第2の銅粒子の間の空隙を小さくする緻密化工程と、緻密化工程後に、配線パターン中の第1及び第2の銅粒子に熱を加える加熱工程と、加熱工程後に、配線パターン中の第1及び第2の銅粒子に還元処理を行う還元処理工程と、を含む。
 この態様によれば、100nm以上の平均粒径を有する第1の銅粒子により配線パターンを形成して、その後に第1の銅粒子の平均粒径よりも小さい平均粒径を有する第2の銅粒子を配線パターンに付与することによって、配線パターン中の第1の銅粒子の間の空隙に第2の銅粒子を入れることができる。したがって、配線パターンを形成する際に生じる銅粒子の間の空隙を小さくすることができる。また、緻密化処理によって銅粒子の間の空隙を小さくして、その後に銅粒子を加熱して酸化させて互いに結合させることによって、銅粒子の互いの接触面積を大きくして銅配線の導電性を向上させることができる。更に、配線パターンを形成する銅粒子の間の空隙を小さくすることができるので、銅配線の経時安定性を向上させることができる。
 好ましくは、緻密化工程は、配線パターン中の第1及び第2の銅粒子に圧力を加える加圧工程を含む。
 この態様によれば、配線パターン中の第1及び第2の銅粒子に圧力を加えることによって、銅粒子の間の空隙を小さくする緻密化処理を行うことができる。
 好ましくは、配線パターン形成工程は、第1の懸濁液の液滴をインクジェット方法によって吐出して基板上に付与する第1懸濁液吐出工程を含み、第2懸濁液付与工程は、第2の懸濁液の液滴をインクジェット方法によって吐出して配線パターンに付与する第2懸濁液吐出工程を含む。
 この態様によれば、配線パターン形成工程及び第2懸濁液付与工程においてインクジェット方法を用いることによって、各工程を容易に行うことができる。また、基板上の配線パターンの形成に必要な部分にだけ選択的に第1及び第2の懸濁液を付与することができるので、第1及び第2の懸濁液の使用量を抑制して銅配線の製造コストを下げることができる。
 好ましくは、第1懸濁液吐出工程における第1の懸濁液の液滴の大きさは、第2懸濁液吐出工程における第2の懸濁液の液滴の大きさよりも大きい。
 この態様によれば、第1の銅粒子の間の空隙に第2の懸濁液を入れることが容易になる。
 好ましくは、第1懸濁液吐出工程及び第2懸濁液吐出工程は、それぞれ異なるインクジェットヘッドを用いて行われる。
 この態様によれば、第1及び第2の懸濁液の吐出を効率よく行うことができる。
 好ましくは、第2の銅粒子の平均粒径は第1の銅粒子の平均粒径の1/10以下である。
 この態様によれば、第1の銅粒子の間の空隙に第2の銅粒子を入れることが容易になる。
 好ましくは、第2の懸濁液の粘度は第1の懸濁液の粘度よりも小さい。
 この態様によれば、第1の銅粒子の間の空隙に第2の懸濁液を入れることが容易になる。
 また、上記目的を達成するために、本発明の一態様に係る配線基板の製造方法は、上述の銅配線の形成方法を含む。
 この態様によれば、導電性及び経時安定性が向上した銅配線を形成することができるので、配線基板の製造方法として好適である。
 また、上記目的を達成するために、本発明の一態様に係る配線基板は、上述の銅配線の形成方法によって形成された銅配線を含む。
 この態様によれば、配線基板は、導電性及び経時安定性が向上した銅配線を有することができる。
 本発明によれば、比較的大きい粒子径を有する銅粒子の間の空隙に比較的小さい粒子径を有する銅粒子を入れ、その後に緻密化処理によって空隙を更に小さくし、その後に銅粒子を加熱によって酸化させて互いに結合させているので、銅粒子の互いの接触面積を大きくすることができ、銅配線の導電性を向上させると共に経時劣化を抑制することができる。
本発明の実施形態に係る銅配線の形成方法を説明する図 本発明の実施形態に係る銅配線の形成方法を説明する図 本発明の実施形態に係る銅配線の形成方法を説明する図 本発明の実施形態に係る銅配線の形成方法を説明する図 本発明の実施形態に係る銅配線の形成方法を説明する図 本発明の実施形態に係る銅配線の形成方法を説明する図 比較例に係る銅配線の形成方法を説明する図 比較例に係る銅配線の形成方法を説明する図
 以下、添付図面に従って本発明の好ましい実施の形態について説明する。
 〔配線パターン形成工程〕
 本発明の実施形態に係る銅配線の形成方法では、最初に、多数の第1の銅粒子14(第1の銅パウダー)が分散している第1の懸濁液12を基板10上に付与して、基板10上に配線パターンを第1の懸濁液12により形成する(図1A参照)。配線パターンの幅は、特に限定されないが、50μm以上100μm以下であることが好ましい。
 <基板>
 基板10として、特に限定なく様々な材質の基板を用いることができる。
 <第1の懸濁液>
 第1の懸濁液12は、懸濁媒(連続相)と、懸濁媒中に分散している多数の第1の銅粒子14(第1の銅パウダー)と、を含む。また、第1の懸濁液12は、第1の銅粒子14を懸濁媒中で分散状態に保つ作用を持つ分散剤を含むことができる。更に、第1の懸濁液12は、後述の加熱工程における加熱温度以下の温度で蒸発又は分解する添加剤を含んでいてもよい。図1Aでは、第1の懸濁液12の構成要素のうち第1の銅粒子14のみが特に図示されている。
 第1の銅パウダーは、走査型電子顕微鏡(SEM)を用いた観察によって測定される数平均粒径(以下、単に「粒径」という。)が100nm以上300nm以下である第1の銅粒子14から構成されることが好ましい。銅粒子が100nm以上の粒径を有している場合は、常温の大気中で容易に銅粒子が完全に酸化することはない。一方、銅粒子の粒径が100nmよりも小さい場合は、常温の大気中で容易に銅粒子が完全に酸化する。
 懸濁媒として、第1の銅粒子14が分散可能である液体であれば、特に限定なく様々な液体(例えばシクロヘキサノン等)を用いることができる。
 分散剤として、第1の銅粒子14を懸濁媒中で分散状態に保つ作用を持つ材料であれば、特に限定なく様々な材料を用いることができる。分散剤は、第1の銅粒子14の分散安定性を良好とする材料が好ましく、更に、完成した銅配線の導電性に関与しない材料であることが好ましい。
 第1の懸濁液12は、非酸化雰囲気で調製することが好ましい。本実施形態では、100nm以上の粒径を有する第1の銅粒子14から構成される第1の銅パウダーを用いているので、常温の大気中で容易に第1の銅粒子14が完全に酸化することはないが、第1の懸濁液12を非酸化雰囲気で調製することによって、第1の銅パウダーの酸化を抑制することができる。
 第1の懸濁液12は、1cP以上20cP以下の粘度及び25mN/m以上40mN/m以下の表面張力を有することが好ましい。このように第1の懸濁液12の物性を調整することによって、後述の第2の懸濁液16を付与したときに第2の銅粒子18を第1の銅粒子14の間の空隙に入れることが容易になる。
 第1の懸濁液12は、例えば、第1の銅粒子50wt%以上とシクロヘキサノン50wt%以下とを混合することによって調製することができる。
 <第1の懸濁液の付与方法>
 第1の懸濁液12を基板10上に付与する方法として、特に限定なく、スピンコーティング方法、ディップコーティング方法などの各種コーティング方法や、インクジェットプリンティング方法、スクリーンプリンティング方法などの各種プリンティング方法を用いることができる。これらの方法のうちインクジェットプリンティング方法を用いると、所望の配線パターンを基板10上に第1の懸濁液12により直接的に描画することができる。また、インクジェットプリンティング方法を用いると、第1の懸濁液12を配線パターンに沿って選択的に付与できるので、第1の懸濁液12の使用量を抑制して銅配線の製造コストを下げることができる。
 〔第1の乾燥工程〕
 次に、パターン形成工程で基板10上に付与された第1の懸濁液12から懸濁媒を除去して、第1の銅パウダーを乾燥させる(図1B参照)。これによって、次の第2の懸濁液付与工程において、第2の懸濁液16を第1の銅粒子14の間の空隙に入れることが容易になる。
 第1の乾燥工程において第1の銅パウダーを乾燥させる温度は、150℃未満であることが好ましい。第1の乾燥工程において第1の銅パウダーが加熱されないことが、更に好ましい。以上のように第1の乾燥工程の温度を制限することによって、第1の銅パウダーの酸化を抑制することができる。
 第1の乾燥工程において、送風したり雰囲気圧力を低くしたりすることによって、第1の銅パウダーの乾燥を促進することができる。
 〔第2の懸濁液の付与工程〕
 次に、第1の乾燥工程で乾燥させた第1の銅パウダーから形成される配線パターンに、多数の第2の銅粒子18(第2の銅パウダー)が分散している第2の懸濁液16を付与する(図1C参照)。
 <第2の懸濁液>
 第2の懸濁液16は、懸濁媒(連続相)と、懸濁媒中に分散している多数の第2の銅粒子18(第2の銅パウダー)と、を含む。また、第2の懸濁液16は、第2の銅粒子18を懸濁媒中で分散状態に保つ作用を持つ分散剤を含むことができる。更に、第2の懸濁液16は、後述の加熱工程における加熱温度以下の温度で蒸発又は分解する添加剤を含んでいてもよい。図1Cでは、第2の懸濁液16の構成要素のうち第2の銅粒子18のみが特に図示されている。
 第2の銅パウダーを構成する第2の銅粒子18の粒径は、第1の銅粒子14の粒径よりも小さい。これによって、第1の銅粒子14の間の空隙に第2の銅粒子18を入れて、空隙を小さくすることができる。
 第2の銅粒子18の粒径は、好ましくは30nm以下であり、より好ましくは第1の銅粒子14の粒径の1/10以下である。これによって、第2の銅粒子18は、第1の銅粒子14の間の空隙に容易に入ることができる。一方、第2の銅粒子18の粒径が小さい場合は、第2の懸濁液付与工程中に第2の銅粒子18が容易に酸化する。したがって、第2の銅粒子18は、常温で酸化が容易に進まない程度の粒径を有することが好ましく、例えば10nm以上の粒径を有することが好ましい。
 第2の懸濁液16に含まれる懸濁媒、分散剤、その他の構成要素として、第1の分散液12と同様の材料を用いることができる。また、第2の懸濁液16を非酸化雰囲気で調製することが好ましい。
 第2の懸濁液16は、例えば、第2の銅粒子25wt%以上とシクロヘキサノン75wt%以下とを混合することによって調製することができる。
 好ましくは、第2の懸濁液16の粘度は、1cP以上20cP以下であり、第1の懸濁液12の粘度よりも小さい。これによって、第2の懸濁液16は、第1の銅粒子14の間の空隙に容易に入ることができる。また、第2の懸濁液16の表面張力は、25mN/m以上40mN/m以下であることが好ましい。
 <第2の懸濁液の付与方法>
 配線パターンに第2の懸濁液16を付与する方法として、特に限定なく、第1の懸濁液12を付与する方法と同様の方法を用いることができる。
 インクジェットプリンティング方法によって第2の懸濁液16を付与する場合は、第2の懸濁液16を配線パターンに沿って選択的に付与できるので、第2の懸濁液16の使用量を抑制して銅配線の製造コストを下げることができる。このとき、インクジェットによって吐出される第2の懸濁液16の液滴の大きさは、配線パターンの幅よりも小さいことが好ましい。
 インクジェットプリンティング方法によって第1の懸濁液12及び第2の懸濁液16を付与する場合は、第1の懸濁液12及び第2の懸濁液16がそれぞれ異なるインクジェットヘッドから吐出されることが好ましい。本実施形態では、第1及び第2の銅パウダーをそれぞれ第1及び第2の懸濁液を用いて付与するので、粒径の異なる銅粒子から構成される銅パウダーを同一の懸濁液を用いて付与する場合と比べて、インクジェットプリンティング方法による付与の物性の選択性を向上させることができる。好ましくは、インクジェットによって吐出される第2の懸濁液16の液滴の大きさは、インクジェットによって吐出される第1の懸濁液12の液滴の大きさよりも小さい。これによって、第2の懸濁液16は、第1の銅粒子14の間の空隙に容易に入ることができる。
 〔第2の乾燥工程〕
 必要に応じて、配線パターンに付与された第2の懸濁液16から懸濁媒を除去して銅パウダーを乾燥させる、第2の乾燥工程を行うことができる。この場合は、第2の銅粒子18が第1の銅粒子14の間の空隙に入ることが完了するのに十分な時間が経過した後に、第2の乾燥工程を行うことが好ましい。
 第2の乾燥工程を行わないこともできる。この場合は、第2の懸濁液16の懸濁媒を残して第2の懸濁液16の流動性を保つことによって、第2の銅粒子18が第1の銅粒子14の間の空隙に容易に入ることができる状態を保つことができる。また、工程時間を短縮することができる。
 〔緻密化工程〕
 次に、第1の銅粒子14及び第2の銅粒子18の空隙を小さくして、配線パターンを形成する銅パウダーを緻密にする(図1D参照)。
 例えば、図1Dに示すように加圧装置20を用いて圧力を加えることによって、銅パウダーを圧縮して緻密にすることができる。本実施形態では、第2の懸濁液を付与する工程によって第1の銅粒子14の間の空隙に第2の銅粒子18を入れているので、第2の銅粒子18を付与しない場合と比較して、より空隙が小さい状態で緻密化工程を行うことができる。したがって、緻密化のために加える圧力を比較的低くすることができ、基板10への悪影響を抑制することができる。
 緻密化工程を行うことによって、第2の銅粒子18の付与量を抑制することができるので、銅配線の製造コストを下げることができる。
 緻密化工程における加圧方法の一例は、カレンダー処理である。緻密化工程において銅パウダーに加えられる圧力は、100MPa以上300MPa以下であることが好ましい。
 〔加熱工程〕
 次に、緻密化工程で緻密化された銅パウダーに大気中で熱を加えることによって、第1の銅粒子14及び第2の銅粒子18を酸化させると同時に互いに結合させる(図1E参照)。
 第1の銅パウダーを構成する第1の銅粒子14の粒径に応じて、加熱工程における加熱温度を決定することが好ましい。配線パターンに導電性を付与するためには、加熱工程において、銅パウダーを構成する銅粒子の粒径が大きいほど高い温度で銅パウダーを加熱することが好ましい。例えば、第1の銅パウダーを構成する第1の銅粒子14が100nm以上200nm以下の粒径を有する場合は、加熱工程における加熱温度が150℃以上であれば、配線パターンに導電性を付与することができる。例えば、第1の銅パウダーを構成する第1の銅粒子14が200nmを超える粒径を有する場合は、加熱工程における加熱温度が200℃以上であれば、配線パターンに導電性を付与することができる。
 本実施形態において、緻密化工程の後に加熱工程を行うことが好ましい。配線パターンを形成している銅粒子の間の空隙を小さくした後に、銅粒子を加熱によって酸化させて互いに結合させることで、銅粒子の互いの接触面積を更に大きくすることができる。緻密化工程と加熱工程との順番が逆である(即ち、加熱工程を行った後に緻密化工程を行う)場合は、加熱工程における加熱によって銅粒子が既に互いに結合した状態の銅パウダーに対して緻密化工程を行うことになり、銅粒子の間の空隙を小さくして銅パウダーを緻密化することが困難である。また、銅パウダーに対して緻密化工程と加熱工程とを同時に行う場合は、銅パウダーが十分に緻密化されていない状態で銅粒子が互いに結合するので、銅粒子の互いの接触面積を十分に確保できない。したがって、緻密化工程を先に行い加熱工程をその後に行うことが好ましい。
 〔還元処理工程〕
 次に、加熱工程で酸化した銅パウダーを還元することによって、配線パターンを形成している銅パウダーに導電性を付与する(図1F参照)。これによって、互いに結合した第1の銅粒子14及び第2の銅粒子18を配線として機能させることができる。
 還元処理として、特に限定なく様々な処理を用いることができる。例えば、酸化した銅パウダーを、3vol%以上10vol%以下の水素を含むアルゴン雰囲気で350℃以上400℃以下の温度で加熱することによって、還元することができる。
 <銅配線>
 本実施形態で形成される銅配線の幅は、特に限定なく、例えば50μm以上100μm以下である。本実施形態で形成される銅配線は、配線基板の配線として用いることができる。
 本実施形態では、配線パターン形成工程において、大きい粒径を有する第1の銅粒子を用いて配線パターンを形成し、その後の第2の懸濁液の付与工程において、第1の銅粒子の粒径よりも小さい粒径を有する第2の銅粒子を配線パターンに付与することによって、第1の銅粒子の間の空隙を第2の銅粒子で埋めて、空隙の小さい銅配線を形成することができる。したがって、完成した銅配線において、導電性を向上させることができると共に経時安定性を向上させることができる。
 〔比較例〕
 図2Aに、小さい粒径を有する第2の銅粒子118を基板10上に先に付与して、大きい粒径を有する第1の銅粒子114を次に付与した、第1の比較例を示す。この場合は、第1の銅粒子114の層が第2の銅粒子118の層の上にできるだけであり、第2の銅粒子118が第1の銅粒子114の間の空隙を埋める効果は得られない。
 図2Bに、大きい粒径を有する第1の銅粒子214及び小さい粒径を有する第2の銅粒子218の両方が分散している懸濁液を用意して、その懸濁液を基板10上に付与した、第2の比較例を示す。この場合は、第2の銅粒子218の一部が、第1の銅粒子214の間の空隙に入る。しかし、第2の銅粒子218の一部が、第1の銅粒子214の上に残り、第1の銅粒子214の間の空隙を埋める効果を生じないで無駄になる。
 10…基板、12…第1の懸濁液、14…第1の銅粒子、16…第2の懸濁液、18…第2の銅粒子、20…加圧装置

Claims (9)

  1.  100nm以上の平均粒径を有する第1の銅粒子が分散している第1の懸濁液を基板上に付与して、前記基板上に配線パターンを前記第1の懸濁液により形成する配線パターン形成工程と、
     前記配線パターン形成工程後に、前記配線パターン中の前記第1の銅粒子を150℃未満の温度で乾燥させる乾燥工程と、
     前記乾燥工程後に、前記第1の銅粒子の平均粒径よりも小さい平均粒径を有する第2の銅粒子が分散している第2の懸濁液を前記配線パターンに付与する第2懸濁液付与工程と、
     前記第2懸濁液付与工程後に、前記配線パターン中の前記第1及び第2の銅粒子の間の空隙を小さくする緻密化工程と、
     前記緻密化工程後に、前記配線パターン中の前記第1及び第2の銅粒子に熱を加える加熱工程と、
     前記加熱工程後に、前記配線パターン中の前記第1及び第2の銅粒子に還元処理を行う還元処理工程と、
    を含む、銅配線の形成方法。
  2.  前記緻密化工程は、前記配線パターン中の前記第1及び第2の銅粒子に圧力を加える加圧工程を含む、請求項1に記載の銅配線の形成方法。
  3.  前記配線パターン形成工程は、前記第1の懸濁液の液滴をインクジェット方法によって吐出して前記基板上に付与する第1懸濁液吐出工程を含み、
     前記第2懸濁液付与工程は、前記第2の懸濁液の液滴をインクジェット方法によって吐出して前記配線パターンに付与する第2懸濁液吐出工程を含む、
    請求項1又は2に記載の銅配線の形成方法。
  4.  前記第1懸濁液吐出工程における前記第1の懸濁液の液滴の大きさは、前記第2懸濁液吐出工程における前記第2の懸濁液の液滴の大きさよりも大きい、請求項3に記載の銅配線の形成方法。
  5.  前記第1懸濁液吐出工程及び前記第2懸濁液吐出工程は、それぞれ異なるインクジェットヘッドを用いて行われる、請求項3又は4に記載の銅配線の形成方法。
  6.  前記第2の銅粒子の平均粒径は前記第1の銅粒子の平均粒径の1/10以下である、請求項1乃至5のいずれかに記載の銅配線の形成方法。
  7.  前記第2の懸濁液の粘度は前記第1の懸濁液の粘度よりも小さい、請求項1乃至6のいずれかに記載の銅配線の形成方法。
  8.  請求項1乃至7のいずれかに記載の銅配線の形成方法を含む、配線基板の製造方法。
  9.  請求項1乃至7のいずれかに記載の銅配線の形成方法によって形成された銅配線を含む、配線基板。
PCT/JP2012/056525 2011-03-24 2012-03-14 銅配線の形成方法、配線基板の製造方法及び配線基板 WO2012128140A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12761154.9A EP2690938A4 (en) 2011-03-24 2012-03-14 METHOD FOR FORMING COPPER WIRING, METHOD FOR MANUFACTURING WIRING SUBSTRATE, AND WIRING SUBSTRATE
CN2012800144030A CN103460817A (zh) 2011-03-24 2012-03-14 铜配线的形成方法、配线基板的制造方法以及配线基板
US14/033,412 US20140020938A1 (en) 2011-03-24 2013-09-20 Method of forming copper wiring, method of manufacturing wiring board, and wiring board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011065885A JP5544324B2 (ja) 2011-03-24 2011-03-24 銅配線の形成方法および配線基板の製造方法
JP2011-065885 2011-03-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/033,412 Continuation US20140020938A1 (en) 2011-03-24 2013-09-20 Method of forming copper wiring, method of manufacturing wiring board, and wiring board

Publications (1)

Publication Number Publication Date
WO2012128140A1 true WO2012128140A1 (ja) 2012-09-27

Family

ID=46879292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056525 WO2012128140A1 (ja) 2011-03-24 2012-03-14 銅配線の形成方法、配線基板の製造方法及び配線基板

Country Status (6)

Country Link
US (1) US20140020938A1 (ja)
EP (1) EP2690938A4 (ja)
JP (1) JP5544324B2 (ja)
CN (1) CN103460817A (ja)
TW (1) TW201244569A (ja)
WO (1) WO2012128140A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011900A (ja) * 2013-06-28 2015-01-19 古河電気工業株式会社 導電性ペースト、及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009731A (ja) * 2014-06-24 2016-01-18 コニカミノルタ株式会社 導電パターン形成方法および導電パターン形成装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513412A (ja) 1991-07-02 1993-01-22 Nippon Steel Corp 半導体集積回路の配線
JPH06215617A (ja) * 1993-01-14 1994-08-05 Asahi Chem Ind Co Ltd 焼成用導電性ペースト
JPH10308120A (ja) 1997-05-02 1998-11-17 Ulvac Japan Ltd 金属ペーストの焼成方法
JPH11312859A (ja) * 1998-04-28 1999-11-09 Murata Mfg Co Ltd 回路パターン形成方法及びそれにより形成された多層配線基板
JP2003311196A (ja) 2002-04-19 2003-11-05 Seiko Epson Corp 膜パターンの形成方法、膜パターン形成装置、導電膜配線、電気光学装置、電子機器、非接触型カード媒体、圧電体素子、並びにインクジェット式記録ヘッド
WO2004103043A1 (ja) * 2003-05-16 2004-11-25 Harima Chemicals, Inc. 銅微粒子焼結体型の微細形状導電体の形成方法、該方法を応用した銅微細配線ならびに銅薄膜の形成方法
JP2008086895A (ja) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd 導電性基板の製造方法及び導電性基板
WO2009054343A1 (ja) * 2007-10-22 2009-04-30 Hitachi Chemical Company, Ltd. 銅配線パターン形成方法及びそれに用いる酸化銅粒子分散液

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10178247A (ja) * 1996-12-18 1998-06-30 Kyocera Corp 配線基板およびその製造方法
JP3599950B2 (ja) * 1997-04-16 2004-12-08 株式会社アルバック 金属ペーストの焼成方法
CN100488339C (zh) * 2003-05-16 2009-05-13 播磨化成株式会社 形成微细铜颗粒烧结产物类的微细形状导电体的方法
KR100819876B1 (ko) * 2006-09-19 2008-04-07 삼성전기주식회사 합금배선기판 및 그 제조방법
JP5467855B2 (ja) * 2009-03-09 2014-04-09 富士フイルム株式会社 ラインパターン形成方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513412A (ja) 1991-07-02 1993-01-22 Nippon Steel Corp 半導体集積回路の配線
JPH06215617A (ja) * 1993-01-14 1994-08-05 Asahi Chem Ind Co Ltd 焼成用導電性ペースト
JPH10308120A (ja) 1997-05-02 1998-11-17 Ulvac Japan Ltd 金属ペーストの焼成方法
JPH11312859A (ja) * 1998-04-28 1999-11-09 Murata Mfg Co Ltd 回路パターン形成方法及びそれにより形成された多層配線基板
JP2003311196A (ja) 2002-04-19 2003-11-05 Seiko Epson Corp 膜パターンの形成方法、膜パターン形成装置、導電膜配線、電気光学装置、電子機器、非接触型カード媒体、圧電体素子、並びにインクジェット式記録ヘッド
WO2004103043A1 (ja) * 2003-05-16 2004-11-25 Harima Chemicals, Inc. 銅微粒子焼結体型の微細形状導電体の形成方法、該方法を応用した銅微細配線ならびに銅薄膜の形成方法
JP2008086895A (ja) * 2006-09-29 2008-04-17 Dainippon Printing Co Ltd 導電性基板の製造方法及び導電性基板
WO2009054343A1 (ja) * 2007-10-22 2009-04-30 Hitachi Chemical Company, Ltd. 銅配線パターン形成方法及びそれに用いる酸化銅粒子分散液

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2690938A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015011900A (ja) * 2013-06-28 2015-01-19 古河電気工業株式会社 導電性ペースト、及びその製造方法

Also Published As

Publication number Publication date
TW201244569A (en) 2012-11-01
JP2012204467A (ja) 2012-10-22
JP5544324B2 (ja) 2014-07-09
US20140020938A1 (en) 2014-01-23
CN103460817A (zh) 2013-12-18
EP2690938A1 (en) 2014-01-29
EP2690938A4 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
Park et al. Direct writing of copper conductive patterns by ink-jet printing
JP3774638B2 (ja) インクジェット印刷法を利用する回路パターンの形成方法
JP5920460B2 (ja) インクジェット用インク、印刷方法およびセラミック電子部品の製造方法
JP6211245B2 (ja) 導電性材料およびその製造方法
JP6659026B2 (ja) 銅粒子を用いた低温接合方法
JP5092630B2 (ja) 微粒銀粉およびその製造方法並びにその微粒銀粉を用いた導電性ペースト用分散液
JP2008085345A (ja) 微細配線形成方法
WO2012128140A1 (ja) 銅配線の形成方法、配線基板の製造方法及び配線基板
JP2004119790A (ja) ナノ粒子の超臨界流体中分散液を用いる微細配線パターンの形成方法
CN101759141A (zh) 复合氧化物纳米颗粒及其制造方法和多层陶瓷电容器
US20140083753A1 (en) Method of forming copper wiring, method of manufacturing wiring board, and wiring board
JP2006060042A (ja) 剥離層用ペーストの製造方法及び積層型電子部品の製造方法
KR101947633B1 (ko) 전도성 구리 복합잉크 및 이를 이용한 광소결 방법
WO2016125355A1 (ja) 導電性の微小粒子
JP2007201273A (ja) 電子部品の製造方法ならびに導体層付きセラミックグリーンシート用導体ペースト。
JP5495044B2 (ja) 緻密な金属銅膜の製造方法及びそれに用いる液状組成物、それから得られる緻密な金属銅膜、導体配線、熱伝導路、接合体
JP4223848B2 (ja) 導電性組成物の製造方法、および導電ペーストの製造方法
JP5617291B2 (ja) エアロゾルデポジション装置及びエアロゾルデポジション方法
JP7121231B2 (ja) 導電性膜及びその製造方法
JP2009283627A (ja) セラミック電子部品とその製造方法
JP2010049849A (ja) 無機粉末ペーストの製造方法
JP5489358B2 (ja) 銅配線の形成方法、配線基板の製造方法および配線基板
JP2009013494A (ja) 板状ニッケル粉及び板状ニッケル粉有機スラリーとそれらの製造方法、並びにそれらを用いた導電性ペースト
JPWO2020137330A1 (ja) 銀ペースト
JP2005229106A (ja) 回路描画用の導電性材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12761154

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012761154

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE