WO2012126219A1 - 路侧标识站和主备路侧单元切换的方法 - Google Patents

路侧标识站和主备路侧单元切换的方法 Download PDF

Info

Publication number
WO2012126219A1
WO2012126219A1 PCT/CN2011/076476 CN2011076476W WO2012126219A1 WO 2012126219 A1 WO2012126219 A1 WO 2012126219A1 CN 2011076476 W CN2011076476 W CN 2011076476W WO 2012126219 A1 WO2012126219 A1 WO 2012126219A1
Authority
WO
WIPO (PCT)
Prior art keywords
rsu
standby
primary
test
management center
Prior art date
Application number
PCT/CN2011/076476
Other languages
English (en)
French (fr)
Inventor
刘金栋
徐运
吴奇
汪旭光
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012126219A1 publication Critical patent/WO2012126219A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks

Definitions

  • the present invention relates to the field of communications, and in particular to a roadside identification station and a main roadside unit
  • the path identification system emerges as the times require.
  • the main feature is to solve the marking problem of the path of the vehicle on the basis of the existing toll system, and can accurately judge the path of the vehicle passing through, so as to realize the fair division of interests.
  • the path identification system is mainly composed of three parts, a roadside identification station (also called a roadside base station), a lane reader, and an electronic tag.
  • the lane reader writes the entry information to the electronic tag and sets the electronic tag to the working state; on the highway, the electronic tag receives the path information transmitted by the roadside identification station and saves; at the highway exit, The lane reader reads the path information from the electronic tag and reports it to the application system for further processing, and finally sets the electronic tag to a non-working state.
  • the main work of the roadside identification station is broadcast path information, which is the identification of the path that the vehicle passes through, so that it can continue to work normally is a very important problem.
  • the roadside identification station in the related art is likely to be abnormally clear during the operation, and there is currently no solution for the abnormal situation.
  • a primary object of the present invention is to provide a method for switching between a roadside identification station and a primary and secondary roadside unit to at least solve the problem that the roadside identification station cannot continue to operate normally.
  • a roadside identification station including: a management center device, an optical transceiver, a main inverter, a standby inverter, a primary RSU, and a standby RSU;
  • the management center device includes: a query module, configured to Query the status of the primary RSU and the standby RSU; the switching module is configured to determine whether the switching condition is met by the query result of the query module, and if yes, perform the active and standby RSU switching;
  • the primary RSU includes: a primary state interaction module, configured to interact with the standby RSU Status information;
  • the primary status reporting module is configured to report the status to the management center device;
  • the standby RSU includes: a standby status interaction module, which is set to interact with the primary RSU status information; a standby status reporting module, configured to report status to the management center device;
  • the method includes: a communication module, configured to transmit information between the management center device and the primary RSU and the standby RSU; a primary inverter configured to supply
  • the management center device further includes: a parameter sending module, configured to deliver the same configuration parameter to the primary RSU and the standby RSU; the radio frequency control module is configured to send a frequency open command to the primary RSU; the primary RSU further includes: a primary parameter configuration The module is configured to receive and configure the configuration parameters delivered by the management center device; the instruction execution module is configured to receive and execute the radio frequency open command issued by the management center device; the standby RSU further includes: a standby parameter configuration module, configured to receive and configure Configuration parameters delivered by the management center device.
  • the query module includes: a first query unit, configured to perform the first test, and the first test is to periodically query the identifiers of the primary RSU and the standby RSU, and determine, according to the result of the query, the communication status between the management center device and the primary RSU and the standby RSU. Whether the second query unit is set to perform the second test, the second test is to periodically query the radio status of the primary RSU and the standby RSU; the third query unit is set to perform the third test, and the third test is Check the power of the main RSU and the standby RSU regularly!
  • the main state interaction module and the standby state interaction module include: a fourth query unit, configured to perform a fourth test, and a fourth test to periodically query the RSU radio status of the RSU, and prepare the RSU to periodically query the main RSU.
  • the RF ⁇ 1 state is a fourth query unit, configured to perform a fourth test, and a fourth test to periodically query the RSU radio status of the RSU, and prepare the RSU to periodically query the main RSU.
  • the main inverter includes: a main power status reporting module, configured to report power status information to the main RSU; the standby inverter includes: a standby power status reporting module, configured to report power to the standby RSU
  • the primary status reporting module includes: a primary reporting unit configured to report the identity of the primary RSU, the radio frequency status, and the power status to the management center device; the standby status reporting module includes: a standby reporting unit, configured to be sent to the management center device Report the RSU's identity, RF status, and power status.
  • the above switching module includes: a switching condition determining unit configured to determine that the switching condition is satisfied when one of the following conditions is met:
  • the switching module includes one of the following: a direct switching mode unit, configured to send a radio frequency command to the primary RSU, and send an open radio command to the standby RSU; and indirectly switch the mode unit, and set the radio command to be enabled by issuing an RF command to the standby RSU. After turning on its own radio, it sends a close RF command to the primary RSU.
  • the primary RSU and the standby RSU are communicatively connected through an Ethernet port or an air interface.
  • the management center device and the optical transceiver are connected through the serial port server.
  • a method for switching between a primary and a backup roadside unit uses the roadside identification station, and the management center device queries the status of the primary RSU and the standby RSU through the optical transceiver; the primary RSU and the standby The RSU reports the status to the management center device according to the query of the management center device.
  • the management center device determines whether the switching condition is met according to the status reported by the primary RSU and the standby RSU. If yes, the active and standby RSUs are switched.
  • the foregoing management center device queries the status of the primary RSU and the standby RSU through the optical transceiver: the management center device performs the first test, the second test, and the third test, where the first test is to periodically query the primary RSU and the standby RSU.
  • the identifier determines whether the communication status between the management center device and the primary RSU and the standby RSU is normal according to the result of the query; the second test is to periodically query the radio status of the primary RSU and the standby RSU; the third test is to periodically query the primary RSU and the standby RSU.
  • the method includes: performing a fourth test on the primary RSU and the standby RSU, and the fourth test is to periodically query the radio status of the standby RSU for the primary RSU, and the standby RSU periodically queries the primary RSU.
  • RF status The status of the primary RSU and the standby RSU reporting to the management center device includes: the primary RSU reports its own identity, the radio frequency status, and the power status to the management center device; the standby RSU reports its own identity, radio frequency status, and power status to the management center device; The power state of the main RSU is obtained from the main inverter, and the power state of the standby RSU is obtained from the standby inverter.
  • the above management center device determines that the switching condition is satisfied in one of the following cases:
  • the management center device performs the switchover between the active and standby RSUs in the following manner: the management center device sends a radio frequency command to the primary RSU, and sends an RF command to the standby RSU. Alternatively, the management center device sends an RF command to the standby RSU to enable the RSU. After turning on its own radio, it sends a close RF command to the primary RSU.
  • the standby RSU and related equipment are added to the roadside identification station, and when the switching condition is met, the switching between the active and standby RSUs is performed, thereby solving the problem that the roadside identification station cannot maintain the normal state continuously, and the road is guaranteed.
  • the side identification station can normally send a broadcast signal, so that the electronic tag can record the path that the vehicle passes through, and maintain the interests of the owner of the road section.
  • FIG. 1 is a structural block diagram of a roadside identification station according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural view of a roadside identification station according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a roadside identification station according to Embodiment 1 of the present invention
  • FIG. 1 is a structural block diagram of a roadside identification station according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic structural view of a roadside identification station according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of a roadside identification station according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of switching between active and standby RSUs according to Embodiment 2 of the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION the present invention will be described in detail with reference to the accompanying drawings. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
  • the standby device by adding a standby device and a corresponding software control manner, the standby device is automatically enabled when the main control device is abnormal, so that the roadside identification station can continue to maintain the normal identification function. Based on this, a roadside identification station and a method for switching between the primary and secondary RSUs are provided to enhance the reliability of the roadside identification station in the path identification system.
  • Embodiment 1 provides a roadside identification station.
  • the roadside identification station includes: a management center device 10, an optical transceiver 20, a main inverter 30, a standby inverter 40, a main RSU 50, and The RSU 60;
  • the management center device 10 includes: a query module 102 configured to query the primary RSU 50 and the standby RSU
  • the switching module 104 is connected to the query module 102 and configured to determine whether the switching condition is met according to the query result of the query module 102. If yes, perform the active and standby RSU switching. Of course, if the query result does not satisfy the switching condition, then The primary and secondary RSUs are switched, and the primary RSU is still in the broadcast state.
  • the primary RSU 50 includes: a primary state interaction module 502 configured to interact with the standby RSU 60; the primary state reporting module 504 is coupled to the primary state interaction module 502.
  • the standby RSU 60 includes: a standby status interaction module 602, configured to exchange status information with the primary RSU 50; a standby status reporting module 604, connected to the standby status interaction module 602, and configured to be sent to the management center device.
  • the optical transceiver 20 includes: a communication module 202 configured to transmit information between the management center device 10 and the primary RSU 50 and the standby RSU 60;
  • the main inverter 30 is configured to supply power to the main RSU 50;
  • the standby inverter 40 is configured to supply power to the standby RSU 60.
  • the connection mode between the devices in the roadside identification station can be implemented according to the related art.
  • the management center device 10 and the optical transceiver 20 can be connected through a serial port.
  • a serial port server is set between the management center device 10 and the optical transceiver 20.
  • the serial server is connected to the management center device 10 and the optical transceiver 20
  • the main inverter 30 is connected to the main RSU 50
  • the standby inverter 40 is connected to the standby RSU 60.
  • the optical transceiver 20 passes through two serial ports (COM port, ⁇ column ⁇ port RS485 interface)
  • the other 'J' is connected to the main RSU 50 and the standby RSU 60; the main RSU 50 and the standby RSU 60 are remotely communicated with the background (ie, the management center device) through the optical transceiver 20.
  • Two COM ports are connected from the optical transceiver, which are respectively connected to the active and standby RSUs, and remotely controlled by the optical transceiver.
  • the two RSUs pass the FE (Fast Ethernet) interface.
  • the connection is for communication; the outputs of the two inverters (RS232) are connected to the active and standby RSUs, respectively.
  • RS232 inverters
  • the above roadside identification station adds a set of spare RSUs and adds corresponding software controllers
  • the standby device backup RSU
  • the query module 102 in the management center device 10 of the present embodiment may further include: a first query unit, a second query unit, and a third query unit, where the functions of each unit are as follows: The first query unit is set to perform the first test.
  • the first test is to periodically query the identifiers of the primary RSU and the standby RSU, and determine whether the communication status between the management center device and the primary RSU and the standby RSU is normal according to the result of the query.
  • the second query unit is set to perform the second test, and the second test is to periodically query the radio status of the primary RSU and the standby RSU;
  • the third query unit is set to perform the third test, and the third test is to periodically query the primary RSU.
  • the power state of the standby RSU wherein, the timing duration set by the above three query units can be flexibly set and adjusted as needed.
  • the primary status interaction module 502 and the standby status interaction module 602 all include: a fourth query unit, configured to perform a fourth test, and a fourth test is a primary RSU 50
  • the radio frequency status of the RSU 60 is periodically queried, and the RSU 60 periodically queries the radio frequency of the main RSU 50.
  • the initiator of the query instruction is the management center device 10, wherein the second test is that the management center device 10 directly queries the primary or backup RSU status, and the fourth test passes the primary (or standby)
  • the RSU queries the status of the standby (or primary) RSU to confirm the status of the link between the active and standby RSUs.
  • the status reported by the primary RSU 50 and the standby RSU 60 includes at least one of the following: a communication status with the management center device 10 (for example, the primary RSU and the standby RSU report respective identifiers;), the radio frequency status And the power state;
  • the main inverter 30 includes: a main power state 4 ⁇ module, configured to report power state information to the main RSU;
  • the standby inverter 40 includes: a standby power state reporting module, configured to be a standby RSU
  • the main state reporting module on the main RSU 50 includes: a main reporting unit, configured to report the identity of the main RSU 50, the radio frequency status, and the power status to the management center device 10;
  • the reporting module includes: a standby reporting unit, configured to report the identifier, radio frequency status, and power status of the RSU 50 to the management center device 10.
  • the switching module 104 includes: a switching condition determining unit configured to determine that the switching condition is satisfied when one of the following conditions is met: The first test of the primary RSU 50 failed, while the four tests of the standby RSU 60 were normal; the second test of the primary RSU 50 was abnormal, while the four tests of the standby RSU 60 were normal; the third test of the primary RSU 50 Abnormal, and the four tests of the standby RSU 60 are normal; the first test of the primary RSU 50 fails, and the other three tests of the standby RSU 60 are normal except for the fourth test abnormality; the second term of the primary RSU 50 The test was abnormal, and the other three tests were normal except for the fourth test abnormality of the standby RSU 60.
  • the management center device 10 further includes: a parameter delivery module configured to deliver the same configuration parameters to the primary RSU 50 and the standby RSU 60; The module is configured to transmit a frequency open command to the main RSU 50.
  • the main RSU 50 further includes: a main parameter configuration module configured to receive and configure configuration parameters issued by the management center device 10; an instruction execution module configured to receive and perform management The radio frequency on command sent by the central device 10; the standby RSU 60 further includes: a standby parameter configuration module, configured to receive and configure configuration parameters delivered by the management center device 10.
  • the management center device when the handover is performed, can switch between the two modes: direct mode and indirect mode, where the direct mode: the management center device sends a close radio command to the primary RSU, and then sends an open radio command to the standby RSU.
  • direct mode the management center device sends a radio command to the standby RSU, and the standby RSU sends a radio command to the primary RSU.
  • the switching module 104 includes one of the following: a direct switching mode unit, configured to release a radio frequency command to the primary RSU, and an open radio command to the standby RSU; and an indirect switching mode unit configured to issue an open radio command to the standby RSU, After the standby RSU turns on its own radio, it sends a close radio command to the primary RSU.
  • the primary RSU 50 and the standby RSU 60 are communicatively connected through an Ethernet port or an air interface; the management center device 10 and the optical transceiver 20 are connected through a serial port server.
  • the path identification station is mainly composed of a power supply system (mainly composed of an inverter and the like), an optical transceiver, and an RSU.
  • the RSU is a main functional unit of broadcast path information.
  • a backup is added without changing the existing equipment and communication mode of the identification station.
  • the RSU and related equipment use the appropriate control method to enable the two RSUs to work together and support the functions that the single RSU has already implemented, thereby improving the reliability of the roadside identification station.
  • Embodiment 2 This embodiment provides a method for switching between active and standby RSUs. The method uses the roadside identification station provided in Embodiment 1 above. Referring to FIG. 3, the method includes the following steps: Step S302, Management Center Equipment ( Also referred to as the Management Center for short) Query the main RSU and the standby RSU ⁇ !
  • Step S304 The primary RSU and the standby RSU report the status to the management center device according to the query of the management center device.
  • the status includes at least one of the following: a communication status with the management center device, a radio frequency status, and a power status;
  • the state can be obtained according to the power status information reported by the main inverter.
  • the power status of the standby RSU can be obtained according to the power status information reported by the standby inverter.
  • the status information between the active and standby RSUs is mutually exchanged through the Ethernet interface or the air interface. (for example, RF status).
  • Step S306 The management center device determines whether the handover condition is met according to the status reported by the primary RSU and the standby RSU, and if yes, performs switching between the primary and backup RSUs. Of course, if the query result does not satisfy the handover condition, the active and standby RSU handovers are not performed, and the primary RSU is still kept in the broadcast state. Before performing the above step S302, the management center device respectively assigns the same parameter configuration to the active and standby RSUs, and then only opens the radio of the primary RSU to broadcast the path information.
  • the management center device determines whether the RSU is normal or not.
  • the three aspects are the communication status between the management center and the device, the radio frequency status of the device, and the power status of the device. These three aspects are also the most likely problems in the actual application process.
  • the management center device queries the primary RSU and the standby RSU.
  • the status of the management center device includes: the first test, the second test, and the third test.
  • the first test is to periodically query the identifiers of the primary RSU and the standby RSU, and determine the management center device and the primary according to the result of the query.
  • the communication status of the RSU and the standby RSU is normal.
  • the second test is to periodically query the radio status of the primary RSU and the standby RSU.
  • the third test is to periodically query the power status of the primary RSU and the standby RSU.
  • the primary RSU and the standby RSU are sent to the management center.
  • the method further includes: performing a fourth test on the primary RSU and the standby RSU, and the fourth test is to periodically query the radio status of the standby RSU, and the standby RSU periodically queries the radio status of the primary RSU.
  • the status of the primary RSU and the standby RSU reporting to the management center device includes: the primary RSU reports its own identity, radio frequency status, and power status to the management center device; the standby RSU reports its own identity, radio frequency status, and power supply to the management center device.
  • the power state of the primary RSU is obtained from the primary inverter, and the power state of the standby RSU is obtained from the standby inverter.
  • the management center device determines that the switching conditions are met in one of the following cases: 1) The first test of the primary RSU fails, and the four tests of the standby RSU are normal;
  • the switching between the active and standby RSUs by the management center device includes one of the following: the management center device determines to use the direct switching mode, sends a shutdown radio command to the primary RSU, and sends an open radio command to the standby RSU; In the switch mode, the radio command is enabled to be sent to the standby RSU, so that the standby RSU turns on its own radio and sends a close radio command to the primary RSU.
  • the embodiment installs background monitoring software on the management center device,
  • the software implements the switchover between the active and standby RSUs. See the method of the active and standby RSU switchovers shown in Figure 4.
  • the method includes:
  • the background monitoring software periodically queries the primary RSU and the standby RSU for four check items.
  • the query includes:
  • test item Query the status of the same group of devices, that is, the primary RSU queries the standby RSU radio status, and the standby RSU queries the primary RSU radio status.
  • the test item is recorded as test item 3.
  • Test item 2 of the main RSU is abnormal, and the four test items of the standby RSU are normal.
  • test item 4 of the main RSU is abnormal, and the four test items of the standby RSU are normal.
  • test item 1 of the primary RSU fails, and the standby test item only has the abnormality of the third test item.
  • the test item 2 of the main RSU is abnormal, and the standby RSU only has the abnormality of the third test item. If the background monitoring software determines that the above switching condition is satisfied, it is judged whether it can be directly switched. If it can be directly switched, the active/standby mode is performed according to the direct switching mode. If the switch does not directly switch, the indirect switch mode is used to perform the active and standby RSU switch. If the background monitoring software determines that the switch condition is not met, the switch does not perform the switch. When the timed query condition is met, the content is queried again.
  • the direct switching mode the background monitoring software sends a shutdown radio command to the primary RSU, and then sends an open radio command to the standby RSU, and the primary RSU and the standby RSU respectively respond to the received command.
  • Indirect switching mode The background monitoring software sends an RF command to the standby RSU, and the standby RSU sends a shutdown radio command to the primary RSU. Alternatively, the background monitoring software sends a shutdown TSU RF command to the standby RSU. After the standby RSU receives the command, The radio frequency command is sent to the primary RSU, and then the background monitoring software sends an RF command to the standby RSU.
  • the remote control in the above method is implemented by the management center device operating the primary RSU or the standby RSU through the serial port.
  • the two RSUs can control each other through the network.
  • the management center monitors the active and standby RSUs through the monitoring software. When the primary RSU fails, the primary and backup switches are performed through the monitoring software.
  • the above solution ensures that the standby device can be automatically enabled and performs all the functions of the master device, including the identification function and the status information reporting function, in the case that the main function link or component of the master device is abnormal.
  • the maintenance personnel can replace the master control device, and the enabled backup device can be changed to the master control device, thus ensuring the continuous uninterrupted normal operation of the roadside identification station. .
  • the implementation of the dual-system backup is an effective solution for improving the reliability of the path identification system.
  • the present invention achieves the following technical effects: By performing the switching condition, the switching between the active and standby RSUs is performed, the primary RSU radio is turned off, and the standby RSU is put into the broadcast state, and the roadside identification station is solved. The problem of not being able to maintain a normal state is maintained, and the interests of the owner of the road section are maintained.
  • the above modules or steps of the present invention can be implemented by a general-purpose computing device, which can be concentrated on a single computing device or distributed over a network composed of multiple computing devices.
  • the computing device may be implemented by program code executable by the computing device, such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps are fabricated as a single integrated circuit module.
  • the invention is not limited to any specific combination of hardware and software.
  • the above is only the preferred embodiment of the present invention, and is not intended to limit the present invention, and various modifications and changes can be made to the present invention. Any modification, equivalent substitution, improvement, etc. made within the "God and Principles" of the present invention shall be included in the protection of the present invention. Within the scope.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

路侧标识站和主备路侧单元切换的方法 技术领域 本发明涉及通信领域, 具体而言, 涉及一种路侧标识站和主备路侧单元
( RSU, Road-Side Unit ) 切换的方法。 背景技术 随着我国经济的飞速发展, 高速公路的建设逐渐趋向智能化, ETC ( Electronic Toll Collection, 电子收费)技术就是智能交通应用领域的一个典 型代表。 由于我国高速公路***的复杂性, 在一些省份往往釆用国家建设与 私人投资相结合, 收益按比例分配的方式。 随着高速公路的不断建设, 路网 变得越来越复杂, 从一个入口到一个出口, 往往存在艮多不同的路径, 而这 些不同的路径可能属于不同的投资者拥有。 目前的收费***无法判断车辆经 过的路径, 因此利益无法在各个投资者之间公平结算, 而且路网越复杂, 上 述问题越严重。 针对以上存在的问题, 路径识别***应运而生, 其主要特点就是在现有 收费***的基础上解决了车辆所经过路径的标记问题, 可以准确地判断车辆 经过的路径, 从而实现利益的公平划分。 路径识别***主要由三部分组成, 路侧标识站(也称路侧基站)、 车道读卡器、 电子标签。 在高速公路入口, 车 道读卡器向电子标签写入入口信息并将电子标签设置为工作状态; 在高速公 路上, 电子标签接收路侧标识站发射的路经信息并保存; 在高速公路出口, 车道读卡器将路径信息从电子标签中读出上报给应用***作进一步处理, 最 后将电子标签设置为非工作状态。 在上述流程中, 路侧标识站的主要工作是广播路径信息, 该路径信息便 是车辆所经过路径的标识,因此其能够持续正常工作是一个非常重要的问题。 然而相关技术中的路侧标识站在运行过程中很可能会出现异常清楚, 针对该 异常情况目前尚无解决方案。 而路侧标识站的异常, 通常会导致广播信号不 能正常发出, 进而使电子标签不能记录车辆经过的路径, 最终给路段业主造 成巨大的经济损失。 发明内容 本发明的主要目的在于提供一种路侧标识站和主备路侧单元切换的方 法, 以至少解决上述路侧标识站不能持续正常工作的问题。 根据本发明的一个方面, 提供了一种路侧标识站, 包括: 管理中心设备、 ***、 主逆变器、 备逆变器、 主 RSU和备 RSU; 管理中心设备包括: 查 询模块, 设置为查询主 RSU和备 RSU的状态; 切换模块, 设置为 居查询 模块的查询结果确定是否满足切换条件, 如果是, 进行主备 RSU 切换; 主 RSU 包括: 主状态交互模块, 设置为与备 RSU交互状态信息; 主状态上报 模块, 设置为向管理中心设备上报状态; 备 RSU包括: 备状态交互模块, 设 置为与主 RSU交互状态信息; 备状态上报模块,设置为向管理中心设备上报 状态; ***包括: 通信模块,设置为传输管理中心设备与主 RSU和备 RSU 间的信息; 主逆变器, 设置为向主 RSU供电; 备逆变器, 设置为向备 RSU 供电。 上述管理中心设备还包括: 参数下发模块, 设置为向主 RSU和备 RSU 下发相同的配置参数; 射频控制模块, 设置为向主 RSU下发射频打开指令; 主 RSU还包括: 主参数配置模块,设置为接收并配置管理中心设备下发的配 置参数; 指令执行模块, 设置为接收并执行管理中心设备下发的射频打开指 令; 备 RSU还包括: 备参数配置模块, 设置为接收并配置管理中心设备下发 的配置参数。 上述查询模块包括: 第一查询单元, 设置为进行第一项测试, 第一项测 试为定时查询主 RSU和备 RSU的标识, 根据查询的结果判断管理中心设备 与主 RSU和备 RSU的通信状态是否正常; 第二查询单元, 设置为进行第二 项测试, 第二项测试为定时查询主 RSU和备 RSU的射频状态; 第三查询单 元, 设置为进行第三项测试, 第三项测试为定时查询主 RSU和备 RSU的电 源^!大态; 上述主状态交互模块和备状态交互模块均包括: 第四查询单元, 设置为 进行第四项测试,第四项测试为主 RSU定时查询备 RSU的射频状态,备 RSU 定时查询主 RSU的射频 ^1 态。 上述主逆变器包括: 主电源状态上报模块,设置为向主 RSU上报电源状 态信息; 备逆变器包括: 备电源状态上报模块, 设置为向备 RSU上报电源状 态信息; 上述主状态上报模块包括: 主上报单元, 设置为向管理中心设备上 报主 RSU的标识、 射频状态和电源状态; 上述备状态上报模块包括: 备上报 单元, 设置为向管理中心设备上报备 RSU的标识、 射频状态和电源状态。 上述切换模块包括: 切换条件确定单元, 设置为在以下情况之一时, 确 定满足切换条件:
1 ) 主 RSU的第一项测试失败, 而备 RSU的四项测试均正常;
2 ) 主 RSU的第二项测试异常, 而备 RSU的四项测试均正常;
3 ) 主 RSU的第三项测试异常, 而备 RSU的四项测试均正常;
4 )主 RSU的第一项测试失败, 而备 RSU除第四项测试异常之外, 其余 三项测试均正常;
5 )主 RSU的第二项测试异常, 而备 RSU除第四项测试异常之外, 其余 三项测试均正常。 上述切换模块包括以下之一: 直接切换模式单元,设置为向主 RSU下达 关闭射频命令, 向备 RSU发送开启射频命令; 间接切换模式单元, 设置为通 过向备 RSU下达开启射频命令,使备 RSU开启自身的射频后向主 RSU发送 关闭射频命令。 上述主 RSU和备 RSU通过以太网口或空口进行通信连接。 管理中心设 备与***通过串口月艮务器相连。 根据本发明的另一方面, 提供了一种主备路侧单元切换的方法, 该方法 使用上述路侧标识站, 包括:管理中心设备通过***查询主 RSU和备 RSU 的状态; 主 RSU与备 RSU根据管理中心设备的查询, 向管理中心设备上报 状态; 管理中心设备根据主 RSU与备 RSU上报的状态, 确定是否满足切换 条件, 如果是, 进行主备 RSU的切换。 上述管理中心设备通过***查询主 RSU和备 RSU的状态包括: 管理 中心设备进行第一项测试、 第二项测试和第三项测试, 其中, 第一项测试为 定时查询主 RSU和备 RSU的标识, 根据查询的结果判断管理中心设备与主 RSU和备 RSU 的通信状态是否正常; 第二项测试为定时查询主 RSU和备 RSU的射频状态; 第三项测试为定时查询主 RSU和备 RSU的电源状态; 主 RSU与备 RSU向管理中心设备上报状态之前,上述方法包括:主 RSU 与备 RSU进行第四项测试,第四项测试为主 RSU定时查询备 RSU的射频状 态, 备 RSU定时查询主 RSU的射频状态。 上述主 RSU与备 RSU向管理中心设备上报状态包括:主 RSU向管理中 心设备上报自身的标识、射频状态和电源状态; 备 RSU向管理中心设备上报 自身的标识、 射频状态和电源状态; 其中, 主 RSU的电源状态是向主逆变器 获取的, 备 RSU的电源状态是向备逆变器获取的。 上述管理中心设备在以下情况之一时, 确定满足切换条件:
1 ) 主 RSU的第一项测试失败, 而备 RSU的四项测试均正常; 2 ) 主 RSU的第二项测试异常, 而备 RSU的四项测试均正常;
3 ) 主 RSU的第三项测试异常, 而备 RSU的四项测试均正常;
4 )主 RSU的第一项测试失败, 而备 RSU除第四项测试异常之外, 其余 三项测试均正常;
5 )主 RSU的第二项测试异常, 而备 RSU除第四项测试异常之外, 其余 三项测试均正常。 上述管理中心设备釆用如下方式进行主备 RSU的切换:管理中心设备向 主 RSU下达关闭射频命令, 向备 RSU发送开启射频命令; 或, 管理中心设 备向备 RSU下达开启射频命令,使备 RSU开启自身的射频后向主 RSU发送 关闭射频命令。 通过本发明, 釆用在路侧标识站中增加备用的 RSU及相关设备, 在满足 切换条件时, 进行主备 RSU的切换, 解决了路侧标识站不能持续保持正常状 态的问题, 保证了路侧标识站能够正常发出广播信号, 进而使电子标签能记 录车辆经过的路径, 维护了该路段业主的利益。 附图说明 此处所说明的附图用来提供对本发明的进一步理解, 构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1是才艮据本发明实施例 1的路侧标识站的结构框图; 图 2是才艮据本发明实施例 1的路侧标识站的结构示意图; 图 3是根据本发明实施例 2的主备 RSU切换的方法流程图; 图 4是根据本发明实施例 2的主备 RSU切换的示意图。 具体实施方式 下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在 不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。 本发明实施例通过增加一台备用设备以及相应软件控制方式, 来实现在 主控设备异常的情况下, 自动启用备用设备, 从而使路侧标识站能够继续保 持正常标识的功能。基于此,提供了一种路侧标识站和主备 RSU切换的方法, 用以增强路径识别***中路侧标识站的可靠性。 实施例 1 本实施例提供了一种路侧标识站, 参见图 1 , 该路侧标识站包括: 管理 中心设备 10、*** 20、主逆变器 30、备逆变器 40、主 RSU 50和备 RSU 60; 管理中心设备 10包括: 查询模块 102 , 设置为查询主 RSU 50和备 RSU
60的状态; 切换模块 104 , 与查询模块 102相连, 设置为根据查询模块 102 的查询结果确定是否满足切换条件, 如果是, 进行主备 RSU切换; 当然, 如 果查询结果不满足切换条件, 则不进行主备 RSU切换, 仍然让主 RSU保持 广播状态; 主 RSU 50包括: 主状态交互模块 502 , 设置为与备 RSU 60交互状态信 息; 主状态上报模块 504 , 与主状态交互模块 502相连, 设置为向管理中心 设备 10上报状态; 备 RSU 60包括: 备状态交互模块 602 , 设置为与主 RSU 50交互状态信 息; 备状态上报模块 604 , 与备状态交互模块 602相连, 设置为向管理中心 设备 10上 4艮状态; *** 20包括:通信模块 202 ,设置为传输管理中心设备 10与主 RSU 50 和备 RSU 60间的信息; 主逆变器 30 , 设置为向主 RSU 50供电; 备逆变器 40 , 设置为向备 RSU 60供电。 上述路侧标识站中各个设备间的连接方式可以按照相关技术实现, 如: 管理中心设备 10与*** 20可以通过串口相连, 例如, 在管理中心设备 10 与*** 20 之间设置一个串口服务器, 该串口服务器分别与管理中心设备 10和*** 20相连,主逆变器 30与主 RSU 50相连,备逆变器 40和备 RSU 60相连, 在逆变器与 RSU之间可以存在两条链路, 一个为供电链路, 一个 为数据上报链路(例如:逆变器通过 RS232接口向 RSU上报电源状态信息); 另夕卜, *** 20通过两个串口 ( COM口, Ϊ列 ^口 RS485接口 )分另' J与主 RSU 50和备 RSU 60 目连; 主 RSU 50和备 RSU 60通过*** 20与后台 (即管 理中心设备) 进行远程通信。 参见图 2提供的路侧标识站的结构示意图,从***引出两个 COM口, 分别连接到主备 RSU,通过***进行远程控制;两台 RSU之间通过 FE( Fast Ethernet, 快速以太网)接口连接进行通信; 两台逆变器的输出 ( RS232 )分 别连到主备 RSU。 其中, 各条链路标号的含义如下:
0: 管理中心设备到***的光纤链路;
1: ***到主 RSU的串口链路;
2: 主逆变器状态上报链路;
3: 主逆变器供电链路, 即主 RSU电源; 4: ***到备 RSU的串口链路;
5: 备逆变器状态上报链路;
6: 备逆变器供电链路, 即备 RSU电源;
7: 主备 RSU交互检测链路;
8: 主 RSU射频链路; 9: 备 RSU射频链路; 上述路侧标识站通过增加一套备用的 RSU 以及增加相应的软件控制方 式, 实现了在主控设备 (主 RSU ) 异常的情况下, 自动启用备用设备 (备 RSU ), 解决了路侧标识站不能持续正常工作的问题, 保证了该路段业主的利 益。 为了使主 RSU 50和备 RSU 60上报上述状态,本实施例的管理中心设备 10中的查询模块 102还可以包括: 第一查询单元、 第二查询单元和第三查询 单元, 各单元的功能如下: 第一查询单元, 设置为进行第一项测试, 第一项测试为定时查询主 RSU 和备 RSU的标识,根据查询的结果判断管理中心设备与主 RSU和备 RSU的 通信状态是否正常; 第二查询单元, 设置为进行第二项测试, 第二项测试为 定时查询主 RSU和备 RSU的射频状态; 第三查询单元, 设置为进行第三项 测试, 第三项测试为定时查询主 RSU和备 RSU的电源 态; 其中, 上述三个查询单元设定的定时时长可以灵活设置,根据需要调整。 为了实现主 RSU 50和备 RSU 60的射频状态检测,上述主状态交互模块 502和备状态交互模块 602均包括: 第四查询单元, 设置为进行第四项测试, 第四项测试为主 RSU 50定时查询备 RSU 60的射频状态, 备 RSU 60定时查 询主 RSU 50的射频 ^1大态。 本实施例中, 上述查询指令的发起者都是管理中心设备 10 , 其中, 第二 项测试是管理中心设备 10直接查询主或备 RSU状态, 而第四项测试则是通 过主 (或备) RSU查询备(或主) RSU的状态, 用以确认主备 RSU之间链 路的状态。 基于管理中心设备 10的查询指令, 主 RSU 50和备 RSU 60上报 的状态至少包括以下之一: 与管理中心设备 10的通信状态 (例如, 主 RSU 和备 RSU上报各自的标识;)、 射频状态和电源状态; 优选地, 主逆变器 30包括: 主电源状态上 4艮模块, 设置为向主 RSU上 报电源状态信息; 备逆变器 40包括: 备电源状态上报模块,设置为向备 RSU 上报电源状态信息; 基于此, 主 RSU 50上的主状态上报模块包括: 主上报 单元, 设置为向管理中心设备 10上报主 RSU 50的标识、 射频状态和电源状 态; 备 RSU 60上的备状态上报模块包括: 备上报单元, 设置为向管理中心 设备 10上报备 RSU 50的标识、 射频状态和电源状态。 基于上述四项测试内容, 切换模块 104包括: 切换条件确定单元, 设置 为在以下情况之一时, 确定满足切换条件: 主 RSU 50的第一项测试失败, 而备 RSU 60的四项测试均正常; 主 RSU 50的第二项测试异常, 而备 RSU 60的四项测试均正常; 主 RSU 50的第三项测试异常, 而备 RSU 60的四项测试均正常; 主 RSU 50的第一项测试失败, 而备 RSU 60除第四项测试异常之外, 其 余三项测试均正常; 主 RSU 50的第二项测试异常, 而备 RSU 60除第四项测试异常之外, 其 余三项测试均正常。 为了更好地实现主 RSU 50和备 RSU 60的信息一致,优选地, 管理中心 设备 10还包括: 参数下发模块, 设置为向主 RSU 50和备 RSU 60下发相同 的配置参数; 射频控制模块, 设置为向主 RSU 50下发射频打开指令; 主 RSU 50还包括: 主参数配置模块, 设置为接收并配置管理中心设备 10下发的配置参数; 指令执行模块, 设置为接收并执行管理中心设备 10下 发的射频打开指令; 备 RSU 60还包括: 备参数配置模块, 设置为接收并配置管理中心设备 10下发的配置参数。 本实施例在进行切换时, 管理中心设备可以釆用两种模式进行切换: 直 接模式和间接模式, 其中, 直接模式: 管理中心设备向主 RSU下达关闭射频 命令, 然后向备 RSU发送开启射频命令; 间接模式: 管理中心设备向备 RSU 下达开启射频命令, 备 RSU向主 RSU发送关闭射频命令。 基于此切换模块 104包括以下之一:直接切换模式单元,设置为向主 RSU下达关闭射频命令, 以及向备 RSU发送开启射频命令; 间接切换模式单元,设置为通过向备 RSU 下达开启射频命令, 使备 RSU开启自身的射频后向主 RSU发送关闭射频命 令。 本实施例优选主 RSU 50和备 RSU 60通过以太网口或空口进行通信连 接; 管理中心设备 10与*** 20通过串口服务器相连。 由上述内容可知, 路径标识站主要由电源供电*** (主要由逆变器等设 备组成)、 ***、 RSU组成。 其中, 上述 RSU为广播路径信息的主功能单 元。 本实施例在不变更标识站现有设备和通信方式的条件下, 增加一台备份 的 RSU和相关设备, 使用适合的控制方式, 使主备两台 RSU能够协同工作, 并且需要支持单 RSU已经实现的各项功能, 从而提高路侧标识站的可靠性。 实施例 2 本实施例提供了一种主备 RSU 切换的方法, 该方法使用上述实施例 1 提供的路侧标识站, 参见图 3 , 该方法包括以下步 4聚: 步骤 S302, 管理中心设备 (也可以简称为管理中心) 查询主 RSU和备 RSU的 ^!大态; 路侧标识站启动后, 管理中心设备定时查询主备 RSU 态, 包括主备 RSU之间的链路状态。 步骤 S304, 主 RSU与备 RSU根据管理中心设备的查询, 向管理中心设 备上报状态; 其中, 该状态至少包括以下之一: 与管理中心设备的通信状态、 射频状 态和电源状态;主 RSU的电源状态可以根据主逆变器上报的电源状态信息得 到, 备 RSU的电源状态可以根据备逆变器上报的电源状态信息得到; 主备 RSU之间通过以太网口或空***互双方之间的状态信息(例如, 射 频状态)。 步骤 S306, 管理中心设备根据主 RSU与备 RSU上报的状态, 确定是否 满足切换条件, 如果是, 进行主备 RSU的切换。 当然, 如果查询结果不满足 切换条件, 则不进行主备 RSU切换, 仍然让主 RSU保持广播状态。 在执行上述步骤 S302之前, 管理中心设备分别对主备 RSU下达同样的 参数配置, 然后仅打开主 RSU的射频, 使其广播路径信息。 本实施例通过在主 RSU异常时, 进行主备 RSU的切换, 使主 RSU射频 关闭, 让备 RSU进入广播状态, 解决了路侧标识站不能持续保持正常状态的 问题。 管理中心设备判断 RSU是否正常主要通过 3个方面,即管理中心与设备 的通信状态、 设备的射频状态以及设备的电源状态, 这 3方面也是实际应用 过程中最可能出现问题的地方。基于此,管理中心设备查询主 RSU和备 RSU 的状态包括: 管理中心设备进行第一项测试、 第二项测试和第三项测试, 其 中, 第一项测试为定时查询主 RSU和备 RSU的标识, 根据查询的结果判断 管理中心设备与主 RSU和备 RSU的通信状态是否正常; 第二项测试为定时 查询主 RSU和备 RSU的射频状态;第三项测试为定时查询主 RSU和备 RSU 的电源状态; 主 RSU与备 RSU向管理中心设备上报状态之前, 上述方法还包括: 主 RSU与备 RSU进行第四项测试, 第四项测试为主 RSU定时查询备 RSU的 射频状态, 备 RSU定时查询主 RSU的射频状态。 本实施例中, 主 RSU与备 RSU向管理中心设备上报状态包括: 主 RSU 向管理中心设备上报自身的标识、射频状态和电源状态; 备 RSU向管理中心 设备上报自身的标识、 射频状态和电源状态; 其中, 主 RSU的电源状态是向 主逆变器获取的, 备 RSU的电源状态是向备逆变器获取的。 基于上述四项测试, 管理中心设备在以下情况之一时, 确定满足切换条 件: 1 ) 主 RSU的第一项测试失败, 而备 RSU的四项测试均正常;
2 ) 主 RSU的第二项测试异常, 而备 RSU的四项测试均正常;
3 ) 主 RSU的第三项测试异常, 而备 RSU的四项测试均正常;
4 )主 RSU的第一项测试失败, 而备 RSU除第四项测试异常之外, 其余 三项测试均正常; 5 )主 RSU的第二项测试异常, 而备 RSU除第四项测试异常之外, 其余 三项测试均正常。 优选地, 管理中心设备进行主备 RSU的切换包括以下之一: 管理中心设备确定釆用直接切换模式, 向主 RSU下达关闭射频命令, 向 备 RSU发送开启射频命令; 管理中心设备确定釆用间接切换模式, 向备 RSU下达开启射频命令, 以 使备 RSU开启自身的射频, 并向主 RSU发送关闭射频命令。 为了实现上述方法, 本实施例在管理中心设备上安装后台监控软件, 利 用该软件实现主备 RSU的切换, 参见图 4所示的主备 RSU切换的方法示意 图, 该方法包括: 后台监控软件定时向主 RSU和备 RSU查询 4个检查项,查询内容包括:
(1)查询主备 RSUID, 即路标号, 也可以称为路侧单元标识, 若能成功查 询主备 RSUID, 表示 RSU与管理中心之间的通信状态正常, 能够上报设备 相关信息, 该测试项 ΐ己为测试项 1。
(2)查询主备 RSU的射频状态, 正常情况下主 RSU射频为打开, 执行路 径标识的功能, 备 RSU射频为关闭, 该测试项记为测试项 2。
(3)查询同组设备状态, 即主 RSU查询备 RSU射频状态, 以及备 RSU 查询主 RSU射频状态, 该测试项记为测试项 3。
(4)查询主备 RSU 电源状态, 如果电源电压状态不稳定, 会影响到标识 站的标识功能, 该测试项 ΐ己为测试项 4。 通过上述 4个测试项的测试结果判断是否满足主备切换条件, 基于上述 四项测试项, 在下述情况发生时, 确定满足上述切换条件: (1)主 RSU的测试项 1失败, 而备 RSU的 4个测试项均正常
(2)主 RSU的测试项 2异常, 而备 RSU的 4个测试项均正常
(3)主 RSU的测试项 4异常, 而备 RSU的 4个测试项均正常
(4)主 RSU的测试项 1失败, 而备 RSU只有第 3测试项异常
(5)主 RSU的测试项 2异常, 而备 RSU只有第 3测试项异常 如果后台监控软件判断满足上述切换条件, 则判断是否可以直接切换, 如果可以直接切换, 则按照直接切换模式进行主备 RSU切换; 如果不可以直 接切换, 则釆用间接切换模式进行主备 RSU切换; 如果后台监控软件判断不 满足上述切换条件, 则不进行切换, 等到满足定时查询条件时, 再次查询上 述内容。 其中, 直接切换模式: 后台监控软件向主 RSU下达关闭射频命令, 然后 向备 RSU发送开启射频命令,主 RSU和备 RSU分别对接收到的命令进行响 应。 间接切换模式: 后台监控软件向备 RSU下达开启射频命令, 备 RSU向 主 RSU发送关闭射频命令;或者,后台监控软件向备 RSU下发关闭同组 TSU 射频命令, 备 RSU收到该命令后, 向主 RSU发送关闭射频命令, 而后, 后 台监控软件向备 RSU下达开启射频命令。 上述方法中的远程控制是管理中心设备通过各自的串口端口对主 RSU 或备 RSU进行操作实现的; 主备两台 RSU之间可以通过网络相互控制; 管 理中心设备通过监控软件监控主备 RSU状态, 当主 RSU发生故障时, 通过 监控软件进行主备切换。 上述方案保证了在主控设备的主要功能链路或组件出现异常的情况下, 备用设备能够自动启用, 执行主控设备的所有功能, 包括标识功能、 状态信 息上报功能等。 当***检测到异常且主备已经切换的时候, 维修人员即可将 主控设备进行更换, 而启用的备用设备可变更为主控设备, 这样就保证了路 侧标识站连续不间断的正常工作。 因此, 该双机备份的实现是一种有效的提 高路径识别***可靠性的方案。 从以上的描述中可以看出, 本发明实现了如下技术效果: 通过在满足切 换条件时, 进行主备 RSU的切换, 使主 RSU射频关闭, 让备 RSU进入广播 状态, 解决了路侧标识站不能持续保持正常状态的问题, 维护了该路段业主 的利益。 显然, 本领域的技术人员应该明白, 上述的本发明的各模块或各步骤可 以用通用的计算装置来实现, 它们可以集中在单个的计算装置上, 或者分布 在多个计算装置所组成的网络上, 可选地, 它们可以用计算装置可执行的程 序代码来实现, 从而, 可以将它们存储在存储装置中由计算装置来执行, 并 且在某些情况下, 可以以不同于此处的顺序执行所示出或描述的步骤, 或者 将它们分别制作成各个集成电路模块, 或者将它们中的多个模块或步骤制作 成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬件和软件 结合。 以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本 领域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的 ^"神和 原则之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护 范围之内。

Claims

权 利 要 求 书
1. 一种路侧标识站, 包括: 管理中心设备、 ***、 主逆变器、 备逆变 器、 主路侧单元 RSU和备 RSU;
所述管理中心设备包括: 查询模块, 设置为查询所述主 RSU和所 述备 RSU的状态; 切换模块, 设置为根据所述查询模块的查询结果确 定是否满足切换条件, 如果是, 进行主备 RSU切换;
所述主 RSU包括: 主状态交互模块, 设置为与所述备 RSU交互 状态信息; 主状态上报模块, 设置为向所述管理中心设备上报状态; 所述备 RSU包括: 备状态交互模块, 设置为与所述主 RSU交互 状态信息; 备状态上报模块, 设置为向所述管理中心设备上报状态; 所述***包括: 通信模块, 设置为传输所述管理中心设备与所 述主 RSU和所述备 RSU间的信息;
所述主逆变器, 设置为向所述主 RSU供电;
所述备逆变器, 设置为向所述备 RSU供电。
2. 根据权利要求 1所述的路侧标识站, 其中,
所述管理中心设备还包括: 参数下发模块, 设置为向所述主 RSU 和所述备 RSU下发相同的配置参数; 射频控制模块, 设置为向所述主 RSU下发射频打开指令;
所述主 RSU还包括: 主参数配置模块, 设置为接收并配置所述管 理中心设备下发的配置参数; 指令执行模块, 设置为接收并执行所述 管理中心设备下发的射频打开指令;
所述备 RSU还包括: 备参数配置模块, 设置为接收并配置所述管 理中心设备下发的配置参数。
3. 根据权利要求 1所述的路侧标识站, 其中,
所述查询模块包括: 第一查询单元, 设置为进行第一项测试, 所 述第一项测试为定时查询所述主 RSU和所述备 RSU的标识, 根据查 询的结果判断所述管理中心设备与所述主 RSU和所述备 RSU的通信 状态是否正常; 第二查询单元, 设置为进行第二项测试, 所述第二项 测试为定时查询所述主 RSU和所述备 RSU的射频状态; 第三查询单 元, 设置为进行第三项测试, 所述第三项测试为定时查询所述主 RSU 和所述备 RSU的电源状态;
所述主状态交互模块和备状态交互模块均包括: 第四查询单元, 设置为进行第四项测试 , 所述第四项测试为所述主 RSU定时查询所述 备 RSU的射频状态, 所述备 RSU定时查询所述主 RSU的射频状态。
4. 根据权利要求 3所述的路侧标识站, 其中,
所述主逆变器包括: 主电源状态上报模块, 设置为向所述主 RSU 上报电源状态信息;
所述备逆变器包括: 备电源状态上报模块, 设置为向所述备 RSU 上报电源状态信息;
所述主状态上报模块包括: 主上报单元, 设置为向所述管理中心 设备上 4艮所述主 RSU的标识、 射频状态和电源状态;
所述备状态上报模块包括: 备上报单元, 设置为向所述管理中心 设备上报所述备 RSU的标识、 射频状态和电源状态。
5. 根据权利要求 3所述的路侧标识站, 其中, 所述切换模块包括: 切换 条件确定单元, 设置为在以下情况之一时, 确定满足所述切换条件: 所述主 RSU的第一项测试失败, 而所述备 RSU的四项测试均正 常;
所述主 RSU的第二项测试异常, 而所述备 RSU的四项测试均正 常;
所述主 RSU的第三项测试异常, 而所述备 RSU的四项测试均正 常;
所述主 RSU的第一项测试失败, 而所述备 RSU除所述第四项测 试异常之外, 其余三项测试均正常;
所述主 RSU的第二项测试异常, 而所述备 RSU除所述第四项测 试异常之外, 其余三项测试均正常。
6. 根据权利要求 1所述的路侧标识站, 其中, 所述切换模块包括以下之 直接切换模式单元, 设置为向所述主 RSU下达关闭射频命令, 向 所述备 RSU发送开启射频命令;
间接切换模式单元, 设置为通过向所述备 RSU 下达开启射频命 令, 使所述备 RSU开启自身的射频后向所述主 RSU发送关闭射频命 令。
7. 根据权利要求 1所述的路侧标识站, 其中, 所述主 RSU和所述备 RSU 通过以太网口或空口进行通信连接。
8. 根据权利要求 1所述的路侧标识站, 其中, 所述管理中心设备与所述 ***通过串口月艮务器相连。
9. 一种主备路侧单元 RSU切换的方法, 所述方法使用权利要求 1-8任一 项所述的路侧标识站, 包括:
所述管理中心设备通过所述***查询所述主 RSU 和所述备 RSU的 ^!大态;
所述主 RSU与所述备 RSU根据所述管理中心设备的查询, 向所 述管理中心设备上报状态;
所述管理中心设备根据所述主 RSU与所述备 RSU上报的状态, 确定是否满足切换条件, 如果是, 进行主备 RSU的切换。
10. 才艮据权利要求 9所述的方法, 其中,
所述管理中心设备通过所述***查询所述主 RSU 和所述备 RSU的状态包括: 所述管理中心设备进行第一项测试、 第二项测试和 第三项测试, 其中, 所述第一项测试为定时查询所述主 RSU和所述备 RSU的标识, 居查询的结果判断所述管理中心设备与所述主 RSU和 所述备 RSU的通信状态是否正常; 所述第二项测试为定时查询所述主 RSU和所述备 RSU 的射频状态; 所述第三项测试为定时查询所述主 RSU和所述备 RSU的电源状态;
所述主 RSU与所述备 RSU向所述管理中心设备上 4艮状态之前, 所述方法包括: 所述主 RSU与所述备 RSU进行第四项测试, 所述第 四项测试为所述主 RSU定时查询所述备 RSU的射频状态,所述备 RSU 定时查询所述主 RSU的射频状态。 才艮据权利要求 10所述的方法, 其中, 所述主 RSU与所述备 RSU向所 述管理中心设备上报状态包括:
所述主 RSU向所述管理中心设备上 4艮自身的标识、射频状态和电 源状态;
所述备 RSU向所述管理中心设备上报自身的标识、射频状态和电 源状态;
其中, 所述主 RSU的电源状态是向所述主逆变器获取的, 所述备 RSU的电源状态是向所述备逆变器获取的。
12. 根据权利要求 10所述的方法, 其中, 所述管理中心设备在以下情况之 一时, 确定满足所述切换条件:
所述主 RSU的第一项测试失败, 而所述备 RSU的四项测试均正 常;
所述主 RSU的第二项测试异常, 而所述备 RSU的四项测试均正 常;
所述主 RSU的第三项测试异常, 而所述备 RSU的四项测试均正 常;
所述主 RSU的第一项测试失败, 而所述备 RSU除所述第四项测 试异常之外, 其余三项测试均正常; 所述主 RSU的第二项测试异常, 而所述备 RSU除所述第四项测 试异常之外, 其余三项测试均正常。 根据权利要求 9所述的方法, 其中, 所述管理中心设备釆用如下方式 进行主备 RSU的切换:
所述管理中心设备向所述主 RSU 下达关闭射频命令, 向所述备 RSU发送开启射频命令; 或,
所述管理中心设备向所述备 RSU 下达开启射频命令, 使所述备 RSU开启自身的射频后向所述主 RSU发送关闭射频命令。
PCT/CN2011/076476 2011-03-23 2011-06-28 路侧标识站和主备路侧单元切换的方法 WO2012126219A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110070974.3 2011-03-23
CN201110070974.3A CN102694669B (zh) 2011-03-23 2011-03-23 路侧标识站和主备路侧单元切换的方法

Publications (1)

Publication Number Publication Date
WO2012126219A1 true WO2012126219A1 (zh) 2012-09-27

Family

ID=46859961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076476 WO2012126219A1 (zh) 2011-03-23 2011-06-28 路侧标识站和主备路侧单元切换的方法

Country Status (2)

Country Link
CN (1) CN102694669B (zh)
WO (1) WO2012126219A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113852549A (zh) * 2021-09-27 2021-12-28 卡斯柯信号有限公司 一种主备双系独立接收并处理数据的实现方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103731172B (zh) * 2013-06-21 2016-05-04 深圳市金溢科技股份有限公司 路侧单元设备以及射频收发方法
CN104580345A (zh) * 2014-09-09 2015-04-29 深圳市金溢科技股份有限公司 多车道自由流路侧单元热备份方法和***
CN104570720B (zh) * 2014-11-26 2019-04-16 卡斯柯信号有限公司 一种基于健康度的车载控制器冗余管理方法
CN110827423B (zh) * 2019-09-25 2022-06-21 招商华软信息有限公司 一种用于实现不间断运行的etc门架控制装置及其控制方法
CN111176108A (zh) * 2020-01-03 2020-05-19 湖北楚天智能交通股份有限公司 一种路测单元主备冗余方法、***及设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1068457A (zh) * 1992-06-15 1993-01-27 邮电部南京通信设备厂二分厂 纵横制交换机计费***的工作方式
CN1510864A (zh) * 2002-12-21 2004-07-07 深圳市中兴通讯股份有限公司 计费数据传输的方法和***
JP2010015454A (ja) * 2008-07-04 2010-01-21 Hitachi Ltd 自動料金収受システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101242592A (zh) * 2006-08-03 2008-08-13 华为技术有限公司 基带单元环形级联的资源备份方法以及基带单元
CN101119187B (zh) * 2007-09-06 2010-05-19 上海可鲁***软件有限公司 一种主从设备切换控制方法
JP4941273B2 (ja) * 2007-12-20 2012-05-30 株式会社Jvcケンウッド 路車間通信システム
KR100960021B1 (ko) * 2008-08-19 2010-05-28 전자부품연구원 단거리 무선 통신 시스템 및 그 제어방법
CN101661635B (zh) * 2009-09-04 2011-11-23 广州华工信息软件有限公司 一种电子不停车收费车道自助刷卡***及其收费方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1068457A (zh) * 1992-06-15 1993-01-27 邮电部南京通信设备厂二分厂 纵横制交换机计费***的工作方式
CN1510864A (zh) * 2002-12-21 2004-07-07 深圳市中兴通讯股份有限公司 计费数据传输的方法和***
JP2010015454A (ja) * 2008-07-04 2010-01-21 Hitachi Ltd 自動料金収受システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113852549A (zh) * 2021-09-27 2021-12-28 卡斯柯信号有限公司 一种主备双系独立接收并处理数据的实现方法
CN113852549B (zh) * 2021-09-27 2023-10-17 卡斯柯信号有限公司 一种主备双系独立接收并处理数据的实现方法

Also Published As

Publication number Publication date
CN102694669A (zh) 2012-09-26
CN102694669B (zh) 2015-08-12

Similar Documents

Publication Publication Date Title
WO2012126219A1 (zh) 路侧标识站和主备路侧单元切换的方法
CN109857443A (zh) 一种共享电单车整车控制***的升级方法及***
CN101554002B (zh) 监视链路聚合链路的方法和***
CN101714109B (zh) 双cpu***主板的控制方法及设备
CN111107572A (zh) 一种冗余备份方法及装置
CN104580345A (zh) 多车道自由流路侧单元热备份方法和***
CN102137017A (zh) 用于虚拟网络单元的工作方法及装置
CN103166821A (zh) 实现串口通信的方法、设备及***
CN104281511A (zh) 智能平台管理接口***、基板管理控制器及实现方法
CN109982447A (zh) 一种无线网络组网方法、***及无线ap
CN102862487A (zh) 汽车电池控制***
CN107426756A (zh) 热备份通信***及其通信接口控制模块
CN103057572A (zh) 一种主备机的控制切换方法
CN102326358A (zh) 一种集群***扩容方法、装置及集群***
CN108123862A (zh) 家用电器的通信***、通信方法以及家用电器
CN106971586B (zh) 主从自动备份切换的信号控制***
CN211349100U (zh) Etc控制装置、etc控制***及etc门架***
CN203397525U (zh) 一种具有自愈功能的交通信号控制***
CN101944954A (zh) 一种单板实现主备倒换的方法及***
CN101883045B (zh) 一种堆叠***的合并方法、***及装置
CN101834710B (zh) 自动交换光网络控制平面保护组中保护倒换的方法及***
CN103124222A (zh) 路侧标识站和主备路侧单元切换
CN110053650A (zh) 一种列车自动运行***、列车自动运行***架构及列车自动运行***的模块管理方法
CN207053244U (zh) 一种安稳装置和备自投装置联锁控制装置及***
CN102412973B (zh) 一种引擎模块、线卡、通信设备及其优雅重启的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11861723

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11861723

Country of ref document: EP

Kind code of ref document: A1