WO2012124754A1 - 透明セラミックス及びその製造方法並びに磁気光学デバイス - Google Patents

透明セラミックス及びその製造方法並びに磁気光学デバイス Download PDF

Info

Publication number
WO2012124754A1
WO2012124754A1 PCT/JP2012/056632 JP2012056632W WO2012124754A1 WO 2012124754 A1 WO2012124754 A1 WO 2012124754A1 JP 2012056632 W JP2012056632 W JP 2012056632W WO 2012124754 A1 WO2012124754 A1 WO 2012124754A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
terbium
transparent ceramic
obtaining
wavelength
Prior art date
Application number
PCT/JP2012/056632
Other languages
English (en)
French (fr)
Inventor
新二 牧川
晃 矢作
池末 明生
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to DK12757262.6T priority Critical patent/DK2687500T3/en
Priority to CN201280021227.3A priority patent/CN103502180A/zh
Priority to EP12757262.6A priority patent/EP2687500B1/en
Priority to KR1020137026789A priority patent/KR101961944B1/ko
Priority to US14/005,053 priority patent/US9470915B2/en
Publication of WO2012124754A1 publication Critical patent/WO2012124754A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • C04B35/6455Hot isostatic pressing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • G02F1/0036Magneto-optical materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3287Germanium oxides, germanates or oxide forming salts thereof, e.g. copper germanate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/664Reductive annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/785Submicron sized grains, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • C04B2235/81Materials characterised by the absence of phases other than the main phase, i.e. single phase materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Definitions

  • the present invention relates to a transparent ceramic effective for a magneto-optical device, which is used to construct a magneto-optical device such as an optical isolator, and a method for manufacturing the same.
  • the present invention also relates to a magneto-optical device such as a Faraday rotator and an optical isolator.
  • magneto-optical devices using the interaction between light and magnetism have attracted attention.
  • One of them is an isolator. This is because an unstable oscillation state occurs when light oscillated from a laser light source is reflected by an intermediate optical system and returns to the light source, disturbing the light oscillated from the laser light source. It suppresses the phenomenon that becomes. Therefore, using this action, the optical isolator is used by being disposed between the laser light source and the optical component.
  • the optical isolator has three parts: a Faraday rotator, a polarizer disposed on the light incident side of the Faraday rotator, and an analyzer disposed on the light emitting side of the Faraday rotator.
  • the optical isolator utilizes the so-called Faraday effect that the plane of polarization rotates in the Faraday rotator when light is incident on the Faraday rotator while a magnetic field is applied to the Faraday rotator in parallel with the traveling direction of light. To do. That is, of the incident light, light having the same polarization plane as the polarizer passes through the polarizer and is incident on the Faraday rotator. This light is rotated by plus 45 degrees in the Faraday rotator and emitted.
  • the return light incident on the Faraday rotator from the direction opposite to the incident direction first passes through the analyzer, only the component light having the same polarization plane as the analyzer passes through the analyzer. Incident to the Faraday rotator. Next, in the Faraday rotator, the polarization plane of the return light is further rotated by plus 45 degrees from the first plus 45 degrees, so that it becomes a polarization plane perpendicular to the polarizer plus 90 degrees. Cannot pass through.
  • the Faraday rotation angle ⁇ is represented by the following formula (A).
  • V ⁇ H ⁇ L (A)
  • V is a Verde constant determined by the material of the Faraday rotator
  • H is the magnetic flux density
  • L is the length of the Faraday rotator.
  • the Faraday rotator of the optical isolator As described above, it is important that the Faraday effect is large and that the transmittance is high at the wavelength used.
  • the material used as the Faraday rotator is incident with 0 to 90 degrees of polarized light, and the emitted light is incident on the receiver through the polarizer.
  • the light intensity is measured, and the extinction ratio (S) is calculated from the maximum value (Imax) and the minimum value (Imin) and evaluated by the following equation.
  • S -10 log (Imin / Imax) [unit dB] It is important that the extinction ratio is large, and generally 30 dB or more is required.
  • Patent Document 1 As a material having a large Verde constant, (Tb x Re 1-x ) 2 O 3 : 0.4 ⁇ x ⁇ 1.0 Oxide single crystals and transparent oxide ceramics are disclosed.
  • Patent Document 2 the rare earth oxide represented by the general formula R 2 O 3 (R: rare earth element) has a cubic crystal structure and no birefringence. Therefore, it is described that a sintered body having excellent transparency can be obtained by completely removing pores and segregation of impurities.
  • JP-A-5-330913 Patent Document 3
  • it is effective to add a sintering aid to remove pores.
  • a sintering aid As disclosed in Japanese Patent No. 2638669 (Patent Document 4), a method is also disclosed in which re-sintering is performed after the hot isostatic pressing step to remove pores.
  • As a sintering aid one or a plurality of sintering aids disclosed in JP-A-5-330913 (Patent Document 5) are added, mixed, molded, calcined, and then sintered under vacuum. Further, it is processed by HIP processing.
  • the transparent oxide ceramics of (Tb x Re 1 -x ) 2 O 3 : 0.4 ⁇ x ⁇ 1.0 basically has a crystal structure. Is a cubic crystal, but by adding a sintering aid, the sintering aid reacts with the main component, and a phase different from the cubic crystal precipitates in the crystal grains or at the grain boundaries. May exhibit birefringence. As a result, the extinction ratio may decrease.
  • the precipitate has a minute size of 1 ⁇ m or less, when the laser beam is irradiated, the laser beam is scattered there, and the insertion loss may be reduced due to the scattering.
  • the composition of the main component (Tb x Re 1-x ) 2 O 3 and the concentration of the sintering aid are segregated inside and around the ceramics, resulting in in-plane ceramics. There were variations in extinction ratio and insertion loss.
  • An object of the present invention is a transparent ceramic effective for a magneto-optical material of a rare earth oxide containing terbium oxide having a large Verde constant in a wavelength range of 1.06 ⁇ m (0.9 to 1.1 ⁇ m), Disclosed is a transparent ceramic that can improve the characteristics of a magneto-optical material by providing uniform, high transparency, low scattering, and therefore can reduce insertion loss and increase the extinction ratio, and a method for manufacturing the same. .
  • a further object of the present invention is to provide a high-quality magneto-optical device suitable for use in a fiber laser for a processing machine.
  • Ceramics based on terbium oxide and rare earth (scandium, yttrium, lanthanum, europium, gadolinium, ytterbium, holmium, and lutetium) oxides tend to scatter, increase insertion loss, and conversely reduce the extinction ratio. Therefore, it is extremely difficult to apply to optical materials such as optical isolators that have strict requirements on optical characteristics.
  • the present invention provides the following transparent ceramics, a method for producing the same, and a magneto-optical element using the transparent ceramic.
  • ceramics comprising, as a main component, terbium oxide (chemical formula: Tb 2 O 3 ) in a molar ratio of 40% or more and at least one oxide selected from yttrium oxide, scandium oxide, and lanthanide rare earth oxide, (1)
  • the crystal structure of the terbium oxide ceramic does not include a different phase other than a cubic crystal, (2)
  • the average crystal particle size is in the range of 0.5 to 100 ⁇ m, (3)
  • a transparent ceramic characterized in that it contains a sintering aid that does not precipitate foreign phases other than cubic crystals in the crystal structure of the terbium oxide ceramic.
  • a method for producing transparent ceramics (1) (a) terbium oxide, (B) at least one oxide selected from yttrium oxide, scandium oxide, and lanthanide rare earth oxide, (C) In the crystal structure of the terbium oxide ceramics, each raw material powder containing a sintering aid that does not precipitate a different phase other than cubic crystals and having an average primary particle size of 30 to 2,000 nm was pulverized and mixed. Then, the 1st process of obtaining a forming object by forming, (2) a second step of obtaining a calcined body by calcining the molded body at 200 to 1,000 ° C.
  • a method for producing transparent ceramics comprising a fourth step of obtaining a pressure fired body by firing the fired body at 1,400-1800 ° C. under a pressure of 19-196 MPa.
  • each raw material powder containing a sintering aid that does not precipitate a different phase other than cubic crystals and having an average primary particle size of 30 to 2,000 nm was pulverized and mixed. Thereafter, a first step of obtaining a molded body by molding a powder calcined at 200 to 1,000 ° C. in a non-oxidizing or oxidizing atmosphere, (2) a second step of obtaining a fired body by firing the molded body at 1,400-1700 ° C.
  • a method for producing a transparent ceramic comprising a third step of obtaining a pressure fired body by pressure firing at 1400 to 1800 ° C. and a pressure of 19 to 196 MPa.
  • the mixed powder contains terbium oxide in a molar ratio of 40% or more and contains an oxide selected from yttrium oxide, scandium oxide, and lanthanide rare earth oxide
  • Second step (3) a third step of obtaining a fired body by firing the molded body at 1,400 to 1,700 ° C. in a non-oxidizing atmosphere; (4) A method for producing transparent ceramics, comprising a fourth step of obtaining a pressure fired body by firing the fired body at 1,400-1800 ° C. under a pressure of 19-196 MPa.
  • a magneto-optical device configured using the transparent ceramic according to any one of [1] to [6].
  • the transparent ceramic according to the present invention can provide excellent optical characteristics in the visible to infrared region, which was not obtained with the same ceramic composition reported in Japanese Patent Application Laid-Open No. 2010-285299, and the existing terbium gallium garnet.
  • a magneto-optical element having performance equivalent to or higher than that of a single crystal material such as can be provided.
  • optical loss and optical uniformity are superior to conventional ceramic materials, so there are very few birefringent components, very little scattering, and light in the infrared region of about 500 nm to 1.5 ⁇ m.
  • a functional element in an isolator can be provided.
  • the transparent ceramics of the present invention comprise terbium oxide (chemical formula: Tb 2 O 3 ) in a molar ratio of 40% or more and yttrium oxide, scandium oxide, and lanthanide rare earth oxidation having an absorption of 1% or less at a wavelength of 1.065 ⁇ m.
  • a ceramic mainly composed of at least one oxide selected from products, (1) The crystal structure of the terbium oxide ceramic does not include a different phase other than a cubic crystal, (2) The average crystal particle size is in the range of 0.5 to 100 ⁇ m, (3) It contains a sintering aid that does not precipitate foreign phases other than cubic crystals in the crystal structure of the terbium oxide ceramics.
  • the ceramic of the present invention comprises the above components (a) and (b) and a sintering aid.
  • Terbium oxide alone is said to undergo a phase transition from cubic to monoclinic at around 1400-1600 ° C. Therefore, since sintering of rare earth oxide ceramics containing terbium oxide is performed at 1,400 to 1,600 ° C., a phase transition from monoclinic to cubic is unavoidable during sintering or cooling. End up. Therefore, if a part of the monoclinic crystal remains without undergoing this phase transition, the part becomes a precipitate as a different phase, which causes scattering. Further, the monoclinic crystal has anisotropy and therefore exhibits birefringence. Therefore, it is preferable to add a sintering aid that can smoothly transition from monoclinic to cubic. As the sintering aid, a 4A group element such as titanium, zirconium, hafnium, calcium, scandium, yttrium, or a lanthanide element that does not absorb near 1.06 ⁇ m wavelength may be used.
  • a 4A group element such as titanium, zirconium
  • the 4A element is used as a stabilizing material when yttria is sintered, it is also effective as a stabilizing material for the rare earth oxide containing terbium oxide of the present invention.
  • calcium has strong ionicity, it has a high reaction activity and is easily dissolved in a rare earth oxide.
  • Elements other than these have absorption near the wavelength of 1.06 ⁇ m, or are hardly dissolved in the rare earth oxide, and thus do not react as a sintering aid and precipitate alone, or have an activity level.
  • There are problems such that the size of the crystal grains cannot be in the optimum range because it is too high, or that the ceramics gradually react with moisture over a long period of time and the ceramics show hygroscopicity and devitrify.
  • an element selected from titanium, zirconium, hafnium, and calcium is preferable as the sintering aid.
  • oxides are most desirable, but fluorides, nitrides, and carbides may be used.
  • the ceramic of the present invention is polycrystalline.
  • the average crystal particle diameter is usually in the range of 0.5 to 100 ⁇ m, preferably in the range of 1 to 50 ⁇ m.
  • impurities are likely to precipitate at the grain boundary part, bubbles tend to remain inside the grain boundary part and the grain boundary part, and not only cause light scattering but also have a disadvantage of poor thermomechanical properties.
  • the average crystal particle diameter is an average value of the long diameters of 100 crystal particles in an arbitrary field of view by observation with a scanning electron microscope or an optical microscope.
  • the term “baseline” means that if absorption of a rare earth oxide such as a sintering aid or terbium oxide appears in the wavelength-transmittance transmission spectrum, The inserted transmission spectrum is shown.
  • the above-described linear transmittance is obtained by using a spectroscopic analyzer “Spectrometer, trade name U3500” (manufactured by Hitachi, Ltd.) and having a surface roughness Rms of 1 nm or less and a diameter of 6 mm ⁇ and a thickness of 10 mm. Using a sample, the beam diameter is measured at a size of 1 to 3 mm ⁇ .
  • the ceramic of the present invention has an insertion loss of 1.2 dB or less, particularly 1 dB or less, in a thickness direction of a sample having a thickness of 10 mm, (1) at a wavelength of 1065 nm, in 90% or more of the measurement surface. (2) It is preferable that the extinction ratio is 30 dB or more in a plane of 90% or more of the measurement surface at a wavelength of 1065 nm.
  • the insertion loss of (1) exceeds 1.2 dB, light scattering at crystal grains or grain boundaries is very large, or light absorption at crystal grains is very large, and it can be used for applications of the present invention. It can be difficult.
  • the extinction ratio of (2) is less than 30 dB, the birefringence at crystal grains or grain boundaries is very large, and it may be difficult to use for the application of the present invention.
  • the insertion loss is measured by placing the ceramics on a V block, injecting several mW of coherent light with a wavelength of 1.065 ⁇ m perpendicularly to the ceramics, and measuring the light intensity with a semiconductor light receiver. . At this time, based on the light intensity when the ceramic is not inserted, the decrease of the light intensity is expressed in dB.
  • a sample having a diameter of 6 mm and a thickness of 10 mm polished to have a surface roughness Rms of 1 nm or less, a surface flatness of ⁇ / 4 or less, and a parallelism of both end faces of 0.5 ° or less is used.
  • the measured values include surface reflections at both end faces.
  • the V block on which the ceramic is placed can move in the direction perpendicular to the incident light, and thereby the in-plane distribution of the ceramic can be measured. Therefore, the in-plane distribution of 90% or more of the measurement surface is a result of measurement at each measurement point while moving the V-shaped block to 95% of the diameter.
  • the above-described extinction ratio is obtained by placing the ceramics on a V block, and applying 0 m and 90 degrees polarized coherent light with a wavelength of 1.065 ⁇ m to several mW, and emitting the emitted light,
  • the intensity of light is measured with a semiconductor light receiver through a polarizer, and expressed in dB from the maximum value (Imax) and the minimum value (Imin).
  • a sample having a diameter of 6 mm and a thickness of 10 mm polished to have a surface roughness Rms of 1 nm or less, a surface flatness of ⁇ / 4 or less, and a parallelism of both end faces of 0.5 ° or less is used.
  • the V block on which the ceramic is placed can move in the vertical direction with respect to the incident light, and thus the in-plane distribution of the ceramic can be measured. Accordingly, the in-plane distribution of 90% or more of the measurement surface is a result of measurement at each measurement point while moving the V-shaped block to 95% of the diameter.
  • the refractive index distribution at the time of transmission wavefront measurement in a region of 90% or more of the measurement surface at a thickness of 10 mm is within 5 ⁇ 10 ⁇ 5 at the wavelength of 633 nm, more preferably from 1 ⁇ 10 ⁇ 6 to 2 ⁇ 10 ⁇ 5 . is there.
  • the refractive index distribution can be obtained by measuring a sample transmission wavefront at a wavelength of 633 nm using a Fuji Photo Film optical interferometer G102.
  • the transparent ceramics of the present invention are preferably produced by any one of the following first to third methods.
  • First Method> Solid Phase Reaction In a method for producing transparent ceramics, (1) (a) terbium oxide, (B) at least one oxide selected from yttrium oxide, scandium oxide, and lanthanide rare earth oxide, (C) In the crystal structure of the terbium oxide-based ceramics, each raw material powder containing a sintering aid that does not precipitate a different phase other than cubic crystals and having an average primary particle size of 30 to 2,000 nm was pulverized and mixed.
  • the 1st process of obtaining a forming object by forming (2) a second step of obtaining a calcined body by calcining the molded body at 200 to 1,000 ° C. in a non-oxidizing or oxidizing atmosphere; (3) a third step of obtaining a fired body by firing the calcined body at 1,400 to 1,700 ° C. in a non-oxidizing atmosphere; (4) A method comprising a fourth step of obtaining a pressure fired body by pressure firing at a pressure of 19 to 196 MPa at 1,400 to 1800 ° C.
  • Solid Phase Reaction In a method for producing transparent ceramics, (1) (a) terbium oxide, (B) at least one oxide selected from yttrium oxide, scandium oxide, and lanthanide rare earth oxide, (C) In the crystal structure of the terbium oxide-based ceramics, each raw material powder containing a sintering aid that does not precipitate a different phase other than cubic crystals and having an average primary particle size of 30 to 2,000 nm was pulverized and mixed. Thereafter, a first step of obtaining a molded body by molding a powder calcined at 200 to 1,000 ° C.
  • a method comprising a third step of obtaining a pressure fired body by pressure firing at a pressure of 19 to 196 MPa at 1,400 to 1800 ° C.
  • ⁇ Third method> In a method for producing transparent ceramics, (1) (d) terbium ion, (E) A mixed powder having an average primary particle size of 30 to 2,000 nm in advance by coprecipitation, filtration and calcination of an aqueous solution containing at least one rare earth ion selected from yttrium ions, scandium ions, and lanthanide rare earth ions Wherein the mixed powder contains terbium oxide in a molar ratio of 40% or more and contains an oxide selected from yttrium oxide, scandium oxide, and lanthanide rare earth oxide, (2) After the above mixed powder and the oxide, fluoride, or nitride of an element selected from titanium, zirconium, hafnium, and calcium as a sintering aid are pulverized and mixed, a molded product is obtained by molding.
  • Second step (3) a third step of obtaining a fired body by firing the molded body at 1,400 to 1,700 ° C. in a non-oxidizing atmosphere; (4) A method comprising a fourth step of obtaining a pressure fired body by pressure firing at a pressure of 19 to 196 MPa at 1,400 to 1800 ° C.
  • terbium oxide In the first step of the first and second methods, (a) terbium oxide, (b) yttrium oxide, scandium oxide, and lanthanide rare earth oxide with little absorption (less than 1%) at a wavelength of 1.065 ⁇ m And (c) a sintering aid that does not precipitate a different phase other than cubic crystals in the crystal structure of the terbium oxide ceramics, and in this case, the average primary particle size is 30-2.
  • raw material powder having a thickness of 1,000 nm, preferably 100 to 2,000 nm, these are pulverized and mixed.
  • the molar ratio of the terbium oxide (a) to the oxide (b) is 40 mol% or more, preferably 40 to 60 mol% of the terbium oxide (a), and the oxide (b) is the balance. It is.
  • the terbium oxide one prepared by a known production method or a commercially available product can be used, but in general, there is a large amount of Tb 4 O 7 instead of the chemical formula Tb 2 O 3 . Therefore, the raw material is used as Tb 4 O 7 , but it is reduced in a high temperature gas atmosphere containing hydrogen of 1,000 ° C. or higher, or stored in a high temperature air atmosphere of 1,000 ° C. or higher and then rapidly cooled. , Tb 2 O 3 may be used as a raw material.
  • the purity of terbium oxide is desirably 99% by mass or more, but is preferably 99.9% by mass or more for use as an optical application.
  • the purity of yttrium oxide, scandium oxide, or lanthanide rare earth oxide, which is used as a raw material and has almost no absorption at a wavelength of 1.065 ⁇ m, is preferably 99% by mass or more, but for use as an optical application, it is 99.9% by mass. The above is preferable.
  • group 4A elements such as titanium, zirconium, hafnium, calcium, scandium, yttrium, and a wavelength of about 1.06 ⁇ m.
  • lanthanide elements that do not absorb, and titanium, zirconium, hafnium, and calcium are particularly preferable.
  • the form of an oxide is preferable, and the purity is desirably 99% by mass or more. However, for use as an optical application, 99.9% by mass or more is preferable.
  • the amount of these elements added as a sintering aid is 0.001 to 1% by mass, preferably 0.01 to 1% by mass.
  • the primary particle diameter of the raw material powder used in the first step is 30 to 2,000 nm, preferably 100 to 2,000 nm, and particularly preferably 200 to 1,000 nm.
  • the primary particle diameter is less than 30 nm, handling is difficult. For example, there is a problem that molding is difficult, the density of the green compact is low, the shrinkage rate during sintering is large, and cracks are easily generated.
  • the said primary particle diameter exceeds 2,000 nm, the sinterability of a raw material is scarce and it is difficult to obtain a high-density and transparent sintered compact.
  • the measurement of the primary particle diameter can be performed by the same method as the measurement of the average crystal particle diameter.
  • the grinding media is preferably partially stabilized zirconia balls. This is because zirconia can also be used as a sintering aid, so there is no need to worry about zirconia contamination from zirconia balls.
  • a dispersant such as ammonium polyacrylate and ammonium polycarboxylate
  • a binder such as methyl cellulose, ethyl cellulose, and polyvinyl alcohol. Regular doses can be used.
  • the obtained slurry is subjected to solvent removal and granulation by a spray drying apparatus to form a granule of several tens of ⁇ m, and the produced granule is first molded with a predetermined mold, and CIP (Cold Isostatic Press: By performing secondary molding by the cold isostatic pressing method, a molded article can be suitably produced.
  • CIP Cold Isostatic Press
  • a molded body is obtained by molding, and after the molded body is calcined at 200 to 1,000 ° C. in a non-oxidizing or oxidizing atmosphere, A fired body is obtained by firing at 1,400 to 1,700 ° C. in a non-oxidizing atmosphere.
  • the second method after the above pulverization / mixing treatment, calcined at 200 to 1,000 ° C. in a non-oxidizing or oxidizing atmosphere, and molding the calcined powder, a molded body is obtained, The molded body is fired at 1,400 to 1,700 ° C. in a non-oxidizing atmosphere to obtain a fired body.
  • the binder used at the time of molding can be oxidized and removed by calcination, and according to the second method, by firing in a non-oxidizing atmosphere.
  • the valence change of terbium oxide can be suppressed.
  • a method of forming by pressing using a mold and then performing a CIP (cold isostatic pressing) method can be employed.
  • the calcination is performed at 200 to 1,000 ° C., more preferably 400 to 1,000 ° C., and still more preferably 600 to 1,000 ° C.
  • the calcination atmosphere can be an oxidizing atmosphere or a non-oxidizing atmosphere.
  • the oxidizing atmosphere may be air, and the non-oxidizing atmosphere is a vacuum (for example, 10 2 Pa to 10 ⁇ 5 Pa), a reducing atmosphere, It can be an inert gas atmosphere.
  • the calcination time is generally about 60 to 180 minutes, although it depends on the calcination temperature.
  • the obtained calcined powder can be molded by the same method as described in the first method.
  • the fired body is obtained by firing the molded body at 1,400 to 1,800 ° C., preferably 1,400 to 1,600 ° C.
  • the firing atmosphere is not particularly limited as long as Tb 4 O 7 of terbium oxide changes to Tb 2 O 3 , and may be any of vacuum, reducing atmosphere, inert gas atmosphere, and the like.
  • the conditions can be 10 2 Pa to 10 ⁇ 5 Pa.
  • the firing time is generally about 30 to 480 minutes although it depends on the firing temperature. In this step, it is desirable that the relative density of the fired body is 90% or more, more preferably 95% or more.
  • the obtained fired body is pressure fired at 1,400 to 1800 ° C. in a non-oxidizing atmosphere to obtain a pressure fired body.
  • the method of pressure baking is not particularly limited, and may be any one of, for example, an HP (Hot Press) method, an HIP (Hot Isostatic Press) method, and the like.
  • HP Hot Press
  • HIP Hot Isostatic Press
  • argon gas is used as the pressure medium, and the pressure is within a range of 19 to 196 MPa, and the pressure is baked at 1,400 to 1,800 ° C. for 1 to 10 hours, particularly 1 to 5 hours. Ceramics can be obtained.
  • the third method was obtained by co-precipitating terbium ions and rare earth ions selected from yttrium ions, scandium ions, and lanthanide rare earth ions by a method of precipitating an aqueous solution of hydrogen carbonate with ammonia, and filtering this.
  • the coprecipitate is calcined in the same manner as described in the second method to obtain a calcined mixed powder containing terbium oxide and an oxide selected from yttrium oxide, scandium oxide, and lanthanide rare earth oxide. .
  • the mixed powder needs to contain terbium oxide in a molar ratio of 40% or more, the terbium ions in the aqueous solution are adjusted and contained so that the molar ratio is obtained.
  • the average primary particle size of the mixed powder is 30 to 2,000 nm, preferably 30 to 1,000 nm, and particularly preferably 30 to 800 nm.
  • the obtained mixed powder was pulverized and mixed with an oxide, fluoride or nitride of an element selected from titanium, zirconium, hafnium and calcium as a sintering aid, and then subjected to 1,400 to 1,700 ° C. More preferably, it is fired in a non-oxidizing atmosphere at 1,400 to 1,600 ° C. in the same manner as in the first and second methods to obtain a fired product, and further subjected to heating in the same manner as in the first and second methods. A pressure fired body is obtained.
  • the pressure fired body obtained above is annealed at 1,500 to 2,000 ° C. in an oxygen-free atmosphere.
  • an annealing process it is referred to as an annealing process.
  • one of the terbium valences is not all trivalent, and there is a possibility that a crystal defect is caused accordingly. Yes, it can be considered that they cause light absorption.
  • the other is that terbium oxide alone undergoes a phase transition from cubic to monoclinic at around 1,400 to 1,600 ° C. For this reason, during sintering or cooling, a phase transition from monoclinic to cubic occurs, but if this monolithic crystal remains partly without this phase transition, the part becomes a precipitate as a different phase. And causes scattering.
  • the calcination body is annealed at 1,500 to 2,000 ° C. in an atmosphere not containing oxygen, so that the valence of terbium is all trivalent, and the annealing step And all the phase transition from monoclinic to cubic.
  • the annealing atmosphere may be any atmosphere as long as it does not contain oxygen, and may be any one of, for example, a vacuum, a reducing atmosphere, and an inert gas atmosphere. When carried out in a vacuum, the conditions can be 10 2 Pa to 10 ⁇ 5 Pa.
  • the annealing temperature is 1,500 to 2,000 ° C., preferably 1,500 to 1,800 ° C.
  • the annealing time depends on the annealing temperature, it is generally 2 to 100 hours, preferably 10 to 80 hours.
  • the cooling time after annealing may be a time that does not cause cracks, and is generally 2 to 100 hours, preferably 2 to 50 hours.
  • the transparent ceramic thus obtained is carbon, tungsten, or a heat insulating material as a heater material from a heater heated in the calcining process, firing process, pressure firing process, and annealing process on the ceramic outer periphery. Since aluminum, silicon, calcium, etc. adhere and act as impurities and devitrify the transparent ceramic, it is necessary to remove both ends in the thickness direction by chemical etching, mechanical grinding or polishing.
  • the chemical etching may be an inorganic acid such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid, or an organic acid such as malic acid and citric acid as long as it is an acidic aqueous solution.
  • hydrochloric acid the outer peripheral surface can be removed by etching several hundred ⁇ m by heating at 60 ° C. or higher.
  • a centerless grinding device or a cylindrical grinding device may be used as long as it is an outer peripheral surface, and hundreds of ⁇ m to several mm may be cut using a surface grinding device as long as both end surfaces are provided.
  • polishing rough polishing using a diamond slurry, SiC slurry or the like, followed by precision polishing such as colloidal silica may be performed to polish several hundred ⁇ m to several mm.
  • precision polishing such as colloidal silica
  • the oxide, oxide single crystal and ceramic of the present invention are suitable for magneto-optical material applications.
  • the oxide, oxide single crystal and ceramic of the present invention are suitably used as a Faraday rotator of an optical isolator having a wavelength of 0.9 to 1.1 ⁇ m, particularly a wavelength of 1065 nm.
  • FIG. 3 is a schematic cross-sectional view showing an example of an optical isolator which is an optical device having a Faraday rotator as an optical element.
  • the optical isolator 300 includes a Faraday rotator 310, and a polarizer 320 and an analyzer 330, which are polarizing materials, are provided before and after the Faraday rotator 310.
  • a polarizer 320, a Faraday rotator 310, and an analyzer 330 are arranged on the optical axis 312 in this order, and a magnet 340 is placed on at least one of these side surfaces. Is preferably housed inside the housing 350.
  • the isolator is preferably used for a fiber laser for a processing machine. That is, it is suitable for preventing the reflected light of the laser light emitted from the laser element from returning to the element and causing oscillation to become unstable.
  • Examples 1 to 63 and Comparative Examples 1 to 15 In accordance with the method shown in FIG. 1, rare earth oxide transparent ceramics containing terbium oxide were produced using the raw materials and conditions shown in Tables 1 to 7 (Examples) and Tables 8 to 9 (Comparative Examples). . In Examples 1 to 9, annealing was not performed.
  • a predetermined amount of a sintering aid was added to each raw material powder, and further effective amounts of ethyl cellulose and polyvinyl alcohol were added as a dispersant and a binder, and these were mixed in a pot mill to obtain a mixture.
  • the mixture was spray-dried to obtain granules having a particle size of several tens of ⁇ m.
  • CIP was performed as secondary molding to obtain a molded body.
  • the obtained molded body was calcined at 200 to 1,000 ° C. in the atmosphere, and then fired (main firing) at 1,600 to 1,800 ° C. in a predetermined atmosphere. Further, the obtained fired body was further subjected to HIP treatment, and annealed as necessary to obtain a ceramic of the present invention (size: diameter 6 mm ⁇ , length 10 mm). The physical properties of the obtained ceramic are shown in each table.
  • Crystal structure after sintering shown in Tables 1 to 9 means that the precipitates observed with an optical microscope are analyzed by EBSD or TEM-XRD and are only cubic or other phases. Is detected.
  • the sample thickness was set to 10 mm and both sides were optically polished.
  • the insertion loss was similarly measured by setting the sample thickness to 10 mm and optically polishing both sides. Since no anti-reflection coating is performed at this time, reflection loss is included.
  • the extinction ratio was similarly measured by setting the sample thickness to 10 mm, optically polishing both surfaces, and the presence or absence of the polarization state.
  • the quality of an optical isolator used for a fiber laser for a processing machine is improved by producing an oxide containing terbium oxide that defines an average particle diameter, transmittance at a specific wavelength, insertion loss, and extinction ratio. It became possible to provide.
  • FIG. 2 shows a “transparency measurement profile of transparent ceramic” regarding the relationship between the measurement wavelength and the transmittance including the used wavelengths of 633 nm and 1,065 nm.
  • Each curve is a plot of the transmittance of Example 1 and Example 11 in relation to the wavelength, both of which are 50 between the measurement wavelengths of 500 to 1,500 nm including the used wavelengths of 633 nm and 1,065 nm. It can be confirmed that the transmittance reaches 55% or more and 70% or more at the wavelengths of 600 nm and 1,000 nm specified in the present invention, respectively.
  • optical isolator 310 Faraday rotator 312 optical axis 320 polarizer 330 analyzer 340 magnet 350 housing

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nonlinear Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Power Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

 酸化テルビウム(化学式:Tb23)をモル比で40%以上と、イットリウム酸化物、スカンジウム酸化物及びランタニド希土類酸化物から選ばれる少なくとも1種の酸化物とを主成分とするセラミックスにおいて、 (1)前記酸化テルビウム系のセラミックスの結晶構造が、立方晶以外の異相を含まず、 (2)平均結晶粒子径が、0.5~100μmの範囲にあり、 (3)前記酸化テルビウム系のセラミックスの結晶構造において立方晶以外の異相を析出させない焼結助剤を含有する透明セラミックス。 本発明に係る透明セラミックスは、既存のテルビウムガリウムガーネットなどのような単結晶材料と同等又はそれ以上の性能をもつ磁気光学素子を提供できる。光学ロス、光学的均一性においても、複屈折成分が非常に少なく、散乱も非常に少なく、500nm以上1.5μm以下の赤外線領域での光アイソレータでの機能素子を提供することができる。

Description

透明セラミックス及びその製造方法並びに磁気光学デバイス
 本発明は、光アイソレータなどの磁気光学デバイスを構成するのに用いられる、磁気光学デバイス用として有効な透明セラミックス及びその製造方法に関するものである。
 また、本発明は、ファラデー回転子、及び光アイソレータなどの磁気光学デバイスに関する。
 近年、レーザ加工機の進展に伴い、光と磁気との相互作用を利用した磁気光学デバイスが注目されている。その1つに、アイソレータがあるが、これは、レーザ光源から発振した光が、途中の光学系で反射されて光源に戻ると、レーザ光源から発振した光を擾乱させて、不安定な発振状態になる現象を抑制するものである。そのため、この作用を利用して、光アイソレータは、レーザ光源と光学部品との間に配置して利用されている。
 光アイソレータは、ファラデー回転子と、ファラデー回転子の光入射側に配置された偏光子と、ファラデー回転子の光出射側に配置された検光子との3つの部品を有する。光アイソレータは、ファラデー回転子に光の進行方向に平行に磁界を加えた状態で、光がファラデー回転子に入射すると、ファラデー回転子の中で偏光面が回転するという性質、いわゆるファラデー効果を利用する。即ち、入射光のなかで、偏光子と同じ偏光面を有する光が偏光子を通過して、ファラデー回転子に入射される。この光は、ファラデー回転子の中で、光の進行方向に対して、プラス45度回転されて、出射する。
 これに対して、入射方向と逆方向からファラデー回転子に入射する戻り光は、最初に検光子を通過する際に、検光子と同じ偏光面を有する成分の光のみが検光子を透過し、ファラデー回転子に入射される。次にファラデー回転子の中で、戻り光の偏光面が、最初のプラス45度から更にプラス45度回転されるため、偏光子とプラス90度の直角の偏光面となり、戻り光は、偏光子を透過できなくなる。
 ファラデー回転角θは、下記式(A)で表される。
     θ=V×H×L                  (A)
 式(A)中、Vはベルデ定数でファラデー回転子の材料で決まる定数であり、Hは磁束密度、Lはファラデー回転子の長さである。光アイソレータとして用いる場合は、θ=45度になるように、Lを決定する。
 上記のような光アイソレータのファラデー回転子として用いられる材料では、ファラデー効果が大きく、かつその使用する波長において、透過率が高いことが重要である。
 更に、入射した光と異なる偏光成分が出射光内に生じると、この異なる偏光成分は、偏光子を透過するので、戻り光の遮断が不十分になる。
 この異なる偏光成分の発生状態の評価としては、ファラデー回転子として用いられる材料に対して、0度~90度の偏光を入射し、出射光は偏光子を通して受光器に入射して、受光器で光の強度を測定し、最大値(Imax)と最小値(Imin)より、消光比(S)を次式で計算して評価する。
     S=-10log(Imin/Imax) [単位dB]
 消光比は、大きいことが重要であり、一般的には、30dB以上が求められている。
 近年、その材料として、特開2010-285299号公報(特許文献1)においては、ベルデ定数の大きな素材として、(TbxRe1-x23:0.4≦x≦1.0の酸化物単結晶及び透明酸化物セラミックスが開示されている。
 また、特許第4033451号公報(特許文献2)において、一般式R23(R:希土類元素)で表される希土類酸化物は、その結晶構造が立方晶であり複屈折がない。そのため気孔や不純物の偏析を完全に除去することにより透明性に優れた焼結体を得ることが可能である、と記載されている。
 また、特開平5-330913号公報(特許文献3)で示されているように、気孔を除去するためには、焼結助剤の添加が有効である。特許第2638669号公報(特許文献4)にあるように、熱間等方加圧成形工程の後に再焼結を行い、気孔を除去する方法も開示されている。焼結助剤として、特開平5-330913号公報(特許文献5)等で開示されている焼結助剤を一又は複数加え、混合し成形し、仮焼した後に、真空下で焼結し、更にHIP処理し、製造する。
 しかし、特開2010-285299号公報(特許文献6)において、(TbxRe1-x23:0.4≦x≦1.0の透明酸化物セラミックスは、基本的に、結晶構造が立方晶ではあるが、焼結助剤を入れることで、焼結助剤と主成分とが反応して、立方晶とは異なる相が、結晶粒内又は粒界に析出することにより、わずかに複屈折を示すことがあった。そのため、消光比が低下することがあった。
 また、その析出物は、1μm以下の微小な大きさであるため、レーザ光を照射すると、そこでレーザ光が散乱し、散乱によって、挿入損失が低下することがあった。
 また、セラミックスを焼結するときに、主成分である(TbxRe1-x23の組成や焼結助剤の濃度がセラミックスの内部と外周部において偏析が生じて、セラミックス面内に消光比や挿入損失のばらつきが生じていた。
特開2010-285299号公報 特許第4033451号公報 特開平5-330913号公報 特許第2638669号公報 特開平5-330913号公報 特開2010-285299号公報
 本発明の目的は、波長1.06μm域(0.9~1.1μm)でのベルデ定数が大きい酸化テルビウムを含む希土類酸化物の、磁気光学材料に有効な透明セラミックスであって、面内において、均一で透明性が高く、散乱が少なく、そのために挿入損失を小さくでき、かつ消光比を大きくできることにより、磁気光学材料の特性を向上させることを可能とする透明セラミックス及びその製造方法を提供する。かつ、本発明の更なる目的は、加工機用ファイバーレーザに好適に使用される高品質の磁気光学デバイスを提供することである。
 テルビウム酸化物と希土類(スカンジウム、イットリウム、ランタン、ユロピウム、ガドリニウム、イッテルビウム、ホルミウム及びルテチウム)酸化物を主成分とするセラミックスは、散乱が生じやすく、挿入損失が大きくなり、逆に消光比が小さくなるため、光学特性に厳しい要求がある光アイソレータなどの光学材料に応用することが極めて困難である。
 これに対し、本発明では、(1)焼結性に優れた特定の粒度分布を有する出発原料を使用し、(2)焼結性が優れ、かつセラミックスの結晶構造を立方晶に維持できる焼結助剤を使用し、(3)最適温度で真空焼結又は酸素を含まない非酸化性雰囲気で焼結させて、HIP(Hot Isostatic Press:熱間等方圧加工)を行い、(4)前記(3)で得られた焼結体を加圧焼成することにより、散乱の原因となる異相析出物又は気孔を低減することで、組成変動が少ない光学的に均一な、希土類酸化物を主成分とする光学セラミックスを提供することができたものである。
 即ち、本発明は、下記の透明セラミックス及びその製造方法並びにその透明セラミックスを用いた磁気光学素子を提供する。
〔1〕
 酸化テルビウム(化学式:Tb23)をモル比で40%以上と、イットリウム酸化物、スカンジウム酸化物及びランタニド希土類酸化物から選ばれる少なくとも1種の酸化物とを主成分とするセラミックスにおいて、
(1)前記酸化テルビウム系のセラミックスの結晶構造が、立方晶以外の異相を含まず、
(2)平均結晶粒子径が、0.5~100μmの範囲にあり、
(3)前記酸化テルビウム系のセラミックスの結晶構造において立方晶以外の異相を析出させない焼結助剤を含有する
ことを特徴とする透明セラミックス。
〔2〕
 焼結助剤が、チタン、ジルコニウム、ハフニウム、カルシウムから選ばれる元素の酸化物、フッ化物又は窒化物である〔1〕に記載の透明セラミックス。
〔3〕
 厚さ10mmの試料の厚み方向において、
(1)波長1,000nmでの直線透過率が70%以上であり、
(2)波長600nmでの直線透過率が55%以上である
〔1〕又は〔2〕に記載の透明セラミックス。
〔4〕
 波長1,065nmにおいて、測定面の90%以上の面内における端面の反射損失を含む挿入損失が1.2dB以下である、〔1〕~〔3〕のいずれかに記載の透明セラミックス。
〔5〕
 波長1,065nmにおいて、測定面の90%以上の面内における消光比が30dB以上である、〔1〕~〔4〕のいずれかに記載の透明セラミックス。
〔6〕
 厚さ10mmにおける測定面の90%以上の領域における透過波面測定時の屈折率分布が、波長633nmにおいて5×10-5以内である〔1〕~〔5〕のいずれかに記載の透明セラミックス。
〔7〕
 透明セラミックスを製造する方法において、
(1)(a)酸化テルビウム、
   (b)イットリウム酸化物、スカンジウム酸化物及びランタニド希土類酸化物から選ばれる少なくとも1種の酸化物、
   (c)酸化テルビウム系のセラミックスの結晶構造において立方晶以外の異相を析出させない焼結助剤
を含有し、かつ平均一次粒子径が30~2,000nmである各原料粉末を粉砕・混合処理した後、成形することにより、成形体を得る第1工程、
(2)前記成形体を200~1,000℃で非酸化性又は酸化性雰囲気下に仮焼することにより仮焼体を得る第2工程、
(3)前記仮焼体を1,400~1,700℃で非酸化性雰囲気下に焼成することにより焼成体を得る第3工程、
(4)前記焼成体を1,400~1,800℃で19~196MPaの圧力で加圧焼成することにより加圧焼成体を得る第4工程
を含むことを特徴とする透明セラミックスの製造方法。
〔8〕
 透明セラミックスを製造する方法において、
(1)(a)酸化テルビウム、
   (b)イットリウム酸化物、スカンジウム酸化物及びランタニド希土類酸化物から選ばれる少なくとも1種の酸化物、
   (c)酸化テルビウム系のセラミックスの結晶構造において立方晶以外の異相を析出させない焼結助剤
を含有し、かつ平均一次粒子径が30~2,000nmである各原料粉末を粉砕・混合処理した後、200~1,000℃で非酸化性又は酸化性雰囲気下に仮焼した粉末を成形することにより成形体を得る第1工程、
(2)前記成形体を1,400~1,700℃で非酸化性雰囲気下に焼成することにより焼成体を得る第2工程、
(3)前記焼成体を1,400~1,800℃で19~196MPaの圧力で加圧焼成することにより加圧焼成体を得る第3工程
を含むことを特徴とする透明セラミックスの製造方法。
〔9〕
 透明セラミックスを製造する方法において、
(1)(d)テルビウムイオン、
   (e)イットリウムイオン、スカンジウムイオン及びランタニド希土類イオンから選ばれる少なくとも1種の希土類イオン
を含む水溶液を共沈、濾過、仮焼させることで、予め平均一次粒子径が30~2,000nmの混合粉末を作製する第1工程であって、上記混合粉末は酸化テルビウムをモル比で40%以上含むと共に、イットリウム酸化物、スカンジウム酸化物及びランタニド希土類酸化物から選ばれる酸化物を含む第1工程、
(2)上記混合粉末と、焼結助剤としてチタン、ジルコニウム、ハフニウム、カルシウムから選ばれる元素の酸化物、フッ化物又は窒化物を粉砕・混合処理した後、成形することにより、成形体を得る第2工程、
(3)前記成形体を1,400~1,700℃で非酸化性雰囲気下に焼成することにより焼成体を得る第3工程、
(4)前記焼成体を1,400~1,800℃で19~196MPaの圧力で加圧焼成することにより加圧焼成体を得る第4工程
を含むことを特徴とする透明セラミックスの製造方法。
〔10〕
 加圧焼成体を得た後、これを酸素を含まない雰囲気下に1,500~2,000℃でアニールする請求項〔7〕、〔8〕又は〔9〕に記載の製造方法。
〔11〕
 〔1〕~〔6〕のいずれかに記載の透明セラミックスを用いて構成されている磁気光学デバイス。
〔12〕
 〔1〕~〔6〕のいずれかに記載の透明セラミックスがファラデー回転素子として用いられる磁気光学デバイス。
〔13〕
 〔12〕に記載の磁気光学デバイスにおいて、ファラデー回転素子の前後に偏光材料を備えている、波長1,065nmの波長域で使用される光アイソレータ用の磁気光学デバイス。
 本発明に係る透明セラミックスは、特開2010-285299号公報で報告されている同組成セラミックスでは得られなかった、可視~赤外線領域で優れた光学特性が得られるようになり、既存のテルビウムガリウムガーネットなどのような単結晶材料と同等又はそれ以上の性能をもつ磁気光学素子を提供できる。
 また、光学ロス、光学的均一性においても、従来のセラミックス材料よりも優れているので、複屈折成分が非常に少なく、散乱も非常に少なく、約500nm以上1.5μm以下の赤外線領域での光アイソレータでの機能素子を提供することができる。
多結晶透明希土類酸化物セラミックスの製造方法の一例を示すフローシートである。 透明セラミックスの透過率測定プロファイルである。 アイソレータの概念図である。
透明セラミックス
 本発明の透明セラミックスは、酸化テルビウム(化学式:Tb23)をモル比で40%以上と、波長1.065μmにおいて吸収が1%以下のイットリウム酸化物、スカンジウム酸化物及びランタニド希土類酸化物から選ばれる少なくとも1種の酸化物とを主成分とするセラミックスであって、
(1)前記酸化テルビウム系のセラミックスの結晶構造が、立方晶以外の異相を含まず、
(2)平均結晶粒子径が、0.5~100μmの範囲にあり、
(3)前記酸化テルビウム系のセラミックスの結晶構造における立方晶以外の異相を析出させない焼結助剤を含有する
ことを特徴とする。
 この場合、(a)酸化テルビウムと(b)酸化物とは、その総和をモル比で1(100モル%)とした場合、(a)酸化テルビウムは40モル%以上、好ましくは40~60モル%であり、残部が(b)成分の酸化物である。実質的には、本発明のセラミックスは、上記(a)、(b)成分と焼結助剤とからなるものである。
 酸化テルビウム単体では、1,400~1,600℃付近で立方晶から単斜晶に相転移するといわれている。従って、酸化テルビウムを含む希土類酸化物のセラミックスを焼結するときに、1,400~1,600℃で行うため、どうしても、焼結時もしくは冷却時に、単斜晶から立方晶に相転移を生じてしまう。従って、この相転移をせずに、単斜晶が一部残ってしまうと、その部分が異相として析出物となり、散乱の原因となる。また、単斜晶は、異方性があるので、複屈折を示すことになる。そこで、単斜晶から立方晶にスムーズに相転移できる焼結助剤を添加することがよい。その焼結助剤として、チタン、ジルコニウム、ハフニウムなどの4A族元素、カルシウム、そして、スカンジウム、イットリウム、波長1.06μm付近に吸収が見られないランタニド元素などを用いてもよい。
 まず、これらは、波長1.06μm付近に吸収がない。また、4A元素は、イットリアを焼結するときの安定化材として用いられていることから、本発明の酸化テルビウムを含む希土類酸化物での安定化材としても有効である。カルシウムは、イオン性が強いため、反応活性度が高く、希土類酸化物に固溶しやすい。これら以外の元素は、波長1.06μm付近に吸収が見られること、又は希土類酸化物と固溶しにくいため、焼結助剤として反応せず、単独で析出してしまうこと、又は活性度が高すぎて、結晶粒の大きさが最適範囲にできないこと、又は長期間において、徐々に水分と反応して、該セラミックスが吸湿性を示して失透することなどの問題が挙げられる。
 焼結助剤としては、これらの中でチタン、ジルコニウム、ハフニウム、カルシウムから選ばれる元素が好ましい。なお、これらの元素を焼結助剤として入れる場合は、酸化物が最も望ましいが、フッ化物、窒化物、炭化物であっても構わない。
 更に、これらの元素を焼結助剤として入れる量は、透明セラミックス全体の0.001~1質量%、好ましくは0.01~1質量%が望ましい。この範囲未満の場合は、焼結助剤として安定した効果が得られず、逆にこの範囲より大きい場合は、固溶できずに、単独で析出してしまい、散乱の原因となる。
 本発明のセラミックスは、多結晶である。その平均結晶粒子径は、通常0.5~100μmの範囲にあり、好ましくは1~50μmの範囲が望ましい。平均結晶粒子径が100μmを超える場合は、粒界部に不純物が析出しやすく、粒子内部や粒界部に気泡が残留しやすく、光散乱の原因となるばかりでなく、熱機械特性に劣る欠点がある。なお、本発明では、平均結晶粒子径は、走査型電子顕微鏡又は光学顕微鏡による観察により任意の視野における100個の結晶粒子の長径の平均値である。
 本発明のセラミックスは、厚さ10mmの試料の厚み方向において、(1)波長1,000nmでの光透過のベースラインにおける直線透過率が70%以上(好ましくは72%以上)であり、(2)波長600nmでの光透過のベースラインにおける直線透過率が55%以上、好ましくは60%以上(更に好ましくは65%以上)であることが望ましい。
 前記(1)の直線透過率が70%未満の場合、又は前記(2)の直線透過率が55%未満の場合は、結晶粒又は粒界での光散乱が非常に大きく、又は結晶粒での光吸収が非常に大きく、本発明の用途等に用いることは困難である。なお、本発明において、「ベースライン」とは、波長-透過率の透過スペクトルにおいて、焼結助剤又は酸化テルビウムなどの希土類酸化物の吸収が発現する場合は、その吸収がないものとして、外挿した透過スペクトルを示す。本発明では、上記の直線透過率は、分光分析装置「スペクトロメーター、商品名U3500」(日立製作所(株)製)を用い、表面粗さRmsを1nm以下に研磨した直径6mmφで厚さ10mmの試料を用い、ビーム径を1~3mmφでの大きさで、測定している。
 本発明のセラミックスは、厚さ10mmの試料の厚み方向において、(1)波長1,065nmにおいて、測定面の90%以上の面内において、挿入損失が1.2dB以下、特に1dB以下であり、(2)波長1,065nmにおいて、測定面の90%以上の面内において、消光比が30dB以上であることが好ましい。
 前記(1)の挿入損失が1.2dBを超える場合、結晶粒又は粒界での光散乱が非常に大きく、又は結晶粒での光吸収が非常に大きく、本発明の用途等に用いることは困難な場合がある。前記(2)の消光比が30dB未満の場合は、結晶粒又は粒界での複屈折が非常に大きく、本発明の用途等に用いることは困難な場合がある。
 本発明では、上記の挿入損失は、該セラミックスをVブロックに載置し、波長1.065μmの数mWのコヒーレント光をセラミックスに対して垂直に入射して、半導体受光器で光強度を測定する。このとき、該セラミックスを挿入しない場合の光強度をベースとして、それに対する光強度の低下をdB単位で表現したものである。なお、表面粗さRmsを1nm以下、表面の平面度をλ/4以下、両端面の平行度を0.5°以下に研磨した直径6mmで厚さ10mmの試料を用いている。また、測定値は、両端面の表面反射を含んだものである。
 また、セラミックスを載置しているVブロックは、入射光に対して垂直方向に移動することができ、これにより、セラミックスの面内分布を測定することが可能である。従って測定面の90%以上の面内分布は、V字ブロックを直径の95%まで移動しながら、各測定ポイントにおいて、測定した結果である。
 本発明では、上記の消光比は、該セラミックスをVブロックに載置し、材料に対して、波長1.065μmの数mWの0度及び90度の偏光コヒーレント光を入射し、出射光を、偏光子を通して半導体受光器で光の強度を測定し、最大値(Imax)と最小値(Imin)より、dB単位で表現したものである。なお、表面粗さRmsを1nm以下、表面の平面度をλ/4以下、両端面の平行度を0.5°以下に研磨した直径6mmで厚さ10mmの試料を用いている。また、セラミックスを載置しているVブロックは、入射光に対して、垂直方向に移動することができ、これにより、セラミックスの面内分布を測定することが可能である。従って測定面の90%以上の面内分布は、V字ブロックを、直径の95%まで移動しながら、各測定ポイントにおいて、測定した結果である。
 また、厚さ10mmにおける測定面の90%以上の領域における透過波面測定時の屈折率分布が、波長633nmにおいて5×10-5以内、より好ましくは1×10-6~2×10-5である。なお、屈折率分布は、富士写真フィルム製光干渉計G102を用いて波長633nmにおけるサンプル透過波面を測定することにより求めることができる。
透明セラミックスの製造方法
 本発明の透明セラミックスは、下記の第一~第三のいずれかの方法によることが好ましい。
<第一の方法>固相反応
 透明セラミックスを製造する方法において、
(1)(a)酸化テルビウム、
   (b)イットリウム酸化物、スカンジウム酸化物及びランタニド希土類酸化物から選ばれる少なくとも1種の酸化物、
   (c)酸化テルビウム系のセラミックスの結晶構造において立方晶以外の異相を析出させない焼結助剤
を含有し、かつ平均一次粒子径が30~2,000nmである各原料粉末を粉砕・混合処理した後、成形することにより、成形体を得る第1工程、
(2)前記成形体を200~1,000℃で非酸化性又は酸化性雰囲気下に仮焼することにより仮焼体を得る第2工程、
(3)前記仮焼体を1,400~1,700℃で非酸化性雰囲気下に焼成することにより焼成体を得る第3工程、
(4)前記焼成体を1,400~1,800℃で19~196MPaの圧力で加圧焼成することにより加圧焼成体を得る第4工程
を含む方法。
<第二の方法>固相反応
 透明セラミックスを製造する方法において、
(1)(a)酸化テルビウム、
   (b)イットリウム酸化物、スカンジウム酸化物及びランタニド希土類酸化物から選ばれる少なくとも1種の酸化物、
   (c)酸化テルビウム系のセラミックスの結晶構造において立方晶以外の異相を析出させない焼結助剤
を含有し、かつ平均一次粒子径が30~2,000nmである各原料粉末を粉砕・混合処理した後、200~1,000℃で非酸化性又は酸化性雰囲気下に仮焼した粉末を成形することにより成形体を得る第1工程、
(2)前記成形体を1,400~1,700℃で非酸化性雰囲気下に焼成することにより焼成体を得る第2工程、
(3)前記焼成体を1,400~1,800℃で19~196MPaの圧力で加圧焼成することにより加圧焼成体を得る第3工程
を含む方法。
<第三の方法>
 透明セラミックスを製造する方法において、
(1)(d)テルビウムイオン、
   (e)イットリウムイオン、スカンジウムイオン及びランタニド希土類イオンから選ばれる少なくとも1種の希土類イオン
を含む水溶液を共沈、濾過、仮焼させることで、予め平均一次粒子径が30~2,000nmの混合粉末を作製する第1工程であって、上記混合粉末は酸化テルビウムをモル比で40%以上含むと共に、イットリウム酸化物、スカンジウム酸化物及びランタニド希土類酸化物から選ばれる酸化物を含む第1工程、
(2)上記混合粉末と、焼結助剤としてチタン、ジルコニウム、ハフニウム、カルシウムから選ばれる元素の酸化物、フッ化物又は窒化物を粉砕・混合処理した後、成形することにより、成形体を得る第2工程、
(3)前記成形体を1,400~1,700℃で非酸化性雰囲気下に焼成することにより焼成体を得る第3工程、
(4)前記焼成体を1,400~1,800℃で19~196MPaの圧力で加圧焼成することにより加圧焼成体を得る第4工程
を含む方法。
 上記第一及び第二の方法の第1工程では、(a)酸化テルビウム、(b)波長1.065μmにおいて吸収がほとんどない(1%以下の)イットリウム酸化物、スカンジウム酸化物及びランタニド希土類酸化物から選ばれる少なくとも1種の酸化物、(c)前記酸化テルビウム系のセラミックスの結晶構造において立方晶以外の異相を析出させない焼結助剤を使用し、この場合かつ平均一次粒子径が30~2,000nm、好ましくは100~2,000nmである原料粉末を用い、これらを粉砕・混合処理する。
 上記(a)の酸化テルビウムと(b)の酸化物とのモル比は、(a)の酸化テルビウムが40モル%以上、好ましくは40~60モル%であり、(b)の酸化物は残部である。
 酸化テルビウムは、公知の製造方法で調製されたもの、又は市販品を使用することができるが、一般的には、化学式Tb23ではなく、Tb47が多い。従って、Tb47として原料を用いることになるが、1,000℃以上の水素を含む高温ガス雰囲気で還元処理するか、1,000℃以上の高温大気雰囲気に保存してから急冷して、Tb23にしてから原料に用いてもよい。酸化テルビウムの純度は、99質量%以上が望ましいが、光学用途として用いるためには、99.9質量%以上が好ましい。
 原料として用いる、波長1.065μmにおいて吸収がほとんどないイットリウム酸化物、スカンジウム酸化物又はランタニド希土類酸化物の純度も、99質量%以上が望ましいが、光学用途として用いるためには、99.9質量%以上が好ましい。
 前記酸化テルビウム系のセラミックスの結晶構造の立方晶以外の異相を析出させない焼結助剤としては、チタン、ジルコニウム、ハフニウムなどの4A族元素、カルシウム、そして、スカンジウム、イットリウム、波長1.06μm付近に吸収が見られないランタニド元素が挙げられ、特にチタン、ジルコニウム、ハフニウム、カルシウムが好ましい。これらの高純度のものを用いるには、酸化物の形態が好ましく、かつ、純度も99質量%以上が望ましいが、光学用途として用いるためには、99.9質量%以上が好ましい。更に、これらの元素を焼結助剤として入れる量は、0.001~1質量%、好ましくは0.01~1質量%が望ましい。
 第1工程で使用する原料粉末の一次粒子径は、30~2,000nm、好ましくは100~2,000nmとし、特に200~1,000nmとすることが望ましい。上記一次粒子径が30nm未満の場合は、ハンドリングが困難であり、例えば、成形が難しい、圧粉体の密度が低く、焼結時の収縮率が大きく、クラックが入りやすいという問題がある。また、上記一次粒子径が2,000nmを超える場合は、原料の焼結性が乏しく、高密度かつ透明な焼結体を得るのが難しい。なお、この一次粒子径の測定は、前記平均結晶粒子径の測定と同様の方法によって行うことができる。
 これらの各成分を混合する場合は、ポットミル等の一般的な混合・粉砕媒体を使用することにより実施することができる。粉砕媒体は、部分安定化ジルコニアボールが望ましい。これは、ジルコニアは、焼結助剤としても用いられることができるので、ジルコニアボールからのジルコニアの混入を気にする必要がないからである。
 このポットミルに、原料粉末及び焼結助剤のほか、必要に応じて、分散剤、バインダー等の少なくともいずれかを加え、更に、溶媒として純水又はエチルアルコールなどの有機溶剤を使って、数~十数時間、混合を行えばよい。なお、分散剤、バインダーとしては、この種のセラミックスの製造に用いられるものをいずれも使用でき、例えばポリアクリル酸アンモニウム、ポリカルボン酸アンモニウムなどの分散剤、メチルセルロース、エチルセルロース、ポリビニルアルコールなどのバインダーを常用量使用することができる。
 得られたスラリーは、スプレードライ装置により、溶媒除去と造粒を行うことで、数十μmの顆粒を成形した後、作製した顆粒を、所定の金型で一次成形、CIP(Cold Isostatic Press:冷間等方圧加工)法による二次成形を行うことにより、好適に成形体を作製することができる。
 ここで、第一の方法では、上記粉砕・混合処理した後、成形することにより成形体を得、この成形体を200~1,000℃で非酸化性又は酸化性雰囲気において仮焼した後、1,400~1,700℃で非酸化性雰囲気下に焼成して焼成体を得る。一方、第二の方法では、上記粉砕・混合処理した後、200~1,000℃で非酸化性又は酸化性雰囲気下に仮焼し、この仮焼粉末を成形することにより成形体を得、この成形体を1,400~1,700℃で非酸化性雰囲気下に焼成して焼成体を得る。
 この場合、第一の方法によれば、仮焼することで成形時に使用したバインダーを酸化し除去できるという利点があり、第二の方法によれば、非酸化性雰囲気下にて焼成することで、酸化テルビウムの価数変化を抑えることができる利点がある。
 上記第一の方法において、成形体を得る方法としては、金型を用いてプレス成形し、その後CIP(冷間等方圧加圧)法を行うことで成形する方法が採用し得る。
 第一及び第二の方法において、上記仮焼は、200~1,000℃、より好ましくは400~1,000℃、更に好ましくは600~1,000℃で行う。仮焼雰囲気は、酸化性雰囲気又は非酸化性雰囲気とすることができ、酸化性雰囲気は大気中でよく、非酸化性雰囲気は、真空(例えば102Pa~10-5Pa)、還元雰囲気、不活性ガス雰囲気とすることができる。仮焼時間は、仮焼温度にもよるが、一般的には60~180分程度とすればよい。
 得られた仮焼粉末の成形は、上記第一の方法で説明したと同様の方法で行うことができる。また、成形体を焼成する場合、前記成形体を、1,400~1,800℃、好ましくは1,400~1,600℃で焼成することにより焼成体を得る。焼成雰囲気は、酸化テルビウムのTb47が、Tb23に変化する雰囲気であれば特に限定されず、例えば真空中、還元雰囲気中、不活性ガス雰囲気中等のいずれであってもよい。なお真空中で実施する場合は、102Pa~10-5Paの条件下とすることができる。焼成時間は、焼成温度にもよるが、一般的には、30~480分程度すればよい。この工程では、焼成体の相対密度を90%以上、より好ましくは95%以上にすることが望ましい。
 次いで、上記第一及び第二の方法においては、得られた焼成体を、1,400~1,800℃で非酸化性雰囲気下において加圧焼成することにより加圧焼成体を得る。加圧焼成する方法は、特に限定されず、例えばHP(Hot Press)法、HIP(Hot Isostatic Press)法などのいずれであってもよい。特に、本発明では、圧力が均一に掛かることで、歪が入りにくいHIP法を好適に用いることができる。例えば、圧力媒体としてアルゴンガスを用い、圧力は19~196MPaの範囲内で、1~10時間、特に1~5時間、1,400~1,800℃にて加圧焼成することにより、透明なセラミックスを得ることができる。
 第三の方法は、テルビウムイオンと、イットリウムイオン、スカンジウムイオン及びランタニド希土類イオンから選ばれる希土類イオンを炭酸水素塩の水溶液をアンモニアによって沈殿させる方法で共沈させ、これを濾過した後、得られた共沈物を上記第二の方法で説明したと同様の方法で仮焼させ、酸化テルビウムと、イットリウム酸化物、スカンジウム酸化物及びランタニド希土類酸化物から選ばれる酸化物を含む仮焼混合粉末を得る。この場合、混合粉末は、酸化テルビウムをモル比で40%以上含むことが必要であることから、上記水溶液中のテルビウムイオンはかかるモル比が得られるように調整、含有させる。また、上記混合粉末の平均一次粒子径は30~2,000nm、好ましくは30~1,000nm、特に30~800nmであることが好ましい。
 次いで、得られた混合粉末を、焼結助剤としてチタン、ジルコニウム、ハフニウム、カルシウムから選ばれる元素の酸化物、フッ化物又は窒化物を粉砕・混合処理した後、1,400~1,700℃、より好ましくは1,400~1,600℃で非酸化性雰囲気下に第一及び第二の方法と同様に焼成し、焼成体を得、更に第一及び第二の方法と同様にして加圧焼成体を得るものである。
 本発明では、必要に応じて下記の工程を更に実施することが望ましい。即ち、前記で得られた加圧焼成体を、酸素を含まない雰囲気下1,500~2,000℃でアニールする。以下アニール工程という。
 加圧焼成体を得る工程を経た段階において、酸化テルビウムを含むセラミックスでは、1つは、テルビウムの価数が全て3価になっておらず、かつそれに伴った結晶欠陥が生じている可能性があり、それらが原因となり光吸収を生じてしまうことが考えられる。もう1つは、酸化テルビウム単体では、1,400~1,600℃付近で立方晶から単斜晶に相転移するといわれている。このため、焼結時、もしくは冷却時に、単斜晶から立方晶に相転移を生ずるが、この相転移をせずに、単斜晶が一部残ってしまうと、その部分が異相として析出物となり、散乱の原因となる。
 従って、これらの課題を解決するために、加圧焼成体を、酸素を含まない雰囲気下、1,500~2,000℃でアニールすることで、テルビウムの価数を全て3価とし、アニール工程にて、単斜晶から立方晶に全て相転移させる。アニール工程の条件として、アニール雰囲気は、酸素を含まない雰囲気下であれば何でもよく、例えば真空中、還元雰囲気中、不活性ガス雰囲気中等のいずれであってもよい。なお真空中で実施する場合は、102Pa~10-5Paの条件下とすることができる。アニール温度は、1,500~2,000℃であるが、好ましくは、1,500~1,800℃が望ましい。またアニール時間は、アニール温度にもよるが、一般的には、2~100時間、好ましくは、10~80時間が望ましい。アニール後の冷却時間は、クラックが入らない時間であればよく、一般的には、2~100時間、好ましくは2~50時間が望ましい。
 このようにして得られた透明セラミックスは、セラミックス外周部に、仮焼工程、焼成工程、加圧焼成工程、アニール工程において、加熱したヒータから、ヒータ材料であるカーボン、タングステンや、断熱材料であるアルミニウム、珪素、カルシウムなどが付着して、不純物として作用し、透明セラミックスを失透させることから、厚み方向の両端面を化学的エッチング、機械研削又は研磨することにより、除去する必要がある。
 化学エッチングは、酸性水溶液であれば、塩酸、硝酸、硫酸、リン酸などの無機酸でも、リンゴ酸、クエン酸などの有機酸でもよい。例えば、塩酸の場合は、60℃以上加熱して、外周面を数百μmエッチング除去できる。
 機械研削の場合、外周面であれば、センタレス研削装置でも、円筒研削装置でもよく、両端面であれば、平面研削装置を用いて、数百μm~数mmを削ってもよい。
 研磨であれば、ダイヤスラリー、SiCスラリーなどを用いて粗研磨してから、コロイダルシリカなどの精密研磨を行って、数百μm~数mmを研磨してもよい。
 これらの化学エッチング、機械研削又は研磨することで、光学特性に優れた、光学素子を形成することができる。
磁気光学材料
 本発明の酸化物、酸化物単結晶及びセラミックスは、磁気光学材料用途に好適である。特に、本発明の酸化物、酸化物単結晶及びセラミックスは、波長0.9~1.1μm、特に波長1,065nmの光アイソレータのファラデー回転子として好適に使用される。
 図3は、ファラデー回転子を光学素子として有する光デバイスである、光アイソレータの一例を示す断面模式図である。
 図3において、光アイソレータ300は、ファラデー回転子310を備え、該ファラデー回転子310の前後には、偏光材料である偏光子320及び検光子330が備えられている。また、光アイソレータ300は、偏光子320-ファラデー回転子310-検光子330が光軸312上にこの順で配置され、それらの側面のうちの少なくとも1面に磁石340が載置され、磁石340は筐体350の内部に収納されていることが好ましい。
 また、前記アイソレータは加工機用ファイバーレーザに好適に使用される。即ち、レーザ素子から発したレーザ光の反射光が素子に戻り、発振が不安定になるのを防止するのに好適である。
 以下、実施例及び比較例を示して本発明を更に説明するが、本発明は以下の実施例に限定されるものではない。
  [実施例1~63及び比較例1~15]
 図1に示された方法に沿って、表1~7(実施例)及び表8~9(比較例)に示した原料及び条件にて、酸化テルビウムを含む希土類酸化物透明セラミックスをそれぞれ製造した。なお、実施例1~9はアニールを実施しなかった。
 各原料粉末に対して、焼結助剤を所定量添加し、更に分散剤及びバインダーとしてエチルセルロースとポリビニルアルコールを有効量添加した後、これらをポットミルで混合することにより混合物を得た。次いで、上記混合物をスプレードライすることによって、粒径数十μmの顆粒を得た。前記顆粒を用い、一次成形として、金型成形を行った後、二次成形として、CIPを行うことにより成形体を得た。得られた成形体を大気中200~1,000℃で仮焼した後、所定の雰囲気中1,600~1,800℃で焼成(本焼成)した。更に、得られた焼成体を更にHIP処理を行い、必要に応じアニール処理することにより、本発明のセラミックス(サイズ:直径6mmφ、長さ10mm)を得た。得られたセラミックスの物性を各表にそれぞれ示す。
 表1~表9中に示した“焼結後の結晶構造”とは、光学顕微鏡で観察した析出物を、EBSD又はTEM-XRDで分析して、立方晶のみであるか、それ以外の相が検出できたかを示している。
 表1~9に示した透過率測定では、サンプル厚みを10mmとし、両面を光学研磨して測定を行った。挿入損失については、同じくサンプル厚みを10mmとし、両面を光学研磨して測定を行った。このとき無反射コートを行っていないため、反射損失を含む。消光比については、同じくサンプル厚みを10mmとし、両面を光学研磨して、偏光状態の有無で、測定を行った。
 加圧焼結及びアニール後のサンプル寸法は、直径6mmφ、長さ12mmとし、外周加工、端面加工については、外周を2mm加工して、また両端面を1mmずつ加工して、仕上がり寸法を、直径4mmφ、長さ10mmになるように、研削、研磨、エッチングなどで加工した。
 本発明によれば、平均粒子径、特定波長の透過率、挿入損失、消光比を規定した酸化テルビウムを含む酸化物を作製することで、加工機用ファイバーレーザに使用する光アイソレータの高品質化を提供することが可能になった。
 なお、図2は、使用波長である633nmと1,065nmを含んだ測定波長と透過率の関係について、「透明セラミックの透過率測定プロファイル」を示したものである。各々の曲線は実施例1及び実施例11の透過率を波長との関係においてプロットしたもので、いずれも使用波長である633nmと1,065nmを含んだ測定波長500~1,500nmの間では50%以上の透過率を示しており、本発明で指定した波長600nm及び1,000nmでは透過率がそれぞれ55%以上及び70%以上に達していることが確認できる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 300 光アイソレータ
 310 ファラデー回転子
 312 光軸
 320 偏光子
 330 検光子
 340 磁石
 350 筐体

Claims (13)

  1.  酸化テルビウム(化学式:Tb23)をモル比で40%以上と、イットリウム酸化物、スカンジウム酸化物及びランタニド希土類酸化物から選ばれる少なくとも1種の酸化物とを主成分とするセラミックスにおいて、
    (1)前記酸化テルビウム系のセラミックスの結晶構造が、立方晶以外の異相を含まず、
    (2)平均結晶粒子径が、0.5~100μmの範囲にあり、
    (3)前記酸化テルビウム系のセラミックスの結晶構造において立方晶以外の異相を析出させない焼結助剤を含有する
    ことを特徴とする透明セラミックス。
  2.  焼結助剤が、チタン、ジルコニウム、ハフニウム、カルシウムから選ばれる元素の酸化物、フッ化物又は窒化物である請求項1に記載の透明セラミックス。
  3.  厚さ10mmの試料の厚み方向において、
    (1)波長1,000nmでの直線透過率が70%以上であり、
    (2)波長600nmでの直線透過率が55%以上である
    請求項1又は2に記載の透明セラミックス。
  4.  波長1,065nmにおいて、測定面の90%以上の面内における端面の反射損失を含む挿入損失が1.2dB以下である請求項1~3のいずれか1項に記載の透明セラミックス。
  5.  波長1,065nmにおいて、測定面の90%以上の面内における消光比が30dB以上である請求項1~4のいずれか1項に記載の透明セラミックス。
  6.  厚さ10mmにおける測定面の90%以上の領域における透過波面測定時の屈折率分布が、波長633nmにおいて5×10-5以内である請求項1~5のいずれか1項に記載の透明セラミックス。
  7.  透明セラミックスを製造する方法において、
    (1)(a)酸化テルビウム、
       (b)イットリウム酸化物、スカンジウム酸化物及びランタニド希土類酸化物から選ばれる少なくとも1種の酸化物、
       (c)酸化テルビウム系のセラミックスの結晶構造において立方晶以外の異相を析出させない焼結助剤
    を含有し、かつ平均一次粒子径が30~2,000nmである各原料粉末を粉砕・混合処理した後、成形することにより、成形体を得る第1工程、
    (2)前記成形体を200~1,000℃で非酸化性又は酸化性雰囲気下に仮焼することにより仮焼体を得る第2工程、
    (3)前記仮焼体を1,400~1,700℃で非酸化性雰囲気下に焼成することにより焼成体を得る第3工程、
    (4)前記焼成体を1,400~1,800℃で19~196MPaの圧力で加圧焼成することにより加圧焼成体を得る第4工程
    を含むことを特徴とする透明セラミックスの製造方法。
  8.  透明セラミックスを製造する方法において、
    (1)(a)酸化テルビウム、
       (b)イットリウム酸化物、スカンジウム酸化物及びランタニド希土類酸化物から選ばれる少なくとも1種の酸化物、
       (c)酸化テルビウム系のセラミックスの結晶構造において立方晶以外の異相を析出させない焼結助剤
    を含有し、かつ平均一次粒子径が30~2,000nmである各原料粉末を粉砕・混合処理した後、200~1,000℃で非酸化性又は酸化性雰囲気下に仮焼した粉末を成形することにより成形体を得る第1工程、
    (2)前記成形体を1,400~1,700℃で非酸化性雰囲気下に焼成することにより焼成体を得る第2工程、
    (3)前記焼成体を1,400~1,800℃で19~196MPaの圧力で加圧焼成することにより加圧焼成体を得る第3工程
    を含むことを特徴とする透明セラミックスの製造方法。
  9.  透明セラミックスを製造する方法において、
    (1)(d)テルビウムイオン、
       (e)イットリウムイオン、スカンジウムイオン及びランタニド希土類イオンから選ばれる少なくとも1種の希土類イオン
    を含む水溶液を共沈、濾過、仮焼させることで、予め平均一次粒子径が30~2,000nmの混合粉末を作製する第1工程であって、上記混合粉末は酸化テルビウムをモル比で40%以上含むと共に、イットリウム酸化物、スカンジウム酸化物及びランタニド希土類酸化物から選ばれる酸化物を含む第1工程、
    (2)上記混合粉末と、焼結助剤としてチタン、ジルコニウム、ハフニウム、カルシウムから選ばれる元素の酸化物、フッ化物又は窒化物を粉砕・混合処理した後、成形することにより、成形体を得る第2工程、
    (3)前記成形体を1,400~1,700℃で非酸化性雰囲気下に焼成することにより焼成体を得る第3工程、
    (4)前記焼成体を1,400~1,800℃で19~196MPaの圧力で加圧焼成することにより加圧焼成体を得る第4工程
    を含むことを特徴とする透明セラミックスの製造方法。
  10.  加圧焼成体を得た後、これを酸素を含まない雰囲気下に1,500~2,000℃でアニールする請求項7、8又は9に記載の製造方法。
  11.  請求項1~6のいずれか1項に記載の透明セラミックスを用いて構成されている磁気光学デバイス。
  12.  請求項1~6のいずれか1項に記載の透明セラミックスがファラデー回転素子として用いられる磁気光学デバイス。
  13.  請求項12に記載の磁気光学デバイスにおいて、ファラデー回転素子の前後に偏光材料を備えている、波長1,065nmの波長域で使用される光アイソレータ用の磁気光学デバイス。
PCT/JP2012/056632 2011-03-16 2012-03-15 透明セラミックス及びその製造方法並びに磁気光学デバイス WO2012124754A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK12757262.6T DK2687500T3 (en) 2011-03-16 2012-03-15 Transparent ceramics, method of making them, and magneto-optical apparatus
CN201280021227.3A CN103502180A (zh) 2011-03-16 2012-03-15 透明陶瓷和其制造方法以及磁光器件
EP12757262.6A EP2687500B1 (en) 2011-03-16 2012-03-15 Transparent ceramic, method for manufacturing same, and magneto-optical device
KR1020137026789A KR101961944B1 (ko) 2011-03-16 2012-03-15 투명 세라믹스, 그 제조 방법 및 자기 광학 디바이스
US14/005,053 US9470915B2 (en) 2011-03-16 2012-03-15 Transparent ceramic, method for manufacturing same, and magneto-optical device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011057766 2011-03-16
JP2011-057766 2011-03-16

Publications (1)

Publication Number Publication Date
WO2012124754A1 true WO2012124754A1 (ja) 2012-09-20

Family

ID=46830819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056632 WO2012124754A1 (ja) 2011-03-16 2012-03-15 透明セラミックス及びその製造方法並びに磁気光学デバイス

Country Status (8)

Country Link
US (1) US9470915B2 (ja)
EP (1) EP2687500B1 (ja)
JP (1) JP5704097B2 (ja)
KR (1) KR101961944B1 (ja)
CN (1) CN103502180A (ja)
DK (1) DK2687500T3 (ja)
TW (1) TWI609998B (ja)
WO (1) WO2012124754A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2716616A1 (en) * 2012-10-03 2014-04-09 Shin-Etsu Chemical Co., Ltd. Method of Manufacturing Transparent Sesquioxide Sintered Body, and Transparent Sesquioxide Sintered Body Manufactured by the Method
WO2014162754A1 (ja) * 2013-04-01 2014-10-09 信越化学工業株式会社 ファラデー回転子及びこのファラデー回転子を用いた光アイソレータ
CN104968633A (zh) * 2013-02-08 2015-10-07 信越化学工业株式会社 透光性金属氧化物烧结体的制造方法及透光性金属氧化物烧结体
WO2016021346A1 (ja) * 2014-08-08 2016-02-11 信越化学工業株式会社 透明セラミックスの製造方法
WO2022054593A1 (ja) * 2020-09-09 2022-03-17 信越化学工業株式会社 常磁性ガーネット型透明セラミックスの製造方法、常磁性ガーネット型透明セラミックス、磁気光学材料及び磁気光学デバイス
CN115594502A (zh) * 2022-10-17 2023-01-13 闽都创新实验室(Cn) 一种磁光透明陶瓷及其制备方法和应用

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6052800B2 (ja) * 2013-07-12 2016-12-27 信越化学工業株式会社 光アイソレータ
CN104591231B (zh) * 2013-10-31 2019-04-16 中国科学院上海硅酸盐研究所 含氟石榴石结构锂离子氧化物陶瓷
JP6137044B2 (ja) * 2014-05-02 2017-05-31 信越化学工業株式会社 磁気光学材料及び磁気光学デバイス
EP3153483A4 (en) * 2014-06-04 2018-01-10 Shin-Etsu Chemical Co., Ltd. Method for producing transparent ceramic, transparent ceramic, magneto-optical device and rare earth oxide powder for sintering
CN104609849B (zh) * 2015-02-10 2016-12-07 中国科学院上海光学精密机械研究所 Si/Ti掺杂的铽铝石榴石法拉第磁旋光透明陶瓷及其制备方法
TWI673249B (zh) * 2015-03-11 2019-10-01 日商信越化學工業股份有限公司 磁性光學材料及其製造方法、與磁性光學裝置
EP3269695B1 (en) * 2015-03-11 2020-09-30 Shin-Etsu Chemical Co., Ltd. Magneto-optical material, method for producing same and magneto-optical device
CN105753473B (zh) * 2016-02-25 2019-03-01 江苏师范大学 一种磁光氧化铽透明陶瓷的制备方法
JP6415480B2 (ja) * 2016-06-07 2018-10-31 三井金属鉱業株式会社 焼結体
CN108249909A (zh) * 2016-12-28 2018-07-06 中国科学院上海硅酸盐研究所 一种新型的制备铽铝石榴石基纳米粉体及磁光透明陶瓷的方法
US11472745B2 (en) * 2017-04-17 2022-10-18 Shin-Etsu Chemical Co., Ltd. Paramagnetic garnet-type transparent ceramic, magneto-optical material, and magneto-optical device
JP6988779B2 (ja) * 2017-12-12 2022-01-05 信越化学工業株式会社 焼結用ガーネット型複合酸化物粉末の製造方法、及び透明セラミックスの製造方法
JP7135920B2 (ja) 2018-03-09 2022-09-13 信越化学工業株式会社 透明複合酸化物焼結体の製造方法、透明複合酸化物焼結体並びに磁気光学デバイス
JP6848904B2 (ja) 2018-03-09 2021-03-24 信越化学工業株式会社 透明セラミックスの製造方法、透明セラミックス並びに磁気光学デバイス
JP6881391B2 (ja) * 2018-05-24 2021-06-02 信越化学工業株式会社 焼結用複合酸化物粉末の製造方法及び透明セラミックスの製造方法
WO2020068435A1 (en) * 2018-09-24 2020-04-02 Corning Incorporated Rare-earth doped metal oxide ceramic waveguide quantum memories and methods of manufacturing the same
RU2717158C1 (ru) * 2019-06-24 2020-03-18 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Неорганический поликристаллический сцинтиллятор на основе Sc, Er:ИАГ и способ его получения
CN110256074A (zh) * 2019-07-16 2019-09-20 上海应用技术大学 一种钇稳定氧化铽粉体、磁光透明陶瓷及其制备方法
CN111138192A (zh) * 2020-01-03 2020-05-12 上海应用技术大学 一种氧化镥铽磁光透明陶瓷的真空热压制备方法
WO2022054515A1 (ja) 2020-09-09 2022-03-17 信越化学工業株式会社 常磁性ガーネット型透明セラミックス及びその製造方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433451B2 (ja) * 1982-07-28 1992-06-03 Olympus Optical Co
JPH05330913A (ja) 1992-05-29 1993-12-14 Kurosaki Refract Co Ltd レーザ用多結晶透明y2o3セラミックス
JP2638669B2 (ja) 1989-09-25 1997-08-06 ゼネラル エレクトリック カンパニイ セラミック体とその製造方法
JP2007277034A (ja) * 2006-04-05 2007-10-25 Sumitomo Electric Ind Ltd 多結晶Al2O3焼結体およびその製造方法
JP4033451B2 (ja) 2001-07-05 2008-01-16 神島化学工業株式会社 透光性希土類酸化物焼結体及びその製造方法
JP2008143726A (ja) * 2006-12-06 2008-06-26 Japan Fine Ceramics Center 多結晶透明y2o3セラミックス及びその製造方法
JP2009023872A (ja) * 2007-07-19 2009-02-05 National Institute For Materials Science 透明m:y2o3焼結体の製造方法
WO2010044472A1 (ja) * 2008-10-16 2010-04-22 Hoya Candeo Optronics株式会社 偏光ガラスおよび光アイソレーター
JP2010285299A (ja) 2009-06-09 2010-12-24 Shin-Etsu Chemical Co Ltd 酸化物及び磁気光学デバイス
JP2011121837A (ja) * 2009-12-14 2011-06-23 Oxide Corp 磁気光学素子用透光性酸化テルビウム焼結体
WO2012046755A1 (ja) * 2010-10-06 2012-04-12 信越化学工業株式会社 磁気光学材料、ファラデー回転子、及び光アイソレータ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1336596B1 (en) 2001-07-05 2012-11-14 Konoshima Chemical Co., Ltd. Translucent rare earth oxide sintered article and method for production thereof
US7427577B2 (en) * 2006-04-06 2008-09-23 Nanocerox Inc Sintered polycrystalline terbium aluminum garnet and use thereof in magneto-optical devices
JP5462515B2 (ja) 2009-03-31 2014-04-02 株式会社ワールドラボ 透明セラミックス及びその製造方法並びにその透明セラミックスを用いたデバイス
JP6119528B2 (ja) * 2012-10-03 2017-04-26 信越化学工業株式会社 透明セスキオキサイド焼結体の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0433451B2 (ja) * 1982-07-28 1992-06-03 Olympus Optical Co
JP2638669B2 (ja) 1989-09-25 1997-08-06 ゼネラル エレクトリック カンパニイ セラミック体とその製造方法
JPH05330913A (ja) 1992-05-29 1993-12-14 Kurosaki Refract Co Ltd レーザ用多結晶透明y2o3セラミックス
JP4033451B2 (ja) 2001-07-05 2008-01-16 神島化学工業株式会社 透光性希土類酸化物焼結体及びその製造方法
JP2007277034A (ja) * 2006-04-05 2007-10-25 Sumitomo Electric Ind Ltd 多結晶Al2O3焼結体およびその製造方法
JP2008143726A (ja) * 2006-12-06 2008-06-26 Japan Fine Ceramics Center 多結晶透明y2o3セラミックス及びその製造方法
JP2009023872A (ja) * 2007-07-19 2009-02-05 National Institute For Materials Science 透明m:y2o3焼結体の製造方法
WO2010044472A1 (ja) * 2008-10-16 2010-04-22 Hoya Candeo Optronics株式会社 偏光ガラスおよび光アイソレーター
JP2010285299A (ja) 2009-06-09 2010-12-24 Shin-Etsu Chemical Co Ltd 酸化物及び磁気光学デバイス
JP2011121837A (ja) * 2009-12-14 2011-06-23 Oxide Corp 磁気光学素子用透光性酸化テルビウム焼結体
WO2012046755A1 (ja) * 2010-10-06 2012-04-12 信越化学工業株式会社 磁気光学材料、ファラデー回転子、及び光アイソレータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KEN'YA HAMANO, FINE CERAMICS HANDBOOK, 10 February 1984 (1984-02-10), pages 390 - 394, XP008171537 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102117992B1 (ko) * 2012-10-03 2020-06-02 신에쓰 가가꾸 고교 가부시끼가이샤 투명한 세스퀴옥시드 소결체의 제조 방법, 및 이 방법에 의해서 제조된 투명한 세스퀴옥시드 소결체
KR20140043874A (ko) * 2012-10-03 2014-04-11 신에쓰 가가꾸 고교 가부시끼가이샤 투명한 세스퀴옥시드 소결체의 제조 방법, 및 이 방법에 의해서 제조된 투명한 세스퀴옥시드 소결체
JP2014088309A (ja) * 2012-10-03 2014-05-15 Shin Etsu Chem Co Ltd 透明セスキオキサイド焼結体の製造方法及びその製造方法により製造された透明セスキオキサイド焼結体
EP2716616A1 (en) * 2012-10-03 2014-04-09 Shin-Etsu Chemical Co., Ltd. Method of Manufacturing Transparent Sesquioxide Sintered Body, and Transparent Sesquioxide Sintered Body Manufactured by the Method
US9090513B2 (en) 2012-10-03 2015-07-28 Shin-Etsu Chemical Co., Ltd. Method of manufacturing transparent sesquioxide sintered body, and transparent sesquioxide sintered body manufactured by the method
CN104968633A (zh) * 2013-02-08 2015-10-07 信越化学工业株式会社 透光性金属氧化物烧结体的制造方法及透光性金属氧化物烧结体
WO2014162754A1 (ja) * 2013-04-01 2014-10-09 信越化学工業株式会社 ファラデー回転子及びこのファラデー回転子を用いた光アイソレータ
US10168556B2 (en) 2013-04-01 2019-01-01 Shin-Etsu Chemical Co., Ltd. Faraday rotator and optical isolator based on this faraday rotator
JPWO2016021346A1 (ja) * 2014-08-08 2017-07-20 信越化学工業株式会社 透明セラミックスの製造方法
WO2016021346A1 (ja) * 2014-08-08 2016-02-11 信越化学工業株式会社 透明セラミックスの製造方法
WO2022054593A1 (ja) * 2020-09-09 2022-03-17 信越化学工業株式会社 常磁性ガーネット型透明セラミックスの製造方法、常磁性ガーネット型透明セラミックス、磁気光学材料及び磁気光学デバイス
CN115594502A (zh) * 2022-10-17 2023-01-13 闽都创新实验室(Cn) 一种磁光透明陶瓷及其制备方法和应用
CN115594502B (zh) * 2022-10-17 2023-10-03 闽都创新实验室 一种磁光透明陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
US20140002900A1 (en) 2014-01-02
EP2687500A1 (en) 2014-01-22
TWI609998B (zh) 2018-01-01
EP2687500A4 (en) 2014-10-01
TW201300588A (zh) 2013-01-01
KR20140011376A (ko) 2014-01-28
CN103502180A (zh) 2014-01-08
EP2687500B1 (en) 2018-04-25
DK2687500T3 (en) 2018-07-23
JP5704097B2 (ja) 2015-04-22
KR101961944B1 (ko) 2019-03-25
US9470915B2 (en) 2016-10-18
JP2012206935A (ja) 2012-10-25

Similar Documents

Publication Publication Date Title
JP5704097B2 (ja) 透明セラミックス及びその製造方法並びに磁気光学デバイス
US11067835B2 (en) Method for producing transparent ceramic,transparent ceramic, magneto-optical device and rare earth oxide powder for sintering
TWI634093B (zh) 磁光材料以及磁光裝置
KR102262771B1 (ko) 자기 광학 재료 및 그 제조 방법과 자기 광학 디바이스
JP6848904B2 (ja) 透明セラミックスの製造方法、透明セラミックス並びに磁気光学デバイス
US11161274B2 (en) Method for manufacturing transparent ceramic material for faraday rotator
EP3269695B1 (en) Magneto-optical material, method for producing same and magneto-optical device
JP5692127B2 (ja) セラミックス磁気光学材料の選定方法
WO2018193848A1 (ja) 常磁性ガーネット型透明セラミックス、磁気光学材料及び磁気光学デバイス
JP6265155B2 (ja) 磁気光学材料及び磁気光学デバイス
JP2013079195A (ja) 磁気光学素子用透光性酸化テルビウム焼結体
EP4212495A1 (en) Paramagnetic garnet-based transparent ceramic and method for producing same
EP4234512A1 (en) Tb-containing rare earth-aluminum garnet ceramic, and method for manufacturing same
JP5575719B2 (ja) 磁気光学素子用焼結体及び磁気光学デバイス
WO2023112508A1 (ja) 磁気光学素子用透明セラミックス、及び磁気光学素子
JP2023064774A (ja) 常磁性ガーネット型透明セラミックスの製造方法、並びに常磁性ガーネット型透明セラミックス製造用加圧焼結体
JP2023109324A (ja) 常磁性ガーネット型透明セラミックスの製造方法
JP2022019246A (ja) 磁気光学材料及び磁気光学デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12757262

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14005053

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137026789

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012757262

Country of ref document: EP