WO2012124527A1 - Resin paste composition for bonding semiconductor element, and semiconductor device - Google Patents

Resin paste composition for bonding semiconductor element, and semiconductor device Download PDF

Info

Publication number
WO2012124527A1
WO2012124527A1 PCT/JP2012/055577 JP2012055577W WO2012124527A1 WO 2012124527 A1 WO2012124527 A1 WO 2012124527A1 JP 2012055577 W JP2012055577 W JP 2012055577W WO 2012124527 A1 WO2012124527 A1 WO 2012124527A1
Authority
WO
WIPO (PCT)
Prior art keywords
paste composition
resin paste
component
semiconductor element
methacrylate
Prior art date
Application number
PCT/JP2012/055577
Other languages
French (fr)
Japanese (ja)
Inventor
愉加吏 井上
山田 和彦
Original Assignee
日立化成工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成工業株式会社 filed Critical 日立化成工業株式会社
Priority to SG2013068846A priority Critical patent/SG193438A1/en
Priority to CN2012800131685A priority patent/CN103429688A/en
Priority to JP2013504665A priority patent/JPWO2012124527A1/en
Priority to KR1020137024233A priority patent/KR20140018901A/en
Publication of WO2012124527A1 publication Critical patent/WO2012124527A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/2919Material with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29199Material of the matrix
    • H01L2224/2929Material of the matrix with a principal constituent of the material being a polymer, e.g. polyester, phenolic based polymer, epoxy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29317Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/29324Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29499Shape or distribution of the fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/0665Epoxy resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12042LASER
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/157Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2924/15738Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950 C and less than 1550 C
    • H01L2924/15747Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15788Glasses, e.g. amorphous oxides, nitrides or fluorides

Definitions

  • the present invention relates to a resin paste composition for bonding a semiconductor element suitable for bonding a semiconductor element such as an IC or LSI and a support member such as a lead frame or a glass epoxy wiring board, and a semiconductor device using the same.
  • a semiconductor device is manufactured by bonding an element such as a semiconductor chip to a lead frame with a die bonding material.
  • the mounting method of semiconductor devices has shifted from the conventional pin insertion method to the surface mounting method in terms of high-density mounting, but reflow soldering that heats the entire substrate with infrared rays is used for mounting on the substrate. Since the package is heated to a high temperature of 200 ° C. or higher, the paste layer may be peeled off due to the rapid expansion of moisture absorbed.
  • the die bonding paste is required to have high adhesive strength between the Si chip and the lead frame.
  • metal powder such as gold powder, silver powder, copper powder, etc.
  • a resin paste composition using silver powder is mainly used (see Patent Document 1, etc.).
  • An object of the present invention is to provide a resin paste composition for adhering semiconductor elements having excellent die shear strength and storage stability while using aluminum powder as a conductive filler. Moreover, an object of this invention is to provide the semiconductor device manufactured using the said resin paste composition for semiconductor element adhesion
  • One embodiment of the present invention relates to a resin paste composition for adhering semiconductor elements containing a compound having a (meth) acryloyloxy group, a polymerization initiator, a flexible agent, an amine compound, and aluminum powder.
  • the resin paste composition for adhering semiconductor elements has excellent die shear strength and storage stability while using aluminum powder as the conductive filler by setting the composition to the above specific one.
  • the resin paste composition for adhering semiconductor elements does not substantially contain an aromatic epoxy resin.
  • the resin paste composition for adhering a semiconductor element according to the present embodiment does not substantially contain an aromatic epoxy resin and has the specific composition described above, while using aluminum powder as a conductive filler. However, excellent electrical conductivity is realized.
  • the flexible agent is preferably a rubber component.
  • the amine compound is preferably a dicyandiamide or an imidazole compound.
  • the shape of the aluminum powder is preferably granular, and the average particle size of the aluminum powder is preferably 2 to 10 ⁇ m.
  • the resin paste composition for adhering semiconductor elements of this embodiment may further contain silver powder. Since the resin paste composition for bonding semiconductor elements of this embodiment contains aluminum powder as a conductive filler, it has sufficient properties such as adhesive strength and storage stability without using a large amount of silver powder having a high rare value. Obtainable.
  • the shape of the silver powder is preferably flakes, and the average particle size of the silver powder is preferably 1 to 5 ⁇ m.
  • the ratio C 1 / C 2 of the content C 1 of the aluminum powder to the content C 2 of the silver powder can be set to 2/8 to 8/2 in mass ratio.
  • the compound having the (meth) acryloyloxy group is preferably a (meth) acrylic acid ester compound.
  • Another aspect of the present invention includes a support member, a semiconductor element, and an adhesive layer that is disposed between the support member and the semiconductor element and adheres the support member and the semiconductor element.
  • the present invention also relates to a semiconductor device including a cured product of the above semiconductor element bonding resin paste composition.
  • the semiconductor device of this aspect has sufficient reliability while using inexpensive aluminum powder because the support member and the semiconductor element are bonded by the resin paste composition for bonding a semiconductor element.
  • a resin paste composition for adhering semiconductor elements having excellent die shear strength and storage stability while using aluminum powder as a conductive filler.
  • attachment is provided.
  • (A) is a figure which shows the electron micrograph of VA-2000, (b) is No. It is a figure which shows the electron micrograph of 800F, (c) is No .. It is a figure which shows a 500M electron micrograph.
  • (A) is a figure which shows the electron micrograph of the mixed powder of the aluminum powder and silver powder in the resin paste composition obtained in Example 1, (b) is in the resin paste composition obtained in Reference Example 1. It is a figure which shows the electron micrograph of silver powder. It is a schematic diagram which shows the preparation methods of the test sample used for the measurement of volume resistivity.
  • (meth) acryl means acryl or methacryl. That is, “having a (meth) acryloyloxy group” means having an acryloyloxy group or a methacryloyloxy group.
  • the resin paste composition for bonding semiconductor elements according to the present embodiment is a compound having a (meth) acryloyloxy group (hereinafter referred to as “(A) component”).
  • a polymerization initiator hereinafter sometimes referred to as “component (B)”
  • component (C) a flexible agent
  • component (B) an amine compound
  • component (D) component aluminum powder
  • (E) component Since the resin paste composition contains the specific component, it has excellent die shear strength and storage stability.
  • the resin paste composition does not substantially contain an aromatic epoxy resin.
  • the volume resistivity may increase rapidly, and sufficient electrical conductivity may not be obtained.
  • the resin paste composition containing no aromatic epoxy resin has excellent electrical conductivity.
  • substantially does not contain an aromatic epoxy resin means that a small amount of aromatic epoxy resin may be present to such an extent that a rapid increase in volume resistivity is not observed.
  • the content of the aromatic epoxy resin may be 0.1% by mass or less, and preferably 0.05% by mass or less based on the total amount of the resin paste composition.
  • the component (A) is a component that can be said to be a matrix in which aluminum powder, silver powder or the like is dispersed, and has one or more (meth) acryloyloxy groups in one molecule.
  • the component (A) preferably contains at least one selected from the group consisting of acrylic ester compounds and methacrylic ester compounds.
  • the resin paste composition has more electrical conductivity, storage stability and die shear strength.
  • the coating workability and the mechanical characteristics are further improved, and it becomes more suitable for die bonding.
  • component (A) for example, a compound having one (meth) acryloyloxy group in one molecule (hereinafter sometimes referred to as “component (A-1)”), two compounds in one molecule A compound having a (meth) acryloyloxy group (hereinafter sometimes referred to as “component (A-2)”), a compound having three or more (meth) acryloyloxy groups in one molecule (hereinafter sometimes referred to as “component (A-3)”).
  • component (A-1) compound having one acryloyloxy group examples include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, amyl acrylate, and isoamyl.
  • Examples of the compound (A-1) having one methacryloyloxy group include, for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, amyl Methacrylate, isoamyl methacrylate, hexyl methacrylate, heptyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, isodecyl methacrylate, lauryl methacrylate, tridecyl methacrylate, hexadecyl methacrylate, stearyl methacrylate, isostearyl methacrylate, cyclohexyl methacrylate, Isobornyl methacrylate Over
  • the component (A-1) is preferably a compound represented by the following formula (I) from the viewpoint of die shear strength in a semiconductor device produced using a resin paste composition.
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alicyclic group or a heterocyclic group
  • X represents an alkylene group having 1 to 5 carbon atoms
  • n represents an integer of 0 to 10 Show.
  • n is an integer of 2 or more, a plurality of Xs may be the same or different from each other.
  • the alicyclic group is a group having a structure in which carbon atoms are cyclically bonded
  • the heterocyclic group is a group having a structure in which carbon atoms and heteroatoms are bonded cyclically.
  • Examples of the alicyclic group include groups represented by the following formula (1-1), (1-2), (1-3) or (1-4).
  • R 3 , R 4 and R 5 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • heterocyclic group examples include groups represented by the following formula (2-1), (2-2), (2-3) or (2-4).
  • R 6 , R 7 , R 8 , R 9 and R 10 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
  • Examples of the compound represented by the formula (I) include cyclohexyl acrylate, isobornyl acrylate, tricyclo [5.2.1.0 2,6 ] decyl acrylate, 2- (tricyclo) [5.2.1. 0 2,6 ] dec-3-en-8-yloxyethyl acrylate, 2- (tricyclo) [5.2.1.0 2,6 ] dec-3-en-9-yloxyethyl acrylate, glycidyl acrylate , Tetrahydrofurfuryl acrylate, dicyclopentenyloxyethyl acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, tetrahydropyranyl acrylate, dimethylaminoethyl acrylate, diethylaminoethyl acrylate, 1,2 , 2,6,6-pentamethylpiperidinyl acrylate, , 2,6,6-tetramethyl piperidinyl acrylate
  • Examples of the compound having two acryloyloxy groups in one molecule of the component (A-2) include ethylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1, 9-nonanediol diacrylate, 1,3-butanediol diacrylate, neopentyl glycol diacrylate, dimer diol diacrylate, dimethylol tricyclodecane diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate , Polyethylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, bis (acryloxypropyl) polydimethylsiloxane Include dimethylsiloxane copolymer - down, bis (acryloxypropyl) methylsiloxane.
  • component (A-2) bisphenol A, bisphenol F or a reaction product of 1 mol of bisphenol AD and 2 mol of glycidyl acrylate; diacrylate of bisphenol A, bisphenol F or polyethylene oxide adduct of bisphenol AD; bisphenol A, The diacrylate etc. of the polypropylene oxide adduct of bisphenol F or bisphenol AD are also mentioned.
  • Examples of the compound having two methacryloyloxy groups in one molecule of the component (A-2) include ethylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, 1, 9-nonanediol dimethacrylate, 1,3-butanediol dimethacrylate, neopentyl glycol dimethacrylate, dimer diol dimethacrylate, dimethylol tricyclodecane dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate , Polyethylene glycol dimethacrylate, tripropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, bis (methacrylo Shipuropiru) polydimethylsiloxane, bis (methacryloxypropyl) methylsiloxane - include
  • the component (A-2) includes a reaction product of 1 mol of bisphenol A, bisphenol F or bisphenol AD and 2 mol of glycidyl methacrylate; dimethacrylate of bisphenol A, bisphenol F or polyethylene oxide adduct of bisphenol AD; The dimethacrylate etc. of the polypropylene oxide addition product of bisphenol F or bisphenol AD are also mentioned.
  • a compound represented by the following formula (II) is preferable from the viewpoint of die shear strength in a semiconductor device produced using a resin paste composition.
  • R 11 and R 12 each independently represent a hydrogen atom or a methyl group
  • R 13 and R 14 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms
  • Y 1 and Y 2 each represents Each independently represents an alkylene group having 1 to 5 carbon atoms
  • p and q each independently represents an integer of 1 to 20;
  • p is an integer of 2 or more
  • a plurality of Y 1 may be the same as or different from each other.
  • q is an integer of 2 or more
  • a plurality of Y 2 may be the same as or different from each other.
  • Examples of the compound having three or more acryloyloxy groups in one molecule of component (A-3) include trimethylolpropane triacrylate, ethylene oxide-modified trimethylolpropane triacrylate, propylene oxide-modified trimethylolpropane triacrylate, and ethylene oxide.
  • Examples of the compound having three or more methacryloyloxy groups in one molecule of the component (A-3) include trimethylolpropane trimethacrylate, ethylene oxide-modified trimethylolpropane trimethacrylate, propylene oxide-modified trimethylolpropane trimethacrylate, and ethylene oxide.
  • the component (A) one of the above compounds can be used alone, or two or more can be used in combination.
  • the component (A) is preferably used in combination with the component (A-1) and the component (A-2) from the viewpoint of improving the die shear strength and workability (viscosity) in a balanced manner.
  • the content of the component (A) is preferably 5 to 25% by mass and more preferably 10 to 20% by mass based on the total amount of the resin paste composition.
  • the content of the component (A) is 5 to 25% by mass, sufficient die shear strength can be obtained, and voids called voids are hardly generated in the cured product of the resin paste composition.
  • the component (B) is a component for polymerizing the component (A) to cure the resin paste composition, and is preferably a compound that generates radicals by heating and / or light irradiation.
  • a thermal-polymerization initiator and a photoinitiator are mentioned.
  • (B) component can be used individually by 1 type or in combination of 2 or more types.
  • thermal polymerization initiator examples include azo radical initiators such as azobisisobutyronitrile and 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile); 1,1,3,3 -Tetramethylbutylperoxy-2-ethylhexanoate, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, di-t-butylperoxy Isophthalate, t-butyl perbenzoate, dicumyl peroxide, t-butyl cumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5 -Di (t-butylperoxy) hexyne, cumene hydroperoxide, t-butylperoxy-2-ethylhexanoate, t-
  • Examples of the photopolymerization initiator include acetophenones such as 1-hydroxycyclohexyl phenyl ketone and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-1-propanone; 2,4-dimethylthioxanthone, Thioxanthones such as 2,4-diethylthioxanthone, 2-chlorothioxanthone, and 2,4-diisopropylthioxanthone; Ketals such as acetophenone dimethyl ketal and benzyldimethyl ketal; Benzophenone, 4,4′-bis (diethylamino) benzophenone, 4- Benzophenones such as benzoyl-4′-methyldiphenyl sulfide; and phosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
  • acetophenones such as 1-hydroxycyclohexy
  • the 10-hour half-life temperature of the peroxide is preferably 60 to 170 ° C.
  • the half-life refers to the time required for the peroxide to decompose and the amount of active oxygen to be halved at a constant temperature.
  • the 10-hour half-life temperature is a half-life of 10 hours. Indicates temperature.
  • the half-life can be measured, for example, as follows. First, a peroxide solution having a concentration of 0.1 mol / l is prepared mainly using a solution that is relatively inert to radicals, such as benzene, and sealed in a glass tube subjected to nitrogen substitution. And it is immersed in the thermostat set to predetermined temperature, and is thermally decomposed. In general, the decomposition of peroxide can be treated approximately as a primary reaction. Therefore, the peroxide concentration x decomposed by the time t, the decomposition rate constant k, the time t, and the initial peroxide concentration a Then, the following formula (i) is established.
  • the content of the component (B) is preferably 0.1 to 10 parts by mass, and more preferably 2 to 8 parts by mass with respect to 100 parts by mass of the total amount of the component (A).
  • the content of the component (B) is 0.1 parts by mass or more, the curability of the resin paste composition is further improved.
  • the content of the component (B) exceeds 10 parts by mass, a large amount of volatile matter is generated when the resin paste composition is cured, and voids called voids tend to be easily generated in the cured product of the resin paste composition. is there.
  • a component can be used individually by 1 type or in combination of 2 or more types.
  • the content of component (B) is preferably 0.1 to 5% by mass, more preferably 0.6 to 1% by mass, based on the total amount of the resin paste composition.
  • the content of component (B) is 0.1% by mass or more, the curability of the resin paste composition is further improved.
  • the content of the component (B) exceeds 5% by mass, a large amount of volatile matter is generated when the resin paste composition is cured, and voids called voids tend to be generated in the cured product of the resin paste composition. is there.
  • the component (C) is a component that imparts flexibility to the cured product of the resin paste composition. By blending the component (C) with the resin paste composition, an effect of stress relaxation against thermal expansion and / or contraction can be obtained.
  • (C) Although there is no restriction
  • liquid rubber examples include polybutadiene skeletons such as polybutadiene, epoxidized polybutadiene, maleated polybutadiene, acrylonitrile butadiene rubber, acrylonitrile butadiene rubber having a carboxy group, amino terminal acrylonitrile butadiene rubber, vinyl terminal acrylonitrile butadiene rubber, and styrene butadiene rubber.
  • polybutadiene skeletons such as polybutadiene, epoxidized polybutadiene, maleated polybutadiene, acrylonitrile butadiene rubber, acrylonitrile butadiene rubber having a carboxy group, amino terminal acrylonitrile butadiene rubber, vinyl terminal acrylonitrile butadiene rubber, and styrene butadiene rubber.
  • a liquid rubber is mentioned.
  • the number average molecular weight of the liquid rubber is preferably 500 to 10,000, and more preferably 1000 to 5,000.
  • the number average molecular weight is 500 or more, the flexibility effect is further improved, and when the number average molecular weight is 10,000 or less, the increase in the viscosity of the resin paste composition by the flexible agent is sufficiently suppressed, and the workability is further improved.
  • the number average molecular weight is a value measured by gel permeation chromatography using a standard polystyrene calibration curve (hereinafter referred to as GPC method).
  • thermoplastic resin examples include acrylic resins such as polyvinyl acetate and polyalkyl acrylate, ⁇ -caprolactone-modified polyester, phenoxy resin, and polyimide.
  • the number average molecular weight of the thermoplastic resin is preferably 10,000 to 300,000, and more preferably 20,000 to 200,000. When the number average molecular weight is 10,000 or more, the flexibility effect is further improved. When the number average molecular weight is 300,000 or less, the increase in the viscosity of the resin paste composition by the flexible agent is sufficiently suppressed, and the workability is further improved.
  • the number average molecular weight is a value measured using a standard polystyrene calibration curve by the GPC method.
  • the resin paste composition preferably contains epoxidized polybutadiene as the component (C) from the viewpoint of further reducing the elastic modulus of the cured product.
  • Epoxidized polybutadiene can be easily obtained by epoxidizing commercially available polybutadiene with hydrogen peroxide solution, peracids or the like.
  • Examples of the epoxidized polybutadiene include B-1000, B-3000, G-1000, G-3000 (manufactured by Nippon Soda Co., Ltd.), B-1000, B-2000, B-3000, B-4000 ( (Nippon Petroleum Co., Ltd.), R-15HT, R-45HT, R-45M (above, Idemitsu Petroleum Co., Ltd.), Epolide PB-3600, Epolide PB-4700 (above, Daicel Chemical Industries, Ltd.) Are available as commercial products.
  • the oxirane oxygen concentration of the epoxidized polybutadiene is preferably 3 to 18%, more preferably 5 to 15%.
  • the resin paste composition preferably contains acrylonitrile butadiene rubber having a carboxy group as the component (C) from the viewpoint of further reducing the elastic modulus of the cured product and further improving the die shear strength.
  • acrylonitrile butadiene rubber having a carboxy group a compound represented by the formula (III) is preferable.
  • m represents an integer of 5 to 50
  • a and b each independently represent an integer of 1 or more.
  • the ratio of a to b (a / b) is preferably 95/5 to 50/50.
  • Examples of the compound represented by the formula (III) include Hycar CTBN-2009 ⁇ 162, CTBN-1300 ⁇ 31, CTBN-1300 ⁇ 8, CTBN-1300 ⁇ 13, CTBN-1009SP-S, CTBNX-1300 ⁇ 9 (Both manufactured by Ube Industries, Ltd.) are available as commercial products.
  • the resin paste composition preferably uses epoxidized polybutadiene and acrylonitrile butadiene rubber having a carboxyl group in combination as component (C) from the viewpoint of workability and adhesive strength.
  • the content of component (C) is preferably 10 to 200 parts by weight, more preferably 20 to 100 parts by weight, and 40 to 80 parts by weight with respect to 100 parts by weight of component (A). Is more preferable.
  • the content of the component (C) is 10 parts by mass or more, the flexibility is further improved, and when it is 200 parts by mass or less, the increase in the viscosity of the resin paste composition by the flexible agent is sufficiently suppressed, Workability is further improved.
  • the content of component (C) is preferably 3 to 12% by mass, more preferably 4 to 11% by mass, based on the total amount of the resin paste composition.
  • the content of component (C) is 3% by mass or more, the flexibility is further improved, and when the content is 12% by mass or less, the increase in the viscosity of the resin paste composition by the flexible agent is sufficiently suppressed, Workability is further improved.
  • component (D) examples include dicyandiamide, a compound represented by the following formula (IV) (also referred to as dibasic dihydrazide), a microcapsule type curing agent composed of a reaction product of an epoxy resin and an amine compound, and an imidazole compound. It is done.
  • a component can be used individually by 1 type or in combination of 2 or more types.
  • R 15 represents an arylene group or an alkylene group having 2 to 12 carbon atoms.
  • the alkylene group may be linear or branched.
  • Examples of the arylene group include p-phenylene group and m-phenylene group.
  • imidazole compounds include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, and 2-phenyl-4-methyl.
  • Examples include imidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2-phenylimidazole isocyanuric acid adduct and the like.
  • AFH As the compound represented by the formula (IV), AFH, PFH, SFH (all of which are Nippon Hydrazine Kogyo Co., Ltd., trade name) and the like can be used.
  • PFH As the microcapsule type curing agent, Novacure (Asahi Kasei Kogyo ( Co., Ltd., trade name), etc., and as the imidazole compound, Curazole, 2P4MHZ, C17Z, 2PZ-OK (both trade names, manufactured by Shikoku Kasei Co., Ltd.) and the like can be used.
  • the resin paste composition preferably contains at least one selected from the group consisting of dicyandiamide and imidazole compound as component (D), and more preferably contains at least dicyandiamide.
  • the content of the component (D) is preferably 0.05 to 1.5% by mass, more preferably 0.1 to 1.0% by mass, based on the total amount of the resin paste composition. It can also be 1 to 0.8% by mass. When the content of component (D) is 0.05% by mass or more, curability is further improved, and when it is 1.5% by mass or less, the stability of the resin paste composition is further improved. Moreover, there exists a tendency for electrical conductivity to improve further that content of (D) component is 0.8 mass% or less.
  • the aluminum powder of the component is a component that replaces part or all of the silver powder used as a filler in the conventional resin paste.
  • excellent electrical conductivity, storage stability and die shear strength can be obtained by combining with the above components, even if a part or all of the silver powder is replaced with the component (E). Is realized.
  • the average particle diameter of the component (E) is preferably 10 ⁇ m or less, more preferably 2 to 9 ⁇ m, and further preferably 3 to 8 ⁇ m.
  • the average particle diameter can be obtained as a median diameter by a particle size distribution measuring apparatus (for example, Microtrack X100) using a laser light diffraction method.
  • the median diameter is a value of the particle diameter (D50) at which the cumulative ratio in the number-based particle size distribution is 50%.
  • the apparent density of the component is preferably 0.40 ⁇ 1.20g / cm 3, more preferably 0.55 ⁇ 0.95g / cm 3.
  • the shape of the component (E) include granules, flakes, spheres, needles, irregular shapes, and the like.
  • the content of the component (E) is preferably 10 to 50% by mass, more preferably 15 to 40% by mass, and preferably 20 to 35% by mass based on the total amount of the resin paste composition. Particularly preferred. When the content of the component (E) is within the above range, characteristics such as electrical conductivity and viscosity of the resin paste composition are more suitable as a die bonding material.
  • the resin paste composition may contain components other than those described above.
  • the resin paste composition may further contain silver powder.
  • the resin paste composition contains the component (E), which is an alternative component of silver powder, excellent electrical conductivity is obtained even when the silver powder content is low compared to conventional resin pastes. It is done.
  • the average particle diameter of the silver powder is preferably 1 to 5 ⁇ m.
  • the average particle diameter can be obtained as a median diameter by a particle size distribution measuring apparatus (for example, Microtrack X100) using a laser light diffraction method.
  • the median diameter is a value of the particle diameter (D50) at which the cumulative ratio in the number-based particle size distribution is 50%.
  • the tap density of the silver powder is preferably 3 to 6 g / cm 3 .
  • the specific surface area of the silver powder is preferably 0.5 to 1 m 2 / g.
  • the shape of the silver powder may be granular, flaky, spherical, acicular, irregular, or the like, but is preferably flaky.
  • the ratio C 1 / C 2 (mass ratio) of the content C 1 of the aluminum powder as the component (E) to the content C 2 of the silver powder is preferably 2/8 to 8/2, and preferably 3/7 to 7/3 is more preferable, and 4/6 to 6/4 is particularly preferable.
  • the ratio C 1 / C 2 is larger than 8/2, the viscosity of the resin paste increases and workability may be reduced.
  • the resin paste composition may further contain conductive fine particles other than the component (E) and silver powder.
  • conductive fine particles conductive fine particles having an average particle diameter of less than 10 ⁇ m are preferable.
  • the conductive fine particles include conductive fine particles containing gold, copper, nickel, iron, stainless steel and the like.
  • the total content of the component (E), the silver powder and the conductive fine particles is preferably 60 to 85% by mass, more preferably 65 to 80% by mass, based on the total amount of the resin paste composition, and 70 It is particularly preferably 80 to 80% by mass.
  • characteristics such as electrical conductivity and viscosity of the resin paste composition are more suitable as a die bonding material.
  • the resin paste composition may further contain a coupling agent.
  • a coupling agent There is no restriction
  • a coupling agent can be used individually by 1 type or in combination of 2 or more types.
  • Silane coupling agents include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyl-tris (2-methoxyethoxy) ) Silane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, methyltri (methacryloxyethoxy) silane, ⁇ -acryloxypropyltrimethoxysilane, ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyl Triethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropylmethyldime
  • Titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite) titanate Tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, Isopropyldimethacrylisostearoyl titanate, isopropyl (dioctyl phosphate) t
  • Examples of the aluminum coupling agent include acetoalkoxyaluminum diisopropionate.
  • zirconate coupling agent examples include tetrapropyl zirconate, tetrabutyl zirconate, tetra (triethanolamine) zirconate, tetraisopropyl zirconate, zirconium acetylacetonate acetylacetone zirconium butyrate, and zirconium stearate butyrate.
  • the content of the coupling agent is preferably 0.5 to 6.0% by mass, more preferably 1.0 to 5.0% by mass, based on the total amount of the resin paste composition.
  • adhesive strength to improve further that content of a coupling agent is 0.5 mass% or more.
  • content of the coupling agent exceeds 6.0% by mass, a large amount of volatile matter is generated when the resin paste composition is cured, and voids called voids tend to be generated in the cured product of the resin paste composition. There is.
  • the resin paste composition may further contain an epoxy resin (an epoxy resin other than an aromatic epoxy resin), a silicone resin, a urethane resin, an acrylic resin, or the like as a binder resin component.
  • an epoxy resin an epoxy resin other than an aromatic epoxy resin
  • a silicone resin a silicone resin
  • a urethane resin an acrylic resin, or the like
  • the resin paste composition may further comprise a hygroscopic agent such as calcium oxide or magnesium oxide; a wetting improver such as a fluorine-based surfactant, a nonionic surfactant or a higher fatty acid; an antifoaming agent such as silicone oil; An ion trapping agent such as an inorganic ion exchanger can be added in appropriate combination.
  • a hygroscopic agent such as calcium oxide or magnesium oxide
  • a wetting improver such as a fluorine-based surfactant, a nonionic surfactant or a higher fatty acid
  • an antifoaming agent such as silicone oil
  • An ion trapping agent such as an inorganic ion exchanger can be added in appropriate combination.
  • the resin paste composition is a batch or division of each of the above-described components, and is put into a device that is appropriately combined with a dispersion / dissolution device such as a stirrer, a hybrid mixer, a reiki machine, a three roll, a planetary mixer, It can be obtained by heating, if necessary, mixing, dissolving, pulverizing kneading or dispersing to form a uniform paste.
  • a dispersion / dissolution device such as a stirrer, a hybrid mixer, a reiki machine, a three roll, a planetary mixer, It can be obtained by heating, if necessary, mixing, dissolving, pulverizing kneading or dispersing to form a uniform paste.
  • the viscosity at 25 ° C. of the resin paste composition is preferably 30 to 200 Pa ⁇ s, more preferably 50 to 150 Pa ⁇ s, and further preferably 50 to 80 Pa ⁇ s. preferable.
  • the semiconductor device includes a support member, a semiconductor element, and an adhesive layer that is disposed between the support member and the semiconductor element and adheres the support member and the semiconductor element. It contains a cured product.
  • Such a semiconductor device is excellent in electrical conductivity and reliability because the support member and the semiconductor element are bonded to each other by the cured product of the resin paste composition.
  • support members include lead frames such as 42 alloy lead frames and copper lead frames, glass epoxy substrates (substrates made of glass fiber reinforced epoxy resin), BT substrates (BT resins made of cyanate monomer and oligomers thereof and bismaleimide). Organic substrate).
  • Examples of the method of bonding the semiconductor element on the support member using the resin paste composition include the following methods.
  • the resin paste composition is applied onto the support member by a method such as a dispensing method, a screen printing method, a stamping method, or the like to form a resin layer.
  • the semiconductor element is pressure-bonded from the surface of the resin layer opposite to the support base, and then the resin layer is heated and cured using a heating device such as an oven or a heat block. Thereby, a semiconductor element is adhere
  • the semiconductor device according to the present embodiment can be obtained by bonding a semiconductor element on a support member and then performing a wire bonding process, a sealing process, and the like as necessary.
  • the wire bonding step and the sealing step can be performed by a conventionally known method.
  • the heat curing can be performed, for example, under the conditions of a heating temperature of 150 to 220 ° C. (preferably 180 to 200 ° C.) and a heating time of 30 seconds to 2 hours (preferably 1 hour to 1.5 hours).
  • an organic substrate when used as a support member, it is preferable to dry the organic substrate before assembly because moisture adsorbed by the organic substrate may evaporate due to heating during bonding and cause voids. .
  • the present invention is, for example, as an adhesive for adhering semiconductor elements of a composition comprising a compound having a (meth) acryloyloxy group, a polymerization initiator, a flexible agent, an amine compound, and aluminum powder.
  • a composition comprising a compound having a (meth) acryloyloxy group, a polymerization initiator, a flexible agent, an amine compound, and aluminum powder.
  • the present invention also provides a method for producing an adhesive for adhering semiconductor elements, comprising a composition comprising a compound having a (meth) acryloyloxy group, a polymerization initiator, a flexible agent, an amine compound, and aluminum powder.
  • FIG. 1A is an electron micrograph of VA-2000
  • FIG. FIG. 1C shows an electron micrograph of 800F. It is a figure which shows a 500M electron micrograph.
  • a particle size distribution is measured with the particle size distribution measuring apparatus (for example, Microtrac X100) using a laser beam diffraction method, and the value of 50% of accumulation (based on the number) is used as the average particle diameter It was. The results are shown in Table 1.
  • Coupling agent KBM-403 (Product name of organosilane manufactured by Shin-Etsu Chemical Co., Ltd.)
  • Examples 1 to 8, Comparative Example 1, Reference Example 1 Each component was mixed at the blending ratio (mass ratio) shown in Table 2 or Table 3, and kneaded using a planetary mixer, and then defoamed at 666.61 Pa (5 Torr) or less for 10 minutes to obtain a resin. A paste composition was obtained.
  • the properties (viscosity and viscosity stability, die shear adhesive strength, volume resistivity) of the obtained resin paste composition were measured by the following methods. The results were as shown in Table 2 or Table 3.
  • 2A is a view showing an electron micrograph of a mixed powder of aluminum powder and silver powder in the resin paste composition obtained in Example 1, and FIG. It is a figure which shows the electron micrograph of the silver powder in the obtained resin paste composition.
  • Viscosity Viscosity (Pa ⁇ s) at 25 ° C. was measured using an EHD type rotational viscometer (manufactured by Tokyo Keiki Co., Ltd.).
  • Viscosity stability The viscosity measured at (a) is the initial value, the sampling time is 1 day, 3 days, and 7 days, and the viscosity at 25 ° C. using an EHD type rotational viscometer (manufactured by Tokyo Keiki Co., Ltd.) Pa ⁇ s) was measured.
  • the resin paste composition is abbreviated as Ni / Au plated copper frame (abbreviated as “Ni / Au plating” in Table 2) and Ag plated copper lead frame (abbreviated as “Ag spot plating” in Table 2).
  • Ni / Au plating used in Table 2
  • Ag plated copper lead frame used in Table 2.
  • a copper lead frame with Ag ring plating used in Table 2
  • about 0.5 mg of each is applied, and a 3 mm ⁇ 3 mm Si chip ( A thickness of about 0.4 mm) was pressure-bonded and further heated in an oven to 180 ° C. in 30 minutes and cured at 180 ° C. for 1 hour to obtain a test sample.
  • maintenance was measured using the automatic adhesive force test apparatus (BT4000, Dage company make). The die shear strength was measured with 10 test samples for each substrate, and the average value was evaluated.
  • the syringe was filled with the resin paste composition, and using a dispensing apparatus (SHOTminiSL, manufactured by Musashi Engineering Co., Ltd.), 20 pieces were discharged onto a glass substrate with a 21G (inner diameter: 570 ⁇ m) nozzle and coated.
  • the shape of the resin paste composition on the glass plate after coating was observed with a microscope (KH-3000, manufactured by Hilox Japan Co., Ltd.).
  • the coating shape at this time was a square protrusion, and the number of protrusions that fell and protruded from the coated part was counted and evaluated according to the following evaluation criteria.
  • FIG. 3 is a schematic diagram showing a method for producing a test sample used for measuring volume resistivity.
  • volume resistivity ((omega
  • the test sample was produced by the following method. First, as shown in FIG. 3A, three paper tapes 2 were attached on the main surface of the slide glass 1 so that the interval between the paper tapes 2 was about 2 mm. Next, as shown in FIG. 3 (b), the resin paste composition 3 was placed on the slide glass 1 exposed between the paper tapes 2, stretched with a squeegee, and applied so as to have the same thickness as the paper tape. And the paper tape 2 was removed, the resin paste composition 3 was hardened by heating at 180 degreeC for 1 hour in oven, and the test sample 10 shown in FIG.3 (c) was produced.
  • the produced test sample 10 has a structure in which a resin layer 4 having a width of 2 mm made of a cured product of the resin paste composition is provided on the main surface of the slide glass 1. The volume resistivity of the resin layer 4 was measured by the above method.
  • the resin paste compositions of the examples exhibited high die shear strength and excellent adhesion to any substrate.
  • the resin paste compositions of the examples also had good storage stability.
  • excellent electrical conductivity was obtained without using a large amount of silver having a high rare value.
  • the resin paste composition for bonding a semiconductor element of the present invention has excellent die shear strength and storage stability while using aluminum powder as a conductive filler, and is suitably used for bonding a semiconductor element and a supporting member. be able to.

Abstract

A resin paste composition for bonding a semiconductor element, said composition containing: a compound that has a (meth)acryloyloxy group; a polymerization initiator; a flexibility-imparting agent; an amine compound; and powdered aluminum.

Description

半導体素子接着用樹脂ペースト組成物及び半導体装置Resin paste composition for bonding semiconductor elements and semiconductor device
 本発明は、IC、LSI等の半導体素子と、リードフレーム、ガラスエポキシ配線板等の支持部材とを接着するのに好適な半導体素子接着用樹脂ペースト組成物、及びこれを用いた半導体装置に関する。 The present invention relates to a resin paste composition for bonding a semiconductor element suitable for bonding a semiconductor element such as an IC or LSI and a support member such as a lead frame or a glass epoxy wiring board, and a semiconductor device using the same.
 従来、半導体のダイボンディング材としては、Au-Si共晶、半田、樹脂ペースト組成物等が知られているが、作業性及びコストの点から樹脂ペースト組成物が広く使用されている。 Conventionally, Au—Si eutectic, solder, resin paste compositions, and the like are known as semiconductor die bonding materials, but resin paste compositions are widely used in terms of workability and cost.
 一般に、半導体装置は半導体チップなどの素子をダイボンディング材によりリードフレームに接着して製造している。半導体装置の実装方式は高密度実装の点から、従来のピン挿入方式から表面実装方式へと移行しているが、基板への実装には基板全体を赤外線等で加熱するリフローソルダリングが用いられ、パッケージが200℃以上の高温に加熱されるため、吸湿した水分の急激な膨張によりペースト層の剥離が発生することがある。 Generally, a semiconductor device is manufactured by bonding an element such as a semiconductor chip to a lead frame with a die bonding material. The mounting method of semiconductor devices has shifted from the conventional pin insertion method to the surface mounting method in terms of high-density mounting, but reflow soldering that heats the entire substrate with infrared rays is used for mounting on the substrate. Since the package is heated to a high temperature of 200 ° C. or higher, the paste layer may be peeled off due to the rapid expansion of moisture absorbed.
 そのため、ダイボンディングペーストにはSiチップとリードフレーム間の接着強度が高いことが要求される。また半導体チップなどの素子をリードフレームに接着させるなどのために使用される樹脂ペースト組成物には導電性フィラーとして、例えば金粉、銀粉、銅粉などの金属粉を使用することが考えられるが、金粉ほどの希少価値ではなく、銅粉のように酸化されやすく保存安定性に劣るものでもなく、さらに塗布作業性や機械特性に優れ、樹脂ペースト組成物に要求される諸特性も優れるなどの理由から、現在は銀粉を用いた樹脂ペースト組成物が主に用いられている(特許文献1等参照)。 Therefore, the die bonding paste is required to have high adhesive strength between the Si chip and the lead frame. In addition, it is conceivable to use metal powder such as gold powder, silver powder, copper powder, etc. as a conductive filler in a resin paste composition used for bonding an element such as a semiconductor chip to a lead frame. Reasons that it is not as rare as gold powder, is not easily oxidized like copper powder, and is not inferior in storage stability, and also has excellent coating workability and mechanical properties, and excellent properties required for resin paste compositions. Therefore, at present, a resin paste composition using silver powder is mainly used (see Patent Document 1, etc.).
特開2002-179769号公報JP 2002-179769 A
 しかしながら、銀粉自体も貴金属であって希少価値が高い材料であることから、ダイボンディング材料としてはより入手の容易な他のフィラー材料を使用したダイボンディング材の開発が望まれる。現在のところ、銀粉にかわる材料を用いつつ、銀粉のみを使った場合と同程度の特性を有する樹脂ペースト組成物は、得られていないのが現状である。 However, since silver powder itself is a precious metal and a rare material, it is desired to develop a die bonding material using another easily available filler material as a die bonding material. At present, a resin paste composition having the same characteristics as when only silver powder is used while using a material that replaces silver powder has not been obtained.
 例えば、本発明者らの知見によれば、特許文献1に記載の樹脂ペースト組成物における銀粉の一部をアルミニウム粉に置き換えた場合には、十分なダイシェア強度が得られない。 For example, according to the knowledge of the present inventors, when a part of silver powder in the resin paste composition described in Patent Document 1 is replaced with aluminum powder, sufficient die shear strength cannot be obtained.
 本発明は、導電性フィラーとしてアルミニウム粉を用いながらも、優れたダイシェア強度及び保存安定性を有する半導体素子接着用樹脂ペースト組成物を提供することを目的とする。また本発明は、当該半導体素子接着用樹脂ペースト組成物を用いて製造された半導体装置を提供することを目的とする。 An object of the present invention is to provide a resin paste composition for adhering semiconductor elements having excellent die shear strength and storage stability while using aluminum powder as a conductive filler. Moreover, an object of this invention is to provide the semiconductor device manufactured using the said resin paste composition for semiconductor element adhesion | attachment.
 本発明の一態様は、(メタ)アクリロイルオキシ基を有する化合物と、重合開始剤と、可とう化剤と、アミン化合物と、アルミニウム粉と、を含有する半導体素子接着用樹脂ペースト組成物に関する。 One embodiment of the present invention relates to a resin paste composition for adhering semiconductor elements containing a compound having a (meth) acryloyloxy group, a polymerization initiator, a flexible agent, an amine compound, and aluminum powder.
 本態様において、半導体素子接着用樹脂ペースト組成物は、その組成を上記特定のものとすることにより、導電性フィラーとしてアルミニウム粉を用いながらも優れたダイシェア強度及び保存安定性を有する。 In this embodiment, the resin paste composition for adhering semiconductor elements has excellent die shear strength and storage stability while using aluminum powder as the conductive filler by setting the composition to the above specific one.
 本態様において、半導体素子接着用樹脂ペースト組成物は、実質的に芳香族系エポキシ樹脂を含有しないことが好ましい。 In this embodiment, it is preferable that the resin paste composition for adhering semiconductor elements does not substantially contain an aromatic epoxy resin.
 特許文献1に記載の樹脂ペースト組成物における銀粉の一部をアルミニウム粉に置き換えた場合には、十分な電気伝導性(十分に低い体積抵抗率)が得られない。しかしながら、本態様の半導体素子接着用樹脂ペースト組成物では、実質的に芳香族系エポキシ樹脂を含まず、且つ、上記特定の組成を有するものとすることで、導電性フィラーとしてアルミニウム粉を用いながらも、優れた電気伝導性が実現される。 When a part of silver powder in the resin paste composition described in Patent Document 1 is replaced with aluminum powder, sufficient electrical conductivity (sufficiently low volume resistivity) cannot be obtained. However, the resin paste composition for adhering a semiconductor element according to the present embodiment does not substantially contain an aromatic epoxy resin and has the specific composition described above, while using aluminum powder as a conductive filler. However, excellent electrical conductivity is realized.
 本態様において、上記可とう化剤はゴム成分であることが好ましい。 In this embodiment, the flexible agent is preferably a rubber component.
 また、本態様において、上記アミン化合物は、ジシアンジアミド又はイミダゾール化合物であることが好ましい。 In this embodiment, the amine compound is preferably a dicyandiamide or an imidazole compound.
 また、本態様において、上記アルミニウム粉の形状は粒状であることが好ましく、上記アルミニウム粉の平均粒径は2~10μmであることが好ましい。 In this embodiment, the shape of the aluminum powder is preferably granular, and the average particle size of the aluminum powder is preferably 2 to 10 μm.
 また、本態様の半導体素子接着用樹脂ペースト組成物は、銀粉をさらに含有していてもよい。本態様の半導体素子接着用樹脂ペースト組成物は、導電性フィラーとしてアルミニウム粉を含有しているため、希少価値が高い銀粉を多量に用いなくとも接着強度、保存安定性などの諸特性を十分に得ることができる。 Moreover, the resin paste composition for adhering semiconductor elements of this embodiment may further contain silver powder. Since the resin paste composition for bonding semiconductor elements of this embodiment contains aluminum powder as a conductive filler, it has sufficient properties such as adhesive strength and storage stability without using a large amount of silver powder having a high rare value. Obtainable.
 また、本態様の半導体素子接着用樹脂ペースト組成物において、上記銀粉の形状はフレーク状であることが好ましく、上記銀粉の平均粒径は1~5μmであることが好ましい。 In the resin paste composition for adhering semiconductor elements of this embodiment, the shape of the silver powder is preferably flakes, and the average particle size of the silver powder is preferably 1 to 5 μm.
 また、本態様において、上記銀粉の含有量Cに対する上記アルミニウム粉の含有量Cの比C/Cは、質量比で2/8~8/2とすることができる。 In this embodiment, the ratio C 1 / C 2 of the content C 1 of the aluminum powder to the content C 2 of the silver powder can be set to 2/8 to 8/2 in mass ratio.
 また、本態様において、上記(メタ)アクリロイルオキシ基を有する化合物は(メタ)アクリル酸エステル化合物であることが好ましい。 In this embodiment, the compound having the (meth) acryloyloxy group is preferably a (meth) acrylic acid ester compound.
 本発明の他の態様は、支持部材と、半導体素子と、上記支持部材及び上記半導体素子の間に配置され、上記支持部材及び上記半導体素子を接着する接着層と、を備え、上記接着層が、上記半導体素子接着用樹脂ペースト組成物の硬化物を含む、半導体装置に関する。 Another aspect of the present invention includes a support member, a semiconductor element, and an adhesive layer that is disposed between the support member and the semiconductor element and adheres the support member and the semiconductor element. The present invention also relates to a semiconductor device including a cured product of the above semiconductor element bonding resin paste composition.
 本態様の半導体装置は、支持部材と半導体素子とが上記半導体素子接着用樹脂ペースト組成物により接着されているため、安価なアルミニウム粉を用いながらも十分な信頼性を有する。 The semiconductor device of this aspect has sufficient reliability while using inexpensive aluminum powder because the support member and the semiconductor element are bonded by the resin paste composition for bonding a semiconductor element.
 本発明によれば、導電性フィラーとしてアルミニウム粉を用いながらも、優れたダイシェア強度及び保存安定性を有する半導体素子接着用樹脂ペースト組成物が提供される。また本発明によれば、当該半導体素子接着用樹脂ペースト組成物を用いて製造された半導体装置が提供される。 According to the present invention, there is provided a resin paste composition for adhering semiconductor elements having excellent die shear strength and storage stability while using aluminum powder as a conductive filler. Moreover, according to this invention, the semiconductor device manufactured using the said resin paste composition for semiconductor element adhesion | attachment is provided.
(a)はVA-2000の電子顕微鏡写真を示す図であり、(b)はNo.800Fの電子顕微鏡写真を示す図であり、(c)はNo.500Mの電子顕微鏡写真を示す図である。(A) is a figure which shows the electron micrograph of VA-2000, (b) is No. It is a figure which shows the electron micrograph of 800F, (c) is No .. It is a figure which shows a 500M electron micrograph. (a)は実施例1で得られた樹脂ペースト組成物中のアルミニウム粉及び銀粉の混合粉の電子顕微鏡写真を示す図であり、(b)は参考例1で得られた樹脂ペースト組成物中の銀粉の電子顕微鏡写真を示す図である。(A) is a figure which shows the electron micrograph of the mixed powder of the aluminum powder and silver powder in the resin paste composition obtained in Example 1, (b) is in the resin paste composition obtained in Reference Example 1. It is a figure which shows the electron micrograph of silver powder. 体積抵抗率の測定に用いる試験サンプルの作製方法を示す模式図である。It is a schematic diagram which shows the preparation methods of the test sample used for the measurement of volume resistivity.
 本発明の半導体素子接着用樹脂ペースト組成物の好適な実施形態について以下に説明する。なお、本明細書中、「(メタ)アクリル」とは、アクリル又はメタクリルを意味する。すなわち、「(メタ)アクリロイルオキシ基を有する」とは、アクリロイルオキシ基又はメタアクリロイルオキシ基を有することを意味する。 Preferred embodiments of the resin paste composition for adhering semiconductor elements of the present invention will be described below. In the present specification, “(meth) acryl” means acryl or methacryl. That is, “having a (meth) acryloyloxy group” means having an acryloyloxy group or a methacryloyloxy group.
 本実施形態に係る半導体素子接着用樹脂ペースト組成物(以下、単に「樹脂ペースト組成物」と称する。)は、(メタ)アクリロイルオキシ基を有する化合物(以下、場合により「(A)成分」と称する。)と、重合開始剤(以下、場合により「(B)成分」と称する。)と、可とう化剤(以下、場合により「(C)成分」と称する。)と、アミン化合物(以下、場合により「(D)成分」と称する。)と、アルミニウム粉(以下、場合により「(E)成分」と称する。)と、を含有する。樹脂ペースト組成物は、上記特定の成分を含有するため、優れたダイシェア強度及び保存安定性を有する。 The resin paste composition for bonding semiconductor elements according to the present embodiment (hereinafter simply referred to as “resin paste composition”) is a compound having a (meth) acryloyloxy group (hereinafter referred to as “(A) component”). A polymerization initiator (hereinafter sometimes referred to as “component (B)”), a flexible agent (hereinafter sometimes referred to as “component (C)”), and an amine compound (hereinafter referred to as “component (B)”). In some cases, it is referred to as “(D) component”) and aluminum powder (hereinafter, sometimes referred to as “(E) component”). Since the resin paste composition contains the specific component, it has excellent die shear strength and storage stability.
 樹脂ペースト組成物は、実質的に芳香族系エポキシ樹脂を含有しないことが好ましい。従来の樹脂ペーストでは、導電性フィラーとしてアルミニウム粉を用いると、体積抵抗率が急激に上昇して十分な電気伝導性が得られない場合があるが、上記特定の成分を含有し且つ実質的に芳香族系エポキシ樹脂を含有しない樹脂ペースト組成物は、優れた電気伝導性を有する。 It is preferable that the resin paste composition does not substantially contain an aromatic epoxy resin. In the conventional resin paste, when aluminum powder is used as the conductive filler, the volume resistivity may increase rapidly, and sufficient electrical conductivity may not be obtained. The resin paste composition containing no aromatic epoxy resin has excellent electrical conductivity.
 ここで「実質的に芳香族系エポキシ樹脂を含有しない」とは、体積抵抗率の急激な上昇が観測されない程度で、芳香族系エポキシ樹脂が微量に存在してもよいことを意味する。具体的には、芳香族系エポキシ樹脂の含有量が樹脂ペースト組成物の総量基準で0.1質量%以下であればよく、0.05質量%以下であることが好ましい。また、芳香族系エポキシ樹脂を含有しないことがより好ましい。 Here, “substantially does not contain an aromatic epoxy resin” means that a small amount of aromatic epoxy resin may be present to such an extent that a rapid increase in volume resistivity is not observed. Specifically, the content of the aromatic epoxy resin may be 0.1% by mass or less, and preferably 0.05% by mass or less based on the total amount of the resin paste composition. Moreover, it is more preferable not to contain an aromatic epoxy resin.
 (A)成分は、アルミニウム粉、銀粉等を分散させるマトリックスともいえる成分であり、1分子中に1個以上の(メタ)アクリロイルオキシ基を有する。(A)成分としては、アクリル酸エステル化合物及びメタアクリル酸エステル化合物からなる群より選択される少なくとも一種を含有することが好ましい。アクリル酸エステル化合物及びメタアクリル酸エステル化合物からなる群より選択される少なくとも一種と、アルミニウム粉と、を組み合わせて用いることで、樹脂ペースト組成物は、電気伝導性、保存安定性及びダイシェア強度が一層向上するとともに、塗布作業性及び機械特性が一層向上して、ダイボンディング用として一層好適なものとなる。 The component (A) is a component that can be said to be a matrix in which aluminum powder, silver powder or the like is dispersed, and has one or more (meth) acryloyloxy groups in one molecule. The component (A) preferably contains at least one selected from the group consisting of acrylic ester compounds and methacrylic ester compounds. By using a combination of at least one selected from the group consisting of an acrylic ester compound and a methacrylic ester compound and aluminum powder, the resin paste composition has more electrical conductivity, storage stability and die shear strength. In addition to the improvement, the coating workability and the mechanical characteristics are further improved, and it becomes more suitable for die bonding.
 (A)成分としては、例えば、1分子中に1個の(メタ)アクリロイルオキシ基を有する化合物(以下、場合により「(A-1)成分」と称する。)、1分子中に2個の(メタ)アクリロイルオキシ基を有する化合物(以下、場合により「(A-2)成分」と称する。)、1分子中に3個以上の(メタ)アクリロイルオキシ基を有する化合物(以下、場合により「(A-3)成分」と称する。)が挙げられる。 As the component (A), for example, a compound having one (meth) acryloyloxy group in one molecule (hereinafter sometimes referred to as “component (A-1)”), two compounds in one molecule A compound having a (meth) acryloyloxy group (hereinafter sometimes referred to as “component (A-2)”), a compound having three or more (meth) acryloyloxy groups in one molecule (hereinafter sometimes referred to as “ (Referred to as “component (A-3)”).
 (A-1)成分の1個のアクリロイルオキシ基を有する化合物としては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、イソブチルアクリレート、t-ブチルアクリレート、アミルアクリレート、イソアミルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、イソデシルアクリレート、ラウリルアクリレート、トリデシルアクリレート、ヘキサデシルアクリレート、ステアリルアクリレート、イソステアリルアクリレート、シクロヘキシルアクリレート、イソボルニルアクリレート、トリシクロ[5.2.1.02,6]デシルアクリレート、2-(トリシクロ)[5.2.1.02,6]デカ-3-エン-8-イルオキシエチルアクリレート、2-(トリシクロ)[5.2.1.02,6]デカ-3-エン-9-イルオキシエチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、ダイマージオールモノアクリレート、ジエチレングリコールアクリレート、ポリエチレングリコールアクリレート、ポリプロピレングリコールアクリレート、2-メトキシエチルアクリレート、2-エトキシエチルアクリレート、2-ブトキシエチルアクリレート、メトキシジエチレングリコールアクリレート、メトキシポリエチレングリコールアクリレート、2-フェノキシエチルアクリレート、フェノキシジエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレート、2-ベンゾイルオキシエチルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、ベンジルアクリレート、2-シアノエチルアクリレート、γ-アクリロキシプロピルトリメトキシシラン、グリシジルアクリレート、テトラヒドロフルフリルアクリレート、ジシクロペンテニルオキシエチルアクリレ-ト、ジシクロペンタニルアクリレ-ト、ジシクロペンテニルアクリレ-ト、テトラヒドロピラニルアクリレート、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート、1,2,2,6,6-ペンタメチルピペリジニルアクリレート、2,2,6,6-テトラメチルピペリジニルアクリレート、アクリロキシエチルホスフェート、アクリロキシエチルフェニルアシッドホスフェート、β-アクリロイルオキシエチルハイドロジェンフタレート、β-アクリロイルオキシエチルハイドロジェンサクシネートが挙げられる。 Examples of the component (A-1) compound having one acryloyloxy group include methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, n-butyl acrylate, isobutyl acrylate, t-butyl acrylate, amyl acrylate, and isoamyl. Acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, isodecyl acrylate, lauryl acrylate, tridecyl acrylate, hexadecyl acrylate, stearyl acrylate, isostearyl acrylate, cyclohexyl acrylate, isobornyl acrylate, tricyclo [5.2.1.0 2,6] Deshiruakuri Over DOO, 2- (tricyclo) [5.2.1.0 2,6] dec-3-en-8-yl oxy ethyl acrylate, 2- (tricyclo) [5.2.1.0 2,6] Dec-3-en-9-yloxyethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, dimer diol monoacrylate, diethylene glycol acrylate, polyethylene glycol acrylate, polypropylene glycol acrylate, 2-methoxyethyl acrylate, 2-ethoxy Ethyl acrylate, 2-butoxyethyl acrylate, methoxydiethylene glycol acrylate, methoxypolyethylene glycol acrylate, 2-phenoxyethyl acrylate, phenoxydiethylene glycol acrylate, Enoxypolyethylene glycol acrylate, 2-benzoyloxyethyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, benzyl acrylate, 2-cyanoethyl acrylate, γ-acryloxypropyltrimethoxysilane, glycidyl acrylate, tetrahydrofurfuryl acrylate, di Cyclopentenyloxyethyl acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, tetrahydropyranyl acrylate, dimethylaminoethyl acrylate, diethylaminoethyl acrylate, 1,2,2,6,6- Pentamethylpiperidinyl acrylate, 2,2,6,6-tetramethylpiperidinyl acrylate, acryloxyethyl phosphate, acryloxyethyl ester Alkenyl acid phosphate, beta-acryloyloxyethyl hydrogen phthalate, and a beta-acryloyloxyethyl hydrogen succinate.
 また、(A-1)成分の1個のメタアクリロイルオキシ基を有する化合物としては、例えば、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、イソブチルメタクリレート、t-ブチルメタクリレート、アミルメタクリレート、イソアミルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、イソデシルメタクリレート、ラウリルメタクリレート、トリデシルメタクリレート、ヘキサデシルメタクリレート、ステアリルメタクリレート、イソステアリルメタクリレート、シクロヘキシルメタクリレート、イソボルニルメタクリレート、トリシクロ[5.2.1.02,6]デシルメタクリレート、2-(トリシクロ)[5.2.1.02,6]デカ-3-エン-8-イルオキシエチルメタクリレート、2-(トリシクロ)[5.2.1.02,6]デカ-3-エン-9-イルオキシエチルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、ダイマージオールモノメタクリレート、ジエチレングリコールメタクリレート、ポリエチレングリコールメタクリレート、ポリプロピレングリコールメタクリレート、2-メトキシエチルメタクリレート、2-エトキシエチルメタクリレート、2-ブトキシエチルメタクリレート、メトキシジエチレングリコールメタクリレート、メトキシポリエチレングリコールメタクリレート、2-フェノキシエチルメタクリレート、フェノキシジエチレングリコールメタクリレート、フェノキシポリエチレングリコールメタクリレート、2-ベンゾイルオキシエチルメタクリレート、2-ヒドロキシ-3-フェノキシプロピルメタクリレート、ベンジルメタクリレート、2-シアノエチルメタクリレート、γ-メタクリロキシプロピルトリメトキシシラン、グリシジルメタクリレート、テトラヒドロフルフリルメタクリレート、ジシクロペンテニルオキシエチルメタクリレ-ト、ジシクロペンタニルメタクリレ-ト、ジシクロペンテニルメタクリレ-ト、テトラヒドロピラニルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、1,2,2,6,6-ペンタメチルピペリジニルメタクリレート、2,2,6,6-テトラメチルピペリジニルメタクリレート、メタクリロキシエチルホスフェート、メタクリロキシエチルフェニルアシッドホスフェート、β-メタクリロイルオキシエチルハイドロジェンフタレート、β-メタクリロイルオキシエチルハイドロジェンサクシネートが挙げられる。 Examples of the compound (A-1) having one methacryloyloxy group include, for example, methyl methacrylate, ethyl methacrylate, propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, isobutyl methacrylate, t-butyl methacrylate, amyl Methacrylate, isoamyl methacrylate, hexyl methacrylate, heptyl methacrylate, octyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, decyl methacrylate, isodecyl methacrylate, lauryl methacrylate, tridecyl methacrylate, hexadecyl methacrylate, stearyl methacrylate, isostearyl methacrylate, cyclohexyl methacrylate, Isobornyl methacrylate Over DOO, tricyclo [5.2.1.0 2, 6] decyl methacrylate, 2- (tricyclo) [5.2.1.0 2,6] dec-3-en-8-yl methacrylate, 2 -(Tricyclo) [5.2.1.0 2,6 ] dec-3-en-9-yloxyethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, dimer diol monomethacrylate, diethylene glycol methacrylate, polyethylene Glycol methacrylate, polypropylene glycol methacrylate, 2-methoxyethyl methacrylate, 2-ethoxyethyl methacrylate, 2-butoxyethyl methacrylate, methoxydiethylene glycol methacrylate, methoxypolyethylene glycol methacrylate 2-phenoxyethyl methacrylate, phenoxydiethylene glycol methacrylate, phenoxypolyethylene glycol methacrylate, 2-benzoyloxyethyl methacrylate, 2-hydroxy-3-phenoxypropyl methacrylate, benzyl methacrylate, 2-cyanoethyl methacrylate, γ-methacryloxypropyltrimethoxysilane Glycidyl methacrylate, tetrahydrofurfuryl methacrylate, dicyclopentenyloxyethyl methacrylate, dicyclopentanyl methacrylate, dicyclopentenyl methacrylate, tetrahydropyranyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, 1,2,2,6,6-pentamethylpiperidinylmeta Relate, 2,2,6,6-tetramethylpiperidinyl methacrylate, methacryloxyethyl phosphate, methacryloxyethyl phenyl acid phosphate, β-methacryloyloxyethyl hydrogen phthalate, β-methacryloyloxyethyl hydrogen succinate .
 (A-1)成分としては、樹脂ペースト組成物を用いて製造した半導体装置におけるダイシェア強度の観点から、下記式(I)で表される化合物が好ましい。 The component (A-1) is preferably a compound represented by the following formula (I) from the viewpoint of die shear strength in a semiconductor device produced using a resin paste composition.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式中、Rは水素原子又はメチル基を示し、Rは脂環式基又は複素環式基を示し、Xは炭素数1~5のアルキレン基を示し、nは0~10の整数を示す。nが2以上の整数であるとき、複数存在するXは互いに同一であっても異なっていてもよい。ここで脂環式基は、炭素原子が環状に結合した構造を有する基であり、複素環式基は、炭素原子とヘテロ原子とが環状に結合した構造を有する基である。 In the formula, R 1 represents a hydrogen atom or a methyl group, R 2 represents an alicyclic group or a heterocyclic group, X represents an alkylene group having 1 to 5 carbon atoms, and n represents an integer of 0 to 10 Show. When n is an integer of 2 or more, a plurality of Xs may be the same or different from each other. Here, the alicyclic group is a group having a structure in which carbon atoms are cyclically bonded, and the heterocyclic group is a group having a structure in which carbon atoms and heteroatoms are bonded cyclically.
 脂環式基としては、下記式(1-1)、(1-2)、(1-3)又は(1-4)で表される基が挙げられる。 Examples of the alicyclic group include groups represented by the following formula (1-1), (1-2), (1-3) or (1-4).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式中、R、R及びRはそれぞれ独立に、水素原子又は炭素数1~5のアルキル基を示す。 In the formula, R 3 , R 4 and R 5 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
 複素環式基としては、下記式(2-1)、(2-2)、(2-3)又は(2-4)で表される基が挙げられる。 Examples of the heterocyclic group include groups represented by the following formula (2-1), (2-2), (2-3) or (2-4).
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 式中、R、R、R、R及びR10はそれぞれ独立に、水素原子又は炭素数1~5のアルキル基を示す。 In the formula, R 6 , R 7 , R 8 , R 9 and R 10 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms.
 式(I)で表される化合物としては、例えば、シクロヘキシルアクリレート、イソボルニルアクリレート、トリシクロ[5.2.1.02,6]デシルアクリレート、2-(トリシクロ)[5.2.1.02,6]デカ-3-エン-8-イルオキシエチルアクリレート、2-(トリシクロ)[5.2.1.02,6]デカ-3-エン-9-イルオキシエチルアクリレート、グリシジルアクリレート、テトラヒドロフルフリルアクリレート、ジシクロペンテニルオキシエチルアクリレ-ト、ジシクロペンタニルアクリレ-ト、ジシクロペンテニルアクリレ-ト、テトラヒドロピラニルアクリレート、ジメチルアミノエチルアクリレート、ジエチルアミノエチルアクリレート、1,2,2,6,6-ペンタメチルピペリジニルアクリレート、2,2,6,6-テトラメチルピペリジニルアクリレートシクロヘキシルメタクリレート、イソボルニルメタクリレート、トリシクロ[5.2.1.02,6]デシルメタクリレート、2-(トリシクロ)[5.2.1.02,6]デカ-3-エン-8-イルオキシエチルメタクリレート、2-(トリシクロ)[5.2.1.02,6]デカ-3-エン-9-イルオキシエチルメタクリレート、グリシジルメタクリレート、テトラヒドロフルフリルメタクリレート、ジシクロペンテニルオキシエチルメタクリレ-ト、ジシクロペンタニルメタクリレ-ト、ジシクロペンテニルメタクリレ-ト、テトラヒドロピラニルメタクリレート、ジメチルアミノエチルメタクリレート、ジエチルアミノエチルメタクリレート、1,2,2,6,6-ペンタメチルピペリジニルメタクリレート、2,2,6,6-テトラメチルピペリジニルメタクリレートが挙げられる。 Examples of the compound represented by the formula (I) include cyclohexyl acrylate, isobornyl acrylate, tricyclo [5.2.1.0 2,6 ] decyl acrylate, 2- (tricyclo) [5.2.1. 0 2,6 ] dec-3-en-8-yloxyethyl acrylate, 2- (tricyclo) [5.2.1.0 2,6 ] dec-3-en-9-yloxyethyl acrylate, glycidyl acrylate , Tetrahydrofurfuryl acrylate, dicyclopentenyloxyethyl acrylate, dicyclopentanyl acrylate, dicyclopentenyl acrylate, tetrahydropyranyl acrylate, dimethylaminoethyl acrylate, diethylaminoethyl acrylate, 1,2 , 2,6,6-pentamethylpiperidinyl acrylate, , 2,6,6-tetramethyl piperidinyl acrylate cyclohexyl methacrylate, isobornyl methacrylate, tricyclo [5.2.1.0 2, 6] decyl methacrylate, 2- (tricyclo) [5.2.1.0 2,6 ] dec-3-en-8-yloxyethyl methacrylate, 2- (tricyclo) [5.2.1.0 2,6 ] dec-3-en-9-yloxyethyl methacrylate, glycidyl methacrylate, Tetrahydrofurfuryl methacrylate, dicyclopentenyloxyethyl methacrylate, dicyclopentanyl methacrylate, dicyclopentenyl methacrylate, tetrahydropyranyl methacrylate, dimethylaminoethyl methacrylate, diethylaminoethyl methacrylate, 1,2, 2,6,6-pe Data methylpiperidinyl methacrylate, 2,2,6,6-tetramethyl piperidinyl methacrylate.
 (A-2)成分の1分子中に2個のアクリロイルオキシ基を有する化合物としては、例えば、エチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート、1,3-ブタンジオールジアクリレート、ネオペンチルグリコールジアクリレート、ダイマージオールジアクリレート、ジメチロールトリシクロデカンジアクリレート、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ビス(アクリロキシプロピル)ポリジメチルシロキサン、ビス(アクリロキシプロピル)メチルシロキサン-ジメチルシロキサンコポリマーが挙げられる。また、(A-2)成分としては、ビスフェノールA、ビスフェノールF又はビスフェノールAD1モルとグリシジルアクリレート2モルとの反応物;ビスフェノールA、ビスフェノールF又はビスフェノールADのポリエチレンオキサイド付加物のジアクリレート;ビスフェノールA、ビスフェノールF又はビスフェノールADのポリプロピレンオキサイド付加物のジアクリレート等も挙げられる。 Examples of the compound having two acryloyloxy groups in one molecule of the component (A-2) include ethylene glycol diacrylate, 1,4-butanediol diacrylate, 1,6-hexanediol diacrylate, 1, 9-nonanediol diacrylate, 1,3-butanediol diacrylate, neopentyl glycol diacrylate, dimer diol diacrylate, dimethylol tricyclodecane diacrylate, diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate , Polyethylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, bis (acryloxypropyl) polydimethylsiloxane Include dimethylsiloxane copolymer - down, bis (acryloxypropyl) methylsiloxane. Further, as the component (A-2), bisphenol A, bisphenol F or a reaction product of 1 mol of bisphenol AD and 2 mol of glycidyl acrylate; diacrylate of bisphenol A, bisphenol F or polyethylene oxide adduct of bisphenol AD; bisphenol A, The diacrylate etc. of the polypropylene oxide adduct of bisphenol F or bisphenol AD are also mentioned.
 (A-2)成分の1分子中に2個のメタクリロイルオキシ基を有する化合物としては、例えば、エチレングリコールジメタクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジメタクリレート、1,9-ノナンジオールジメタクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジメタクリレート、ダイマージオールジメタクリレート、ジメチロールトリシクロデカンジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ポリエチレングリコールジメタクリレート、トリプロピレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、ビス(メタクリロキシプロピル)ポリジメチルシロキサン、ビス(メタクリロキシプロピル)メチルシロキサン-ジメチルシロキサンコポリマーが挙げられる。また、(A-2)成分としては、ビスフェノールA、ビスフェノールF又はビスフェノールAD1モルとグリシジルメタクリレート2モルとの反応物;ビスフェノールA、ビスフェノールF又はビスフェノールADのポリエチレンオキサイド付加物のジメタクリレート;ビスフェノールA、ビスフェノールF又はビスフェノールADのポリプロピレンオキサイド付加物のジメタクリレート等も挙げられる。 Examples of the compound having two methacryloyloxy groups in one molecule of the component (A-2) include ethylene glycol dimethacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol dimethacrylate, 1, 9-nonanediol dimethacrylate, 1,3-butanediol dimethacrylate, neopentyl glycol dimethacrylate, dimer diol dimethacrylate, dimethylol tricyclodecane dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol dimethacrylate , Polyethylene glycol dimethacrylate, tripropylene glycol dimethacrylate, polypropylene glycol dimethacrylate, bis (methacrylo Shipuropiru) polydimethylsiloxane, bis (methacryloxypropyl) methylsiloxane - include dimethylsiloxane copolymers. The component (A-2) includes a reaction product of 1 mol of bisphenol A, bisphenol F or bisphenol AD and 2 mol of glycidyl methacrylate; dimethacrylate of bisphenol A, bisphenol F or polyethylene oxide adduct of bisphenol AD; The dimethacrylate etc. of the polypropylene oxide addition product of bisphenol F or bisphenol AD are also mentioned.
 (A-2)成分としては、樹脂ペースト組成物を用いて製造した半導体装置におけるダイシェア強度の観点から、下記式(II)で表される化合物が好ましい。 As the component (A-2), a compound represented by the following formula (II) is preferable from the viewpoint of die shear strength in a semiconductor device produced using a resin paste composition.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 式中、R11及びR12はそれぞれ独立に水素原子又はメチル基を示し、R13及びR14はそれぞれ独立に水素原子又は炭素数1~5のアルキル基を示し、Y及びYはそれぞれ独立に炭素数1~5のアルキレン基を示し、p及びqはそれぞれ独立に1~20の整数を示す。pが2以上の整数であるとき、複数存在するYは互いに同一であっても異なっていてもよい。qが2以上の整数であるとき、複数存在するYは互いに同一であっても異なっていてもよい。 In the formula, R 11 and R 12 each independently represent a hydrogen atom or a methyl group, R 13 and R 14 each independently represent a hydrogen atom or an alkyl group having 1 to 5 carbon atoms, and Y 1 and Y 2 each represents Each independently represents an alkylene group having 1 to 5 carbon atoms, and p and q each independently represents an integer of 1 to 20; When p is an integer of 2 or more, a plurality of Y 1 may be the same as or different from each other. When q is an integer of 2 or more, a plurality of Y 2 may be the same as or different from each other.
 (A-3)成分の1分子中に3個以上のアクリロイルオキシ基を有する化合物としては、例えば、トリメチロールプロパントリアクリレート、エチレンオキシド変性トリメチロールプロパントリアクリレート、プロピレンオキシド変性トリメチロールプロパントリアクリレート、エチレンオキシド・プロピレンオキシド変性トリメチロールプロパントリアクリレート、テトラメチロールメタントリアクリレート、テトラメチロールメタンテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールトリアクリレートが挙げられる。 Examples of the compound having three or more acryloyloxy groups in one molecule of component (A-3) include trimethylolpropane triacrylate, ethylene oxide-modified trimethylolpropane triacrylate, propylene oxide-modified trimethylolpropane triacrylate, and ethylene oxide. -Propylene oxide modified trimethylolpropane triacrylate, tetramethylolmethane triacrylate, tetramethylolmethane tetraacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, pentaerythritol triacrylate.
 (A-3)成分の1分子中に3個以上のメタクリロイルオキシ基を有する化合物としては、例えば、トリメチロールプロパントリメタクリレート、エチレンオキシド変性トリメチロールプロパントリメタクリレート、プロピレンオキシド変性トリメチロールプロパントリメタクリレート、エチレンオキシド・プロピレンオキシド変性トリメチロールプロパントリメタクリレート、テトラメチロールメタントリメタクリレート、テトラメチロールメタンテトラメタクリレート、ジペンタエリスリトールペンタメタクリレート、ジペンタエリスリトールヘキサメタクリレート、ペンタエリスリトールトリメタクリレートが挙げられる。 Examples of the compound having three or more methacryloyloxy groups in one molecule of the component (A-3) include trimethylolpropane trimethacrylate, ethylene oxide-modified trimethylolpropane trimethacrylate, propylene oxide-modified trimethylolpropane trimethacrylate, and ethylene oxide. -Propylene oxide modified trimethylolpropane trimethacrylate, tetramethylolmethane trimethacrylate, tetramethylolmethane tetramethacrylate, dipentaerythritol pentamethacrylate, dipentaerythritol hexamethacrylate, pentaerythritol trimethacrylate.
 (A)成分としては、上記の化合物のうち一種を単独で又は二種以上を組み合わせて用いることができる。例えば、(A)成分としては、ダイシェア強度及び作業性(粘度)をバランス良く向上できる観点から、(A-1)成分と(A-2)成分とを組み合わせて用いることが好ましい。 As the component (A), one of the above compounds can be used alone, or two or more can be used in combination. For example, the component (A) is preferably used in combination with the component (A-1) and the component (A-2) from the viewpoint of improving the die shear strength and workability (viscosity) in a balanced manner.
 (A)成分の含有量は、樹脂ペースト組成物の総量基準で、5~25質量%が好ましく、10~20質量%がより好ましい。(A)成分の含有量が5~25質量%であると、十分なダイシェア強度が得られるとともに、樹脂ペースト組成物の硬化物中にボイドと呼ばれる空隙が生じにくくなる。 The content of the component (A) is preferably 5 to 25% by mass and more preferably 10 to 20% by mass based on the total amount of the resin paste composition. When the content of the component (A) is 5 to 25% by mass, sufficient die shear strength can be obtained, and voids called voids are hardly generated in the cured product of the resin paste composition.
 (B)成分は、(A)成分を重合させて樹脂ペースト組成物を硬化させるための成分であり、加熱及び/又は光照射によってラジカルを発生する化合物であることが好ましい。(B)成分としては、熱重合開始剤、光重合開始剤が挙げられる。なお、(B)成分は一種を単独で又は二種以上を組み合わせて用いることができる。 The component (B) is a component for polymerizing the component (A) to cure the resin paste composition, and is preferably a compound that generates radicals by heating and / or light irradiation. (B) As a component, a thermal-polymerization initiator and a photoinitiator are mentioned. In addition, (B) component can be used individually by 1 type or in combination of 2 or more types.
 熱重合開始剤としては、例えば、アゾビスイソブチロニトリル、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)等のアゾ系ラジカル開始剤;1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、1,1-ビス(t-ブチルパーオキシ)シクロドデカン、ジ-t-ブチルパーオキシイソフタレート、t-ブチルパーベンゾエート、ジクミルパーオキサイド、t-ブチルクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン、クメンハイドロパーオキサイド、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシ-2-エチルヘキサノエート、2,5-ジメチル-2,5-ビス(2-エチルヘキサノイルパーオキシ)へキサン等の過酸化物が挙げられる。 Examples of the thermal polymerization initiator include azo radical initiators such as azobisisobutyronitrile and 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile); 1,1,3,3 -Tetramethylbutylperoxy-2-ethylhexanoate, 1,1-bis (t-butylperoxy) cyclohexane, 1,1-bis (t-butylperoxy) cyclododecane, di-t-butylperoxy Isophthalate, t-butyl perbenzoate, dicumyl peroxide, t-butyl cumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5 -Di (t-butylperoxy) hexyne, cumene hydroperoxide, t-butylperoxy-2-ethylhexanoate, t-hexyl Okishi-2-ethylhexanoate, 2,5-dimethyl-2,5-bis peroxide cyclohexane and the like (2-ethyl hexanoyl peroxy) and the like.
 光重合開始剤としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン等のアセトフェノン類;2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド等のベンゾフェノン類;2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のホスフィンオキサイド類が挙げられる。 Examples of the photopolymerization initiator include acetophenones such as 1-hydroxycyclohexyl phenyl ketone and 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-1-propanone; 2,4-dimethylthioxanthone, Thioxanthones such as 2,4-diethylthioxanthone, 2-chlorothioxanthone, and 2,4-diisopropylthioxanthone; Ketals such as acetophenone dimethyl ketal and benzyldimethyl ketal; Benzophenone, 4,4′-bis (diethylamino) benzophenone, 4- Benzophenones such as benzoyl-4′-methyldiphenyl sulfide; and phosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
 (B)成分としては、樹脂ペースト組成物の硬化物中におけるボイドと呼ばれる空隙の発生を低減できるため、過酸化物が好ましい。また、樹脂ペースト組成物の硬化性及び粘度安定性が一層向上することから、過酸化物の10時間半減期温度は、60~170℃であることが好ましい。ここで半減期とは、一定温度における、過酸化物が分解してその活性酸素量が1/2になるまでに要する時間を示し、10時間半減期温度とは、半減期が10時間となる温度を示す。 As the component (B), a peroxide is preferable because generation of voids called voids in the cured product of the resin paste composition can be reduced. Further, since the curability and viscosity stability of the resin paste composition are further improved, the 10-hour half-life temperature of the peroxide is preferably 60 to 170 ° C. Here, the half-life refers to the time required for the peroxide to decompose and the amount of active oxygen to be halved at a constant temperature. The 10-hour half-life temperature is a half-life of 10 hours. Indicates temperature.
 半減期は、例えば、以下のようにして測定することができる。まず、ラジカルに対して比較的不活性な溶液、例えばベンゼンを主として使用して、0.1mol/l濃度の過酸化物溶液を調製し、窒素置換を行ったガラス管中に密閉する。そして、所定温度にセットした恒温槽に浸し、熱分解させる。一般的に過酸化物の分解は近似的に一次反応として取り扱うことができるので、t時間後までに分解した過酸化物の濃度x、分解速度定数k、時間t、初期過酸化物濃度aとすると、下記式(i)が成り立つ。
  dx/dt=k(a-x)  (i)
 そして、式(i)を変形すると式(ii)になる。
  ln a/(a-x)=kt  (ii)
 半減期は、分解により過酸化物濃度が初期の半分に減ずるまでの時間であるので、半減期をt1/2で示し、式(ii)のxにa/2を代入すると、式(iii)になる。
  kt1/2=ln2  (iii)
 したがって、ある一定温度で熱分解させ、得られた直線の傾きから分解速度定数kを求め、式(iii)からその温度における半減期(t1/2)を求めることができる。
The half-life can be measured, for example, as follows. First, a peroxide solution having a concentration of 0.1 mol / l is prepared mainly using a solution that is relatively inert to radicals, such as benzene, and sealed in a glass tube subjected to nitrogen substitution. And it is immersed in the thermostat set to predetermined temperature, and is thermally decomposed. In general, the decomposition of peroxide can be treated approximately as a primary reaction. Therefore, the peroxide concentration x decomposed by the time t, the decomposition rate constant k, the time t, and the initial peroxide concentration a Then, the following formula (i) is established.
dx / dt = k (ax) (i)
Then, when formula (i) is modified, formula (ii) is obtained.
ln a / (ax) = kt (ii)
Since the half-life is the time until the peroxide concentration is reduced to half of the initial value due to decomposition, the half-life is represented by t 1/2 , and when a / 2 is substituted for x in the formula (ii), the formula (iii) )become.
kt 1/2 = ln2 (iii)
Therefore, thermal decomposition is performed at a certain temperature, the decomposition rate constant k is obtained from the slope of the obtained straight line, and the half-life (t 1/2 ) at that temperature can be obtained from the equation (iii).
 (B)成分の含有量は、(A)成分の総量100質量部に対して0.1~10質量部であることが好ましく、2~8質量部であることがより好ましい。(B)成分の含有量が0.1質量部以上であると樹脂ペースト組成物の硬化性が一層良好となる。また、(B)成分の含有量が10質量部を超えると、樹脂ペースト組成物の硬化時に揮発分が多く発生し、樹脂ペースト組成物の硬化物中にボイドと呼ばれる空隙が生じやすくなる傾向がある。(B)成分は、一種を単独で又は二種以上を組み合わせて用いることができる。 The content of the component (B) is preferably 0.1 to 10 parts by mass, and more preferably 2 to 8 parts by mass with respect to 100 parts by mass of the total amount of the component (A). When the content of the component (B) is 0.1 parts by mass or more, the curability of the resin paste composition is further improved. Further, when the content of the component (B) exceeds 10 parts by mass, a large amount of volatile matter is generated when the resin paste composition is cured, and voids called voids tend to be easily generated in the cured product of the resin paste composition. is there. (B) A component can be used individually by 1 type or in combination of 2 or more types.
 また、(B)成分の含有量は、樹脂ペースト組成物の総量基準で、0.1~5質量%であることが好ましく、0.6~1質量%であることがより好ましい。(B)成分の含有量が0.1質量%以上であると樹脂ペースト組成物の硬化性が一層良好となる。また、(B)成分の含有量が5質量%を超えると、樹脂ペースト組成物の硬化時に揮発分が多く発生し、樹脂ペースト組成物の硬化物中にボイドと呼ばれる空隙が生じやすくなる傾向がある。 The content of component (B) is preferably 0.1 to 5% by mass, more preferably 0.6 to 1% by mass, based on the total amount of the resin paste composition. When the content of component (B) is 0.1% by mass or more, the curability of the resin paste composition is further improved. Further, when the content of the component (B) exceeds 5% by mass, a large amount of volatile matter is generated when the resin paste composition is cured, and voids called voids tend to be generated in the cured product of the resin paste composition. is there.
 (C)成分は、樹脂ペースト組成物の硬化物に可とう性を付与する成分である。樹脂ペースト組成物に(C)成分を配合することによって、熱膨張及び/又は収縮に対する応力緩和の効果が得られる。(C)成分としては、特に制限は無いが、液状ゴム及び熱可塑性樹脂からなる群より選択される少なくとも一種を用いることが好ましい。 The component (C) is a component that imparts flexibility to the cured product of the resin paste composition. By blending the component (C) with the resin paste composition, an effect of stress relaxation against thermal expansion and / or contraction can be obtained. (C) Although there is no restriction | limiting in particular as a component, It is preferable to use at least 1 type selected from the group which consists of liquid rubber and a thermoplastic resin.
 液状ゴムとしては、例えば、ポリブタジエン、エポキシ化ポリブタジエン、マレイン化ポリブタジエン、アクリロニトリルブタジエンゴム、カルボキシ基を有するアクリロニトリルブタジエンゴム、アミノ末端アクリロニトリルブタジエンゴム、ビニル末端アクリロニトリルブタジエンゴム、スチレンブタジエンゴム等のポリブタジエン骨格を有する液状ゴムが挙げられる。 Examples of the liquid rubber include polybutadiene skeletons such as polybutadiene, epoxidized polybutadiene, maleated polybutadiene, acrylonitrile butadiene rubber, acrylonitrile butadiene rubber having a carboxy group, amino terminal acrylonitrile butadiene rubber, vinyl terminal acrylonitrile butadiene rubber, and styrene butadiene rubber. A liquid rubber is mentioned.
 液状ゴムの数平均分子量は、500~10000であることが好ましく、1000~5000であることがより好ましい。数平均分子量が500以上であると、可とう化効果に一層優れ、10000以下であると、可とう化剤による樹脂ペースト組成物の粘度上昇が十分に抑えられ、作業性が一層良好になる。なお、数平均分子量は、ゲルパーミエーションクロマトグラフィーにより標準ポリスチレンの検量線を利用して測定(以下、GPC法という)した値である。 The number average molecular weight of the liquid rubber is preferably 500 to 10,000, and more preferably 1000 to 5,000. When the number average molecular weight is 500 or more, the flexibility effect is further improved, and when the number average molecular weight is 10,000 or less, the increase in the viscosity of the resin paste composition by the flexible agent is sufficiently suppressed, and the workability is further improved. The number average molecular weight is a value measured by gel permeation chromatography using a standard polystyrene calibration curve (hereinafter referred to as GPC method).
 熱可塑性樹脂としては、例えば、ポリ酢酸ビニル、ポリアクリル酸アルキル等のアクリル樹脂、ε-カプロラクトン変性ポリエステル、フェノキシ樹脂、ポリイミドが挙げられる。 Examples of the thermoplastic resin include acrylic resins such as polyvinyl acetate and polyalkyl acrylate, ε-caprolactone-modified polyester, phenoxy resin, and polyimide.
 熱可塑性樹脂の数平均分子量は、10000~300000であることが好ましく、20000~200000であることがより好ましい。数平均分子量が10000以上であると、可とう化効果に一層優れ、300000以下であると、可とう化剤による樹脂ペースト組成物の粘度上昇が十分に抑えられ、作業性が一層良好になる。なお、数平均分子量は、GPC法により標準ポリスチレンの検量線を利用して測定した値である。 The number average molecular weight of the thermoplastic resin is preferably 10,000 to 300,000, and more preferably 20,000 to 200,000. When the number average molecular weight is 10,000 or more, the flexibility effect is further improved. When the number average molecular weight is 300,000 or less, the increase in the viscosity of the resin paste composition by the flexible agent is sufficiently suppressed, and the workability is further improved. The number average molecular weight is a value measured using a standard polystyrene calibration curve by the GPC method.
 樹脂ペースト組成物は、硬化物の弾性率をより低減できる観点から、(C)成分としてエポキシ化ポリブタジエンを含有することが好ましい。 The resin paste composition preferably contains epoxidized polybutadiene as the component (C) from the viewpoint of further reducing the elastic modulus of the cured product.
 エポキシ化ポリブタジエンは、一般に市販されているポリブタジエンを、過酸化水素水、過酸類等によりエポキシ化することによって容易に得ることができる。 Epoxidized polybutadiene can be easily obtained by epoxidizing commercially available polybutadiene with hydrogen peroxide solution, peracids or the like.
 エポキシ化ポリブタジエンとしては、例えば、B-1000、B-3000、G-1000、G-3000(以上、日本曹達(株)製)、B-1000、B-2000、B-3000、B-4000(以上、日本石油(株)製)、R-15HT、R-45HT、R-45M(以上、出光石油(株)製)、エポリードPB-3600、エポリードPB-4700(以上、ダイセル化学工業(株)製)が市販品として入手可能である。エポキシ化ポリブタジエンのオキシラン酸素濃度は、3~18%であることが好ましく、5~15%であることがより好ましい。 Examples of the epoxidized polybutadiene include B-1000, B-3000, G-1000, G-3000 (manufactured by Nippon Soda Co., Ltd.), B-1000, B-2000, B-3000, B-4000 ( (Nippon Petroleum Co., Ltd.), R-15HT, R-45HT, R-45M (above, Idemitsu Petroleum Co., Ltd.), Epolide PB-3600, Epolide PB-4700 (above, Daicel Chemical Industries, Ltd.) Are available as commercial products. The oxirane oxygen concentration of the epoxidized polybutadiene is preferably 3 to 18%, more preferably 5 to 15%.
 樹脂ペースト組成物は、硬化物の弾性率をより低減できるとともに、ダイシェア強度をより向上できる観点からは、(C)成分としてカルボキシ基を有するアクリロニトリルブタジエンゴムを含有することが好ましい。カルボキシ基を有するアクリロニトリルブタジエンゴムとしては、式(III)で表される化合物が好ましい。 The resin paste composition preferably contains acrylonitrile butadiene rubber having a carboxy group as the component (C) from the viewpoint of further reducing the elastic modulus of the cured product and further improving the die shear strength. As the acrylonitrile butadiene rubber having a carboxy group, a compound represented by the formula (III) is preferable.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式中、mは5~50の整数を示し、a及びbはそれぞれ独立に1以上の整数を示す。aとbの比(a/b)は、95/5~50/50であることが好ましい。 In the formula, m represents an integer of 5 to 50, and a and b each independently represent an integer of 1 or more. The ratio of a to b (a / b) is preferably 95/5 to 50/50.
 式(III)で表される化合物としては、例えば、Hycar CTBN-2009×162、CTBN-1300×31、CTBN-1300×8、CTBN-1300×13、CTBN-1009SP-S、CTBNX-1300×9(いずれも宇部興産株式会社製)が市販品として入手可能である。 Examples of the compound represented by the formula (III) include Hycar CTBN-2009 × 162, CTBN-1300 × 31, CTBN-1300 × 8, CTBN-1300 × 13, CTBN-1009SP-S, CTBNX-1300 × 9 (Both manufactured by Ube Industries, Ltd.) are available as commercial products.
 樹脂ペースト組成物は、作業性及び接着強度の観点から、(C)成分としてエポキシ化ポリブタジエンとカルボキシル基を有するアクリロニトリルブタジエンゴムとを併用することが好ましい。 The resin paste composition preferably uses epoxidized polybutadiene and acrylonitrile butadiene rubber having a carboxyl group in combination as component (C) from the viewpoint of workability and adhesive strength.
 (C)成分の含有量は、(A)成分100質量部に対して10~200質量部であることが好ましく、20~100質量部であることがより好ましく、40~80質量部であることがさらに好ましい。(C)成分の含有量が10質量部以上であると、可とう化効果に一層優れ、200質量部以下であると、可とう化剤による樹脂ペースト組成物の粘度上昇が十分に抑えられ、作業性が一層良好になる。 The content of component (C) is preferably 10 to 200 parts by weight, more preferably 20 to 100 parts by weight, and 40 to 80 parts by weight with respect to 100 parts by weight of component (A). Is more preferable. When the content of the component (C) is 10 parts by mass or more, the flexibility is further improved, and when it is 200 parts by mass or less, the increase in the viscosity of the resin paste composition by the flexible agent is sufficiently suppressed, Workability is further improved.
 また、(C)成分の含有量は、樹脂ペースト組成物の総量基準で、3~12質量%であることが好ましく、4~11質量%であることがより好ましい。(C)成分の含有量が3質量%以上であると、可とう化効果に一層優れ、12質量%以下であると、可とう化剤による樹脂ペースト組成物の粘度上昇が十分に抑えられ、作業性が一層良好になる。 The content of component (C) is preferably 3 to 12% by mass, more preferably 4 to 11% by mass, based on the total amount of the resin paste composition. When the content of the component (C) is 3% by mass or more, the flexibility is further improved, and when the content is 12% by mass or less, the increase in the viscosity of the resin paste composition by the flexible agent is sufficiently suppressed, Workability is further improved.
 (D)成分としては、ジシアンジアミド、下記式(IV)で表される化合物(二塩基ジヒドラジドともいう。)、エポキシ樹脂とアミン化合物との反応物からなるマイクロカプセル型硬化剤、イミダゾール化合物等が挙げられる。(D)成分は一種を単独で又は二種以上を組み合わせて用いることができる。 Examples of the component (D) include dicyandiamide, a compound represented by the following formula (IV) (also referred to as dibasic dihydrazide), a microcapsule type curing agent composed of a reaction product of an epoxy resin and an amine compound, and an imidazole compound. It is done. (D) A component can be used individually by 1 type or in combination of 2 or more types.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式中、R15はアリーレン基又は炭素数2~12のアルキレン基を示す。アルキレン基は直鎖状であっても分岐状であってもよい。また、アリーレン基としては、p-フェニレン基、m-フェニレン基等が挙げられる。 In the formula, R 15 represents an arylene group or an alkylene group having 2 to 12 carbon atoms. The alkylene group may be linear or branched. Examples of the arylene group include p-phenylene group and m-phenylene group.
 イミダゾール化合物としては、2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2-フェニルイミダゾールイソシアヌル酸付加物等が挙げられる。 Examples of imidazole compounds include 2-methylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 1,2-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, and 2-phenyl-4-methyl. Examples include imidazole, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 2-phenylimidazole isocyanuric acid adduct and the like.
 式(IV)で表される化合物としては、AFH、PFH、SFH(いずれも日本ヒドラジン工業(株)、商品名)等を用いることができ、マイクロカプセル型硬化剤としては、ノバキュア(旭化成工業(株)、商品名)等を用いることができ、イミダゾール化合物としては、キュアゾール、2P4MHZ、C17Z、2PZ-OK(いずれも四国化成(株)製、商品名)等を用いることができる。 As the compound represented by the formula (IV), AFH, PFH, SFH (all of which are Nippon Hydrazine Kogyo Co., Ltd., trade name) and the like can be used. As the microcapsule type curing agent, Novacure (Asahi Kasei Kogyo ( Co., Ltd., trade name), etc., and as the imidazole compound, Curazole, 2P4MHZ, C17Z, 2PZ-OK (both trade names, manufactured by Shikoku Kasei Co., Ltd.) and the like can be used.
 硬化物の強度の観点から、樹脂ペースト組成物は、(D)成分としてジシアンジアミド及びイミダゾール化合物からなる群より選択される少なくとも一種を含有することが好ましく、少なくともジシアンジアミドを含有することがより好ましい。 From the viewpoint of the strength of the cured product, the resin paste composition preferably contains at least one selected from the group consisting of dicyandiamide and imidazole compound as component (D), and more preferably contains at least dicyandiamide.
 (D)成分の含有量は、樹脂ペースト組成物の総量基準で、0.05~1.5質量%であることが好ましく、0.1~1.0質量%であることがより好ましく、0.1~0.8質量%とすることもできる。(D)成分の含有量が0.05質量%以上であると、硬化性が一層向上し、1.5質量%以下であると、樹脂ペースト組成物の安定性が一層良好になる。また、(D)成分の含有量が0.8質量%以下であると、電気伝導性が一層向上する傾向がある。 The content of the component (D) is preferably 0.05 to 1.5% by mass, more preferably 0.1 to 1.0% by mass, based on the total amount of the resin paste composition. It can also be 1 to 0.8% by mass. When the content of component (D) is 0.05% by mass or more, curability is further improved, and when it is 1.5% by mass or less, the stability of the resin paste composition is further improved. Moreover, there exists a tendency for electrical conductivity to improve further that content of (D) component is 0.8 mass% or less.
 (E)成分のアルミニウム粉は、従来の樹脂ペーストでフィラーとして使用されていた銀粉の一部又は全部を代替する成分である。本実施形態に係る樹脂ペースト組成物においては、上記各成分と組合せることで、銀粉の一部又は全部を(E)成分に代替しても、優れた電気伝導性、保存安定性及びダイシェア強度が実現される。 (E) The aluminum powder of the component is a component that replaces part or all of the silver powder used as a filler in the conventional resin paste. In the resin paste composition according to the present embodiment, excellent electrical conductivity, storage stability and die shear strength can be obtained by combining with the above components, even if a part or all of the silver powder is replaced with the component (E). Is realized.
 (E)成分の平均粒径は、10μm以下であることが好ましく、2~9μmであることがより好ましく、3~8μmであることがさらに好ましい。平均粒径が10μm以下であると、樹脂ペースト組成物の均一性及び各種物性が一層良好になる。ここで平均粒径は、レーザー光回折法を利用した粒度分布測定装置(例えば、マイクロトラックX100)でメジアン径として求めることができるものである。メジアン径とは個数基準の粒度分布における累積率が50%となる粒子径(D50)の値を示す。 The average particle diameter of the component (E) is preferably 10 μm or less, more preferably 2 to 9 μm, and further preferably 3 to 8 μm. When the average particle size is 10 μm or less, the uniformity and various physical properties of the resin paste composition are further improved. Here, the average particle diameter can be obtained as a median diameter by a particle size distribution measuring apparatus (for example, Microtrack X100) using a laser light diffraction method. The median diameter is a value of the particle diameter (D50) at which the cumulative ratio in the number-based particle size distribution is 50%.
 (E)成分の見かけ密度は、0.40~1.20g/cmが好ましく、0.55~0.95g/cmであることがより好ましい。(E)成分の形状は、粒状、フレーク状、球状、針状、不規則形等が挙げられるが、粒状であることが好ましい。 (E) the apparent density of the component is preferably 0.40 ~ 1.20g / cm 3, more preferably 0.55 ~ 0.95g / cm 3. Examples of the shape of the component (E) include granules, flakes, spheres, needles, irregular shapes, and the like.
 (E)成分の含有量は、樹脂ペースト組成物の総量基準で、10~50質量%であることが好ましく、15~40質量%であることがより好ましく、20~35質量%であることが特に好ましい。(E)成分の含有量が上記範囲内であると、樹脂ペースト組成物の電気伝導性、粘度等の特性がダイボンディング材として一層好適なものとなる。 The content of the component (E) is preferably 10 to 50% by mass, more preferably 15 to 40% by mass, and preferably 20 to 35% by mass based on the total amount of the resin paste composition. Particularly preferred. When the content of the component (E) is within the above range, characteristics such as electrical conductivity and viscosity of the resin paste composition are more suitable as a die bonding material.
 樹脂ペースト組成物は、上記以外の成分を含有していてもよく、例えば、樹脂ペースト組成物は、銀粉をさらに含有していてもよい。但し、樹脂ペースト組成物は、銀粉の代替成分である(E)成分を含有するものであるため、従来の樹脂ペーストと比較して銀粉の含有量が少ない場合でも、優れた電気伝導性が得られる。 The resin paste composition may contain components other than those described above. For example, the resin paste composition may further contain silver powder. However, since the resin paste composition contains the component (E), which is an alternative component of silver powder, excellent electrical conductivity is obtained even when the silver powder content is low compared to conventional resin pastes. It is done.
 銀粉の平均粒径は、1~5μmであることが好ましい。ここで平均粒径は、レーザー光回折法を利用した粒度分布測定装置(例えば、マイクロトラックX100)でメジアン径として求めることができるものである。メジアン径とは個数基準の粒度分布における累積率が50%となる粒子径(D50)の値を示す。 The average particle diameter of the silver powder is preferably 1 to 5 μm. Here, the average particle diameter can be obtained as a median diameter by a particle size distribution measuring apparatus (for example, Microtrack X100) using a laser light diffraction method. The median diameter is a value of the particle diameter (D50) at which the cumulative ratio in the number-based particle size distribution is 50%.
 銀粉のタップ密度は、3~6g/cmであることが好ましい。また、銀粉の比表面積は、0.5~1m/gであることが好ましい。また、銀粉の形状は、粒状、フレーク状、球状、針状、不規則形などが挙げられるが、フレーク状であることが好ましい。このような銀粉を、上記アルミニウム粉と組み合わせて用いることで、電気伝導性、ダイシェア強度、保存安定性、塗布作業性及び機械特性に一層優れる樹脂ペースト組成物が得られる。 The tap density of the silver powder is preferably 3 to 6 g / cm 3 . The specific surface area of the silver powder is preferably 0.5 to 1 m 2 / g. The shape of the silver powder may be granular, flaky, spherical, acicular, irregular, or the like, but is preferably flaky. By using such silver powder in combination with the above-mentioned aluminum powder, a resin paste composition that is further excellent in electrical conductivity, die shear strength, storage stability, coating workability, and mechanical properties can be obtained.
 銀粉の含有量Cに対する(E)成分であるアルミニウム粉の含有量Cの比C/C(質量比)は、2/8~8/2であることが好ましく、3/7~7/3であることがより好ましく、4/6~6/4であることが特に好ましくい。比C/Cが8/2より大きいと、樹脂ペーストの粘度が増大し、作業性が低下する場合がある。 The ratio C 1 / C 2 (mass ratio) of the content C 1 of the aluminum powder as the component (E) to the content C 2 of the silver powder is preferably 2/8 to 8/2, and preferably 3/7 to 7/3 is more preferable, and 4/6 to 6/4 is particularly preferable. When the ratio C 1 / C 2 is larger than 8/2, the viscosity of the resin paste increases and workability may be reduced.
 樹脂ペースト組成物は、(E)成分及び銀粉以外の導電性微粒子をさらに含有していてもよい。このような導電性微粒子としては、平均粒径が10μm未満である導電性微粒子が好ましい。また、導電性微粒子としては、金、銅、ニッケル、鉄、ステンレス等を含む導電性微粒子が挙げられる。 The resin paste composition may further contain conductive fine particles other than the component (E) and silver powder. As such conductive fine particles, conductive fine particles having an average particle diameter of less than 10 μm are preferable. Examples of the conductive fine particles include conductive fine particles containing gold, copper, nickel, iron, stainless steel and the like.
 (E)成分、銀粉及び上記導電性微粒子の総含有量は、樹脂ペースト組成物の総量基準で、60~85質量%であることが好ましく、65~80質量%であることがより好ましく、70~80質量%であることが特に好ましい。(E)成分、銀粉及び上記導電性微粒子の総含有量が上記範囲内であると、樹脂ペースト組成物の電気伝導性、粘度等の特性がダイボンディング材として一層好適なものとなる。 The total content of the component (E), the silver powder and the conductive fine particles is preferably 60 to 85% by mass, more preferably 65 to 80% by mass, based on the total amount of the resin paste composition, and 70 It is particularly preferably 80 to 80% by mass. When the total content of the component (E), the silver powder, and the conductive fine particles is within the above range, characteristics such as electrical conductivity and viscosity of the resin paste composition are more suitable as a die bonding material.
 樹脂ペースト組成物は、カップリング剤をさらに含有していてもよい。カップリング剤としては、特に制限はなく、シランカップリング剤、チタネート系カップリング剤、アルミニウム系カップリング剤、ジルコネート系カップリング剤、ジルコアルミネート系カップリング剤等の各種のものが用いられる。カップリング剤は、一種を単独で又は二種以上を組み合わせて用いることができる。 The resin paste composition may further contain a coupling agent. There is no restriction | limiting in particular as a coupling agent, Various things, such as a silane coupling agent, a titanate coupling agent, an aluminum coupling agent, a zirconate coupling agent, a zircoaluminate coupling agent, are used. A coupling agent can be used individually by 1 type or in combination of 2 or more types.
 シランカップリング剤としては、メチルトリメトキシシラン、メチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、ビニル-トリス(2-メトキシエトキシ)シラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、メチルトリ(メタクリロキシエトキシ)シラン、γ-アクリロキシプロピルトリメトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-γ-アミノプロピルトリメトキシシラン、γ-アニリノプロピルトリメトキシシラン、γ-ウレイドプロピルトリメトキシシラン、γ-ウレイドプロピルトリエトキシシラン、3-(4,5-ジヒドロイミダゾリル)プロピルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシラン、メチルトリグリシドキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、トリメチルシリルイソシアネート、ジメチルシリルイソシアネート、フェニルシリルトリイソシアネート、テトライソシアネートシラン、メチルシリルトリイソシアネート、ビニルシリルトリイソシアネート、エトキシシラントリイソシアネート等が挙げられる。 Silane coupling agents include methyltrimethoxysilane, methyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, vinyl-tris (2-methoxyethoxy) ) Silane, γ-methacryloxypropyltrimethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, methyltri (methacryloxyethoxy) silane, γ-acryloxypropyltrimethoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyl Triethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, N-β- (N- Nylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, γ-anilinopropyltrimethoxysilane, γ-ureidopropyltrimethoxysilane, γ-ureidopropyltriethoxysilane, 3- (4,5-dihydroimidazolyl) propyl Triethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, γ-glycidoxypropylmethyldiisopropeno Xysilane, methyltriglycidoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldimethoxysilane, trimethylsilyl isocyanate, dimethylsilyliso Aneto, phenyl triisocyanate, tetraisocyanate silane, methyl triisocyanate, vinylsilyl triisocyanate, and ethoxysilane triisocyanate and the like.
 チタネート系カップリング剤としては、イソプロピルトリイソステアロイルチタネート、イソプロピルトリドデシルベンゼンスルホニルチタネート、イソプロピルトリス(ジオクチルパイロホスフェート)チタネート、テトライソプロピルビス(ジオクチルホスファイト)チタネート、テトラオクチルビス(ジトリデシルホスファイト)チタネート、テトラ(2,2-ジアリルオキシメチル-1-ブチル)ビス(ジ-トリデシル)ホスファイトチタネート、ビス(ジオクチルパイロホスフェート)オキシアセテートチタネート、ビス(ジオクチルパイロホスフェート)エチレンチタネート、イソプロピルトリオクタノイルチタネート、イソプロピルジメタクリルイソステアロイルチタネート、イソプロピル(ジオクチルホスフェート)チタネート、イソプロピルトリクミルフェニルチタネート、イソプロピルトリ(N-アミノエチル・アミノエチル)チタネート、ジクミルフェニルオキシアセテートチタネート、ジイソステアロイルエチレンチタネート等が挙げられる。 Titanate coupling agents include isopropyl triisostearoyl titanate, isopropyl tridodecylbenzenesulfonyl titanate, isopropyl tris (dioctyl pyrophosphate) titanate, tetraisopropyl bis (dioctyl phosphite) titanate, tetraoctyl bis (ditridecyl phosphite) titanate Tetra (2,2-diallyloxymethyl-1-butyl) bis (di-tridecyl) phosphite titanate, bis (dioctylpyrophosphate) oxyacetate titanate, bis (dioctylpyrophosphate) ethylene titanate, isopropyltrioctanoyl titanate, Isopropyldimethacrylisostearoyl titanate, isopropyl (dioctyl phosphate) tita Over DOO, isopropyl tricumylphenyl titanate, isopropyl tri (N- aminoethyl-aminoethyl) titanate, dicumyl phenyloxy acetate titanate, diisostearoyl ethylene titanate.
 アルミニウム系カップリング剤としては、アセトアルコキシアルミニウムジイソプロピオネート等が挙げられる。 Examples of the aluminum coupling agent include acetoalkoxyaluminum diisopropionate.
 ジルコネート系カップリング剤としては、テトラプロピルジルコネート、テトラブチルジルコネート、テトラ(トリエタノールアミン)ジルコネート、テトライソプロピルジルコネート、ジルコニウムアセチルアセトネートアセチルアセトンジルコニウムブチレート、ステアリン酸ジルコニウムブチレート等が挙げられる。 Examples of the zirconate coupling agent include tetrapropyl zirconate, tetrabutyl zirconate, tetra (triethanolamine) zirconate, tetraisopropyl zirconate, zirconium acetylacetonate acetylacetone zirconium butyrate, and zirconium stearate butyrate.
 また、カップリング剤の含有量は、樹脂ペースト組成物の総量基準で、0.5~6.0質量%であることが好ましく、1.0~5.0質量%であることがより好ましい。カップリング剤の含有量が0.5質量%以上であると、接着強度が一層向上する傾向がある。また、カップリング剤の含有量が6.0質量%を超えると、樹脂ペースト組成物の硬化時に揮発分が多く発生し、樹脂ペースト組成物の硬化物中にボイドと呼ばれる空隙が生じやすくなる傾向がある。 Further, the content of the coupling agent is preferably 0.5 to 6.0% by mass, more preferably 1.0 to 5.0% by mass, based on the total amount of the resin paste composition. There exists a tendency for adhesive strength to improve further that content of a coupling agent is 0.5 mass% or more. Further, when the content of the coupling agent exceeds 6.0% by mass, a large amount of volatile matter is generated when the resin paste composition is cured, and voids called voids tend to be generated in the cured product of the resin paste composition. There is.
 樹脂ペースト組成物は、バインダー樹脂成分としてエポキシ樹脂(芳香族系エポキシ樹脂以外のエポキシ樹脂)、シリコーン樹脂、ウレタン樹脂、アクリル樹脂などを更に含有していてもよい。 The resin paste composition may further contain an epoxy resin (an epoxy resin other than an aromatic epoxy resin), a silicone resin, a urethane resin, an acrylic resin, or the like as a binder resin component.
 樹脂ペースト組成物は、さらに必要に応じて、酸化カルシウム、酸化マグネシウム等の吸湿剤;フッ素系界面活性剤、ノニオン系界面活性剤、高級脂肪酸等の濡れ向上剤;シリコーン油等の消泡剤;無機イオン交換体等のイオントラップ剤等を、適宜組み合わせて添加することができる。 If necessary, the resin paste composition may further comprise a hygroscopic agent such as calcium oxide or magnesium oxide; a wetting improver such as a fluorine-based surfactant, a nonionic surfactant or a higher fatty acid; an antifoaming agent such as silicone oil; An ion trapping agent such as an inorganic ion exchanger can be added in appropriate combination.
 樹脂ペースト組成物は、上述した各成分を一括して又は分割して、撹拌器、ハイブリッドミキサー、ライカイ機、3本ロール、プラネタリーミキサー等の分散・溶解装置を適宜組み合わせた装置に投入し、必要に応じて加熱して、混合、溶解、解粒混練又は分散して均一なペースト状とすることにより得ることができる。 The resin paste composition is a batch or division of each of the above-described components, and is put into a device that is appropriately combined with a dispersion / dissolution device such as a stirrer, a hybrid mixer, a reiki machine, a three roll, a planetary mixer, It can be obtained by heating, if necessary, mixing, dissolving, pulverizing kneading or dispersing to form a uniform paste.
 樹脂ペースト組成物の25℃における粘度は、作業性の観点から、30~200Pa・sであることが好ましく、50~150Pa・sであることがより好ましく、50~80Pa・sであることがさらに好ましい。 From the viewpoint of workability, the viscosity at 25 ° C. of the resin paste composition is preferably 30 to 200 Pa · s, more preferably 50 to 150 Pa · s, and further preferably 50 to 80 Pa · s. preferable.
 本実施形態に係る半導体装置は、支持部材と、半導体素子と、支持部材及び半導体素子の間に配置され、支持部材及び半導体素子を接着する接着層と、を備え、接着層が上記樹脂ペースト組成物の硬化物を含むものである。このような半導体装置は、上記樹脂ペースト組成物の硬化物により、支持部材と半導体素子とが接着されているため、電気伝導性及び信頼性に優れる。 The semiconductor device according to the present embodiment includes a support member, a semiconductor element, and an adhesive layer that is disposed between the support member and the semiconductor element and adheres the support member and the semiconductor element. It contains a cured product. Such a semiconductor device is excellent in electrical conductivity and reliability because the support member and the semiconductor element are bonded to each other by the cured product of the resin paste composition.
 支持部材としては、例えば、42アロイリードフレーム、銅リードフレーム等のリードフレーム、ガラスエポキシ基板(ガラス繊維強化エポキシ樹脂からなる基板)、BT基板(シアネートモノマー及びそのオリゴマーとビスマレイミドとからなるBTレジン使用基板)等の有機基板が挙げられる。 Examples of support members include lead frames such as 42 alloy lead frames and copper lead frames, glass epoxy substrates (substrates made of glass fiber reinforced epoxy resin), BT substrates (BT resins made of cyanate monomer and oligomers thereof and bismaleimide). Organic substrate).
 樹脂ペースト組成物を用いて半導体素子を支持部材上に接着する方法としては、例えば、以下の方法が挙げられる。 Examples of the method of bonding the semiconductor element on the support member using the resin paste composition include the following methods.
 まず、支持部材上に樹脂ペースト組成物をディスペンス法、スクリーン印刷法、スタンピング法等の方法で塗布して、樹脂層を形成する。次いで、樹脂層の支持基材と反対側の面から半導体素子を圧着し、その後、オーブン、ヒートブロック等の加熱装置を用いて、樹脂層を加熱硬化する。これにより、支持部材上に半導体素子が接着される。 First, the resin paste composition is applied onto the support member by a method such as a dispensing method, a screen printing method, a stamping method, or the like to form a resin layer. Next, the semiconductor element is pressure-bonded from the surface of the resin layer opposite to the support base, and then the resin layer is heated and cured using a heating device such as an oven or a heat block. Thereby, a semiconductor element is adhere | attached on a supporting member.
 支持部材上に半導体素子を接着した後、必要に応じてワイヤボンド工程、封止工程等を行うことにより、本実施形態に係る半導体装置を得ることができる。なお、ワイヤボンド工程及び封止工程は、従来公知の方法により行うことができる。 The semiconductor device according to the present embodiment can be obtained by bonding a semiconductor element on a support member and then performing a wire bonding process, a sealing process, and the like as necessary. The wire bonding step and the sealing step can be performed by a conventionally known method.
 上記加熱硬化は、例えば、加熱温度150~220℃(好ましくは180~200℃)、加熱時間30秒~2時間(好ましくは1時間~1.5時間)の条件で行うことができる。 The heat curing can be performed, for example, under the conditions of a heating temperature of 150 to 220 ° C. (preferably 180 to 200 ° C.) and a heating time of 30 seconds to 2 hours (preferably 1 hour to 1.5 hours).
 通常、支持部材として有機基板を用いる場合には、有機基板が吸着した水分が接着時の加熱により蒸発してボイドの原因となるおそれがあるため、組み立て前に有機基板の乾燥を行うことが好ましい。 Usually, when an organic substrate is used as a support member, it is preferable to dry the organic substrate before assembly because moisture adsorbed by the organic substrate may evaporate due to heating during bonding and cause voids. .
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されるものではない。 The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.
 本発明は、例えば、(メタ)アクリロイルオキシ基を有する化合物と、重合開始剤と、可とう化剤と、アミン化合物と、アルミニウム粉と、を含有する組成物の、半導体素子接着用接着剤としての応用、ということができる。 The present invention is, for example, as an adhesive for adhering semiconductor elements of a composition comprising a compound having a (meth) acryloyloxy group, a polymerization initiator, a flexible agent, an amine compound, and aluminum powder. Application.
 また本発明は、(メタ)アクリロイルオキシ基を有する化合物と、重合開始剤と、可とう化剤と、アミン化合物と、アルミニウム粉と、を含有する組成物の、半導体素子接着用接着剤の製造のための応用、であってもよい。 The present invention also provides a method for producing an adhesive for adhering semiconductor elements, comprising a composition comprising a compound having a (meth) acryloyloxy group, a polymerization initiator, a flexible agent, an amine compound, and aluminum powder. Application for
 以下、実施例により本発明をより具体的に説明するが、本発明は実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples.
 実施例及び比較例で用いた成分を以下に例示する。
(1)(メタ)アクリロイルオキシ基を有する化合物((A)成分)
・FA-512M(日立化成工業(株)製、ジシクロペンテニルオキシエチルメタクリレートの製品名)((A-1)成分)
・R-712(日本化薬(株)製、ビスフェノ-ルF4モルエチレンオキサイド付加体ジアクリレートの製品名)((A-2)成分)
(2)重合開始剤((B)成分)
・パーヘキサ25B(日本油脂(株)製、2,5-ジメチル-2,5-ビス(t-ブチルパーオキシ)ヘキサンの製品名)
(3)可とう化剤((C)成分)
・CTBN1300×31(宇部興産(株)製、カルボキシ基含有アクリロニトリルブタジエン共重合体の商品名)
・エポリードPB4700(ダイセル化学工業(株)製、エポキシ化ポリブタジエンの商品名、数平均分子量:3500)
(4)アミン化合物((D)成分)
・jERキュアDICY7(三菱化学(株)製、ジシアンジアミドの商品名)
・2P4MHZ-PW(四国化成工業(株)製、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールの製品名)
(5)アルミニウム粉((E)成分)
・VA-2000(山石金属(株)製、アルミニウム粉の製品名、形状:粒状、平均粒径=6.7μm)
・No.800F(ミナルコ(株)製、アルミニウム粉の製品名、形状:粒状、平均粒径=3.1μm)
・No.500M(ミナルコ(株)製、アルミニウム粉の製品名、形状:粒状、平均粒径=10.4μm)
The components used in Examples and Comparative Examples are exemplified below.
(1) Compound having (meth) acryloyloxy group (component (A))
FA-512M (product name of dicyclopentenyloxyethyl methacrylate, manufactured by Hitachi Chemical Co., Ltd.) (component (A-1))
・ R-712 (product name of bisphenol F4 mole ethylene oxide adduct diacrylate, manufactured by Nippon Kayaku Co., Ltd.) (component (A-2))
(2) Polymerization initiator (component (B))
・ Perhexa 25B (Nippon Yushi Co., Ltd., 2,5-dimethyl-2,5-bis (t-butylperoxy) hexane product name)
(3) Flexible agent (component (C))
CTBN 1300 × 31 (Ube Industries, Ltd., trade name of carboxy group-containing acrylonitrile butadiene copolymer)
・ Epolide PB4700 (manufactured by Daicel Chemical Industries, Ltd., trade name of epoxidized polybutadiene, number average molecular weight: 3500)
(4) Amine compound (component (D))
・ JER Cure DICY7 (Mitsubishi Chemical Corporation, trade name of dicyandiamide)
・ 2P4MHZ-PW (product name of 2-phenyl-4-methyl-5-hydroxymethylimidazole, manufactured by Shikoku Chemicals Co., Ltd.)
(5) Aluminum powder (component (E))
・ VA-2000 (manufactured by Yamaishi Metal Co., Ltd., product name of aluminum powder, shape: granular, average particle size = 6.7 μm)
・ No. 800F (Minalco Co., Ltd., product name of aluminum powder, shape: granular, average particle size = 3.1 μm)
・ No. 500M (Minalco Co., Ltd., product name of aluminum powder, shape: granular, average particle size = 10.4 μm)
 なお、図1(a)はVA-2000の電子顕微鏡写真を示す図であり、図1(b)はNo.800Fの電子顕微鏡写真を示す図であり、図1(c)はNo.500Mの電子顕微鏡写真を示す図である。また、各アルミニウム粉の平均粒径については、レーザー光回折法を利用した粒度分布測定装置(例えば、マイクロトラックX100)で粒度分布を測定し、累積50%(個数基準)の値を平均粒径とした。結果を、表1に示す。 1A is an electron micrograph of VA-2000, and FIG. FIG. 1C shows an electron micrograph of 800F. It is a figure which shows a 500M electron micrograph. Moreover, about the average particle diameter of each aluminum powder, a particle size distribution is measured with the particle size distribution measuring apparatus (for example, Microtrac X100) using a laser beam diffraction method, and the value of 50% of accumulation (based on the number) is used as the average particle diameter It was. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(6)銀粉
・AgC-212DH(福田金属箔粉工業(株)製の銀粉の商品名、形状:フレーク状、平均粒径=2.9μm)
・SF-65LV((株)フェロ・ジャパン社製の銀粉の商品名、形状:フレーク状、平均粒径=3.5μm)
(7)カップリング剤
・KBM-403(信越化学工業(株)製のオルガノシランの製品名)
(8)芳香族系エポキシ樹脂
・N-665-EXP(DIC(株)製のクレゾールノボラック型エポキシ樹脂の製品名、エポキシ当量=198~208)
(6) Silver powder / AgC-212DH (trade name of silver powder manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., shape: flake shape, average particle size = 2.9 μm)
-SF-65LV (trade name of silver powder manufactured by Ferro Japan Co., Ltd., shape: flake shape, average particle size = 3.5 μm)
(7) Coupling agent KBM-403 (Product name of organosilane manufactured by Shin-Etsu Chemical Co., Ltd.)
(8) Aromatic epoxy resin / N-665-EXP (Product name of cresol novolac type epoxy resin manufactured by DIC Corporation, epoxy equivalent = 198 to 208)
(実施例1~8、比較例1、参考例1)
 表2又は表3に示す配合割合(質量比)で各成分を混合し、プラネタリミキサを用いて混練した後、666.61Pa(5トル(Torr))以下で10分間脱泡処理を行い、樹脂ペースト組成物を得た。
(Examples 1 to 8, Comparative Example 1, Reference Example 1)
Each component was mixed at the blending ratio (mass ratio) shown in Table 2 or Table 3, and kneaded using a planetary mixer, and then defoamed at 666.61 Pa (5 Torr) or less for 10 minutes to obtain a resin. A paste composition was obtained.
 得られた樹脂ペースト組成物の特性(粘度及び粘度安定性、ダイシェア接着強度、体積抵抗率)を以下に示す方法で測定した。結果は表2又は表3に示すとおりであった。なお、図2(a)は、実施例1で得られた樹脂ペースト組成物中のアルミニウム粉及び銀粉の混合粉の電子顕微鏡写真を示す図であり、図2(b)は、参考例1で得られた樹脂ペースト組成物中の銀粉の電子顕微鏡写真を示す図である。 The properties (viscosity and viscosity stability, die shear adhesive strength, volume resistivity) of the obtained resin paste composition were measured by the following methods. The results were as shown in Table 2 or Table 3. 2A is a view showing an electron micrograph of a mixed powder of aluminum powder and silver powder in the resin paste composition obtained in Example 1, and FIG. It is a figure which shows the electron micrograph of the silver powder in the obtained resin paste composition.
(粘度及び粘度安定性の測定)
(a)粘度
 EHD型回転粘度計(東京計器社製)を用いて25℃における粘度(Pa・s)を測定した。
(b)粘度安定性
 (a)で測定した粘度を初期値とし、サンプリング時間を1日、3日、7日として、EHD型回転粘度計(東京計器社製)を用いて25℃における粘度(Pa・s)を測定した。
(Measurement of viscosity and viscosity stability)
(A) Viscosity Viscosity (Pa · s) at 25 ° C. was measured using an EHD type rotational viscometer (manufactured by Tokyo Keiki Co., Ltd.).
(B) Viscosity stability The viscosity measured at (a) is the initial value, the sampling time is 1 day, 3 days, and 7 days, and the viscosity at 25 ° C. using an EHD type rotational viscometer (manufactured by Tokyo Keiki Co., Ltd.) Pa · s) was measured.
(ダイシェア強度の測定)
 樹脂ペースト組成物を、Ni/Auメッキ付き銅フレーム(表2中、「Ni/Auメッキ」と略称する。)、Agめっき付き銅リードフレーム(表2中、「Agスポットメッキ」と略称する。)及びAgリングめっき付き銅リードフレーム(表2中、「Agリングメッキ」と略称する。)の各基板上にぞれぞれ約0.5mg塗布し、この上に3mm×3mmのSiチップ(厚さ約0.4mm)を圧着し、さらにオーブンで180℃まで30分で昇温し180℃で1時間硬化させて、試験サンプルを得た。
(Measurement of die shear strength)
The resin paste composition is abbreviated as Ni / Au plated copper frame (abbreviated as “Ni / Au plating” in Table 2) and Ag plated copper lead frame (abbreviated as “Ag spot plating” in Table 2). ) And a copper lead frame with Ag ring plating (abbreviated as “Ag ring plating” in Table 2), about 0.5 mg of each is applied, and a 3 mm × 3 mm Si chip ( A thickness of about 0.4 mm) was pressure-bonded and further heated in an oven to 180 ° C. in 30 minutes and cured at 180 ° C. for 1 hour to obtain a test sample.
 得られた各試験サンプルについて、自動接着力試験装置(BT4000、Dage社製)を用い、260℃/20秒保持時の剪断接着強度(MPa)を測定した。なおダイシェア強度の測定は、各基板について10個ずつの試験サンプルで行い、その平均値を評価した。 About each obtained test sample, the shear adhesive strength (MPa) at the time of 260 degreeC / 20 second holding | maintenance was measured using the automatic adhesive force test apparatus (BT4000, Dage company make). The die shear strength was measured with 10 test samples for each substrate, and the average value was evaluated.
(塗布作業性の測定)
 シリンジに樹脂ペースト組成物を充填し、ディスペンス装置(SHOTminiSL、武蔵エンジニアリング(株)製)を用い、21G(内径;570μm)ノズルでガラス基板上に20個吐出を行い塗工した。塗布後のガラス板上の樹脂ペースト組成物の形状を顕微鏡(KH-3000、株式会社ハイロックスジャパン製)で観察した。この時の塗工形状は、角状の突起状になるが、その突起部が倒れて塗工部をはみ出した個数をカウントし、以下の評価基準に従い評価した。
<評価基準>
A:突起部の倒れ数が0個
B:突起部の倒れ数が1個~3個
C:突起部の倒れ数が4個~9個
D:突起部の倒れ数が10個以上
(Measurement of coating workability)
The syringe was filled with the resin paste composition, and using a dispensing apparatus (SHOTminiSL, manufactured by Musashi Engineering Co., Ltd.), 20 pieces were discharged onto a glass substrate with a 21G (inner diameter: 570 μm) nozzle and coated. The shape of the resin paste composition on the glass plate after coating was observed with a microscope (KH-3000, manufactured by Hilox Japan Co., Ltd.). The coating shape at this time was a square protrusion, and the number of protrusions that fell and protruded from the coated part was counted and evaluated according to the following evaluation criteria.
<Evaluation criteria>
A: The number of protrusions falling is 0 B: The number of protrusions falling is 1 to 3 C: The number of protrusions falling is 4 to 9 D: The number of protrusions falling is 10 or more
(体積抵抗率の測定)
 図3は、体積抵抗率の測定に用いる試験サンプルの作製方法を示す模式図である。試験サンプルは、樹脂ペースト組成物、スライドグラス(東京硝子器機(株)製、寸法=76×26mm、厚さ=0.9~1.2mm)、及び紙テープ(日東電工CSシステム製、No.7210F、寸法幅=18mm、厚さ=0.10mm)を用いて、図3に示すように作製した。作製した試験サンプルについて、デジタルマルチメーター(TR6846、ADVANTEST社製)を用い、体積抵抗率(Ω・cm)を測定した。
(Measurement of volume resistivity)
FIG. 3 is a schematic diagram showing a method for producing a test sample used for measuring volume resistivity. The test samples were resin paste composition, slide glass (manufactured by Tokyo Glass Equipment Co., Ltd., dimension = 76 × 26 mm, thickness = 0.9 to 1.2 mm), and paper tape (manufactured by Nitto Denko CS System, No. 7210F). 3), and was produced as shown in FIG. 3 using a dimension width = 18 mm and a thickness = 0.10 mm. About the produced test sample, volume resistivity ((omega | ohm) * cm) was measured using the digital multimeter (TR6846, ADVANTEST company make).
 なお、試験サンプルは、以下の方法で作製した。まず図3(a)に示すように、スライドグラス1の主面上に、3枚の紙テープ2を紙テープ2同士の間隔が約2mmとなるように貼り付けた。次いで、図3(b)に示すように、樹脂ペースト組成物3を紙テープ2の間で露出したスライドグラス1上に置き、スクイージで伸ばして紙テープの厚みと同じ厚みなるように塗布した。そして、紙テープ2を除去し、オーブンで180℃で1時間加熱して樹脂ペースト組成物3を硬化させ、図3(c)に示す試験サンプル10を作製した。作製した試験サンプル10は、スライドグラス1の主面上に樹脂ペースト組成物の硬化物からなる2mm幅の樹脂層4が設けられた構造を有している。この樹脂層4の体積抵抗率を、上記の方法で測定した。 The test sample was produced by the following method. First, as shown in FIG. 3A, three paper tapes 2 were attached on the main surface of the slide glass 1 so that the interval between the paper tapes 2 was about 2 mm. Next, as shown in FIG. 3 (b), the resin paste composition 3 was placed on the slide glass 1 exposed between the paper tapes 2, stretched with a squeegee, and applied so as to have the same thickness as the paper tape. And the paper tape 2 was removed, the resin paste composition 3 was hardened by heating at 180 degreeC for 1 hour in oven, and the test sample 10 shown in FIG.3 (c) was produced. The produced test sample 10 has a structure in which a resin layer 4 having a width of 2 mm made of a cured product of the resin paste composition is provided on the main surface of the slide glass 1. The volume resistivity of the resin layer 4 was measured by the above method.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 表2及び表3に記載のとおり、実施例の樹脂ペースト組成物は、いずれの基板に対しても高いダイシェア強度を示し、優れた接着性を有するものであった。また、実施例の樹脂ペースト組成物は、保存安定性も良好であった。また、実施例1~7の樹脂ペーストでは、希少価値が高い銀を大量に用いずとも、優れた電気伝導性が得られた。 As shown in Tables 2 and 3, the resin paste compositions of the examples exhibited high die shear strength and excellent adhesion to any substrate. In addition, the resin paste compositions of the examples also had good storage stability. In addition, in the resin pastes of Examples 1 to 7, excellent electrical conductivity was obtained without using a large amount of silver having a high rare value.
 本発明の半導体素子接着用樹脂ペースト組成物は、導電性フィラーとしてアルミニウム粉を用いながらも、優れたダイシェア強度及び保存安定性を有しており、半導体素子と支持部材との接着に好適に用いることができる。 The resin paste composition for bonding a semiconductor element of the present invention has excellent die shear strength and storage stability while using aluminum powder as a conductive filler, and is suitably used for bonding a semiconductor element and a supporting member. be able to.
 1…スライドグラス、2…紙テープ、3…樹脂ペースト組成物、4…樹脂層、10…試験サンプル。 1 ... slide glass, 2 ... paper tape, 3 ... resin paste composition, 4 ... resin layer, 10 ... test sample.

Claims (10)

  1.  (メタ)アクリロイルオキシ基を有する化合物と、重合開始剤と、可とう化剤と、アミン化合物と、アルミニウム粉と、を含有する半導体素子接着用樹脂ペースト組成物。 A resin paste composition for adhering semiconductor elements, comprising a compound having a (meth) acryloyloxy group, a polymerization initiator, a flexible agent, an amine compound, and aluminum powder.
  2.  実質的に芳香族系エポキシ樹脂を含有しない、請求項1に記載の半導体素子接着用樹脂ペースト組成物。 The resin paste composition for adhering semiconductor elements according to claim 1, which contains substantially no aromatic epoxy resin.
  3.  前記可とう化剤がゴム成分を含む、請求項1又は2に記載の半導体素子接着用樹脂ペースト組成物。 3. The resin paste composition for adhering a semiconductor element according to claim 1, wherein the flexible agent contains a rubber component.
  4.  前記アミン化合物が、ジシアンジアミド及び/又はイミダゾール化合物である、請求項1~3のいずれか一項に記載の半導体素子接着用樹脂ペースト組成物。 4. The resin paste composition for adhering a semiconductor element according to claim 1, wherein the amine compound is a dicyandiamide and / or an imidazole compound.
  5.  前記アルミニウム粉の形状が粒状であり、
     前記アルミニウム粉の平均粒径が2~10μmである、請求項1~4のいずれか一項に記載の半導体素子接着用樹脂ペースト組成物。
    The shape of the aluminum powder is granular,
    The resin paste composition for bonding a semiconductor element according to any one of claims 1 to 4, wherein the average particle diameter of the aluminum powder is 2 to 10 袖 m.
  6.  銀粉をさらに含有する、請求項1~5のいずれか一項に記載の半導体素子接着用樹脂ペースト組成物。 The resin paste composition for adhering semiconductor elements according to any one of claims 1 to 5, further comprising silver powder.
  7.  前記銀粉の形状がフレーク状であり、
     前記銀粉の平均粒径が1~5μmである、請求項6に記載の半導体素子接着用樹脂ペースト組成物。
    The shape of the silver powder is flaky,
    The resin paste composition for bonding a semiconductor element according to claim 6, wherein the silver powder has an average particle diameter of 1 to 5 µm.
  8.  前記銀粉の含有量Cに対する前記アルミニウム粉の含有量Cの比C/Cが、質量比で2/8~8/2である、請求項6又は7に記載の半導体素子接着用樹脂ペースト組成物。 8. The semiconductor element bonding according to claim 6, wherein a ratio C 1 / C 2 of the content C 1 of the aluminum powder to the content C 2 of the silver powder is 2/8 to 8/2 in terms of mass ratio. Resin paste composition.
  9.  前記(メタ)アクリロイルオキシ基を有する化合物が、(メタ)アクリル酸エステル化合物である、請求項1~8のいずれか一項に記載の半導体素子接着用樹脂ペースト組成物。 The resin paste composition for adhering semiconductor elements according to any one of claims 1 to 8, wherein the compound having a (meth) acryloyloxy group is a (meth) acrylic acid ester compound.
  10.  支持部材と、半導体素子と、前記支持部材及び前記半導体素子の間に配置され、前記支持部材及び前記半導体素子を接着する接着層と、を備え、
     前記接着層が、請求項1~9のいずれか一項に記載の半導体素子接着用樹脂ペースト組成物の硬化物を含む、半導体装置。
    A support member, a semiconductor element, and an adhesive layer that is disposed between the support member and the semiconductor element and adheres the support member and the semiconductor element.
    A semiconductor device, wherein the adhesive layer comprises a cured product of the resin paste composition for adhering a semiconductor element according to any one of claims 1 to 9.
PCT/JP2012/055577 2011-03-14 2012-03-05 Resin paste composition for bonding semiconductor element, and semiconductor device WO2012124527A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
SG2013068846A SG193438A1 (en) 2011-03-14 2012-03-05 Resin paste composition for bonding semiconductor element, and semiconductor device
CN2012800131685A CN103429688A (en) 2011-03-14 2012-03-05 Resin paste composition for bonding semiconductor element, and semiconductor device
JP2013504665A JPWO2012124527A1 (en) 2011-03-14 2012-03-05 Resin paste composition for bonding semiconductor elements and semiconductor device
KR1020137024233A KR20140018901A (en) 2011-03-14 2012-03-05 Resin paste composition for bonding semiconductor element, and semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011055456 2011-03-14
JP2011-055456 2011-03-14

Publications (1)

Publication Number Publication Date
WO2012124527A1 true WO2012124527A1 (en) 2012-09-20

Family

ID=46830602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055577 WO2012124527A1 (en) 2011-03-14 2012-03-05 Resin paste composition for bonding semiconductor element, and semiconductor device

Country Status (6)

Country Link
JP (1) JPWO2012124527A1 (en)
KR (1) KR20140018901A (en)
CN (1) CN103429688A (en)
SG (1) SG193438A1 (en)
TW (1) TW201245377A (en)
WO (1) WO2012124527A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115343A1 (en) * 2013-01-28 2014-07-31 日立化成株式会社 Resin paste composition
WO2015093136A1 (en) * 2013-12-16 2015-06-25 日立化成株式会社 Resin paste composition and semiconductor device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018034234A1 (en) * 2016-08-19 2018-02-22 住友ベークライト株式会社 Die attach paste and semiconductor device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191785A (en) * 1983-01-18 1984-10-30 ロツクタイト コーポレーシヨン Adhesion compound and use
JP2002012602A (en) * 2000-06-27 2002-01-15 Hitachi Chem Co Ltd Resin paste composition and semiconductor device using the same
JP2002179769A (en) * 2000-12-12 2002-06-26 Hitachi Chem Co Ltd Resin paste composition and semiconductor device using the same
JP2006273916A (en) * 2005-03-28 2006-10-12 Sumitomo Bakelite Co Ltd Resin composition and semiconductor device using the resin composition
JP2007169453A (en) * 2005-12-21 2007-07-05 Sumitomo Bakelite Co Ltd Resin composition and semiconductor device formed with the resin composition

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100495671C (en) * 2004-06-18 2009-06-03 日立化成工业株式会社 Resin paste for wafer bonding

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191785A (en) * 1983-01-18 1984-10-30 ロツクタイト コーポレーシヨン Adhesion compound and use
JP2002012602A (en) * 2000-06-27 2002-01-15 Hitachi Chem Co Ltd Resin paste composition and semiconductor device using the same
JP2002179769A (en) * 2000-12-12 2002-06-26 Hitachi Chem Co Ltd Resin paste composition and semiconductor device using the same
JP2006273916A (en) * 2005-03-28 2006-10-12 Sumitomo Bakelite Co Ltd Resin composition and semiconductor device using the resin composition
JP2007169453A (en) * 2005-12-21 2007-07-05 Sumitomo Bakelite Co Ltd Resin composition and semiconductor device formed with the resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014115343A1 (en) * 2013-01-28 2014-07-31 日立化成株式会社 Resin paste composition
JP2014145011A (en) * 2013-01-28 2014-08-14 Hitachi Chemical Co Ltd Resin paste composition
WO2015093136A1 (en) * 2013-12-16 2015-06-25 日立化成株式会社 Resin paste composition and semiconductor device
JP2015135805A (en) * 2013-12-16 2015-07-27 日立化成株式会社 Resin paste composition and semiconductor device

Also Published As

Publication number Publication date
CN103429688A (en) 2013-12-04
TW201245377A (en) 2012-11-16
SG193438A1 (en) 2013-10-30
JPWO2012124527A1 (en) 2014-07-24
KR20140018901A (en) 2014-02-13

Similar Documents

Publication Publication Date Title
JP6405867B2 (en) Resin paste composition and semiconductor device
JP4752109B2 (en) Resin paste composition and semiconductor device using the same
US8749076B2 (en) Resin paste composition
JP5664673B2 (en) Resin paste composition
WO2012118061A1 (en) Electrically conductive composition
WO2016031554A1 (en) Adhesive film
JP2012236873A (en) Resin paste composition and semiconductor device
JP6532850B2 (en) Adhesive composition, film adhesive, adhesive sheet, circuit connector, method of connecting circuit members, use of adhesive composition, use of film adhesive, and use of adhesive sheet
JP2009102603A (en) Adhesive composition and semiconductor device
JP2013067673A (en) Resin paste composition and semiconductor device
JP5625248B2 (en) Resin paste composition and semiconductor device
WO2012124527A1 (en) Resin paste composition for bonding semiconductor element, and semiconductor device
JP2012188465A (en) Resin paste composition and semiconductor apparatus
JP2012188622A (en) Resin paste composition for bonding semiconductor device, and semiconductor device
JP2012072305A (en) Resin paste composition
JP2009102602A (en) Adhesive composition and semiconductor device
JP2010225312A (en) Resin paste composition and semiconductor device
JP2000239616A (en) Resin paste composition and semiconductor device using same
JP4172257B2 (en) Resin paste composition and semiconductor device using the same.
JP7124936B2 (en) Adhesive composition and structure
JP2010222452A (en) Resin paste composition, and semiconductor device using the same
JP2002012603A (en) Electroconductive resin paste composition and semiconductor device using the same
JP2003335924A (en) Resin paste composition and semiconductor device using the same
JP4600429B2 (en) Resin paste composition and semiconductor device using the same
JP3985433B2 (en) Resin paste composition and semiconductor device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12758147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013504665

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137024233

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12758147

Country of ref document: EP

Kind code of ref document: A1