WO2012121159A1 - 多層基板、多層基板の製造方法、多層基板の品質管理方法 - Google Patents

多層基板、多層基板の製造方法、多層基板の品質管理方法 Download PDF

Info

Publication number
WO2012121159A1
WO2012121159A1 PCT/JP2012/055428 JP2012055428W WO2012121159A1 WO 2012121159 A1 WO2012121159 A1 WO 2012121159A1 JP 2012055428 W JP2012055428 W JP 2012055428W WO 2012121159 A1 WO2012121159 A1 WO 2012121159A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
multilayer
reference mark
multilayer film
Prior art date
Application number
PCT/JP2012/055428
Other languages
English (en)
French (fr)
Inventor
有造 岡村
生田 順亮
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to JP2013503512A priority Critical patent/JP5910625B2/ja
Priority to KR1020137015236A priority patent/KR101904560B1/ko
Publication of WO2012121159A1 publication Critical patent/WO2012121159A1/ja
Priority to US14/021,392 priority patent/US8921017B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof
    • G03F1/24Reflection masks; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/42Alignment or registration features, e.g. alignment marks on the mask substrates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/44Testing or measuring features, e.g. grid patterns, focus monitors, sawtooth scales or notched scales
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to a multilayer substrate, a multilayer substrate manufacturing method, and a multilayer substrate quality control method.
  • EUV light means light having a wavelength in the soft X-ray region or the vacuum ultraviolet region, specifically, light having a wavelength of about 0.2 to 100 nm.
  • EUV light means light having a wavelength of around 13.5 nm as a lithography light source is mainly studied.
  • the mask blank is a multilayer substrate formed by forming a multilayer film on the substrate.
  • the multilayer film has, from the substrate side, a reflective layer that reflects EUV light and an absorption layer that absorbs EUV light in this order.
  • the defect position on the substrate is specified with the position of the reference mark formed on the substrate as the reference position. Further, since the reference mark is transferred to the multilayer film formed on the substrate, the defect position of each functional layer constituting the multilayer film is specified using the position of the transferred reference mark as the reference position (for example, patents). Reference 2).
  • the electron beam drawing apparatus used in the photomask manufacturing process detects the position of the reference mark transferred to the uppermost layer of the multilayer film using the reflected electron beam.
  • a coordinate measuring device and a mask appearance inspection device used in the photomask manufacturing process detect reflected ultraviolet rays having a wavelength of 190 to 400 nm to detect the position of the reference mark transferred to the uppermost layer of the multilayer film.
  • Patent Document 2 describes a multilayer mask blank provided with a reference mark, in which a concave portion is provided in advance on a part of the surface of an ultra-smooth substrate and a multilayer film is further deposited thereon, and is formed on the substrate.
  • the reference mark describes that pattern detection by an electron beam is possible.
  • the detection signal becomes low, and there is a problem that it is difficult to obtain the required detection position accuracy.
  • the present invention has been made in view of the above problems, and provides a multilayer substrate, a multilayer substrate manufacturing method, and a multilayer substrate quality control method capable of accurately detecting a reference position by a reflected electron beam or reflected ultraviolet light. With the goal.
  • the present invention provides: In a multilayer substrate having a substrate and a multilayer film provided on the substrate, On the surface opposite to the substrate side of the multilayer film, a concave or convex reference mark indicating the reference position of the multilayer substrate is formed, Provided is a multilayer substrate in which a material of at least a part of the surface of the reference mark is different from a material of an outermost layer opposite to the substrate side of the multilayer film.
  • the present invention also provides: In a method for manufacturing a multilayer substrate having a substrate and a multilayer film provided on the substrate, Forming a concave or convex reference mark indicating a reference position of the multilayer substrate on a surface of the multilayer film opposite to the substrate side; Provided is a method for manufacturing a multilayer substrate, wherein a material of at least a part of a surface of the reference mark is different from a material of an outermost layer on the opposite side of the multilayer film from the substrate side.
  • the present invention provides A multilayer substrate having a substrate and a multilayer film provided on the substrate, wherein a concave or convex reference mark indicating a reference position of the multilayer substrate is provided on a surface of the multilayer film opposite to the substrate side.
  • a quality control method for a multilayer substrate on which is formed Before forming the multilayer film on the substrate, the position of a concave or convex temporary reference mark on the substrate is used as a reference position to specify a defect position on the substrate, and / or In the middle of the formation of the multilayer film, the specific step of identifying the defect position of at least one layer of the multilayer film, with the position of the concave or convex temporary reference mark on the substrate as the reference position; A detection step of detecting a positional relationship between the temporary reference mark and the reference mark; A conversion step of converting the defect position identified in the identification step into a position where the position of the reference mark is a reference position based on the result of the detection step; There is provided a quality control method for a multilayer substrate, wherein a material of at least a part of a surface of the reference mark is different from a material of an outermost layer on the opposite side of the multilayer film from the substrate side.
  • the present invention is, A multilayer substrate having a substrate and a multilayer film provided on the substrate, wherein a concave or convex reference mark indicating a reference position of the multilayer substrate is provided on a surface opposite to the substrate side of the multilayer film.
  • a quality control method for a multilayer substrate on which is formed Before forming the multilayer film on the substrate, the position of a concave or convex temporary reference mark on the substrate is used as a reference position to specify a defect position on the substrate, and / or In the middle of the formation of the multilayer film, the position of the concave or convex provisional reference mark on the substrate as a reference position, a specific step of specifying a defect position of at least one layer of the multilayer film, The fiducial mark is formed so as to overlap the temporary fiducial mark in plan view, and at least a part of the surface of the fiducial mark and an outermost layer on the opposite side of the multilayer film from the substrate side.
  • a quality control method for a multilayer substrate which is made of different materials.
  • a multilayer substrate a multilayer substrate manufacturing method, and a multilayer substrate quality control method capable of accurately detecting a reference position by a reflected electron beam or reflected ultraviolet light.
  • FIG. 1 is a sectional view of a mask blank for EUVL according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an example of a photomask formed by patterning a mask blank.
  • FIG. 3 is a plan view of an example of the substrate and the temporary reference mark.
  • FIG. 4 is a diagram illustrating an example of a cross-sectional profile of a concave reference mark and a cross-sectional profile of a concave temporary reference mark transferred to the uppermost layer of a multilayer film.
  • FIG. 5 is a plan view of an example of a mask blank and a reference mark.
  • FIG. 6 is an explanatory diagram of the difference in contrast of the reflected electron image (SEM photograph) due to the difference in material.
  • FIG. 7 is an explanatory diagram of the difference in the ultraviolet reflectance spectrum due to the difference in material.
  • FIG. 8 is a cross-sectional view of a mask blank for EUV according to the second embodiment of the present invention.
  • FIG. 9 is a flowchart of a mask blank manufacturing method according to the third embodiment of the present invention.
  • FIG. 10 is a flowchart of a mask blank quality control method according to the fourth embodiment of the present invention.
  • FIG. 11 is a cross-sectional view of a mask blank for EUVL according to the fifth embodiment of the present invention.
  • FIG. 1 is a sectional view of a mask blank for EUVL according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an example of a photomask formed by patterning a mask blank.
  • the EUVL mask blank 10 includes a substrate 20 and a multilayer film 30 formed on the substrate 20, for example, as shown in FIG.
  • the multilayer film 30 includes, from the substrate 20 side, a reflective layer 31 that reflects EUV light, a protective layer 32 that protects the reflective layer 31, a buffer layer 33 for pattern processing, an absorption layer 34 that absorbs EUV light, and inspection light.
  • a low reflection layer 35 having a lower reflectance than the absorption layer 34 is provided in this order.
  • the protective layer 32, the buffer layer 33, and the low reflective layer 35 have arbitrary configurations, and the multilayer film 30 may not include the protective layer 32, buffer layer 33, and low reflective layer 35.
  • the multilayer film 30 may further include other functional layers.
  • the EUVL mask blank 10 is patterned in accordance with a general mask manufacturing process to become a photomask 100 (see FIG. 2).
  • a resist film is applied on the multilayer film 30 of the mask blank 10, heated, and then drawn with an electron beam or ultraviolet rays.
  • the position and orientation of the drawing pattern are adjusted according to at least one defect position in the multilayer film 30 and a defect position existing on the substrate surface.
  • unnecessary portions of the absorption layer 34 and the low reflection layer 35 and the resist are removed by development / etching to obtain the photomask 100.
  • the photomask 100 has a low reflection layer 135 and an absorption layer 134 obtained by patterning the low reflection layer 35 and the absorption layer 34 shown in FIG.
  • the EUV light irradiated on the photomask 100 is absorbed in a portion where the absorption layer 134 is present, and is reflected by the reflective layer 31 in a portion where the absorption layer 134 is not present.
  • the EUV light reflected by the reflective layer 31 is imaged on the surface of the exposure material by an imaging optical system composed of a concave mirror or the like.
  • the substrate 20 is for forming the multilayer film 30.
  • RMS Root Mean Square representing the surface roughness of the substrate 20 is, for example, 0.15 nm or less, and the flatness of the substrate 20 is, for example, 100 nm or less.
  • the substrate 20 is required to have a coefficient of thermal expansion close to 0 in a temperature range used as a mask blank, and is preferably in the range of 0 ⁇ 0.05 ⁇ 10 ⁇ 7 / ° C., for example, 0 ⁇ 0.03 ⁇ 10 ⁇ More preferably within the range of 7 / ° C.
  • the substrate 20 is made of glass having excellent chemical resistance and heat resistance and a small coefficient of thermal expansion.
  • glass for example, quartz glass mainly composed of SiO 2 is used. Quartz glass may contain TiO 2 . The content of TiO 2 is, for example, 1 to 12% by mass.
  • the substrate 20 may be made of silicon or metal other than glass.
  • a conductive layer 22 for electrostatic attraction is formed on the back surface 21 of the substrate 20 (the surface opposite to the surface on which the multilayer film is formed).
  • the electric conductivity and thickness of the constituent material are selected so that the conductive layer 22 has a sheet resistance of 100 ⁇ / ⁇ or less.
  • Si, TiN, Mo, Cr, CrN, TaSi or the like is used as a constituent material of the conductive layer 22.
  • a CrN film that is excellent in adhesion to the chuck surface since the surface roughness of the surface of the conductive layer 22 is small, and excellent in chucking force because of the low sheet resistance of the conductive layer 22 is preferable.
  • the thickness of the conductive layer 22 is, for example, 10 to 1000 nm.
  • a known film forming method for example, a sputtering method such as a magnetron sputtering method or an ion beam sputtering method, a CVD method, a vacuum evaporation method, an electrolytic plating method, or the like is used.
  • a multilayer film 30 is formed on the surface 23 (the surface on which the multilayer film is formed) of the substrate 20.
  • a concave or convex shape indicating the reference position of the substrate 20 is formed.
  • a temporary reference mark (in the present embodiment, a concave temporary reference mark) 40 is formed. Therefore, before forming the multilayer film 30 (more specifically, before forming the first layer, that is, the reflective layer 31), the position of the defect of the substrate 20 is determined using the position of the temporary reference mark 40 as a reference position. It can be specified and recorded on a recording medium such as a magnetic recording medium, an optical recording medium, an electronic recording medium, or paper.
  • FIG. 3 is a plan view of an example of the substrate and the temporary reference mark.
  • three or more temporary reference marks 40 (four in FIG. 3) are formed.
  • the three or more temporary reference marks 40 are not arranged on the same straight line.
  • one reference point is the origin
  • a straight line connecting the origin and the other reference point is the X axis
  • a straight line connecting the origin and the remaining one reference point is the Y axis.
  • the X axis and the Y axis may be orthogonal to each other.
  • the temporary reference mark 40 is formed in a region that is not used in a subsequent process (for example, a region that is not subjected to pattern processing in the photomask manufacturing process), and specifically, is formed on the outer peripheral portion of the substrate 20.
  • the temporary reference mark 40 is transferred to the reflective layer 31, the protective layer 32, the buffer layer 33, the absorbing layer 34, and the low reflective layer 35 that are sequentially formed on the substrate 20. Therefore, it is possible to specify the defect position (X coordinate, Y coordinate) of each layer 31 to 35 and record it on the recording medium using the position of the transferred temporary reference marks 41 to 45 as the reference position.
  • the recorded defect position information is provided to the photomask 100 manufacturing process.
  • the defect position specified with the position of the temporary reference mark 40 (more specifically, the position of the temporary reference marks 40 to 45) as the reference position is a position having the position of the reference mark 50 as the reference position. After being converted into (coordinate conversion), it is used for the manufacturing process of the photomask 100.
  • the defect position (including depth) of the mask blank 10 can be known based on the provided information. For example, by changing the position and direction of the processing pattern of the absorption layer 34, etc. A high-quality photomask 100 can be manufactured. Moreover, conventionally, even if the mask blank 10 is discarded because it contains a defect, it can be used in the manufacturing process of the photomask 100.
  • the shape of the temporary reference mark 40 is, for example, a quadrangle, a triangle, a circle, an ellipse, or a rhombus as shown in FIG. 3 in a plan view (viewed from a direction orthogonal to the surface 23 of the substrate 20).
  • a side view for example, as shown in FIG. 1, it is a quadrangle, a triangle, or a semicircle.
  • the size of the temporary reference mark 40 is, for example, in plan view, the maximum length is 200 nm or less, preferably 70 nm or less, more preferably 50 nm or less, and the minimum length is 10 nm or more, preferably 30 nm or more.
  • the maximum depth of the concave temporary reference mark 40 is 20 nm or less, preferably 10 nm or less, more preferably 5 nm or less, and the minimum depth of the concave temporary reference mark 40 is 1 nm or more, preferably 2 nm or more.
  • a temporary reference mark is used by a commercially available mask blank or glass substrate automatic defect inspection apparatus (for example, M7360 manufactured by Lasertec Corporation) using ultraviolet light or visible light as a light source.
  • the position of 40 can be detected with high accuracy, and the defect position of at least one layer of the multilayer film 30 and the defect position existing on the surface 23 of the substrate 20 can be specified with sufficient accuracy.
  • the concave temporary reference mark 40 is formed by removing a part of the surface 23 of the substrate 20. Removal methods include laser ablation, FIB (Focused Ion Beam), nanoindentation, micromachining (for example, mechanical microfabrication using Rave nm450), resist patterning and etching.
  • FIB Fluorine-Beam
  • nanoindentation for example, mechanical microfabrication using Rave nm450
  • resist patterning for example, mechanical microfabrication using Rave nm450
  • etching for example, mechanical microfabrication using Rave nm450
  • the lithography method used is used.
  • the FIB method, the micromachining method, and the laser ablation method are preferably used.
  • an actual defect existing on the surface 23 of the substrate 20 for example, a concave defect such as a pit generated by polishing or cleaning can be used.
  • the reflective layer 31 is a layer that reflects EUV light.
  • the EUV light irradiated on the portion of the photomask 100 that does not have the absorption layer 134 is reflected by the reflective layer 31.
  • the maximum value of the reflectance is, for example, 60% or more, preferably 65% or more.
  • the reflective layer 31 has a multilayer structure in which, for example, a high refractive layer and a low refractive index layer are alternately and repeatedly stacked.
  • An Mo layer may be used for the high refractive index layer
  • an Si layer may be used for the low refractive index layer. That is, the reflective layer 31 may be a Mo / Si multilayer reflective layer.
  • the thickness of the Mo layer, the thickness of the Si layer, and the number of repetitions are appropriately set.
  • the thickness of the Mo layer is 2.3 ⁇ 0.1 nm
  • the thickness of the Si layer is 4.5 ⁇ . 0.1 nm and the number of repetitions is 30 to 60.
  • the reflective layer 31 is not particularly limited.
  • film formation methods such as magnetron sputtering and ion beam sputtering are used.
  • magnetron sputtering and ion beam sputtering are used.
  • the process of forming a Mo layer using a Mo target and the process of forming a Si layer using a Si target are alternately repeated. .
  • the protective layer 32 is a layer that plays a role of preventing the reflection layer 31 from being oxidized.
  • As the material of the protective layer 32 Si, Ti, Ru, Rh, C, SiC, a mixture of these elements / compounds, or a material obtained by adding N, O, B or the like to these elements / compounds can be used.
  • the thickness of the protective layer can be as thin as 2 to 3 nm, and the function of the buffer layer 33 described later can also be used, which is particularly preferable.
  • the reflective layer 31 is a Mo / Si multilayer reflective layer
  • the uppermost layer can be made to function as a protective layer by making the uppermost layer an Si layer.
  • the uppermost Si layer is preferably 5 to 15 nm thicker than the usual 4.5 nm.
  • a Ru film serving as a protective layer and a buffer layer may be formed on the uppermost Si layer.
  • the protective layer 32 is not necessarily one layer, and may be two or more layers.
  • a film forming method such as a magnetron sputtering method or an ion beam sputtering method is used.
  • the buffer layer 33 is a so-called etching stopper that prevents the reflective layer 31 from being damaged by the etching process of the absorption layer 34 (usually a dry etching process) in the manufacturing process of the photomask 100. To play a role.
  • the material of the buffer layer 33 a material that is not easily affected by the etching process of the absorbing layer 34, that is, the etching rate is slower than that of the absorbing layer 34 and is not easily damaged by the etching process.
  • the material satisfying this condition include Cr, Al, Ru, Ta, and nitrides thereof, and SiO 2 , Si 3 N 4 , Al 2 O 3, and mixtures thereof.
  • Ru, CrN, and SiO 2 are preferable, CrN and Ru are more preferable, and Ru is particularly preferable because it has the functions of the protective layer 32 and the buffer layer 33.
  • the thickness of the buffer layer 33 is preferably 1 to 60 nm.
  • the film formation method of the buffer layer 33 a known film formation method such as a magnetron sputtering method or an ion beam sputtering method is used.
  • the absorption layer 34 is a layer that absorbs EUV light.
  • the characteristics particularly required for the absorption layer 34 are absorption so that the pattern formed on the EUV photomask 100 is accurately transferred to the resist film on the wafer via the projection optical system of the EUVL exposure machine.
  • the intensity and phase of reflected light from the layer 34 are adjusted.
  • the first method is to reduce the intensity of reflected light from the absorbing layer 34 as much as possible.
  • the reflectance of EUV light from the surface of the absorbing layer 34 is 1% or less, particularly 0.
  • the film thickness and material of the absorption layer 34 are adjusted so as to be 7% or less.
  • the second is a method of using the interference effect of the reflected light from the reflective layer 31 and the reflected light from the absorbing layer 34 (or the low reflecting layer when the low reflecting layer is formed on the surface of the absorbing layer),
  • the reflectance of EUV light from the absorption layer 34 (or a low reflection layer when a low reflection layer is formed on the surface of the absorption layer) is set to 5 to 15%, and the reflected light from the reflection layer 31 and the absorption layer 34 (absorption)
  • the absorption layer 34 the low reflection layer is formed on the absorption layer surface
  • the film thickness and material of the low reflection layer are adjusted.
  • the material constituting the absorption layer 34 is preferably a material containing Ta at least 40 at%, preferably at least 50 at%, more preferably at least 55 at%.
  • the material mainly composed of Ta used for the absorption layer 34 preferably contains at least one element of Hf, Si, Zr, Ge, B, Pd, H and N in addition to Ta.
  • the material containing the above elements other than Ta include, for example, TaN, TaNH, TaHf, TaHfN, TaBSi, TaBSiN, TaB, TaBN, TaSi, TaSiN, TaGe, TaGeN, TaZr, TaZrN, TaPd, TaPdN, etc. Is mentioned. However, it is preferable that the absorption layer 34 does not contain oxygen.
  • the oxygen content in the absorption layer 34 is preferably less than 25 at%.
  • a dry etching process is usually used, and an etching gas is chlorine gas (including mixed gas) or fluorine. System gases (including mixed gases) are usually used.
  • the protective layer 32 is less damaged.
  • Chlorine gas is mainly used.
  • the dry etching process of the absorption layer 34 is performed using chlorine gas, if the absorption layer 34 contains oxygen, the etching rate is decreased, and the resist film is greatly damaged, which is not preferable.
  • the oxygen content in the absorbing layer 34 is more preferably 15 at% or less, further preferably 10 at% or less, and particularly preferably 5 at% or less.
  • the thickness of the absorption layer 34 is 60 nm or more in the case of the above-described first method, that is, in order to make the EUV light reflectance from the surface of the absorption layer 34 1% or less, particularly 0.7% or less. It is preferable that the thickness is 70 nm or more. In the case of the second method described above, the range of 40 nm to 60 nm is preferable, and the range of 45 nm to 55 nm is particularly preferable.
  • a film formation method such as a magnetron sputtering method or an ion beam sputtering method is used.
  • the absorbing layer 34 is patterned in the manufacturing process of the photomask 100 to become the absorbing layer 134.
  • the low reflection layer 35 is a layer having a lower reflectance than the absorption layer 34 with respect to inspection light for inspecting the pattern shape of the absorption layer 134 shown in FIG.
  • inspection light light having a wavelength of about 257 nm is usually used.
  • the inspection of the pattern shape of the absorption layer 134 is performed by utilizing the fact that the reflectance of the inspection light is different between a portion where the absorption layer 134 is present and a portion where the absorption layer 134 is absent.
  • the protective layer 32 is usually exposed at a portion where the absorption layer 134 is not present.
  • the difference in inspection light reflectance increases between the portion where the absorption layer 134 is present and the portion where the absorption layer 134 is absent. Will improve.
  • the low reflection layer 35 is made of a material having a refractive index lower than that of the absorption layer 34 at the wavelength of the inspection light.
  • a material mainly containing Ta can be used.
  • the total thickness of the absorption layer 34 and the low reflection layer 35 is preferably 10 to 65 nm, more preferably 30 to 65 nm, and 35 to 60 nm. And more preferred. Further, if the layer thickness of the low reflection layer 35 is larger than the layer thickness of the absorption layer 34, the EUV light absorption characteristics in the absorption layer 34 may be deteriorated. It is preferable that the thickness is smaller than the layer thickness. Therefore, the thickness of the low reflection layer 35 is preferably 1 to 20 nm, more preferably 3 to 15 nm, and further preferably 5 to 10 nm.
  • a film formation method such as a magnetron sputtering method or an ion beam sputtering method is used.
  • the multilayer film 30 may have a functional layer such as a hard mask.
  • the hard mask is formed on the surface of the absorption layer 34 (the low reflection layer 35 when the low reflection layer 35 is formed on the absorption layer 34 and the hard mask does not have the function of the low reflection layer 35). Since the dry etching rate described above is slower than that of the absorption layer 34 and / or the low reflection layer 35, the resist film can be made thinner and a finer pattern can be produced.
  • a material for such a hard mask Cr 2 O 3 , Ru, Cr (N, O) or the like can be used, and the film thickness is preferably 2 to 10 nm.
  • a concave or convex (concave shape in this embodiment) fiducial mark 50 indicating the reference position of the mask blank 10 is provided on the surface 36 (surface opposite to the substrate 20 side) of the multilayer film 30 having the above configuration. Is formed. Since the fiducial mark 50 is formed after the multilayer film 30 is formed, the edge angle is sharper than the temporary fiducial mark 45 transferred to the uppermost layer of the multilayer film 30 (the outermost layer opposite to the substrate 20). Can be detected with high accuracy.
  • FIG. 4 is a diagram illustrating an example of a cross-sectional profile of a concave reference mark and a cross-sectional profile of a concave temporary reference mark transferred to the uppermost layer of a multilayer film.
  • a solid line shows an example of a cross-sectional profile of a concave reference mark
  • a broken line shows an example of a cross-sectional profile of a concave temporary reference mark transferred to the uppermost layer of the multilayer film.
  • FIG. 4 is a diagram illustrating an example of a cross-sectional profile of a concave reference mark and a cross-sectional profile of a concave temporary reference mark transferred to the uppermost layer of a multilayer film.
  • a quartz glass substrate doped with TiO 2 on a quartz glass substrate doped with TiO 2 , a reflective layer (Mo / Si 40 layers laminated, a thickness of about 280 nm), a protective layer (a Ru layer with a thickness of 2.5 nm), and an absorption layer (thickness).
  • 51 nm TaN layer) and a low reflection layer (7 nm thick TaON layer) are laminated in this order.
  • the depth of the temporary reference mark formed on the substrate and the depth of the reference mark formed on the low reflective layer were each about 80 nm.
  • FIG. 4 shows that the cross-sectional profile of the concave reference mark is steeper than the cross-sectional profile of the concave temporary reference mark transferred to the uppermost layer of the multilayer film.
  • FIG. 5 is a plan view of an example of a mask blank and a reference mark.
  • the reference mark 50 is formed in a shape according to the purpose.
  • the reference mark 50 is formed in a cross shape in a plan view (viewed from a direction orthogonal to the surface 36). The intersection of the center line of one straight part and the center lines of the remaining straight parts becomes the reference point.
  • Each linear portion has, for example, a width W of 4.5 to 5.5 ⁇ m and a length L of 100 to 500 ⁇ m.
  • Three or more reference marks 50 are formed. Three or more reference marks 50 are not arranged on the same straight line. Among three or more reference points, one reference point is the origin, a straight line connecting the origin and the other reference point is the X axis, and a straight line connecting the origin and the remaining one reference point is the Y axis. Become. The X axis and the Y axis may be orthogonal to each other.
  • the reference mark 50 is formed in a region of the surface 36 of the multilayer film 30 that is not used in a later process (for example, a region that is not subjected to pattern processing in the photomask manufacturing process). Formed.
  • the concave fiducial mark 50 has a stepped surface 51 substantially perpendicular to the surface 36 of the multilayer film 30 and an offset surface (inner bottom surface) 52 substantially parallel to the surface 36 of the multilayer film 30 so that the edges are sharp. It is preferable.
  • the concave fiducial mark 50 is formed by removing a part of the surface 36 of the multilayer film 30. Removal methods include laser ablation, FIB (Focused Ion Beam), lithography using resist patterning and etching, nanoindentation, and micromachining (eg, mechanically using nm450 manufactured by Rave). For example, a microfabrication method). In particular, the FIB method and the lithography method are preferably used.
  • the concave fiducial mark 50 is formed so as to penetrate at least the uppermost layer (the outermost layer on the side opposite to the substrate 20 side) of the multilayer film 30. Accordingly, a part (offset surface 52) of the surface (step surface 51 and offset surface 52) of the concave reference mark 50 is made of a material different from that of the uppermost layer of the multilayer film 30, so that the position of the reference mark 50 is accurately determined. It can be detected well. This effect is particularly remarkable when the position of the reference mark 50 is detected using a reflected electron beam or reflected ultraviolet light. This is because the intensity of the reflected electron image is higher in contrast due to the material difference than the secondary electron image. The intensity of reflected ultraviolet light depends on the type of material, and a strong contrast can be obtained depending on the material.
  • FIG. 6 is an explanatory diagram of the difference in contrast of the reflected electron image (SEM photograph) due to the difference in material.
  • the multilayer substrate shown in FIG. 6 is obtained by forming a reflective layer on a substrate and forming an absorption layer on the reflective layer.
  • the substrate is a quartz glass substrate doped with TiO 2
  • the reflective layer is a Mo / Si multilayer reflective layer
  • the absorption layer is a TaN layer.
  • an upper left portion 201 has a reflection electron image of a portion where the absorption layer is not stacked on the reflection layer
  • a lower left portion 202 has an absorption layer having a thickness of 35 nm stacked on the reflection layer. a reflection electron image of the part.
  • FIG. 6 is an explanatory diagram of the difference in contrast of the reflected electron image (SEM photograph) due to the difference in material.
  • the multilayer substrate shown in FIG. 6 is obtained by forming a reflective layer on a substrate and forming an absorption layer on the reflective layer.
  • an upper right portion 203 is a reflected electron image of a portion in which an absorption layer having a thickness of 77 nm is stacked on the reflective layer, and a lower right portion 204 is a portion in which the absorption layer having a thickness of 112 nm is stacked on the reflective layer.
  • the difference between the number of protons of the material constituting the inner bottom surface 52 of the concave fiducial mark 50 and the number of protons of the material constituting the uppermost layer of the multilayer film 30 is sufficiently large so that the contrast in the reflected electron image becomes strong. preferable.
  • FIG. 7 is an explanatory diagram of the difference in the ultraviolet reflectance spectrum due to the difference in materials.
  • A is a spectrum of a multilayer substrate in which a reflective layer (40 layers of Mo / Si is laminated) on the substrate, and B is a reflective layer (40 layers of Mo / Si laminated) / absorbing layer (thickness 77 nm) on the substrate.
  • the spectrum of a multilayer substrate with a TaN layer of C, and C is a reflective layer (40 layers of Mo / Si, thickness of about 280 nm), an absorption layer (a TaN layer with a thickness of 77 nm), a low reflection layer (a thickness of 7 nm) 2 represents a spectrum of a multilayer substrate on which a TaON layer is laminated.
  • the ultraviolet reflectances of the three types of multilayer substrates are different from each other, and when the material constituting the inner bottom surface 52 of the concave fiducial mark 50 is different from the material constituting the uppermost layer of the multilayer film 30, the difference in ultraviolet reflectance is different. It can be seen that the reference mark 50 can be easily detected by the reflected ultraviolet rays by utilizing the contrast due to.
  • the concave fiducial mark 50 may be formed so as to penetrate the absorption layer 34 in addition to the low reflection layer 35. This is because the low reflection layer 35 and the absorption layer 34 are often made of similar materials.
  • the concave fiducial mark 50 may be formed so as to penetrate the buffer layer 33 in addition to the low reflection layer 35 and the absorption layer 34, or penetrate the buffer layer 33 and the protective layer 32. It may be formed so as to.
  • the concave fiducial mark 50 may be formed so as to penetrate the reflective layer 31 in addition to the protective layer 32.
  • the inner bottom surface 52 of the concave fiducial mark 50 is in the reflective layer 31 in this embodiment, but may be in any of the absorption layer 34, the buffer layer 33, the protective layer 32, and the substrate 20, and a plurality of functional layers. It may be over.
  • the depth of the concave fiducial mark 50 is appropriately set according to the thicknesses of the low reflection layer 35, the absorption layer 34, the buffer layer 33, the protective layer 32, and the reflection layer 31, and is preferably 2 to 300 nm, for example. Is 7 to 150 nm, more preferably 40 to 120 nm.
  • the concave fiducial mark 50 may be formed so as to penetrate the absorbing layer 34, and may be formed so as to penetrate the protective layer 32 and the reflective layer 31 in addition to the absorbing layer 34.
  • the inner bottom surface 52 only needs to include any of the buffer layer 33, the protective layer 32, the reflective layer 31, and the substrate 20, and may extend over a plurality of functional layers.
  • the temporary reference mark and the reference mark are formed in a concave shape.
  • the temporary reference mark and the reference mark are formed in a convex shape.
  • the configuration of the mask blank according to the present embodiment will be described, but the configuration other than the provisional reference mark and the shape of the reference mark is the same as that of the first embodiment, and the description thereof will be omitted.
  • FIG. 8 is a cross-sectional view of a mask blank for EUVL according to the second embodiment of the present invention.
  • the convex temporary reference mark 40 ⁇ / b> A is formed on the surface 23 of the substrate 20 before forming the multilayer film 30. Therefore, before forming the multilayer film 30 (more specifically, before forming the first layer, that is, the reflective layer 31), the defect position of the substrate 20 is set to the position of the temporary reference mark 40A as the reference position. It can be specified and recorded on a recording medium such as a magnetic recording medium, an optical recording medium, an electronic recording medium, or paper.
  • the shape of the convex temporary reference mark 40A is, for example, a quadrangle, a triangle, a circle, an ellipse, or a rhombus in a plan view (viewed from a direction orthogonal to the surface 23 of the substrate 20).
  • a quadrangle, a triangle, or a semicircle in a plan view (viewed from a direction orthogonal to the surface 23 of the substrate 20).
  • it is a quadrangle, a triangle, or a semicircle.
  • the size of the convex temporary reference mark 40A is, for example, in plan view, the maximum length is 200 nm or less, preferably 70 nm or less, more preferably 50 nm or less, and the minimum length is 10 nm or more, preferably 30 nm or more. is there.
  • the maximum height of the temporary reference mark 40A is 20 nm or less, preferably 10 nm or less, more preferably 5 nm or less, and the minimum height of the temporary reference mark 40A is 1 nm or more, preferably 2 nm or more.
  • the temporary reference mark 40A may be used in a commercially available mask blank or glass substrate automatic defect inspection apparatus (for example, M7360 manufactured by Lasertec Corporation) using ultraviolet light or visible light as a light source. Can be detected with high accuracy, and at least one defect position in the multilayer film 30 and a defect position existing on the surface 23 of the substrate 20 can be identified with sufficient accuracy.
  • a commercially available mask blank or glass substrate automatic defect inspection apparatus for example, M7360 manufactured by Lasertec Corporation
  • the convex temporary reference mark 40 ⁇ / b> A is formed by locally forming a film on the surface 23 of the substrate 20.
  • an appropriate gas is selected according to the material to be deposited, and an ion beam or an electron beam is contained in an atmosphere containing a metal compound such as platinum or tungsten (for example, hexacarbonyltungsten) or a hydrocarbon compound (such as naphthalene or phenanthrene).
  • a metal compound such as platinum or tungsten (for example, hexacarbonyltungsten) or a hydrocarbon compound (such as naphthalene or phenanthrene).
  • tungsten for example, hexacarbonyltungsten
  • hydrocarbon compound such as naphthalene or phenanthrene
  • an actual defect existing on the surface 23 of the substrate 20 for example, a convex defect such as a particle adhered to the surface derived from cleaning or the environment can be used.
  • the temporary reference mark 40 ⁇ / b> A is transferred to the reflective layer 31, the protective layer 32, the buffer layer 33, the absorbing layer 34, and the low reflective layer 35 that are sequentially formed on the substrate 20. Therefore, it is possible to specify the defect positions (X coordinate, Y coordinate) of each layer 31 to 35 and record them on the recording medium, using the positions of the transferred temporary reference marks 41A to 45A as the reference position.
  • the recorded defect position information is provided to the photomask manufacturing process.
  • the defect position specified with the position of the temporary reference mark 40A (more specifically, the positions of the temporary reference marks 40A to 45A) as the reference position is the position of the reference mark 50A. Is converted into a reference position and then used for the photomask manufacturing process.
  • the defect position (including depth) of the mask blank 10A can be known based on the provided information. For example, by changing the position and direction of the processing pattern of the absorption layer 34, etc. A high-quality photomask can be manufactured. Moreover, conventionally, even if the mask blank 10A is discarded because it contains a defect, it can be used for the photomask manufacturing process. It is preferable to have.
  • the convex fiducial mark 50A is formed on the surface (surface opposite to the substrate 20) 36 of the multilayer film 30. Since the fiducial mark 50A is formed after the multilayer film 30 is formed, it has a sharper edge and can be accurately detected as compared with the temporary fiducial mark 45A transferred to the uppermost layer of the multilayer film 30.
  • the convex fiducial mark 50A is formed in a shape according to the purpose.
  • the convex reference mark 50A is formed in a cross shape in a plan view (viewed from a direction orthogonal to the surface 36). Has been. The intersection of the center line of one straight part and the center lines of the remaining straight parts becomes the reference point.
  • Three or more convex fiducial marks 50A are formed.
  • Three or more reference marks 50 are not arranged on the same straight line.
  • one reference point is the origin
  • a straight line connecting the origin and the other reference point is the X axis
  • a straight line connecting the origin and the remaining one reference point is the Y axis.
  • the X axis and the Y axis may be orthogonal to each other.
  • the convex fiducial mark 50A is formed in a region of the surface 36 of the multilayer film 30 that is not used in a later process (for example, a region that is not patterned in the photomask manufacturing process). It is formed in the outer peripheral part.
  • the convex reference mark 50A has a step surface 51A substantially perpendicular to the surface 36 of the multilayer film 30 and an offset surface 52A substantially parallel to the surface 36 of the multilayer film 30 so that the edge is sharp and the side wall angle is steep. It is preferable.
  • the height of the convex fiducial mark 50A is appropriately set according to the material or thickness of the uppermost layer of the multilayer film 30, and is, for example, 2 to 300 nm, preferably 7 to 150 nm, more preferably 40 to 120 nm. is there.
  • the convex reference mark 50A is formed on the uppermost layer of the multilayer film 30 by laminating a material different from the uppermost layer.
  • a method of forming a film of a material different from the uppermost layer on the uppermost layer and processing it using lithography and a method of locally forming a material different from the uppermost layer on the uppermost layer.
  • an appropriate gas is selected depending on the material to be deposited, and an ion beam or electron beam is applied in an atmosphere containing a metal compound such as platinum or tungsten (eg, hexacarbonyltungsten) or a hydrocarbon compound (such as naphthalene or phenanthrene).
  • tungsten eg, hexacarbonyltungsten
  • hydrocarbon compound such as naphthalene or phenanthrene
  • the positions 51A and 52A of the reference mark 50A are made of a material different from the uppermost layer of the multilayer film 30, the position of the reference mark 50A can be detected with high accuracy. This effect is particularly remarkable when the position of the reference mark 50A is detected using a reflected electron beam or reflected ultraviolet light. This is because the intensity of the reflected electron beam is higher in contrast due to the difference in material than the secondary electron image. Further, the intensity of the reflected ultraviolet light depends on the type of material and the like, and a strong contrast can be obtained depending on the material.
  • the case where the uppermost layer of the multilayer film 30 is the low reflection layer 35 has been described.
  • the low reflection layer 35 may not be provided, and the absorption layer 34 may be the uppermost layer.
  • the present embodiment relates to a method for manufacturing the mask blank 10 described above.
  • the manufacturing method of the mask blank 10A is the same.
  • FIG. 9 is a flowchart of a mask blank manufacturing method according to the third embodiment of the present invention.
  • the manufacturing method of the mask blank 10 includes a step S101 for preparing the substrate 20, a step S102 for forming the temporary reference mark 40 on the front surface 23 of the substrate 20, a step S103 for forming the conductive layer 22 on the back surface 21 of the substrate 20, and the substrate 20 Steps S104 to S108 for forming the multilayer film 30 on the front surface 23 and Step S109 for forming the reference mark 50 on the surface 36 of the multilayer film 30 are provided. Between each of the steps S101 to S109, there may be a washing step, a drying step and the like.
  • the step of forming the multilayer film 30 includes, for example, a step S104 of forming the reflective layer 31 on the surface 23 of the substrate 20, a step S105 of forming the protective layer 32 on the reflective layer 31, and a buffer layer 33 on the protective layer 32.
  • Step S106 for forming, Step S107 for forming the absorbing layer 34 on the buffer layer 33, and Step S108 for forming the low reflection layer 35 on the absorbing layer 34 are included.
  • the manufacturing method of the mask blank 10 does not need to have process S102 which forms the temporary reference mark 40.
  • FIG. a concave or convex defect present on the surface 23 of the substrate 20 is used as a temporary reference mark.
  • step S103 for forming the conductive layer 22 may be performed after the steps S104 to S108 for forming the multilayer film 30, and the order thereof is not limited.
  • the present embodiment relates to a quality control method for the mask blank 10 described above.
  • the quality control method for the mask blank 10A is the same.
  • FIG. 10 is a flowchart of a mask blank quality control method according to the fourth embodiment of the present invention.
  • the quality control method of the mask blank 10 includes a first specifying step S201 for specifying a defect position on the surface 23 of the substrate 20 using the position of the temporary reference mark 40 as a reference position.
  • the first specific step S201 is performed before the steps S104 to S108 (see FIG. 9) for forming the multilayer film 30 on the surface 23 of the substrate 20 (more specifically, the first layer is formed in order to improve the specific accuracy. Before film forming step S104). Note that the first specifying step S201 uses the temporary reference mark 40, and therefore is performed after the step S102 (see FIG. 9) for forming the temporary reference mark 40.
  • the defect position may be specified and the type of defect (for example, a concave shape or a convex shape) may be specified.
  • Information about the defect is recorded on a recording medium. When there is no defect, information indicating that there is no defect is recorded on the recording medium.
  • the method of specifying the defect position may be a general one.
  • the surface of the test body (substrate 20) is scanned with spot light such as ultraviolet light, vacuum ultraviolet light, or soft X-ray, and scattered light from the test body is detected.
  • spot light such as ultraviolet light, vacuum ultraviolet light, or soft X-ray
  • scattered light from the test body is detected.
  • the quality control method of the mask blank 10 is a second specifying step S202 for specifying at least one defect position in the multilayer film 30 with the position of the temporary reference mark 40 as a reference position during the formation of the multilayer film 30. May further be included.
  • the second specifying step S202 may be a step of specifying the defect positions of the reflective layer 31, the protective layer 32, and the buffer layer 33 as shown in FIG. In this case, the position of the temporary reference mark 43 transferred to the buffer layer 33 is used as the position of the temporary reference mark 40.
  • the second specific step S202 is a step S107 (FIG. 9) for forming the absorption layer 34 after the steps S104, S105, and S106 (see FIG. 9) for forming the reflective layer 31, the protective layer 32, and the buffer layer 33. Before the reference).
  • the defect positions are specified collectively, but the present invention is not limited to this.
  • the defect position of the reflective layer 31 may be specified before the formation of the protective layer 32, or the defect position of the protective layer 32 may be specified before the formation of the buffer layer 33.
  • the defect position may be identified and the type of defect (for example, concave or convex) may be identified.
  • Information about the defect is recorded on a recording medium. When there is no defect, information indicating that there is no defect is recorded on the recording medium.
  • the method for specifying the defect position may be the same method as that used in the first specifying step S201.
  • the quality control method of the mask blank 10 may further include a third specifying step S203 for specifying a defect position of another layer in the multilayer film 30 with the position of the temporary reference mark 40 as a reference position.
  • the third specifying step S203 may be a step of specifying the defect positions of the absorption layer 34 and the low reflection layer 35, for example, as shown in FIG. In this case, the position of the temporary reference mark 45 transferred to the low reflective layer 35 is used as the position of the temporary reference mark 40.
  • the third specific step S203 is performed after the step S108 (see FIG. 9) for forming the low reflective layer 35 and before the step S109 (see FIG. 9) for forming the reference mark 50.
  • the defect positions are specified collectively, but the present invention is not limited to this.
  • the position of the defect in the absorption layer 34 may be specified before the low reflection layer 35 is formed.
  • the defect position may be specified and the type of defect (for example, a concave shape or a convex shape) may be specified.
  • Information about the defect is recorded on a recording medium. When there is no defect, information indicating that there is no defect is recorded on the recording medium.
  • the method for specifying the defect position may be the same method as that used in the first specifying step S201.
  • the quality control method of the mask blank 10 detects the positional relationship between the position of the temporary reference mark 40 (more specifically, the position of the temporary reference mark 45 transferred to the uppermost layer of the multilayer film 30) and the position of the reference mark 50.
  • the detecting step S204 is further included. Since the detection step S204 uses the reference mark 50, it is performed after the step S109 (see FIG. 9) for forming the reference mark 50.
  • the method for detecting the positional relationship between the position of the temporary reference mark 45 and the position of the reference mark 50 may be the same as the defect position specifying method used in the first specifying step S201.
  • the defect position specified in the first to third specifying steps S201 to S103 is a position where the position of the reference mark 50 is set as the reference position based on the detection result in the detection step S204. It further has a conversion step S205 for converting to.
  • the defect position information specified with the position of the reference mark 50 as a reference position is recorded on a recording medium and used in the manufacturing process of the photomask 100.
  • the specifying accuracy is good.
  • the second specifying step S202 at least one defect position in the multilayer film 30 is specified in the middle of the formation of the multilayer film 30, so that the specifying accuracy is good.
  • the quality control method of the present embodiment has both the first specific step S201 and the second specific step S202, it may have only one of them. If either one is included, the identification accuracy is improved.
  • the specified defect position is converted into a position where the position of the reference mark 50 is set as the reference position based on the positional relationship between the temporary reference mark 40 and the reference mark 50, and is provided to the manufacturing process of the photomask 100.
  • An electron beam drawing apparatus, a coordinate measuring apparatus, and a mask appearance inspection apparatus used in the manufacturing process of the photomask 100 can detect a reflected electron beam and reflected ultraviolet light, and can detect the position of the reference mark 50 with high accuracy. Based on the information provided from the supplier of the blank 10, the defect position can be known with high accuracy.
  • the third specifying step S203 for specifying the defect positions of the absorbing layer 34 and the low reflective layer 35 is performed before the step S109 (see FIG. 9) for forming the reference mark 50. However, it may be performed after step S109. In this case, in the third specifying step S203, the defect position can be specified using the position of the reference mark 50 as the reference position instead of the temporary reference mark 40, and the specifying accuracy is improved.
  • the reference mark 50 is formed at a position sufficiently away from the temporary reference mark 40.
  • the reference mark is formed so as to overlap the temporary reference mark in plan view.
  • the configuration of the mask blank according to the present embodiment will be described, but the configuration other than the provisional reference mark and the shape of the reference mark is the same as that of the first embodiment, and the description thereof will be omitted.
  • FIG. 11 is a cross-sectional view of a mask blank for EUVL according to the fifth embodiment of the present invention.
  • the temporary reference mark 40 is formed in a concave shape or a convex shape (in this embodiment, a concave shape) on the surface 23 of the substrate 20.
  • the reference mark 50B is formed in a concave shape or a convex shape (in this embodiment, a concave shape) on the surface 36 of the multilayer film 30, and is formed so as to overlap the temporary reference mark 40 in plan view. .
  • a detection step S204 for detecting the positional relationship between the temporary reference mark 40 and the reference mark 50A, and a conversion step S205 (see FIG. 10) performed following the detection step S204. Is no longer necessary.
  • the concave fiducial mark 50 ⁇ / b> B is formed so as to penetrate at least the uppermost layer (the outermost layer on the side opposite to the substrate 20 side) of the multilayer film 30. Therefore, as in the first embodiment, the surfaces 51B and 52B of the reference mark 50B are made of a material different from that of the uppermost layer of the multilayer film 30, so that the position of the reference mark 50B is reflected by the reflected electron beam. And can be detected with high accuracy by reflected ultraviolet rays.
  • the reflective layer 31, the protective layer 32, the buffer layer 33, and the absorption layer 34 may be exposed on the inner bottom surface 52B of the concave reference mark 50B due to the influence of the temporary reference mark 40.
  • the multilayer substrate of the above embodiment is a mask blank for EUVL, but is not particularly limited as long as the reference position is detected using a reflected electron beam, reflected ultraviolet light, soft X-rays, or the like.
  • the combination of the shape of the temporary reference mark and the shape of the reference mark is not limited, and a convex temporary reference mark and a concave reference mark may be used in combination.
  • a mark and a convex reference mark may be used in combination.
  • Multilayer substrate (mask blank for EUVL) 20 Substrate 30 Multilayer film 31 Reflective layer 32 Protective layer 33 Buffer layer 34 Absorbing layer 35 Low reflective layer 36 Multilayer surface 40 Temporary reference mark 50 Reference mark 51 Step surface 52 of reference mark Offset surface (inner bottom surface) of reference mark 100 photomask

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

 本発明は、基板と、該基板上に設けられる多層膜とを有する多層基板において、前記多層膜の前記基板側と反対側の表面には、前記多層基板の基準位置を示す凹状または凸状の基準マークが形成されており、該基準マークの表面の少なくとも一部の材料と、前記多層膜の前記基板側と反対側の最表層の材料とが異なる、多層基板に関する。

Description

多層基板、多層基板の製造方法、多層基板の品質管理方法
 本発明は、多層基板、多層基板の製造方法、多層基板の品質管理方法に関する。
 近年、半導体デバイスの微細化に伴い、従来のArFレーザの代わりに、より短波長のEUV(Extreame Ultra-Violet)光を用いたリソグラフィ技術(EUVL)が有望視されている。ここで、EUV光とは、軟X線領域または真空紫外線領域の波長の光を意味し、具体的には波長が0.2~100nm程度の光のことである。現時点では、リソグラフィ光源として波長が13.5nm付近の光の使用が主に検討されている。
 また、半導体デバイスの微細化に伴い、リソグラフィ技術で用いられるフォトマスクの欠陥の問題が顕在化している。特に、フォトマスクはマスクブランクをパターン加工して作製されるので、マスクブランクの欠陥の問題が顕在化している。
 マスクブランクの欠陥の問題を回避するため、マスクブランクの欠陥位置を特定し、欠陥位置に応じて加工パターンの位置や方向を変える技術が開発されている。また、マスクブランクの欠陥位置を特定するため、マスクブランクの基準位置を示す凹状の基準マークを形成する技術が提案されている(例えば特許文献1参照)。
 マスクブランクは、基板上に多層膜を成膜してなる多層基板である。EUVL用マスクブランクにおいて、多層膜は、基板側から、EUV光を反射する反射層、EUV光を吸収する吸収層をこの順で有する。
 従来の手法では、基板上の欠陥位置は、基板上に形成された基準マークの位置を基準位置として特定される。また、基準マークは基板上に成膜される多層膜に転写されるので、転写された基準マークの位置を基準位置として、多層膜を構成する各機能層の欠陥位置が特定される(例えば特許文献2参照)。
国際公開第2010/110237号 日本国特開2004-193269号公報
 ところで、フォトマスクの製造工程で用いられる電子線描画装置は、反射電子線を用いて、多層膜の最上層に転写された基準マークの位置を検出する。またフォトマスクの製造工程で用いられる座標測定装置やマスク外観検査装置は、波長190~400nmの反射紫外線を検出して、多層膜の最上層に転写された基準マークの位置を検出する。
 しかしながら、従来の基準マークでは、反射電子線や反射紫外線を用いて、凹状の基準マークの位置を検出することが困難であった。機能層が一層ずつ積層される度に、機能層に転写される基準マークのエッジが丸くなるためである。また、多層膜の最上層に転写された基準マークの内底面と、多層膜の最上層とが同一の材料で構成されるため、基準マークのある部分と、その周辺部分とで、反射電子線の強度や反射紫外線の強度の差が小さいからである。特許文献2には、超平滑基板の表面の一部に、予め凹部を設け、さらに多層膜を堆積してなる、基準マークが設けられた多層膜マスクブランクスが記載され、当該基板上に形成された基準マークは、電子線によるパターン検出が可能と記載されている。しかしながら、基板上にマークを作成した場合検出信号は低くなり、要求される検出位置精度を得られにくい問題があった。
 本発明は、上記課題に鑑みてなされたものであって、反射電子線や反射紫外線によって基準位置を精度良く検出できる多層基板、多層基板の製造方法、および多層基板の品質管理方法を提供することを目的とする。
 上記目的を解決するため、本発明は、
 基板と、該基板上に設けられる多層膜とを有する多層基板において、
 前記多層膜の前記基板側と反対側の表面には、前記多層基板の基準位置を示す凹状または凸状の基準マークが形成されており、
 該基準マークの表面の少なくとも一部の材料と、前記多層膜の前記基板側と反対側の最表層の材料とが異なる、多層基板を提供する。
 また、本発明は、
 基板と、該基板上に設けられる多層膜とを有する多層基板の製造方法において、
 前記多層膜の前記基板側と反対側の表面に、前記多層基板の基準位置を示す凹状または凸状の基準マークを形成する工程を有し、
 該基準マークの表面の少なくとも一部の材料と、前記多層膜の前記基板側と反対側の最表層の材料とが異なる、多層基板の製造方法を提供する。
 さらに、本発明は、
 基板と、該基板上に設けられる多層膜とを有する多層基板であって、前記多層膜の前記基板側と反対側の表面には、前記多層基板の基準位置を示す凹状または凸状の基準マークが形成されている多層基板の品質管理方法であって、
 前記基板上に前記多層膜を成膜する前に、前記基板上にある凹状または凸状の仮基準マークの位置を基準位置として、前記基板上にある欠陥位置を特定する、および/または、前記多層膜の成膜の途中で、前記基板上にある凹状または凸状の仮基準マークの位置を基準位置として、前記多層膜のうちの少なくとも一層の欠陥位置を特定する特定工程と、
 前記仮基準マークと前記基準マークの位置関係を検出する検出工程と、
 前記特定工程において特定した欠陥位置を、前記検出工程の結果に基づいて、前記基準マークの位置を基準位置とする位置に換算する換算工程とを有し、
 前記基準マークの表面の少なくとも一部の材料と、前記多層膜の前記基板側と反対側の最表層の材料とが異なる、多層基板の品質管理方法を提供する。
 さらにまた、本発明は、
 基板と、該基板上に設けられる多層膜とを有する多層基板であって、前記多層膜の前記基板側と反対側の表面には、前記多層基板の基準位置を示す凹状または凸状の基準マークが形成されている多層基板の品質管理方法であって、
 前記基板上に前記多層膜を成膜する前に、前記基板上にある凹状または凸状の仮基準マークの位置を基準位置として、前記基板上にある欠陥位置を特定する、および/または、前記多層膜の成膜の途中で、前記基板上にある凹状または凸状の仮基準マークの位置を基準位置として、前記多層膜のうちの少なくとも一層の欠陥位置を特定する特定工程を有し、
 前記基準マークは、平面視にて、前記仮基準マークと重なるように形成されており、前記基準マークの表面の少なくとも一部の材料と、前記多層膜の前記基板側と反対側の最表層の材料とが異なる、多層基板の品質管理方法を提供する。
 本発明によれば、反射電子線や反射紫外線によって基準位置を精度良く検出できる多層基板、多層基板の製造方法、および多層基板の品質管理方法を提供することができる。
図1は、本発明の第1の実施形態によるEUVL用のマスクブランクの断面図である。 図2は、マスクブランクをパターン加工してなるフォトマスクの一例の断面図である。 図3は、基板および仮基準マークの一例の平面図である。 図4は、凹状の基準マークの断面プロファイル、および、多層膜の最上層に転写された凹状の仮基準マークの断面プロファイルの一例を示す図である。 図5は、マスクブランクおよび基準マークの一例の平面図である。 図6は、材料の違いによる反射電子像(SEM写真)のコントラストの違いの説明図である。 図7は、材料の違いによる紫外域反射率スペクトルの違いの説明図である。 図8は、本発明の第2の実施形態によるEUV用のマスクブランクの断面図である。 図9は、本発明の第3の実施形態によるマスクブランクの製造方法のフローチャートである。 図10は、本発明の第4の実施形態によるマスクブランクの品質管理方法のフローチャートである。 図11は、本発明の第5の実施形態によるEUVL用のマスクブランクの断面図である。
 以下、本発明を実施するための形態について図面を参照して説明するが、各図面において、同一のまたは対応する構成については同一のまたは対応する符号を付して説明を省略する。
 [第1の実施形態]
 図1は、本発明の第1の実施形態によるEUVL用のマスクブランクの断面図である。図2は、マスクブランクをパターン加工してなるフォトマスクの一例の断面図である。
 EUVL用のマスクブランク10は、例えば図1に示すように、基板20と、基板20上に形成される多層膜30とを有している。多層膜30は、基板20側から、EUV光を反射する反射層31、反射層31を保護する保護層32、パターン加工のためのバッファー層33、EUV光を吸収する吸収層34、および検査光に対して吸収層34よりも低い反射率を有する低反射層35をこの順で有している。なお、保護層32、バッファー層33、低反射層35は任意の構成であって、多層膜30は保護層32、バッファー層33、低反射層35を有していなくてもよい。多層膜30は、他の機能層をさらに有していてもよい。
 EUVL用のマスクブランク10は、一般的なマスク作製プロセスに準拠してパターン加工され、フォトマスク100(図2参照)となる。例えば、マスクブランク10の多層膜30上にレジスト膜を塗布し、加熱した後、電子線や紫外線による描画を行う。このとき、描画パターンの位置や向きを、多層膜30のうちの少なくとも一層の欠陥位置や基板表面に存在する欠陥位置に応じて調整する。続いて、現像・エッチングにより吸収層34や低反射層35の不要な部分、およびレジストが除去されてフォトマスク100を得る。
 フォトマスク100は、図1に示す低反射層35、吸収層34をパターン加工してなる低反射層135、吸収層134を有している。フォトマスク100に照射されたEUV光は、吸収層134のある部分では吸収され、吸収層134のない部分では反射層31で反射される。反射層31で反射されたEUV光は、凹面ミラーなどから構成される結像光学系などによって、露光材料の表面上に結像される。
 次に、マスクブランク10の各構成について説明する。
 基板20は、多層膜30を成膜するためのものである。基板20の表面粗さを表すRMS(Root Mean Square)は例えば0.15nm以下であり、基板20の平坦度は例えば100nm以下である。基板20は、マスクブランクスとして用いられる温度域において熱膨張係数が0に近いことが求められ、例えば0±0.05×10-7/℃の範囲内が好ましく、0±0.03×10-7/℃の範囲内がさらに好ましい。
 基板20は、耐薬液性、耐熱性に優れ、熱膨張係数の小さいガラスで構成される。ガラスとしては、例えばSiOを主成分とする石英ガラスが用いられる。石英ガラスは、TiOを含有するものであってよい。TiOの含有量は、例えば1~12質量%である。なお、基板20は、ガラス以外のシリコンや金属などで構成されてもよい。
 基板20の裏面21(前記多層膜が形成される側の面と反対側の面)には、静電吸着用の導電層22が形成されている。導電層22は、シート抵抗が100Ω/□以下となるように、構成材料の電気伝導率と厚さを選択する。導電層22の構成材料としては、例えば、Si、TiN、Mo、Cr、CrN、TaSiなどが用いられる。これらの中でも、導電層22表面の表面粗さが小さいことからチャック面との密着性に優れ、且つ、導電層22のシート抵抗が低いことからチャック力に優れるCrN膜が好ましい。
 導電層22の厚さは、例えば10~1000nmである。
 導電層22の成膜方法としては、公知の成膜方法、例えば、マグネトロンスパッタリング法、イオンビームスパッタリング法といったスパッタリング法、CVD法、真空蒸着法、電解メッキ法などが用いられる。
 基板20の表面23(前記多層膜が形成される側の面)には、多層膜30が成膜されるが、多層膜30を成膜する前に、基板20の基準位置を示す凹状または凸状の仮基準マーク(本実施形態では、凹状の仮基準マーク)40が形成されている。よって、多層膜30を成膜する前に(より詳細には、最初の層、すなわち反射層31を成膜する前に)、仮基準マーク40の位置を基準位置として、基板20の欠陥位置を特定し、磁気記録媒体、光記録媒体、電子記録媒体、紙などの記録媒体に記録することができる。
 図3は、基板および仮基準マークの一例の平面図である。図3に示すように、仮基準マーク40は、3つ以上(図3では4つ)形成されている。3つ以上の仮基準マーク40は、同一直線上に配置されていない。3つ以上の基準点のうち、1つの基準点が原点となり、原点と他の1つの基準点とを結ぶ直線がX軸となり、原点と残りの1つの基準点とを結ぶ直線がY軸となる。X軸およびY軸は、互いに直交していてよい。
 仮基準マーク40は、後工程で使用されない領域(例えば、フォトマスクの製造工程において、パターン加工しない領域)に形成され、具体的には、基板20の外周部に形成される。
 仮基準マーク40は、図1に示すように、基板20上に順次成膜される反射層31、保護層32、バッファー層33、吸収層34、低反射層35に転写される。よって、転写された仮基準マーク41~45の位置を基準位置として、各層31~35の欠陥位置(X座標、Y座標)を特定し、記録媒体に記録することが可能である。
 記録された欠陥位置情報は、フォトマスク100の製造工程に供される。なお、詳しくは後述するが、仮基準マーク40の位置(より詳細には、仮基準マーク40~45の位置)を基準位置として特定した欠陥位置は、基準マーク50の位置を基準位置とする位置に換算(座標変換)されたうえで、フォトマスク100の製造工程に供される。
 フォトマスク100の製造工程では、提供された情報に基づいて、マスクブランク10の欠陥位置(深さを含む)を知ることができ、例えば吸収層34の加工パターンの位置や方向を変えることなどによって、品質の高いフォトマスク100を製造することができる。また、従来であれば、マスクブランク10の一部に欠陥を含むために廃棄していたものであっても、フォトマスク100の製造工程に供することができる。
 仮基準マーク40の形状は、平面視にて(基板20の表面23と直交する方向から見て)、例えば図3に示すように四角形、又は三角形、円形、楕円形もしくは菱型などであり、側面視にて、例えば図1に示すように四角形、又は三角形もしくは半円形などである。
 仮基準マーク40のサイズは、例えば、平面視にて、最大長さが200nm以下、好ましくは70nm以下、さらに好ましくは50nm以下であり、最小長さは10nm以上、好ましくは30nm以上である。凹状の仮基準マーク40の最大深さは、20nm以下、好ましくは10nm以下、さらに好ましくは5nm以下であり、凹状の仮基準マーク40の最小深さは、1nm以上、好ましくは2nm以上である。この範囲のサイズを有する仮基準マーク40であれば、紫外光や可視光を光源に用いた市販のマスクブランクやガラス基板の自動欠陥検査装置(たとえばレーザテック社製M7360など)にて仮基準マーク40の位置を精度良く検出することができ、多層膜30のうちの少なくとも一層の欠陥位置や基板20の表面23に存在する欠陥位置を十分な精度で特定することができる。
 凹状の仮基準マーク40は、基板20の表面23の一部を除去して形成される。除去方法としては、レーザアブレーション法、FIB(Focused Ion Beam)法、ナノインデンテーション法、マイクロマシーニング法(例えば、Rave社製nm450を用いた機械的な微細加工法)、レジストのパターニングとエッチングを用いたリソグラフィ法などが用いられる。特に、FIB法、マイクロマシーニング法、レーザアブレーション法が好適に用いられる。
 凹状の仮基準マーク40として、基板20の表面23に存在する実欠陥、例えば研磨や洗浄により生じたピットなどの凹欠陥を用いることもできる。
 なお、凸状の仮基準マークの形成方法については、第2の実施形態で説明する。
 反射層31は、EUV光を反射する層である。フォトマスク100において吸収層134のない部分に照射されたEUV光は、反射層31で反射される。その反射率(波長13.5nm付近の光線反射率)の最大値は、例えば60%以上、好ましくは65%以上である。
 反射層31は、例えば高屈折層と低屈折率層を交互に繰り返し積層させた多層構造を有している。高屈折率層にはMo層、低屈折率層にはSi層がそれぞれ使用されてよい。すなわち、反射層31は、Mo/Si多層反射層であってよい。Mo層の厚さ、Si層の厚さ、および繰り返し回数は、それぞれ適宜設定されるが、例えば、Mo層の厚さが2.3±0.1nm、Si層の厚さが4.5±0.1nm、繰り返し回数が30~60である。
 なお、反射層31は、特に限定されず、例えばRu/Si多層反射層、Mo/Be多層反射層、Mo化合物/Si化合物多層反射層、Si/Mo/Ru多層反射層、Si/Mo/Ru/Mo多層反射層、Si/Ru/Mo/Ru多層反射層などであってもよい。
 反射層31の成膜方法としては、マグネトロンスパッタリング法、イオンビームスパッタリング法などの成膜方法が用いられる。イオンビームスパッタリング法を用いてMo/Si多層反射層を形成する場合、Moターゲットを用いてMo層を成膜する工程と、Siターゲットを用いてSi層を成膜する工程が交互に繰り返し行われる。
 保護層32は、反射層31の酸化を防止する役割を果たす層である。保護層32の材料としては、Si、Ti、Ru、Rh、C、SiC、又はこれら元素・化合物の混合物、あるいはこれら元素・化合物にN、OやBなどを添加したものなどが使用できる。
 保護層32の材料としてRuを用いた場合、保護層の層厚は2~3nmと薄くでき、後述するバッファー層33の機能を兼用できるため、特に好ましい。また反射層31がMo/Si多層反射層の場合、最上層をSi層とすることによって、該最上層を保護層として機能させることができる。この場合、最上層のSi層の層厚は、通常の4.5nmより厚い、5~15nmであることが好ましい。また、この場合、最上層のSi層上に保護層とバッファー層とを兼ねるRu膜を成膜してもよい。なお、保護層32は、必ずしも1層である必要はなく、2層以上であってもよい。
 保護層32の成膜方法としては、マグネトロンスパッタリング法、イオンビームスパッタリング法などの成膜方法が用いられる。
 バッファー層33は、詳しくは後述するが、フォトマスク100の製造工程における、吸収層34のエッチングプロセス(通常、ドライエッチングプロセス)によって、反射層31がダメージを受けるのを防止する、所謂エッチングストッパーとしての役割を果たす。
 バッファー層33の材質としては、吸収層34のエッチングプロセスによる影響を受けにくい、つまりこのエッチング速度が吸収層34よりも遅く、しかもこのエッチングプロセスによるダメージを受けにくい物質が選択される。この条件を満たす物質としては、例えばCr、Al、Ru、Ta及びこれらの窒化物、ならびにSiO、Si、Alやこれらの混合物が例示される。これらの中でも、Ru、CrNおよびSiOが好ましく、CrNおよびRuがより好ましく、保護層32とバッファー層33の機能を兼ね備えるため特にRuが好ましい。
 バッファー層33の膜厚は1~60nmであることが好ましい。
 バッファー層33の成膜方法としては、マグネトロンスパッタリング法、イオンビームスパッタリング法など周知の成膜方法が用いられる。
 吸収層34は、EUV光を吸収する層である。吸収層34に特に要求される特性は、EUV用のフォトマスク100上に形成されたパターンが、EUVL露光機の投影光学系を介してウェハー上のレジスト膜に正確に転写されるように、吸収層34からの反射光の強度、位相を調整することである。
 この具体的な方法は2種類あり、一つ目は、吸収層34からの反射光の強度を極力小さくする方法であり、吸収層34表面からのEUV光の反射率を1%以下、特に0.7%以下となるように、吸収層34の膜厚および材料を調整する。また2つ目は、反射層31からの反射光と吸収層34(吸収層表面に低反射層が形成されている場合は低反射層)からの反射光の干渉効果を利用する方法であり、吸収層34(吸収層表面に低反射層が形成されている場合は低反射層)からのEUV光の反射率を5~15%とし、かつ反射層31からの反射光と吸収層34(吸収層表面に低反射層が形成されている場合は低反射層)からの反射光の位相差が175~185度となるように、吸収層34(吸収層表面に低反射層が形成されている場合は低反射層)の膜厚および材料を調整する。
 いずれの方法においても、吸収層34を構成する材料としては、Taを40at%以上、好ましくは50at%以上、より好ましくは55at%以上含有する材料が好ましい。吸収層34に用いるTaを主成分とする材料は、Ta以外にHf、Si、Zr、Ge、B、Pd、H及びNのうち少なくとも1種以上の元素を含有することが好ましい。
 Ta以外の上記の元素を含有する材料の具体例としては、例えば、TaN、TaNH、TaHf、TaHfN、TaBSi、TaBSiN、TaB、TaBN、TaSi、TaSiN、TaGe、TaGeN、TaZr、TaZrN、TaPd、TaPdNなどが挙げられる。ただし、吸収層34中には、酸素を含まないことが好ましい。
 具体的には、吸収層34中の酸素の含有率は25at%未満が好ましい。マスクブランクの吸収層34にマスクパターンを形成してEUV用のフォトマスク100を作製する際には、通常はドライエッチングプロセスが用いられ、エッチングガスとしては、塩素ガス(混合ガスを含む)あるいはフッ素系ガス(混合ガスを含む)が通常使用される。
 エッチングプロセスによる反射層31のダメージ防止目的で、反射層31上に保護層32としてRuまたはRu化合物を含む膜を形成する場合、保護層32のダメージが少ないことから、吸収層34のエッチングガスとして主に塩素ガスが使われる。しかしながら、塩素ガスを用いて吸収層34のドライエッチングプロセスを実施する場合に、吸収層34が酸素を含有していると、エッチング速度が低下し、レジスト膜のダメージが大きくなり好ましくない。吸収層34中の酸素の含有率としては、15at%以下がより好ましく、10at%以下がさらに好ましく、5at%以下が特に好ましい。
 吸収層34の厚さは、前述の一つ目の方法の場合、すなわち吸収層34表面からのEUV光の反射率を1%以下、特に0.7%以下とするためには、60nm以上であることが好ましく、特に70nm以上であることが好ましい。また前述の2つ目の方法の場合、40nm~60nmの範囲が好ましく、特に45nm~55nmの範囲が好ましい。
 吸収層34の成膜方法としては、マグネトロンスパッタリング法、イオンビームスパッタリング法などの成膜方法が用いられる。
 吸収層34は、フォトマスク100の製造工程において、パターン加工され、吸収層134となる。
 低反射層35は、図2に示す吸収層134のパターン形状を検査する検査光に対して、吸収層34よりも低い反射率を有する層である。検査光としては、通常257nm程度の波長の光が使用される。
 吸収層134のパターン形状の検査は、吸収層134がある部分と、吸収層134がない部分とで検査光の反射率が異なることを利用して行われる。吸収層134のない部分では、通常、保護層32が露出している。
 吸収層134がある部分に、低反射層135が積層されていると、吸収層134のある部分と、吸収層134のない部分とで、検査光の反射率の差が大きくなるので、検査精度が向上する。
 低反射層35は、検査光の波長での屈折率が吸収層34よりも低い材料で構成される。具体的には、Taを主成分とする材料が挙げられる。また、Ta以外にHf、Ge、Si、B、N、H、及びOのうち少なくとも1種以上の元素を含有することが好ましい。具体例としては、例えば、TaO、TaON、TaONH、TaBO、TaHfO、TaHfON、TaBSiO、TaBSiON、SiN、SiON等が挙げられる。
 吸収層34上に低反射層35を形成する場合、吸収層34および低反射層35の厚さの合計が10~65nmであると好ましく、30~65nmであるとより好ましく、35~60nmであるとさらに好ましい。また、低反射層35の層厚が吸収層34の層厚よりも厚いと、吸収層34でのEUV光吸収特性が低下するおそれがあるので、低反射層35の層厚は吸収層34の層厚よりも薄いことが好ましい。このため、低反射層35の厚さは1~20nmであることが好ましく、3~15nmであることがより好ましく、5~10nmであることがさらに好ましい。
 低反射層35の成膜方法としては、マグネトロンスパッタリング法、イオンビームスパッタリング法などの成膜方法が用いられる。
 また、多層膜30は、ハードマスクなどの機能層を有してもよい。ハードマスクは、吸収層34(吸収層34上に低反射層35が形成されており、かつハードマスクが低反射層35の機能を有していない場合は、低反射層35)の面上に形成するものであり、前述のドライエッチング速度が、吸収層34及び/或いは低反射層35と比べて遅いために、レジスト膜の膜厚を薄くでき、より微細なパターンを作製できる。このようなハードマスクの材料としては、Cr、Ru、Cr(N、O)などが使用でき、その膜厚は2~10nmが好ましい。
 上記構成の多層膜30の表面36(基板20側と反対側の面)には、マスクブランク10の基準位置を示す凹状または凸状(本実施形態では凹状)の基準マーク(Fiducial Mark)50が形成されている。基準マーク50は、多層膜30の成膜後に形成されるので、多層膜30の最上層(基板20側と反対側の最表層)に転写した仮基準マーク45に比べて、エッジが鋭く側壁角度も急峻であるため、精度良く検出することができる。
 図4は、凹状の基準マークの断面プロファイル、および、多層膜の最上層に転写された凹状の仮基準マークの断面プロファイルの一例を示す図である。図4において、実線は凹状の基準マークの断面プロファイルの一例を示し、破線は多層膜の最上層に転写された凹状の仮基準マークの断面プロファイルの一例を示す。図4に示す例では、TiOをドープした石英ガラス基板上に、反射層(Mo/Siを40層積層、厚み約280nm)、保護層(厚み2.5nmのRu層)、吸収層(厚み51nmのTaN層)、低反射層(厚み7nmのTaON層)がこの順で積層されている。基板上に形成される仮基準マークの深さ、および、低反射層上に形成される基準マークの深さは、それぞれ、約80nmとした。図4から、凹状の基準マークの断面プロファイルは、多層膜の最上層に転写された凹状の仮基準マークの断面プロファイルよりも急峻であることがわかる。
 図5は、マスクブランクおよび基準マークの一例の平面図である。
 基準マーク50は、目的に応じた形状に形成されるが、例えば、図5に示すように、平面視にて(表面36と直交する方向から見て)、十字状に形成されている。1つの直線状部分の中心線と、残りの直線状部分の中心線との交点が基準点となる。各直線状部分は、例えば4.5~5.5μmの幅W、および100~500μmの長さLを有している。
 基準マーク50は、3つ以上形成されている。3つ以上の基準マーク50は、同一直線上に配置されていない。3つ以上の基準点のうち、1つの基準点が原点となり、原点と他の1つの基準点とを結ぶ直線がX軸となり、原点と残りの1つの基準点とを結ぶ直線がY軸となる。X軸およびY軸は、互いに直交していてよい。
 基準マーク50は、多層膜30の表面36のうち、後工程で使用されない領域(例えば、フォトマスクの製造工程において、パターン加工しない領域)に形成され、具体的には、多層膜30の外周部に形成される。
 凹状の基準マーク50は、エッジが鋭くなるよう、多層膜30の表面36と略垂直な段差面51と、多層膜30の表面36と略平行なオフセット面(内底面)52を有していることが好ましい。
 凹状の基準マーク50は、多層膜30の表面36の一部を除去して形成される。除去方法としては、レーザアブレーション法、FIB(Focused Ion Beam)法、レジストのパターニングとエッチングを用いたリソグラフィ法、ナノインデンテーション法、マイクロマシーニング法(例えば、Rave社製nm450を用いた機械的な微細加工法)などが用いられる。特に、FIB法やリソグラフィ法が好適に用いられる。
 なお、凸状の基準マークの形成方法については、第2の実施形態で説明する。
 凹状の基準マーク50は、図1に示すように、多層膜30のうち、少なくとも、最上層(基板20側と反対側の最表層)を貫通するように形成されている。よって、凹状の基準マーク50の表面(段差面51及びオフセット面52)の一部(オフセット面52)が、多層膜30の最上層と異なる材料で構成されるので、基準マーク50の位置を精度良く検出することができる。この効果は、反射電子線や反射紫外線を用いて基準マーク50の位置を検出する場合に特に顕著である。反射電子像の強度は、2次電子像に比べて、材料の違いによるコントラストが強いためである。また反射紫外線の強度は材料の種類などに依存し、材料の違いにより強いコントラストが得られる。
 図6は、材料の違いによる反射電子像(SEM写真)のコントラストの違いの説明図である。図6に示す多層基板は、基板上に反射層を形成し、反射層上に吸収層を形成したものである。基板はTiOをドープした石英ガラス基板、反射層はMo/Si多層反射層、吸収層はTaN層である。図6において、左上部分201は反射層上に吸収層が積層されておらず反射層が露出している部分の反射電子像、左下部分202は反射層上に厚さ35nmの吸収層が積層された部分の反射電子像である。また、図6において、右上部分203は反射層上に厚さ77nmの吸収層が積層された部分の反射電子像、右下部分204は反射層上に厚さ112nmの吸収層が積層された部分の反射電子像である。図6から、反射電子像では、材料の違いによるコントラストが、凹凸によるコントラストよりも強いことがわかる。
 反射電子像におけるコントラストが強くなるよう、凹状の基準マーク50の内底面52を構成する材料の陽子数と、多層膜30の最上層を構成する材料の陽子数との差が十分に大きいことが好ましい。
 図7は、材料の違いによる紫外域反射率スペクトルの違いの説明図である。図7において、Aは基板上に反射層(Mo/Siを40層積層)を形成した多層基板のスペクトル、Bは基板上に反射層(Mo/Siを40層積層)・吸収層(厚み77nmのTaN層)を積層した多層基板のスペクトル、Cは基板上に反射層(Mo/Siを40層積層、厚み約280nm)・吸収層(厚み77nmのTaN層)・低反射層(厚み7nmのTaON層)を積層した多層基板のスペクトルを表わす。3種類の多層基板の紫外域反射率は互いに異なっており、凹状の基準マーク50の内底面52を構成する材料が多層膜30の最上層を構成する材料と異なる場合、紫外域反射率の差異によるコントラストを利用して、反射紫外線により基準マーク50を検出し易くなることがわかる。
 凹状の基準マーク50は、図1に示すように、低反射層35に加えて、吸収層34を貫通するように形成されていてもよい。低反射層35と吸収層34が類似の材料で構成されることが多いためである。
 凹状の基準マーク50は、図1に示すように、低反射層35および吸収層34に加えて、バッファー層33を貫通するように形成されてもよいし、バッファー層33および保護層32を貫通するように形成されていてもよい。なお、凹状の基準マーク50は、保護層32にさらに加えて、反射層31を貫通するように形成されてもよい。
 凹状の基準マーク50の内底面52は、本実施形態では、反射層31にあるが、吸収層34、バッファー層33、保護層32、および基板20のいずれにあってもよく、複数の機能層に亘っていてもよい。
 凹状の基準マーク50の深さは、低反射層35、吸収層34、バッファー層33、保護層32、および反射層31の厚さなどに応じて適宜設定されるが、例えば2~300nm、好ましくは7~150nm、より好ましくは40~120nmである。
 なお、本実施形態では、多層膜30の最上層が低反射層35である場合について説明したが、低反射層35がなく、吸収層34が最上層であってもよい。この場合、凹状の基準マーク50は、吸収層34を貫通するように形成され、吸収層34に加えて保護層32や反射層31を貫通するように形成されてもよく、凹状の基準マーク50の内底面52は、バッファー層33、保護層32、反射層31、および基板20のいずれかを含んでいればよく、複数の機能層に亘っていてもよい。
 [第2の実施形態]
 上記第1の実施形態では、仮基準マークおよび基準マークが、凹状に形成されている。
 これに対し、本実施形態では、仮基準マークおよび基準マークが、凸状に形成されている。
 以下、本実施形態によるマスクブランクの構成について説明するが、仮基準マークおよび基準マークの形状以外の構成については、第1の実施形態と同じ構成であるので、説明を省略する。
 図8は、本発明の第2の実施形態によるEUVL用のマスクブランクの断面図である。
 凸状の仮基準マーク40Aは、基板20の表面23に、多層膜30を成膜する前に形成されている。よって、多層膜30を成膜する前に(より詳細には、最初の層、すなわち反射層31を成膜する前に)、基板20の欠陥位置を、仮基準マーク40Aの位置を基準位置として特定し、磁気記録媒体、光記録媒体、電子記録媒体、紙などの記録媒体に記録することができる。
 凸状の仮基準マーク40Aの形状は、平面視にて(基板20の表面23と直交する方向から見て)、例えば四角形、又は三角形、円形、楕円形もしくは菱型などであり、側面視にて、例えば図8に示すように四角形、又は三角形もしくは半円形などである。
 凸状の仮基準マーク40Aのサイズは、例えば、平面視にて、最大長さが200nm以下、好ましくは70nm以下、さらに好ましくは50nm以下であり、最小長さは10nm以上、好ましくは30nm以上である。仮基準マーク40Aの最大高さは、20nm以下、好ましくは10nm以下、さらに好ましくは5nm以下であり、また仮基準マーク40Aの最小高さは、1nm以上、好ましくは2nm以上である。この範囲のサイズを有する仮基準マーク40Aであれば、紫外光や可視光を光源とする市販のマスクブランクやガラス基板の自動欠陥検査装置(たとえばレーザテック社製M7360など)にて仮基準マーク40Aの位置を精度良く検出することができ、多層膜30のうちの少なくとも一層の欠陥位置や基板20の表面23に存在する欠陥位置を十分な精度で特定することができる。
 凸状の仮基準マーク40Aは、基板20の表面23に局所的に膜を成膜して形成される。具体的な方法としては、堆積したい材料によって適当なガスを選び、白金やタングステンなどの金属化合物(例えばヘキサカルボニルタングステン)や炭化水素化合物(ナフタレンやフェナントレンなど)を含有する雰囲気でイオンビームや電子線を照射することで、金属化合物の分解反応を促進し、局所的に金属膜を堆積する方法がある。
 なお、凸状の仮基準マーク40Aとして、基板20の表面23に存在する実欠陥、例えば洗浄や環境由来の表面に付着したパーティクルなどの凸欠陥を用いることもできる。
 仮基準マーク40Aは、図8に示すように、基板20上に順次成膜される反射層31、保護層32、バッファー層33、吸収層34、低反射層35に転写される。よって、転写された仮基準マーク41A~45Aの位置を基準位置として、各層31~35の欠陥位置(X座標、Y座標)を特定し、記録媒体に記録することが可能である。
 記録された欠陥位置情報は、フォトマスクの製造工程に供される。なお、詳しくは第4の実施形態で説明するが、仮基準マーク40Aの位置(より詳細には、仮基準マーク40A~45Aの位置)を基準位置として特定した欠陥位置は、基準マーク50Aの位置を基準位置とする位置に換算されたうえで、フォトマスクの製造工程に供される。
 フォトマスクの製造工程では、提供された情報に基づいて、マスクブランク10Aの欠陥位置(深さを含む)を知ることができ、例えば吸収層34の加工パターンの位置や方向を変えることなどによって、品質の高いフォトマスクを製造することができる。また、従来であれば、マスクブランク10Aの一部に欠陥を含むために廃棄していたものであっても、フォトマスクの製造工程に供することができる。有していることが好ましい。
 凸状の基準マーク50Aは、多層膜30の表面(基板20側と反対側の面)36に形成されている。基準マーク50Aは、多層膜30の成膜後に形成されるので、多層膜30の最上層に転写した仮基準マーク45Aに比べて、エッジが鋭く、精度良く検出することができる。
 凸状の基準マーク50Aは、目的に応じた形状に形成されるが、第1の実施形態と同様に、例えば、平面視にて(表面36と直交する方向から見て)、十字状に形成されている。1つの直線状部分の中心線と、残りの直線状部分の中心線との交点が基準点となる。
 凸状の基準マーク50Aは、3つ以上形成されている。3つ以上の基準マーク50は、同一直線上に配置されていない。3つ以上の基準点のうち、1つの基準点が原点となり、原点と他の1つの基準点とを結ぶ直線がX軸となり、原点と残りの1つの基準点とを結ぶ直線がY軸となる。X軸およびY軸は、互いに直交していてよい。
 凸状の基準マーク50Aは、多層膜30の表面36のうち、後工程で使用されない領域(例えば、フォトマスクの製造工程において、パターン加工しない領域)に形成され、具体的には、多層膜30の外周部に形成される。
 凸状の基準マーク50Aは、エッジが鋭く側壁角度が急峻となるよう、多層膜30の表面36と略垂直な段差面51Aと、多層膜30の表面36と略平行なオフセット面52Aを有していることが好ましい。
 凸状の基準マーク50Aの高さは、多層膜30の最上層の材料や厚さなどに応じて適宜設定されるが、例えば2~300nm、好ましくは7~150nm、より好ましくは40~120nmである。
 凸状の基準マーク50Aは、多層膜30の最上層上に、該最上層と異なる材料を積層して形成される。具体的には、最上層と異なる材料の膜を最上層上に成膜し、リソグラフィを用いて加工する方法、最上層と異なる材料を最上層上に局所的に成膜する方法がある。後者の方法としては、堆積したい材料によって適当なガスを選び、白金やタングステンなどの金属化合物(例えばヘキサカルボニルタングステン)や炭化水素化合物(ナフタレンやフェナントレンなど)を含有する雰囲気でイオンビームや電子線を照射することで、金属化合物の分解反応を促進し、局所的に金属膜を堆積する方法がある。
 よって、基準マーク50Aの表面51A、52Aが、多層膜30の最上層と異なる材料で構成されるので、基準マーク50Aの位置を精度良く検出することができる。この効果は、反射電子線や反射紫外線を用いて基準マーク50Aの位置を検出する場合に特に顕著である。反射電子線の強度は、2次電子像に比べて、材料の違いによるコントラストが強いためである。また、反射紫外線の強度は材料の種類などに依存し、材料の違いにより強いコントラストが得られるからである。
 なお、本実施形態では、多層膜30の最上層が低反射層35である場合について説明したが、低反射層35がなく、吸収層34が最上層であってもよい。
 [第3の実施形態]
 本実施形態は、上記のマスクブランク10の製造方法に関する。なお、上記のマスクブランク10Aの製造方法も同様である。
 図9は、本発明の第3の実施形態によるマスクブランクの製造方法のフローチャートである。
 マスクブランク10の製造方法は、基板20を用意する工程S101、基板20の表面23に仮基準マーク40を形成する工程S102、基板20の裏面21に導電層22を成膜する工程S103、基板20の表面23に多層膜30を成膜する工程S104~S108、多層膜30の表面36に基準マーク50を形成する工程S109を有している。各工程S101~S109の間には、洗浄工程や乾燥工程などがあってよい。
 多層膜30を成膜する工程は、例えば、基板20の表面23に反射層31を形成する工程S104、反射層31上に保護層32を形成する工程S105、保護層32上にバッファー層33を形成する工程S106、バッファー層33上に吸収層34を形成する工程S107、吸収層34上に低反射層35を形成する工程S108を有している。
 なお、マスクブランク10の製造方法は、仮基準マーク40を形成する工程S102を有していなくてもよい。この場合、仮基準マークとして、基板20の表面23に存在する凹状または凸状の欠陥が代用される。
 また、導電層22を形成する工程S103は、多層膜30を成膜する工程S104~S108の後に行われてもよく、その順序に制限はない。
 [第4の実施形態]
 本実施形態は、上記のマスクブランク10の品質管理方法に関する。なお、上記のマスクブランク10Aの品質管理方法も同様である。
 図10は、本発明の第4の実施形態によるマスクブランクの品質管理方法のフローチャートである。
 マスクブランク10の品質管理方法は、仮基準マーク40の位置を基準位置として、基板20の表面23の欠陥位置を特定する第1の特定工程S201を有する。
 第1の特定工程S201は、特定精度を向上するため、基板20の表面23に多層膜30を成膜する工程S104~S108(図9参照)の前(より詳細には、最初の層を成膜する工程S104の前)に行われる。なお、第1の特定工程S201は、仮基準マーク40を利用するので、仮基準マーク40を形成する工程S102(図9参照)の後に行われる。
 第1の特定工程S201では、欠陥位置を特定すると共に、欠陥の種類(例えば、凹状、凸状の別)を特定してもよい。欠陥に関する情報は、記録媒体に記録される。なお、欠陥が無い場合、欠陥が無いという内容の情報が、記録媒体に記録される。
 欠陥位置を特定する方法は、一般的なものであってよく、例えば試験体(基板20)の表面で紫外線、真空紫外線、軟X線などのスポット光を走査し、試験体からの散乱光を受光して、欠陥位置を特定する方法などがある。散乱光の代わりに、反射光または透過光が用いられてもよい。
 マスクブランク10の品質管理方法は、多層膜30の成膜の途中で、仮基準マーク40の位置を基準位置として、多層膜30のうちの少なくとも一層の欠陥位置を特定する第2の特定工程S202をさらに有してよい。
 第2の特定工程S202は、例えば図10に示すように、反射層31、保護層32およびバッファー層33の欠陥位置を特定する工程であってよい。この場合、仮基準マーク40の位置として、バッファー層33に転写した仮基準マーク43の位置が用いられる。
 第2の特定工程S202は、反射層31、保護層32およびバッファー層33を形成する工程S104、S105、S106(図9参照)の後であって、吸収層34を形成する工程S107(図9参照)の前に行われる。
 なお、反射層31、保護層32およびバッファー層33は、一般的に、連続的に成膜されることが多いので、欠陥位置をまとめて特定するとしたが、本発明はこれに限定されない。例えば、反射層31の欠陥位置を、保護層32の形成前に特定してもよいし、保護層32の欠陥位置を、バッファー層33の形成前に特定してもよい。
 第2の特定工程S202では、欠陥位置を特定すると共に、欠陥の種類(例えば、凹状、凸状の別)を特定してもよい。欠陥に関する情報は、記録媒体に記録される。なお、欠陥が無い場合、欠陥が無いという内容の情報が、記録媒体に記録される。
 欠陥位置を特定する方法は、第1の特定工程S201で用いられる方法と同様の方法であってよい。
 マスクブランク10の品質管理方法は、仮基準マーク40の位置を基準位置として、多層膜30のうちの別の層の欠陥位置を特定する第3の特定工程S203をさらに有してよい。
 第3の特定工程S203は、例えば図10に示すように、吸収層34および低反射層35の欠陥位置を特定する工程であってよい。この場合、仮基準マーク40の位置として、低反射層35に転写した仮基準マーク45の位置が用いられる。
 第3の特定工程S203は、低反射層35を形成する工程S108(図9参照)の後であって、基準マーク50を形成する工程S109(図9参照)の前に行われる。
 なお、吸収層34と低反射層35は、一般的に、連続的に成膜されることが多いので、欠陥位置をまとめて特定するとしたが、本発明はこれに限定されない。例えば、吸収層34の欠陥の位置を、低反射層35の形成前に特定してもよい。
 第3の特定工程S203では、欠陥位置を特定すると共に、欠陥の種類(例えば、凹状、凸状の別)を特定してもよい。欠陥に関する情報は、記録媒体に記録される。なお、欠陥が無い場合、欠陥が無いという内容の情報が、記録媒体に記録される。
 欠陥位置を特定する方法は、第1の特定工程S201で用いられる方法と同様の方法であってよい。
 マスクブランク10の品質管理方法は、仮基準マーク40の位置(より詳細には、多層膜30の最上層に転写した仮基準マーク45の位置)と、基準マーク50の位置との位置関係を検出する検出工程S204をさらに有する。検出工程S204は、基準マーク50を利用するので、基準マーク50を形成する工程S109(図9参照)の後に行われる。
 仮基準マーク45の位置と、基準マーク50の位置との位置関係を検出する方法は、第1の特定工程S201で用いられる欠陥位置の特定方法と同様であってよい。
 マスクブランク10の品質管理方法は、第1~第3の特定工程S201~S103で特定された欠陥位置を、検出工程S204での検出結果に基づいて、基準マーク50の位置を基準位置とする位置に換算する換算工程S205をさらに有する。基準マーク50の位置を基準位置として特定された欠陥位置情報は、記録媒体に記録され、フォトマスク100の製造工程で使用される。
 このように、本実施形態では、第1の特定工程S201において、基板20の欠陥位置を、基板20上に多層膜30を成膜する前に特定するので、特定精度が良い。また、第2の特定工程S202において、多層膜30のうちの少なくとも一層の欠陥位置を、多層膜30の成膜の途中で特定するので、特定精度が良い。
 なお、本実施形態の品質管理方法は、第1の特定工程S201と、第2の特定工程S202の両方を有するとしたが、いずれか片方のみを有しても良い。いずれか片方を有していれば、特定精度が向上する。
 特定された欠陥位置は、仮基準マーク40と基準マーク50の位置関係に基づいて、基準マーク50の位置を基準位置とする位置に換算され、フォトマスク100の製造工程に供される。
 フォトマスク100の製造工程で用いられる電子線描画装置、座標測定装置やマスク外観検査装置は、反射電子線や反射紫外線を検出して、基準マーク50の位置を精度良く検出することができ、マスクブランク10の供給元から提供された情報に基づいて、欠陥位置を精度よく知ることができる。
 なお、本実施形態の品質管理方法では、吸収層34および低反射層35の欠陥位置を特定する第3の特定工程S203が、基準マーク50を形成する工程S109(図9参照)の前に実施されるとしたが、工程S109の後に実施されてもよい。この場合、第3の特定工程S203では、仮基準マーク40の代わりに、基準マーク50の位置を基準位置として、欠陥位置を特定することができ、特定精度が向上する。
 [第5の実施形態]
 上記第1の実施形態では、基準マーク50が、仮基準マーク40から十分に離れた位置に形成されている。
 これに対し、本実施形態では、基準マークが、平面視にて、仮基準マークと重なるように形成されている。
 以下、本実施形態によるマスクブランクの構成について説明するが、仮基準マークおよび基準マークの形状以外の構成については、第1の実施形態と同じ構成であるので、説明を省略する。
 図11は、本発明の第5の実施形態によるEUVL用のマスクブランクの断面図である。
 仮基準マーク40は、基板20の表面23に凹状または凸状(本実施形態では、凹状)に形成されている。また、基準マーク50Bは、多層膜30の表面36に凹状または凸状(本実施形態では凹状)に形成されており、且つ、平面視にて、仮基準マーク40と重なるように形成されている。
 そのため、マスクブランク10Aの品質管理方法において、仮基準マーク40と基準マーク50Aの位置関係を検出する検出工程S204(図10参照)、検出工程S204に続いて行われる換算工程S205(図10参照)が不要となる。
 凹状の基準マーク50Bは、図11に示すように、多層膜30のうち、少なくとも、最上層(基板20側と反対側の最表層)を貫通するように形成されている。よって、上記第1の実施形態と同様に、基準マーク50Bの表面51B、52Bの一部52Bが、多層膜30の最上層と異なる材料で構成されるので、基準マーク50Bの位置を反射電子線や反射紫外線で精度良く検出することができる。
 凹状の基準マーク50Bの内底面52Bには、仮基準マーク40の影響で、反射層31、保護層32、バッファー層33、および吸収層34が露出していてもよい。
 以上、本発明の第1~第5の実施形態について説明したが、本発明は、上記の実施形態に制限されない。本発明の範囲を逸脱することなく、上記の実施形態に種々の変形や置換を加えることができる。
 例えば、上記実施形態の多層基板は、EUVL用のマスクブランクであるとしたが、反射電子線、反射紫外線、軟X線などを用いて基準位置を検出するものであれば、特に限定されない。
 また、上記実施形態において、仮基準マークの形状と、基準マークの形状の組合せに制限はなく、凸状の仮基準マークと、凹状の基準マークを組み合わせて用いてもよいし、凹状の仮基準マークと、凸状の基準マークを組み合わせて用いてもよい。
 本出願は、2011年3月7日出願の日本特許出願2011-049414に基づくものであり、その内容はここに参照として取り込まれる。
10 多層基板(EUVL用のマスクブランク)
20 基板
30 多層膜
31 反射層
32 保護層
33 バッファー層
34 吸収層
35 低反射層
36 多層膜表面
40 仮基準マーク
50 基準マーク
51 基準マークの段差面
52 基準マークのオフセット面(内底面)
100 フォトマスク

Claims (13)

  1.  基板と、該基板上に設けられる多層膜とを有する多層基板において、
     前記多層膜の前記基板側と反対側の表面には、前記多層基板の基準位置を示す凹状または凸状の基準マークが形成されており、
     該基準マークの表面の少なくとも一部の材料と、前記多層膜の前記基板側と反対側の最表層の材料とが異なる、多層基板。
  2.  前記基準マークは、凹状に形成され、前記多層膜のうち、少なくとも前記最表層を貫通して形成されている、請求項1に記載の多層基板。
  3.  前記基準マークは、凸状に形成され、前記多層膜の前記最表層上に、該最表層とは異なる材料を積層して形成されている、請求項1に記載の多層基板。
  4.  前記多層基板は、EUVL用のマスクブランクであって、前記多層膜は、前記基板側から、EUV光を反射する反射層と、EUV光を吸収する吸収層とをこの順で有する、請求項1~3のいずれか一項に記載の多層基板。
  5.  基板と、該基板上に設けられる多層膜とを有する多層基板の製造方法において、
     前記多層膜の前記基板側と反対側の表面に、前記多層基板の基準位置を示す凹状または凸状の基準マークを形成する工程を有し、
     該基準マークの表面の少なくとも一部の材料と、前記多層膜の前記基板側と反対側の最表層の材料とが異なる、多層基板の製造方法。
  6.  前記基準マークは、凹状に形成され、前記多層膜のうち、少なくとも前記最表層を貫通して形成されている、請求項5に記載の多層基板の製造方法。
  7.  前記基準マークは、凸状に形成され、前記多層膜の前記最表層上に、該最表層とは異なる材料を積層して形成されている、請求項5に記載の多層基板の製造方法。
  8.  前記多層基板は、EUVL用のマスクブランクであって、前記多層膜は、前記基板側から、EUV光を反射する反射層と、EUV光を吸収する吸収層とをこの順で有する、請求項5~7のいずれか一項に記載の多層基板の製造方法。
  9.  基板と、該基板上に設けられる多層膜とを有する多層基板であって、前記多層膜の前記基板側と反対側の表面には、前記多層基板の基準位置を示す凹状または凸状の基準マークが形成されている多層基板の品質管理方法であって、
     前記基板上に前記多層膜を成膜する前に、前記基板上にある凹状または凸状の仮基準マークの位置を基準位置として、前記基板上にある欠陥位置を特定する、および/または、前記多層膜の成膜の途中で、前記基板上にある凹状または凸状の仮基準マークの位置を基準位置として、前記多層膜のうちの少なくとも一層の欠陥位置を特定する特定工程と、
     前記仮基準マークと前記基準マークの位置関係を検出する検出工程と、
     前記特定工程において特定した欠陥位置を、前記検出工程の結果に基づいて、前記基準マークの位置を基準位置とする位置に換算する換算工程とを有し、
     前記基準マークの表面の少なくとも一部の材料と、前記多層膜の前記基板側と反対側の最表層の材料とが異なる、多層基板の品質管理方法。
  10.  基板と、該基板上に設けられる多層膜とを有する多層基板であって、前記多層膜の前記基板側と反対側の表面には、前記多層基板の基準位置を示す凹状または凸状の基準マークが形成されている多層基板の品質管理方法であって、
     前記基板上に前記多層膜を成膜する前に、前記基板上にある凹状または凸状の仮基準マークの位置を基準位置として、前記基板上にある欠陥位置を特定する、および/または、前記多層膜の成膜の途中で、前記基板上にある凹状または凸状の仮基準マークの位置を基準位置として、前記多層膜のうちの少なくとも一層の欠陥位置を特定する特定工程を有し、
     前記基準マークは、平面視にて、前記仮基準マークと重なるように形成されており、前記基準マークの表面の少なくとも一部の材料と、前記多層膜の前記基板側と反対側の最表層の材料とが異なる、多層基板の品質管理方法。
  11.  前記基準マークは、凹状に形成され、前記多層膜のうち、少なくとも前記最表層を貫通して形成されている、請求項9または10に記載の多層基板の品質管理方法。
  12.  前記基準マークは、凸状に形成され、前記多層膜の前記最表層上に、該最表層とは異なる材料を積層して形成されている、請求項9または10に記載の多層基板の品質管理方法。
  13.  前記多層基板は、EUVL用のマスクブランクであって、前記多層膜は、前記基板側から、EUV光を反射する反射層と、EUV光を吸収する吸収層とをこの順で有する、請求項9~12のいずれか一項に記載の多層基板の品質管理方法。
PCT/JP2012/055428 2011-03-07 2012-03-02 多層基板、多層基板の製造方法、多層基板の品質管理方法 WO2012121159A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013503512A JP5910625B2 (ja) 2011-03-07 2012-03-02 多層基板、多層基板の製造方法、多層基板の品質管理方法
KR1020137015236A KR101904560B1 (ko) 2011-03-07 2012-03-02 다층 기판, 다층 기판의 제조 방법, 다층 기판의 품질 관리 방법
US14/021,392 US8921017B2 (en) 2011-03-07 2013-09-09 Multilayer substrate, manufacturing method for multilayer substrate, and quality control method for multilayer substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-049414 2011-03-07
JP2011049414 2011-03-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/021,392 Continuation US8921017B2 (en) 2011-03-07 2013-09-09 Multilayer substrate, manufacturing method for multilayer substrate, and quality control method for multilayer substrate

Publications (1)

Publication Number Publication Date
WO2012121159A1 true WO2012121159A1 (ja) 2012-09-13

Family

ID=46798123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/055428 WO2012121159A1 (ja) 2011-03-07 2012-03-02 多層基板、多層基板の製造方法、多層基板の品質管理方法

Country Status (5)

Country Link
US (1) US8921017B2 (ja)
JP (1) JP5910625B2 (ja)
KR (1) KR101904560B1 (ja)
TW (1) TWI569089B (ja)
WO (1) WO2012121159A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008265A (ja) * 2013-05-31 2015-01-15 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
JP2015148807A (ja) * 2012-12-28 2015-08-20 Hoya株式会社 マスクブランク用基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク、マスクブランク用基板の製造方法及び多層反射膜付き基板の製造方法並びに半導体装置の製造方法
US9268207B2 (en) 2012-09-28 2016-02-23 Asahi Glass Company, Limited Reflective mask blank for EUV lithography, method of manufacturing thereof, reflective mask for EUV lithography and method of manufacturing thereof
WO2016043147A1 (ja) * 2014-09-17 2016-03-24 Hoya株式会社 反射型マスクブランク及びその製造方法、反射型マスク及びその製造方法、並びに半導体装置の製造方法
JP2016063020A (ja) * 2014-09-17 2016-04-25 Hoya株式会社 反射型マスクブランク及びその製造方法、反射型マスクの製造方法、並びに半導体装置の製造方法
JP2017058666A (ja) * 2015-09-17 2017-03-23 旭硝子株式会社 反射型マスクブランク、及び反射型マスクブランクの製造方法
JP2017075997A (ja) * 2015-10-13 2017-04-20 旭硝子株式会社 反射型マスクブランク、及び反射型マスクブランクの製造方法
JP2017146601A (ja) * 2016-02-16 2017-08-24 旭硝子株式会社 マスクブランク用の反射部材およびマスクブランク用の反射部材の製造方法
KR20210048604A (ko) * 2013-03-12 2021-05-03 어플라이드 머티어리얼스, 인코포레이티드 극자외선 리소그래피 마스크 블랭크 제조 시스템 및 그를 위한 작동 방법
JP2023011647A (ja) * 2014-07-11 2023-01-24 アプライド マテリアルズ インコーポレイテッド 薄い吸収体を有する極紫外線マスクブランク作製システム及びその製造システム
US11860533B2 (en) 2020-03-27 2024-01-02 Applied Materials, Inc. Extreme ultraviolet mask absorber materials
US12025911B2 (en) 2017-10-17 2024-07-02 Hoya Corporation Reflective structure, reflective mask blank, reflective mask and method of manufacturing semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101908168B1 (ko) 2011-09-01 2018-10-15 에이지씨 가부시키가이샤 반사형 마스크 블랭크, 반사형 마스크 블랭크의 제조 방법, 및 반사형 마스크 블랭크의 품질 관리 방법
WO2013156086A1 (en) * 2012-04-20 2013-10-24 Hewlett-Packard Development Company, L.P. Adaptive pattern generation
KR102487841B1 (ko) * 2018-03-14 2023-01-11 삼성전자주식회사 반도체 패키지
US11852965B2 (en) 2020-10-30 2023-12-26 Taiwan Semiconductor Manufacturing Co., Ltd. Extreme ultraviolet mask with tantalum base alloy absorber

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193269A (ja) * 2002-12-10 2004-07-08 Hitachi Ltd マスクの製造方法および半導体集積回路装置の製造方法
JP2004266300A (ja) * 2004-06-21 2004-09-24 Canon Inc 反射型マスク
WO2008129914A1 (ja) * 2007-04-17 2008-10-30 Asahi Glass Company, Limited Euvマスクブランク
JP2009092407A (ja) * 2007-10-04 2009-04-30 Renesas Technology Corp マスクブランク検査装置および方法、反射型露光マスクの製造方法、反射型露光方法ならびに半導体集積回路の製造方法
WO2010110237A1 (ja) * 2009-03-26 2010-09-30 Hoya株式会社 反射型マスク用多層反射膜付基板及び反射型マスクブランク並びにそれらの製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077305A (ja) * 1998-08-31 2000-03-14 Nikon Corp 反射マスクおよびx線投影露光装置
JP2010219445A (ja) * 2009-03-18 2010-09-30 Nuflare Technology Inc 荷電粒子ビーム描画方法、荷電粒子ビーム描画用の基準マークの位置検出方法及び荷電粒子ビーム描画装置
KR101993322B1 (ko) * 2011-09-28 2019-06-26 호야 가부시키가이샤 마스크블랭크용 유리기판, 다층 반사막 부착 기판, 마스크블랭크 및 마스크, 그리고 그것들의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004193269A (ja) * 2002-12-10 2004-07-08 Hitachi Ltd マスクの製造方法および半導体集積回路装置の製造方法
JP2004266300A (ja) * 2004-06-21 2004-09-24 Canon Inc 反射型マスク
WO2008129914A1 (ja) * 2007-04-17 2008-10-30 Asahi Glass Company, Limited Euvマスクブランク
JP2009092407A (ja) * 2007-10-04 2009-04-30 Renesas Technology Corp マスクブランク検査装置および方法、反射型露光マスクの製造方法、反射型露光方法ならびに半導体集積回路の製造方法
WO2010110237A1 (ja) * 2009-03-26 2010-09-30 Hoya株式会社 反射型マスク用多層反射膜付基板及び反射型マスクブランク並びにそれらの製造方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9268207B2 (en) 2012-09-28 2016-02-23 Asahi Glass Company, Limited Reflective mask blank for EUV lithography, method of manufacturing thereof, reflective mask for EUV lithography and method of manufacturing thereof
JP2015148807A (ja) * 2012-12-28 2015-08-20 Hoya株式会社 マスクブランク用基板、多層反射膜付き基板、反射型マスクブランク、反射型マスク、マスクブランク用基板の製造方法及び多層反射膜付き基板の製造方法並びに半導体装置の製造方法
KR20210048604A (ko) * 2013-03-12 2021-05-03 어플라이드 머티어리얼스, 인코포레이티드 극자외선 리소그래피 마스크 블랭크 제조 시스템 및 그를 위한 작동 방법
KR102401043B1 (ko) * 2013-03-12 2022-05-20 어플라이드 머티어리얼스, 인코포레이티드 극자외선 리소그래피 마스크 블랭크 제조 시스템 및 그를 위한 작동 방법
JP2015008265A (ja) * 2013-05-31 2015-01-15 旭硝子株式会社 Euvリソグラフィ用反射型マスクブランク
JP2023011647A (ja) * 2014-07-11 2023-01-24 アプライド マテリアルズ インコーポレイテッド 薄い吸収体を有する極紫外線マスクブランク作製システム及びその製造システム
JP2016063020A (ja) * 2014-09-17 2016-04-25 Hoya株式会社 反射型マスクブランク及びその製造方法、反射型マスクの製造方法、並びに半導体装置の製造方法
US20170263444A1 (en) * 2014-09-17 2017-09-14 Hoya Corporation Reflective mask blank, method for manufacturing same, reflective mask, method for manufacturing same, and method for manufacturing semiconductor device
TWI664489B (zh) * 2014-09-17 2019-07-01 日商Hoya股份有限公司 反射型光罩基底及其製造方法、反射型光罩及其製造方法、以及半導體裝置之製造方法
US10347485B2 (en) 2014-09-17 2019-07-09 Hoya Corporation Reflective mask blank, method for manufacturing same, reflective mask, method for manufacturing same, and method for manufacturing semiconductor device
WO2016043147A1 (ja) * 2014-09-17 2016-03-24 Hoya株式会社 反射型マスクブランク及びその製造方法、反射型マスク及びその製造方法、並びに半導体装置の製造方法
US9927693B2 (en) 2015-09-17 2018-03-27 Asahi Glass Company, Limited Reflective mask blank and process for producing the reflective mask blank
JP2017058666A (ja) * 2015-09-17 2017-03-23 旭硝子株式会社 反射型マスクブランク、及び反射型マスクブランクの製造方法
JP2017075997A (ja) * 2015-10-13 2017-04-20 旭硝子株式会社 反射型マスクブランク、及び反射型マスクブランクの製造方法
JP2017146601A (ja) * 2016-02-16 2017-08-24 旭硝子株式会社 マスクブランク用の反射部材およびマスクブランク用の反射部材の製造方法
US12025911B2 (en) 2017-10-17 2024-07-02 Hoya Corporation Reflective structure, reflective mask blank, reflective mask and method of manufacturing semiconductor device
US11860533B2 (en) 2020-03-27 2024-01-02 Applied Materials, Inc. Extreme ultraviolet mask absorber materials

Also Published As

Publication number Publication date
KR20140009996A (ko) 2014-01-23
TW201243488A (en) 2012-11-01
TWI569089B (zh) 2017-02-01
JP5910625B2 (ja) 2016-04-27
JPWO2012121159A1 (ja) 2014-07-17
US8921017B2 (en) 2014-12-30
US20140011123A1 (en) 2014-01-09
KR101904560B1 (ko) 2018-10-04

Similar Documents

Publication Publication Date Title
JP5910625B2 (ja) 多層基板、多層基板の製造方法、多層基板の品質管理方法
KR101908168B1 (ko) 반사형 마스크 블랭크, 반사형 마스크 블랭크의 제조 방법, 및 반사형 마스크 블랭크의 품질 관리 방법
US7947415B2 (en) Reflective mask blank, reflective mask, method of inspecting reflective mask, and method for manufacturing the same
TWI651587B (zh) 具多層反射膜之基板之製造方法、反射型光罩基底之製造方法、及反射型光罩之製造方法
JP6766676B2 (ja) 反射型マスクブランクおよび反射型マスクブランクの製造方法
JPWO2014050891A1 (ja) Euvリソグラフィ用反射型マスクブランクおよびその製造方法、ならびにeuvリソグラフィ用反射型マスクおよびその製造方法
US12025911B2 (en) Reflective structure, reflective mask blank, reflective mask and method of manufacturing semiconductor device
JP2007073949A (ja) 多層反射膜付き基板の製造方法、反射型マスクブランクの製造方法、及び反射型マスクの製造方法
JP2017075997A (ja) 反射型マスクブランク、及び反射型マスクブランクの製造方法
JP5339085B2 (ja) 反射型マスクおよびその製造方法ならびにマスクパターン検査方法
JP2016033956A (ja) Euvマスク欠陥検査方法およびeuvマスクブランク
US11281090B2 (en) Substrate with a multilayer reflective film, reflective mask blank, reflective mask, and method of manufacturing semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12754910

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013503512

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137015236

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12754910

Country of ref document: EP

Kind code of ref document: A1