WO2012120847A1 - 非水電解液用添加剤、非水電解液及び非水電解液二次電池 - Google Patents

非水電解液用添加剤、非水電解液及び非水電解液二次電池 Download PDF

Info

Publication number
WO2012120847A1
WO2012120847A1 PCT/JP2012/001425 JP2012001425W WO2012120847A1 WO 2012120847 A1 WO2012120847 A1 WO 2012120847A1 JP 2012001425 W JP2012001425 W JP 2012001425W WO 2012120847 A1 WO2012120847 A1 WO 2012120847A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous electrolyte
volume
phosphazene compound
secondary battery
fluorine
Prior art date
Application number
PCT/JP2012/001425
Other languages
English (en)
French (fr)
Inventor
大月 正珠
佐藤 弘一
辻岡 章一
藤原 愛一郎
Original Assignee
株式会社ブリヂストン
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ブリヂストン, セントラル硝子株式会社 filed Critical 株式会社ブリヂストン
Priority to US14/002,772 priority Critical patent/US9391346B2/en
Priority to EP12755645.4A priority patent/EP2683013B1/en
Priority to CN2012800115945A priority patent/CN103403949A/zh
Priority to KR1020137023444A priority patent/KR101515315B1/ko
Publication of WO2012120847A1 publication Critical patent/WO2012120847A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an additive for a non-aqueous electrolyte, a non-aqueous electrolyte containing the additive, and a non-aqueous electrolyte secondary battery including the additive, and in particular, a non-aqueous electrolyte excellent in safety and battery characteristics.
  • the present invention relates to a secondary battery.
  • nickel-cadmium batteries have been mainly used as memory backups for AV and information devices such as personal computers and VTRs, and as secondary batteries for these drive power supplies.
  • non-aqueous electrolyte secondary batteries with high voltage and energy density and excellent self-discharge properties have attracted particular attention, and as a result of various developments, some products have already been developed. It has become. At present, more than half of notebook computers and mobile phones are driven by this non-aqueous electrolyte secondary battery. In the near future, they will be used in environmental vehicles such as electric vehicles and hybrid vehicles. Is highly expected.
  • the electrolytic solution is used for the purpose of reducing the danger and increasing the driving voltage when lithium is generated on the surface of the negative electrode.
  • Various organic solvents are used.
  • an alkali metal particularly lithium metal or lithium alloy
  • the electrolyte solution is usually an ester organic solvent or the like.
  • An aprotic organic solvent is used.
  • the non-aqueous electrolyte secondary battery has high performance, safety performance is not sufficient.
  • alkali metals particularly lithium metal and lithium alloy
  • a negative electrode material of a nonaqueous electrolyte secondary battery are very active against moisture. Therefore, for example, when moisture enters due to imperfect battery sealing, the negative electrode material and water react to generate hydrogen, which may cause ignition.
  • lithium metal has a low melting point (about 170 ° C.), if a large current flows suddenly during a short circuit or the like, and the battery generates heat abnormally, a very dangerous situation such as melting of the battery can occur.
  • Non-Patent Document 1 a technique in which a battery is provided with a mechanism for preventing an excessive current of a predetermined amount or more from flowing through the cylindrical battery.
  • the mechanism does not necessarily operate normally. If the mechanism does not operate normally, heat generation due to an excessive current increases and there is still a risk of causing ignition or the like. Therefore, there is a demand for the development of a non-aqueous electrolyte secondary battery that fundamentally reduces the risk of evaporation, decomposition, ignition, etc. of the electrolyte regardless of a safety mechanism such as a safety valve.
  • an object of the present invention is to provide an additive for non-aqueous electrolyte capable of improving the safety and battery characteristics of a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte containing the additive, and the same.
  • the object is to provide a non-aqueous electrolyte secondary battery.
  • a phosphazene compound containing a secondary or tertiary branched alkoxy group substituted with fluorine in the molecular structure is used in a non-aqueous electrolyte secondary battery.
  • a phosphazene compound containing a secondary or tertiary branched alkoxy group substituted with fluorine in the molecular structure is used in a non-aqueous electrolyte secondary battery.
  • the non-aqueous electrolyte additive of the present invention has the following general formula (1): (NPR 2 ) n (1) [Wherein each R is independently a secondary or tertiary branched alkoxy group substituted with fluorine or fluorine, and at least one of the total R is a secondary or tertiary substituted with fluorine. It is a branched alkoxy group, and n is 3 to 14.]
  • a secondary or tertiary branched alkoxy group in which at least one of all R in the general formula (1) is substituted with fluorine is at least one selected from the group consisting of a hexafluoroisopropoxy group, a perfluoro-t-butoxy group, and a heptafluoroisobutoxy group. More preferably. Among them, a hexafluoroisopropoxy group is more preferable.
  • non-aqueous electrolyte of the present invention is characterized by containing the above-mentioned additive for non-aqueous electrolyte and a supporting salt.
  • the content of the phosphazene compound represented by the general formula (1) is preferably in the range of 1% by volume or more and less than 15% by volume.
  • the nonaqueous electrolytic solution of the present invention preferably further contains an aprotic organic solvent.
  • the aprotic organic solvent contains a cyclic or chain ester compound.
  • a preferred example of the non-aqueous electrolyte of the present invention contains LiPF 6 as the supporting salt, contains ethylene carbonate and / or propylene carbonate as the aprotic organic solvent, and contains 1% by volume or more and 15% by volume of the phosphazene compound. Including less than.
  • non-aqueous electrolyte of the present invention contains LiBF 4 as the supporting salt, propylene carbonate as the aprotic organic solvent, and contains 1% by volume or more and less than 15% by volume of the phosphazene compound.
  • the non-aqueous electrolyte secondary battery of the present invention is characterized by comprising the above-described non-aqueous electrolyte, a positive electrode, and a negative electrode.
  • a phosphazene compound containing a secondary or tertiary branched alkoxy group substituted with fluorine in the molecular structure and improving the safety and battery characteristics of a non-aqueous electrolyte secondary battery.
  • Possible non-aqueous electrolyte additives can be provided.
  • a non-aqueous electrolyte secondary battery having the non-aqueous electrolyte and having excellent safety and battery characteristics can be provided.
  • the additive for non-aqueous electrolytes of this invention is demonstrated in detail.
  • the additive for non-aqueous electrolyte of the present invention is characterized by comprising a phosphazene compound represented by the above general formula (1).
  • non-aqueous electrolytes based on aprotic organic solvents used in non-aqueous electrolyte secondary batteries are flammable liquids.
  • a short circuit occurs, a large current flows rapidly and the battery generates abnormal heat.
  • the gas is generated by vaporization / decomposition, or the battery is ignited by the generated gas or a spark generated by a short circuit, and the battery may be ruptured or ignited.
  • the additive for a non-aqueous electrolyte of the present invention comprising the above phosphazene compound to these conventional non-aqueous electrolytes, the non-aqueous electrolyte is obtained by the action of nitrogen gas and fluorine gas derived from the phosphazene compound.
  • the safety of the battery using the non-aqueous electrolyte containing the additive of the present invention is greatly improved.
  • the phosphorus contained in the phosphazene compound has the effect of suppressing chain decomposition of the polymer material constituting the battery, so that it is more effective in making it flame retardant (self-extinguishing, flame retardant, non-flammability). Is done.
  • the “safety” can be evaluated by the following safety evaluation method.
  • Safety evaluation method is measured by measuring the combustion behavior of a flame ignited in an atmospheric environment (test flame: 800 ° C., 30 seconds) in accordance with the UL94HB method of UL (Underwriting Laboratory) standard. Based on the UL test standards, incombustible quartz fiber is impregnated with 1.0 mL of an electrolyte solution to produce a 127 mm ⁇ 12.7 mm test piece, its ignitability (combustion length, etc.), combustibility, generation of carbide, It can be evaluated by observing the phenomenon during the next ignition.
  • the compound produced by the decomposition or reaction of the solvent or the supporting salt in the non-aqueous electrolyte corrodes the electrode and its peripheral members, and the supporting salt itself The decrease is believed to further exacerbate battery performance.
  • a lithium ion source such as a LiPF 6 salt as a supporting salt decomposes into LiF and PF 5 over time, It is considered that corrosion progresses and deteriorates due to the generated PF 5 gas and hydrogen fluoride gas generated by further reacting the PF 5 gas with water or the like.
  • the phosphazene compound suppresses decomposition of a solvent or a supporting salt, for example, a lithium ion source such as LiPF 6 and contributes to stabilization (especially works effectively for PF 6 ). Therefore, by adding the phosphazene compound to the conventional non-aqueous electrolyte, the decomposition reaction of the non-aqueous electrolyte is suppressed, and corrosion and deterioration can be prevented.
  • the phosphazene compound is represented by the above general formula (1), wherein each R is independently a secondary or tertiary branched alkoxy group substituted with fluorine or fluorine, At least one is a secondary or tertiary branched alkoxy group substituted with fluorine, and n is 3 to 14.
  • the reason why the phosphazene compound used in the present invention is represented by the general formula (1) is as follows.
  • At least one of all Rs represented by the general formula (1) is fluorine. If it is the secondary or tertiary branched alkoxy group substituted with, it is possible to impart excellent nonflammability to the non-aqueous electrolyte. Furthermore, if at least one of all R is fluorine, it is possible to impart further excellent nonflammability.
  • non-flammability means the property that the non-aqueous electrolyte does not ignite at all even in the above-mentioned “safety evaluation method”, that is, the test flame does not ignite the test piece (combustion). (Length: 0 mm).
  • safety evaluation method the test flame does not ignite the test piece (combustion).
  • self-extinguishing refers to the property that, in the above “safety evaluation method”, the ignited flame is extinguished on the 25 to 100 mm line, and the fallen object is not ignited.
  • “Flame retardance” refers to the property that, in the above “safety evaluation method”, the ignited flame does not reach the 25 mm line and the fallen object is not ignited.
  • the secondary or tertiary branched alkoxy group substituted with fluorine in the general formula (1) is one in which part of the hydrogen element in the secondary or tertiary branched alkoxy group is substituted with a fluorine element. Point to.
  • Examples of the secondary or tertiary branched alkoxy group substituted with fluorine include, for example, hexafluoroisopropoxy group, heptafluoroisopropoxy group, heptafluoroisobutoxy group, octafluoro-s-butoxy group, perfluoro- Examples thereof include a t-butoxy group and a nonafluoroisobutoxy group. Among these, a hexafluoroisopropoxy group, a perfluoro-t-butoxy group, and a heptafluoroisobutoxy group are preferable.
  • n is 3 to 14, preferably 3 or 4, and particularly preferably 3.
  • a compound having a substituent containing fluorine generation of fluorine radicals may be a problem.
  • the phosphazene compound captures stable phosphorus fluoride by capturing phosphorus radicals in the molecular structure. Because of the formation, such a problem does not occur.
  • R and n in the general formula (1) it is possible to synthesize a non-aqueous electrolyte solution having more suitable nonflammability, viscosity, solubility suitable for mixing, and the like.
  • the said phosphazene compound may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the flash point of the phosphazene compound is not particularly limited, but is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, from the viewpoint of suppressing ignition. If the phosphazene compound has a flash point of 100 ° C. or higher, ignition is suppressed, and even if ignition occurs inside the battery, the risk of ignition and spreading to the electrolyte surface is reduced. Is possible.
  • the flash point specifically refers to a temperature at which a flame spreads on the material surface and covers at least 75% of the material surface.
  • the flash point is a measure of the degree of tendency to form a combustible mixture with air, and is measured by the following mini flash method in the present invention.
  • a 4 mL small measuring chamber a heating cup, a frame, an ignition unit, and an apparatus (automatic ignition measuring device) equipped with an automatic flame detection system (MINIFLASH, GRABNER INSTRUMENTS) are prepared.
  • an apparatus automated ignition measuring device equipped with an automatic flame detection system (MINIFLASH, GRABNER INSTRUMENTS)
  • MINIFLASH, GRABNER INSTRUMENTS an automatic flame detection system
  • the non-aqueous electrolyte of the present invention is characterized by containing the above-mentioned additive for non-aqueous electrolyte and a supporting salt, and may further contain an aprotic organic solvent and the like as necessary.
  • a supporting salt that is an ion source of lithium ions is preferable.
  • the supporting salt is not particularly limited.
  • These supporting salts may be used alone or in combination of two or more.
  • the concentration of the supporting salt in the nonaqueous electrolytic solution of the present invention is preferably 0.5 to 1.5 mol / L, more preferably 0.8 to 1 mol / L.
  • concentration of the supporting salt is less than 0.5 mol / L, the conductivity of the electrolytic solution cannot be sufficiently ensured, which may hinder the charge / discharge characteristics of the battery, whereas it exceeds 1.5 mol / L.
  • the conductivity of the electrolyte cannot be sufficiently ensured similarly to the above, and the charge / discharge characteristics of the battery may be hindered. .
  • the viscosity of the non-aqueous electrolyte of the present invention at 25 ° C. is preferably 10 mPa ⁇ s (10 cP) or less, and more preferably 5 mPa ⁇ s (5 cP) or less.
  • a non-aqueous electrolyte secondary battery having excellent battery characteristics such as low internal resistance and high conductivity can be produced.
  • Viscosity was measured using a viscometer (R-type viscometer Model RE500-SL, manufactured by Toki Sangyo Co., Ltd.) at 1 rpm, 2 rpm, 3 rpm, 5 rpm, 7 rpm, 10 rpm, 20 rpm, and 50 rpm. Measured for 120 seconds at a time, and the rotational speed when the indicated value reaches 50 to 60% is used as an analysis condition, and the viscosity is measured at that time.
  • a viscometer R-type viscometer Model RE500-SL, manufactured by Toki Sangyo Co., Ltd.
  • the nonaqueous electrolytic solution of the present invention preferably further contains an aprotic organic solvent from the viewpoint of reducing the viscosity and improving the electrical conductivity.
  • an aprotic organic solvent is not particularly limited, but is preferably an ether compound or an ester compound from the viewpoint of reducing the viscosity of the nonaqueous electrolytic solution.
  • Specific examples include 1,2-dimethoxyethane, tetrahydrofuran, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, ⁇ -valerolactone, diphenyl carbonate, and the like.
  • cyclic ester compounds such as ethylene carbonate, propylene carbonate, and ⁇ -butyrolactone
  • chain ester compounds such as dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate
  • chain ether compounds such as 1,2-dimethoxyethane are preferable.
  • a cyclic ester compound is preferable in that it has a high relative dielectric constant and is excellent in solubility of a supporting salt and the like, and a chain ester compound has a low viscosity, so that the viscosity of the nonaqueous electrolytic solution is reduced.
  • aprotic organic solvents may be used singly or in combination of two or more.
  • the viscosity of the aprotic organic solvent at 25 ° C. is preferably 10 mPa ⁇ s (10 cP) or less, and preferably 5 mPa ⁇ s (5 cP) or less in that the viscosity of the non-aqueous electrolyte can be easily reduced. More preferred.
  • the content of the phosphazene compound represented by the general formula (1) in the nonaqueous electrolytic solution of the present invention is preferably 1% by volume or more and less than 15% by volume from the viewpoint of safety and battery characteristics.
  • the content of the phosphazene compound represented by the general formula (1) in the non-aqueous electrolyte of the present invention is an expression of flame retardancy (self-extinguishing, flame retardant, non-flammability) of the non-aqueous electrolyte. From the viewpoint, it is preferably 1% by volume or more, more preferably 3% by volume or more, and further preferably 5% by volume or more. When the content of the phosphazene compound is less than 1% by volume, sufficient flame retardancy may not be exhibited in the electrolytic solution.
  • the nonaqueous electrolytic solution of the present invention particularly preferably contains the phosphazene compound, LiPF 6 , and ethylene carbonate and / or propylene carbonate. It is also particularly preferable to contain LiBF 4 and propylene carbonate. In these cases, even when the content of the phosphazene compound in the non-aqueous electrolyte is small, excellent flame retardancy can be exhibited.
  • the content of the phosphazene compound represented by the above general formula (1) in the nonaqueous electrolytic solution of the present invention is preferably 1% by volume or more, more preferably from the viewpoint of deterioration resistance of the nonaqueous electrolytic solution. Is 1% by volume or more and less than 15% by volume. If content of the said phosphazene compound is 1 volume% or more, deterioration of electrolyte solution can be suppressed suitably.
  • the content of the phosphazene compound represented by the general formula (1) in the nonaqueous electrolytic solution is preferably in the range of 1% by volume or more and less than 15% by volume, A range of 3% by volume or more and less than 15% by volume is more preferable, and a range of 5% by volume or more and less than 15% by volume is even more preferable.
  • the term “deterioration” refers to the decomposition of the supporting salt (for example, lithium salt), and the effect of preventing the deterioration is evaluated by the following stability evaluation method.
  • ⁇ Stability Evaluation Method (1) First, after preparing a nonaqueous electrolytic solution containing a supporting salt, the moisture content is measured. If it is confirmed that the moisture content is 20 ppm or less, the color tone of the non-aqueous electrolyte is then observed visually. (2) Thereafter, the same non-aqueous electrolyte as described above was allowed to stand at 60 ° C. in a thermostat in a glove box for 10 days, and then the moisture content was measured again, the color tone was observed, and the stability was improved by these changes. To evaluate.
  • non-aqueous electrolyte battery electrolyte in a quasi-solid state with a gelling agent or a crosslinked polymer as used in a non-aqueous electrolyte battery called a lithium polymer battery.
  • the non-aqueous electrolyte secondary battery of the present invention comprises the above-described non-aqueous electrolyte, a positive electrode, and a negative electrode, and is usually used in the technical field of non-aqueous electrolyte secondary batteries such as a separator as necessary. Other members are provided.
  • the positive electrode active material used for the positive electrode of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited and may be suitably selected from known, for example, V 2 O 5, V 6 O 13, MnO 2 , metal oxides such as MnO 3 , lithium-containing composite oxides such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , LiFeO 2 and LiFePO 4 , metal sulfides such as TiS 2 and MoS 2 , conductivity such as polyaniline A polymer etc. are mentioned suitably.
  • the lithium-containing composite oxide may be a composite oxide containing two or three transition metals selected from the group consisting of Fe, Mn, Co, and Ni.
  • the composite oxide includes: LiFe x Co y Ni (wherein, 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1,0 ⁇ x + y ⁇ 1) (1-xy) O 2, or represented by LiMn x Fe y O 2-xy like.
  • LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 are particularly preferable in terms of high capacity, high safety, and excellent electrolyte wettability.
  • These positive electrode active materials may be used individually by 1 type, and may use 2 or more types together.
  • the negative electrode active material used for the negative electrode of the non-aqueous electrolyte secondary battery of the present invention is not particularly limited as long as it can occlude and release lithium or lithium ions, and can be appropriately selected from known materials.
  • lithium metal itself, alloys of lithium and Al, Si, Sn, In, Pb or Zn, and intermetallic compounds, carbon materials such as graphite doped with lithium, etc. are preferably mentioned, among these safety
  • a carbon material such as graphite is preferable, and graphite is particularly preferable in that it is higher and excellent in the wettability of the electrolytic solution.
  • examples of graphite include natural graphite, artificial graphite, mesophase carbon microbeads (MCMB), and the like, and widely include graphitizable carbon and non-graphitizable carbon.
  • These negative electrode active materials may be used individually by 1 type, and may use 2 or more types together.
  • the positive electrode and the negative electrode can be mixed with a conductive agent and a binder as necessary.
  • the conductive agent include acetylene black
  • the binder includes polyvinylidene fluoride (PVDF) and polytetrafluoro.
  • PVDF polyvinylidene fluoride
  • examples include ethylene (PTFE), styrene / butadiene rubber (SBR), carboxymethyl cellulose (CMC), and the like. These additives can be used at a blending ratio similar to the conventional one.
  • the shape of the positive electrode and the negative electrode is not particularly limited, and can be appropriately selected from shapes known as electrodes.
  • a sheet shape, a cylindrical shape, a plate shape, a spiral shape, and the like can be given.
  • Other members used in the non-aqueous electrolyte secondary battery of the present invention include a separator interposed between the positive and negative electrodes in the role of preventing a short circuit of current due to contact between both electrodes in the non-aqueous electrolyte secondary battery. It is done.
  • the separator it is possible to reliably prevent contact between the two electrodes and to allow the electrolyte to pass through or to contain, for example, synthesis of polytetrafluoroethylene, polypropylene, polyethylene, cellulose, polybutylene terephthalate, polyethylene terephthalate, etc.
  • Preferred examples include resin non-woven fabrics and thin layer films.
  • polypropylene or polyethylene microporous films having a thickness of about 20 to 50 ⁇ m are particularly suitable.
  • cellulose-based films, polybutylene terephthalate, polyethylene terephthalate, and the like are particularly suitable.
  • known members that are normally used in batteries can be suitably used.
  • the capacity of the nonaqueous electrolyte secondary battery of the present invention is preferably in the range of 140 to 145 (mAh / g) in terms of charge / discharge capacity (mAh / g) when LiCoO 2 is used as the positive electrode, and 143 to 145 ( The range of mAh / g) is more preferred.
  • the charge / discharge capacity is measured from a charge current (mA), time (t), and pole material mass (g) by performing a charge / discharge test using a known measurement method, for example, a semi-open cell or a sealed coin cell. , And can be measured by a method for determining the capacity.
  • non-aqueous electrolyte secondary battery of this invention Various well-known forms, such as a coin type, a button type, a paper type, a cylindrical battery of a square type or a spiral structure, are mentioned suitably.
  • a non-aqueous electrolyte secondary battery can be manufactured by preparing a sheet-like positive electrode and negative electrode and sandwiching a separator between the positive electrode and the negative electrode.
  • a non-aqueous electrolyte secondary battery is manufactured by preparing a sheet-like positive electrode, sandwiching a current collector, and stacking and winding up the sheet-like negative electrode on the current collector. be able to.
  • the inclusion of the phosphazene compound represented by the above general formula (1) in the non-aqueous electrolyte is preferably in the range of 1% by volume or more and less than 15% by volume, more preferably in the range of 3% by volume or more and less than 15% by volume, and still more preferably in the range of 5% by volume or more and less than 15% by volume.
  • the “charge / discharge cycle performance” and the “low temperature characteristics” can be evaluated by an evaluation method described later.
  • cyclic phosphazene compound in which n is 3, 5 R is fluorine, 1 R is hexafluoroisopropoxy group, flash point: none] additive for non-aqueous electrolyte 1 mL was added (1% by volume), and LiPF 6 (supporting salt) was further dissolved at a concentration of 0.95 mol / L to prepare a non-aqueous electrolyte.
  • the safety and deterioration resistance of the obtained nonaqueous electrolytic solution were measured and evaluated by the following methods. The results are shown in Table 1.
  • a cell was prepared using LiCoO 2 as a positive electrode material and graphite as a negative electrode material, and a battery charge / discharge test was actually performed.
  • the test cell was produced as follows. To 90 parts by mass of LiCoO 2 powder, 5 parts by mass of polyvinylidene fluoride (PVDF) as a binder and 5 parts by mass of acetylene black as a conductive material were mixed, and further N-methylpyrrolidone was added to form a paste. The paste was applied on an aluminum foil and dried to obtain a test positive electrode body.
  • PVDF polyvinylidene fluoride
  • Example 2 In Example 1 “Preparation of non-aqueous electrolyte”, except that the mixed solvent of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate was 97 mL and the phosphazene compound was 3 mL (3% by volume), the same as Example 1. Then, a non-aqueous electrolyte was prepared, and safety and deterioration resistance were evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and charge / discharge cycle performance and low-temperature characteristics were measured and evaluated. The results are shown in Table 1.
  • Example 3 “Preparation of non-aqueous electrolyte” was the same as Example 1 except that the mixed solvent of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate was 95 mL and the phosphazene compound was 5 mL (5% by volume). Then, a non-aqueous electrolyte was prepared, and safety and deterioration resistance were evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and charge / discharge cycle performance and low-temperature characteristics were measured and evaluated. The results are shown in Table 1.
  • Example 4 “Preparation of non-aqueous electrolyte” was the same as Example 1 except that the mixed solvent of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate was 90 mL and the phosphazene compound was 10 mL (10% by volume). Then, a non-aqueous electrolyte was prepared, and safety and deterioration resistance were evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and charge / discharge cycle performance and low-temperature characteristics were measured and evaluated. The results are shown in Table 1.
  • Example 5 In Example 1 “Preparation of non-aqueous electrolyte”, except that the mixed solvent of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate was 86 mL and the phosphazene compound was 14 mL (14% by volume), the same as Example 1. Then, a non-aqueous electrolyte was prepared, and safety and deterioration resistance were evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and charge / discharge cycle performance and low-temperature characteristics were measured and evaluated. The results are shown in Table 1.
  • Example 6 In “Preparation of non-aqueous electrolyte” in Example 1, the mixed solvent of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate was 86 mL, the phosphazene compound was 14 mL (14% by volume), and instead of LiPF 6 (supporting salt).
  • a nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that LiBF 4 (supporting salt) was used, and safety and deterioration resistance were evaluated.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and charge / discharge cycle performance and low-temperature characteristics were measured and evaluated. The results are shown in Table 1.
  • Example 1 In “Preparation of Nonaqueous Electrolytic Solution” in Example 1, a nonaqueous electrolytic solution was prepared in the same manner as in Example 1 except that the phosphazene compound was not added, and safety and deterioration resistance were evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and charge / discharge cycle performance and low-temperature characteristics were measured and evaluated. The results are shown in Table 1.
  • Example 2 In “Preparation of Nonaqueous Electrolytic Solution” in Example 1, the phosphazene compound is a cyclic compound in which n is 3, 5 Rs are fluorine, and 1 R is an ethoxy group in the general formula (1).
  • the mixed solvent of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate was changed to 99 mL, and the phosphazene compound was changed to 1 mL (1% by volume).
  • a water electrolyte was prepared, and safety and deterioration resistance were evaluated.
  • a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and charge / discharge cycle performance and low-temperature characteristics were measured and evaluated. The results are shown in Table 1.
  • Comparative Example 3 “Preparation of non-aqueous electrolyte” was the same as Comparative Example 2 except that the mixed solvent of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate was 90 mL and the phosphazene compound was 10 mL (10% by volume). Then, a non-aqueous electrolyte was prepared, and safety and deterioration resistance were evaluated. Further, a non-aqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 2, and charge / discharge cycle performance and low temperature characteristics were measured and evaluated. The results are shown in Table 1.
  • Comparative Example 4 “Preparation of non-aqueous electrolyte” was the same as Comparative Example 2 except that the mixed solvent of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate was 85 mL and the phosphazene compound was 15 mL (15% by volume). Then, a non-aqueous electrolyte was prepared, and safety and deterioration resistance were evaluated. Further, a non-aqueous electrolyte secondary battery was produced in the same manner as in Comparative Example 2, and charge / discharge cycle performance and low temperature characteristics were measured and evaluated. The results are shown in Table 1.
  • Example 5 In “Preparation of Nonaqueous Electrolytic Solution” in Example 1, the phosphazene compound is prepared by replacing n in the above general formula (1) with 5 R being fluorine and 1 R being a trifluoroethoxy group. Instead of a certain cyclic phosphazene compound (flash point: none), the mixed solvent of ethylene carbonate, dimethyl carbonate and ethyl methyl carbonate was changed to 90 mL, and the phosphazene compound was changed to 10 mL (10% by volume). A non-aqueous electrolyte was prepared, and safety and degradation resistance were evaluated. In addition, a non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, and charge / discharge cycle performance and low-temperature characteristics were measured and evaluated. The results are shown in Table 1.
  • the addition of the non-aqueous electrolyte additive of the present invention to the non-aqueous electrolyte solution of the non-aqueous electrolyte secondary battery can improve safety and safety compared to the conventional non-aqueous electrolyte secondary battery. It can be seen that the battery characteristics can be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、非水電解液二次電池の安全性及び電池特性を向上させることが可能な非水電解液用添加剤に関し、より詳しくは、下記一般式(1): (NPR2n ・・・ (1) [式中、Rはそれぞれ独立してフッ素又はフッ素で置換された2級または3級の分岐したアルコキシ基であって、全Rのうち少なくとも1つはフッ素で置換された2級または3級の分岐したアルコキシ基であり、nは3~14である]で表されるホスファゼン化合物からなる非水電解液用添加剤に関するものである。

Description

非水電解液用添加剤、非水電解液及び非水電解液二次電池
 本発明は、非水電解液用添加剤、該添加剤を含む非水電解液及びそれを具えた非水電解液二次電池に関し、特には、安全性及び電池特性に優れた非水電解液二次電池に関するものである。
 従来、パソコン・VTR等のAV・情報機器のメモリーバックアップやこれらの駆動電源用の二次電池として、ニッケル-カドミウム電池が主に使用されてきた。また、該ニッケル-カドミウム電池の代替として、電圧・エネルギー密度が高く、自己放電性に優れる非水電解液二次電池が特に注目を集め、種々の開発が行われた結果、一部は既に商品化されている。そして、現在、ノート型パソコンや携帯電話等は、その半数以上がこの非水電解液二次電池によって駆動しており、また、近い将来、電気自動車やハイブリッド車に代表される環境車両への活用が大きく期待されている。
 上記非水電解液二次電池においては、負極の材料として、カーボンが多用され、その電解液には、該負極の表面にリチウムが生成した場合の危険性の低減及び高駆動電圧化を目的として、各種有機溶媒が使用されている。特に、カメラ用の非水電解液二次電池においては、負極の材料として、アルカリ金属(特に、リチウム金属やリチウム合金)等が用いられており、電解液としては、通常エステル系有機溶媒等の非プロトン性有機溶媒が使用されている。
 上述のように、非水電解液二次電池は、高性能ではあるものの、安全性能は十分とはいえない。まず、非水電解液二次電池の負極の材料として用いられるアルカリ金属(特にリチウム金属やリチウム合金等)は、水分に対して非常に高活性である。そのため、例えば、不完全な電池の封口により水分が侵入した際等には、該負極の材料と水とが反応して水素が発生し、発火等する危険性がある。また、リチウム金属は低融点(約170℃)であるため、短絡時等に大電流が急激に流れ、電池が異常に発熱すると、電池が溶融する等の非常に危険な状況になりうる。更に、その電池の発熱により、電解液が気化・分解してガスが発生すると、発生したガスによって電池の破裂・発火が起こる危険性がある。また、電極合成時に微小な金属屑が混入しても短絡し、異常発熱や発火の原因となることも指摘されている。
 これらの問題を解決する目的で、例えば、筒形電池において、電池の短絡時・過充電時に温度が上がり電池内部の圧力が上昇した際に、安全弁が作動すると同時に電極端子を破断させることにより、該筒型電池に所定量以上の過大電流が流れることを抑止する機構を電池に設けた技術が提案されている(非特許文献1参照)。しかしながら、必ずしも該機構が正常に作動するわけではなく、正常に作動しない場合には、過大電流による発熱が大きくなり、依然として発火等を引き起こす危険性がある。そこで、安全弁等による安全機構によらず、電解液の気化・分解や発火等の危険性を根本的に低減した非水電解液二次電池の開発が要求されている。
 これに対して、非水電解液にホスファゼン化合物を添加して、非水電解液に不燃性、難燃性又は自己消火性を付与して、短絡等の非常時に電池が発火・引火する危険性を大幅に低減した非水電解液二次電池が開発されている(特許文献1参照)。
国際公開第02/21629号パンフレット
日刊工業新聞社,「電子技術」,1997年,第39巻,第9号
 しかしながら、昨今、非水電解液二次電池の安全性及び電池特性を更に向上させることが求められており、上記特許文献1に開示の非水電解液二次電池についても、更なる改善の余地が生じてきた。そこで、本発明の目的は、非水電解液二次電池の安全性及び電池特性を向上させることが可能な非水電解液用添加剤、該添加剤を含む非水電解液及びそれを具えた非水電解液二次電池を提供することにある。
 本発明者らは、上記目的を達成するために鋭意検討した結果、分子構造中にフッ素で置換された2級または3級の分岐したアルコキシ基を含むホスファゼン化合物を非水電解液二次電池の非水電解液に添加することで、非水電解液二次電池の安全性及び電池特性が大幅に向上することを見出し、本発明を完成させるに至った。
 即ち、本発明の非水電解液用添加剤は、下記一般式(1):
   (NPR2n ・・・ (1)
[式中、Rはそれぞれ独立してフッ素又はフッ素で置換された2級または3級の分岐したアルコキシ基であって、全Rのうち少なくとも1つはフッ素で置換された2級または3級の分岐したアルコキシ基であり、nは3~14である]で表されるホスファゼン化合物からなることを特徴とする。
 本発明の非水電解液用添加剤の好適例においては、上記一般式(1)中の全Rのうち少なくとも1つがフッ素で置換された2級または3級の分岐したアルコキシ基である。ここで、該フッ素で置換された2級または3級の分岐したアルコキシ基が、ヘキサフルオロイソプロポキシ基、パーフルオロ-t-ブトキシ基、ヘプタフルオロイソブトキシ基からなる群から選択される少なくとも1種であることが更に好ましい。特にその中でもヘキサフルオロイソプロポキシ基が更に好ましい。
 また、本発明の非水電解液は、上述の非水電解液用添加剤と、支持塩とを含有することを特徴とする。
 本発明の非水電解液においては、上記一般式(1)で表わされるホスファゼン化合物の含有量が1体積%以上且つ15体積%未満の範囲であることが好ましい。
 本発明の非水電解液は、更に非プロトン性有機溶媒を含むことが好ましい。ここで、該非プロトン性有機溶媒が環状又は鎖状のエステル化合物を含むことが更に好ましい。
 本発明の非水電解液の好適例は、前記支持塩としてLiPF6を含み、前記非プロトン性有機溶媒としてエチレンカーボネート及び/又はプロピレンカーボネートを含み、前記ホスファゼン化合物を1体積%以上且つ15体積%未満含む。
 本発明の非水電解液の他の好適例は、前記支持塩としてLiBF4を含み、前記非プロトン性有機溶媒としてプロピレンカーボネートを含み、前記ホスファゼン化合物を1体積%以上且つ15体積%未満含む。
 また、本発明の非水電解液二次電池は、上述の非水電解液と、正極と、負極とを具えることを特徴とする。
 本発明によれば、分子構造中にフッ素で置換された2級または3級の分岐したアルコキシ基を含むホスファゼン化合物からなり、非水電解液二次電池の安全性及び電池特性を向上させることが可能な非水電解液用添加剤を提供することができる。また、かかる添加剤を含み、安全性が高く、二次電池の電池特性を大幅に向上させることが可能な非水電解液を提供することができる。更に、該非水電解液を具え、安全性及び電池特性に優れた非水電解液二次電池を提供することができる。
<非水電解液用添加剤>
 以下に、本発明の非水電解液用添加剤を詳細に説明する。本発明の非水電解液用添加剤は、上記一般式(1)で表されるホスファゼン化合物からなることを特徴とする。
 従来、非水電解液二次電池に用いられている非プロトン性有機溶媒をベースとした非水電解液は引火性液体であり、短絡時等に大電流が急激に流れ、電池が異常に発熱した際に、気化・分解してガスが発生したり、発生したガスや短絡によって発生した火花等により引火し、電池の破裂・発火が起こることがあるため、危険性が高い。これら従来の非水電解液に、上記ホスファゼン化合物からなる本発明の非水電解液用添加剤を添加することにより、ホスファゼン化合物から誘導される窒素ガス及びフッ素ガス等の作用によって非水電解液に自己消火性、難燃性、又は不燃性が付与される。そのため、本発明の添加剤を含む非水電解液を用いた電池は、安全性が大幅に向上している。また、上記ホスファゼン化合物に含まれるリンには電池を構成する高分子材料の連鎖分解を抑制する作用があるため、更に効果的に難燃化(自己消火性、難燃性、不燃性)が発現される。なお、上記「安全性」については、下記安全性の評価方法により評価することができる。
<<安全性の評価方法>>
 安全性は、UL(アンダーライティングラボラトリー)規格のUL94HB法をアレンジした方法に従い、大気環境下において着火した炎(試験炎:800℃、30秒間)の燃焼挙動を測定することにより、具体的にはUL試験基準に基づき、不燃性石英ファイバーに1.0mLの電解液を染み込ませ、127mm×12.7mmの試験片を作製し、その着火性(燃焼長等)、燃焼性、炭化物の生成、二次着火時の現象等を観察することにより評価できる。
 また、従来の非水電解液二次電池においては、非水電解液中の溶媒あるいは支持塩の分解または反応によって生成する化合物が、電極及びその周辺部材を腐食し、また、その支持塩自体の減少が、さらに電池の性能を悪化させると考えられている。例えば、非水電解液二次電池の電解液として用いられているエステル系の電解液においては、支持塩であるLiPF6塩等のリチウムイオン源等が、経時と共にLiFとPF5に分解し、発生するPF5ガスや、該PF5ガスが更に水等と反応して発生するフッ化水素ガス等により、腐蝕が進行して劣化するものと考えられている。これにより、非水電解液の導電性が低下するとともに、発生するフッ化水素ガスで極材が劣化する現象が起こる。一方、上記ホスファゼン化合物は、溶媒あるいは支持塩、例えば、LiPF6等のリチウムイオン源の分解を抑制し安定化に寄与する(特に、PF6に対して有効に働く)。したがって、従来の非水電解液に上記ホスファゼン化合物を添加することにより、非水電解液の分解反応が抑制され、腐蝕、劣化を防止することが可能となる。
 上記ホスファゼン化合物は、上記一般式(1)で表され、該式中のRはそれぞれ独立してフッ素又はフッ素で置換された2級または3級の分岐したアルコキシ基であって、全Rのうち少なくとも1つはフッ素で置換された2級または3級の分岐したアルコキシ基であり、nは3~14である。本発明で用いるホスファゼン化合物が、上記一般式(1)で表される理由は、以下の通りである。
 即ち、ホスファゼン化合物を含有すれば、非水電解液に優れた自己消火性ないし難燃性を付与することができるが、更に、上記一般式(1)で表され全Rのうち少なくとも1つがフッ素で置換された2級または3級の分岐したアルコキシ基であれば、非水電解液に優れた不燃性を付与することが可能となる。更にまた、全Rのうち少なくとも1つがフッ素であれば、更に優れた不燃性を付与することが可能となる。ここで、「不燃性」とは、上述の「安全性の評価方法」において、非水電解液に試験炎を点火しても全く着火しない性質、即ち、試験炎が試験片に着火しない(燃焼長:0mm)性質を言う。また、「自己消火性」とは、上記「安全性の評価方法」において、着火した炎が25~100mmラインで消火し、かつ、落下物にも着火が認められない状態となる性質をいい、「難燃性」とは、上記「安全性の評価方法」において、着火した炎が25mmラインまで到達せず、かつ、落下物にも着火が認められない状態となる性質をいう。
 上記一般式(1)におけるフッ素で置換された2級または3級の分岐したアルコキシ基とは、2級または3級の分岐したアルコキシ基中の水素元素の一部がフッ素元素で置換されたものを指す。
 上記フッ素で置換された2級または3級の分岐したアルコキシ基としては、例えば、ヘキサフルオロイソプロポキシ基、ヘプタフルオロイソプロポキシ基、ヘプタフルオロイソブトキシ基、オクタフルオロ-s-ブトキシ基、パーフルオロ-t-ブトキシ基、ノナフルオロイソブトキシ基等が挙げられ、これらの中でも、ヘキサフルオロイソプロポキシ基、パーフルオロ-t-ブトキシ基、ヘプタフルオロイソブトキシ基が好ましい。
 また、上記一般式(1)におけるnは3~14であり、3又は4であることが好ましく、3であることが特に好ましい。
 なお、フッ素を含む置換基を有する化合物においては、フッ素ラジカルの発生が問題となることがあるが、上記ホスファゼン化合物は、分子構造中のリン元素がフッ素ラジカルを捕捉し、安定なフッ化リンを形成するため、このような問題は発生しない。
 上記一般式(1)におけるR及びnを適宜選択することにより、より好適な不燃性、粘度、混合に適する溶解性等を有する非水電解液の合成が可能となる。上記ホスファゼン化合物は、1種単独で使用してもよく、2種以上を組み合わせて使用してもよい。
 上記ホスファゼン化合物の引火点としては、特に制限はないが、発火の抑制等の観点から、100℃以上が好ましく、150℃以上がより好ましい。ホスファゼン化合物が100℃以上に引火点を有していると、発火等が抑制され、また、仮に電池内部で発火等が生じても、引火して電解液表面に燃え広がる危険性を低下させることが可能となる。なお、引火点とは、具体的には、物質表面に炎が広がり、該物質表面の少なくとも75%を覆う温度をいう。該引火点は、空気と可燃性混合物を形成する傾向度を見る尺度となるものであり、本発明においては、以下のミニフラッシュ法により測定する。即ち、密閉したカップ方式で、4mLの小さな測定チャンバー、加熱カップ、フレーム、イグニッション部、及び、自動フレーム感知システムを備えた装置(自動引火測定器)(MINIFLASH、GRABNER INSTRUMENTS社製)を用意し、測定する試料1mLを加熱カップに入れ、カバーをし、カバー上部から加熱カップを加熱開始する。以降、一定間隔で試料温度を上昇させ、カップ内の蒸気と空気混合物へ一定温度間隔でイグニッションさせ、引火を検知し、引火が検知された時の温度を引火点とする。
<非水電解液>
 次に、本発明の非水電解液を詳細に説明する。本発明の非水電解液は、上述した非水電解液用添加剤と、支持塩とを含有することを特徴とし、必要に応じて、更に非プロトン性有機溶媒等を含んでもよい。
 本発明の非水電解液に用いる支持塩としては、リチウムイオンのイオン源となる支持塩が好ましい。該支持塩としては、特に制限はないが、例えば、LiClO4、LiBF4、LiPF6、LiCF3SO3、LiAsF6、LiC49SO3、Li(CF3SO2)2N、Li(C25SO2)2N等のリチウム塩が好適に挙げられる。これら支持塩は、1種単独で使用してもよく、2種以上を併用してもよい。
 本発明の非水電解液中の支持塩の濃度としては、0.5~1.5mol/Lが好ましく、0.8~1mol/Lが更に好ましい。支持塩の濃度が0.5mol/L未満では、電解液の導電性を充分に確保することができず、電池の充放電特性に支障をきたすことがあり、一方、1.5mol/Lを超えると、電解液の粘度が上昇し、リチウムイオンの移動度を充分に確保できないため、前述と同様に電解液の導電性を充分に確保できず、電池の充放電特性に支障をきたすことがある。
 本発明の非水電解液の25℃における粘度としては、10mPa・s(10cP)以下が好ましく、5mPa・s(5cP)以下がより好ましい。非水電解液の粘度が、10mPa・s(10cP)以下であれば、低内部抵抗、高導電率等の優れた電池特性を有する非水電解液二次電池を作製できる。なお、粘度は、粘度測定計(R型粘度計Model RE500-SL、東機産業(株)製)を用い、1rpm、2rpm、3rpm、5rpm、7rpm、10rpm、20rpm、及び、50rpmの各回転速度で120秒間ずつ測定し、指示値が50~60%となった時の回転速度を分析条件とし、その際の粘度を測定することによって求める。
 本発明の非水電解液は、低粘度化、電気導電性の向上の観点から、更に非プロトン性有機溶媒を含むことが好ましい。非水電解液に非プロトン性有機溶媒が含有されていると、非水電解液の低粘度化、電気導電性の向上が容易に達成される。該非プロトン性有機溶媒としては、特に制限はないが、非水電解液の低粘度化の点で、エーテル化合物やエステル化合物等が好ましい。具体的には、1,2-ジメトキシエタン、テトラヒドロフラン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン、ジフェニルカーボネート等が好適に挙げられる。これらの中でも、エチレンカーボネート、プロピレンカーボネート、γ-ブチロラクトン等の環状エステル化合物、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート等の鎖状エステル化合物、1,2-ジメトキシエタン等の鎖状エーテル化合物が好ましい。特に、環状のエステル化合物は、比誘電率が高く、支持塩等の溶解性に優れる点で好ましく、また、鎖状のエステル化合物は、低粘度であるため、非水電解液を低粘度化させることができる点で好ましい。これら非プロトン性有機溶媒は、1種単独で使用してもよいが、2種以上を併用するのが好ましい。また、該非プロトン性有機溶媒の25℃における粘度としては、非水電解液の粘度を容易に低下させることができる点で、10mPa・s(10cP)以下が好ましく、5mPa・s(5cP)以下がより好ましい。
 本発明の非水電解液中の上記一般式(1)で表わされるホスファゼン化合物の含有量は、安全性及び電池特性の観点から、1体積%以上且つ15体積%未満であることが好ましい。
 また、本発明の非水電解液中の上記一般式(1)で表わされるホスファゼン化合物の含有量は、非水電解液の難燃化(自己消火性、難燃性、不燃性)の発現の観点から、好ましくは1体積%以上、より好ましくは3体積%以上、さらに好ましくは5体積%以上である。上記ホスファゼン化合物の含有量が1体積%未満では、電解液に充分な難燃化が発現されないことがある。
 なお、難燃化の発現の観点から、本発明の非水電解液は、上記ホスファゼン化合物と、LiPF6と、エチレンカーボネート及び/又はプロピレンカーボネートとを含むことが特に好ましく、また、上記ホスファゼン化合物と、LiBF4と、プロピレンカーボネートとを含むことも特に好ましい。これらの場合、非水電解液中の上記ホスファゼン化合物の含有量が少量であっても、優れた難燃化を発現させることができる。
 また、本発明の非水電解液中の上記一般式(1)で表わされるホスファゼン化合物の含有量は、非水電解液の耐劣化性の観点から、好ましくは1体積%以上であり、より好ましくは1体積%以上且つ15体積%未満である。上記ホスファゼン化合物の含有量が1体積%以上であれば、電解液の劣化を好適に抑制できる。
 また、耐劣化性と安全性を両立する観点から、非水電解液中の上記一般式(1)で表わされるホスファゼン化合物の含有量は、1体積%以上且つ15体積%未満の範囲が好ましく、3体積%以上且つ15体積%未満の範囲がより好ましく、5体積%以上且つ15体積%未満の範囲がより一層好ましい。なお、「劣化」とは、上記支持塩(例えば、リチウム塩)の分解をいい、該劣化防止の効果は、下記安定性の評価方法により評価する。
<<安定性の評価方法>>
(1)先ず、支持塩を含む非水電解液を調製後、水分率を測定する。水分率が20ppm以下であることを確認したら、次に、目視により非水電解液の色調を観察する。
(2)その後、上記と同じ非水電解液を10日間グローブボックス内の恒温槽内で60℃にて放置した後、再び、水分率を測定し、色調を観察し、これらの変化により安定性を評価する。
 以上が本発明の非水電解液電池用電解液の基本的な構成についての説明であるが、本発明の要旨を損なわない限りにおいて、本発明の非水電解液電池用電解液に一般に用いられるその他の添加剤を任意の比率で添加しても良い。具体例としては、シクロヘキシルベンゼン、ビフェニル、t-ブチルベンゼン、ビニレンカーボネート、ビニルエチレンカーボネート、ジフルオロアニソール、フルオロエチレンカーボネート、プロパンサルトン、ジメチルビニレンカーボネート等の過充電防止効果、負極皮膜形成効果、正極保護効果を有する化合物が挙げられる。また、リチウムポリマー電池と呼ばれる非水電解液電池に使用される場合のように非水電解液電池用電解液をゲル化剤や架橋ポリマーにより擬固体化して使用することも可能である。
<非水電解液二次電池>
 次に、本発明の非水電解液二次電池を詳細に説明する。本発明の非水電解液二次電池は、上述の非水電解液と、正極と、負極とを具え、必要に応じて、セパレーター等の非水電解液二次電池の技術分野で通常使用されている他の部材を備える。
 本発明の非水電解液二次電池の正極に用いる正極活物質としては、特に制限はなく、公知のものの中から適宜選択することができ、例えば、V25、V613、MnO2、MnO3等の金属酸化物、LiCoO2、LiNiO2、LiMn24、LiFeO2及びLiFePO4等のリチウム含有複合酸化物、TiS2、MoS2等の金属硫化物、ポリアニリン等の導電性ポリマー等が好適に挙げられる。上記リチウム含有複合酸化物は、Fe、Mn、Co及びNiからなる群から選択される2種又は3種の遷移金属を含む複合酸化物であってもよく、この場合、該複合酸化物は、LiFexCoyNi(1-x-y)2(式中、0≦x<1、0≦y<1、0<x+y≦1)、或いはLiMnxFey2-x-y等で表される。これらの中でも、高容量で安全性が高く、更には電解液の濡れ性に優れる点で、LiCoO2、LiNiO2、LiMn24が特に好適である。これら正極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。
 本発明の非水電解液二次電池の負極に用いる負極活物質としては、リチウム又はリチウムイオン等を吸蔵・放出可能であれば特に制限はなく、公知のものの中から適宜選択することができ、例えば、リチウム金属自体、リチウムとAl、Si、Sn、In、Pb又はZn等との合金及び金属間化合物、リチウムをドープした黒鉛等の炭素材料等が好適に挙げられ、これらの中でも安全性がより高く、電解液の濡れ性に優れる点で、黒鉛等の炭素材料が好ましく、黒鉛が特に好ましい。ここで、黒鉛としては、天然黒鉛、人造黒鉛、メソフェーズカーボンマイクロビーズ(MCMB)等、広くは易黒鉛化カーボンや難黒鉛化カーボンが挙げられる。これら負極活物質は、1種単独で使用してもよく、2種以上を併用してもよい。
 上記正極及び負極には、必要に応じて導電剤、結着剤を混合することができ、導電剤としてはアセチレンブラック等が挙げられ、結着剤としてはポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、スチレン・ブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等が挙げられる。これらの添加剤は、従来と同様の配合割合で用いることができる。
 また、上記正極及び負極の形状としては、特に制限はなく、電極として公知の形状の中から適宜選択することができる。例えば、シート状、円柱形状、板状形状、スパイラル形状等が挙げられる。
 本発明の非水電解液二次電池に使用する他の部材としては、非水電解液二次電池において、正負極間に、両極の接触による電流の短絡を防止する役割で介在させるセパレーターが挙げられる。セパレーターの材質としては、両極の接触を確実に防止し得、且つ電解液を通したり含んだりできる材料、例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等の合成樹脂製の不織布、薄層フィルム等が好適に挙げられる。これらの中でも、厚さ20~50μm程度のポリプロピレン又はポリエチレン製の微孔性フィルム、セルロース系、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のフィルムが特に好適である。本発明では、上述のセパレーターの他にも、通常電池に使用されている公知の各部材が好適に使用できる。
 本発明の非水電解液二次電池の容量としては、LiCoO2を正極とした場合、充放電容量(mAh/g)で、140~145(mAh/g)の範囲が好ましく、143~145(mAh/g)の範囲が更に好ましい。なお、充放電容量は、公知の測定方法、例えば、半開放型セルあるいは、密閉型コインセルを用い、充放電試験を行い、充電電流(mA)、時間(t)及び極材質量(g)より、容量を求める方法によって測定することができる。
 本発明の非水電解液二次電池の形態としては、特に制限はなく、コインタイプ、ボタンタイプ、ペーパータイプ、角型又はスパイラル構造の円筒型電池等、種々の公知の形態が好適に挙げられる。ボタンタイプの場合は、シート状の正極及び負極を作製し、該正極及び負極でセパレーターを挟む等して、非水電解液二次電池を作製することができる。また、スパイラル構造の場合は、例えば、シート状の正極を作製して集電体を挟み、これに、シート状の負極を重ね合わせて巻き上げる等して、非水電解液二次電池を作製することができる。
 また、本発明の非水電解液二次電池の、充放電サイクル性能や低温特性等の電池特性を向上する観点から、非水電解液中の上記一般式(1)で表わされるホスファゼン化合物の含有量は、1体積%以上且つ15体積%未満の範囲が好ましく、3体積%以上且つ15体積%未満の範囲がより好ましく、5体積%以上且つ15体積%未満の範囲がより一層好ましい。なお、上記「充放電サイクル性能」と「低温特性」については、後述する評価方法により評価することができる。
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。
 (実施例1)
[非水電解液の調製]
 エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの混合溶媒[混合比(体積比)でエチレンカーボネート/ジメチルカーボネート/エチルメチルカーボネート=1/1/1](非プロトン性有機溶媒)99mLに、ホスファゼン化合物[上記一般式(1)において、nが3であって、5つのRがフッ素で、1つのRがヘキサフルオロイソプロポキシ基である環状ホスファゼン化合物、引火点:なし](非水電解液用添加剤)1mLを添加(1体積%)し、更に、LiPF6(支持塩)を0.95mol/Lの濃度で溶解させて、非水電解液を調製した。得られた非水電解液の安全性及び耐劣化性を下記の方法で測定・評価した。結果を表1に示す。
<安全性の評価>
 UL(アンダーライティングラボラトリー)規格のUL94HB法をアレンジした方法に従い、大気環境下において着火した炎(試験炎:800℃)の燃焼挙動を測定することにより、具体的にはUL試験基準に基づき、不燃性石英ファイバーに1.0mLの各種電解液を染み込ませ、127mm×12.7mmの試験片を作製し、その着火性(燃焼長等)、燃焼性、炭化物の生成、二次着火時の現象等を観察することにより評価した。ここで、試験炎を点火しても非水電解液に全く着火しなかった場合(燃焼長:0mm)を「不燃性」と評価し、着火した炎が装置の25mmラインまで到達せず且つ試験片からの落下物にも着火が認められなかった場合を「難燃性」と評価し、着火した炎が装置の25~100mmラインで消火し且つ試験片からの落下物にも着火が認められなかった場合を「自己消火性」と評価し、着火した炎が100mmラインを超えた場合を「燃焼性」と評価した。
<耐劣化性の評価>
 得られた非水電解液について、非水電解液調製直後及び10日間グローブボックス内の恒温槽(60℃)に放置した後で水分率(ppm)を測定し、放置前後の色調変化を観察することにより劣化の評価を行った。
[非水電解液二次電池の作製]
 LiCoOを正極材料、黒鉛を負極材料としてセルを作製し、実際に電池の充放電試験を実施した。試験用セルは以下のように作製した。
 LiCoO粉末90質量部に、バインダーとして5質量部のポリフッ化ビニリデン(PVDF)、導電材としてアセチレンブラックを5質量部混合し、さらにN-メチルピロリドンを添加し、ペースト状にした。このペーストをアルミニウム箔上に塗布して、乾燥させることにより、試験用正極体とした。また、黒鉛粉末90質量部に、バインダーとして10質量部のポリフッ化ビニリデン(PVDF)を混合し、さらにN-メチルピロリドンを添加し、スラリー状にした。このスラリーを銅箔上に塗布して、150℃で12時間乾燥させることにより、試験用負極体とした。そして、ポリエチレン製セパレーターに電解液を浸み込ませてアルミラミネート外装の50mAhセルを組み立てた。
 得られた電池に対して、下記の評価方法により、充放電サイクル性能及び低温特性を測定・評価した。結果を表1に示す。
<充放電サイクル性能の評価>
 60℃において、上限電圧4.2V、下限電圧3.0V、放電電流50mA、充電電流50mAの条件で、500サイクルまで充放電を繰り返した。この時の放電容量を、初期における放電容量と比較し、500サイクル後の容量維持率を算出した。合計3個の電池について、同様に測定・算出し、これらの平均値をとり、充放電サイクル性能の評価とした。
<低温特性の評価>
 得られた電池について、放電時の温度を、低温(-10℃、-20℃)とした他は、前記「充放電サイクル性能の評価」と同様の条件で、50サイクルまで充放電を繰り返した。この時の低温における放電容量を、20℃において測定した放電容量と比較し、下記式(2)より放電容量残存率を算出した。合計3個の電池について、同様に測定・算出し、これらの平均値をとり、低温特性の評価とした。
 放電容量残存率=低温放電容量/放電容量(20℃)×100(%) ・・・ (2)
 (実施例2)
 実施例1の「非水電解液の調製」において、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの混合溶媒を97mLとし、ホスファゼン化合物を3mL(3体積%)とした他は、実施例1と同様にして非水電解液を調製し、安全性及び耐劣化性の評価を行った。また、実施例1と同様にして非水電解液二次電池を作製し、充放電サイクル性能、及び低温特性をそれぞれ測定・評価した。結果を表1に示す。
 (実施例3)
 実施例1の「非水電解液の調製」において、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの混合溶媒を95mLとし、ホスファゼン化合物を5mL(5体積%)とした他は、実施例1と同様にして非水電解液を調製し、安全性及び耐劣化性の評価を行った。また、実施例1と同様にして非水電解液二次電池を作製し、充放電サイクル性能、及び低温特性をそれぞれ測定・評価した。結果を表1に示す。
 (実施例4)
 実施例1の「非水電解液の調製」において、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの混合溶媒を90mLとし、ホスファゼン化合物を10mL(10体積%)とした他は、実施例1と同様にして非水電解液を調製し、安全性及び耐劣化性の評価を行った。また、実施例1と同様にして非水電解液二次電池を作製し、充放電サイクル性能、及び低温特性をそれぞれ測定・評価した。結果を表1に示す。
 (実施例5)
 実施例1の「非水電解液の調製」において、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの混合溶媒を86mLとし、ホスファゼン化合物を14mL(14体積%)とした他は、実施例1と同様にして非水電解液を調製し、安全性及び耐劣化性の評価を行った。また、実施例1と同様にして非水電解液二次電池を作製し、充放電サイクル性能、及び低温特性をそれぞれ測定・評価した。結果を表1に示す。
 (実施例6)
 実施例1の「非水電解液の調製」において、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの混合溶媒を86mLとし、ホスファゼン化合物を14mL(14体積%)とし、LiPF6(支持塩)の代わりにLiBF4(支持塩)を用いた他は、実施例1と同様にして非水電解液を調製し、安全性及び耐劣化性の評価を行った。また、実施例1と同様にして非水電解液二次電池を作製し、充放電サイクル性能、及び低温特性をそれぞれ測定・評価した。結果を表1に示す。
 (比較例1)
 実施例1の「非水電解液の調製」において、ホスファゼン化合物を添加しない以外は、実施例1と同様に非水電解液を調製し、安全性及び耐劣化性の評価を行った。また、実施例1と同様にして非水電解液二次電池を作製し、充放電サイクル性能、及び低温特性をそれぞれ測定・評価した。結果を表1に示す。
 (比較例2)
 実施例1の「非水電解液の調製」において、上記ホスファゼン化合物を、上記一般式(1)において、nが3であって、5つのRがフッ素で、1つのRがエトキシ基である環状ホスファゼン化合物(引火点:なし)に代え、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの混合溶媒を99mLとし、ホスファゼン化合物を1mL(1体積%)とした他は、実施例1と同様にして非水電解液を調製し、安全性及び耐劣化性の評価を行った。また、実施例1と同様にして非水電解液二次電池を作製し、充放電サイクル性能、及び低温特性をそれぞれ測定・評価した。結果を表1に示す。
 (比較例3)
 比較例2の「非水電解液の調製」において、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの混合溶媒を90mLとし、ホスファゼン化合物を10mL(10体積%)とした他は、比較例2と同様にして非水電解液を調製し、安全性及び耐劣化性の評価を行った。また、比較例2と同様にして非水電解液二次電池を作製し、充放電サイクル性能、及び低温特性をそれぞれ測定・評価した。結果を表1に示す。
 (比較例4)
 比較例2の「非水電解液の調製」において、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの混合溶媒を85mLとし、ホスファゼン化合物を15mL(15体積%)とした他は、比較例2と同様にして非水電解液を調製し、安全性及び耐劣化性の評価を行った。また、比較例2と同様にして非水電解液二次電池を作製し、充放電サイクル性能、及び低温特性をそれぞれ測定・評価した。結果を表1に示す。
 (比較例5)
 実施例1の「非水電解液の調製」において、上記ホスファゼン化合物を、上記一般式(1)において、nが3であって、5つのRがフッ素で、1つのRがトリフルオロエトキシ基である環状ホスファゼン化合物(引火点:なし)に代え、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの混合溶媒を90mLとし、ホスファゼン化合物を10mL(10体積%)とした他は、実施例1と同様にして非水電解液を調製し、安全性及び耐劣化性の評価を行った。また、実施例1と同様にして非水電解液二次電池を作製し、充放電サイクル性能、及び低温特性をそれぞれ測定・評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、本発明の非水電解液用添加剤を非水電解液二次電池の非水電解液に添加することにより、従来の非水電解液二次電池に比べ、安全性及び電池特性を向上させられることが分かる。

Claims (9)

  1.  下記一般式(1):
       (NPR2n ・・・ (1)
    [式中、Rはそれぞれ独立してフッ素又はフッ素で置換された2級または3級の分岐したアルコキシ基であって、全Rのうち少なくとも1つはフッ素で置換された2級または3級の分岐したアルコキシ基であり、nは3~14である]で表されるホスファゼン化合物からなる非水電解液用添加剤。
  2.  前記フッ素で置換された2級または3級の分岐したアルコキシ基が、ヘキサフルオロイソプロポキシ基、パーフルオロ-t-ブトキシ基、ヘプタフルオロイソブトキシ基からなる群から選択される少なくとも1種であることを特徴とする請求項1に記載の非水電解液用添加剤。
  3.  請求項1または2に記載の非水電解液用添加剤と、支持塩とを含有することを特徴とする非水電解液。
  4.  上記一般式(1)で表わされるホスファゼン化合物の含有量が1体積%以上且つ15体積%未満の範囲であることを特徴とする請求項3に記載の非水電解液。
  5.  更に非プロトン性有機溶媒を含むことを特徴とする請求項3に記載の非水電解液。
  6.  前記非プロトン性有機溶媒が環状又は鎖状のエステル化合物を含むことを特徴とする請求項5に記載の非水電解液。
  7.  前記支持塩としてLiPF6を含み、前記非プロトン性有機溶媒としてエチレンカーボネート及び/又はプロピレンカーボネートを含み、前記ホスファゼン化合物を1体積%以上且つ15体積%未満の範囲で含むことを特徴とする請求項6に記載の非水電解液。
  8.  前記支持塩としてLiBF4を含み、前記非プロトン性有機溶媒としてプロピレンカーボネートを含み、前記ホスファゼン化合物を1体積%以上且つ15体積%未満の範囲で含むことを特徴とする請求項6に記載の非水電解液。
  9.  請求項3~8のいずれかに記載の非水電解液と、正極と、負極とを具えることを特徴とする非水電解液二次電池。
PCT/JP2012/001425 2011-03-04 2012-03-01 非水電解液用添加剤、非水電解液及び非水電解液二次電池 WO2012120847A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US14/002,772 US9391346B2 (en) 2011-03-04 2012-03-01 Non-aqueous electrolyte additive, non-aqueous electrolyte, and non-aqueous electrolyte secondary battery
EP12755645.4A EP2683013B1 (en) 2011-03-04 2012-03-01 Nonaqueous electrolyte additive, nonaqueous electrolyte, and nonaqueous electrolyte secondary battery
CN2012800115945A CN103403949A (zh) 2011-03-04 2012-03-01 非水电解液用添加剂、非水电解液和非水电解液二次电池
KR1020137023444A KR101515315B1 (ko) 2011-03-04 2012-03-01 비수 전해액용 첨가제, 비수 전해액 및 비수 전해액 이차 전지

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-048148 2011-03-04
JP2011048148A JP5738010B2 (ja) 2011-03-04 2011-03-04 二次電池用非水電解液及び非水電解液二次電池

Publications (1)

Publication Number Publication Date
WO2012120847A1 true WO2012120847A1 (ja) 2012-09-13

Family

ID=46797820

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001425 WO2012120847A1 (ja) 2011-03-04 2012-03-01 非水電解液用添加剤、非水電解液及び非水電解液二次電池

Country Status (6)

Country Link
US (1) US9391346B2 (ja)
EP (1) EP2683013B1 (ja)
JP (1) JP5738010B2 (ja)
KR (1) KR101515315B1 (ja)
CN (1) CN103403949A (ja)
WO (1) WO2012120847A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6624055B2 (ja) * 2014-07-09 2019-12-25 日本電気株式会社 非水電解液及びリチウムイオン二次電池
US10707526B2 (en) 2015-03-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
JP6880453B2 (ja) 2017-09-11 2021-06-02 トヨタ自動車株式会社 非水電解液二次電池
JP6883263B2 (ja) * 2017-09-11 2021-06-09 トヨタ自動車株式会社 非水電解液二次電池
JP6944394B2 (ja) * 2018-02-21 2021-10-06 三菱ケミカル株式会社 非水系電解液電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052736A (ja) * 1999-08-04 2001-02-23 Toyota Central Res & Dev Lab Inc リチウム二次電池
WO2002021629A1 (fr) 2000-09-07 2002-03-14 Bridgestone Corporation Additif pour electrolyte liquide non aqueux, cellule secondaire d'electrolyte liquide non aqueux et condensateur electrique d'electrolyte liquide non aqueux a double couche
JP2009129541A (ja) * 2007-11-19 2009-06-11 Central Glass Co Ltd 非水電池用電解液及びこれを用いた非水電池
JP2010015719A (ja) * 2008-07-01 2010-01-21 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液二次電池

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60330061D1 (de) 2002-12-27 2009-12-24 Bridgestone Corp Separator für eine nicht wässrige elektrolytzelle
JP2005190869A (ja) 2003-12-26 2005-07-14 Bridgestone Corp ポリマー電池用電解質及びそれを備えたポリマー電池
KR20140136017A (ko) * 2007-04-20 2014-11-27 미쓰비시 가가꾸 가부시키가이샤 비수계 전해액 및 그것을 사용한 비수계 전해액 이차 전지
KR101075319B1 (ko) * 2008-05-21 2011-10-19 삼성에스디아이 주식회사 리튬이온 이차전지용 전해액 및 이를 포함하는 리튬이온이차전지
US10438753B2 (en) 2010-07-06 2019-10-08 The United States Of America As Represented By The Secretary Of The Army Electrolytes in support of 5V Li ion chemistry

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001052736A (ja) * 1999-08-04 2001-02-23 Toyota Central Res & Dev Lab Inc リチウム二次電池
WO2002021629A1 (fr) 2000-09-07 2002-03-14 Bridgestone Corporation Additif pour electrolyte liquide non aqueux, cellule secondaire d'electrolyte liquide non aqueux et condensateur electrique d'electrolyte liquide non aqueux a double couche
JP2009129541A (ja) * 2007-11-19 2009-06-11 Central Glass Co Ltd 非水電池用電解液及びこれを用いた非水電池
JP2010015719A (ja) * 2008-07-01 2010-01-21 Bridgestone Corp 電池用非水電解液及びそれを備えた非水電解液二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIKKAN KOGYO SHINBUN, vol. 39, no. 9, 1997

Also Published As

Publication number Publication date
KR101515315B1 (ko) 2015-04-24
EP2683013B1 (en) 2018-01-17
KR20130130822A (ko) 2013-12-02
US9391346B2 (en) 2016-07-12
US20140017573A1 (en) 2014-01-16
JP2012186009A (ja) 2012-09-27
EP2683013A4 (en) 2014-08-20
EP2683013A1 (en) 2014-01-08
CN103403949A (zh) 2013-11-20
JP5738010B2 (ja) 2015-06-17

Similar Documents

Publication Publication Date Title
JP5738011B2 (ja) 二次電池の非水電解液用添加剤、二次電池用非水電解液及び非水電解液二次電池
JP5314885B2 (ja) 非水電解液及びそれを備えた非水電解液二次電源
JP4911888B2 (ja) 非水電解液及びそれを備えた非水電解液2次電池
JP2008300126A (ja) 電池用非水電解液及びそれを備えた非水電解液2次電池
JP2008053211A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP2007200605A (ja) 非水電解液及びそれを備えた非水電解液電池
WO2006109443A1 (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2008041296A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
US20100062345A1 (en) Non-aqueous electrolyte for battery and non-aqueous electrolyte battery comprising the same
JP5738010B2 (ja) 二次電池用非水電解液及び非水電解液二次電池
JP2008041413A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP2010015719A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP5093992B2 (ja) リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池
JP4671693B2 (ja) 二次電池の非水電解液用添加剤及び非水電解液二次電池
JP4785735B2 (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP2010015717A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2006286570A (ja) リチウム二次電池用非水電解液及びそれを備えたリチウム二次電池
JP2006286277A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2010015720A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2010050026A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2008052988A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP2010050023A (ja) 電池用非水電解液及びそれを備えた非水電解液二次電池
JP2009021040A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP2008041308A (ja) 電池用非水電解液及びそれを備えた非水電解液電池
JP2008282578A (ja) 電池用非水電解液及びそれを備えた非水電解液電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12755645

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137023444

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14002772

Country of ref document: US