WO2012114504A1 - 車両、車両の制御方法および制御装置 - Google Patents

車両、車両の制御方法および制御装置 Download PDF

Info

Publication number
WO2012114504A1
WO2012114504A1 PCT/JP2011/054276 JP2011054276W WO2012114504A1 WO 2012114504 A1 WO2012114504 A1 WO 2012114504A1 JP 2011054276 W JP2011054276 W JP 2011054276W WO 2012114504 A1 WO2012114504 A1 WO 2012114504A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
vehicle
motor generator
restricted
stop
Prior art date
Application number
PCT/JP2011/054276
Other languages
English (en)
French (fr)
Inventor
欽三 秋田
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2011/054276 priority Critical patent/WO2012114504A1/ja
Publication of WO2012114504A1 publication Critical patent/WO2012114504A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0676Engine temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0616Position of fuel or air injector
    • B60W2710/0633Inlet air flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0688Engine temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0694Engine exhaust temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present invention relates to a vehicle, a vehicle control method, and a control device, and more particularly, to a technique for controlling an engine when engine stop is restricted.
  • a hybrid vehicle equipped with an electric motor for traveling in addition to the engine is known.
  • the engine is stopped when the vehicle speed is low and when the vehicle stops.
  • the engine stop may be limited depending on the driving state of the vehicle.
  • Patent Document 1 discloses switching between a mode for motoring an engine and a mode for independent operation of the engine according to the vehicle speed when stopping of the engine is prohibited.
  • An object of the present invention is to reduce wasteful consumption of fuel.
  • the vehicle stops the fuel supply to the engine when the engine, the electric motor coupled to the output shaft of the engine, and heat from the engine are required to stop the engine.
  • a control unit that rotates the output shaft of the engine by an electric motor.
  • the output shaft of the engine is rotated by the electric motor while the fuel supply to the engine is stopped.
  • the vehicle further includes a catalyst provided in the exhaust pipe of the engine.
  • the control unit stops the fuel supply to the engine and rotates the output shaft of the engine by the electric motor when the catalyst warm-up is completed and the engine stop is limited due to the heat from the engine. .
  • the fuel supply to the engine can be stopped if the warm-up of the catalyst is completed. Therefore, when the fuel supply to the engine and the combustion of the fuel are restarted later, the exhaust gas discharged from the engine can be purified.
  • the vehicle further includes an air conditioner that is supplied with a refrigerant from the engine and performs air conditioning using the heat of the refrigerant. If the temperature of the refrigerant is lower than the threshold value, engine stop is limited.
  • the engine stop is limited for heating in the vehicle.
  • control unit stops the fuel supply to the engine during deceleration when the heat from the engine is required and the engine stop is restricted, and the output shaft of the engine is driven by the electric motor. Rotate.
  • an engine 100, a first motor generator 110, a second motor generator 120, a power split mechanism 130, a speed reducer 140, and a battery 150 are mounted on the hybrid vehicle.
  • a hybrid vehicle not having a charging function from an external power source will be described as an example, but a plug-in hybrid vehicle having a charging function from an external power source may be used.
  • ECU 170 Electronic Control Unit 170
  • Engine 100, first motor generator 110, second motor generator 120, and battery 150 are controlled by an ECU (Electronic Control Unit) 170.
  • ECU 170 may be divided into a plurality of ECUs.
  • This vehicle travels by driving force from at least one of engine 100 and second motor generator 120. That is, either one or both of engine 100 and second motor generator 120 is automatically selected as a drive source according to the operating state.
  • engine 100 and second motor generator 120 are controlled in accordance with the result of the driver operating accelerator pedal 172.
  • the operation amount (accelerator opening) of the accelerator pedal 172 is detected by an accelerator opening sensor (not shown).
  • the hybrid vehicle runs using only the second motor generator 120 as a drive source. In this case, engine 100 is stopped. However, the engine 100 may be driven for power generation or the like.
  • the accelerator opening is large, the vehicle speed is high, or the remaining capacity (SOC: State Of Charge) of the battery 150 is small, the engine 100 is driven.
  • the hybrid vehicle runs using only engine 100 or both engine 100 and second motor generator 120 as drive sources.
  • Engine 100 is an internal combustion engine. As the fuel / air mixture burns in the combustion chamber, the crankshaft as the output shaft rotates. The exhaust gas discharged from the engine 100 is purified by the catalyst 102 and then discharged outside the vehicle. The catalyst 102 exhibits a purification action by being warmed up to a specific temperature. The catalyst 102 is warmed up by utilizing the heat of the exhaust gas. The catalyst 102 is, for example, a three-way catalyst.
  • the cooling water of the engine 100 circulates through the air conditioner 104 mounted on the hybrid vehicle.
  • the air conditioner 104 heats the air in the passenger compartment using the cooling water of the engine 100. More specifically, the cooling water introduced into the heater core and the air are subjected to heat exchange, and the warmed air is sent into the vehicle interior. In addition, since it is sufficient to use a known general technique for the air conditioner 104, detailed description thereof will not be repeated here.
  • the temperature of the cooling water of engine 100 is detected by temperature sensor 106.
  • Engine 100, first motor generator 110, and second motor generator 120 are connected via power split mechanism 130.
  • the power generated by the engine 100 is divided into two paths by the power split mechanism 130.
  • One is a path for driving the front wheels 160 via the speed reducer 140.
  • the other is a path for driving the first motor generator 110 to generate power.
  • the first motor generator 110 is a three-phase AC rotating electric machine including a U-phase coil, a V-phase coil, and a W-phase coil.
  • First motor generator 110 generates power using the power of engine 100 divided by power split mechanism 130.
  • the electric power generated by the first motor generator 110 is selectively used according to the running state of the vehicle and the remaining capacity of the battery 150. For example, during normal traveling, the electric power generated by first motor generator 110 becomes electric power for driving second motor generator 120 as it is.
  • the SOC of battery 150 is lower than a predetermined value, the electric power generated by first motor generator 110 is converted from AC to DC by an inverter described later. Thereafter, the voltage is adjusted by a converter described later and stored in the battery 150.
  • the first motor generator 110 When the first motor generator 110 is acting as a generator, the first motor generator 110 generates a negative torque.
  • the negative torque means a torque that becomes a load on engine 100.
  • first motor generator 110 When first motor generator 110 is supplied with electric power and acts as a motor, first motor generator 110 generates positive torque.
  • the positive torque means a torque that does not become a load on the engine 100, that is, a torque that assists the rotation of the engine 100. The same applies to the second motor generator 120.
  • the second motor generator 120 is a three-phase AC rotating electric machine including a U-phase coil, a V-phase coil, and a W-phase coil. Second motor generator 120 is driven by at least one of the electric power stored in battery 150 and the electric power generated by first motor generator 110.
  • the driving force of the second motor generator 120 is transmitted to the front wheels 160 via the speed reducer 140.
  • the second motor generator 120 assists the engine 100 or causes the vehicle to travel by the driving force from the second motor generator 120.
  • the rear wheels may be driven instead of or in addition to the front wheels 160.
  • the second motor generator 120 is driven by the front wheels 160 via the speed reducer 140, and the second motor generator 120 operates as a generator. Accordingly, second motor generator 120 operates as a regenerative brake that converts braking energy into electric power.
  • the electric power generated by second motor generator 120 is stored in battery 150.
  • the power split mechanism 130 includes a planetary gear including a sun gear, a pinion gear, a carrier, and a ring gear.
  • the pinion gear engages with the sun gear and the ring gear.
  • the carrier supports the pinion gear so that it can rotate.
  • the sun gear is connected to the rotation shaft of first motor generator 110.
  • the carrier is connected to the crankshaft of engine 100.
  • the ring gear is connected to the rotation shaft of second motor generator 120 and speed reducer 140.
  • the engine 100, the first motor generator 110, and the second motor generator 120 are connected via a power split mechanism 130 that is a planetary gear, so that the rotational speeds of the engine 100, the first motor generator 110, and the second motor generator 120 are increased.
  • a power split mechanism 130 that is a planetary gear
  • the battery 150 is an assembled battery configured by connecting a plurality of battery modules in which a plurality of battery cells are integrated in series.
  • the voltage of the battery 150 is about 200V, for example.
  • the battery 150 is charged with electric power supplied from a power source external to the vehicle in addition to the first motor generator 110 and the second motor generator 120.
  • a capacitor may be used instead of or in addition to the battery 150.
  • the temperature of the battery 150 is detected by the temperature sensor 152.
  • the hybrid vehicle is provided with a converter 200, a first inverter 210, a second inverter 220, and a system main relay 230.
  • Converter 200 includes a reactor, two npn transistors, and two diodes. One end of the reactor is connected to the positive electrode side of each battery, and the other end is connected to the connection point of the two npn transistors.
  • the two npn type transistors are connected in series.
  • the npn transistor is controlled by the ECU 170.
  • a diode is connected between the collector and emitter of each npn transistor so that a current flows from the emitter side to the collector side.
  • an IGBT Insulated Gate Bipolar Transistor
  • a power switching element such as a power MOSFET (Metal Oxide Semiconductor Field-Effect Transistor) can be used instead of the npn transistor.
  • MOSFET Metal Oxide Semiconductor Field-Effect Transistor
  • the voltage is boosted by the converter 200. Conversely, when charging the battery 150 with the electric power generated by the first motor generator 110 or the second motor generator 120, the voltage is stepped down by the converter 200.
  • the system voltage VH between the converter 200 and each inverter is detected by the voltage sensor 180.
  • the detection result of voltage sensor 180 is transmitted to ECU 170.
  • First inverter 210 includes a U-phase arm, a V-phase arm, and a W-phase arm.
  • the U-phase arm, V-phase arm and W-phase arm are connected in parallel.
  • Each of the U-phase arm, the V-phase arm, and the W-phase arm has two npn transistors connected in series. Between the collector and emitter of each npn-type transistor, a diode for flowing current from the emitter side to the collector side is connected.
  • a connection point of each npn transistor in each arm is connected to an end portion different from neutral point 112 of each coil of first motor generator 110.
  • the first inverter 210 converts the direct current supplied from the battery 150 into an alternating current and supplies the alternating current to the first motor generator 110.
  • the first inverter 210 converts the alternating current generated by the first motor generator 110 into a direct current.
  • the second inverter 220 includes a U-phase arm, a V-phase arm, and a W-phase arm.
  • the U-phase arm, V-phase arm and W-phase arm are connected in parallel.
  • Each of the U-phase arm, the V-phase arm, and the W-phase arm has two npn transistors connected in series. Between the collector and emitter of each npn-type transistor, a diode for flowing current from the emitter side to the collector side is connected.
  • a connection point of each npn transistor in each arm is connected to an end portion different from neutral point 122 of each coil of second motor generator 120.
  • the second inverter 220 converts the direct current supplied from the battery 150 into an alternating current and supplies the alternating current to the second motor generator 120. Second inverter 220 converts the alternating current generated by second motor generator 120 into a direct current.
  • the converter 200, the first inverter 210 and the second inverter 220 are controlled by the ECU 170.
  • the system main relay 230 is provided between the battery 150 and the converter 200.
  • the system main relay 230 is a relay that switches between a state where the battery 150 and the electric system are connected and a state where the battery 150 is disconnected. When system main relay 230 is in an open state, battery 150 is disconnected from the electrical system. When system main relay 230 is in a closed state, battery 150 is connected to the electrical system.
  • the state of the system main relay 230 is controlled by the ECU 170. For example, when ECU 170 is activated, system main relay 230 is closed. When ECU 170 stops, system main relay 230 is opened.
  • the control mode of the engine 100 will be further described with reference to FIG. As shown in FIG. 3, when the output power of the hybrid vehicle becomes equal to or higher than the engine start threshold value, engine 100 is driven. For example, the engine 100 is started by cranking the engine 100 by the first motor generator 110. Thus, the hybrid vehicle travels using the driving force of engine 100 in addition to or instead of the driving force of second motor generator 120. Further, the electric power generated by first motor generator 110 using the driving force of engine 100 is directly supplied to second motor generator 120.
  • the output power is set as the power used for running the hybrid vehicle.
  • the output power is calculated by ECU 170 according to a map having, for example, the accelerator opening and the vehicle speed as parameters.
  • the method for calculating the output power is not limited to this. Instead of output power, torque, acceleration, driving force, accelerator opening, and the like may be used.
  • engine 100 may be driven when the accelerator opening is equal to or greater than a threshold value determined for each vehicle speed.
  • the hybrid vehicle travels using only the driving force of the second motor generator 120. In this case, in principle, the fuel supply to engine 100 is stopped, and engine 100 is stopped.
  • the stop of the engine 100 is restricted. For example, when heat from the engine 100 is necessary, the stop of the engine 100 is limited. Specifically, considering that the operation of the defroster is insufficient when the temperature of the cooling water supplied to the air conditioner 104 is low, the temperature of the cooling water of the engine 100 is a threshold value (for example, 60 degrees). If it is lower than that, the stop of the engine 100 is restricted. When stopping of engine 100 is restricted, a signal for requesting prohibition of stopping of engine 100 is generated in ECU 170.
  • the temperature of the battery 150 may be reduced. If it is lower than the threshold value, stopping of engine 100 is restricted.
  • the battery 150 when the remaining capacity is smaller than the threshold value, the stop of the engine 100 is restricted, for example, when the catalyst 102 has not been warmed up. It should be noted that the conditions for restricting the stop of engine 100 are not limited to these.
  • step (hereinafter abbreviated as S) 100 it is determined whether or not the output power of the hybrid vehicle is equal to or greater than the engine start threshold value.
  • the engine start threshold value instead of output power, torque, acceleration, driving force, accelerator opening, and the like may be used.
  • engine 100 is driven and the engine 100 is controlled to output a desired power in S102.
  • engine 100 is controlled to output power determined according to the accelerator opening.
  • engine 100 is operated independently in S102. For example, engine 100 is brought into an idle state.
  • stopping of engine 100 is restricted (YES in S120). Specifically, when the temperature of the cooling water of engine 100 is lower than a threshold value that is determined in consideration of the temperature necessary for the operation of air conditioner 104, it is determined that stop of engine 100 is restricted. (YES at S120). In addition, when the temperature of the battery 150 is low, when the deceleration of the vehicle is larger than the threshold value, or when the remaining capacity of the battery 150 is smaller than the threshold value, it is determined that the stop of the engine 100 is restricted. (YES at S120).
  • the deceleration of the vehicle is lower than the threshold value.
  • the fuel supply to the engine 100 may be stopped and the output shaft of the engine 100 may be rotated by the first motor generator 110 in cases other than when the battery capacity is large or when the remaining capacity of the battery 150 is smaller than the threshold value.
  • the deceleration of the vehicle is lower than the threshold value. If it is larger, or if the remaining capacity of the battery 150 is smaller than the threshold value, the fuel supply to the engine 100 is stopped and the output shaft of the engine 100 is rotated by the first motor generator 110 even if the vehicle is not decelerating. You may let them.
  • engine 100 is operated independently (S102). Engine 100 may be operated so as to output a desired power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

 車両は、エンジンと、エンジンの出力軸に連結された電動モータとを備える。エンジンからの熱を必要としてエンジンの停止が制限されている場合、エンジンへの燃料供給が停止されるとともに、電動モータによりエンジンの出力軸が回転される。

Description

車両、車両の制御方法および制御装置
 本発明は、車両、車両の制御方法および制御装置に関し、特に、エンジンの停止が制限されている場合においてエンジンを制御する技術に関する。
 エンジンに加えて、走行用の電動モータが搭載されたハイブリッド車が知られている。このようなハイブリッド車は、たとえば車速が低い場合、ならびに停車した場合などにエンジンが停止される。しかしながら、車両の運転状態に応じて、エンジンの停止が制限される場合がある。
 特開2007-99165号公報(特許文献1)は、エンジンの停止が禁止されている場合、エンジンをモータリングするモードと、エンジンを自立運転するモードとを車速に応じて切り替えることを開示する。
特開2007-99165号公報
 特開2007-99165号公報においては、エンジンの停止が禁止されている場合に車速が低いと、エンジンを自立運転させる。その他、たとえば、空調装置による暖房のためにエンジンからの熱が必要である場合にエンジンの停止を禁止し、減速中にエンジンを自立運転させることも考えられる。しかしながら、エンジンを自立運転しても、エンジンの負荷が小さいため、エンジンの温度、すなわち冷却水の温度の上昇量は小さい。したがって、暖房のための熱を確保するという目的は達成され難い。よって、エンジンを自立運転しても、結果として燃料が無駄に消費されている。
 本発明の目的は、燃料の無駄な消費量を低減することである。
 ある実施例において、車両は、エンジンと、エンジンの出力軸に連結された電動モータと、エンジンからの熱を必要としてエンジンの停止が制限されている場合、エンジンへの燃料供給を停止するとともに、電動モータによりエンジンの出力軸を回転させる、制御ユニットとを備える。
 この実施例によると、エンジンからの熱を必要としてエンジンの停止が制限されている場合、電動モータによりエンジンの出力軸が回転される一方、エンジンへの燃料供給が停止される。これにより、エンジンの冷却水の温度上昇が期待できない状況において、燃料の無駄な消費量が低減される。
 別の実施例において、車両は、エンジンの排気管内に設けられた触媒をさらに備える。制御ユニットは、触媒の暖機が完了し、かつエンジンからの熱を必要としてエンジンの停止が制限されている場合、エンジンへの燃料供給を停止するとともに、電動モータによりエンジンの出力軸を回転させる。
 この実施例によると、触媒の暖機が完了していれば、エンジンへの燃料供給が停止され得る。したがって、後でエンジンへの燃料供給および燃料の燃焼を再開する際に、エンジンから排出される排気ガスを浄化できる。
 さらに別の実施例において、車両は、エンジンから冷媒が供給され、冷媒の熱を用いて空調する空調装置をさらに備える。冷媒の温度がしきい値よりも低いと、エンジンの停止が制限される。
 この実施例によると、エンジンからの熱を利用して温められる冷媒の温度が低いときには、車内の暖房のために、エンジンの停止が制限される。
 さらに別の実施例において、制御ユニットは、エンジンからの熱を必要としてエンジンの停止が制限されている場合、減速中に、エンジンへの燃料供給を停止するとともに、電動モータによりエンジンの出力軸を回転させる。
 この実施例によると、減速中の、エンジンの無駄な自立運転が制限される。
 エンジンの冷却水の温度上昇が期待できない、エンジンの無駄な自立運転が制限される。したがって、燃料の無駄な消費量が低減される。
ハイブリッド車を示す概略構成図である。 ハイブリッド車の電気システムを示す図である。 エンジンが駆動する期間および停止する期間を示す図である。 ECUが実行する処理を示すフローチャートである。
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同一である。したがって、それらについての詳細な説明は繰返さない。
 図1を参照して、ハイブリッド車には、エンジン100と、第1モータジェネレータ110と、第2モータジェネレータ120と、動力分割機構130と、減速機140と、バッテリ150とが搭載される。なお、以下の説明においては一例として外部の電源からの充電機能を有さないハイブリッド車について説明するが、外部の電源からの充電機能を有するプラグインハイブリッド車を用いてもよい。
 エンジン100、第1モータジェネレータ110、第2モータジェネレータ120、バッテリ150は、ECU(Electronic Control Unit)170により制御される。ECU170は複数のECUに分割するようにしてもよい。
 この車両は、エンジン100および第2モータジェネレータ120のうちの少なくともいずれか一方からの駆動力により走行する。すなわち、エンジン100および第2モータジェネレータ120のうちのいずれか一方もしくは両方が、運転状態に応じて駆動源として自動的に選択される。
 たとえば、運転者がアクセルペダル172を操作した結果に応じて、エンジン100および第2モータジェネレータ120が制御される。アクセルペダル172の操作量(アクセル開度)は、アクセル開度センサ(図示せず)により検出される。
 アクセル開度が小さい場合および車速が低い場合などには、第2モータジェネレータ120のみを駆動源としてハイブリッド車が走行する。この場合、エンジン100が停止される。ただし、発電などのためにエンジン100が駆動する場合がある。
 また、アクセル開度が大きい場合、車速が高い場合、バッテリ150の残存容量(SOC:State Of Charge)が小さい場合などには、エンジン100が駆動される。この場合、エンジン100のみ、もしくはエンジン100および第2モータジェネレータ120の両方を駆動源としてハイブリッド車が走行する。
 エンジン100は、内燃機関である。燃料と空気の混合気が燃焼室内で燃焼することよって、出力軸であるクランクシャフトが回転する。エンジン100から排出される排気ガスは、触媒102によって浄化された後、車外に排出される。触媒102は、特定の温度まで暖機されることによって浄化作用を発揮する。触媒102の暖機は、排気ガスの熱を利用して行なわれる。触媒102は、たとえば三元触媒である。
 エンジン100の冷却水は、ハイブリッド車に搭載された空調装置104を通って循環する。空調装置104は、エンジン100の冷却水を用いて車室内の空気を加熱する。より具体的には、ヒータコアに導入された冷却水と空気とが熱交換され、暖められた空気が車室内に送られる。なお、空調装置104には周知の一般的な技術を利用すればよいため、ここではその詳細な説明は繰り返さない。エンジン100の冷却水の温度は、温度センサ106により検出される。
 エンジン100、第1モータジェネレータ110および第2モータジェネレータ120は、動力分割機構130を介して接続されている。エンジン100が発生する動力は、動力分割機構130により、2経路に分割される。一方は減速機140を介して前輪160を駆動する経路である。もう一方は、第1モータジェネレータ110を駆動させて発電する経路である。
 第1モータジェネレータ110は、U相コイル、V相コイルおよびW相コイルを備える、三相交流回転電機である。第1モータジェネレータ110は、動力分割機構130により分割されたエンジン100の動力により発電する。第1モータジェネレータ110により発電された電力は、車両の走行状態や、バッテリ150の残存容量の状態に応じて使い分けられる。たとえば、通常走行時では、第1モータジェネレータ110により発電された電力はそのまま第2モータジェネレータ120を駆動させる電力となる。一方、バッテリ150のSOCが予め定められた値よりも低い場合、第1モータジェネレータ110により発電された電力は、後述するインバータにより交流から直流に変換される。その後、後述するコンバータにより電圧が調整されてバッテリ150に蓄えられる。
 第1モータジェネレータ110が発電機として作用している場合、第1モータジェネレータ110は負のトルクを発生している。ここで、負のトルクとは、エンジン100の負荷となるようなトルクをいう。第1モータジェネレータ110が電力の供給を受けてモータとして作用している場合、第1モータジェネレータ110は正のトルクを発生する。ここで、正のトルクとは、エンジン100の負荷とならないようなトルク、すなわち、エンジン100の回転をアシストするようなトルクをいう。なお、第2モータジェネレータ120についても同様である。
 第2モータジェネレータ120は、U相コイル、V相コイルおよびW相コイルを備える、三相交流回転電機である。第2モータジェネレータ120は、バッテリ150に蓄えられた電力および第1モータジェネレータ110により発電された電力のうちの少なくともいずれかの電力により駆動する。
 第2モータジェネレータ120の駆動力は、減速機140を介して前輪160に伝えられる。これにより、第2モータジェネレータ120はエンジン100をアシストしたり、第2モータジェネレータ120からの駆動力により車両を走行させたりする。なお、前輪160の代わりにもしくは加えて後輪を駆動するようにしてもよい。
 ハイブリッド車の回生制動時には、減速機140を介して前輪160により第2モータジェネレータ120が駆動され、第2モータジェネレータ120が発電機として作動する。これにより第2モータジェネレータ120は、制動エネルギを電力に変換する回生ブレーキとして作動する。第2モータジェネレータ120により発電された電力は、バッテリ150に蓄えられる。
 動力分割機構130は、サンギヤと、ピニオンギヤと、キャリアと、リングギヤとを含む遊星歯車から構成される。ピニオンギヤは、サンギヤおよびリングギヤと係合する。キャリアは、ピニオンギヤが自転可能であるように支持する。サンギヤは第1モータジェネレータ110の回転軸に連結される。キャリアはエンジン100のクランクシャフトに連結される。リングギヤは第2モータジェネレータ120の回転軸および減速機140に連結される。
 エンジン100、第1モータジェネレータ110および第2モータジェネレータ120が、遊星歯車からなる動力分割機構130を介して連結されることで、エンジン100、第1モータジェネレータ110および第2モータジェネレータ120の回転数は、共線図において直線で結ばれる関係になる。
 バッテリ150は、複数のバッテリセルを一体化したバッテリモジュールを、さらに複数直列に接続して構成された組電池である。バッテリ150の電圧は、たとえば200V程度である。バッテリ150には、第1モータジェネレータ110および第2モータジェネレータ120の他、車両の外部の電源から供給される電力が充電される。なお、バッテリ150の代わりにもしくは加えてキャパシタを用いるようにしてもよい。バッテリ150の温度は、温度センサ152により検出される。
 図2を参照して、ハイブリッド車の電気システムについてさらに説明する。ハイブリッド車には、コンバータ200と、第1インバータ210と、第2インバータ220と、システムメインリレー230とが設けられる。
 コンバータ200は、リアクトルと、二つのnpn型トランジスタと、二つダイオードとを含む。リアクトルは、各バッテリの正極側に一端が接続され、2つのnpn型トランジスタの接続点に他端が接続される。
 2つのnpn型トランジスタは、直列に接続される。npn型トランジスタは、ECU170により制御される。各npn型トランジスタのコレクタ-エミッタ間には、エミッタ側からコレクタ側へ電流を流すようにダイオードがそれぞれ接続される。
 なお、npn型トランジスタとして、たとえば、IGBT(Insulated Gate Bipolar Transistor)を用いることができる。npn型トランジスタに代えて、パワーMOSFET(Metal Oxide Semiconductor Field-Effect Transistor)等の電力スイッチング素子を用いることができる。
 バッテリ150から放電された電力を第1モータジェネレータ110もしくは第2モータジェネレータ120に供給する際、電圧がコンバータ200により昇圧される。逆に、第1モータジェネレータ110もしくは第2モータジェネレータ120により発電された電力をバッテリ150に充電する際、電圧がコンバータ200により降圧される。
 コンバータ200と、各インバータとの間のシステム電圧VHは、電圧センサ180により検出される。電圧センサ180の検出結果は、ECU170に送信される。
 第1インバータ210は、U相アーム、V相アームおよびW相アームを含む。U相アーム、V相アームおよびW相アームは並列に接続される。U相アーム、V相アームおよびW相アームは、それぞれ、直列に接続された2つのnpn型トランジスタを有する。各npn型トランジスタのコレクタ-エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードがそれぞれ接続される。そして、各アームにおける各npn型トランジスタの接続点は、第1モータジェネレータ110の各コイルの中性点112とは異なる端部にそれぞれ接続される。
 第1インバータ210は、バッテリ150から供給される直流電流を交流電流に変換し、第1モータジェネレータ110に供給する。また、第1インバータ210は、第1モータジェネレータ110により発電された交流電流を直流電流に変換する。
 第2インバータ220は、U相アーム、V相アームおよびW相アームを含む。U相アーム、V相アームおよびW相アームは並列に接続される。U相アーム、V相アームおよびW相アームは、それぞれ、直列に接続された2つのnpn型トランジスタを有する。各npn型トランジスタのコレクタ-エミッタ間には、エミッタ側からコレクタ側へ電流を流すダイオードがそれぞれ接続される。そして、各アームにおける各npn型トランジスタの接続点は、第2モータジェネレータ120の各コイルの中性点122とは異なる端部にそれぞれ接続される。
 第2インバータ220は、バッテリ150から供給される直流電流を交流電流に変換し、第2モータジェネレータ120に供給する。また、第2インバータ220は、第2モータジェネレータ120により発電された交流電流を直流電流に変換する。
 コンバータ200、第1インバータ210および第2インバータ220は、ECU170により制御される。
 システムメインリレー230は、バッテリ150とコンバータ200との間に設けられる。システムメインリレー230は、バッテリ150と電気システムとを接続した状態および遮断した状態を切換えるリレーである。システムメインリレー230が開いた状態であると、バッテリ150が電気システムから遮断される。システムメインリレー230が閉じた状態であると、バッテリ150が電気システムに接続される。
 システムメインリレー230の状態は、ECU170により制御される。たとえば、ECU170が起動すると、システムメインリレー230が閉じられる。ECU170が停止する際、システムメインリレー230が開かれる。
 図3を参照して、エンジン100の制御態様についてさらに説明する。図3に示すように、ハイブリッド車の出力パワーがエンジン始動しきい値以上になると、エンジン100が駆動される。たとえば、第1モータジェネレータ110によってエンジン100をクランキングすることによって、エンジン100が始動される。これにより、第2モータジェネレータ120の駆動力に加えて、もしくは代わりに、エンジン100の駆動力を用いてハイブリッド車が走行する。また、エンジン100の駆動力を用いて第1モータジェネレータ110が発電した電力が第2モータジェネレータ120に直接供給される。
 出力パワーは、ハイブリッド車の走行に用いられるパワーとして設定される。出力パワーは、たとえば、アクセル開度および車速などをパラメータに有するマップに従ってECU170により算出される。なお、出力パワーを算出する方法はこれに限らない。出力パワーの代わりに、トルク、加速度、駆動力およびアクセル開度などを用いるようにしてもよい。たとえば、アクセル開度が、車速毎に定められたしきい値以上であるとエンジン100を駆動するようにしてもよい。
 一方、ハイブリッド車の出力パワーがエンジン始動しきい値より小さいと、第2モータジェネレータ120の駆動力のみを用いてハイブリッド車が走行する。この場合、原則として、エンジン100への燃料供給が停止され、エンジン100が停止される。
 しかしながら、所定の条件が満たされた場合には、エンジン100の停止が制限される。たとえば、エンジン100からの熱が必要である場合、エンジン100の停止が制限される。具体的には、空調装置104に供給される冷却水の温度が低いと、デフロスタの作動が不十分であることを考慮して、エンジン100の冷却水の温度がしきい値(たとえば60度)よりも低いと、エンジン100の停止が制限される。エンジン100の停止が制限される場合、エンジン100の停止の禁止を要求する信号がECU170内で発生される。
 また、バッテリ150の温度が低いと、エンジン100を再始動するために必要なトルクを第1モータジェネレータ120が発生するだけの電力を供給できなくなり得ることを考慮して、バッテリ150の温度がしきい値よりも低いと、エンジン100の停止が制限される。
 上述した条件の他にも、一例として、外気温がしきい値より低い場合、車両の減速度がしきい値より大きい場合、エンジン回転数の低下率がしきい値より大きい場合、バッテリ150の残存容量がしきい値より小さい場合、触媒102の暖機が未完了である場合などに、エンジン100の停止が制限される。なお、エンジン100の停止が制限される条件はこれらに限定されない。
 図4を参照して、ECU170が実行する処理について説明する。なお、以下に説明する処理は、ソフトウェアにより実現してもよく、ハードウェアにより実現してもよい。
 ステップ(以下ステップをSと略す)100にて、ハイブリッド車の出力パワーがエンジン始動しきい値以上であるか否かが判断される。出力パワーの代わりに、トルク、加速度、駆動力およびアクセル開度などを用いるようにしてもよい。たとえば、アクセル開度が、車速毎に定められたしきい値以上であるか否かを判断するようにしてもよい。
 出力パワーがエンジン始動しきい値以上であると(S100にてYES)、S102にて、エンジン100が駆動され、所望のパワーを出力するようにエンジン100が制御される。たとえば、アクセル開度に応じて定められたパワーを出力するようにエンジン100が制御される。
 出力パワーがエンジン始動しきい値より小さいと(S100にてNO)、車両が走行するためにエンジン100を駆動する必要はない。そのため、可能であれば、エンジン100が停止される。エンジン100の停止が可能であるか否かを判断するため、S110にて、エンジン100自体に関連する条件に基いてエンジン100の停止が制限されているか否かが判断される。たとえば、触媒102の暖機が未完了である場合、エンジン100の停止が制限されていると判断される(S110にてYES)。外気温がしきい値より低い場合およびエンジン回転数の低下率がしきい値より大きい場合などにも、エンジン100の停止が制限されていると判断される(S110にてYES)。触媒102の暖機が完了したか否かは、たとえば吸入空気量の積算量から算出したり、触媒温度を測定するセンサを設ける等、周知の技術を利用して判断すればよいため、ここではその詳細な説明は繰り返さない。
 エンジン100自体に関連する条件に基いてエンジン100の停止が制限されている場合(S110にてYES)、S102にて、エンジン100が自立運転される。たとえば、エンジン100がアイドル状態にされる。
 一方、触媒102の暖機が完了している場合など、エンジン100自体に関連する条件に基いてエンジン100の停止が制限されていない場合(S110にてNO)、S120にて、エンジン100以外の機器に関連する条件に基いてエンジン100の停止が制限されているか否かが判断される。
 たとえば、エンジン100からの熱が必要である場合、エンジン100の停止が制限されていると判断される(S120にてYES)。具体的には、エンジン100の冷却水の温度が、空調装置104の作動に必要な温度を考慮して定められたしきい値よりも低い場合、エンジン100の停止が制限されていると判断される(S120にてYES)。その他、バッテリ150の温度が低い場合、車両の減速度がしきい値より大きい場合、バッテリ150の残存容量がしきい値より小さい場合などに、エンジン100の停止が制限されていると判断される(S120にてYES)。
 たとえば、エンジン100からの熱を必要としてエンジン100の停止が制限されていると(S120にてYES)、S122にて、車両が減速中であるか否かが判断される。減速中であると(S122にてYES)、S124にて、エンジン100への燃料供給が停止されるとともに、第1モータジェネレータ110によりエンジン100の出力軸が回転される。すなわち、第1モータジェネレータ110によるエンジン100のモータリングが実行される。
 エンジン100の冷却水の温度が、空調装置104の作動に必要な温度を考慮して定められたしきい値よりも低い場合、バッテリ150の温度が低い場合、車両の減速度がしきい値より大きい場合、およびバッテリ150の残存容量がしきい値より小さい場合以外の場合に、エンジン100への燃料供給を停止するとともに、第1モータジェネレータ110によりエンジン100の出力軸を回転させてもよい。
 エンジン100の冷却水の温度が、空調装置104の作動に必要な温度を考慮して定められたしきい値よりも低い場合、バッテリ150の温度が低い場合、車両の減速度がしきい値より大きい場合、またはバッテリ150の残存容量がしきい値より小さい場合には、減速中でなくても、エンジン100への燃料供給を停止するとともに、第1モータジェネレータ110によりエンジン100の出力軸を回転させてもよい。
 一方、車両が減速中でなければ(S122にてNO)、エンジン100が自立運転される(S102)。なお、所望のパワーを出力するようにエンジン100を運転するようにしてもよい。
 エンジン100の停止が制限されていない場合(S120にてNO)、エンジン100への燃料供給が停止されて、エンジン100の回転数が零にされる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 100 エンジン、102 触媒、104 空調装置、106 温度センサ、110 第1モータジェネレータ、120 第2モータジェネレータ、130 動力分割機構、140 減速機、150 バッテリ、152 温度センサ、160 前輪、170 ECU、172 アクセルペダル、180 電圧センサ、200 コンバータ、210 第1インバータ、220 第2インバータ、230 システムメインリレー。

Claims (6)

  1.  エンジン(100)と、
     前記エンジン(100)の出力軸に連結された電動モータ(110)と、
     前記エンジン(100)からの熱を必要として前記エンジン(100)の停止が制限されている場合、前記エンジン(100)への燃料供給を停止するとともに、前記電動モータ(110)により前記エンジン(100)の出力軸を回転させる、制御ユニット(170)とを備える、車両。
  2.  前記エンジン(100)の排気管内に設けられた触媒(102)をさらに備え、
     前記制御ユニット(170)は、前記触媒(102)の暖機が完了し、かつ前記エンジン(100)からの熱を必要として前記エンジン(100)の停止が制限されている場合、前記エンジン(100)への燃料供給を停止するとともに、前記電動モータ(110)により前記エンジン(100)の出力軸を回転させる、請求項1に記載の車両。
  3.  前記エンジン(100)から冷媒が供給され、前記冷媒の熱を用いて空調する空調装置(104)をさらに備え、
     前記冷媒の温度がしきい値よりも低いと、前記エンジン(100)の停止が制限される、請求項1に記載の車両。
  4.  前記制御ユニット(170)は、前記エンジン(100)からの熱を必要として前記エンジン(100)の停止が制限されている場合、減速中に、前記エンジン(100)への燃料供給を停止するとともに、前記電動モータ(110)により前記エンジン(100)の出力軸を回転させる、請求項1に記載の車両。
  5.  エンジン(100)と、前記エンジン(100)の出力軸に連結された電動モータ(110)とが搭載された車両の制御方法であって、
     前記エンジン(100)からの熱を必要として前記エンジン(100)の停止が制限されている場合、前記エンジン(100)への燃料供給を停止するステップと、
     前記エンジン(100)の停止が制限されている場合、前記エンジン(100)への燃料供給を停止している間、前記電動モータ(110)により前記エンジン(100)の出力軸を回転させるステップとを備える、車両の制御方法。
  6.  エンジン(100)と、前記エンジン(100)の出力軸に連結された電動モータ(110)とが搭載された車両の制御方法であって、
     前記エンジン(100)からの熱を必要として前記エンジン(100)の停止が制限されている場合、前記エンジン(100)への燃料供給を停止するための手段と、
     前記エンジン(100)の停止が制限されている場合、前記エンジン(100)への燃料供給を停止している間、前記電動モータ(110)により前記エンジン(100)の出力軸を回転させるための手段とを備える、車両の制御装置。
PCT/JP2011/054276 2011-02-25 2011-02-25 車両、車両の制御方法および制御装置 WO2012114504A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/054276 WO2012114504A1 (ja) 2011-02-25 2011-02-25 車両、車両の制御方法および制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/054276 WO2012114504A1 (ja) 2011-02-25 2011-02-25 車両、車両の制御方法および制御装置

Publications (1)

Publication Number Publication Date
WO2012114504A1 true WO2012114504A1 (ja) 2012-08-30

Family

ID=46720320

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/054276 WO2012114504A1 (ja) 2011-02-25 2011-02-25 車両、車両の制御方法および制御装置

Country Status (1)

Country Link
WO (1) WO2012114504A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106114495A (zh) * 2016-08-09 2016-11-16 潍柴动力股份有限公司 一种混合动力汽车及其发动机停机控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198413A (ja) * 2004-01-07 2005-07-21 Suzuki Motor Corp ハイブリッド車両の制御装置
JP2007099165A (ja) * 2005-10-06 2007-04-19 Toyota Motor Corp 動力出力装置およびこれを搭載する自動車並びに駆動装置,動力出力装置の制御方法
JP2010058746A (ja) * 2008-09-05 2010-03-18 Toyota Motor Corp ハイブリッド車両の制御装置および制御方法
JP2010255504A (ja) * 2009-04-24 2010-11-11 Toyota Motor Corp ハイブリッド車両の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005198413A (ja) * 2004-01-07 2005-07-21 Suzuki Motor Corp ハイブリッド車両の制御装置
JP2007099165A (ja) * 2005-10-06 2007-04-19 Toyota Motor Corp 動力出力装置およびこれを搭載する自動車並びに駆動装置,動力出力装置の制御方法
JP2010058746A (ja) * 2008-09-05 2010-03-18 Toyota Motor Corp ハイブリッド車両の制御装置および制御方法
JP2010255504A (ja) * 2009-04-24 2010-11-11 Toyota Motor Corp ハイブリッド車両の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106114495A (zh) * 2016-08-09 2016-11-16 潍柴动力股份有限公司 一种混合动力汽车及其发动机停机控制方法

Similar Documents

Publication Publication Date Title
WO2012131941A1 (ja) 車両、エンジンの制御方法およびエンジンの制御装置
US9145125B2 (en) Control apparatus for vehicle
JP5714239B2 (ja) 車両の制御システム
JP5716829B2 (ja) 車両、車両の制御方法および車両の制御装置
JP5590157B2 (ja) 車両、車両の制御方法および車両の制御装置
JP2011122502A (ja) 車両の制御装置
JP5842899B2 (ja) ハイブリッド車両、ハイブリッド車両の制御方法およびエンジンの制御装置
JP5747988B2 (ja) 車両、および、車両の制御方法ならびに制御装置
JP5382232B2 (ja) エンジンの制御装置および制御方法
JP2010255504A (ja) ハイブリッド車両の制御装置
JP2010070030A (ja) 車両の制御装置
JP5549730B2 (ja) ハイブリッド車の制御装置、ハイブリッド車の制御方法およびハイブリッド車
JP2012075228A (ja) 冷却システムの診断装置
JP5834452B2 (ja) 冷却系の異常判定装置
JP5733331B2 (ja) 車両の制御システム
WO2012114504A1 (ja) 車両、車両の制御方法および制御装置
JP2014189252A (ja) 車両の制御装置
WO2012111068A1 (ja) 車両および車両の制御方法
JP2012228902A (ja) 車両の制御装置
JP5699615B2 (ja) ハイブリッド自動車
WO2012053068A1 (ja) 車両、パワートレーンの制御方法およびパワートレーンの制御装置
WO2012105018A1 (ja) 車両および車両の制御方法
JP2012240469A (ja) 車両の制御装置
JP2012158310A (ja) 車両

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11859133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11859133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP