WO2012111506A1 - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
WO2012111506A1
WO2012111506A1 PCT/JP2012/052849 JP2012052849W WO2012111506A1 WO 2012111506 A1 WO2012111506 A1 WO 2012111506A1 JP 2012052849 W JP2012052849 W JP 2012052849W WO 2012111506 A1 WO2012111506 A1 WO 2012111506A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
phase
current
parameter
induced voltage
Prior art date
Application number
PCT/JP2012/052849
Other languages
English (en)
French (fr)
Inventor
大輔 廣野
Original Assignee
サンデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン株式会社 filed Critical サンデン株式会社
Priority to US13/985,864 priority Critical patent/US9035581B2/en
Priority to CN201280008918.XA priority patent/CN103370868B/zh
Priority to EP12746872.6A priority patent/EP2665176B1/en
Publication of WO2012111506A1 publication Critical patent/WO2012111506A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • H02P6/18Circuit arrangements for detecting position without separate position detecting elements
    • H02P6/182Circuit arrangements for detecting position without separate position detecting elements using back-emf in windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/18Estimation of position or speed
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/24Vector control not involving the use of rotor position or rotor speed sensors
    • H02P21/26Rotor flux based control

Definitions

  • the present invention relates to a motor control device, and more particularly to a motor control device that performs variable speed control of a permanent magnet synchronous motor by sensorless control.
  • PMSM Permanent Magnetic Synchronous Motor Motor
  • IPMSM Permanent Magnetic Synchronous Motor Motor
  • a motor control device for controlling the driving of this type of motor is composed of a controller incorporating a motor, an inverter, a DC power supply, and a microcomputer.
  • a current flowing through a coil wound around a stator (armature) of the motor is detected by a controller, and current feedback control is performed so that this current follows a target current phase.
  • the target current phase is decomposed into a d-axis current Id, which is a d-axis component parallel to the magnetic field, and a q-axis current Iq, which is a q-axis component orthogonal thereto, on the dq axis coordinates.
  • so-called sensorless control is performed in which the induced voltage of the motor is detected from information on the current and voltage detected by the controller, thereby detecting the rotor position and controlling the motor without using a physical sensor. Is generally done. Since the actual d and q axes are not directly known during sensorless control, the controller places virtual axes with respect to the original d and q axes, and current vector control is performed on the virtual axes.
  • Patent Document 1 discloses the following simplified shaft position error estimation formula for estimating the shaft position angle error ⁇ c.
  • ⁇ c axis position estimation error (rotor position error, current phase error)
  • Vdc d-axis component of applied voltage
  • Vqc q-axis component of applied voltage
  • Idc d-axis current
  • Iqc q-axis current
  • Lq q-axis inductance
  • Ld d-axis inductance
  • R winding resistance of coil
  • ⁇ 1 frequency of applied voltage.
  • Vdc, Vqc, Idc, and Iqc are all assumed values in the controller based on the virtual axis
  • Lq, Ld, and R are all device constants of the motor
  • ⁇ 1 is a measured value.
  • control is performed by the controller so that ⁇ c converges to zero.
  • the winding resistance R in the equation 1 for estimating the shaft position error is a device constant of the motor and is a parameter including an instrumental error inherent in the motor, the error between the theoretical value and the actual value of this parameter is the shaft position estimate. The accuracy is greatly affected.
  • Such an error in parameters is not only caused by a motor error, but also varies depending on the environment to which the motor is exposed. In particular, since the coil is generally formed of copper wire, the actual winding resistance of the coil is likely to fluctuate depending on the temperature to which the motor is exposed, and the parameter error also increases.
  • the denominator term in the shaft position error estimation formula may become zero or negative. In this case, the shaft position cannot be estimated and the rotor position cannot be estimated. There is a risk of running out of the stable operation limit where stable operation is possible and causing step-out. Therefore, in the above prior art, an error between the set value R ′ set as the theoretical value of the winding resistance and the actual value R of the winding resistance is based on the current phase detected by the dq axis coordinate system. It is corrected.
  • the above prior art employs a method of calculating only the correction amount of the winding resistance R as a motor parameter based only on the current phase, and does not estimate the actual value of the winding resistance R. Since the calculation is performed based only on the phase, the correction calculation becomes complicated, and there is a possibility that a response delay occurs in the sensorless control and the stability of the control is hindered.
  • the present invention has been made in view of such a problem, and an object thereof is to provide a motor control device capable of improving the stability of sensorless control of a permanent magnet synchronous motor.
  • a motor control device of the present invention is a motor control device that detects a rotor position of a permanent magnet synchronous motor by sensorless control, and includes a current detection unit that detects a current flowing in a motor coil, Applied voltage detection means for detecting the voltage applied to the motor coil, current phase and current peak value based on the current detected by the current detection means and the voltage detected by the applied voltage detection means, and the induced voltage phase And the induced voltage peak value, and the rotor position is detected and the estimated induced voltage peak value is detected based on the detected current phase and current peak value, and the induced voltage phase and a parameter which is a device constant of the motor.
  • Position detection means rotation speed detection means for detecting the rotation speed of the motor based on the rotor position detected by the rotor position detection means, and current Phase voltage setting means for setting a target voltage based on the current detected by the output means and the rotor position detected by the rotor position detection means, and the rotor position detection means estimates the detected induced voltage peak value
  • Motor parameter correction means for correcting a parameter to eliminate an induced voltage difference from the induced voltage peak value is provided, and the rotor position is detected based on the corrected parameter.
  • the parameter is the winding resistance of the coil (Claim 2) and the amount of magnetic flux of the permanent magnet of the motor (Claim 3).
  • the motor parameter correction means corrects the parameter in accordance with the operation state of the motor.
  • the motor parameter correction means corrects the parameter based on the current phase detected by the rotor position detection means and the rotation speed detected by the rotation speed detection means as the motor operating state.
  • the motor parameter correction means determines the parameter correction amount by changing the operating state of the motor.
  • the apparatus includes an abnormality detection unit that determines that the motor is abnormal and detects this when the induced voltage difference deviates beyond a predetermined range even by correcting the parameter of the motor parameter correction unit.
  • the rotor position detecting means has the motor parameter correcting means for correcting the parameter so as to eliminate the induced voltage difference between the detected induced voltage peak value and the estimated induced voltage peak value. Then, the rotor position is detected based on the corrected parameter. This eliminates the error between the theoretical value and the actual value of the motor parameter, avoids the sensorless control impossible state due to the occurrence of this error, and improves the stability of sensorless control of the permanent magnet synchronous motor can do.
  • the parameters to be corrected are the winding resistance of the coil and the magnetic flux amount of the permanent magnet, and these parameters are easily affected by the temperature change to which the motor is exposed, Since these errors also tend to be large, the stability of sensorless control can be effectively improved by eliminating the errors.
  • the motor parameter correction means can change the correction amount of the parameter that changes according to the motor operating state by correcting the parameter according to the motor operating state.
  • the accuracy of sensorless control can be further increased, and the stability thereof can be further improved.
  • the motor parameter correction means is specifically configured as the motor operating state based on the current phase detected by the rotor position detecting means and the rotational speed detected by the rotational speed detecting means. The parameter is corrected based on this.
  • the motor parameter correction means can spontaneously correct the motor parameter by changing the motor operating state and determining the parameter correction amount.
  • the accuracy can be further improved, and the stability thereof can be further improved.
  • the seventh aspect of the present invention by providing the abnormality detecting means for determining that the motor is abnormal and detecting this when the induced voltage difference is shifted beyond a predetermined range even by correcting the parameter of the motor parameter correcting means. , It is possible to quickly detect a case where the induced voltage difference cannot be eliminated even by the motor parameter correction means as a motor abnormality, stop the motor output, and improve the reliability of the sensorless control of the motor. .
  • FIG. 1 is a configuration diagram of a motor control device according to a first embodiment of the present invention.
  • FIG. 2 is a control block diagram illustrating sensorless control of a rotor position of a motor performed by a controller of FIG. 1.
  • FIG. 3 is a control block diagram illustrating details of a rotor position detection unit in FIG. 2.
  • FIG. 3 is a phase current waveform diagram when sine wave energization (180 ° energization) is performed on a U-phase coil Uc, a V-phase coil Vc, and a W-phase coil Wc of the motor of FIG. 2.
  • FIG. 1 is a configuration diagram of a motor control device according to a first embodiment of the present invention.
  • FIG. 2 is a control block diagram illustrating sensorless control of a rotor position of a motor performed by a controller of FIG. 1.
  • FIG. 3 is a control block diagram illustrating details of a rotor position detection unit in FIG. 2.
  • FIG. 3 is a
  • FIG. 3 is an induced voltage waveform diagram when sine wave energization (180 ° energization) is performed on the U-phase coil Uc, the V-phase coil Vc, and the W-phase coil Wc of the motor of FIG. 2.
  • FIG. 3 is a motor vector diagram when the rotor of the motor of FIG. 2 is rotating. It is the control block diagram which showed the detail of the rotor position detection part which concerns on 2nd Embodiment of this invention.
  • FIG. 8 is a motor vector diagram showing an estimated induced voltage peak value Ep ′ estimated from motor parameters in the case of FIG. 7.
  • FIG. 9 is a motor vector diagram showing an induced voltage peak value Ep that is an actual value when the magnetic flux amount ⁇ is reduced as compared with the case of FIG. 8.
  • FIG. 1 is a configuration diagram of a motor control device according to a first embodiment of the present invention.
  • the motor control device includes a motor 1, an inverter 2, a DC power supply 4, and a controller 6 incorporating a microcomputer.
  • FIG. 2 is a control block diagram showing sensorless control of the motor 1 performed by the controller 6.
  • the controller 6 includes a PWM signal creation unit 8, a rotor position detection unit (rotor position detection unit) 10, a rotation number detection unit (rotation number detection unit) 12, a target current phase setting unit (current phase setting unit) 14, and an adder 16.
  • the motor 1 is a three-phase brushless DC motor, and has a stator (not shown) including three-phase coils (U-phase coil Uc, V-phase coil Vc and W-phase coil Wc) and a rotor (not shown) including a permanent magnet.
  • the U-phase coil Uc, the V-phase coil Vc, and the W-phase coil Wc are connected in a star shape around a neutral point N as shown in FIG. 1, or are connected in a delta shape.
  • the inverter 2 is a three-phase bipolar drive type inverter, and is a three-phase switching element corresponding to the three-phase coil of the motor 1, more specifically, six switching elements (upper-phase switching elements Us, Vs) composed of IGBT or the like. And Ws, lower phase switching elements Xs, Ys, and Zs), and shunt resistors R1, R2, and R3.
  • the emitter side of the upper phase switching element Us is connected to the U phase coil Uc of the motor 1
  • the emitter side of the upper phase switching element Vs is connected to the V phase coil Vc of the motor 1
  • the emitter side of the upper phase switching element Ws Is connected to the V-phase coil Wc of the motor 1.
  • the gates of the upper phase switching elements Us, Vs, and Ws, the gates of the lower phase switching elements Xs, Ys, and Zs, and the secondary output terminal of the DC power supply 4 are connected to the PWM signal generator 8, respectively.
  • the lower phase switching element Xs side of the shunt resistor R1 the lower phase switching element Ys side of the shunt resistor R2, and the lower phase switching element Zs side of the shunt resistor R3 are respectively connected to the rotor position detector 10. Yes.
  • the inverter 2 uses the voltages detected by the shunt resistors R1, R2, and R3, respectively, to allow currents (U-phase currents Iu, V) to flow through the U-phase coil Uc, the V-phase coil Vc, and the W-phase coil Wc of the motor 1.
  • Phase current Iv and W phase current Iw) are detected (current detection means), and these are sent to the rotor position detector 10.
  • the PWM signal creation unit 8 detects the high voltage Vh of the DC power supply 4, and based on the high voltage Vh and the phase voltage set by the phase voltage setting unit 22, the upper phase switching elements Us, Vs, and Ws of the inverter 2.
  • PWM signals for turning on and off each switching element are generated at the gate of the first and lower phase switching elements Xs, Ys and Zs and sent to the inverter 2.
  • the upper phase switching elements Us, Vs, and Ws of the inverter 2 and the lower phase switching elements Xs, Ys, and Zs are turned on and off in a predetermined pattern by the PWM signal from the PWM signal creation unit 8, and sine wave energization based on this on / off pattern (180 Is applied to the U-phase coil Uc, V-phase coil Vc and W-phase coil Wc of the motor 1.
  • the PWM signal creation unit 8 is connected to the rotor position detection unit 10 and uses the high voltage Vh of the DC power supply 4 detected by the PWM signal creation unit 8 to use the U-phase coils Uc, V of the motor 1.
  • the voltages (U-phase applied voltage Vu, V-phase applied voltage Vv, and W-phase applied voltage Vw) applied to the phase coil Vc and the W-phase coil Wc are detected (applied voltage detection means) and sent to the rotor position detector 10 To do.
  • FIG. 3 is a control block diagram showing the rotor position detector 10 in detail.
  • the rotor position detection unit 10 includes a phase current phase detection unit 24, an induced voltage phase detection unit 26, a rotor position / current phase estimation unit 28, and a motor parameter correction unit (motor parameter correction unit) 30.
  • the phase current phase detector 24 uses the U-phase current Iu, the V-phase current Iv, and the W-phase current Iw sent from the inverter 2, and the phase current peak value Ip (current phase) and the phase current electrical angle ⁇ i (current). Phase) and send them to the rotor position / current phase estimation unit 28. Further, the phase current peak value Ip detected here is sent to the target current phase setting unit 14.
  • each of the U-phase current Iu, the V-phase current Iv, and the W-phase current Iw has a phase difference of 120 °.
  • the detection of the phase current peak value Ip and the phase current electrical angle ⁇ i in the phase current phase detection unit 24 is performed on the assumption that the above equation holds, and the U-phase current Iu, V-phase current Iv and W sent from the inverter 2 Using the phase current Iw, the phase current peak value Ip and the phase current electrical angle ⁇ i are obtained by the calculation according to the above formula.
  • the induced voltage phase detector 26 includes a U-phase current Iu, a V-phase current Iv and a W-phase current Iw sent from the inverter 2, and a U-phase applied voltage Vu and a V-phase applied voltage Vv sent from the PWM signal creating unit 8.
  • the induced voltage peak value Ep and the induced voltage electrical angle ⁇ e are detected as actual values using the W-phase applied voltage Vw and sent to the rotor position / current phase estimating unit 28. Further, the detected induced voltage peak value Ep is sent to the motor parameter correction unit 30.
  • each of the U-phase induced voltage Eu, the V-phase induced voltage Ev, and the W-phase induced voltage Ew has a phase difference of 120 °.
  • Detection of the induced voltage peak value Ep and the induced voltage electrical angle ⁇ e in the induced voltage phase detection unit 26 is performed on the premise that the above equation holds, and the U-phase current Iu, V-phase current Iv and W-phase sent from the inverter 2 are detected.
  • the U-phase induced voltage Eu Using the current Iw and the U-phase applied voltage Vu, the V-phase applied voltage Vv and the W-phase applied voltage Vw sent from the PWM signal creation unit 8, the U-phase induced voltage Eu,
  • the V-phase induced voltage Ev and the W-phase induced voltage Ew are obtained, and are derived from the above equations (the former equation) using the obtained U-phase induced voltage Eu, V-phase induced voltage Ev and W-phase induced voltage Ew.
  • the voltage peak value Ep and the induced voltage electrical angle ⁇ e are obtained.
  • the rotor position ⁇ m is detected from the following equation, and the rotor position detection unit 10 performs sensorless control that does not depend on a physical sensor. As described above, the rotor position ⁇ m detected by the sensorless control has an angular error ⁇ of the shaft position.
  • the data table used here defines the current phase ⁇ using [phase current peak value Ip] and [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i] as parameters.
  • the phase current peak value Ip] and [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i] can be selected as parameters.
  • [phase current peak value Ip] corresponds to the phase current peak value Ip detected by the rotor position detector 10
  • [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i] corresponds to the rotor position detector.
  • 10 corresponds to a value obtained by subtracting the phase current electrical angle ⁇ i from the induced voltage electrical angle ⁇ e detected at 10.
  • FIG. 6 is a motor vector diagram when the rotor of the motor 1 is rotating, and the relationship between the voltage V, the current I, and the induced voltage E is represented by a vector on the dq axis coordinates.
  • Vd is a d-axis component of voltage V
  • Vq is a q-axis component of voltage V
  • Id is a d-axis component of current I (d-axis current)
  • Iq is a q-axis component of current I (q-axis current)
  • Eq is the q-axis component of the induced voltage E
  • is the voltage phase based on the q-axis
  • is the current phase based on the q-axis
  • is the induced based on the q-axis Voltage phase.
  • ⁇ a is the magnetic flux of the permanent magnet of the rotor
  • Ld is the d-axis inductance
  • Lq is the q-axis inductance
  • R is the winding resistance of the stator
  • is the total linkage flux of the rotor.
  • the motor parameter correction unit 30 uses the motor parameters ( ⁇ , Ld, Lq, R, ⁇ ), which are inherent device constants of the motor, to establish the motor vector diagram shown in FIG.
  • the estimated induced voltage peak value Ep ′ is detected from the data table created on the assumption that Then, the induced voltage peak value Ep, which is an actual value obtained using the U-phase induced voltage Eu, the V-phase induced voltage Ev, and the W-phase induced voltage Ew sent from the induced voltage phase detection unit 26, and the estimated induction.
  • An induced voltage peak value difference ⁇ Ep from the voltage peak value Ep ′ is detected. Then, using the phase current peak value Ip sent from the rotor position / current phase estimation unit 28, the correction amount ⁇ R of the winding resistance R is calculated by the following equation.
  • the rotational speed detection unit 12 uses the rotor position ⁇ m detected by the rotor position detection unit 10 to subtract the rotor position ⁇ m ⁇ 1 whose calculation cycle is one cycle earlier from the rotor position ⁇ m, thereby obtaining a rotor position change amount ⁇ m.
  • the rotor position change amount ⁇ m is multiplied by a predetermined filter to detect the rotational speed ⁇ of the motor 1, and this is sent to the adder 16. Then, the rotational speed ⁇ obtained by the rotational speed detector 12 is fed back to the target rotational speed ⁇ t of the motor 1 instructed to the controller 6 through the adder 16, and the rotational speed difference ⁇ is obtained by processing such as P control and PI control. Is sent to the voltage peak value detector 18.
  • the voltage peak value detection unit 18 detects the applied voltage peak value Vp of the voltage applied to the motor 1 by processing such as P control and PI control using the obtained rotation speed difference ⁇ , and this is detected as a phase voltage setting unit. 22 to send.
  • the target current phase setting unit 14 sets the target current phase so that the generated torque of the motor 1 with respect to the phase current is maximized by, for example, current vector control called maximum torque / current control.
  • the target d-axis current Idt is set using the phase current peak value Ip detected by the rotor position detection unit 10 and a data table prepared in advance, and this is sent to the voltage phase detection unit 20. To do.
  • the voltage phase detection unit 20 detects the applied voltage phase ⁇ v (target voltage phase) of the voltage applied to the motor 1 by using the target d-axis current Idt set by the target current phase setting unit 14, and detects this phase. It is sent to the voltage setting unit 22.
  • the phase voltage setting unit 22 uses the applied voltage peak value Vp detected by the voltage peak value detection unit 18 and the applied voltage phase ⁇ v detected by the voltage phase detection unit 20 to use the U-phase coils Uc, Application setting voltages (U-phase application setting voltage Vut, V-phase application setting voltage Vvt, and W-phase application setting voltage Vwt) to be applied to V-phase coil Vc and W-phase coil Wc are set, and these are set in PWM signal creation unit 8. Send it out.
  • the PWM signal creation unit 8 converts the applied set voltage set by the phase voltage setting unit 22 to the U-phase coil Uc, V-phase coil Vc, and W-phase coil Wc of the motor 1 via the inverter 2 into an on / off pattern of the PWM signal. Based on this, sine wave energization (180-degree energization) is performed, and the motor 1 is operated at a desired rotational speed.
  • the motor parameter correction unit that corrects the motor parameter so as to eliminate the error between the theoretical value and the actual value based on the induced voltage phase is provided, and the rotor position detection unit includes the motor parameter. The rotor position is detected based on the motor parameter corrected by the correction unit. This eliminates the error between the theoretical value and the actual value of the motor parameter, avoids the sensorless control impossible state due to the occurrence of this error, and improves the stability of sensorless control of the permanent magnet synchronous motor can do.
  • the coil is generally formed of a copper wire, and the winding resistance R is easily affected by the temperature change to which the motor 1 is exposed, and the error is large. Since there is a tendency, the stability of sensorless control can be effectively improved by eliminating the error.
  • FIG. 7 is a control block diagram showing in detail the rotor position detector 10 according to the present embodiment.
  • the basic configuration of the motor control device, the basic control method of the motor 1 such as sensorless control, and the like are the same as in the case of the first embodiment, and thus the description thereof is omitted.
  • the motor parameter correction unit 30 of the present embodiment uses the motor parameters ( ⁇ , Ld, Lq, R, ⁇ ) that are inherent device constants of the motor as shown in FIG.
  • the estimated induced voltage peak value Ep ′ is detected from a data table created on the assumption that the motor vector diagram shown and the equations 2 and 3 are established. Then, using the induced voltage peak value Ep, which is an actual value sent from the induced voltage phase detector 26, and the phase current peak value Ip sent from the rotor position / current phase estimator 28, the following expression is used.
  • a correction amount ⁇ of the magnetic flux amount ⁇ is calculated.
  • the corrected magnetic flux amount ⁇ ′ obtained by this equation is sent to the rotor position / current phase estimation unit 28, and the rotor position / current phase estimation unit 28 replaces the theoretical magnetic flux amount ⁇ in the data table based on Equations 2 and 3. Used to detect the rotor position ⁇ m.
  • FIG. 8 shows a motor vector diagram representing the estimated induced voltage peak value Ep ′ estimated from the motor parameters ( ⁇ , Ld, Lq, R, ⁇ ), which are inherent device constants of the motor.
  • FIG. 9 is a motor vector diagram showing an induced voltage peak value Ep that is an actual value when the magnetic flux amount ⁇ is reduced as compared with the case of FIG. In FIG. 9, the vectors in the case of FIG. 8 are indicated by dotted lines.
  • the data table prepared in advance in the rotor position / current phase estimation unit 28 defines the current phase ⁇ using [phase current peak value Ip] and [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i] as parameters.
  • the desired current phase ⁇ is selected using [phase current peak Ip] and [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i] as parameters, so that [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i]. ]
  • the current phase ⁇ also changes.
  • the motor parameter correction unit 30 detects the current phase change rate Rci of the phase current electrical angle ⁇ i with respect to the magnetic flux amount change rate ⁇ using a data table.
  • the data table used here defines the current phase change rate ⁇ i, which is the change rate Rci of the current phase ⁇ i, using [phase current peak value Ip] and [phase current electrical angle ⁇ i] as parameters.
  • the phase change rate ⁇ i can be selected using [phase current peak value Ip] and [phase current electrical angle ⁇ i] as parameters.
  • a data table using the result as data is prepared in the motor parameter correction unit 30 in advance.
  • the current phase change rate ⁇ i when the amount of magnetic flux ⁇ changes at the change rate Rc is calculated by the following equation.
  • ⁇ ⁇ i Rc ⁇ ⁇ E
  • the corrected current phase ⁇ i ′ is calculated by the following equation.
  • ⁇ ⁇ i ′ ⁇ i + ⁇ i
  • the current phase ⁇ when the [induced voltage phase ⁇ current phase ⁇ ] is a predetermined value while gradually increasing the current phase ⁇ and the current I shown in the motor vector diagram within a predetermined range, respectively.
  • the current is stored with [phase current peak value Ip] corresponding to [current I] and [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i] corresponding to [induced voltage phase ⁇ current phase ⁇ ] as parameters. This is done by creating a data table for phase ⁇ .
  • the current phase ⁇ is increased by 0.001 ° from ⁇ 180 ° to 180 °, and the current I is increased by 1A from 0A to 64 (steps ST1, ST2, and ST5).
  • the induced voltage E, the magnetic flux ⁇ , the voltage phase ⁇ , the current phase ⁇ , and the induced voltage phase ⁇ are obtained from the motor vector diagram using the motor parameters specific to the motor 1, and the [magnetic flux ⁇ ]
  • the current phase ⁇ when the rate of change ⁇ is 1%, 2%, 3%... Is stored (see steps ST3 and ST4).
  • the [phase current peak value Ip] corresponding to [current I] is set as one parameter, and [induced voltage electrical angle ⁇ e ⁇ phase current electrical angle ⁇ i corresponding to [induced voltage phase ⁇ current phase ⁇ ]. ] Is created as a data table of the current phase ⁇ .
  • the stability of the sensorless control of the motor 1 can be improved.
  • the motor parameter is generally formed of ferrite or neodymium, and the amount of magnetic flux ⁇ is easily affected by the temperature change to which the motor 1 is exposed, and its error is also increased. Since there is a large tendency, the stability of sensorless control can be effectively improved by eliminating the error.
  • a third embodiment of the present invention will be described.
  • a method is adopted in which the magnetic flux amount ⁇ and the winding resistance R are weighted and corrected in accordance with the operating state of the motor. Specifically, when the motor is operated at a low speed and a high torque, since the relational expression of ⁇ ⁇ RI is satisfied, the influence of the error of the winding resistance R is large. Therefore, the correction of the winding resistance R is prioritized. On the other hand, when the motor is operated at a high speed and a low torque, since the relational expression of ⁇ > RI is satisfied, the influence of the error of the magnetic flux amount ⁇ is large, so that the magnetic flux amount is corrected by correcting the induced voltage E. Prioritize correction of ⁇ .
  • a parameter correction unit 30 is prepared in advance and determines whether the operation state of the motor 1 is in the region A1 or A2 and selects a correction target. When the operating state of the motor 1 is in the region A1, only the magnetic flux amount ⁇ is corrected, and when it is in the region A2, only the induced voltage E, that is, the magnetic flux amount ⁇ is corrected.
  • the ratio between the correction amount of the magnetic flux amount ⁇ and the correction amount of the winding resistance R is calculated by an approximate calculation such as interpolation processing.
  • the motor 1 is optimally controlled by weighted parameter correction.
  • the degree of influence of the correction amount is calculated as a voltage fluctuation range, and this is used as a weighting parameter to calculate the correction amount.
  • the voltage that varies with changes in the winding resistance R is Vr
  • the voltage that varies with changes in the induced voltage E is Ve
  • the total voltage change amount is ⁇ Ep
  • the winding resistance correction voltage ratio is Vr-rate.
  • the motor parameter correction unit corrects the parameter according to the operating state of the motor. Specifically, the parameters are corrected based on the current phase detected by the rotor position detecting means and the rotational speed detected by the rotational speed detecting means as the operating state of the motor. Thereby, since the correction amount of the parameter which changes according to the driving
  • the correction target is selected by determining whether the operating state of the motor 1 is in any of the regions A1 to A3.
  • the ratio of the correction amount of the magnetic flux amount ⁇ and the correction amount of the winding resistance R is calculated by an approximate calculation such as interpolation processing,
  • the motor 1 is optimally controlled by weighted parameter correction.
  • the induced voltage E is almost zero. Therefore, the correction amount of the voltage error applied to the inverter 2 is calculated and corrected.
  • the parameter that changes according to the motor operating state is obtained by correcting the parameter according to the motor operating state. Therefore, the accuracy of sensorless control can be further improved, and the stability can be further improved.
  • the d-axis current Id is increased or decreased during the operation of the motor 1, and the motor parameters (R, ⁇ ) are corrected based on the change amount of the induced voltage peak value Ep.
  • the motor parameters (R, ⁇ ) are corrected based on the change amount of the induced voltage peak value Ep.
  • the induced voltage peak value Ep decreases as shown in the figure.
  • the degree of decrease of the induced voltage peak value Ep is different. Therefore, the correction amount of the motor parameter is calculated using this characteristic.
  • the motor parameter correction unit 30 can voluntarily correct the motor parameter by changing the operation state of the motor and determining the correction amount of the parameter.
  • the accuracy of sensorless control can be further increased, and the stability thereof can be further improved.
  • an abnormality detection unit may be provided that determines that the motor 1 is abnormal and detects this when the induced voltage difference deviates beyond a predetermined range by correcting the parameter of the motor parameter correction unit 30. .
  • the case where the induced voltage difference cannot be eliminated even by the motor parameter correction unit 30 can be quickly detected as an abnormality of the motor 1 and the output of the motor 1 can be stopped. Can increase the sex.
  • the three-phase brushless DC motor was illustrated as the motor 1 and the three-phase bipolar drive system inverter was demonstrated as the inverter 2, not only this but the inverter for synchronous motors other than three-phase is used.
  • the present invention can be applied to obtain the same operation and effect as described above. Further, by applying the motor control device of the above embodiment to the compressor drive motor control of the vehicle air conditioner, or by applying the motor control device to the electric vehicle drive motor control, the problem of the sensorless control as described above is improved, The controllability of the compressor and the electric vehicle can be improved, which is preferable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

本発明は,永久磁石同期モータのセンサレス制御の安定性を向上することができるモータ制御装置を提供することを目的とする。ロータ位置検出手段(10)は、検出した誘起電圧波高値と推定誘起電圧波高値との間の誘起電圧差をなくすべく、モータの機器定数であるパラメータ(コイルの巻線抵抗,永久磁石の磁束量)を補正するモータパラメータ補正手段(30)を有し、該補正したパラメータに基づいて前記ロータ位置を検出する。

Description

モータ制御装置
 本発明は、モータ制御装置に関し、詳しくは、永久磁石同期モータをセンサレス制御により可変速制御するモータ制御装置に関する。
 永久磁石同期モータ(Permanent Magnetic Synchronous
Motor:PMSM)、特にロータ(回転子)に永久磁石を埋め込んだ埋込型永久磁石同期モータ(Interior
Permanent Magnetic Synchronous Motor:IPMSM)は、高効率で可変速範囲の広いモータとして、車両用空調装置の圧縮機駆動用モータや電気自動車駆動用モータなどの用途にその応用範囲を拡大し、その需要が見込まれている。
 この種のモータの駆動を制御するモータ制御装置は、モータ、インバータ、直流電源、マイクロコンピュータを内蔵したコントローラから構成されている。
 前記モータの運転では、一般にモータのステータ(電機子)に巻回されたコイルに流れる電流をコントローラにおいて検出し、この電流が目標電流位相に追従するように電流フィードバック制御が行われる。この電流フィードバック制御では、目標電流位相を磁界と平行なd軸成分であるd軸電流Idと、これに直交するq軸成分であるq軸電流Iqとに分解し、d-q軸座標上でd軸電流Id及びq軸電流Iqから合成された電流ベクトルを目標電流位相として設定して制御することで、モータを最適なトルクで高効率に運転することができる。
 また、前記モータでは、コントローラにて検出される電流及び電圧の情報などからモータの誘起電圧を検出し、ひいてはロータ位置を検出し、物理的なセンサを用いずにモータを制御する、いわゆるセンサレス制御が一般に行われている。センサレス制御時には実際のd、q軸が直接には不明であるため、コントローラでは本来のd、q軸に対してそれぞれ仮想軸を置き、この仮想軸上で電流ベクトル制御が実行される。
 しかし、仮想軸はあくまでもコントローラ内で仮定した軸であるから、実際のd、q軸との間にはΔθの角度誤差が存在し、モータを効率的に安定運転するためには、このΔθを迅速に且つ正確に零に収束させる必要があることが知られている。
 例えば特許文献1には、軸位置の角度誤差Δθcを推定する以下の簡略化された軸位置誤差推定式が開示されている。
Figure JPOXMLDOC01-appb-M000001
 前記式では、Δθc:軸位置推定誤差(ロータ位置誤差、電流位相誤差)、Vdc:印加電圧のd軸成分、Vqc:印加電圧のq軸成分、Idc:d軸電流、Iqc:q軸電流、Lq:q軸インダクタンス、Ld:d軸インダクタンス、R:コイルの巻線抵抗、ω1:印加電圧の周波数である。Vdc、Vqc、Idc、Iqcは何れも仮想軸を前提にしたコントローラ内での仮定値であり、Lq、Ld、Rは何れもモータの機器定数であり、ω1は測定値である。そして、センサレス制御時には前記Δθcを零に収束させるべくコントローラにて制御が行われる。
 数1の軸位置誤差推定式の巻線抵抗Rはモータの機器定数であり、モータ固有の器差を含むパラメータであるため、このパラメータの理論値と実際値との間の誤差が軸位置推定精度に大きく影響する。このようなパラメータの誤差は、モータの器差から生じるのみならず、モータが曝される環境によっても変動する。特に、概してコイルは銅線から形成されることから、モータが曝される温度によってコイルの実際の巻線抵抗は変動しやすく、パラメータ誤差も大きくなる。
 このパラメータ誤差が大きくなると、前記軸位置誤差推定式における分母項が零かマイナスになるおそれがあり、この場合には軸位置が推定できず、ロータ位置も推定できないため、モータがセンサレス制御にて安定的に運転可能な安定運転限界を逸脱して運転され、脱調を生じるおそれがある。
 そこで、上記従来技術では、巻線抵抗の理論値として設定される設定値R’と巻線抵抗の実際値Rとの間の誤差を前記d-q軸座標系で検出した電流位相に基づいて補正している。
特開2006-87152号公報
 しかしながら、上記従来技術では、モータパラメータとしての巻線抵抗Rの補正量のみを電流位相のみに基づいて計算する手法をとっており、巻線抵抗Rの実際値を推定しておらず、また電流位相のみに基づいて計算を行っているため、補正計算が複雑となり、センサレス制御に応答遅れが生じて制御の安定性に支障を来すおそれがある。
 本発明は、このような課題に鑑みてなされたもので、永久磁石同期モータのセンサレス制御の安定性を向上することができるモータ制御装置を提供することを目的とする。
 上記の目的を達成するため、本発明のモータ制御装置は、永久磁石同期モータのロータ位置をセンサレス制御により検出するモータ制御装置であって、モータのコイルに流れる電流を検出する電流検出手段と、モータのコイルに印加される電圧を検出する印加電圧検出手段と、電流検出手段で検出された電流と印加電圧検出手段で検出された電圧とに基づいて電流位相及び電流波高値、並びに誘起電圧位相及び誘起電圧波高値を検出し、検出された電流位相及び電流波高値、並びに誘起電圧位相とモータの機器定数であるパラメータとに基づいてロータ位置を検出するとともに推定誘起電圧波高値を検出するロータ位置検出手段と、ロータ位置検出手段で検出されたロータ位置に基づいてモータの回転数を検出する回転数検出手段と、電流検出手段で検出された電流と、ロータ位置検出手段で検出されたロータ位置とに基づいて目標電圧を設定する相電圧設定手段とを備え、ロータ位置検出手段は、検出した誘起電圧波高値と推定誘起電圧波高値との間の誘起電圧差をなくすべくパラメータを補正するモータパラメータ補正手段を有し、該補正したパラメータに基づいてロータ位置を検出することを特徴としている(請求項1)。
 具体的には、パラメータは、コイルの巻線抵抗であり(請求項2)、モータの永久磁石の磁束量である(請求項3)。
 好ましくは、モータパラメータ補正手段は、モータの運転状態に応じてパラメータを補正する(請求項4)。
 また、モータパラメータ補正手段は、モータの運転状態として、ロータ位置検出手段で検出された電流位相と回転数検出手段で検出された回転数とに基づいてパラメータを補正する(請求項5)。
 更に、モータパラメータ補正手段は、モータの運転状態を変化させてパラメータの補正量を決定する(請求項6)。
 好ましくは、モータパラメータ補正手段のパラメータの補正によっても誘起電圧差が所定範囲以上にずれたとき、前記モータを異常と判定してこれを検出する異常検出手段を備える(請求項7)。
 請求項1記載のモータ制御装置によれば、ロータ位置検出手段は、検出した誘起電圧波高値と推定誘起電圧波高値との間の誘起電圧差をなくすべくパラメータを補正するモータパラメータ補正手段を有し、該補正したパラメータに基づいてロータ位置を検出する。これにより、モータパラメータの理論値と実際値との間の誤差を解消し、この誤差の発生に伴うセンサレス制御不能状態を回避することが可能となり、永久磁石同期モータのセンサレス制御の安定性を向上することができる。
 請求項2及び3記載の発明によれば、具体的には補正するパラメータはコイルの巻線抵抗や永久磁石の磁束量であり、これらパラメータはモータが曝される温度変化に影響を受けやすく、これらの誤差も大きい傾向にあることから、当該誤差の解消によりセンサレス制御の安定性を効果的に向上することができる。
 請求項4記載の発明によれば、モータパラメータ補正手段は、モータの運転状態に応じてパラメータを補正することにより、モータの運転状態に応じて変化するパラメータの補正量を変更することができるため、センサレス制御の精度を更に高めることができ、その安定性を更に向上することができる。
 請求項5記載の発明によれば、モータパラメータ補正手段は、具体的には、モータの運転状態として、ロータ位置検出手段で検出された電流位相と回転数検出手段で検出された回転数とに基づいてパラメータを補正する。
 請求項6記載の発明によれば、モータパラメータ補正手段は、モータの運転状態を変化させてパラメータの補正量を決定することにより、モータパラメータの補正を自発的に行うことができるため、センサレス制御の精度を更に高めることができ、その安定性を更に向上することができる。
 請求項7記載の発明によれば、モータパラメータ補正手段のパラメータの補正によっても誘起電圧差が所定範囲以上にずれたとき、モータを異常と判定してこれを検出する異常検出手段を備えることにより、モータパラメータ補正手段によっても誘起電圧差をなくすことができない場合をモータの異常として迅速に検出し、モータの出力を停止させることが可能であり、モータのセンサレス制御の信頼性を高めることができる。
本発明の第1実施形態に係るモータ制御装置の構成図である。 図1のコントローラで行われるモータのロータ位置のセンサレス制御について示した制御ブロック図である。 図2のロータ位置検出部の詳細を示した制御ブロック図である。 図2のモータのU相コイルUc,V相コイルVc及びW相コイルWcに正弦波通電(180°通電)を行っているときの相電流波形図である。 図2のモータのU相コイルUc,V相コイルVc及びW相コイルWcに正弦波通電(180°通電)を行っているときの誘起電圧波形図である。 図2のモータのロータが回転しているときのモータベクトル図である。 本発明の第2実施形態に係るロータ位置検出部の詳細を示した制御ブロック図である。 図7の場合にモータパラメータから推定される推定誘起電圧波高値Ep’を表したモータベクトル図である。 図8の場合に比して磁束量Ψが減少した場合の実際値である誘起電圧波高値Epを表したモータベクトル図である。 図7のモータパラメータ補正部でモータパラメータを補正する際に用いられるデータテーブルの作成方法の説明図である。 本発明の第3実施形態に係るモータパラメータ補正部に用意されるマップを示した図である。 本発明の第4実施形態に係るモータパラメータ補正部に用意されるマップを示した図である。 本発明の第4実施形態に係るモータパラメータ補正部においてd軸電流Idを増加させた場合の誘起電圧波高値Epの減少について説明する説明図である。
 図1は本発明の第1実施形態に係るモータ制御装置の構成図である。モータ制御装置は、モータ1、インバータ2、直流電源4、マイクロコンピュータを内蔵したコントローラ6から構成されている。
 図2はコントローラ6で行われるモータ1のセンサレス制御について示した制御ブロック図である。コントローラ6は、PWM信号作成部8、ロータ位置検出部(ロータ位置検出手段)10、回転数検出部(回転数検出手段)12、目標電流位相設定部(電流位相設定手段)14、加算器16、電圧波高値検出部18、電圧位相検出部20、相電圧設定部(相電圧設定手段)22を備えている。
 モータ1は、3相ブラシレスDCモータであり、3相のコイル(U相コイルUc,V相コイルVc及びW相コイルWc)を含む図示しないステータと、永久磁石を含む図示しないロータとを有し、U相コイルUc,V相コイルVc及びW相コイルWcは、図1に示すように中性点Nを中心としてスター状に結線されるか、或いは、デルタ状に結線されている。
 インバータ2は、3相バイポーラ駆動方式インバータであり、モータ1の3相のコイルに対応した3相のスイッチング素子、具体的にはIGBT等から成る6個のスイッチング素子(上相スイッチング素子Us,Vs及びWsと下相スイッチング素子Xs,Ys及びZs)と、シャント抵抗器R1,R2及びR3とを有している。
 上相スイッチング素子Us、下相スイッチング素子Xs、シャント抵抗器R1と、上相スイッチング素子Vs、下相スイッチング素子Ys、シャント抵抗器R2と、上相スイッチング素子Ws、下相スイッチング素子Zs、シャント抵抗器R3とは、それぞれ直列に接続され、これら各直列接続線の両端には、高圧電圧Vhを発生する直流電源4の出力端子が並列接続されている。
 また、上相スイッチング素子Usのエミッタ側はモータ1のU相コイルUcに接続され、上相スイッチング素子Vsのエミッタ側はモータ1のV相コイルVcに接続され、上相スイッチング素子Wsのエミッタ側はモータ1のV相コイルWcに接続されている。
 更に、上相スイッチング素子Us,Vs及びWsのゲートと下相スイッチング素子Xs,Ys及びZsのゲートと直流電源4の2次側出力端子とは、それぞれPWM信号作成部8に接続されている。更に、シャント抵抗器R1の下相スイッチング素子Xs側とシャント抵抗器R2の下相スイッチング素子Ys側とシャント抵抗器R3の下相スイッチング素子Zs側とは、それぞれロータ位置検出部10に接続されている。
 インバータ2は、シャント抵抗器R1,R2及びR3それぞれで検出された電圧を利用して、モータ1のU相コイルUc,V相コイルVc及びW相コイルWcに流れる電流(U相電流Iu,V相電流Iv及びW相電流Iw)を検出し(電流検出手段)、これらをロータ位置検出部10に送出する。
 PWM信号作成部8は、直流電源4の高圧電圧Vhを検出し、高圧電圧Vhと相電圧設定部22で設定された相電圧とに基づいて、インバータ2の上相スイッチング素子Us,Vs及びWsのゲートと下相スイッチング素子Xs,Ys及びZsのゲートに各スイッチング素子をオンオフするためのPWM信号を作成し、インバータ2に送出する。
 インバータ2の上相スイッチング素子Us,Vs及びWsと下相スイッチング素子Xs,Ys及びZsは、PWM信号作成部8からのPWM信号によって所定パターンでオンオフされ、このオンオフパターンに基づく正弦波通電(180度通電)をモータ1のU相コイルUc,V相コイルVc及びW相コイルWcに対し行う。
 また、PWM信号作成部8は、ロータ位置検出部10に接続されており、PWM信号作成部8で検出された直流電源4の高圧電圧Vhを利用して、モータ1のU相コイルUc,V相コイルVc及びW相コイルWcに印加されている電圧(U相印加電圧Vu,V相印加電圧Vv及びW相印加電圧Vw)を検出し(印加電圧検出手段)、ロータ位置検出部10に送出する。
 図3はロータ位置検出部10について詳細に示した制御ブロック図である。ロータ位置検出部10は、相電流位相検出部24、誘起電圧位相検出部26、ロータ位置・電流位相推定部28、モータパラメータ補正部(モータパラメータ補正手段)30を備えている。
 相電流位相検出部24は、インバータ2から送出されるU相電流Iu,V相電流Iv及びW相電流Iwを利用して、相電流波高値Ip(電流位相)と相電流電気角θi(電流位相)とを検出し、これらをロータ位置・電流位相推定部28に送出する。また、ここで検出された相電流波高値Ipを目標電流位相設定部14に送出する。
 詳しくは、図4のモータ1のU相コイルUc,V相コイルVc及びW相コイルWcに正弦波通電(180°通電)を行っているときの相電流波形図を参照すると、正弦波形を成すU相電流Iu,V相電流Iv及びW相電流Iwにはそれぞれ120°の位相差がある。
 この相電流波形図からすれば、U相電流Iu,V相電流Iv及びW相電流Iwと、相電流波高値Ipと、相電流電気角θiには、
・Iu=Ip×cos(θi)
・Iv=Ip×cos(θi-2/3π)
・Iw=Ip×cos(θi+2/3π)
の式が成り立つ。
 相電流位相検出部24における相電流波高値Ipと相電流電気角θiとの検出は前記式が成り立つことを前提として行われ、インバータ2から送出されたU相電流Iu,V相電流Iv及びW相電流Iwを利用して、前記式による計算によって相電流波高値Ipと相電流電気角θiとが求められる。
 誘起電圧位相検出部26は、インバータ2から送出されるU相電流Iu,V相電流Iv及びW相電流Iwと、PWM信号作成部8から送出されるU相印加電圧Vu,V相印加電圧Vv及びW相印加電圧Vwとを利用して、実際値として、誘起電圧波高値Ep、誘起電圧電気角θe(誘起電圧位相)を検出し、これらをロータ位置・電流位相推定部28に送出する。また、検出した誘起電圧波高値Epをモータパラメータ補正部30に送出する。
 詳しくは、図5のモータ1のU相コイルUc,V相コイルVc及びW相コイルWcに正弦波通電(180°通電)を行っているときの誘起電圧波形図を参照すると、正弦波形を成すU相誘起電圧Eu,V相誘起電圧Ev及びW相誘起電圧Ewにはそれぞれ120°の位相差がある。
 この誘起電圧波形図からすれば、U相誘起電圧Eu,V相誘起電圧Ev及びW相誘起電圧Ewと、誘起電圧波高値Epと、誘起電圧電気角θeには、
・Eu=Ep×cos(θe)
・Ev=Ep×cos(θe-2/3π)
・Ew=Ep×cos(θe+2/3π)
の式が成り立つ。
 また、U相印加電圧Vu,V相印加電圧Vv及びW相印加電圧Vwと、U相電流Iu,V相電流Iv及びW相電流Iwと、U相コイル抵抗Ru,V相コイル抵抗Rv及びW相コイル抵抗Rwと、U相誘起電圧Eu,V相誘起電圧Ev及びW相誘起電圧Ewとには、
・Vu-Iu×Ru=Eu
・Vv-Iv×Rv=Ev
・Vw-Iw×Rw=Ew
の式が成り立つ。
 誘起電圧位相検出部26における誘起電圧波高値Epと誘起電圧電気角θeの検出は前記式が成り立つことを前提として行われ、インバータ2から送出されたU相電流Iu,V相電流Iv及びW相電流Iwと、PWM信号作成部8から送出されたU相印加電圧Vu,V相印加電圧Vv及びW相印加電圧Vwとを利用して、前記式(後者の式)からU相誘起電圧Eu,V相誘起電圧Ev及びW相誘起電圧Ewが求められ、そして、求めたU相誘起電圧Eu,V相誘起電圧Ev及びW相誘起電圧Ewを利用して、前記式(前者の式)から誘起電圧波高値Epと誘起電圧電気角θeとが求められる。
 ロータ位置・電流位相推定部28は、ここで検出された相電流電気角θiと予め用意された後述するデータテーブルから選定した電流位相βとを利用して、
・θm=θi-β-90°
の式からロータ位置θmを検出し、ロータ位置検出部10では物理的なセンサによらないセンサレス制御が行われる。なお、前述したように、センサレス制御により検出されたロータ位置θmは軸位置の角度誤差Δθが存在する。
 ここで用いられるデータテーブルは[相電流波高値Ip]及び[誘起電圧電気角θe-相電流電気角θi]をパラメータとして電流位相βを規定したものであって、所期の電流位相βを[相電流波高値Ip]及び[誘起電圧電気角θe-相電流電気角θi]をパラメータとして選定することができる。なお、[相電流波高値Ip]にはロータ位置検出部10で検出された相電流波高値Ipが該当し、また、[誘起電圧電気角θe-相電流電気角θi]にはロータ位置検出部10で検出された誘起電圧電気角θeから相電流電気角θiを減算した値が該当する。
 図6はモータ1のロータが回転しているときのモータベクトル図であり、電圧V,電流I及び誘起電圧Eの関係をd-q軸座標にベクトルで表してある。図中のVdは電圧Vのd軸成分、Vqは電圧Vのq軸成分、Idは電流Iのd軸成分(d軸電流)、Iqは電流Iのq軸成分(q軸電流)、Edは誘起電圧Eのd軸成分、Eqは誘起電圧Eのq軸成分、αはq軸を基準とした電圧位相、βはq軸を基準とした電流位相、γはq軸を基準とした誘起電圧位相である。また、図中のΨaはロータの永久磁石の磁束、Ldはd軸インダクタンス、Lqはq軸インダクタンス、Rはステータの巻線抵抗、Ψはロータの総合鎖交磁束である。
 このモータベクトル図からすれば、ロータの回転数をωとすると、
Figure JPOXMLDOC01-appb-M000002
の式が成り立ち、また、同式の右辺からωに関する値を左辺に移すと、
Figure JPOXMLDOC01-appb-M000003
の式が成り立つ。
 ロータ位置・電流位相推定部28でロータ位置θmを検出する際に用いられるデータテーブルの作成は、前記モータベクトル図下で前記式が成り立つことを前提として行われ、前記モータベクトル図に示した電流位相βと電流Iをそれぞれ所定範囲内で段階的に増加させながら〔誘起電圧位相γ-電流位相β〕が所定値のときの電流位相βを保存し、〔電流I〕に相当する[相電流波高値Ip]と〔誘起電圧位相γ-電流位相β〕に相当する[誘起電圧電気角θe-相電流電気角θi]とをパラメータとした電流位相βのデータテーブルを作成する。そして、この作成されたデータテーブルを利用してロータ位置・電流位相推定部28で検出されたロータ位置θmは回転数検出部12に送出される。また、ここで利用される相電流波高値Ipをモータパラメータ補正部30に送出する。
 モータパラメータ補正部30は、モータの固有の機器定数であるモータパラメータ(Ψ、Ld、Lq、R、ω)を利用して、図6に示すモータベクトル図と前記数2、3式とが成立することを前提に作成されたデータテーブルから、推定誘起電圧波高値Ep’を検出する。そして、誘起電圧位相検出部26から送出されたU相誘起電圧Eu,V相誘起電圧Ev及びW相誘起電圧Ewを利用して求めた、いわば実際値である誘起電圧波高値Epと前記推定誘起電圧波高値Ep’との誘起電圧波高値差ΔEpを検出する。そして、ロータ位置・電流位相推定部28から送出された相電流波高値Ipを利用して、以下の式により巻線抵抗Rの補正量△Rを計算する。
・Ep=R・Ip
・Ep’=R’・Ip
両式の差をとると、
・Ep-Ep’=(R-R’)・Ip
の式が成り立つ。この式にEp-Ep’=ΔEp、R-R’=△Rを代入すると、
・△R=ΔEp/Ip
の式が成り立つ。
 この式により検出された補正量△Rを所定のローパスフィルタLPFを通過させてそのノイズを除去し、これを理論値である巻線抵抗Rに加算することにより補正巻線抵抗R’を計算すると、
・R’=R+LPF(△R)
の式が成り立つ。求められた補正巻線抵抗R’は、ロータ位置・電流位相推定部28に送出され、ロータ位置・電流位相推定部28では数式2,3に基づくデータテーブルにおいて理論巻線抵抗Rの代わりに使用され、ロータ位置θmの検出に利用される。
 回転数検出部12は、ロータ位置検出部10で検出されたロータ位置θmを利用して、ロータ位置θmから演算周期が1周期前のロータ位置θm-1を減じることにより、ロータ位置変化量Δθmを求め、このロータ位置変化量Δθmに所定のフィルタを掛けてモータ1の回転数ωを検出し、これを加算器16に送出する。そして、コントローラ6に対し指示されたモータ1の目標回転数ωtに回転数検出部12で求められた回転数ωを加算器16を通じてフィードバックさせ、P制御やPI制御等の処理により回転数差Δωを演算し、これを電圧波高値検出部18に送出する。
 電圧波高値検出部18は、求められた回転数差Δωを利用してP制御やPI制御等の処理によりモータ1に印加する電圧の印加電圧波高値Vpを検出し、これを相電圧設定部22に送出する。
 目標電流位相設定部14は、例えば最大トルク/電流制御と称す電流ベクトル制御によって相電流に対するモータ1の発生トルクが最大になるように目標電流位相が設定される。具体的には、ロータ位置検出部10で検出された相電流波高値Ipと、予め用意されたデータテーブルとを利用して目標d軸電流Idtを設定し、これを電圧位相検出部20に送出する。
 電圧位相検出部20は、目標電流位相設定部14で設定された目標d軸電流Idtを利用して、モータ1に印加する電圧の印加電圧位相θv(目標電圧位相)を検出し、これを相電圧設定部22に送出する。
 相電圧設定部22は、電圧波高値検出部18で検出された印加電圧波高値Vp及び電圧位相検出部20にて検出された印加電圧位相θvを利用して、モータ1のU相コイルUc,V相コイルVc及びW相コイルWcにこれから印加する印加設定電圧(U相印加設定電圧Vut,V相印加設定電圧Vvt及びW相印加設定電圧Vwt)を設定し、これをPWM信号作成部8に送出する。
 PWM信号作成部8は、インバータ2を介してモータ1のU相コイルUc,V相コイルVc及びW相コイルWcに対し相電圧設定部22で設定された印加設定電圧をPWM信号のオンオフパターンに基づいて正弦波通電(180度通電)し、これよりモータ1が所望の回転数で運転される。
 以上のように、本実施形態では、誘起電圧位相に基づいてモータパラメータをその理論値と実際値との間の誤差をなくすべく補正するモータパラメータ補正部を備え、ロータ位置検出部は、モータパラメータ補正部で補正したモータパラメータに基づいてロータ位置を検出する。これにより、モータパラメータの理論値と実際値との間の誤差を解消し、この誤差の発生に伴うセンサレス制御不能状態を回避することが可能となり、永久磁石同期モータのセンサレス制御の安定性を向上することができる。
 また、補正するモータパラメータをコイルの巻線抵抗Rとすることにより、概してコイルは銅線から形成され、巻線抵抗Rはモータ1が曝される温度変化に影響を受けやすく、その誤差も大きい傾向があることから、当該誤差の解消によりセンサレス制御の安定性を効果的に向上することができる。
 次に、本発明の第2実施形態について説明する。
 図7は本実施形態に係るロータ位置検出部10について詳細に示した制御ブロック図である。なお、モータ制御装置の基本構成やセンサレス制御などのモータ1の基本的な制御方法などは第1実施形態の場合と同様であるため、説明は省略する。
 本実施形態のモータパラメータ補正部30は、第1実施形態の場合と同様に、モータの固有の機器定数であるモータパラメータ(Ψ、Ld、Lq、R、ω)を利用して、図6に示すモータベクトル図と前記数2、3式とが成立することを前提に作成されたデータテーブルから、推定誘起電圧波高値Ep’を検出する。そして、誘起電圧位相検出部26から送出された実際値である誘起電圧波高値Epとロータ位置・電流位相推定部28から送出された相電流波高値Ipとを利用して、以下の式により永久磁石磁束量Ψの補正量△Ψを計算する。
・Ep=ω・Ψ
・Ep’=ω・Ψ
 これら式においてΨは理論値、Ψ’は補正後の実際値であって、両式の差をとると、
・Ep-Ep’=ω・(Ψ-Ψ’)
の式が成り立ち、この式にEp-Ep’=ΔEp、Ψ-Ψ’=△Ψを代入すると、
・△Ψ=ΔEp/ω
の式が成り立つ。
 そして、この式により求められた補正量△Ψを所定のローパスフィルタLPFを通過させてそのノイズを除去し、これを理論値である磁束量Ψに加算することにより補正磁束量Ψ’を計算する。
・Ψ’=Ψ+LPF(△Ψ)
 この式により求められた補正磁束量Ψ’は、ロータ位置・電流位相推定部28に送出され、ロータ位置・電流位相推定部28では数式2,3に基づくデータテーブルにおいて理論磁束量Ψの代わりに使用され、ロータ位置θmの検出に利用される。
 図8はモータの固有の機器定数であるモータパラメータ(Ψ、Ld、Lq、R、ω)から推定される推定誘起電圧波高値Ep’を表したモータベクトル図を示す。
 図9は図8の場合に比して磁束量Ψが減少した場合の実際値である誘起電圧波高値Epを表したモータベクトル図を示す。なお、図9には図8の場合のベクトルを点線で示してある。
 図8、9を比較すると、磁束量Ψが減少することにより、誘起電圧位相γに相当する誘起電圧電気角θeと、電流位相βに相当する相電流電気角θiとは何れも大きくなる。ロータ位置・電流位相推定部28に予め用意されるデータテーブルは、[相電流波高値Ip]及び[誘起電圧電気角θe-相電流電気角θi]をパラメータとして電流位相βを規定したものであって、所期の電流位相βを[相電流波高値Ip]及び[誘起電圧電気角θe-相電流電気角θi]をパラメータとして選定することから、[誘起電圧電気角θe-相電流電気角θi]に伴い電流位相βも変化することは明らかである。
 そこで、本実施形態のモータパラメータ補正部30では、前記式により算出したΔEpを利用して、磁束量Ψの補正のみならず、電流位相β、即ち相電流電気角θi(電流位相θi)をも補正している。
 詳しくは、前記式から
・Ep/(ω・Ψ)=Ep’/(ω・Ψ’)
の式が成り立ち、この式を変形すると、
・Ψ=(Ep/Ep’)・Ψ’
の式が成り立つ。
 この式を利用して理論値Ψと補正後の実際値Ψ’との差をとると、
・Ψ-Ψ’=(Ep/Ep’)・Ψ’-Ψ’
     =((Ep-Ep’)/Ep’)・Ψ’
の式が成り立ち、更にこの式を変形すると、
・(Ψ-Ψ’)/Ψ’=(Ep-Ep’)/Ep’
の式が成り立つ。
 この式より、磁束量Ψは誘起電圧波高値Epと等しい変化率Rcを有することが判る。
 更にこの式に磁束量変化率をΔΨ、誘起電圧波高値変化率をΔEとして代入すると、
・(Ψ-Ψ’)/Ψ’=ΔΨ=(Ep-Ep’)/Ep’=ΔE=Rc
の式が成り立つ。
 そして、モータパラメータ補正部30は、磁束量変化率ΔΨに対する相電流電気角θiの電流位相変化率Rciをデータテーブルにより検出している。
 ここで用いられるデータテーブルは[相電流波高値Ip]及び[相電流電気角θi]をパラメータとして電流位相θiの変化率Rciたる電流位相変化率Δθiを規定したものであって、所期の電流位相変化率Δθiを[相電流波高値Ip]及び[相電流電気角θi]をパラメータとして選定することができる。
 具体的には、変化率Rciは、
・Rci=f(Ip,θi)
の関数式から計算され、この結果をデータとしたデータテーブルがモータパラメータ補正部30に予め用意される。
 磁束量Ψが変化率Rcで変化したときの電流位相変化率Δθiは、以下の式で計算される。
・Δθi=Rc・ΔE
 そして、補正後の電流位相θi’は、以下の式で計算される。
・θi’=θi+Δθi
 モータパラメータ補正部30で変化率Rci、即ち電流位相変化率Δθiを検出する際に用いられるデータテーブルの作成は図6のモータベクトル図下で数2、3の式が成り立つことを前提として行われるものであって、前記モータベクトル図に示した電流位相βと電流Iをそれぞれ所定範囲内で段階的に増加させながら〔誘起電圧位相γ-電流位相β〕が所定値のときの電流位相βを保存して、〔電流I〕に相当する[相電流波高値Ip]と〔誘起電圧位相γ-電流位相β〕に相当する[誘起電圧電気角θe-相電流電気角θi]をパラメータとした電流位相βのデータテーブルを作成することによって行われる。
 詳しくは、図10に示すように、電流位相βを-180°から180°まで0.001°ずつ増加させ、且つ、電流Iを0Aから64まで1Aずつ増加させながら(ステップST1,ST2及びST5~ST8参照)、モータ1固有のモータパラメータを利用して前記モータベクトル図から誘起電圧E、磁束Ψ、及び電圧位相αと電流位相βと誘起電圧位相γを求め、そして、[磁束Ψ]の変化率ΔΨが1%,2%,3%…のときの電流位相βを保存する(ステップST3及びST4参照)。これにより、〔電流I〕に相当する[相電流波高値Ip]を1つのパラメータとし、且つ、〔誘起電圧位相γ-電流位相β〕に相当する[誘起電圧電気角θe-相電流電気角θi]を他のパラメータとする電流位相βのデータテーブルが作成される。
 以上のように、本実施形態では、第1実施形態の場合と同様に、モータパラメータの理論値と実際値との間の誤差を解消し、この誤差の発生に伴うセンサレス制御不能状態を回避することが可能となり、モータ1のセンサレス制御の安定性を向上することができる。 また、補正するモータパラメータを永久磁石の磁束量Ψとすることにより、概して永久磁石はフェライト若しくはネオジウムから形成され、磁束量Ψはモータ1が曝される温度変化に影響を受けやすく、その誤差も大きい傾向があることから、当該誤差の解消によりセンサレス制御の安定性を効果的に向上することができる。
 次に、本発明の第3実施形態について説明する。
 本実施形態では、モータの運転状態に応じて磁束量Ψと巻線抵抗Rとを重み付けして補正する手法をとっている。
 詳しくは、モータが低速度・高トルクで運転されるときは、ωΨ<RIの関係式が成立することより、巻線抵抗Rの誤差の影響が大きいため、巻線抵抗Rの補正を優先させ、一方、モータが高速度・低トルクで運転されるときは、ωΨ>RIの関係式が成立することより、磁束量Ψの誤差の影響が大きいため、誘起電圧Eを補正することによって磁束量Ψの補正を優先させる。
 詳しくは、図11のモータ1の回転数ωに対する電流Iの座標上に磁束量Ψのみを補正する運転領域A1と誘起電圧Eのみを補正する運転領域A2とを区分して設けたマップがモータパラメータ補正部30に予め用意され、モータ1の運転状態が領域A1、A2のどちらにあるかを判定して補正対象を選定する。モータ1の運転状態が領域A1にあるときには磁束量Ψのみを補正し、領域A2にあるときには誘起電圧E、即ち磁束量Ψのみを補正する。
 また、モータ1の運転状態が各領域A1、A2の境界線L上にある場合には、磁束量Ψの補正量と巻線抵抗Rの補正量との割合を補間処理等の近似計算によって算出し、重み付けしたパラメータ補正によってモータ1を最適に制御する。
 具体的な重み付けの手法としては、補正量が影響する度合いを電圧の変動範囲として計算し、これを重み付けのパラメータとして利用することにより補正量を算出する。
 詳しくは、巻線抵抗Rの変化に対して変動する電圧をVr、誘起電圧Eの変化に対して変動する電圧をVe、総電圧変化量を△Ep、巻線抵抗補正電圧割合をVr-rate、誘起電圧補正電圧割合Ve-rateとすると、
・Vr-rate=Vr/(Vr+Ve)
・Ve-rate=Ve/(Vr+Ve)
の式が成り立つ。
 これらの式を利用して、巻き線抵抗補正電圧△Er、誘起電圧補正電圧△Eeの変化量を計算すると、
・△Er=△Ep・Vr-rate
・△Ee=△Ep・Ve-rate
の式が成り立つ。更にこれらの式から、巻線抵抗補正量を△R、誘起電圧補正量を△Eとすると、
・△R=△Er/Ip
・△E=△Er/Ep
の式が成り立ち、各モータパラメータの補正量が計算される。
 以上のように、本実施形態では、モータパラメータ補正手段は、モータの運転状態に応じてパラメータを補正する。具体的には、モータの運転状態として、ロータ位置検出手段で検出された電流位相と回転数検出手段で検出された回転数とに基づいてパラメータを補正する。これにより、モータの運転状態に応じて変化するパラメータの補正量を変更することができるため、センサレス制御の精度を更に高めることができ、その安定性を更に向上することができる。
 次に、本発明の第4実施形態について説明する。
 本実施形態では、図12のモータ1の回転数ωに対するトルクTの座標上にモータ1の電圧誤差が異なるA1~A3の各運転領域を区分して設けたマップがモータパラメータ補正部30に予め用意され、モータ1の運転状態が領域A1~A3の何れにあるかを判定して補正対象を選定する。
 モータ1の運転状態が領域A1にあるときには、回転数ωがほぼ零となることから、誘起電圧E、即ち磁束量Ψの誤差はほとんど生じず、巻線抵抗Rの誤差のみを考慮することとし、巻線抵抗Rの補正量を計算する。一方、モータ1の運転状態が領域A2にあるときには、モータ1のトルクTはほぼ零となり、モータ1のコイルを流れる相電流もほぼ零となることから、巻線抵抗Rの誤差はほとんど生じず、誘起電圧Eの誤差のみを考慮することとし、誘起電圧E、即ち磁束量Ψの補正量を計算する。
 また、モータ1の運転状態が各領域A1、A2間の領域にある場合には、磁束量Ψの補正量と巻線抵抗Rの補正量との割合を補間処理等の近似計算によって算出し、重み付けしたパラメータ補正によってモータ1を最適に制御する。
 一方、モータ1の運転状態が領域A3にあるときには、誘起電圧Eがほぼ零となることから、インバータ2に印加する電圧誤差の補正量を計算し、これを補正する。
 以上のように、本実施形態では、本実施形態では、第3実施形態の場合と同様に、モータの運転状態に応じて前記パラメータを補正することにより、モータの運転状態に応じて変化するパラメータの補正量を変更することができるため、センサレス制御の精度を更に高めることができ、その安定性を更に向上することができる。
 次に、本発明の第5実施形態について説明する。
 本実施形態では、モータ1の運転中に例えばd軸電流Idを増減させ、これに伴う誘起電圧波高値Epの変化量によりモータパラメータ(R、Ψ)を補正する。
 例えば図13に示すように、負のd軸電流Idを1A増加させた場合、誘起電圧波高値Epは図中に示すように減少する。モータパラメータが誤差を有してばらつく場合には、誘起電圧波高値Epの減少度合いが異なることから、この特性を利用してモータパラメータの補正量を計算する。
 以上のように、本実施形態では、モータパラメータ補正部30は、モータの運転状態を変化させて前記パラメータの補正量を決定することにより、モータパラメータの補正を自発的に行うことができるため、センサレス制御の精度を更に高めることができ、その安定性を更に向上することができる。
 以上で本発明の実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
 具体的には、モータパラメータ補正部30のパラメータの補正によっても誘起電圧差が所定範囲以上にずれたとき、モータ1を異常と判定してこれを検出する異常検出手段を備えるようにしても良い。これにより、モータパラメータ補正部30によっても誘起電圧差をなくすことができない場合をモータ1の異常として迅速に検出し、モータ1の出力を停止させることが可能であり、モータ1のセンサレス制御の信頼性を高めることができる。
 また、上記実施形態では、モータ1として3相ブラシレスDCモータを例示し、且つ、インバータ2として3相バイポーラ駆動方式インバータについて説明したが、これに限らず、3相以外の同期モータ用のインバータを備えたモータ制御装置であれば、本発明を適用して前記同様の作用,効果を得ることができる。
 また、上記実施形態のモータ制御装置を車両用空調装置の圧縮機駆動用モータ制御に適用し、或いは電気自動車駆動用モータ制御に適用することにより、前述したようなセンサレス制御の不具合が改善され、圧縮機や電気自動車の制御性を向上することができて好適である。
  1  永久磁石同期モータ
 10  ロータ位置検出部(ロータ位置検出手段)
 12  回転数検出部(回転数検出手段)
 22  相電圧設定部(相電圧設定手段)
 30  モータパラメータ補正部(モータパラメータ補正手段)

3898WO<FPSN1606PC>

Claims (7)

  1.  永久磁石同期モータのロータ位置をセンサレス制御により検出するモータ制御装置であって、
     前記モータのコイルに流れる電流を検出する電流検出手段と、
     前記モータの前記コイルに印加される電圧を検出する印加電圧検出手段と、
     前記電流検出手段で検出された前記電流と前記印加電圧検出手段で検出された前記電圧とに基づいて電流位相及び電流波高値、並びに誘起電圧位相及び誘起電圧波高値を検出し、検出された前記電流位相及び前記電流波高値、並びに前記誘起電圧位相と前記モータの機器定数であるパラメータとに基づいて前記ロータ位置を検出するとともに推定誘起電圧波高値を検出するロータ位置検出手段と、
     前記ロータ位置検出手段で検出された前記ロータ位置に基づいて前記モータの回転数を検出する回転数検出手段と、
     前記電流検出手段で検出された前記電流と、前記ロータ位置検出手段で検出された前記ロータ位置とに基づいて目標電圧を設定する相電圧設定手段とを備え、
     前記ロータ位置検出手段は、検出した前記誘起電圧波高値と前記推定誘起電圧波高値との間の誘起電圧差をなくすべく前記パラメータを補正するモータパラメータ補正手段を有し、該補正したパラメータに基づいて前記ロータ位置を検出することを特徴とするモータ制御装置。
  2.  前記パラメータは前記コイルの巻線抵抗であることを特徴とする請求項1に記載のモータ制御装置。
  3.  前記パラメータは前記モータの永久磁石の磁束量であることを特徴とする請求項1または2に記載のモータ制御装置。
  4.  前記モータパラメータ補正手段は、前記モータの運転状態に応じて前記パラメータを補正することを特徴とする請求項1~3の何れかに記載のモータ制御装置。
  5.  前記モータパラメータ補正手段は、前記モータの運転状態として、前記ロータ位置検出手段で検出された前記電流位相と前記回転数検出手段で検出された前記回転数とに基づいて前記パラメータを補正することを特徴とする請求項4に記載のモータ制御装置。
  6.  前記モータパラメータ補正手段は、前記モータの運転状態を変化させて前記パラメータの補正量を決定することを特徴とする請求項1~5の何れかに記載のモータ制御装置。
  7.  前記モータパラメータ補正手段の前記パラメータの補正によっても前記誘起電圧差が所定範囲以上にずれたとき、前記モータを異常と判定してこれを検出する異常検出手段を備えることを特徴とする請求項1~6の何れかに記載のモータ制御装置。
PCT/JP2012/052849 2011-02-15 2012-02-08 モータ制御装置 WO2012111506A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/985,864 US9035581B2 (en) 2011-02-15 2012-02-08 Motor control device
CN201280008918.XA CN103370868B (zh) 2011-02-15 2012-02-08 电动机控制装置
EP12746872.6A EP2665176B1 (en) 2011-02-15 2012-02-08 Motor control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011029815A JP5838032B2 (ja) 2011-02-15 2011-02-15 モータ制御装置
JP2011-029815 2011-02-15

Publications (1)

Publication Number Publication Date
WO2012111506A1 true WO2012111506A1 (ja) 2012-08-23

Family

ID=46672431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052849 WO2012111506A1 (ja) 2011-02-15 2012-02-08 モータ制御装置

Country Status (5)

Country Link
US (1) US9035581B2 (ja)
EP (1) EP2665176B1 (ja)
JP (1) JP5838032B2 (ja)
CN (1) CN103370868B (ja)
WO (1) WO2012111506A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108521245A (zh) * 2018-03-26 2018-09-11 江苏大学 一种永磁轮毂电机转子位置与角速度预测方法
CN113098352A (zh) * 2016-01-27 2021-07-09 三电汽车部件株式会社 电动机控制装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5697036B2 (ja) * 2011-04-22 2015-04-08 サンデン株式会社 モータ制御装置
FR2976746B1 (fr) * 2011-06-15 2015-08-07 Renault Sa Procede et dispositif de commande d'un groupe motopropulseur electrique a commandes decouplees
FR2990088B1 (fr) * 2012-04-30 2014-05-09 Renault Sa Procede de determination du decalage angulaire entre le rotor et le stator d'une machine electrique d'un vehicule automobile
CN107148742B (zh) * 2014-12-15 2019-09-20 株式会社电装 电流推测装置
DE102015102565A1 (de) * 2015-02-23 2016-08-25 Ebm-Papst Mulfingen Gmbh & Co. Kg Sensorloses Kommutierungsverfahren
CN104991110B (zh) * 2015-06-26 2017-12-12 广东美的制冷设备有限公司 单相交流电源的电压异常检测方法和装置
CN105356796B (zh) * 2015-12-02 2018-06-19 国家电网公司 永磁无刷直流电动机无位置传感器控制***
US10084399B2 (en) * 2016-06-22 2018-09-25 Faraday & Future Inc. Detecting position measurement errors in an electric motor system
US9948224B1 (en) * 2016-10-17 2018-04-17 General Electric Company System and method for sensorless control of electric machines using magnetic alignment signatures
US20180164996A1 (en) * 2016-12-12 2018-06-14 Logitech Europe S.A. Contextually-based functional assignment for a user-manipulable element on an input device
GB201813335D0 (en) * 2018-08-15 2018-09-26 Technelec Ltd Flux linkage to current observer for synchronous machines
EP3809586A1 (en) * 2019-10-15 2021-04-21 KNORR-BREMSE Systeme für Nutzfahrzeuge GmbH Equipment and method for estimating a motor parameter
US11305784B2 (en) * 2019-12-30 2022-04-19 Karma Automotive Llc Method for online direct estimation and compensation of flux and torque errors in electric drives

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087152A (ja) 2004-09-14 2006-03-30 Hitachi Ltd 永久磁石同期モータの制御装置及びモジュール
JP2009278692A (ja) * 2008-05-12 2009-11-26 Fuji Electric Systems Co Ltd 永久磁石形同期電動機の制御装置
JP2010011638A (ja) * 2008-06-27 2010-01-14 Hitachi Appliances Inc 永久磁石同期モータ駆動装置及びそれを用いたモータ駆動用モジュール及び冷凍装置
WO2010150485A1 (ja) * 2009-06-25 2010-12-29 サンデン株式会社 モータ制御装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5329217A (en) * 1992-12-30 1994-07-12 Allen-Bradley Company, Inc. Compensated feedforward voltage for a PWM AC motor drive
US5903128A (en) * 1996-02-01 1999-05-11 Denso Corporation Sensorless control system and method of permanent magnet synchronous motor
US6069467A (en) * 1998-11-16 2000-05-30 General Electric Company Sensorless rotor tracking of induction machines with asymmetrical rotor resistance
JP3454210B2 (ja) 1999-11-30 2003-10-06 株式会社日立製作所 同期モータの位置センサレス制御方法
JP3789895B2 (ja) * 2003-02-28 2006-06-28 三菱電機株式会社 巻線界磁型同期モータの制御装置および巻線界磁型同期モータの回転位置ずれ補正方法
JP4146748B2 (ja) 2003-03-27 2008-09-10 愛知電機株式会社 ブラシレスモータの制御装置
JP4425091B2 (ja) * 2004-08-25 2010-03-03 三洋電機株式会社 モータの位置センサレス制御回路
US7378749B2 (en) * 2005-10-26 2008-05-27 Moore Donald O Electrical generator system
JP4895703B2 (ja) * 2006-06-28 2012-03-14 三洋電機株式会社 モータ制御装置
JP4429338B2 (ja) * 2006-09-11 2010-03-10 三洋電機株式会社 モータ制御装置、電流検出ユニット
EP1986317B1 (en) * 2007-04-27 2009-10-21 ABB Oy Stator resistance adaptation in sensorless PMSM drives
JP2009055748A (ja) * 2007-08-29 2009-03-12 Sanyo Electric Co Ltd 電流検出ユニット及びモータ制御装置
JP2009095135A (ja) 2007-10-09 2009-04-30 Fuji Electric Systems Co Ltd 同期電動機の制御装置
JP2009232498A (ja) * 2008-03-19 2009-10-08 Sanyo Electric Co Ltd モータ制御装置
JP5388089B2 (ja) 2008-05-16 2014-01-15 シャープ株式会社 モータ制御装置およびモータシステム
JP5256009B2 (ja) * 2008-12-12 2013-08-07 日立アプライアンス株式会社 磁石モータの速度制御装置
JP5526975B2 (ja) * 2009-05-13 2014-06-18 株式会社安川電機 電動機の制御装置及びその制御方法
JP5546804B2 (ja) 2009-06-18 2014-07-09 ビアメカニクス株式会社 電動機駆動制御装置。

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006087152A (ja) 2004-09-14 2006-03-30 Hitachi Ltd 永久磁石同期モータの制御装置及びモジュール
JP2009278692A (ja) * 2008-05-12 2009-11-26 Fuji Electric Systems Co Ltd 永久磁石形同期電動機の制御装置
JP2010011638A (ja) * 2008-06-27 2010-01-14 Hitachi Appliances Inc 永久磁石同期モータ駆動装置及びそれを用いたモータ駆動用モジュール及び冷凍装置
WO2010150485A1 (ja) * 2009-06-25 2010-12-29 サンデン株式会社 モータ制御装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP2665176A4
TETSUYA FUKUMOTO ET AL.: "Performance Improvement of IPMSM Position Sensorless Vector Control System by the Online Identification of Stator Resistance and Permanent Magnet Flux", THE TRANSACTIONS OF THE INSTITUTE OF ELECTRICAL ENGINEERS OF JAPAN D (SANGYO OYO BUMONSHI), vol. 129, no. 7, 1 July 2009 (2009-07-01), pages 698 - 704, XP008171325 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113098352A (zh) * 2016-01-27 2021-07-09 三电汽车部件株式会社 电动机控制装置
CN108521245A (zh) * 2018-03-26 2018-09-11 江苏大学 一种永磁轮毂电机转子位置与角速度预测方法

Also Published As

Publication number Publication date
EP2665176A1 (en) 2013-11-20
EP2665176B1 (en) 2017-03-29
CN103370868B (zh) 2016-02-10
EP2665176A4 (en) 2015-03-18
US20130320897A1 (en) 2013-12-05
JP2012170251A (ja) 2012-09-06
JP5838032B2 (ja) 2015-12-24
US9035581B2 (en) 2015-05-19
CN103370868A (zh) 2013-10-23

Similar Documents

Publication Publication Date Title
JP5838032B2 (ja) モータ制御装置
JP5652610B2 (ja) モータ制御装置
JP4754417B2 (ja) 永久磁石型回転電機の制御装置
US9184683B2 (en) Applied-voltage electrical angle setting method for synchronous motor, and motor control device
JP5317849B2 (ja) モータ制御装置
JP5425173B2 (ja) 制御装置
US9143067B2 (en) Motor control device
JP5697036B2 (ja) モータ制御装置
JP3692085B2 (ja) モータ制御方法及び装置
JP2019193532A (ja) モータシステム、モータ制御装置およびモータの回転速度検出方法
WO2019207754A1 (ja) 電動機制御装置
WO2017130842A1 (ja) モータ制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280008918.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12746872

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012746872

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012746872

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13985864

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE