WO2012108126A1 - 自由曲面プリズムを用いた回折光学系及び画像撮像装置 - Google Patents

自由曲面プリズムを用いた回折光学系及び画像撮像装置 Download PDF

Info

Publication number
WO2012108126A1
WO2012108126A1 PCT/JP2012/000256 JP2012000256W WO2012108126A1 WO 2012108126 A1 WO2012108126 A1 WO 2012108126A1 JP 2012000256 W JP2012000256 W JP 2012000256W WO 2012108126 A1 WO2012108126 A1 WO 2012108126A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffractive optical
line
free
optical system
wavelength
Prior art date
Application number
PCT/JP2012/000256
Other languages
English (en)
French (fr)
Inventor
鈴木 憲三郎
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to CN201280007920.5A priority Critical patent/CN103370641B/zh
Priority to US13/982,788 priority patent/US9459384B2/en
Publication of WO2012108126A1 publication Critical patent/WO2012108126A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/18Diffraction gratings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • G02B17/0856Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors
    • G02B17/086Catadioptric systems comprising a refractive element with a reflective surface, the reflection taking place inside the element, e.g. Mangin mirrors wherein the system is made of a single block of optical material, e.g. solid catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0025Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration
    • G02B27/0037Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for optical correction, e.g. distorsion, aberration with diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/4205Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant
    • G02B27/4211Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect having a diffractive optical element [DOE] contributing to image formation, e.g. whereby modulation transfer function MTF or optical aberrations are relevant correcting chromatic aberrations

Definitions

  • the present invention relates to a diffractive optical system and an image pickup apparatus using a free-form surface prism that can be used as a monitoring camera, for example.
  • a free-form surface has both a degree of freedom in layout and a degree of freedom in aberration correction, and thus has an advantage that a compact and high-performance optical system can be obtained.
  • prisms with free-form surfaces are able to achieve high-precision shapes with the development of injection-molded glass and resin materials and molding technology.
  • the potential to achieve the system is extremely high.
  • the chromatic aberration often occurs in the optical system due to the wavelength dispersibility of the prism material, which is a cause of deteriorating the image quality.
  • a free-form surface prism is used in a wide wavelength range up to the infrared region, this tendency becomes remarkable.
  • an optical system in which a diffractive optical element (DOE) is disposed between a decentered prism having a free-form surface and an entrance pupil so as to correct chromatic aberration remaining in the decentered prism alone (for example, (See Patent Document 1 below).
  • DOE diffractive optical element
  • Patent Document 1 since the optical system disclosed in Patent Document 1 uses a single-layer DOE, good diffraction efficiency cannot be obtained over a wide wavelength range, and harmful flare is likely to occur. There is a problem that it is not suitable for use in a wide wavelength range up to the infrared range.
  • the present invention has been made in view of such circumstances, and in an optical system including a free-form surface prism and a diffractive optical element, chromatic aberration caused by the propagation of a light beam through an optical path in the free-form surface prism,
  • a diffractive optical system using a free-form surface prism that can be satisfactorily corrected over a wide wavelength range from the visible range to the infrared range, is less susceptible to the manufacturing error of the diffractive optical element, and is easy to manufacture, and image pickup provided with the same
  • An object is to provide an apparatus.
  • One aspect of a diffractive optical system using a free-form surface prism illustrating the present invention is as follows: Multilayer diffraction in which a prism having a free-form surface that is a non-rotationally symmetric aspherical surface and a plurality of diffractive element elements are stacked on each other, and a diffractive optical surface having a grating structure is formed at the interface between the diffractive element elements An optical element, When the refractive index difference on the diffractive optical surface with respect to the g line is ⁇ Ng and the refractive index difference on the diffractive optical surface with respect to the s line is ⁇ Ns, the following conditional expression (1) is satisfied. 0.005 ⁇ ( ⁇ Ng + ⁇ Ns) / 2 ⁇ 0.45 (1)
  • an aspect of the image pickup apparatus illustrating the present invention is characterized by including the diffractive optical system and an image pickup element that picks up an image formed by the diffractive optical system.
  • the multilayer diffractive optical element described above is also referred to as a contact multilayer diffractive optical element, and is formed by superposing two or more diffractive element elements, and no space is provided between the diffractive element elements. , And those that are in close contact with each other.
  • chromatic aberration generated in a prism having a free-form surface can be corrected well over a wide wavelength range from the visible range to the infrared range, and it is easy to manufacture without being affected by the manufacturing error of the diffractive optical element. Can be.
  • FIGS. 1, 2 and 4 a coordinate system for indicating the direction is shown.
  • the numbers surrounded by circles in FIGS. 1, 2 and 4 indicate the surface numbers.
  • the diffractive optical system 10 using the free-form surface prism according to the first embodiment includes, in order from the object side, a diaphragm 11; The flat glass 12 in which the first surface 121 and the second surface 122 are configured in parallel to each other, the multilayer diffractive optical element 13 formed on the second surface 122 of the flat glass 12, and the first surface 141. , And a free-form surface prism 14 having a second surface 142 and a third surface 143.
  • a diaphragm 11 The flat glass 12 in which the first surface 121 and the second surface 122 are configured in parallel to each other, the multilayer diffractive optical element 13 formed on the second surface 122 of the flat glass 12, and the first surface 141.
  • a free-form surface prism 14 having a second surface 142 and a third surface 143.
  • the image pickup device 20 for example, composed of a CCD, a CMOS, or the like
  • the image pickup surface 21 are illustrated, but this does not constitute the diffractive optical system 10. Further, an image formed by the diffractive optical system 10 is positioned on the light receiving surface of the image sensor 20.
  • the free-form surface prism 14 is configured by a free-form surface in which the first surface 141, the second surface 142, and the third surface 143 are all non-rotationally symmetric aspheric surfaces.
  • a free-form surface prism has a high degree of design freedom, so that high-performance optical performance can be obtained with respect to monochromatic aberration while achieving miniaturization. Therefore, chromatic aberration is likely to occur when light rays propagate through the optical path in the free-form surface prism.
  • the multilayer diffractive optical element 13 is disposed in order to reduce the influence of wavelength dispersion of the free-form surface prism 14 and correct chromatic aberration as a whole of the diffractive optical system 10 as shown in FIG.
  • the first diffractive element element 131 and the second diffractive element element 132 are stacked on the second surface 122 of the flat glass 12 so as to be in close contact with each other in this order from the object side, and the two diffractive element elements 131,
  • a diffractive optical surface DM having a grating structure is formed at the interface 132.
  • a diffractive optical surface is an optical surface that performs a diffractive action on light
  • a diffractive optical element refers to an optical element having such a diffractive optical surface, and the type thereof is conventionally known.
  • diffraction gratings and Fresnel zone plates there are diffraction gratings and Fresnel zone plates.
  • Light diffracted by such a diffractive optical element is known to behave differently from refraction and reflection.
  • refraction and reflection have a positive dispersion value.
  • it has a negative dispersion value.
  • This property is extremely effective for correcting chromatic aberration, and enables good chromatic aberration correction that can be achieved only with expensive special low-dispersion glass (but not with ordinary glass).
  • this property is applied to achromaticity in a wavelength band that extends to the infrared region.
  • a single-layer type diffractive optical element having such a diffractive optical surface there is a problem that flare occurs due to light in a wavelength region deviated from the design wavelength, and the image quality and imaging performance are impaired. Is limited to use in a single wavelength such as a laser light source or a narrow wavelength range. For this reason, in recent years, a multilayer diffractive optical element has been proposed.
  • This type of diffractive optical element has, for example, a diffractive optical surface (relief pattern) formed in a sawtooth shape, and a plurality of optical element elements having different refractive indexes and dispersions are laminated in a separated or closely contacted manner.
  • a diffractive optical surface relievef pattern
  • the first optical element element 111 made of the first material and the refractive index and dispersion are as follows.
  • a second optical element element 112 made of a second material having a different value is formed, and sawtooth diffraction gratings 111a and 112a are formed on opposing surfaces of the respective optical element elements.
  • the grating height (groove height) h1 of the first optical element element 111 is determined to be a predetermined value so as to satisfy the achromatic condition for specific two wavelengths, and the second optical element element 112
  • the grid height h2 is determined to another predetermined value.
  • the diffraction efficiency is 1.0 for two specific wavelengths, and a considerably high diffraction efficiency can be obtained for other wavelengths.
  • the diffractive optical element can be applied to almost all wavelengths.
  • the lattice height h1 of the first optical element element 111 and the lattice height h2 of the second optical element element 112 are matched. It is possible to achieve a so-called contact multilayer diffractive optical element such as the multilayer diffractive optical element 13 according to the embodiment.
  • the error sensitivity (tolerance) of the lattice height is less than that of the separation multi-layer type according to the prior art shown in FIG.
  • the diffractive optical system 10 by utilizing the properties of such a contact multilayer diffractive optical element, it is possible to reduce the size and image formation performance, particularly in a wide range from the short wavelength visible range to the infrared range.
  • the chromatic aberration correction is improved.
  • ⁇ Ng indicates a refractive index difference on the diffractive optical surface DM (see FIG. 2) of the multilayer diffractive optical element 13 with respect to the g line
  • ⁇ Ns indicates on the diffractive optical surface DM of the multilayer diffractive optical element 13 with respect to the s line.
  • the refractive index difference is shown.
  • the refractive index needs to be different on both sides in the optical axis direction of the diffractive optical surface DM, but the refractive index difference ⁇ Ng with respect to the g line on the diffractive optical surface DM and the refractive index with respect to the s line.
  • the difference from the difference ⁇ Ns is large, the manufacturing error sensitivity increases.
  • the conditional expression (1) defines an appropriate range of the average values of the refractive index differences ⁇ Ng and ⁇ Ns of the diffractive optical surface DM of the multilayer diffractive optical element 13, and exceeds the upper limit of the conditional expression (1). Then, the average value of the refractive index differences ⁇ Ng and ⁇ Ns becomes too large, and the manufacturing error sensitivity of the diffractive optical element becomes too large. On the other hand, if the lower limit of conditional expression (1) is not reached, the average value of the refractive index differences ⁇ Ng and ⁇ Ns becomes too small, and in order to cause necessary diffraction, the grating height h ( (See Fig. 2).
  • conditional expression (1) if the lower limit of conditional expression (1) is not reached, it is disadvantageous in the production of the multilayer diffractive optical element 13. Further, when the height h of the grating increases, the ratio of incident light obliquely incident on the end face 134 (see FIG. 2) of the grating increases, the diffraction efficiency decreases, and also due to scattering or reflection by incident light incident on the end face 134. The stray light becomes large, which can cause unnecessary flare. In order to sufficiently exhibit the effect of conditional expression (1), the upper limit value is more preferably 0.20, and the lower limit value is more preferably 0.10.
  • ⁇ m represents the refractive power of the diffractive optical surface DM
  • represents the refractive power of the entire diffractive optical system 10.
  • Conditional expression (2) defines an appropriate range of the ratio ( ⁇ m / ⁇ ) of the refractive power ⁇ m of the diffractive optical surface DM to the refractive power ⁇ of the entire system, and if it falls below the lower limit of conditional expression (2) However, ⁇ m becomes relatively strong, which tends to cause a disadvantage that excessive chromatic aberration occurs. In order to exhibit the effect more sufficiently, it is desirable that the lower limit value is 1.0 ⁇ 10 ⁇ 5 .
  • h represents the grating height of the diffractive optical surface DM
  • ⁇ d represents the wavelength of the d-line.
  • Conditional expression (3) defines an appropriate range of the ratio of the grating height h to the wavelength ⁇ d of the d-line serving as the reference wavelength. If the upper limit of the conditional expression (3) is exceeded, the conditional expression (3) Since the grating height h becomes too large, the diffraction efficiency with respect to obliquely incident light is lowered, and unnecessary flare light is generated, which is inconvenient.
  • the grating height h is a height along the direction of the main light ray angle passing through the vicinity of the end face 134 (see FIG. 2), and is not limited to the height in the optical axis Ax direction.
  • the height in the direction of the optical axis Ax is usually a blaze height according to scalar theory determined by multiplication of the refractive index difference and the design center wavelength.
  • the grating height h is set to a height along the direction of the angle of the main light beam passing through the vicinity of the end face 134.
  • the diffractive optical surface DM is formed by resin molding using a mold.
  • the film which is preferable because the manufacturing cost can be reduced. Further, it is more preferable that the end face 134 has a stair-like step or a rough surface to prevent regular reflection so that stray light is reduced. In addition, in order to exhibit an effect more fully, it is desirable to set the upper limit numerical value of conditional expression (3) to 50.0.
  • the wavelength ⁇ S at the short wavelength end of the use wavelength range is 450 nm or less
  • the wavelength ⁇ L at the long wavelength end of the use wavelength range is 800 nm or more
  • the infrared Abbe number is When ⁇ IR, it is preferable that the following conditional expression (4) is satisfied.
  • Conditional expression (4) shows an appropriate range of ⁇ IR for the Abbe number of infrared rays.
  • ⁇ IR is defined as follows. ⁇ IR indicates the achromatic state of the entire diffractive optical system 10 and can be said to indicate the achromatic ability of the diffractive optical system 10.
  • ⁇ IR focal length fd of entire system at d line / (focal length fS of entire system at wavelength ⁇ S ⁇ focal length fL of entire system at wavelength ⁇ L)
  • conditional expression (4) In order to achieve good chromatic aberration correction from the visible range to the infrared range, it is important to satisfy the conditional expression (4). Below the lower limit of conditional expression (4), the achromatic state is insufficient and unpractical. In addition, the multilayer diffractive optical element 13 does not function sufficiently, and good achromaticity in a wide wavelength band including the visible region to the infrared region cannot be achieved. In addition, in order to fully exhibit the achromatic effect, it is preferable to set the lower limit of conditional expression (4) to 70.0.
  • the wavelength ⁇ S is preferably g-line
  • the wavelength ⁇ L is preferably s-line or t-line.
  • Conditional expression (5) defines an appropriate range of the balance of diffraction efficiency when the bandwidth is widened. If the lower limit of the conditional expression (5) is not reached, the diffraction efficiency is lowered at either the short wavelength or the long wavelength, and the diffraction flare is increased to deteriorate the image quality. In order to exhibit the effect more sufficiently, it is desirable to set the lower limit value of conditional expression (5) to 0.95. The diffraction efficiency is calculated by scalar calculation.
  • one of the constituent materials of the first diffraction grating element 131 and the constituent material of the second diffraction grating element 132 is a high refractive index and low dispersion material, and the other is the other.
  • a material having a low refractive index and a high dispersion is used, and a difference of main dispersion (NF-NC) between the material having a high refractive index and a low dispersion and a material having a low refractive index and a high dispersion is ⁇ (NF-NC)
  • NF-NC difference of main dispersion
  • Conditional expression (6) shows an appropriate distribution of refractive index and dispersion between the above-described high refractive index and low dispersion material and low refractive index and high dispersion material. This condition is an essential requirement for obtaining a sufficiently high diffraction efficiency over the entire wide wavelength band. If the range of the conditional expression (6) is not satisfied, it is difficult to obtain a sufficiently high diffraction efficiency. In order to exhibit the effect more sufficiently, it is preferable to set the lower limit of conditional expression (6) to ⁇ 5.0. The upper limit is preferably ⁇ 3.0.
  • the difference in focal length between the g line and the s line is ⁇ gs and the difference in focal length between the F line and the C line is ⁇ FC
  • the following conditional expression (7) is satisfied. It is preferable to satisfy.
  • Conditional expression (7) shows the achromatic state of the entire diffractive optical system 10, and indicates the condition range of the achromatic state necessary for applications such as when the diffractive optical system 10 is mounted on a surveillance camera, for example. Yes.
  • the focal length refers to a calculation result obtained by ray tracing a minute light beam around the reference axis of the decentered optical system.
  • This conditional expression deals with wavelengths up to the s-line having sensitivity with an image pickup device such as a normal CCD.
  • conditional expression (7) If the upper limit of conditional expression (7) is exceeded, achromaticity is insufficient and a good captured image cannot be obtained. On the other hand, if the lower limit of conditional expression (7) is not reached, the achromatic performance is sufficient, but the grating pitch of the diffractive optical surface DM tends to become finer, resulting in a lot of flare and difficulty in manufacturing. It is inconvenient. In order to exhibit the effect more sufficiently, it is preferable to set the upper limit of conditional expression (7) to 4.0. The lower limit is preferably 1.0.
  • the diffractive optical system 10 it is preferable to satisfy the following conditional expressions (8) and (9) in order to achieve excellent performance in the infrared region at a wider wavelength.
  • conditional expression (8) shows the difference in focal length with respect to the g-line and the t-line at the maximum image height as ⁇ gt, and the difference in focal length with respect to the F-line and the C-line is ⁇ FC.
  • This conditional expression (8) shows the achromatic state of the entire diffractive optical system 10 as in the above conditional expression (7), and shows the conditional range of the achromatic state necessary for applications such as surveillance cameras. Yes.
  • This conditional expression is for a special image sensor having sensitivity up to a longer wavelength than the sensitivity of a normal CCD or the like, and handles wavelengths up to the t-line.
  • conditional expression (8) If the upper limit of conditional expression (8) is exceeded, achromaticity is insufficient and a good captured image cannot be obtained. On the other hand, if the lower limit of conditional expression (8) is not reached, it is the same as conditional expression (7), but this is disadvantageous because the grating pitch of the diffractive optical surface DM tends to become finer. In order to exhibit the effect more sufficiently, it is preferable to set the upper limit of conditional expression (8) to 4.0. The lower limit is preferably 1.0.
  • the incident half angles of view of the diffractive optical system 10 in the X and Y directions are Xan and Yan.
  • free-form surface prisms have the advantage that they can be compact by bending the optical path, and that they can achieve advanced aberration correction by arbitrarily selecting the surface shape. For this reason, when the optical path in the prism becomes long, there is a tendency that the occurrence of chromatic aberration increases. Therefore, if the difference between the vertical and horizontal incident angles is too large, the optical path length through which the light beam with the larger angle passes through the prism becomes too long, and the inconvenience that aberrations are increased is likely to occur.
  • Conditional expression (9) defines an appropriate range of the ratio of the incident half angle of view Xan and Yan. If the range of conditional expression (9) is exceeded, in order to achieve sufficient color correction with respect to the larger incident half-angle light, the grating pitch tends to become finer, and flare is likely to occur. Not only will it be difficult to manufacture. In addition, the aspect ratio of the screen is strange vertically or horizontally, which is not suitable for practical use. In addition, in order to exhibit an effect more fully, it is preferable to set the upper limit of conditional expression (9) to 2.0. The lower limit is preferably set to 0.5.
  • the free-form surface prism 14 is configured, it is preferably manufactured by injection molding using resin or molded glass.
  • injection molding with mold glass is desirable. Further, if glass or resin is molded with a mold, there is an advantage that processing and manufacture are facilitated and cost can be reduced.
  • the multilayer diffractive optical element 13 is made of a UV curable resin, production efficiency is improved, which is preferable in production. In this case, man-hours can be reduced, which leads to cost reduction.
  • the optical material constituting the multilayer diffractive optical element 13 is preferably a resin material having a specific gravity of 2.0 or less. Since the specific gravity of resin is smaller than that of glass, it is effective for reducing the weight of the optical system. Furthermore, in order to exhibit an effect, it is preferable that specific gravity is 1.6 or less.
  • the multilayer diffractive optical element 13 can sharpen the peak side end of a diffractive element element made of a high refractive index material, regardless of whether the refractive power is positive or negative. This is important for suppressing a decrease in diffraction efficiency. That is, in the case of negative power, it is necessary to use a diffractive element element made of a low refractive index material near the entrance pupil.
  • the cross-sectional shape of the end surface 134 is linear, but may be stepped or curved. For example, by making the end face stepped, there is an effect of making the flare light generated by the light of each wavelength on the end face uniform.
  • the multilayer diffractive optical element 13 has a viscosity (uncured product viscosity) of a material constituting the second diffractive element element 132 in order to maintain good moldability and ensure excellent mass productivity. It is preferably at least 40 (mPa ⁇ s) or more. If it is 40 (mPa ⁇ s) or less, the resin tends to flow during molding, so that it becomes difficult to mold a precise shape. On the other hand, the viscosity of the material constituting the first diffraction element element 131 is preferably at least 2000 (mPa ⁇ s) or more.
  • this image pickup apparatus includes the above-described diffractive optical system 10 and an image pickup device 20, and a subject image formed on the image pickup surface 21 by the diffractive optical system 10 is picked up by the image pickup device 20. It is configured to take an image.
  • the diffractive optical system 30 using the free-form surface prism according to the second embodiment includes, in order from the object side, a stop 31, As a decentered optical system comprising a free-form surface prism 32 having a first surface 321, a second surface 322, and a third surface 323, and a multilayer diffractive optical element 33 disposed inside the free-form surface prism 32 It is configured.
  • the imaging element 40 for example, composed of a CCD or CMOS
  • An image formed by the diffractive optical system 30 is positioned on the light receiving surface of the image sensor 40.
  • the free-form surface prism 32 is composed of a free-form surface in which the first surface 321, the second surface 322, and the third surface 323 are all non-rotationally symmetric aspheric surfaces.
  • the multilayer diffractive optical element 33 is disposed in order to reduce the influence of wavelength dispersion of the free-form curved prism 32 and correct chromatic aberration as a whole of the diffractive optical system 30, and the first diffractive element 331.
  • the second diffractive element element 332 is stacked so as to be in close contact with each other, and a diffractive optical surface DM having a grating structure is formed at the interface between the two diffractive element elements 331 and 332.
  • the configuration of the multilayer diffractive optical element 33 is the same as that of the multilayer diffractive optical element 13 shown in FIG. 2, and detailed description thereof is omitted.
  • the image pickup apparatus includes the above-described diffractive optical system 30 and the image pickup device 40, and a subject image formed on the image pickup surface 41 by the diffractive optical system 30 is picked up by the image pickup device 40. It is configured to take an image.
  • the diffractive optical system and the image pickup apparatus using the free-form surface prism according to the present invention are not limited to those of the above-described embodiment, and various modifications can be made.
  • the position where the diffractive optical element is disposed can be set as appropriate, and the diffractive optical element may be disposed at a plurality of locations.
  • the number of layers of the diffractive optical element is not limited to two, and may be three or more.
  • a diffractive optical system using the free-form surface prism according to the present invention can be configured by incorporating other optical members such as an aspherical lens, a gradient index lens, and a crystal material lens.
  • phase polynomial that determines the shape of the diffractive optical surface is as shown in the following mathematical formula (A).
  • the free-form surface is defined by the following formula (C).
  • Z is the sag amount of the surface parallel to the central axis
  • c is the curvature at the surface vertex (origin)
  • k is the conic constant
  • h is the origin on the central axis. This is the distance from the origin in a plane perpendicular to this
  • Cj is the coefficient of the xy polynomial.
  • each spectral line is used as the aberration characteristic calculation targets.
  • the wavelength (unit: nm) of each spectral line is as follows. g line 435.835 F line 486.133 e line 546.074 d line 587.562 C line 656.273 s line 852.110 t line 1013.980
  • a diffractive optical system 10 using a free-form surface prism according to the first embodiment includes, in order from the object side, a diaphragm 11, The flat glass 12 in which the first surface 121 and the second surface 122 are configured in parallel to each other, the multilayer diffractive optical element 13 formed on the second surface 122 of the flat glass 12, and the first surface 141. , And a free-form surface prism 14 having a second surface 142 and a third surface 143.
  • the free-form surface prism 14 is configured by a free-form surface in which the first surface 141, the second surface 142, and the third surface 143 are all non-rotationally symmetric aspheric surfaces.
  • the multilayer diffractive optical element 13 includes a first diffractive element element 131 and a second diffractive element element 132 on the second surface 122 of the flat glass 12 in this order from the object side.
  • a diffractive optical surface DM having a grating structure is formed on the interface between the two diffractive element elements 131 and 132 so as to be in close contact with each other.
  • the first diffractive element element 131 is made of a material having a high refractive index and low dispersion
  • the second diffractive element element 132 is made of a material having a low refractive index and high dispersion.
  • the diffractive optical element 13 has a positive refractive power.
  • Table 1 below shows configuration data of the diffractive optical system 10 according to the first example.
  • “* a” described in the table showing the configuration data of each example below indicates that the surface is a shape represented by a phase difference function
  • “* b” indicates that the surface is free. It represents a curved surface
  • “* c” represents that the surface is eccentric.
  • “mm” is used as the unit of curvature radius, surface spacing, and other lengths that appear in all the following specifications.
  • the unit is not limited to “mm”, and other appropriate units can be used. The same applies to the second embodiment described later.
  • Table 1 (Configuration data) Surface number Curvature radius Surface spacing Object Infinite Infinite 1 (Aperture) Infinite 5.0000 2 Infinite 0.6667 3 Infinite 0.0333 4 * a * c infinity 0.0333 5 Infinite 1.2271 6 * b * c -30.3581 7 * b * c -14.0818 8 * b * c -30.3581 9 * b * c -4.8808 -0.8494 Infinite image
  • the flat glass 12 and the free-form curved prism 14 are made of the same glass material.
  • Table 2 below shows the refractive indices of the constituent materials of the flat glass 12 and the free-form curved prism 14 with respect to the spectral lines of g-line, F-line, e-line, d-line, C-line, s-line and t-line.
  • Table 3 shows the constituent materials of the first diffractive element element 131 and the second diffractive element element 132 for the spectral lines of g-line, F-line, e-line, d-line, C-line, s-line and t-line.
  • Table 4 shows the value of the coefficient C of the phase difference function (formula (B)) on the fourth surface (diffractive optical surface DM).
  • Table 5 below shows each term coefficient of the free-form surface data formula (formula (A)) of the sixth surface (eighth surface), the seventh surface, and the ninth surface.
  • Table 6 below shows the eccentric data of the fourth, sixth (eighth), seventh and ninth surfaces.
  • XDE, YDE, and ZDE represent shifts in the X direction, Y direction, and Z direction, respectively
  • ADE, BDE, and CDE represent inclinations (unit: degrees) around the X axis, Y axis, and Z axis, respectively. . This is the same in Table 14 described later.
  • Table 7 shows the corresponding values for each parameter related to the above conditional expressions (1) to (9).
  • Table 8 below shows the corresponding values of the above conditional expressions (1) to (9). As shown in Table 8, the first example satisfies all the conditional expressions (1) to (9).
  • FIG. 3 is a spot diagram for the spectral lines of g-line, F-line, e-line, d-line, C-line, s-line and t-line of the diffractive optical system 10 according to the first example.
  • the length of the straight line displayed at the bottom of the spot diagram corresponds to 0.1 mm on the imaging surface. According to FIG. 3, it can be seen that the chromatic aberration is corrected well and the imaging performance is excellent.
  • the diffractive optical system 30 using the free-form surface prism according to the second embodiment includes, in order from the object side, a stop 31, As a decentered optical system comprising a free-form surface prism 32 having a first surface 321, a second surface 322, and a third surface 323, and a multilayer diffractive optical element 33 disposed inside the free-form surface prism 32 It is configured.
  • the free-form surface prism 32 is composed of a free-form surface in which the first surface 321, the second surface 322, and the third surface 323 are all non-rotationally symmetric aspheric surfaces.
  • the multilayer diffractive optical element 33 is laminated in the free-form curved prism 32 so that the first diffractive element 331 and the second diffractive element 332 are in close contact with each other, and the two diffractive element elements 331 are arranged.
  • 332 is formed with a diffractive optical surface DM having a grating structure.
  • the first diffractive element element 331 is made of a material having a low refractive index and high dispersion
  • the second diffractive element element 332 is made of a material having a high refractive index and low dispersion.
  • the diffractive optical element 13 has a positive refractive power.
  • Table 9 below shows configuration data of the diffractive optical system 30 according to the second example.
  • “* a” described in the table showing the configuration data of each example below indicates that the surface is a shape represented by a phase difference function
  • “* b” indicates that the surface is free. It represents a curved surface
  • “* c” represents that the surface is eccentric.
  • Table 10 shows the refractive index of the constituent material of the free-form surface prism 32 with respect to the spectral lines of g-line, F-line, e-line, d-line, C-line, s-line and t-line.
  • Table 11 shows constituent materials of the first diffractive element element 331 and the second diffractive element element 332 for the spectral lines of g-line, F-line, e-line, d-line, C-line, s-line, and t-line.
  • Table 12 below shows the value of the coefficient C of the phase difference function (formula (B)) on the sixth surface (diffractive optical surface DM).
  • Table 13 below shows each term coefficient of the free-form surface data formula (formula (A)) of the second surface (fourth surface), the third surface, and the eighth surface.
  • Table 14 below shows the eccentricity data of the second surface (fourth surface), the third surface, the sixth surface, and the eighth surface.
  • Table 15 shows the corresponding values of each parameter regarding the above conditional expressions (1) to (9).
  • Table 16 shows the corresponding values of the above conditional expressions (1) to (9). As shown in Table 16, the second example satisfies all the conditional expressions (1) to (9).
  • FIG. 5 is a spot diagram for the spectral lines of g-line, F-line, e-line, d-line, C-line, s-line and t-line of the diffractive optical system 10 according to the second example.
  • the length of the straight line displayed at the bottom of the spot diagram corresponds to 0.1 mm on the imaging surface. According to FIG. 5, it can be seen that the chromatic aberration is corrected well and the imaging performance is excellent.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Studio Devices (AREA)

Abstract

 自由曲面プリズム(14)と、複数の回折素子要素(121,122)が互いに積層され界面に格子構造の回折光学面DMが形成された複層型回折光学素子とを備えるとともに、0.005<(ΔNg+ΔNs)/2<0.45という条件式を満足するようにする。ΔNgはg線に対する回折光学面(DM)における屈折率差であり、ΔNsはs線に対する回折光学面(DM)における屈折率差である。

Description

自由曲面プリズムを用いた回折光学系及び画像撮像装置
 本発明は、例えば、監視用カメラとして利用可能な自由曲面プリズムを用いた回折光学系及び画像撮像装置に関する。
 近年、光軸の周りに対称でない非球面、すなわち「自由曲面」が使われ始めている。自由曲面は回転対称な光学系と異なり、レイアウト上の自由度と収差補正上の自由度とを併せ持っているため、小型で高性能な光学系が得られるという利点を有している。特に、自由曲面を有するプリズム(自由曲面プリズム)は、射出成形ガラスや樹脂の材料・成形技術の発展に伴い高精度な形状を実現できるようになっており、小型でハイスペックかつ高性能な光学系を達成するポテンシャルが極めて高い。しかしながら、プリズム材料の持つ波長分散性により光学系に色収差が生じてしまうことが多々あり、それが画質を損ねる原因となっている。特に赤外域までの広い波長域において自由曲面プリズムを用いようとすると、この傾向は顕著となる。
 従来、自由曲面を有する偏心プリズムと入射瞳との間に回折光学素子(DOE)を配置することによって、偏心プリズム単体に残留する色収差を補正するようにした光学系が知られている(例えば、下記特許文献1を参照)。
特許第3559624号公報
 しかしながら、上記特許文献1に開示された光学系は、単層型DOEを用いているので広い波長域に亘って良好な回折効率が得られず、有害なフレアが発生しやすいため、可視域から赤外域までの広い波長域での使用には適さないという問題がある。
 本発明は、このような事情に鑑みてなされたものであり、自由曲面プリズムと回折光学素子とを備えた光学系において、自由曲面プリズム中の光路を光線が伝播することで発生する色収差を、可視域から赤外域までの広波長域に亘り良好に補正し得るとともに、回折光学素子の製造誤差の影響を受けにくく製造しやすい自由曲面プリズムを用いた回折光学系及び、これを備えた画像撮像装置を提供することを目的とする。
 本発明を例示する自由曲面プリズムを用いた回折光学系の一態様は、
 非回転対称な非球面である自由曲面を有するプリズムと、複数の回折素子要素が互いに積層され、かつ当該複数の回折素子要素の界面に格子構造の回折光学面が形成されてなる複層型回折光学素子と、を備えており、
 g線に対する前記回折光学面における屈折率差をΔNgとし、s線に対する前記回折光学面における屈折率差をΔNsとするとき、以下の条件式(1)を満たすことを特徴とする。
 0.005  < (ΔNg + ΔNs)/2 <  0.45  …(1)
 また、本発明を例示する画像撮像装置の一態様は、上記回折光学系と、この回折光学系により結像された画像を撮像する撮像素子と、を備えてなることを特徴とする。
 なお、上述した複層型回折光学素子は密着複層型回折光学素子とも称され、2つ以上の回折素子要素を重畳して形成したものであり、各回折素子要素間にはスペースを設けず、互いに密着されたものを意味するものとする。
 本発明によれば、自由曲面を有するプリズムにおいて発生する色収差を、可視域から赤外域までの広波長域に亘り良好に補正し得るとともに、回折光学素子の製造誤差の影響を受けにくく製造しやすいものとすることができる。
第1実施例に係る自由曲面プリズムを用いた回折光学系の断面図である。 第1実施例に係る複層型回折光学素子の概念的な構成を例示する断面図である。 第1実施例に係る自由曲面プリズムを用いた回折光学系のスポットダイヤグラムである。 第2実施例に係る自由曲面プリズムを用いた回折光学系の断面図である。 第2実施例に係る自由曲面プリズムを用いた回折光学系のスポットダイヤグラムである。 複層型回折光学素子の断面の一例を示す概略図であり、(a)は従来技術に係る分離複層型の回折光学素子の断面の一例を示す概略図、(b)は本実施形態に係る分離複層型の回折光学素子の断面の一例を示す概略図である。
 以下、本発明の実施形態について上記図面を参照しながら説明する。なお、図1、図2及び図4においては、方向を示すための座標系を図示している。また、図1、図2及び図4中の○で囲んだ数字は、面番号を示している。
〈第1実施形態〉
 図1に示すように、第1実施形態に係る自由曲面プリズムを用いた回折光学系10(以下、単に「回折光学系10」と称することがある)は、物体側から順に、絞り11と、第1面121及び第2面122が互いに平行に構成された平板状ガラス12と、この平板状ガラス12の第2面122上に形成された複層型回折光学素子13と、第1面141、第2面142及び第3面143を備えた自由曲面プリズム14と、を備えた偏心光学系として構成されている。なお、図1には、撮像素子20(例えば、CCDやCMOS等からなる)及び撮像面21が図示されているが、これは回折光学系10を構成するものではない。また、撮像素子20の受光面上に、回折光学系10によって形成される像が位置する。
 自由曲面プリズム14は、第1面141、第2面142及び第3面143が、いずれも非回転対称な非球面である自由曲面で構成されている。ところで、一般に、このような自由曲面プリズムは、設計の自由度が大きいことから、小型化を達成しつつ単色収差に関しては高性能な光学性能が得られるものであるが、プリズム材料が有する波長分散性により、自由曲面プリズム中の光路を光線が伝播する際に色収差が発生しやすい。
 複層型回折光学素子13は、自由曲面プリズム14の波長分散性の影響を低減し、回折光学系10全体としての色収差を良好に補正するために配置されており、図2に示すように、第1の回折素子要素131及び第2の回折素子要素132が、平板状ガラス12の第2面122上に物体側からこの順に互いに密着するように積層され、かつ当該2つの回折素子要素131,132の界面に格子構造の回折光学面DMが形成されている。
 一般に、回折光学面とは、光に対して回折作用を施す光学面であり、回折光学素子とは、このような回折光学面を備えた光学素子をいい、その種類としては、従来から知られているように回折格子やフレネルゾーンプレートなどがある。このような回折光学素子により回折作用を施された光は、屈折や反射とは異なる振る舞いを示すことが知られており、その具体例としては、屈折や反射では正の分散値を有するのに対して、負の分散値を有することが挙げられる。この性質は色収差補正に極めて有効であり、高価な特殊低分散ガラスでしか達し得ない(通常のガラスでは達し得ない)良好な色収差補正が可能となる。本発明では、この性質を赤外域まで広げた波長帯域での色消しに適用している。
 しかし、このような回折光学面を有する単層型の回折光学素子では、設計波長からずれた波長域の光によりフレアが発生し、画質・結像性能を損ねてしまう問題があり、その使用態様はレーザー光源などの単一波長や狭い波長域での使用に限られていた。このため、近年、複層型回折光学素子が提案されている。このタイプの回折光学素子は、例えば、鋸歯状に形成された回折光学面(レリーフパターン)を有し、異なる屈折率及び分散を有した複数の光学素子要素を分離あるいは密着させた形で積層させてなるものであり、所望の広波長域(例えば、可視光領域)のほぼ全域で高い回折効率が保たれる。すなわち、回折効率の波長特性が良好であるという特徴を有している。
 複層型の回折光学素子の構造について説明すると、一般に、図6(a),(b)に示すように、第1の材質からなる第1光学素子要素111と、これとは屈折率や分散値が異なる第2の材質からなる第2光学素子要素112とから構成され、それぞれの光学素子要素の対向し合う面には鋸歯状の回折格子111a,112aが形成されている。そして、特定の2波長に対して色消し条件を満足させるように、第1光学素子要素111の格子高さ(溝の高さ)h1を所定の値に決定し、第2光学素子要素112の格子高さh2を別の所定の値に決定する。これにより、特定の2波長に対しては回折効率が1.0となり、その他の波長に対してもかなり高い回折効率を得ることができるようになる。このように、回折光学素子を複層型にすることで、回折光学素子をほぼ全波長に対して適用することができるようになる。なお、回折効率(一次回折光の回折効率:本実施形態においては一次回折光を用いている)とは、透過型の回折光学素子において、該回折光学素子に入射する光の強度I0と、回折光学素子を透過した光に含まれる一次回折光の強度I1との割合η(=I1/I0)として定義される。
 また、所定条件を満たすことにより、図6(b)に示すように、第1光学素子要素111の格子高さh1と、第2光学素子要素112の格子高さh2とを一致させた、本実施形態に係る複層型回折光学素子13のような、いわゆる密着複層型の回折光学素子を達成することが可能となる。この密着複層型の回折光学素子では、図6(a)に示す従来技術に係る分離複層型に比べ、格子高さの誤差感度(公差)が緩くなったり、格子面の面粗さの誤差感度(公差)が緩くなったりする等、製造し易くなるメリットがあり、生産性に優れ、量産性が高く、光学製品のコストダウンに好都合であるという利点を有している。
 そこで、本実施形態に係る回折光学系10では、このような密着複層型回折光学素子の性質を利用して、小型化及び結像性能、特に、短波長可視域から赤外域に至る広範囲での色収差補正の向上を図っている。
 また、本実施形態に係る回折光学系10においては、下記条件式(1)を満足している。ここで、ΔNgはg線に対する複層型回折光学素子13の回折光学面DM(図2参照)における屈折率差を示し、ΔNsはs線に対する複層型回折光学素子13の回折光学面DMにおける屈折率差を示している。
 0.005  < (ΔNg + ΔNs)/2 <  0.45  …(1)
 複層型回折光学素子13では、回折光学面DMの光軸方向の両側で屈折率が異なることが必要であるが、回折光学面DMにおけるg線に対する屈折率差ΔNgと、s線に対する屈折率差ΔNsとの差が大きいと、製造上の誤差感度が大きくなる。
 上記条件式(1)は、複層型回折光学素子13の回折光学面DMの屈折率差ΔNg、ΔNsの平均値の適切な範囲を規定するものであり、条件式(1)の上限を上回ると、屈折率差ΔNgとΔNsの平均値が大きくなりすぎてしまい、回折光学素子の製造誤差感度が大きくなりすぎる。逆に、条件式(1)の下限を下回ると、屈折率差ΔNgとΔNsの平均値が小さくなりすぎてしまい、必要な回折を生じさせるためには回折光学面DMの格子の高さh(図2参照)を大きくしなければならない。このため、条件式(1)の下限を下回ると複層型回折光学素子13の製造上不利となる。また、格子の高さhが大きくなると格子の端面134(図2参照)に斜めに入射する入射光の割合が増え、回折効率が低下するとともに、端面134に入射する入射光による散乱または反射による迷光が大きくなってしまい、不要なフレアの発生要因ともなる。なお、条件式(1)の効果を十分に発揮するには、上限値を0.20とすることがより好ましく、また、下限値を0.10とすることがより好ましい。
 また、本実施形態に係る回折光学系10においては、下記条件式(2)を満足することが好ましい。ここで、Φmは回折光学面DMの屈折力を示し、Φは回折光学系10全系の屈折力を示している。
 1.0×10-7 < Φm/Φ    …(2)
 条件式(2)は、全系の屈折力Φに対する回折光学面DMの屈折力Φmの比(Φm/Φ)の適切な範囲を規定するものであり、条件式(2)の下限を下回ると、相対的にΦmが強くなりすぎてしまい、色収差が過剰に発生する不都合が生じやすくなる。なお、効果をより十分に発揮するには下限数値を1.0×10-5とすることが望ましい。
 また、本実施形態に係る回折光学系10においては、下記条件式(3)を満足することが好ましい。ここで、hは回折光学面DMの格子高さを示し、λdはd線の波長を示している。
 h/λd < 100.0    …(3)
 条件式(3)は、基準波長となるd線の波長λdに対する格子高さhの比の適切な範囲を規定するものであり、条件式(3)の上限を上回ると、回折光学面DMの格子高さhが大きくなりすぎて、斜め入射光に対する回折効率が低下してしまい、不要なフレア光が発生し不都合である。なお、格子高さhは、端面134(図2参照)の近傍を通る主たる光線角度の方向に沿っての高さであって、光軸Ax方向の高さに限定したものではない。高さhについては通常、光軸Ax方向の高さが屈折率差と設計中心波長との乗算で定められるスカラー理論によるブレーズ高さとされることが多い。しかし、光軸Ax方向とは異なる方向からの入射光に対しては最適ブレーズではないので回折効率が低下してしまう。このため、格子高さhは端面134の近傍を通る主たる光線の角度の方向に沿っての高さとする。
 回折光学面DMの端面134による散乱とブレーズ光の回折効率の低下とを軽減するためには、図2に示すように、通常光軸Ax方向に平行に形成される端面134を、入射瞳(絞り11の中心P)に向けて勾配を与えて傾けることが好ましい。すなわち、主光線に倣って端面134に勾配を与えることが好ましい。これは、端面134を入射瞳に向けると言い換えても同じである。また、図2に示すように端面134に傾きを与えると、回折光学面DMの回折面133と端面134とのなす角が鈍角となることから、金型を用いた樹脂成形により回折光学面DMを形成することが可能となり、製法上でのコストダウンも図れて好ましい。さらには、この端面134部分には、階段状のステップや粗面として正反射を防ぐ構造とすれば迷光が減ってより好ましい。なお、効果をより十分に発揮するには、条件式(3)の上限数値を50.0とすることが望ましい。
 また、本実施形態に係る回折光学系10においては、使用波長域の短波長端の波長λSが450nm以下、使用波長域の長波長端の波長λLが800nm以上であり、赤外のアッベ数をνIRとするとき、下記条件式(4)を満足することが好ましい。
 50.0 < |νIR|    …(4)
 条件式(4)は、赤外のアッベ数をνIRの適正なる範囲を示している。なお、νIRは以下のごとく、定義するものとする。νIRは回折光学系10全体の色消し状態を示すものであり、回折光学系10の色消しの能力を示しているともいえる。
 νIR=d線における全系の焦点距離fd/(波長λSでの全系の焦点距離fS-波長λLでの全系の焦点距離fL)
可視域から赤外域での良好な色収差補正を達成するためには、条件式(4)を満たすことが肝要である。条件式(4)の下限を下回ると、色消し状態が不十分で実用的でない領域となり不都合である。また、十分に複層型回折光学素子13が機能していないことになり、可視域から赤外域を含めた広波長帯での良好な色消しが達成できなくなる。なお、色消しの効果をより十分に発揮させるには、条件式(4)の下限値を70.0とすることが好ましい。また、波長λSとしてはg線とすることが好ましく、波長λLとしてはs線またはt線とすることが好ましい。
 また、本実施形態に係る回折光学系10においては、下記条件式(5)を満足することが好ましい。ここで、Ed、Eg及びECは、d線、g線及びC線に対する回折効率設計値をそれぞれ示している。
 0.8 < (Eg+EC)/(2×Eg)     …(5)
 条件式(5)は広帯域化した際の回折効率のバランスの適切なる範囲を規定するものである。条件式(5)の下限を下回ると、短波長、長波長のいずれかで回折効率が低下してしまい、回折フレアが大きくなり画質を損ねてしまう。なお、効果をより十分に発揮させるためには、条件式(5)の下限値を0.95とすることが望ましい。なお、回折効率計算はスカラー計算で行っている。
 また、本実施形態に係る回折光学系10においては、第1の回折格子要素131の構成材料及び第2の回折格子要素132の構成材料のうちの一方を高屈折率低分散の材料、他方を低屈折率高分散の材料とし、当該高屈折率低分散の材料と低屈折率高分散の材料との主分散(NF-NC)の差をΔ(NF-NC)とするとき、下記条件式(6)を満足することが好ましい。
 -20.0 < ΔNd/Δ(NF-NC) < -2.0  …(6)
 条件式(6)は、上述の高屈折率低分散の材料と低屈折率高分散の材料との間で適切なる屈折率と分散の配分を示している。この条件は、広い波長帯域の全域に亘り、十分に高い回折効率を得るために必須の要件である。この条件式(6)の範囲を外れると、十分に高い回折効率は得ることが困難となる。なお、効果をより十分に発揮させるためには、条件式(6)の下限値を-5.0とすることが好ましい。また、上限値については-3.0とすることが好ましい。
 また、本実施形態に係る回折光学系10においては、g線とs線に対する焦点距離の差をΔgs、F線とC線に対する焦点距離の差をΔFCとするとき、下記条件式(7)を満足することが好ましい。
 0.5 < Δgs/ΔFC < 8.0    …(7)
 条件式(7)は回折光学系10全体の色消し状態を示すものであり、回折光学系10を、例えば監視用カメラに搭載する場合などの用途に必要な色消し状態の条件範囲を示している。なお、焦点距離とは、この場合、偏心光学系の基準軸の周りの微少光束を光線追跡して得られる計算結果をさすものとする。なお、本条件式は通常のCCD等の撮像素子で感度を有するs線までの波長を扱っている。
 条件式(7)の上限を上回ると、色消しが不十分となって良好な撮影画像が得られない。一方、条件式(7)の下限を下回ると、色消し性能は十分であるが、回折光学面DMの格子ピッチが細かくなる傾向となって、フレアが多く発生しかつ製造しにくくなってしまい、不都合である。なお、効果をより十分に発揮させるには条件式(7)の上限値を4.0とすることが好ましい。また、下限値については1.0とすることが好ましい。
 また、本実施形態に係る回折光学系10において、さらに広い波長での優れた赤外域での性能を達成するためには、以下の条件式(8)、(9)を満たすことが好ましい。
 0.5 < Δgt/ΔFC < 8.0       …(8)
 0.3 < Xan/Yan < 2.5       …(9)
 条件式(8)では、最大像高さでのg線及びt線に対する焦点距離の差をΔgt、同じくF線及びC線に対する焦点距離の差をΔFCとしている。この条件式(8)は、上記条件式(7)と同様、回折光学系10全体の色消し状態を示すものであり、監視用カメラなどの用途に必要な色消し状態の条件範囲を示している。なお、本条件式は通常のCCD等の感度よりも更に長波長までの感度を有する特殊な撮像素子に対するもので、t線までの波長を扱っている。
 条件式(8)の上限を上回ると色消しが不十分となって良好な撮影画像が得られない。一方、条件式(8)の下限を下回ると、条件式(7)と同様であるが、さらに回折光学面DMの格子ピッチが細かくなる傾向となって不都合である。なお、効果をより十分に発揮させるには条件式(8)の上限値を4.0とすることが好ましい。また、下限値については1.0とすることが好ましい。
 条件式(8)では、回折光学系10のX、Y方向の入射半画角をXan、Yanとしている。先にも述べたとおり、自由曲面プリズムは、光路を折り曲げてコンパクトにできることや面形状を恣意的に選定することで高度な収差補正を達成する事ができる利点があるが、広角化したり明るくしたりするためには、プリズム中の光路が長くなると、色収差の発生が大きくなる不都合が発生しやすい。したがって、縦と横の入射角度の差が大き過ぎると、その大きい方の角度の光線がプリズム中を通る光路長が長くなりすぎ、収差の発生が大きくなる不都合が発生しやすくなる。
 条件式(9)は、入射半画角Xan及びYanの比の適正なる範囲を規定するものである。条件式(9)の範囲を超えると、その大きい方の入射半画角の光線に対し十分な色補正を達成するためには格子ピッチが細かくなる傾向となって、フレアが発生しやすくなる不都合ばかりか、製造しにくくなってしまう。また、画面のアスペクト比が縦長ないしは横長の奇妙なものとなって実用にそぐわない。なお、効果をより十分に発揮させるには、条件式(9)の上限値を2.0とすることが好ましい。また、下限値については0.5とすることが好ましい。
 また、本実施形態に係る回折光学系10を実際に構成するには、以下に述べる要件を満たすことが好ましい。例えば、自由曲面プリズム14を構成する際は、樹脂ないしはモールドガラスによる射出成形で製作することが好ましい。高精細な画像用光学系など内部歪による複屈折を小さく押さえるためにはモールドガラスによる射出成形が望ましい。また、ガラスないしは樹脂の成形を金型で行えば、加工製造が容易になりコストダウンを図れるという利点もある。
 また、複層型回折光学素子13は、UV硬化型樹脂で構成すれば、生産効率がアップするので生産上好ましい。この場合、工数が削減でき、コストダウンにも繋がり好都合である。また、小型軽量化のためには、複層型回折光学素子13を構成する光学材料は、比重が2.0以下の樹脂材料であることが好ましい。ガラスに比して樹脂は比重が小さいため、光学系の軽量化に有効である。さらに効果を発揮するには、比重が1.6以下であることが好ましい。
 また、複層型回折光学素子13は、その屈折力が正パワーの場合でも負パワーの場合でも、高屈折率材料で構成された回折素子要素の山側端部をシャープにさせることが、製造時に回折効率の低下を抑制するには重要である。すなわち、負パワーの場合には、入射瞳に近い方を低屈折率材料で構成された回折素子要素とすることが必要である。なお、図2では、端面134の断面形状が直線状となっているが、階段状となってもよいし、曲面状となってもよい。例えば、端面を階段状にすることで、各波長の光が端面で発生するフレア光を均一にする効果がある。
 また、複層型回折光学素子13は、その成形性を良好に保ち、優れた量産性を確保するには、第2の回折素子要素132を構成する材料の粘度(未硬化物粘度)は、少なくとも40(mPa・s)以上であることが好ましい。40(mPa・s)以下であると、成形中に樹脂が流れやすくなってしまうので精密形状を成形することが困難となってしまうという不都合が生じる。一方、第1の回折素子要素131を構成する材料の粘度は、逆に少なくとも2000(mPa・s)以上であることが好ましい。
 次に、本実施形態に係る画像撮像装置について説明する。この画像撮像装置は、図1に示すように、上述の回折光学系10と撮像素子20とを備えており、回折光学系10により撮像面21上に結像される被写体像を撮像素子20により撮像するように構成されている。
〈第2実施形態〉
 図4に示すように、第2実施形態に係る自由曲面プリズムを用いた回折光学系30(以下、単に「回折光学系30」と称することがある)は、物体側から順に、絞り31と、第1面321、第2面322及び第3面323を備えた自由曲面プリズム32と、この自由曲面プリズム32の内部に配された複層型回折光学素子33と、を備えた偏心光学系として構成されている。なお、図4には、撮像素子40(例えば、CCDやCMOS等からなる)及び撮像面41が図示されているが、これは回折光学系30を構成するものではない。また、撮像素子40の受光面上に、回折光学系30によって形成される像が位置する。
 自由曲面プリズム32は、第1面321、第2面322及び第3面323が、いずれも非回転対称な非球面である自由曲面で構成されている。複層型回折光学素子33は、自由曲面プリズム32の波長分散性の影響を低減し、回折光学系30全体としての色収差を良好に補正するために配置されており、第1の回折素子要素331及び第2の回折素子要素332が互いに密着するように積層され、かつ当該2つの回折素子要素331,332の界面に格子構造の回折光学面DMが形成されている。なお、この複層型回折光学素子33の構成は、図2に示す複層型回折光学素子13と同様であり、その詳細な説明は省略する。
 また、本実施形態においても、上述の第1実施形態において説明した好ましい態様、例えば、条件式(2)~(9)を満足するなどの態様を、同様に適用することが好ましい。
 次に、本実施形態に係る画像撮像装置について説明する。この画像撮像装置は、図4に示すように、上述の回折光学系30と撮像素子40とを備えており、回折光学系30により撮像面41上に結像される被写体像を撮像素子40により撮像するように構成されている。
 なお、本発明に係る自由曲面プリズムを用いた回折光学系及び画像撮像装置は、上記実施形態のものに限られるものではなく種々の態様の変更が可能である。例えば、回折光学素子を配置する位置は適宜設定することが可能であり、回折光学素子を複数箇所に配置してもよい。また、回折光学素子の層数は2つに限られるものではなく3層以上のものとしてもよい。さらに、非球面レンズ、屈折率分布型レンズ、結晶材料レンズなどの他の光学部材を組み込んで、本発明に係る自由曲面プリズムを用いた回折光学系を構成することも可能である。
 以下、本発明に係る自由曲面プリズムを用いた回折光学系の具体的な実施例(第1実施例及び第2実施例)について説明する。なお、各実施例において、回折光学面の位相差は位相関数法を用いて計算した。
 また、回折光学面の形状を決める位相多項式は、以下の数式(A)に示すとおりである。
Figure JPOXMLDOC01-appb-M000001
 ここで、数式(A)において、j、m,nの間には、次の数式(B)で表わされる関係が成立している。
Figure JPOXMLDOC01-appb-M000002
 また、自由曲面に関しては、次の数式(C)で定義される。なお、数式(C)において、Zは中心軸に平行な面のサグ量であり、cは面頂点(原点)での曲率であり、kはコーニック定数であり、hは中心軸上の原点においてこれと垂直に交わる平面内での原点からの距離であり、Cjはxy多項式の係数である。
Figure JPOXMLDOC01-appb-M000003
 ここで、数式(C)中のj,m,nの間には、次の数式(D)および(E)で表わされる関係が成立している。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
 また、各実施例においては、収差特性の算出対象として、g線、F線、e線、d線、C線、s線及びt線の各スペクトル線を用いている。これら各スペクトル線の波長(単位:nm)は以下の通りである。
g線 435.835   F線 486.133  e線  546.074  d線 587.562
C線 656.273   s線 852.110  t線 1013.980
 (第1実施例)
 第1実施例について、図1~図3および表1~表8を用いて説明する。図1に示すように、第1実施例に係る自由曲面プリズムを用いた回折光学系10(以下、単に「回折光学系10」と称することがある)は、物体側から順に、絞り11と、第1面121及び第2面122が互いに平行に構成された平板状ガラス12と、この平板状ガラス12の第2面122上に形成された複層型回折光学素子13と、第1面141、第2面142及び第3面143を備えた自由曲面プリズム14と、を備えた偏心光学系として構成されている。
 自由曲面プリズム14は、第1面141、第2面142及び第3面143が、いずれも非回転対称な非球面である自由曲面で構成されている。また、図2に示すように複層型回折光学素子13は、第1の回折素子要素131及び第2の回折素子要素132が、平板状ガラス12の第2面122上に物体側からこの順に互いに密着するように積層され、かつ当該2つの回折素子要素131,132の界面に格子構造の回折光学面DMが形成されている。また、本実施例では、第1の回折素子要素131が高屈折率低分散の材料により構成され、第2の回折素子要素132が低屈折率高分散の材料により構成されており、複層型回折光学素子13は正の屈折力を有している。
 下の表1に、第1実施例に係る回折光学系10の構成データを示す。なお、以下の各実施例の構成データを示す表中に記されている「*a」はその面が位相差関数で表される形状であることを表し、「*b」はその面が自由曲面であることを表し、「*c」はその面が偏心していることを表している。なお、以下の全ての諸元において掲載される、曲率半径、面間隔、その他長さの単位は、特記がない場合は「mm」が使われている。ただし、光学系は、比例拡大又は比例縮小しても同等の光学性能が得られるので、単位は「mm」に限定されることなく、他の適当な単位を用いることが可能である。このことは後述する第2実施例でも同様である。
(表1)
(構成データ)
 面番号    曲率半径    面間隔
  物体     無限     無限
  1(絞り)  無限     5.0000
  2      無限     0.6667
  3      無限     0.0333
  4*a*c    無限     0.0333
  5      無限     1.2271
  6*b*c   -30.3581
  7*b*c   -14.0818
  8*b*c   -30.3581
  9*b*c    -4.8808   -0.8494
  像面     無限
 第1実施例に係る回折光学系10において、平板状ガラス12及び自由曲面プリズム14は同じ硝材により構成されている。下の表2に、g線、F線、e線、d線、C線、s線及びt線の各スペクトル線に対する平板状ガラス12及び自由曲面プリズム14の構成材料の屈折率を示す。
(表2)
(屈折率データ)
  波長(nm)     屈折率(平板状ガラス及び自由曲面プリズム)
  g線(435.835)          1.52669
  F線(486.133)          1.52238
  e線(546.074)          1.51872
  d線(587.562)          1.51680
  C線(656.273)          1.51432
  s線(852.110)          1.50980
  t線(1013.980)          1.50731
 下の表3に、g線、F線、e線、d線、C線、s線及びt線の各スペクトル線に対する第1の回折素子要素131及び第2の回折素子要素132の各構成材料の屈折率を示す。
(表3)
(屈折率データ)
 波長(nm)  屈折率(第1の回折素子要素)(第2の回折素子要素)
 g線(435.835)        1.57133        1.54906
 F線(486.133)        1.56499        1.53911
 e線(546.074)        1.55981        1.53153
 d線(587.562)        1.55714        1.5278
 C線(656.273)        1.55348        1.52329
 s線(852.110)        1.54846        1.5162
 t線(1013.980)        1.54582        1.51201
 下の表4に、第4面(回折光学面DM)における位相差関数(数式(B))の係数Cの値を示す。
(表4)
(位相差関数係数データ)
 係数
 C3        -9.6000E-04
 C5        -8.4000E-04
 C10        2.7810E-05
 C14        2.1600E-05
 下の表5に、第6面(第8面)、第7面及び第9面の自由曲面データ式(数式(A))の各項係数を示す。
(表5)
(自由曲面データ)
 項      第6(8)面係数   第7面係数    第9面係数
 C4(x^2)    -8.6820023E-04   3.6037855E-04  1.2834385E-02
 C6(y^2)    3.8045241E-04   2.5973410E-04  7.8708196E-03
 C8(x^2*y)   8.3096007E-06   -1.2458402E-05  8.7026592E-04
 C10(y^3)    7.2547211E-06   -1.0288437E-05  9.1559626E-05
 C11(x^4)    -2.0681573E-06   -1.1192385E-06  2.9785335E-05
 C13(x^2*y^2)  -1.0238401E-06  -1.1701761E-06  1.8868075E-04
 C15(y^4)    -3.6093202E-07   -1.8135487E-07  5.2326361E-06
 C17(x^4*y)   3.0997379E-07   5.3874899E-08  -9.2399463E-06
 C19(x^2*y^3)  1.1058042E-07   -1.4068248E-08  6.9154034E-06
 C21(y^5)    1.6643911E-08   6.9332255E-09  -1.9942454E-06
 下の表6に、第4面、第6面(第8面)、第7面及び第9面の偏心データを示す。ここで、XDE、YDE及びZDEは、それぞれX方向、Y方向及びZ方向のシフトを表し、ADE、BDE及びCDEは、それぞれX軸、Y軸及びZ軸周りの傾き(単位:度)を表す。このことは、後述の表14において同様である。
(表6)
(偏心データ)
 偏心     第4面   第6(8)面   第7面    第9面
 XDE    0.0      0.0       0.0      0.0
 YDE  0.666666667 -0.372003973  0.118037618  -5.034353463
 ZDE    0.0      0.0    2.633333333   2.324955306
 ADE    0.0   -4.040538719  20.88166768  -69.12432971
 BDE    0.0      0.0       0.0      0.0
 CDE    0.0      0.0       0.0      0.0
 下の表7に、上述の条件式(1)~(9)に関する各パラメータの対応値を示す。
(表7)
(パラメータ対応値)
 パラメータ              対応値
 ΔNg               0.02227
 ΔNs               0.03226
 Φm                0.00068862
 Φ                 0.05292
 h                20.0(μm)
 λd                0.587562(μm)
 fd                6.29867
 fg                6.25183
 fF                6.27177
 fC                6.30930
 fs                6.32927
 ft                6.33957
 ft-fg             0.08773
 Δgs(fs-fg)        0.07743
 ΔFC(fC-fF)        0.03753
 Eg                0.9984
 EC                0.9844
 Ed                1.0000
 Δ(NF-NC)         -0.00467
 xan              16.95122
 yan              12.87656
 下の表8に、上述の条件式(1)~(9)の対応値を示す。表8に示すように、第1実施例は、条件式(1)~(9)を全て満足している。
(表8)
(条件式対応値)
 条件式                 対応値
 (1)(ΔNg + ΔNs)/2    0.02727
 (2)Φm/Φ             0.01301
 (3)h/λd             34.03896
 (4)|νIR|
     s線             81.347
     t線             71.796
 (5)(Eg+EC)/(2×Ed)    0.9914
 (6)ΔNd/Δ(NF-NC)    -6.283
 (7)Δgs/ΔFC          2.945
 (8)Δgt/ΔFC          2.258
 (9)xan/yan          1.3164
 図3は、第1実施例に係る回折光学系10のg線、F線、e線、d線、C線、s線及びt線の各スペクトル線に対するスポットダイヤグラムである。スポットダイヤグラムの下部に表示してある直線の長さは、撮像面上の0.1mmに相当する。この図3によれば、色収差が良好に補正され、優れた結像性能を有していることがわかる。
 (第2実施例)
 第2実施例について、図4および表9~表16を用いて説明する。図4に示すように、第2実施例に係る自由曲面プリズムを用いた回折光学系30(以下、単に「回折光学系30」と称することがある)は、物体側から順に、絞り31と、第1面321、第2面322及び第3面323を備えた自由曲面プリズム32と、この自由曲面プリズム32の内部に配された複層型回折光学素子33と、を備えた偏心光学系として構成されている。
 自由曲面プリズム32は、第1面321、第2面322及び第3面323が、いずれも非回転対称な非球面である自由曲面で構成されている。また、複層型回折光学素子33は、自由曲面プリズム32内において、第1の回折素子要素331及び第2の回折素子要素332が互いに密着するように積層され、かつ当該2つの回折素子要素331,332の界面に格子構造の回折光学面DMが形成されている。また、本実施例では、第1の回折素子要素331が低屈折率高分散の材料により構成され、第2の回折素子要素332が高屈折率低分散の材料により構成されており、複層型回折光学素子13は正の屈折力を有している。
 下の表9に、第2実施例に係る回折光学系30の構成データを示す。なお、以下の各実施例の構成データを示す表中に記されている「*a」はその面が位相差関数で表される形状であることを表し、「*b」はその面が自由曲面であることを表し、「*c」はその面が偏心していることを表している。
(表9)
(構成データ)
 面番号    曲率半径    面間隔
  物体     無限     無限
  1(絞り)  無限     6.6667
  2*b*c   -30.3581
  3*b*c   -14.0818
  4*b*c   -30.3581
  5      無限
  6*a*c    無限
  7      無限
  8*b*c    -4.8808   -0.8352
  像面     無限
 下の表10に、g線、F線、e線、d線、C線、s線及びt線の各スペクトル線に対する自由曲面プリズム32の構成材料の屈折率を示す。
(表10)
(屈折率データ)
  波長(nm)       屈折率(自由曲面プリズム)
  g線(435.835)          1.52669
  F線(486.133)          1.52238
  e線(546.074)          1.51872
  d線(587.562)          1.51680
  C線(656.273)          1.51432
  s線(852.110)          1.50980
  t線(1013.980)          1.50731
 下の表11に、g線、F線、e線、d線、C線、s線及びt線の各スペクトル線に対する第1の回折素子要素331及び第2の回折素子要素332の各構成材料の屈折率を示す。
(表11)
(屈折率データ)
 波長(nm)  屈折率(第1の回折素子要素)(第2の回折素子要素)
 g線(435.835)       1.54906        1.57133
 F線(486.133)       1.53911        1.56499
 e線(546.074)       1.53153        1.55981
 d線(587.562)       1.5278         1.55714
 C線(656.273)       1.52329        1.55348
 s線(852.110)       1.5162         1.54846
 t線(1013.980)       1.51201        1.54582
 下の表12に、第6面(回折光学面DM)における位相差関数(数式(B))の係数Cの値を示す。
(表12)
(位相差関数係数データ)
 係数
 C3        -3.6000E-03
 C5        -2.7000E-03
 C10        2.7000E-06
 C14        -5.4000E-06
 下の表13に、第2面(第4面)、第3面及び第8面の自由曲面データ式(数式(A))の各項係数を示す。
(表13)
(自由曲面データ)
 項     第2(4)面係数   第3面係数    第8面係数
 C4(x^2)   -8.6820023E-04   3.6037855E-04  1.2834385E-02
 C6(y^2)    3.8045241E-04   2.5973410E-04  7.8708196E-03
 C8(x^2*y)   8.3096007E-06   -1.2458402E-05  8.7026592E-04
 C10(y^3)   7.2547211E-06   -1.0288437E-05  9.1559626E-05
 C11(x^4)   -2.0681573E-06   -1.1192385E-06  2.9785335E-05
 C13(x^2*y^2) -1.0238401E-06   -1.1701761E-06  1.8868075E-04
 C15(y^4)   -3.6093202E-07   -1.8135487E-07   5.2326361E-06
 C17(x^4*y)  3.0997379E-07    5.3874899E-08  -9.2399463E-06
 C19(x^2*y^3) 1.1058042E-07   -1.4068248E-08   6.9154034E-06
 C21(y^5)   1.6643911E-08   6.9332255E-09  -1.9942454E-06
 下の表14に、第2面(第4面)、第3面、第6面及び第8面の偏心データを示す。
(表14)
(偏心データ)
 偏心   第2(4)面  第3面    第6面    第8面
 XDE   0.0      0.0      0.0     0.0
 YDE  -0.372003973 0.118037618 -5.034353463 -4.367686796
 ZDE   0.0    2.633333333 2.324955306  52.324955306
 ADE -4.040538719  20.88166768 -69.1243297  -69.1243297
 BDE   0.0       0.0      0.0     0.0
 CDE   0.0       0.0      0.0     0.0
 下の表15に、上述の条件式(1)~(9)に関する各パラメータの対応値を示す。
(表15)
(パラメータ対応値)
 パラメータ              対応値
 ΔNg               0.02227
 ΔNs               0.03226
 Φm                0.0016584
 Φ                 0.05306
 h                 20.0(μm)
 λd                0.587562(μm)
 fd                6.28277
 fg                6.23503
 fF                6.24967
 fC                6.26050
 fs                6.26693
 ft                6.25950
 ft-fg             0.02447
 Δgs(fs-fg)        0.03190
 ΔFC(fC-fF)        0.01083
 Eg                0.9984
 EC                0.9844
 Ed                1.0000
 Δ(NF-NC)         -0.00467
 xan              16.95122
 yan              12.87656
 下の表16に、上述の条件式(1)~(9)の対応値を示す。表16に示すように、第2実施例は、条件式(1)~(9)を全て満足している。
(表16)
(条件式対応値)
 条件式                 対応値
 (1)(ΔNg + ΔNs)/2   0.02727
 (2)Φm/Φ            0.03126
 (3)h/λd            34.03896
 (4)|νIR|
     s線           196.952
     t線           256.754
 (5)(Eg+EC)/(2×Ed)   0.9914
 (6)ΔNd/Δ(NF-NC)   -6.283
 (7)Δgs/ΔFC         2.945
 (8)Δgt/ΔFC         2.258
 (9)xan/yan         1.3164
 図5は、第2実施例に係る回折光学系10のg線、F線、e線、d線、C線、s線及びt線の各スペクトル線に対するスポットダイヤグラムである。スポットダイヤグラムの下部に表示してある直線の長さは、撮像面上の0.1mmに相当する。この図5によれば、色収差が良好に補正され、優れた結像性能を有していることがわかる。
 11,31 絞り
 12 平板状ガラス
 13,33 回折光学素子
 14,32 自由曲面レンズ
 20,40 撮像素子
 131,331 第1の回折素子要素
 132,332 第2の回折素子要素
 DM 回折光学面

Claims (10)

  1.  非回転対称な非球面である自由曲面を有するプリズムと、複数の回折素子要素が互いに積層され、かつ当該複数の回折素子要素の界面に格子構造の回折光学面が形成されてなる複層型回折光学素子と、を備えてなる自由曲面プリズムを用いた回折光学系であって、
     g線に対する前記回折光学面における屈折率差をΔNgとし、s線に対する前記回折光学面における屈折率差をΔNsとするとき、以下の条件式(1)を満たすことを特徴とする自由曲面プリズムを用いた回折光学系。
     0.005  < (ΔNg + ΔNs)/2 <  0.45  …(1)
  2.  前記回折光学面の屈折力をΦmとし、全系の屈折力をΦとするとき、以下の条件式(2)を満たすことを特徴とする請求項1に記載の自由曲面プリズムを用いた回折光学系。
     1.0×10-7 < Φm/Φ    …(2)
  3.  前記回折光学面の格子高さをhとし、d線の波長をλdとするとき、以下の条件式(3)を満たすことを特徴とする請求項1または2に記載の自由曲面プリズムを用いた回折光学系。
     h/λd < 100.0    …(3)
  4.  使用波長域の短波長端の波長λSが450nm以下、使用波長域の長波長端の波長λLが800nm以上であり、赤外のアッベ数をνIRとするとき、以下の条件式(4)を満たすことを特徴とする請求項1から3のいずれか一項に記載の自由曲面プリズムを用いた回折光学系。
     50.0 < |νIR|    …(4)
     ただし、前記赤外のアッベ数νIRは、以下のごとく定義される。
      νIR=d線における全系の焦点距離fd/(前記波長λSでの全系の焦点距離fS-前記波長λLでの全系の焦点距離fL)
  5.  前記波長λSがg線であり、前記波長λLがs線であることを特徴とする請求項1から4のいずれか一項に記載の自由曲面プリズムを用いた回折光学系。
  6.  前記波長λSがg線であり、前記波長λLがt線であることを特徴とする請求項1から4のいずれか一項に記載の自由曲面プリズムを用いた回折光学系。
  7.  前記回折光学素子のd線、g線及びC線に対する回折効率設計値をそれぞれEd、Eg及びECとするとき、以下の条件式(5)を満たすことを特徴とする請求項1から6のいずれか一項に記載の自由曲面プリズムを用いた回折光学系。
     0.8 < (Eg+EC)/(2×Ed)      …(5)
  8.  前記複数の回折素子要素が第1の回折格子要素と第2の回折格子要素とからなり、
     前記第1の回折格子要素の構成材料及び前記第2の回折格子要素の構成材料のうちの一方が高屈折率低分散の材料、他方が低屈折率高分散の材料であり、当該高屈折率低分散の材料と低屈折率高分散の材料との主分散(NF-NC)の差をΔ(NF-NC)とするとき、以下の条件式(6)を満たすことを特徴とする請求項1から7のいずれか一項に記載の自由曲面プリズムを用いた回折光学系。
     -20.0 < ΔNd/Δ(NF-NC) < -2.0   …(6)
  9.  g線とs線に対する焦点距離の差をΔgs、F線とC線に対する焦点距離の差をΔFCとするとき、以下の条件式(7)を満たすことを特徴とする請求項1から8のいずれか一項に記載の自由曲面プリズムを用いた回折光学系。
     0.5 < Δgs/ΔFC < 8.0   …(7)
  10.  請求項1から9のいずれか一項に記載の自由曲面プリズムを用いた回折光学系と、この回折光学系により結像された画像を撮像する撮像素子と、を備えてなることを特徴とする画像撮像装置。
PCT/JP2012/000256 2011-02-07 2012-01-18 自由曲面プリズムを用いた回折光学系及び画像撮像装置 WO2012108126A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201280007920.5A CN103370641B (zh) 2011-02-07 2012-01-18 使用自由曲面棱镜的衍射光学***及图像拍摄装置
US13/982,788 US9459384B2 (en) 2011-02-07 2012-01-18 Diffraction optical system using free curve surface prism, and image capturing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011024279A JP5672542B2 (ja) 2011-02-07 2011-02-07 自由曲面プリズムを用いた回折光学系及び画像撮像装置
JP2011-024279 2011-02-07

Publications (1)

Publication Number Publication Date
WO2012108126A1 true WO2012108126A1 (ja) 2012-08-16

Family

ID=46638354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000256 WO2012108126A1 (ja) 2011-02-07 2012-01-18 自由曲面プリズムを用いた回折光学系及び画像撮像装置

Country Status (5)

Country Link
US (1) US9459384B2 (ja)
JP (1) JP5672542B2 (ja)
CN (1) CN103370641B (ja)
TW (1) TWI521240B (ja)
WO (1) WO2012108126A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103572A (ja) * 2010-11-12 2012-05-31 Nikon Corp 光学系、画像表示装置及び画像撮像装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103389577A (zh) * 2013-07-23 2013-11-13 中国科学院长春光学精密机械与物理研究所 含自由曲面棱镜的大视场紧凑型扫描红外光学***
US9902120B2 (en) 2015-02-09 2018-02-27 Omnivision Technologies, Inc. Wide-angle camera using achromatic doublet prism array and method of manufacturing the same
CN110133844B (zh) * 2018-02-09 2020-09-08 清华大学 具有色散器件的自由曲面光学***的设计方法
JP7205166B2 (ja) * 2018-11-01 2023-01-17 セイコーエプソン株式会社 表示装置
CN113031259B (zh) * 2020-12-31 2023-06-30 嘉兴驭光光电科技有限公司 菲涅尔化柱状透镜的设计方法及菲涅尔化柱状透镜
CN114280764B (zh) * 2021-12-27 2023-12-08 苏州大学 一种基于自由曲面棱镜的大视场分光成像方法及其***

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009078357A1 (ja) * 2007-12-14 2009-06-25 Nikon Corporation 回折光学系及び光学機器
JP2009139897A (ja) * 2007-12-11 2009-06-25 Canon Inc 画像観察装置
JP2009216858A (ja) * 2008-03-10 2009-09-24 Fujinon Corp 撮像レンズおよび撮像装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3559624B2 (ja) 1995-08-21 2004-09-02 オリンパス株式会社 画像表示装置
US5768025A (en) * 1995-08-21 1998-06-16 Olympus Optical Co., Ltd. Optical system and image display apparatus
JP3472154B2 (ja) * 1998-09-17 2003-12-02 キヤノン株式会社 回折光学素子及びこれを有する光学系
JP2005107298A (ja) * 2003-09-30 2005-04-21 Nikon Corp 回折光学素子及び回折光学素子の製造方法
EP2108993B1 (en) * 2007-01-25 2013-03-20 Nikon Corporation Spectacles lens
JP4958757B2 (ja) * 2007-12-13 2012-06-20 キヤノン株式会社 画像表示装置
JP2010271590A (ja) * 2009-05-22 2010-12-02 Fujifilm Corp 回折光学素子を用いた光学系および装置
JP2011085769A (ja) * 2009-10-15 2011-04-28 Canon Inc 撮像表示装置
JP5652747B2 (ja) * 2010-11-12 2015-01-14 株式会社ニコン 光学系、画像表示装置及び画像撮像装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139897A (ja) * 2007-12-11 2009-06-25 Canon Inc 画像観察装置
WO2009078357A1 (ja) * 2007-12-14 2009-06-25 Nikon Corporation 回折光学系及び光学機器
JP2009216858A (ja) * 2008-03-10 2009-09-24 Fujinon Corp 撮像レンズおよび撮像装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012103572A (ja) * 2010-11-12 2012-05-31 Nikon Corp 光学系、画像表示装置及び画像撮像装置

Also Published As

Publication number Publication date
CN103370641A (zh) 2013-10-23
CN103370641B (zh) 2015-09-16
US9459384B2 (en) 2016-10-04
JP2012163783A (ja) 2012-08-30
TW201237465A (en) 2012-09-16
US20130308191A1 (en) 2013-11-21
JP5672542B2 (ja) 2015-02-18
TWI521240B (zh) 2016-02-11

Similar Documents

Publication Publication Date Title
JP5672542B2 (ja) 自由曲面プリズムを用いた回折光学系及び画像撮像装置
JP4817076B2 (ja) 回折光学素子
JP5652747B2 (ja) 光学系、画像表示装置及び画像撮像装置
TWI406007B (zh) Optical system and eyepiece
US8120852B2 (en) Diffractive optical element, optical system, and optical apparatus
JP2012163831A (ja) 超広角レンズおよびこれを搭載した撮像装置
US20190212530A1 (en) Inverted equal-magnification relay lens and camera system
US20100321782A1 (en) Optical element and optical system including the same
JP2009025573A (ja) 回折光学系
JP5641461B2 (ja) ズーム光学系及びこれを有する撮像装置
JP4743607B2 (ja) フレネルレンズ、および、このフレネルレンズを用いた液晶プロジェクタ
JP6868424B2 (ja) 撮像レンズ
JP2012247450A (ja) 光学系
JP5224187B2 (ja) 眼鏡レンズ、回折光学素子、回折光学系及び光学機器
JP5459966B2 (ja) 回折光学素子及びそれを有する光学系並びに光学機器
JP5369648B2 (ja) 回折光学素子、光学系及び光学機器
JP2020027205A (ja) 撮像光学系及び撮像装置
WO2020036032A1 (ja) レンズ光学系及び撮像装置
JP5574218B2 (ja) サブイメージ光学系及びこれを有する光学機器
JP2019053118A (ja) 光学系および撮像装置
JP2018004914A (ja) 回折光学素子及びそれを有する光学系、撮像装置、レンズ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744471

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13982788

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12744471

Country of ref document: EP

Kind code of ref document: A1