WO2012107997A1 - 電気加熱式触媒 - Google Patents

電気加熱式触媒 Download PDF

Info

Publication number
WO2012107997A1
WO2012107997A1 PCT/JP2011/052627 JP2011052627W WO2012107997A1 WO 2012107997 A1 WO2012107997 A1 WO 2012107997A1 JP 2011052627 W JP2011052627 W JP 2011052627W WO 2012107997 A1 WO2012107997 A1 WO 2012107997A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
mat
inner tube
heating element
case
Prior art date
Application number
PCT/JP2011/052627
Other languages
English (en)
French (fr)
Inventor
▲吉▼岡 衛
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2012556681A priority Critical patent/JP5626371B2/ja
Priority to CN201180066925.0A priority patent/CN103338844B/zh
Priority to US13/981,004 priority patent/US9046024B2/en
Priority to PCT/JP2011/052627 priority patent/WO2012107997A1/ja
Priority to EP11858163.6A priority patent/EP2674209B1/en
Publication of WO2012107997A1 publication Critical patent/WO2012107997A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • F01N3/2889Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices with heat exchangers in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2013Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means
    • F01N3/2026Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using electric or magnetic heating means directly electrifying the catalyst substrate, i.e. heating the electrically conductive catalyst substrate by joule effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • F01N3/2864Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets comprising two or more insulation layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2839Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration
    • F01N3/2853Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing
    • F01N3/2871Arrangements for mounting catalyst support in housing, e.g. with means for compensating thermal expansion or vibration using mats or gaskets between catalyst body and housing the mats or gaskets having an additional, e.g. non-insulating or non-cushioning layer, a metal foil or an adhesive layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an electrically heated catalyst.
  • the mat in order to prevent water from reaching the catalyst carrier through the mat, the mat may be divided by the inner tube.
  • the heat from the catalyst and the heat of the exhaust are hardly transmitted to the outside of the inner tube, the temperature of the mat existing outside the inner tube is difficult to rise. Further, since heat escapes from the mat existing outside the inner tube to the outside of the case, the temperature of the mat existing outside the inner tube tends to decrease. For this reason, water that has entered the mat outside the inner tube tends to stay in the mat without evaporating. And since the insulation resistance value between an electrode and a case falls with the water which stays in this mat
  • the present invention has been made in view of the above problems, and an object thereof is to suppress the flow of electricity to the case of the electrically heated catalyst.
  • an electrically heated catalyst provides: A heating element that generates heat when energized; A case for housing the heating element; An inner pipe provided between the heating element and the case; A mat for insulating electricity provided between the heating element and the inner tube and between the inner tube and the case; An electrode connected to the heating element for supplying power to the heating element; With An insulating layer for insulating electricity is formed on the surface of the inner tube, The insulating layer is thinner on the inner peripheral surface side than on the outer peripheral surface side of the inner tube.
  • the heating element may be a carrier for the catalyst or may be provided upstream of the catalyst. Then, since the heating element generates heat by energizing the heating element, the temperature of the catalyst can be raised.
  • the inner tube divides the mat into a case side and a heating element side. Further, since the inner tube is supported by the mat, the inner tube is not in contact with the heating element and the case.
  • water since water is contained in the exhaust gas of the internal combustion engine, water may condense in the case. This water flows on the inner surface of the case, adheres to the mat, and is then absorbed by the mat. Since the mat is divided by the inner pipe, the water flowing on the inner surface of the case adheres to the mat outside the inner pipe. Then, the presence of the inner pipe suppresses water from entering the mat inside the inner pipe. Since an insulating layer is formed on the surface of the inner tube, electricity is suppressed from flowing through the inner tube even if a metal is used for the inner tube.
  • the insulation resistance value of the insulating material used for the insulating layer decreases as the temperature increases. That is, the higher the temperature, the easier it is for electricity to flow. Also, the thicker the insulating layer, the greater the insulation resistance value. Therefore, in a region where the temperature is relatively high, a decrease in the insulation resistance value can be suppressed by increasing the thickness of the insulating layer.
  • the insulating material also has a heat insulating performance
  • the thicker the insulating layer the higher the heat insulating performance. For this reason, if the insulating layer is made too thick, it becomes difficult for heat from the heating element to be transferred to the mat outside the inner tube. As a result, it takes time to evaporate the water remaining in the mat outside the inner tube.
  • the temperature is increased by receiving heat from the heating element, and on the outer peripheral surface side of the inner tube, the temperature is decreased because heat is released from the case to the outside.
  • the insulation resistance value is larger on the outer peripheral surface side than on the inner peripheral surface side. Therefore, if the insulating layer on the outer peripheral surface side of the inner tube is thickened, the insulation resistance value can be effectively increased. That is, since the temperature on the outer peripheral surface side of the inner tube is lower than that on the inner peripheral surface side, the insulating performance can be enhanced by relatively thickening the insulating layer on the outer peripheral surface side.
  • the insulating layer on the inner peripheral surface side of the inner tube relatively thin to reduce the heat insulating effect, it is possible to easily transfer heat from the heating element and the exhaust to the mat outside the inner tube. Thereby, it can suppress that water retains in a mat
  • the electrically heated catalyst according to the present invention is A heating element that generates heat when energized; A case for housing the heating element; An inner pipe provided between the heating element and the case; A mat for insulating electricity provided between the heating element and the inner tube and between the inner tube and the case; An electrode connected to the heating element for supplying power to the heating element; With The inner pipe protrudes to the upstream side and the downstream side in the exhaust flow direction from the mat, An insulating layer for insulating electricity is formed on the surface of the inner tube, The insulating layer is thinner than the mat at the portion protruding upstream or downstream in the exhaust flow direction than the portion where the mat is provided.
  • the inner tube and the mat are in contact with each other, so there is a risk of short circuit due to water remaining in the mat. For this reason, high insulation performance is required for the insulating layer. Further, since the mat has a heat insulating effect, the temperature of the inner tube is maintained at a relatively high temperature at the portion where the mat is provided. Therefore, it is preferable that the insulating layer be relatively thick in the portion where the mat is provided.
  • the insulating layer can be made relatively thin at a portion protruding upstream or downstream in the exhaust flow direction from the mat.
  • the electrically heated catalyst according to the present invention is A heating element that generates heat when energized; A case for housing the heating element; An inner pipe provided between the heating element and the case; A mat for insulating electricity provided between the heating element and the inner tube and between the inner tube and the case; An electrode connected to the heating element for supplying power to the heating element; With An insulating layer for insulating electricity is formed on the surface of the inner tube, A part of the electrode is formed on the outer peripheral surface of the heating element along the circumferential direction of the heating element, The insulating layer is thicker at least in the vicinity of the part where the distance from the other electrode is the shortest in each electrode than in the part where no electrode is present in the vicinity.
  • Electrodes There are at least two electrodes connected to the heating element, an anode and a cathode.
  • electricity flows through the heating element since electricity flows through a place having a small resistance, it easily flows through a place where the distance between the anode and the cathode is the shortest. That is, the temperature of the heating element tends to be high on the shortest path connecting the anode and the cathode. Therefore, if the insulating layer is made relatively thick in the vicinity of the portion where the distance from each other electrode is the shortest, the required insulation resistance value can be secured.
  • the electrodes are formed along the outer periphery of the heating element, the distance between the electrodes is the shortest at the ends of the electrodes, so that the insulating layer is relatively thick in the vicinity of the ends of the electrodes. May be.
  • the electrodes may be relatively thick at least near the portion where the distance from the other electrode is the shortest in each electrode, but may be relatively thick near the electrodes instead. . That is, the insulating layer existing in the vicinity of the entire electrode may be relatively thick.
  • a part in the vicinity of a part where the distance to the other electrode is shortest in each electrode is “a part that is less than a predetermined distance from a part where the distance to the other electrode is shortest in each electrode”. Also good.
  • a portion where no electrode is present in the vicinity may be “a portion that is a predetermined distance or more away from a portion where the distance between each electrode and the other electrode is the shortest”.
  • electricity can be prevented from flowing through the case of the electrically heated catalyst.
  • FIG. 1 is a diagram showing a schematic configuration of an electrically heated catalyst according to Example 1.
  • FIG. It is the figure which showed the relationship between the insulation resistance value of an insulating layer, and temperature.
  • FIG. 3 is a diagram showing a schematic configuration of an electrically heated catalyst according to Example 2. It is a figure which shows schematic structure of the electrically heated catalyst at the time of the area
  • FIG. 4 is a diagram showing a schematic configuration of an electrically heated catalyst according to Example 3.
  • FIG. 6 is a diagram illustrating a schematic configuration of an electrically heated catalyst according to Example 4.
  • FIG. 6 is another diagram showing a schematic configuration of an electrically heated catalyst according to Example 4.
  • FIG. 1 is a diagram showing a schematic configuration of an electrically heated catalyst 1 according to the first embodiment.
  • the electrically heated catalyst 1 according to this embodiment is provided in the exhaust pipe 2 of the internal combustion engine mounted on the vehicle.
  • the internal combustion engine may be a diesel engine or a gasoline engine. It can also be used in a vehicle that employs a hybrid system equipped with an electric motor.
  • FIG. 1 is a cross-sectional view of the electrically heated catalyst 1 cut in the longitudinal direction along the central axis A of the exhaust pipe 2.
  • the electrically heated catalyst 1 shown in FIG. Since the shape of the electrically heated catalyst 1 is symmetrical with respect to the central axis A, only the upper part is shown in FIG.
  • the electrically heated catalyst 1 includes a cylindrical catalyst carrier 3 centering on a central axis A.
  • a catalyst carrier 3, an inner tube 4, and a case 5 are provided in this order from the central axis A side.
  • a mat 6 is provided between the catalyst carrier 3 and the inner tube 4 and between the inner tube 4 and the case 5.
  • the catalyst carrier 3 is made of a material that generates electrical resistance and generates heat when energized.
  • SiC is used as the material of the catalyst carrier 3.
  • the catalyst carrier 3 has a plurality of passages extending in the direction in which the exhaust flows (that is, in the direction of the central axis A) and having a cross section perpendicular to the direction in which the exhaust flows in a honeycomb shape. Exhaust gas flows through this passage.
  • the outer shape of the catalyst carrier 3 is, for example, a cylindrical shape centered on the central axis A of the exhaust pipe 2.
  • the cross-sectional shape of the catalyst carrier 3 having a cross section orthogonal to the central axis A may be, for example, an ellipse.
  • the central axis A is a central axis common to the exhaust pipe 2, the catalyst carrier 3, the inner pipe 4, and the case 5.
  • the catalyst is supported on the catalyst carrier 3.
  • the catalyst include an oxidation catalyst, a three-way catalyst, an NOx storage reduction catalyst, and a selective reduction NOx catalyst.
  • Two electrodes 7 are connected to the catalyst carrier 3, and the catalyst carrier 3 is energized by applying a voltage between the electrodes 7.
  • the catalyst carrier 3 generates heat due to the electrical resistance of the catalyst carrier 3.
  • the catalyst carrier 3 corresponds to the heating element in the present invention. Further, a heating element may be provided upstream of the catalyst. If it does so, exhaust_gas
  • an electrical insulating material is used, for example, a ceramic fiber mainly composed of alumina.
  • the mat 6 is wound around the outer peripheral surface of the catalyst carrier 3 and the outer peripheral surface of the inner tube 4. Since the mat 6 covers the outer peripheral surface of the catalyst carrier 3 (a surface parallel to the central axis A), electricity is prevented from flowing to the inner tube 4 and the case 5 when the catalyst carrier 3 is energized. .
  • the inner tube 4 is formed in a tubular shape around the central axis A.
  • the inner tube 4 is longer in the central axis A direction than the mat 6. For this reason, the inner tube 4 protrudes from the mat 6 to the upstream side and the downstream side.
  • the inner diameter of the inner tube 4 is substantially the same as the outer diameter of the mat 6 when the outer periphery of the catalyst carrier 3 is covered with the mat 6.
  • An insulating layer 41 is formed on the surface of the inner tube 4.
  • the insulating layer 41 is made of ceramic, for example. Since the insulating layer 41 is formed on the surface of the inner tube 4, even if a metal is used for the inner tube 4, electricity is suppressed from flowing through the inner tube 4.
  • the material of the case 5 is a metal, and for example, a stainless steel material can be used.
  • the case 5 includes an accommodating portion 51 that includes a curved surface parallel to the central axis A, and a tapered portion 52 that connects the accommodating portion 51 and the exhaust pipe 2 on the upstream side and the downstream side of the accommodating portion 51. 53.
  • the catalyst carrier 3, the inner tube 4, and the mat 6 are accommodated inside the accommodating portion 51.
  • the tapered portions 52 and 53 have a tapered shape in which the passage cross-sectional area decreases as the distance from the accommodating portion 51 increases. That is, the taper portion 52 upstream of the catalyst carrier 3 has a smaller sectional area toward the upstream side, and the taper portion 53 downstream of the catalyst carrier 3 has a smaller sectional area toward the downstream side.
  • the inner diameter of the accommodating portion 51 is substantially the same as the outer diameter of the mat 6 when the outer periphery of the inner tube 4 is covered with the mat 6.
  • Two electrodes 7 are connected to the catalyst carrier 3.
  • holes 40 and 54 are provided in the inner tube 4 and the case 5, respectively.
  • the mat 6 is not provided around the electrode 7 until the electrode 7 is connected to the catalyst carrier 3.
  • An insulating material 8 that supports the electrode 7 is provided in the hole 54 formed in the case 5.
  • the insulating material 8 is provided between the case 5 and the electrode 7 without a gap.
  • an electrode chamber 9 that is a closed space around the electrode 7 is formed in the case 5.
  • the inner tube 4 may be divided into an upstream side and a downstream side with respect to the electrode chamber 9 and may be installed separately.
  • the mat 6 may also be divided into an upstream side and a downstream side with respect to the electrode chamber 9 and may be installed separately from each other. As a result, the electrode chamber 9 goes around the catalyst carrier 3 once.
  • the thickness of the insulating layer 41 formed on the surface of the inner tube 4 is different between the inner peripheral surface side and the outer peripheral surface side of the inner tube 4. That is, the insulating layer 401 on the inner peripheral surface side of the inner tube 4 (hereinafter referred to as the inner insulating layer 401) is more than the insulating layer 402 on the outer peripheral surface side of the inner tube 4 (hereinafter referred to as the outer insulating layer 402). It is formed to be thin.
  • the outer insulating layer 402 is compared by increasing the number of repetitions on the outer peripheral surface side rather than the inner peripheral surface side of the inner tube 4. Can be thickened.
  • water condensed on the upstream side of the catalyst carrier 3 may flow on the inner wall of the exhaust pipe 2 or the case 5 and adhere to the mat 6.
  • the water adheres to the mat 6 between the inner tube 4 and the accommodating portion 51.
  • the presence of the inner tube 4 suppresses water from entering the inner side of the inner tube 4.
  • the inner pipe 4 protrudes upstream and downstream from the mat 6, water is further suppressed from entering the inner side than the inner pipe 4. For this reason, it is suppressed that case 5 and the catalyst support
  • the case 5 and the catalyst carrier 3 may be short-circuited by the PM.
  • the inner tube 4 protrudes from the mat 6 and the temperature of the protruding portion is increased due to the heat of the exhaust, the PM adhering to the inner tube 4 can be oxidized and removed. Thereby, it is suppressed that case 5 and the catalyst support
  • FIG. 2 is a diagram showing the relationship between the insulation resistance value of the insulating layer 41 and the temperature.
  • the solid line indicates the case where the insulating layer 41 is relatively thick, and the alternate long and short dash line indicates the case where the insulating layer 41 is relatively thin.
  • a broken line is a lower limit value of the insulation resistance value required for the insulating layer 41.
  • the insulation resistance value of the insulating layer 41 decreases as the temperature increases. That is, the higher the temperature, the easier it is for electricity to flow. At the same temperature, the insulation resistance value increases as the insulating layer 41 is thicker. Therefore, the insulating layer 41 is preferably thickened to ensure the required insulation resistance value under high temperature conditions.
  • the insulating layer 41 also has a heat insulating performance, the heat insulating performance increases as the insulating layer 41 becomes thicker. For this reason, if the insulating layer 41 is made too thick, heat from the catalyst carrier 3 becomes difficult to be transferred to the mat 6 outside the inner tube 4, so that the water staying in the mat 6 outside the inner tube 4 is retained. Evaporation takes time.
  • the temperature on the inner peripheral surface side of the inner tube 4 is high because it receives heat from the catalyst carrier 3.
  • the temperature on the outer peripheral surface side of the inner tube 4 is low because heat escapes from the case 5.
  • the insulation resistance value is higher on the outer peripheral surface side where the temperature is lower than on the inner peripheral surface side.
  • the overall insulation resistance value can be increased even if the overall thickness of the insulating layer 41 is the same. it can. Moreover, since the heat insulation performance can be suppressed by making the inner insulating layer 401 thinner by increasing the thickness of the outer insulating layer 402, water staying in the mat 6 outside the inner tube 4 can also be evaporated. .
  • the inner insulating layer 401 thin, the temperature of the inner tube 4 is likely to rise. Further, by increasing the thickness of the outer insulating layer 402, it is possible to suppress heat from escaping from the inner tube 4 to the case 5. That is, since the temperature of the inner tube 4 can be maintained high, it is possible to promote the oxidation of particulate matter (PM) adhering to a portion where the inner tube 4 protrudes upstream or downstream of the mat 6. it can. That is, the short circuit by PM can be suppressed.
  • PM particulate matter
  • the inner insulating layer 401 and the outer insulating layer 402 are relatively thicker when the outer insulating layer 402 is relatively thicker than when the inner insulating layer 401 and the outer insulating layer 402 have the same insulating layer thickness. Even if the total thickness is the same, the insulation resistance value of the insulating layer 41 as a whole can be increased. Moreover, since it can suppress that the total value of the thickness as the insulating layer 41 whole increases, it can suppress that a heat
  • FIG. 3 is a diagram showing a schematic configuration of the electrically heated catalyst 10 according to the second embodiment. Differences from the electrically heated catalyst 1 shown in Example 1 will be described. In addition, the same code
  • FIG. 3 is a diagram showing a schematic configuration of the electrically heated catalyst 10 according to the second embodiment. Differences from the electrically heated catalyst 1 shown in Example 1 will be described. In addition, the same code
  • the insulating layer 41 formed on the surface of the inner tube 4 and the insulating layer 41 in the portion where the mat 6 is provided (the portion in contact with the mat 6) is referred to as “the insulating layer 403 in the mat”.
  • the insulating layer 41 formed on the surface of the inner pipe 4 and protruding from the mat 6 to the upstream side or the downstream side of the exhaust is referred to as an “outer mat insulating layer 404”.
  • the in-mat insulating layer 403 may be the insulating layer 41 downstream from the upstream end of the mat 6 and upstream from the downstream end of the mat 6.
  • the mat outer insulating layer 404 may be the insulating layer 41 at the upstream side of the upstream end of the mat 6 or the insulating layer 41 at a downstream side of the downstream end of the mat 6.
  • the insulating layer 404 outside the mat is formed thinner than the insulating layer 403 in the mat.
  • the in-mat insulating layer 403 is compared with the in-mat insulating layer 403 by increasing the number of repetitions in the in-mat insulating layer 403 compared to the outside-mat insulating layer 404. Can be thickened.
  • the insulating layer 403 in the mat is required to have high insulating performance. Further, due to the heat insulating effect of the mat 6, the temperature of the in-mat insulating layer 403 is kept relatively high. Accordingly, the in-mat insulating layer 403 is preferably thick. That is, even if the temperature is high, if the in-mat insulating layer 403 is made thick, a required insulation resistance value can be secured.
  • the thickness of the insulating layer 41 may be the same as that of the in-mat insulating layer 403 even if the portion protrudes from the mat 6 as long as it is in the vicinity of the mat 6. In other words, the insulating layer 41 may be made relatively thick at the portion where the mat 6 is provided and the portion in the vicinity thereof.
  • FIG. 4 is a diagram showing a schematic configuration of the electrically heated catalyst 10 in a case where the insulating layer 41 is relatively thick at a portion where the mat 6 is provided and a portion in the vicinity thereof.
  • the range in which the insulating layer 41 is relatively thick may be a range in which water attached to the upstream end or the downstream end of the mat 6 reaches.
  • the insulating layer 41 in a range where the insulation resistance value may decrease due to a high temperature may be relatively thick.
  • the second embodiment by increasing the thickness of the in-mat insulating layer 403 and decreasing the thickness of the outer mat insulating layer 404, the area where the insulating layer is thickened while ensuring the required insulation resistance value is obtained. Since it can suppress, cost increase can be suppressed.
  • FIG. 5 is a diagram showing a schematic configuration of the electrically heated catalyst 11 according to the third embodiment. Differences from the electrically heated catalysts 1 and 10 shown in Examples 1 and 2 will be described. In addition, the same code
  • the insulating layer 41 in the portion where the mat 6 is provided and the insulating layer 41 on the inner peripheral surface side of the inner tube 4 is referred to as “in-mat-inside insulating layer 405”.
  • the insulating layer 41 in the portion where the mat 6 is provided, and the insulating layer 41 on the outer peripheral surface side of the inner tube 4 is referred to as “mat inner-outer insulating layer 406”.
  • the insulating layer 41 formed on the surface of the inner pipe 4 and protruding from the mat 6 to the upstream side or the downstream side of the exhaust is referred to as an “outer mat insulating layer 404”.
  • the inner-outer insulating layer 406 in the mat is made thicker than the insulating layer 41 in other portions.
  • the inner-outer insulating layer 406 is thicker than the inner-inside insulating layer 405 and the outer insulating layer 404 outside the mat.
  • the in-mat-outside insulating layer 406 is compared with the inside-outside insulating layer 406 by repeating this repetition more than the others. Can be thickened.
  • the insulating resistance value of the insulating layer 41 as a whole can be increased by making the inner mat-outer insulating layer 406 thicker than the inner mat-inner insulating layer 405 at the portion in contact with the mat 6. Can do. Moreover, since it can suppress that the thickness as the whole of the insulating layer 41 increases, it can suppress that a heat
  • the area where the insulating layer becomes thick can be suppressed while ensuring the required insulation resistance value.
  • FIG. 6 is a diagram showing a schematic configuration of the electrically heated catalyst 11 when the insulating layer 41 on the outer peripheral surface side of the inner tube 4 is relatively thickened at the portion where the mat 6 is provided and in the vicinity thereof. is there.
  • the range in which the insulating layer 41 is relatively thick may be a range in which water attached to the upstream end or the downstream end of the mat 6 reaches. That is, it is good also as a range for which high insulation performance is requested
  • FIG. 7 is a diagram showing a schematic configuration of the electrically heated catalyst 12 according to the fourth embodiment. Differences from the electrically heated catalyst 1 shown in Example 1 will be described. In addition, the same code
  • FIG. 7 is a diagram showing a schematic configuration of the electrically heated catalyst 12 according to the fourth embodiment. Differences from the electrically heated catalyst 1 shown in Example 1 will be described. In addition, the same code
  • FIG. 7 is a cross-sectional view of the electrically heated catalyst 12 cut along a plane orthogonal to the central axis.
  • hatching other than the inner tube 4, the insulating layer 41, and the electrode 7 is omitted.
  • the electrode 7 includes an anode 71 and a cathode 72.
  • the anode 71 and the cathode 72 are provided along the outer peripheral surface of the catalyst carrier 3. Then, since the catalyst carrier 3 is present between the anode 71 and the cathode 72, electricity flows through the catalyst carrier 3.
  • the insulating layer 41 is thickened at a location where the temperature rises, the required insulation resistance value can be secured. That is, the electrode 7 does not exist in the vicinity of the insulating layer 408 in the vicinity of the portion where the distance to the other electrode is the shortest in each of the anode 71 and the cathode 72 (see the portion surrounded by the one-dot chain line in FIG. 7). It is thicker than the insulating layer 409. Thereby, the fall of insulation performance can be suppressed. Note that the range in which the insulating layer 41 is relatively thick can be obtained by experiments or the like as the range in which the insulation resistance value may be reduced by heat.
  • the insulating layer 41 that is less than a predetermined distance from the portion where the distance to the other electrode is the shortest in each of the anode 71 and the cathode 72 may be relatively thick. This predetermined distance can be obtained by experiments or the like as a range in which the insulation resistance value may decrease due to heat.
  • FIG. 8 is another diagram showing a schematic configuration of the electrically heated catalyst 13 according to the fourth embodiment.
  • FIG. 8 is a cross-sectional view of the electrically heated catalyst 12 taken along a plane orthogonal to the central axis. In FIG. 8, hatching other than the inner tube 4, the insulating layer 41, and the electrode 7 is omitted.
  • the insulating layer 41 is thickened in the vicinity of the anode 71 and the cathode 72. That is, the insulating layer 410 in the vicinity of the electrode 7 is made thicker than the insulating layer 411 in which the electrode 7 does not exist in the vicinity. Thereby, even if the temperature of the whole electrode 7 rises, the required insulation resistance value can be ensured. Note that the insulating layer 41 less than a predetermined distance from the electrode 7 may be relatively thick.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Abstract

 電気加熱式触媒(1)のケース(5)に電気が流れることを抑制する。通電により発熱する発熱体(3)と、発熱体(3)を収容するケース(5)と、発熱体(3)とケース(5)との間に設けられる内管(4)と、発熱体(3)と内管(4)との間及び内管(4)とケース(5)との間に設けられる電気を絶縁するマット(6)と、発熱体(3)に接続され該発熱体(3)に電力を供給する電極(7)と、を備え、内管(4)の表面に電気を絶縁する絶縁層(41)が形成されており、この絶縁層(41)は、内管の外周面側(402)よりも内周面側(403)のほうが薄くなるように形成される。

Description

電気加熱式触媒
 本発明は、電気加熱式触媒に関する。
 通電により発熱する触媒の担体と、該触媒の担体を収容するケースと、の間に絶縁体のマットを設ける技術が知られている(例えば、特許文献1参照。)。このマットによれば、触媒の担体に通電したときに、ケースに電気が流れることを抑制できる。しかし、内燃機関の始動直後などには、排気管壁面で排気中の水が凝縮することがある。液体となった水は排気に押されて下流側に流れ、触媒に到達する。この液体の水がマット内に浸入し電極まで達すると、電極とケースとの間の絶縁抵抗が低下するため電極からケースに電気が流れる虞がある。
 また、水がマット内を通って触媒の担体へ到達することを抑制するために、マットを内管で分割することがある。しかし、触媒からの熱や排気の熱が内管よりも外側に伝わり難くなるため、内管よりも外側に存在するマットの温度は上がり難い。また、内管よりも外側に存在するマットからケースの外部へ熱が逃げるため、内管よりも外側に存在するマットの温度は下がり易い。このため、内管よりも外側のマットに侵入した水は、蒸発せずにマット内に滞留し易い。そして、このマット内に滞留する水により、電極とケースとの間の絶縁抵抗値が低下するため、電極からケースに電気が流れる虞がある。
特開平05-269387号公報
 本発明は、上記問題点に鑑みてなされたものであり、その目的は、電気加熱式触媒のケースに電気が流れることを抑制することにある。
 上記課題を達成するために本発明による電気加熱式触媒は、
 通電により発熱する発熱体と、
 前記発熱体を収容するケースと、
 前記発熱体と前記ケースとの間に設けられる内管と、
 前記発熱体と前記内管との間及び前記内管と前記ケースとの間に設けられる電気を絶縁するマットと、
 前記発熱体に接続され該発熱体に電力を供給する電極と、
 を備え、
 前記内管の表面には、電気を絶縁する絶縁層が形成されており、
 前記絶縁層は、内管の外周面側よりも内周面側のほうが薄い。
 発熱体は、触媒の担体としてもよく、触媒よりも上流側に設けることもできる。そして、発熱体に通電することにより該発熱体が発熱するため、触媒の温度を上昇させることができる。内管は、マットをケース側と発熱体側とに分割している。また、内管はマットにより支持されるため、該内管は、発熱体及びケースとは接触していない。
 ここで、内燃機関の排気中には水分が含まれるため、ケースなどにおいて水が凝縮することがある。この水はケースの内面を流れてマットに付着し、その後マットに吸収される。マットは、内管で分割されているため、ケースの内面を流れて来た水は、内管よりも外側のマットに付着する。そして、内管が存在することにより、該内管よりも内側のマットに水が浸入することが抑制される。内管の表面には絶縁層が形成されるため、該内管に金属を用いたとしても電気が内管を流れることが抑制される。
 ところで、絶縁層に用いられる絶縁材料は、温度が高いほど、絶縁抵抗値が低下する。すなわち、温度が高くなるほど、電気が流れ易くなる。また、絶縁層を厚くするほど、絶縁抵抗値は大きくなる。したがって、温度が比較的高い部位においては、絶縁層を厚くすれば絶縁抵抗値の低下を抑制できる。
 しかし、絶縁材料は断熱性能も有するため、絶縁層を厚くするほど、断熱性能が高くなる。このため、絶縁層を厚くし過ぎると、発熱体からの熱が内管よりも外側のマットへ伝わり難くなる。そうすると、内管よりも外側のマットに滞留している水の蒸発に時間がかかってしまう。
 ここで、内管の内周面側では、発熱体から熱を受けることにより温度が高くなり、内管の外周面側では、ケースから外部へ熱が放出されるため温度が低くなる。このため、絶縁層の厚さを内管の内周面と外周面とで同じにすると、絶縁抵抗値は内周面側よりも外周面側のほうが大きくなる。したがって、内管の外周面側の絶縁層を厚くすれば、絶縁抵抗値を効果的に高めることができる。すなわち、内管の外周面側のほうが内周面側よりも温度が低いために、該外周面側の絶縁層を相対的に厚くすることで、絶縁性能を高くすることができる。また、内管の内周面側の絶縁層を相対的に薄くして断熱効果を小さくすることで、発熱体や排気からの熱を内管よりも外側のマットへ伝え易くすることができる。これにより、マットに水が滞留することを抑制できる。
 また、上記課題を達成するために本発明による電気加熱式触媒は、
 通電により発熱する発熱体と、
 前記発熱体を収容するケースと、
 前記発熱体と前記ケースとの間に設けられる内管と、
 前記発熱体と前記内管との間及び前記内管と前記ケースとの間に設けられる電気を絶縁するマットと、
 前記発熱体に接続され該発熱体に電力を供給する電極と、
 を備え、
 前記内管は、前記マットよりも排気の流れ方向の上流側及び下流側へ突出しており、
 前記内管の表面には、電気を絶縁する絶縁層が形成されており、
 前記絶縁層は、前記マットよりも排気の流れ方向の上流側または下流側へ突出している部位のほうが、前記マットが設けられている部位よりも薄い。
 内管をマットよりも排気の流れ方向の上流側及び下流側へ突出させることにより、マットの上流端及び下流端に水や粒子状物質(PM)が付着しても、電気が流れることを抑制できる。
 ここで、内管のマットが設けられている部位では、内管とマットとが接しているため、マットに滞留している水により短絡の虞がある。このため、絶縁層には高い絶縁性能が要求される。また、マットには断熱効果があるため、マットが設けられている部位では、内管の温度が比較的高いまま維持される。したがって、マットが設けられている部位においては、絶縁層を比較的厚くするとよい。
 一方、マットよりも排気の流れ方向の上流側または下流側へ突出している部位では、排気の温度が低下すると、内管から熱が奪われるため、温度が低下し易い。このため、絶縁層が薄くても絶縁性能を維持できる。したがって、マットよりも排気の流れ方向の上流側または下流側へ突出している部位においては、絶縁層を比較的薄くすることができる。
 また、上記課題を達成するために本発明による電気加熱式触媒は、
 通電により発熱する発熱体と、
 前記発熱体を収容するケースと、
 前記発熱体と前記ケースとの間に設けられる内管と、
 前記発熱体と前記内管との間及び前記内管と前記ケースとの間に設けられる電気を絶縁するマットと、
 前記発熱体に接続され該発熱体に電力を供給する電極と、
 を備え、
 前記内管の表面には、電気を絶縁する絶縁層が形成されており、
 前記電極の一部は、前記発熱体の周方向に沿って該発熱体の外周面に形成されており、
 前記絶縁層は、少なくとも夫々の電極において他の電極との距離が最短となる部位の近傍の部位のほうが、近傍に電極が存在しない部位よりも厚い。
 発熱体に接続される電極は、陽極と陰極との少なくとも2つある。この陽極と陰極との間に電位差を生じさせると発熱体に電気が流れる。ここで、電気は、抵抗の小さな所を流れるため、陽極と陰極との距離が最短となる箇所を流れ易い。すなわち、陽極と陰極とを結ぶ最短経路で発熱体の温度が高くなり易い。したがって、夫々の電極において他の電極との距離が最短となる部位の近傍において絶縁層を相対的に厚くすれば、要求される絶縁抵抗値を確保できる。なお、電極が発熱体の外周に沿って形成されている場合には、該電極の端部で電極間の距離が最短となるため、該電極の端部の近傍で絶縁層を相対的に厚くしてもよい。
 また、電極は、少なくとも、夫々の電極において他の電極との距離が最短となる部位の近傍で相対的に厚くすればよいが、これに代えて、電極近傍において相対的に厚くしてもよい。すなわち、電極全体に亘って、その近傍に存在する絶縁層の厚さを相対的に厚くしてもよい。また、「夫々の電極において他の電極との距離が最短となる部位の近傍の部位」は、「夫々の電極において他の電極との距離が最短となる部位から所定の距離未満の部位」としてもよい。また、「近傍に電極が存在しない部位」は、「夫々の電極において他の電極との距離が最短となる部位から所定の距離以上離れている部位」としてもよい。
 本発明によれば、電気加熱式触媒のケースに電気が流れることを抑制することができる。
実施例1に係る電気加熱式触媒の概略構成を示す図である。 絶縁層の絶縁抵抗値と温度との関係を示した図である。 実施例2に係る電気加熱式触媒の概略構成を示す図である。 マットが設けられている部位及びその近傍の部位において、絶縁層を相対的に厚くした場合の電気加熱式触媒の概略構成を示す図である。 実施例3に係る電気加熱式触媒の概略構成を示す図である。 マットが設けられている部位及びその近傍の部位において、内管の外周面側の絶縁層を相対的に厚くした場合の電気加熱式触媒の概略構成を示す図である。 実施例4に係る電気加熱式触媒の概略構成を示す図である。 実施例4に係る電気加熱式触媒の概略構成を示す他の図である。
 以下、本発明に係る電気加熱式触媒の具体的な実施態様について図面に基づいて説明する。なお、以下の実施例は、適宜組み合わせることができる。
 図1は、本実施例1に係る電気加熱式触媒1の概略構成を示す図である。なお、本実施例に係る電気加熱式触媒1は、車両に搭載される内燃機関の排気管2に設けられる。内燃機関は、ディーゼル機関であっても、また、ガソリン機関であってもよい。また、電気モータを備えたハイブリッドシステムを採用した車両においても用いることができる。
 図1に示す電気加熱式触媒1は、排気管2の中心軸Aに沿って電気加熱式触媒1を縦方向に切断した断面図である。なお、電気加熱式触媒1の形状は、中心軸Aに対して線対称のため、図1では、上側の部分のみを示している。
 本実施例に係る電気加熱式触媒1は、中心軸Aを中心にした円柱形の触媒担体3を備えている。そして、中心軸A側から順に、触媒担体3、内管4、ケース5が備わる。また、触媒担体3と内管4との間、及び内管4とケース5との間には、マット6が設けられている。
 触媒担体3には、電気抵抗となって、通電により発熱する材質のものが用いられる。触媒担体3の材料には、たとえばSiCが用いられる。触媒担体3は、排気の流れる方向(すなわち、中心軸Aの方向)に伸び且つ排気の流れる方向と垂直な断面がハニカム状をなす複数の通路を有している。この通路を排気が流通する。触媒担体3の外形は、たとえば排気管2の中心軸Aを中心とした円柱形である。なお、中心軸Aと直交する断面による触媒担体3の断面形状は、たとえば楕円形で有っても良い。中心軸Aは、排気管2、触媒担体3、内管4、及びケース5で共通の中心軸である。
 触媒担体3には、触媒が担持される。触媒は、たとえば酸化触媒、三元触媒、吸蔵還元型NOx触媒、選択還元型NOx触媒などを挙げることができる。触媒担体3には、電極7が2本接続されており、該電極7間に電圧をかけることにより触媒担体3に通電される。この触媒担体3の電気抵抗により該触媒担体3が発熱する。なお、本実施例においては触媒担体3が、本発明における発熱体に相当する。また、触媒よりも上流側に発熱体を備えていてもよい。そうすると、発熱体により排気が温められ、その排気が触媒を通過することにより、該触媒の温度を上昇させることができる。
 マット6には、電気絶縁材が用いられ、たとえばアルミナを主成分とするセラミックファイバーが用いられる。マット6は、触媒担体3の外周面及び内管4の外周面に巻きつけられる。マット6は、触媒担体3の外周面(中心軸Aと平行な面)を覆っているため、触媒担体3に通電したときに、内管4及びケース5へ電気が流れることを抑制している。
 内管4の材料には、ステンレス鋼材が用いられる。内管4は、中心軸Aを中心とした管状に形成される。この内管4は、中心軸A方向の長さがマット6より長い。このため、内管4は、マット6から上流側及び下流側に突出している。内管4の内径は、触媒担体3の外周をマット6で覆ったときの該マット6の外径と略同じで、内管4内にマット6及び触媒担体3を収容するときには、該マット6が圧縮されるため、該マット6の反発力により内管4内に触媒担体3が固定される。
 内管4の表面には絶縁層41が形成されている。絶縁層41は、たとえばセラミックである。内管4の表面に絶縁層41が形成されるため、該内管4に金属を用いたとしても該内管4を電気が流れることが抑制される。
 ケース5の材料には、金属が用いられ、たとえばステンレス鋼材を用いることができる。ケース5は、中心軸Aと平行な曲面を含んで構成される収容部51と、該収容部51よりも上流側及び下流側で該収容部51と排気管2とを接続するテーパ部52,53と、を備えて構成されている。収容部51の内側に、触媒担体3、内管4、及びマット6が収容される。テーパ部52,53は、収容部51から離れるに従って通路断面積が縮小するテーパ形状をしている。すなわち、触媒担体3よりも上流側のテーパ部52では、上流側ほど断面積が小さくなり、触媒担体3よりも下流側のテーパ部53では、下流側ほど断面積が小さくなる。収容部51の内径は、内管4の外周をマット6で覆ったときの該マット6の外径と略同じで、収容部51にマット6及び内管4を収容するときには、該マット6が圧縮されるため、該マット6の反発力により収容部51内に内管4が固定される。
 触媒担体3には、電極7が2つ接続されている。この電極7を通すために、内管4及びケース5には、それぞれ孔40、54が設けられている。また、電極7が触媒担体3に接続されるまでの該電極7の周りには、マット6を設けていない。そして、ケース5に開けられている孔54には、電極7を支持する絶縁材8が設けられている。この絶縁材8は、ケース5と電極7との間に隙間なく設けられる。このようにして、ケース5内には、電極7の周りに閉じられた空間である電極室9が形成される。なお、内管4を、電極室9よりも上流側と、下流側と、に分割し、夫々を離して設置してもよい。また、マット6も、電極室9よりも上流側と下流側とに分割し、夫々を離して設置してもよい。そうすると、電極室9は、触媒担体3の周りを1周することになる。
 そして、本実施例1では、内管4の表面に形成される絶縁層41の厚さが内管4の内周面側と外周面側とで異なる。すなわち、内管4の内周面側の絶縁層401(以下、内側絶縁層401という。)のほうが、内管4の外周面側の絶縁層402(以下、外側絶縁層402という。)よりも薄くなるように形成される。ここで、絶縁層41は材料の塗布と焼成とを繰り返して形成されるため、この繰り返す回数を内管4の内周面側よりも外周面側で多くすることにより、外側絶縁層402を比較的厚くすることができる。
 このように構成された電気加熱式触媒1では、触媒担体3よりも上流側で凝縮した水が、排気管2やケース5の内壁を流れてマット6に付着することがある。このときには、収容部51の内壁を水が流れてくるので、この水は内管4と収容部51との間のマット6に付着する。そして、内管4が存在することにより、水が内管4よりも内側に入り込むことが抑制される。また、内管4がマット6よりも上流側及び下流側に突出しているため、水が内管4よりも内側に入り込むことがより抑制される。このため、ケース5と触媒担体3とが水を介して短絡することが抑制される。また、マット6内に侵入した水は、触媒担体3からの熱により蒸発することで除去される。
 また、排気中の粒子状物質(以下、PMという。)がマット6や内管4に付着すると、該PMによりケース5と触媒担体3とが短絡する虞がある。しかし、内管4がマット6よりも突出することにより、突出した箇所においては排気の熱を受けて温度が高くなるので、該内管4に付着したPMを酸化させて除去することができる。これにより、ケース5と触媒担体3とがPMにより短絡することが抑制される。
 ここで、図2は、絶縁層41の絶縁抵抗値と温度との関係を示した図である。実線は絶縁層41が比較的厚い場合を示し、一点鎖線は絶縁層41が比較的薄い場合を示している。また、破線は、絶縁層41に要求される絶縁抵抗値の下限値である。
 絶縁層41は、温度が高くなるほど、絶縁抵抗値が小さくなる。すなわち、温度が高くなるほど、電気が流れ易くなる。また、同じ温度では、絶縁層41が厚いほど絶縁抵抗値が大きくなる。したがって、高温条件下では、要求される絶縁抵抗値を確保するために絶縁層41を厚くするとよい。
 一方、絶縁層41は断熱性能も有するため、絶縁層41を厚くするほど、断熱性能が高くなる。このため、絶縁層41を厚くし過ぎると、触媒担体3からの熱が内管4よりも外側のマット6へ伝わり難くなるので、内管4よりも外側のマット6に滞留している水の蒸発に時間がかかってしまう。
 ここで、内管4の内周面側は、触媒担体3から熱を受けるため温度が高い。一方、内管4の外周面側は、ケース5から熱が逃げるため温度が低い。このため、絶縁層41の厚さを内管4の内周面側と外周面側とで同じにすると、内周面側よりも温度の低い外周面側のほうが絶縁抵抗値は大きくなる。
 したがって、外側絶縁層402を厚くし、その分、内側絶縁層401を薄くすることで、絶縁層41の全体としての厚さは同じであっても、全体としての絶縁抵抗値を高くすることができる。また、外側絶縁層402を厚くした分、内側絶縁層401を薄くすることで、断熱性能が上がることを抑制できるので、内管4よりも外側のマット6に滞留する水を蒸発させることもできる。
 また、内側絶縁層401を薄くすることで、内管4の温度が上昇し易くなる。そして、外側絶縁層402を厚くすることで、内管4からケース5へ熱が逃げることを抑制できる。すなわち、内管4の温度を高く維持することができるため、内管4がマット6よりも上流側または下流側に突出している部位に付着した粒子状物質(PM)の酸化を促進させることができる。すなわち、PMによる短絡を抑制できる。
 このように、内側絶縁層401と外側絶縁層402とで絶縁層の厚さを同じにした場合よりも、外側絶縁層402を相対的に厚くしたほうが、内側絶縁層401と外側絶縁層402との厚さの合計値が同じであったとしても、絶縁層41全体としての絶縁抵抗値を大きくすることができる。また、絶縁層41全体としての厚さの合計値が増すことを抑制できるため、内管4よりも外側のマット6に熱が伝わらなくなることを抑制できる。
 図3は、本実施例2に係る電気加熱式触媒10の概略構成を示す図である。実施例1に示す電気加熱式触媒1と異なる点について説明する。なお、実施例1に示す電気加熱式触媒1と同じ部材については同じ符号を付している。
 なお、本実施例では、内管4の表面に形成される絶縁層41であって、マット6が設けられている部位(マット6に接する部位)における絶縁層41を、「マット内絶縁層403」という。また、内管4の表面に形成される絶縁層41であって、マット6から排気の上流側または下流側へ突出する部位における絶縁層41を、「マット外絶縁層404」という。マット内絶縁層403は、マット6の上流端よりも下流側で且つマット6の下流端よりも上流側の絶縁層41としてもよい。また、マット外絶縁層404は、マット6の上流端よりも上流側の部位の絶縁層41またはマット6の下流端よりも下流側の部位の絶縁層41としてもよい。
 そして、本実施例では、マット内絶縁層403よりも、マット外絶縁層404のほうが薄くなるように形成する。ここで、絶縁層41は材料の塗布と焼成とを繰り返して形成されるため、この繰り返す回数をマット外絶縁層404よりもマット内絶縁層403で多くすることにより、マット内絶縁層403を比較的厚くすることができる。
 ここで、マット6に滞留している水による短絡を防ぐ必要があるため、マット内絶縁層403には高い絶縁性能が要求される。また、マット6の断熱効果により、マット内絶縁層403の温度は比較的高いまま維持される。したがって、マット内絶縁層403は厚いほうがよい。すなわち、温度が高くても、マット内絶縁層403を厚くしておけば、要求される絶縁抵抗値を確保できる。
 一方、マット外絶縁層404は、排気の温度が低下すると、排気により熱が奪われるため、温度が低下し易い。このため、マット外絶縁層404を薄くしても要求される絶縁抵抗値を確保できる。
 なお、マット6から突出している部位であっても、マット6の近傍であれば、絶縁層41の厚さを、マット内絶縁層403と同じにしてもよい。すなわち、マット6が設けられている部位及びその近傍の部位において、絶縁層41を相対的に厚くしてもよい。図4は、マット6が設けられている部位及びその近傍の部位において、絶縁層41を相対的に厚くした場合の電気加熱式触媒10の概略構成を示す図である。絶縁層41を相対的に厚くする範囲は、マット6の上流端または下流端に付着した水が到達する範囲としてもよい。すなわち、水による短絡を防ぐために高い絶縁性能が要求される範囲としてもよい。また、マット6から突出している部位であっても、マット6の近傍であれば、絶縁層41の温度が高く維持される。このため、温度が高いために絶縁抵抗値が低下する虞のある範囲の絶縁層41を相対的に厚くしてもよい。
 以上説明したように本実施例2によれば、マット内絶縁層403を厚くし、マット外絶縁層404を薄くすることにより、要求される絶縁抵抗値を確保しつつ絶縁層が厚くなる面積を抑制できるので、コストアップを抑制できる。
 図5は、本実施例3に係る電気加熱式触媒11の概略構成を示す図である。実施例1,2に示す電気加熱式触媒1,10と異なる点について説明する。なお、実施例1,2に示す電気加熱式触媒1,10と同じ部材については同じ符号を付している。
 なお、本実施例では、マット6が設けられている部位における絶縁層41であって、内管4の内周面側の絶縁層41を、「マット内-内側絶縁層405」という。また、マット6が設けられている部位における絶縁層41であって、内管4の外周面側の絶縁層41を、「マット内-外側絶縁層406」という。さらに、内管4の表面に形成される絶縁層41であって、マット6から排気の上流側または下流側へ突出する部位における絶縁層41を、「マット外絶縁層404」という。
 そして、図5に示す電気加熱式触媒11では、マット内-外側絶縁層406を、他の部位の絶縁層41よりも厚くしている。すなわち、マット内-内側絶縁層405及びマット外絶縁層404よりも、マット内-外側絶縁層406のほうが厚くなるように形成する。
 ここで、絶縁層41は材料の塗布と焼成とを繰り返して形成されるため、この繰り返す回数をマット内-外側絶縁層406だけ他よりも多くすることで、マット内-外側絶縁層406を比較的厚くすることができる。
 このように、マット6と接する箇所においては、マット内-内側絶縁層405よりもマット内-外側絶縁層406のほうを厚くすることで、絶縁層41の全体としての絶縁抵抗値を大きくすることができる。また、絶縁層41の全体としての厚さが増すことを抑制できるため、内管4よりも外側のマット6に熱が伝わらなくなることを抑制できる。
 また、マット外絶縁層404を薄くし、マット内-外側絶縁層406を厚くすることにより、要求される絶縁抵抗値を確保しつつ絶縁層が厚くなる面積を抑制できるので、コストアップを抑制できる。
 なお、マット6から突出している部位であっても、マット6の近傍であれば、内管4の外周面側の絶縁層41の厚さを、マット内-外側絶縁層406と同じにしてもよい。すなわち、内管4の外周面側であってマット6が設けられている部位及びその近傍の部位において、絶縁層41を相対的に厚くしてもよい。図6は、マット6が設けられている部位及びその近傍の部位において、内管4の外周面側の絶縁層41を相対的に厚くした場合の電気加熱式触媒11の概略構成を示す図である。絶縁層41を相対的に厚くする範囲は、マット6の上流端または下流端に付着した水が到達する範囲としてもよい。すなわち、水による短絡を防ぐために高い絶縁性能が要求される範囲としてもよい。また、マット6から突出している部位であっても、マット6の近傍であれば、絶縁層41の温度が高く維持される。このため、温度が高いために絶縁抵抗値が低下する虞のある範囲であって、内管4の外周面側の絶縁層41を相対的に厚くしてもよい。
 図7は、本実施例4に係る電気加熱式触媒12の概略構成を示す図である。実施例1に示す電気加熱式触媒1と異なる点について説明する。なお、実施例1に示す電気加熱式触媒1と同じ部材については同じ符号を付している。
 図7は、電気加熱式触媒12を中心軸と直交する面により切断したときの断面図である。なお、図7では、内管4、絶縁層41、電極7以外のハッチングを省略している。ここで、電極7は、陽極71と、陰極72と、を備えている。陽極71及び陰極72は、触媒担体3の外周面に沿って設けられている。そして、陽極71と陰極72との間に触媒担体3が存在することで、該触媒担体3に電気が流れる。ここで、電気は抵抗の小さな所を流れるため、陽極71と陰極72との距離が最短となる部位を主に流れる(図7の二点鎖線で囲んだ箇所を参照。)。したがって、陽極71および陰極72の夫々において、他の電極との距離が最短となる部位においては、他の部位よりも、温度が高くなり易いので、この近傍では絶縁層41の絶縁抵抗値が低下する虞がある。
 これに対して、温度が高くなる箇所において絶縁層41を厚くすれば、要求される絶縁抵抗値を確保できる。すなわち、陽極71および陰極72の夫々において他の電極との距離が最短となる部位の近傍の絶縁層408(図7の一点鎖線で囲んだ箇所を参照。)を、近傍に電極7が存在しない絶縁層409よりも厚くする。これにより、絶縁性能の低下を抑制できる。なお、絶縁層41を相対的に厚くする範囲は、熱により絶縁抵抗値が低下する虞がある範囲として実験等により求めることができる。また、陽極71および陰極72の夫々において他の電極との距離が最短となる部位から所定の距離未満の絶縁層41を相対的に厚くしてもよい。この所定の距離は、熱により絶縁抵抗値が低下する虞がある範囲として実験等により求めることができる。
 また、図8は、本実施例4に係る電気加熱式触媒13の概略構成を示す他の図である。図8は、電気加熱式触媒12を中心軸と直交する面により切断したときの断面図である。なお、図8では、内管4、絶縁層41、電極7以外のハッチングを省略している。
 図8に示す電気加熱式触媒13では、陽極71及び陰極72の近傍において絶縁層41を厚くしている。すなわち、電極7の近傍の絶縁層410を、近傍に電極7が存在しない絶縁層411よりも厚くする。これにより、電極7の全体の温度が上昇しても要求される絶縁抵抗値を確保することができる。なお、電極7から所定の距離未満の絶縁層41を相対的に厚くしてもよい。
1     電気加熱式触媒
2     排気管
3     触媒担体
4     内管
5     ケース
6     マット
7     電極
8     絶縁材
9     電極室
41   絶縁層
401 内側絶縁層
402 外側絶縁層

Claims (3)

  1.  通電により発熱する発熱体と、
     前記発熱体を収容するケースと、
     前記発熱体と前記ケースとの間に設けられる内管と、
     前記発熱体と前記内管との間及び前記内管と前記ケースとの間に設けられる電気を絶縁するマットと、
     前記発熱体に接続され該発熱体に電力を供給する電極と、
     を備え、
     前記内管の表面には、電気を絶縁する絶縁層が形成されており、
     前記絶縁層は、内管の外周面側よりも内周面側のほうが薄い電気加熱式触媒。
  2.  通電により発熱する発熱体と、
     前記発熱体を収容するケースと、
     前記発熱体と前記ケースとの間に設けられる内管と、
     前記発熱体と前記内管との間及び前記内管と前記ケースとの間に設けられる電気を絶縁するマットと、
     前記発熱体に接続され該発熱体に電力を供給する電極と、
     を備え、
     前記内管は、前記マットよりも排気の流れ方向の上流側及び下流側へ突出しており、
     前記内管の表面には、電気を絶縁する絶縁層が形成されており、
     前記絶縁層は、前記マットよりも排気の流れ方向の上流側または下流側へ突出している部位のほうが、前記マットが設けられている部位よりも薄い電気加熱式触媒。
  3.  通電により発熱する発熱体と、
     前記発熱体を収容するケースと、
     前記発熱体と前記ケースとの間に設けられる内管と、
     前記発熱体と前記内管との間及び前記内管と前記ケースとの間に設けられる電気を絶縁するマットと、
     前記発熱体に接続され該発熱体に電力を供給する電極と、
     を備え、
     前記内管の表面には、電気を絶縁する絶縁層が形成されており、
     前記電極の一部は、前記発熱体の周方向に沿って該発熱体の外周面に形成されており、
     前記絶縁層は、少なくとも夫々の電極において他の電極との距離が最短となる部位の近傍の部位のほうが、近傍に電極が存在しない部位よりも厚い電気加熱式触媒。
PCT/JP2011/052627 2011-02-08 2011-02-08 電気加熱式触媒 WO2012107997A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012556681A JP5626371B2 (ja) 2011-02-08 2011-02-08 電気加熱式触媒
CN201180066925.0A CN103338844B (zh) 2011-02-08 2011-02-08 电加热式催化剂
US13/981,004 US9046024B2 (en) 2011-02-08 2011-02-08 Electric heating catalyst
PCT/JP2011/052627 WO2012107997A1 (ja) 2011-02-08 2011-02-08 電気加熱式触媒
EP11858163.6A EP2674209B1 (en) 2011-02-08 2011-02-08 Electric heating catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/052627 WO2012107997A1 (ja) 2011-02-08 2011-02-08 電気加熱式触媒

Publications (1)

Publication Number Publication Date
WO2012107997A1 true WO2012107997A1 (ja) 2012-08-16

Family

ID=46638240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/052627 WO2012107997A1 (ja) 2011-02-08 2011-02-08 電気加熱式触媒

Country Status (5)

Country Link
US (1) US9046024B2 (ja)
EP (1) EP2674209B1 (ja)
JP (1) JP5626371B2 (ja)
CN (1) CN103338844B (ja)
WO (1) WO2012107997A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105545430A (zh) * 2014-10-28 2016-05-04 揖斐电株式会社 电加热式催化转化器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6408865B2 (ja) * 2014-10-28 2018-10-17 イビデン株式会社 電気加熱式触媒コンバータ
CN108884742B (zh) * 2016-03-02 2022-02-01 沃特洛电气制造公司 虚拟传感***
JP6626377B2 (ja) * 2016-03-14 2019-12-25 日本碍子株式会社 ハニカム型加熱装置並びにその使用方法及び製造方法
DE102022129142A1 (de) * 2022-11-04 2024-05-08 Friedrich Boysen Gmbh & Co. Kg Elektrisch beheizbare Einheit

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146686A (ja) * 1991-04-05 1993-06-15 W R Grace & Co 電気的に加熱しうる触媒コンバーター・コアに対するコア員
JPH05277379A (ja) * 1992-04-01 1993-10-26 Nissan Motor Co Ltd 排気浄化用触媒コンバータ装置
JPH0647625U (ja) * 1992-12-07 1994-06-28 カルソニック株式会社 電熱式触媒コンバータ
JPH08210127A (ja) * 1995-02-02 1996-08-20 Nissan Motor Co Ltd 内燃機関の触媒浄化装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5070694A (en) * 1990-10-31 1991-12-10 W. R. Grace & Co. -Conn. Structure for electrically heatable catalytic core
US5140812A (en) * 1991-11-05 1992-08-25 W. R. Grace & Co.-Conn. Core for an electrically heatable catalytic converter
JPH05269387A (ja) 1992-03-26 1993-10-19 Nissan Motor Co Ltd 排気浄化用触媒コンバータ装置
JPH0576530U (ja) * 1992-03-30 1993-10-19 カルソニック株式会社 排気浄化用電気発熱式金属担体触媒コンバータ
DE4430645A1 (de) * 1994-08-29 1996-03-07 Emitec Emissionstechnologie Katalytischer Reaktor
DE10046610C1 (de) * 2000-09-20 2002-04-25 Emitec Emissionstechnologie Fest-Los-Lagerung eines Katalysator-Trägerkörpers
GB0507326D0 (en) * 2005-04-12 2005-05-18 Delphi Tech Inc Catalytic converter apparatus and method
WO2012093481A1 (ja) 2011-01-06 2012-07-12 イビデン株式会社 排ガス処理装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05146686A (ja) * 1991-04-05 1993-06-15 W R Grace & Co 電気的に加熱しうる触媒コンバーター・コアに対するコア員
JPH05277379A (ja) * 1992-04-01 1993-10-26 Nissan Motor Co Ltd 排気浄化用触媒コンバータ装置
JPH0647625U (ja) * 1992-12-07 1994-06-28 カルソニック株式会社 電熱式触媒コンバータ
JPH08210127A (ja) * 1995-02-02 1996-08-20 Nissan Motor Co Ltd 内燃機関の触媒浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2674209A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105545430A (zh) * 2014-10-28 2016-05-04 揖斐电株式会社 电加热式催化转化器

Also Published As

Publication number Publication date
CN103338844B (zh) 2015-05-20
JPWO2012107997A1 (ja) 2014-07-03
EP2674209B1 (en) 2015-10-07
EP2674209A1 (en) 2013-12-18
CN103338844A (zh) 2013-10-02
US20130305698A1 (en) 2013-11-21
US9046024B2 (en) 2015-06-02
JP5626371B2 (ja) 2014-11-19
EP2674209A4 (en) 2014-07-16

Similar Documents

Publication Publication Date Title
WO2012120680A1 (ja) 内燃機関の排気浄化装置
JP5626371B2 (ja) 電気加熱式触媒
JP5761362B2 (ja) 電気加熱式触媒
JP2015132256A (ja) 内燃機関の触媒装置
JP2013185573A (ja) 電気加熱式触媒
JP5263456B2 (ja) 電気加熱式触媒
JP5617938B2 (ja) 電気加熱式触媒
JP5673683B2 (ja) 電気加熱式触媒
JP5626375B2 (ja) 電気加熱式触媒
CN103442788A (zh) 电加热催化剂
US8647584B2 (en) Electric heating catalyst
JP5472468B2 (ja) 電気加熱式触媒
US8894942B2 (en) Electrically heated catalyst
JP5601240B2 (ja) 触媒コンバータ装置
WO2012032625A1 (ja) 電気加熱式触媒
JP2023153607A (ja) 触媒装置
JP2011220323A (ja) 電気加熱式触媒

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11858163

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012556681

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13981004

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011858163

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE