WO2012106924A1 - 一种协作多点传输方法、设备以及*** - Google Patents

一种协作多点传输方法、设备以及*** Download PDF

Info

Publication number
WO2012106924A1
WO2012106924A1 PCT/CN2011/077566 CN2011077566W WO2012106924A1 WO 2012106924 A1 WO2012106924 A1 WO 2012106924A1 CN 2011077566 W CN2011077566 W CN 2011077566W WO 2012106924 A1 WO2012106924 A1 WO 2012106924A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
rsrp
gain
serving cell
amount
Prior art date
Application number
PCT/CN2011/077566
Other languages
English (en)
French (fr)
Inventor
陈莉娜
楼群芳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP11857989.5A priority Critical patent/EP2712228B1/en
Priority to PCT/CN2011/077566 priority patent/WO2012106924A1/zh
Priority to CN201180001647.0A priority patent/CN102308620B/zh
Publication of WO2012106924A1 publication Critical patent/WO2012106924A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/20Monitoring; Testing of receivers
    • H04B17/24Monitoring; Testing of receivers with feedback of measurements to the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • the present invention relates to the field of network technologies, and more particularly to a coordinated multipoint transmission method, apparatus, and system. Background technique
  • CoMP Coordinatd Multi-point Transission/Reception
  • LTE-A Long Term Evolution-Advanced
  • LTE-A Long Term Evolution-Advanced
  • FIG 1 shows a schematic diagram of CoMP technology.
  • CoMP is a cooperative transmission and reception technology.
  • a base station eNodeB x in Figure 1 connects several access points (such as Point x in Figure 1), one access.
  • a point can contain one or more antennas.
  • Multiple users User Equipment, UE
  • UE x may be served by one or more access points at the same base station or different base stations.
  • the Coordinate Controller can obtain information from distributed access points and allocate resources to meet the needs of the user's QoS (Quality of Service), maximizing overall network performance.
  • QoS Quality of Service
  • the CoMP technology may be a signal for simultaneously transmitting or receiving a serving cell and a plurality of coordinated cells, which is equivalent to increasing the number of antennas at the transmitting end or the receiving end, and is boosted by a multiple input multiple output (MIMO) receiver. Demodulation performance.
  • MIMO multiple input multiple output
  • the main principle of the CoMP in the uplink-based intra-base station is to use the antennas of different cells of the same base station to receive signals of a certain user, and simultaneously obtain the combined gain and interference suppression gain of the signals received by the multiple antennas.
  • the user is located at the boundary of the cell Cell 0 and Cell 1, and the serving cell is Cell 1, and the closer to the cell Cell 0, the cell Cell. The stronger the signal power received by the user, the greater the signal combining gain.
  • the mainstream solution in the prior art is to determine whether to perform CoMP on the UE by using whether the difference between the RSRP (Reference Signal Receiving Power) and the RSRP of other neighboring cells is greater than a predetermined threshold.
  • the interference factor is not considered.
  • the interference between the serving cell and other cells often differs greatly. Therefore, the UE selected according to the difference between the RSRP of the serving cell and other cells is often not the UE with the largest gain when performing CoMP. Reduced the effect of CoMP.
  • the embodiments of the present invention provide a cooperative multipoint transmission method, device, and system, which can select a user equipment located at a cell overlap to perform coordinated multipoint transmission, and improve the effect of coordinated multipoint transmission.
  • the present invention provides a CoMP coordinated multipoint transmission method, including: acquiring a reference signal received power RSRP of a cell in a UE measurement set of a user equipment;
  • a cell with a larger RSRP and a serving cell of the UE in the first cell and the second cell are combined into a coordinated set of the UE, and coordinated multi-point transmission is performed on the UE.
  • Another aspect of the present invention provides a coordinated multipoint transmission device, including:
  • An RSRP obtaining unit configured to acquire a reference signal received power RSRP of all cells in the measurement set of the user equipment UE;
  • a determining unit configured to determine that the difference between the RSRP of the first cell except the serving cell and the RSRP of the second cell in the measurement set is greater than a preset threshold
  • a cooperation set joining unit configured to use a cell with a larger RSRP in the first cell and the second cell
  • the UE's monthly service cell constitutes a cooperative set of the UE
  • a transmission unit configured to perform coordinated multi-point transmission on the UE.
  • Still another aspect of the present invention provides a system comprising the above-described coordinated multipoint transmission device. It can be seen that the cooperative multi-point transmission method, device, and system provided by the embodiments of the present invention determine whether the UE is located in the measurement set of the UE except whether there are two cells whose RSRP difference is greater than the threshold value. CoMP is performed, and the embodiment of the present invention can select UEs close to the cell overlap, and the amount of gain of CoMP in this part of the UE is also large, so the effect of CoMP can be improved.
  • BRIEF DESCRIPTION OF THE DRAWINGS In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings used in the embodiments or the description of the prior art will be briefly described below. Obviously, in the following description The drawings are some embodiments of the present invention, and those skilled in the art can obtain other drawings based on these drawings without any creative work.
  • FIG. 1 is a schematic diagram of a CoMP technology in the prior art
  • FIG. 2 is a schematic diagram of a cell of a CoMP technology of an Intra-eNodeB
  • FIG. 3 is a schematic flowchart of a coordinated multipoint transmission method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flowchart of a coordinated multipoint transmission method according to another embodiment of the present invention.
  • FIG. 5 is a schematic diagram of an application scenario of a coordinated multipoint transmission method according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a coordinated multipoint transmission device according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a coordinated multipoint transmission device according to another embodiment of the present invention.
  • the technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention.
  • the embodiments are a part of the embodiments of the invention, and not all of the embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
  • FIG. 3 is a schematic flowchart of a coordinated multipoint transmission method according to an embodiment of the present invention.
  • An embodiment of the present invention provides a cooperative multipoint transmission method. As shown in FIG. 3, the method includes:
  • Step S301 Acquire a reference signal received power RSRP of a cell in the user equipment (UE) measurement set.
  • the specific implementation of obtaining RSRP can adopt existing technologies, such as defined in the 3GPP 36.214 protocol. Methods.
  • the present invention does not limit the implementation of obtaining RSRP.
  • the measurement set may be determined by using the following method:
  • the base station of the UE serving cell sends a periodic measurement configuration to the UE, and after receiving the periodic measurement configuration, the UE measures the signal quality of all available cells of the configured frequency point. And reporting to the base station of the serving cell, the base station adds a cell whose signal quality exceeds the threshold set by the network to the measurement set of the UE, and may also specify that the cell with the signal quality ranked in the first few bits is added to the measurement of the UE. Concentration, the present invention does not limit this.
  • the cells in the measurement set may belong to different base stations or may belong to the same base station.
  • Step S302 Determine that the difference between the RSRP of the first cell except the serving cell and the RSRP of the second cell in the measurement set is greater than a preset threshold.
  • the RSRP values of other cells except the serving cell in the UE measurement set may be subtracted two by two, and the absolute value of the difference between the RSRPs of the two cells except the serving cell in the measurement set is obtained, and the absolute value of the difference is Pre-set thresholds are compared for comparison.
  • the RSRPs of the two cells are subtracted and compared with a preset threshold.
  • a preset threshold Assume that there are three cells in the measurement set in addition to the serving cell of the UE. Cell 1, cell 2, and cell 3 subtract the RSRP values of cell 1, cell 2, and cell 3 to obtain an IRSRP cell l - RSRP cell. 2 l, IRSRP cell l - RSRP cell 3 l, IRSRP cell 3 - RSRP cell 2 l, compare these three values with the preset threshold.
  • the UE may be CoMP.
  • Step S303 The cell with the larger RSRP and the serving cell of the UE in the first cell and the second cell are combined into a UE, and the UE is CoMP.
  • FIG. 4 is a schematic flowchart of a coordinated multi-point transmission method according to another embodiment of the present invention. As shown in FIG. 4, the cooperative multi-point transmission method in the first embodiment includes:
  • Step S401 Acquire a reference signal received power (RSRP) of a cell in the UE measurement set.
  • RSRP reference signal received power
  • the specific method may be similar to the step S301 of the previous embodiment.
  • Step S402 Determine that the difference between the RSRP of the first cell except the serving cell and the RSRP of the second cell in the measurement set is greater than a preset threshold.
  • the specific method may be similar to the step S302 of the previous embodiment.
  • Step S403 The cell with a larger RSRP and the serving cell of the UE in the first cell and the second cell are formed into a cooperation set of the UE.
  • the specific method may be similar to the step S303 of the previous embodiment.
  • Step S404 After step S403, acquire the amount of gain between the processed SINR (Picture-SINR) of the UE in the cooperation set and the processed SINR of the UE in the serving cell.
  • the processed SINR Physical-SINR
  • the amount of gain in step S404 can be a relative gain amount.
  • the relative gain can be determined according to the following formula:
  • the cooperation set of the UE is in addition to the serving cell.
  • a cell other than the cell may also be referred to as a coordinated cell of the UE.
  • Log 2 (l+ ⁇ VRJ is the throughput of the UE in its cooperative set determined according to the Shannon formula
  • log 2 (1 + SINR 0 ) is the throughput of the UE in its serving cell determined according to the Shannon formula.
  • the amount of gain in step S404 can be an absolute gain amount.
  • the absolute gain can be determined by:
  • SINR For the processed SINR of the UE in its serving cell, SIN is the processed SINR of the UE in a cell other than the serving cell in its cooperative set.
  • Log 2 (l+ ⁇ VRJ is the throughput of the UE in its cooperative set determined according to the Shannon formula, and log 2 (1 + SINR 0 ) is the throughput of the UE in its serving cell determined according to the Shannon formula.
  • Step S405 Perform CoMP on the UE whose gain amount is greater than a preset threshold.
  • the UE may be sorted according to the amount of gain calculated in step S404, and the UE having a large gain amount is preferentially selected for CoMP until the processing resource is used up.
  • the hardware resources are limited, only some UEs may be guaranteed to perform CoMP.
  • the UEs are also sorted according to the amount of gain.
  • CoMP is preferentially applied to UEs with large gains, which can fully improve the efficiency of CoMP under limited resources.
  • the step of acquiring the gain amount of the UE in the foregoing embodiment may be performed separately in each transmission time interval ( ⁇ ), or may be performed separately on each resource block (RB).
  • the granularity performed by the step of acquiring the gain amount of the UE may be divided by other granularities.
  • the cells in the measurement set of the UE may belong to the same base station, or at least two cells belong to different base stations.
  • CoMP Intra-eNodeB CoMP
  • CoMP between the base stations is implemented when CoMP is performed on the UE (Inter-eNodeB CoMP) )
  • Example 1 As shown in FIG. 5, it is assumed that the serving cell of the UE is Cell 0.
  • the measurement set of the UE includes three cells, which are the serving cell CdlO of the UE, and two other adjacent cells Cell 1 and Cell 2.
  • the RSRPs of Cell 0, Cell 1, and Cell 2 are obtained and recorded as RSRP.
  • the UE When ok! If the absolute value of the difference between the ruler and the RSRP 2 is greater than the preset threshold, it indicates that the UE is at the overlap of the cells. In FIG. 5, the UE is located at the overlap between the cells Cell 0 and Cell 1, and RSRPi the RSRP value RSRP larger cell 2 corresponding to the serving cell cell 0 cooperating set of the UE composition. For example, when the absolute value of the difference between RSRP and RSRP 2 is greater than a preset threshold, and since the UE is closer to Celll than Cdl2, RSRP RSRP 2 can be measured, and then Cell 0 and Cell 1 are combined to form UE cooperation. set. The UE is then CoMP.
  • Example 2 There are three UEs, which can be respectively recorded as UE1, UE2, and UE3, and the serving cells of the three UEs are both CdlO, and the measurement set includes CdlO and two other adjacent cells Cell 1 and Cell 2.
  • the processes of acquiring the RSPR and the cooperation set constituting each UE in the above example 1 are respectively performed for UE1, UE2, and UE3.
  • Then calculate the amount of gain between the processed SINR of the UE1 in its cooperative set and the processed SINR of the UE1 in its serving cell CellO, denoted as D1, and calculate the processed SINR of the UE2 in its cooperative set and the UE2 in its serving cell CdlO.
  • the amount of gain between the processed SINRs, denoted as D2 is calculated as the amount of gain between the processed SINR of UE3 in its cooperative set and the processed SINR of UE3 in its serving cell CdlO, denoted as D3.
  • UE1, UE2 and UE3 are sorted according to the order of their respective gain amounts: UE2, UE1, UE3.
  • CoMP is preferentially performed on UE2, followed by UE1. If the processing resource is exhausted after performing CoMP on UE1, CoMP is not performed on UE3.
  • first cells and second cells there may be multiple first cells and second cells that meet the conditions in the foregoing embodiments, for example, when the UE is located at a cell overlap between the base stations, or is divided into six cells in the base station, etc., assuming that the measurement set of the UE includes Five cells, Cell 0, Cell 1, Cell 2, Cell 3, and Cell 4. Its Medium Cell 0 is the serving cell of the UE.
  • the RSRPs measured by Cell 1, Cell 2, Cell 3, and Cell 4 are RSRP RSRP 2 , RSRP 3, and RSRP 4 respectively .
  • ! ⁇ ! The absolute value of the difference between ⁇ and RSRP 2 is greater than the preset threshold.
  • the absolute value of the difference between RSRP 3 and RSRP 4 is also greater than the preset threshold.
  • the condition can be met.
  • a cell with a large RSRP in a cell whose RSRP difference is greater than the preset threshold is used as a coordinated cell of the UE, and together with the serving cell of the UE, constitutes a cooperative set of the UE.
  • ⁇ celll, cell2 ⁇ and ⁇ cell3, cell4 ⁇ there are two pairs of cells that satisfy the condition, ⁇ celll, cell2 ⁇ and ⁇ cell3, cell4 ⁇ , and their corresponding RSRPs can be labeled as ⁇ RSRPi , RSRP 2 ⁇ and ⁇ RSRP 3 , RSRP 4 respectively . ⁇ .
  • IRSRP RSRP 2 l and IRSRP 3 -RSRP 4 I are both greater than the preset threshold, and RSRP ⁇ RSRPz, RSRP 3 >RSRP 4 , and RSR and RSRP 3 can be used together as the coordinated cell of the UE, so that the cooperation set of the UE is Cell 0, Celll and Cdl3.
  • the hardware resources are insufficient, there is a certain limit on the number of coordinated cells in the cooperation set of the UE. In this case, it is also required to compare the RSRPs in the cells whose each RSRP difference that satisfies the condition is greater than the preset threshold.
  • the cell with a larger RSRP is preferentially selected as the coordinated cell of the UE; or the RSRP of the cell with a larger RSRP in the cell with the RSRP difference greater than the preset threshold is also greater than a preset threshold, and then RSRP is A larger cell serves as a coordinated cell of the UE.
  • RSRP is A larger cell serves as a coordinated cell of the UE.
  • FIG. 6 is a schematic structural diagram of a coordinated multipoint transmission device according to an embodiment of the present invention. As shown in FIG. 6, the cooperative multipoint transmission device includes:
  • the RSRP obtaining unit 601 is configured to acquire a reference signal receiving power RSRP of all cells in the measurement set of the user equipment UE;
  • the determining unit 602 is configured to determine that the difference between the RSRP of the first cell except the serving cell and the RSRP of the second cell in the measurement set is greater than a preset threshold;
  • the transmitting unit 603 is configured to form a coordinated set of the UEs in the first cell and the second cell with a larger RSRP and a serving cell of the UE, and perform coordinated multipoint transmission on the UE.
  • the coordinated multipoint transmission device in this embodiment may be a base station.
  • the specific implementation of the RSRP acquisition unit 601 to obtain the RSRP may employ a prior art, such as the method defined in the 3GPP 36.214 protocol.
  • the present invention does not limit the implementation of obtaining RSRP.
  • the cells in the measurement set may belong to different base stations or may belong to the same base station.
  • the determining unit 602 may subtract the RSRP values of other cells except the serving cell in the UE measurement set, and obtain the absolute value of the difference between the RSRPs of the two cells except the serving cell in the measurement set, and the difference value The absolute value is compared to a pre-set threshold.
  • FIG. 7 is a schematic structural diagram of a coordinated multipoint transmission device according to another embodiment of the present invention. As shown in FIG. 7, the coordinated multipoint transmission device includes:
  • the RSRP obtaining unit 701 is configured to obtain a reference signal received power RSRP of all cells in the measurement set of the user equipment UE.
  • the specific implementation of the RSRP obtaining unit 701 to obtain the RSRP may be implemented by using a prior art, for example, a method defined in the 3GPP 36.214 protocol.
  • the present invention does not limit the implementation of obtaining RSRP.
  • the cells in the measurement set may belong to different base stations or may belong to the same base station.
  • the determining unit 702 is configured to determine that the difference between the RSRP of the first cell except the serving cell and the RSRP of the second cell in the measurement set is greater than a preset threshold; the determining unit 702 may divide the UE measurement by the serving cell. The RSRP values of other cells are subtracted from each other, and the absolute value of the difference between the RSRPs of the two cells except the serving cell in the measurement set is obtained, and the absolute value of the difference is compared with a preset threshold value. Comparison.
  • the method further includes: a gain amount acquisition unit 703, wherein the gain amount acquisition unit 703 is configured to acquire a gain amount between the processed SINR of the UE in the cooperation set and the processed SINR of the UE in the serving cell.
  • the amount of gain acquired by the gain amount acquisition unit 703 may be The relative gain amount, the relative gain amount can be determined according to the following formula:
  • SINR is the processed SINR of the UE in a cell other than the serving cell in its cooperative set.
  • a cell other than the serving cell in the cooperation set of the UE may also be referred to as a coordinated cell of the UE.
  • Log 2 (l+ ⁇ VRJ is the throughput of the UE in its cooperative set determined according to the Shannon formula
  • log 2 (1 + SINR 0 ) is the throughput of the UE in its serving cell determined according to the Shannon formula.
  • the gain amount obtained by the gain amount acquisition unit 604 can take an absolute gain amount.
  • the absolute gain can be determined by:
  • SINR is the processed SINR of the UE in a cell other than the serving cell in its cooperative set.
  • Log l+ ⁇ VRJ is the throughput of the UE in its cooperative set determined according to the Shannon formula, 1 0 ⁇ (1+ ⁇ / cis.) is the throughput of the UE in its serving cell determined according to the Shannon formula.
  • the process of the gain amount acquisition unit 703 acquiring the gain amount of the UE may be performed separately in each transmission time interval (TTI) or separately on each resource block (RB). Of course, the granularity performed by the step of acquiring the gain amount of the UE may be divided by other granularities.
  • the transmitting unit 704 is specifically configured to select a UE whose gain amount is greater than a preset threshold for coordinated multi-point transmission.
  • the cooperative multipoint transmission device in this embodiment may be a base station.
  • an embodiment of the present invention also provides a system including the coordinated multipoint transmission device in the above device embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种CoMP协作多点传输方法、设备和***,该方法包括:获取用户设备UE测量集内小区的参考信号接收功率RSRP;确定UE在测量集中除了服务小区之外的第一小区的RSRP与第二小区的RSRP的差值大于预设门限值;将第一小区及第二小区中RSRP较大的小区以及UE的服务小区组成UE的协作集,对UE进行协作多点传输,提高CoMP的效果。

Description

种协作多点传输方法、 设备以及***
技术领域 本发明涉及网络技术领域, 更具体地说, 涉及一种协作多点传输方法、 设 备以及***。 背景技术
CoMP ( Coordinated Multi-point Transission/reception , 协作多点传输)是 LTE-A ( Long Term Evolution- Advanced, 长期演进技术的后续演进)的关键技 术之一, 用以扩展高数据率的覆盖范围, 提升***的平均吞吐量, 能够改善小 区边缘用户的性能。
图 1示出了 CoMP技术的示意图, CoMP是一种合作的发送和接收技术, 一 个基站(如图 1中 eNodeB x )连接几个接入点(如图 1中的 Point x ) , 一个接入 点可以包含一根或者多根天线。 多个用户( User Equipment, 筒称 UE ) ( UE x ) 可以由处于同一个基站或者不同基站的一个或多个接入点服务。协调中心控制 器可以从分布式接入点中获得信息, 并且分配资源以满足用户 QoS ( Quality of Service, 服务质量) 的需求, 使得整个网络性能最大化。
CoMP技术可以是同时发送或接收服务小区与多个协作小区的信号, 等效 于增加发射端或接收端的天线数, 通过多路输入多路输出 (Multiple Input Multiple Output , 筒称 MIMO )接收机提升解调性能。
基于上行链路的基站内( Intra-eNodeB )的 CoMP主要原理是利用同一基站 的不同小区的天线对某一个用户的信号进行接收,可以同时获得多天线接收的 信号的合并增益和干扰抑制增益, 并且越靠近两个小区边界的用户,信号合并 增益越大, 以图 2为例, 用户位于小区 Cell 0和 Cell 1的边界, 其服务小区为 Cell 1 , 越靠近小区 Cell 0的边界, 小区 Cell 0接收到该用户的信号功率越强, 信号 合并增益也就越大。
但是如果将所有用户都进行 CoMP时, 实现的复杂度要求会非常高, 由于 目前设备的处理能力的限制, 这种方案在现实中 4艮难实现, 而且将某些信干噪 比 (SINR )过低的小区做联合接收, 由于信道估计的影响可能反而导致性能 下降, 因此如何选择 CoMP协作集以及选择对哪些 UE进行 CoMP来达到性能和 复杂度的优化就变得非常重要。
目前现有技术中的主流方案是利用服务小区 RSRP ( Reference Signal Receiving Power, 参考信号接收功率 )和其他相邻小区的 RSRP之差是否大于 预定阈值来确定是否对 UE进行 CoMP, 但是这种选择方式并未考虑干扰因素, 在实际中,服务小区和其他小区的干扰往往差别较大, 因此依据服务小区与其 他小区的 RSRP之差选择出的 UE, 往往不是进行 CoMP时取得增益量最大的 UE, 降低了 CoMP的效果。
发明内容
有鉴于此, 本发明实施例提供一种协作多点传输方法、 设备以及***, 能 够选择出位于小区交叠处的用户设备进行协作多点传输,提高协作多点传输的 效果。
为实现上述目的,一方面本发明提供一种 CoMP协作多点传输方法,包括: 获取用户设备 UE测量集内小区的参考信号接收功率 RSRP;
确定该 UE在测量集中除了服务小区之外的第一小区的 RSRP与第二小区 的 RSRP的差值大于预设门限值;
将该第一小区及第二小区中 RSRP较大的小区以及 UE的服务小区组成该 UE的协作集, 对该 UE进行协作多点传输。
本发明另一方面还提供一种协作多点传输设备, 包括:
RSRP获取单元, 用于获取用户设备 UE的测量集中的所有小区的参考信 号接收功率 RSRP;
确定单元, 用于确定该 UE在测量集中除了服务小区之外的第一小区的 RSRP与第二小区的 RSRP的差值大于预设门限值;
协作集加入单元,用于将该第一小区及第二小区中 RSRP较大的小区以及
UE的月良务小区组成该 UE的协作集;
传输单元, 用于对该 UE进行协作多点传输。
本发明再一方面还提供一种***, 包括上述的协作多点传输设备。 由此可见, 本发明实施例提供的协作多点传输方法、 设备以及***, 基于 UE 的测量集内除服务小区以外是否存在 RSRP差值大于门限值的的两个小 区, 来确定是否对 UE 进行 CoMP, 本发明实施例能够将靠近小区交叠处的 UE选择出来,而这部分 UE进行 CoMP的增益量也较大,因此可以提高 CoMP 的效果。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创 造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中 CoMP技术的示意图;
图 2为 Intra-eNodeB的 CoMP技术的小区示意图;
图 3为本发明一实施例协作多点传输方法流程示意图;
图 4为本发明另一实施例协作多点传输方法流程示意图;
图 5是本发明一实施例中协作多点传输方法的应用场景示意图;
图 6为本发明一实施例协作多点传输设备结构示意图;
图 7为本发明另一实施例协作多点传输设备结构示意图。 具体实施方式 为使本发明实施例的目的、技术方案和优点更加清楚, 下面将结合本发明 实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然, 所描述的实施例是本发明一部分实施例, 而不是全部的实施例。基于本发明中 的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其 他实施例, 都属于本发明保护的范围。
图 3为本发明一实施例协作多点传输方法流程示意图。本发明一实施例提 供一种协作多点传输方法, 如图 3所示, 该方法包括:
步骤 S301 :获取用户设备( UE )测量集内小区的参考信号接收功率 RSRP。 获取 RSRP的具体实现可以采用现有技术, 例如 3GPP 36.214协议中定义 的方法。 本发明对获取 RSRP的实现不做限定。
另外, 测量集可以利用如下方法确定: 由 UE服务小区的基站向 UE下发 周期性测量配置, UE在收到该周期性测量配置后, 对所配置频点的所有可用 小区进行测量得到信号质量, 并上报至服务小区的基站,基站将信号质量超过 网络设定的门限值的小区添加到该 UE的测量集中,也可以规定将信号质量排 在前若干位的小区添加到该 UE的测量集中, 本发明对此不作限定。 测量集中 的小区可以属于不同基站, 也可以属于同一基站。
步骤 S302: 确定该 UE在测量集中除了服务小区之外的第一小区的 RSRP 与第二小区的 RSRP的差值大于预设门限值。
可以将 UE测量集中除服务小区之外的其他小区的 RSRP值两两相减, 得 到测量集中除服务小区之外的两个小区的 RSRP的差值的绝对值,并将差值的 绝对值与预先预设的门限值进行比较。
例如, 当测量集中除了 UE的服务小区之外还有两个小区时, 则将这两个 小区的 RSRP相减并与预设门限值进行比较即可。 假设, 测量集中除了 UE的 服务小区之外还有三个小区, cell 1, cell 2, cell 3, 则将 cell 1, cell 2, cell 3的 RSRP值两两相减,得到 IRSRP cell l- RSRP cell 2l、 IRSRP cell l- RSRP cell 3l、 IRSRP cell 3- RSRP cell 2l, 将这三个值与预设门限值进行比较。 只要这三个值中有一个值 大于预设门限(或者大于等于预设门限, 对此本发明不做限定), 则可以对该 UE进行 CoMP。
当存在满足上述条件的第一小区和第二小区时,表明该 UE处于服务小区 与其他小区的交叠处, 对该 UE进行 CoMP所获得的增益量较大。
步骤 S303:将上述第一小区及第二小区中 RSRP较大的小区以及 UE的服 务小区组成 UE的协作集; 对 UE进行 CoMP。
具体的进行协作多点传输的方法也可以通过现有技术实现。
本实施例提供的方法基于 UE的测量集内除服务小区以外是否存在 RSRP 差值大于门限值的的两个小区, 来确定是否对 UE进行 CoMP, 由于除了服务 小区之外的其他小区之间的干扰往往比较接近,因此可以更准确地选择出靠近 小区交叠处的 UE, 对这部分 UE进行 CoMP的增益量也较大, 因此可以提高 CoMP的效果。 图 4为本发明另一实施例协作多点传输方法流程示意图,如图 4所示, 本 实施例一中协作多点传输方法, 包括:
步骤 S401: 获取 UE测量集内小区的参考信号接收功率( RSRP );
其中, 具体的方法可以类似参见上一实施例的步骤 S301。
步骤 S402: 确定上述 UE在测量集中除了服务小区之外的第一小区的 RSRP与第二小区的 RSRP的差值大于预设门限值。
其中, 具体的方法可以类似参见上一实施例的步骤 S302。
步骤 S403:将上述第一小区及第二小区中 RSRP较大的小区以及 UE的服 务小区组成 UE的协作集。
其中, 具体的方法可以类似参见上一实施例的步骤 S303。
步骤 S404:在步骤 S403之后,获取上述 UE在上述协作集中的处理后 SINR ( Posted-SINR ) 与上述 UE在上述服务小区中的处理后 SINR之间的增益量。
在覆盖受限的场景下, 步骤 S404中的增益量可以采用相对增益量。
相对增益量可以才艮据下式确定:
log2 (l + SINR, ) -log2 (l + SINR0 )
log2 (l + 其中, SINR。为该 UE在其服务小区的处理后 SINR, SIN 为该 UE在其 协作集中除了服务小区以外的小区中的处理后 SINR。这里, UE的协作集中除 了服务小区以外的小区也可以称为该 UE的协作小区。
log2 (l+ ^VRJ为根据香农公式确定的 UE 在其协作集的吞吐量, log2 (1 + SINR0 )为根据香农公式确定的 UE在其服务小区的吞吐量。
对于容量受限的场景下, 步骤 S404中的增益量可以采用绝对增益量。 绝对增益量可以通过下式确定:
log2 (1 + SINR, ) - log2 (1 + SINR0 )
其中, SINR。为该 UE在其服务小区的处理后 SINR, SIN 为该 UE在其 协作集中除了服务小区以外的小区中的处理后 SINR。 log2 (l+ ^VRJ为根据香农公式确定的 UE 在其协作集的吞吐量, log2 (1 + SINR0 )为根据香农公式确定的 UE在其服务小区的吞吐量。
步骤 S405: 对增益量大于预设阈值的 UE进行 CoMP。
在实际中, 或者也可以是将各个 UE按照步骤 S404中计算得到的增益量 进行大小排序, 优先选择增益量大的 UE进行 CoMP, 直至处理资源用完。
本实施例中, 考虑到硬件资源受限的情况, 可能只能保证部分 UE进行 CoMP, 在通过步骤 S401-S403选择出靠近小区交叠处的 UE后,还对这些 UE 按照其增益量进行排序, 优先对增益量大的 UE进行 CoMP, 这样可以在有限 的资源下充分提高 CoMP的效率。
需要说明的是,上述实施例中获取 UE的增益量的步骤可以在每个传输时 间间隔(ΤΉ ) 中分别进行, 也可以在每个资源块(RB )上分别进行。 当然, 也可以以其他粒度对获取 UE的增益量的步骤所执行的粒度进行划分。 在上述各个实施例中, UE的测量集中的小区可以属于同一个基站, 也可 以至少有两个小区属于不同基站。
当 UE的测量集中的小区都属于同一个基站时, 在对该 UE进行 CoMP时 就实现了基站内的 CoMP ( Intra-eNodeB CoMP );
当 UE的测量集中至少有两个小区属于不同基站, 并且在 UE的协作集中 也包括属于至少两个基站的小区时,在对该 UE进行 CoMP时就实现了基站间 的 CoMP ( Inter-eNodeB CoMP )„
以下以几个具体的例子详细说明本发明中的协作多点传输方法的具体实 现。 例子 1: 如图 5所示,假设 UE的服务小区为 Cell 0。 在该 UE的测量集中 包括三个小区, 分别为该 UE的服务小区 CdlO, 和其他两个相邻的小区 Cell 1 和 Cell 2。 首先获取 Cell 0、 Cell 1和 Cell 2的 RSRP, 分别记为 RSRP。、 RSRP^P RSRP
当确定!^尺 与 RSRP2之差的绝对值大于预设的门限值时, 表明该 UE 处于小区的交叠处, 在图 5中, UE位于小区 Cell 0和 Cell 1之间的交叠处, 将 RSRPi与 RSRP2中较大的 RSRP值对应的小区与服务小区 Cell 0组成 UE 的协作集。 例如, 当 RSRP 与 RSRP2之差的绝对值大于预设的门限值, 并且 由于相对于 Cdl2, UE更靠近 Celll , 因此可以测得 RSRP RSRP2, 则将 Cell 0和 Cell 1组成 UE的协作集。 然后对该 UE进行 CoMP。 例子 2: ϋ殳有三个 UE, 可以分别记为 UE1、 UE2和 UE3, 并且这三个 UE的服务小区均为 CdlO,测量集中均包含 CdlO和其他两个相邻的小区 Cell 1 和 Cell 2。 首先针对 UE1、 UE2和 UE3分别执行如上述例子 1中的获取 RSPR和组 成各个 UE的协作集的过程。 然后计算 UE1在其协作集中的处理后 SINR与 UE1在其服务小区 CellO 的处理后 SINR之间的增益量,记为 D1 ,计算 UE2在其协作集中的处理后 SINR 与 UE2在其服务小区 CdlO的处理后 SINR之间的增益量,记为 D2,计算 UE3 在其协作集中的处理后 SINR与 UE3在其服务小区 CdlO的处理后 SINR之间 的增益量, 记为 D3。
假设 D2>D1>D3 , 则将 UE1、 UE2和 UE3按照各自的增益量的大小顺序 进行排序就是这样的: UE2, UE1 , UE3。
优先对 UE2进行 CoMP, 之后是 UE1 , 如果在对 UE1进行 CoMP之后处 理资源用完, 则不对 UE3进行 CoMP。
此外, 满足上述实施例中条件的第一小区和第二小区可能有多个, 例如当 UE位于基站间的小区交叠处, 或者基站内划分为六个小区等情景, 假设 UE 的测量集中包括五个小区, 分别为 Cell 0、 Cell 1 , Cell 2、 Cell 3和 Cell 4。 其 中 Cell 0是该 UE的服务小区。经过测量 Cell 1、 Cell 2、 Cell 3和 Cell 4的 RSRP 分别为 RSRP RSRP2、 RSRP3和 RSRP4。 通过比较发现: !^!^^与 RSRP2之差的绝对值大于预设的门限值, RSRP3 与 RSRP4之差的绝对值也大于预设的门限值, 在硬件资源充足的情况下, 可 以将满足条件的每一对 RSRP差值大于预设门限的小区中 RSRP较大的小区都 作为 UE的协作小区, 与 UE的服务小区一并组成 UE的协作集。 假设对于上 面的例子, 满足条件的小区有两对, 分别是 {celll , cell2}以及 {cell3, cell4} , 其所对应的 RSRP可以分别标记为 { RSRPi , RSRP2 }和 { RSRP3 , RSRP4 }。 假设 IRSRP RSRP2l以及 IRSRP3-RSRP4I都大于预设门限, 且 RSRP^RSRPz , RSRP3>RSRP4 , 此时可以将 RSR 与 RSRP3共同作为 UE的协作小区, 这样 UE的协作集由 Cell 0、 Celll和 Cdl3组成。 但是有的时候在硬件资源不充足的情况下,对 UE的协作集中的协作小区 的个数有一定限制,此时还需要将满足条件的每对 RSRP差值大于预设门限的 小区中 RSRP较大的小区之间进行比较, 优先选择 RSRP较大的小区作为 UE 的协作小区;或者比较 RSRP差值大于预设门限的小区中 RSRP较大的小区的 RSRP是否也大于预设阈值, 然后将 RSRP较大的小区作为 UE的协作小区。 例如, 对于上面的例子中, 进一步假设两个第一'■!、区!^!^丄与 RSRP3之间的 差值也大于门限值, 则只将 RSRP较大的 Celll作为 UE的协作小区,此时 UE 的协作集中只有 Cell 0和 Cdll。
图 6为本发明一实施例协作多点传输设备结构示意图,如图 6所示, 该协 作多点传输设备包括:
RSRP获取单元 601 , 用于获取用户设备 UE的测量集中的所有小区的参 考信号接收功率 RSRP;
确定单元 602, 用于确定上述 UE在测量集中除了服务小区之外的第一小 区的 RSRP与第二小区的 RSRP的差值大于预设门限值; 传输单元 603, 用于将上述第一小区及第二小区中 RSRP较大的小区以及 UE的服务小区组成该 UE的协作集, 对上述 UE进行协作多点传输。
在实际中, 本实施例中的协作多点传输设备可以为基站。
RSRP获取单元 601获取 RSRP的具体实现可以采用现有技术,例如 3GPP 36.214协议中定义的方法。 本发明对获取 RSRP的实现不做限定。 测量集中的 小区可以属于不同基站, 也可以属于同一基站。
确定单元 602可以将 UE测量集中除服务小区之外的其他小区的 RSRP值 两两相减, 得到测量集中除服务小区之外的两个小区的 RSRP 的差值的绝对 值, 并将差值的绝对值与预先预设的门限值进行比较。
图 7为本发明另一实施例协作多点传输设备结构示意图,如图 7所示, 该 协作多点传输设备包括:
RSRP获取单元 701 , 用于获取用户设备 UE的测量集中的所有小区的参 考信号接收功率 RSRP; RSRP获取单元 701获取 RSRP的具体实现可以采用 现有技术, 例如 3GPP 36.214协议中定义的方法。 本发明对获取 RSRP的实现 不做限定。 测量集中的小区可以属于不同基站, 也可以属于同一基站。
确定单元 702, 用于确定上述 UE在测量集中除了服务小区之外的第一小 区的 RSRP与第二小区的 RSRP的差值大于预设门限值;确定单元 702可以将 UE测量集中除服务小区之外的其他小区的 RSRP值两两相减, 得到测量集中 除服务小区之外的两个小区的 RSRP的差值的绝对值,并将差值的绝对值与预 先预设的门限值进行比较。
还包括: 增益量获取单元 703 其中, 增益量获取单元 703用于获取上述 UE在其协作集中的处理后 SINR与上述 UE在其服务小区中的处理后 SINR之 间的增益量。
具体的,在覆盖受限的场景下,增益量获取单元 703获取的增益量可以是 相对增益量, 相对增益量可以根据下式确定:
log2 (l + SINR, )-log2 (l + SINR0 )
log2 (l +續。) 其中, SINR。为该 UE在其服务小区的处理后 SINR, SIN 为该 UE在其 协作集中除了服务小区以外的小区中的处理后 SINR。这里, UE的协作集中除 了服务小区以外的小区也可以称为该 UE的协作小区。
log2 (l+ ^VRJ为根据香农公式确定的 UE 在其协作集的吞吐量, log2 (1 + SINR0 )为根据香农公式确定的 UE在其服务小区的吞吐量。
对于容量受限的场景下,增益量获取单元 604获取的增益量可以采用绝对 增益量。
绝对增益量可以通过下式确定:
log2 (1 + SINR, ) - log2 (1 + SINR0 )
其中, SINR。为该 UE在其服务小区的处理后 SINR, SIN 为该 UE在其 协作集中除了服务小区以外的小区中的处理后 SINR。
log l+ ^VRJ为根据香农公式确定的 UE 在其协作集的吞吐量, 10^ (1+ ^/顺。)为根据香农公式确定的 UE在其服务小区的吞吐量。
增益量获取单元 703获取 UE的增益量的过程可以在每个传输时间间隔 ( TTI ) 中分别进行, 也可以在每个资源块(RB )上分别进行。 当然, 也可以 以其他粒度对获取 UE的增益量的步骤所执行的粒度进行划分。 传输单元 704具体用于选择增益量大于预设阈值的 UE进行协作多点传 输。 在本实施例中的协作多点传输设备可以为基站。
此外, 本发明的一个实施例还提供一种***, 该***包括上述设备实施例 中的协作多点传输设备。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰 这些改进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求
1、 一种 CoMP协作多点传输方法, 其特征在于, 包括:
获取用户设备 UE测量集内小区的参考信号接收功率 RSRP;
确定所述 UE在测量集中除了服务小区之外的第一小区的 RSRP与第二小 区的 RSRP的差值大于预设门限值;
将所述第一小区及第二小区中 RSRP较大的小区以及 UE的服务小区组成 所述 UE的协作集, 对所述 UE进行协作多点传输。
2、 根据权利要求 1所述的方法, 其特征在于, 还包括:
获取所述 UE在所述协作集中的处理后 SINR与所述 UE在所述服务小区 中的处理后 SINR之间的增益量;
所述对所述 UE进行协作多点传输, 包括:
选择所述增益量大于预设阈值的 UE进行协作多点传输。
3、 根据权利要求 2所述的方法, 其特征在于, 所述增益量为相对增益量 或绝对增益量。
4、 根据权利要求 2或 3所述的方法, 其特征在于, 所述获取所述 UE在 所述协作集中的处理后 SINR, 与所述 UE在所述服务小区中的处理后 SINR 之间的增益量, 包括:
在每个传输时间间隔( ΤΉ )中获取所述 UE在所述协作集中的处理后 SINR 与所述 UE在所述服务小区中的处理后 SINR之间的增益量。
5、 根据权利要求 2或 3所述的方法, 其特征在于, 所述获取所述 UE在 所述协作集中的处理后 SINR, 与所述 UE在所述服务小区中的处理后 SINR 之间的增益量, 包括:
在每个资源块( RB )上获取所述 UE在所述协作集中的处理后 SINR与所 述 UE在所述服务小区中的处理后 SINR之间的增益量。
6、 根据权利要求 1至 5中任意一项所述的方法, 其特征在于,
所述 UE的测量集中的小区属于同一个基站, 或者
所述 UE的测量集中的小区中至少有两个属于不同基站。
7、 一种协作多点传输设备, 其特征在于, 包括: RSRP获取单元, 用于获取用户设备 UE的测量集中的所有小区的参考信 号接收功率 RSRP;
确定单元,用于确定所述 UE在测量集中除了服务小区之外的第一小区的 RSRP与第二小区的 RSRP的差值大于预设门限值;
传输单元, 用于将所述第一小区及第二小区中 RSRP较大的小区以及 UE 的服务小区组成所述 UE的协作集, 对所述 UE进行协作多点传输。
8、 根据权利要求 7所述的设备, 其特征在于, 还包括:
增益量获取单元, 用于获取所述 UE在所述协作集中的处理后 SINR与所 述 UE在所述服务小区中的处理后 SINR之间的增益量;
所述传输单元, 具体用于, 选择所述增益量大于预设阈值的 UE进行协作 多点传输。
9、 根据权利要求 7所述的设备, 其特征在于, 所述增益量获取单元具体 用于, 在每个传输时间间隔( ΤΉ ) 中获取所述 UE在所述协作集中的处理后 SINR与所述 UE在所述服务小区中的处理后 SINR之间的增益量; 或
所述增益量获取单元具体用于, 在每个资源块(RB )上获取所述 UE在 所述协作集中的处理后 SINR与所述 UE在所述服务小区中的处理后 SINR之 间的增益量。
10、 根据权利要求 7-9中任一项所述的设备, 其特征在于, 所述设备为基 站。
11、 一种***, 其特征在于, 包括如权利要求 7-9任一项所述的协作多点 传输设备。
PCT/CN2011/077566 2011-07-25 2011-07-25 一种协作多点传输方法、设备以及*** WO2012106924A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11857989.5A EP2712228B1 (en) 2011-07-25 2011-07-25 Method, equipment and system for coordinated multi-point transmission/reception
PCT/CN2011/077566 WO2012106924A1 (zh) 2011-07-25 2011-07-25 一种协作多点传输方法、设备以及***
CN201180001647.0A CN102308620B (zh) 2011-07-25 2011-07-25 一种协作多点传输方法、设备以及***

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/077566 WO2012106924A1 (zh) 2011-07-25 2011-07-25 一种协作多点传输方法、设备以及***

Publications (1)

Publication Number Publication Date
WO2012106924A1 true WO2012106924A1 (zh) 2012-08-16

Family

ID=45381286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077566 WO2012106924A1 (zh) 2011-07-25 2011-07-25 一种协作多点传输方法、设备以及***

Country Status (3)

Country Link
EP (1) EP2712228B1 (zh)
CN (1) CN102308620B (zh)
WO (1) WO2012106924A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624482B (zh) * 2012-01-12 2015-07-08 北京邮电大学 一种多点协作传输场景下的有限反馈方法及***
CN102547744A (zh) * 2012-01-16 2012-07-04 北京邮电大学 一种协作集的动态划分方法及用户设备
WO2013116977A1 (zh) * 2012-02-06 2013-08-15 富士通株式会社 确定下行协作多点测量集合的方法及其装置
CN103428711B (zh) * 2012-05-14 2016-05-04 上海贝尔股份有限公司 用于管理多点协作的方法与装置
CN109348533B (zh) * 2013-05-15 2021-12-14 华为技术有限公司 一种信号调整方法及装置、小区
CN103402260B (zh) * 2013-07-10 2017-05-03 中国科学院计算技术研究所 协作多点通信中的协作集选取的方法及***
CN105323777B (zh) * 2014-06-10 2019-06-28 ***通信集团公司 一种下行联合发送控制方法、***及相关装置
CN104168627A (zh) * 2014-08-06 2014-11-26 无锡高联信息技术有限公司 用于lte***中的接入控制方法
CN108923896B (zh) 2017-04-19 2021-03-26 上海朗帛通信技术有限公司 一种被用于寻呼的用户设备、基站中的方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101815331A (zh) * 2009-02-25 2010-08-25 中兴通讯股份有限公司 参与协同传输的协同小区选择方法、服务基站及通信***
CN101873661A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种CoMP***中确定协同小区的方法、***及终端
CN101895921A (zh) * 2009-05-18 2010-11-24 普天信息技术研究院有限公司 一种选取协同多点小区的方法
CN102076096A (zh) * 2011-01-12 2011-05-25 上海华为技术有限公司 一种 CoMP的实现方法、装置及基站

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8145223B2 (en) * 2009-04-09 2012-03-27 Telefonaktiebolaget L M Ericsson (Publ) Inter-cell interference mitigation
JP5302457B2 (ja) * 2009-05-11 2013-10-02 テレフオンアクチーボラゲット エル エム エリクソン(パブル) 連携アクセスノードと通信する移動局に命令する技術
CN102388667B (zh) * 2009-06-23 2013-12-25 上海贝尔股份有限公司 协同多点传输***中的传输方案确定方法和设备
CN101938299B (zh) * 2009-06-29 2013-04-24 华为技术有限公司 一种确定联合传输小区的方法和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101815331A (zh) * 2009-02-25 2010-08-25 中兴通讯股份有限公司 参与协同传输的协同小区选择方法、服务基站及通信***
CN101873661A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种CoMP***中确定协同小区的方法、***及终端
CN101895921A (zh) * 2009-05-18 2010-11-24 普天信息技术研究院有限公司 一种选取协同多点小区的方法
CN102076096A (zh) * 2011-01-12 2011-05-25 上海华为技术有限公司 一种 CoMP的实现方法、装置及基站

Also Published As

Publication number Publication date
EP2712228B1 (en) 2015-09-23
EP2712228A4 (en) 2014-06-11
CN102308620B (zh) 2013-12-18
CN102308620A (zh) 2012-01-04
EP2712228A1 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2012106924A1 (zh) 一种协作多点传输方法、设备以及***
US9628151B2 (en) Selection of access points for coordinated multipoint uplink reception
JP6097371B2 (ja) 干渉制御方法および装置
CN109547164B (zh) 用于在通信***中配置信道状态信息的***和方法
JP2020516183A (ja) 通信ビームのリカバリのためのシステムおよび方法
RU2619054C1 (ru) Способ, устройство и система для обработки внутриканальных помех в соте
US20110124345A1 (en) Method and apparatus for performing coordinated multi-point transmission and reception in wireless communication system
US10397980B2 (en) Method and device for electing a coordination node in a coordinated multipoint set
WO2014111051A1 (zh) 一种资源调度的方法、***和设备
US20150117394A1 (en) Method and Apparatus for Coordinating a Cell on a Plurality of Resource Blocks
WO2016000491A1 (zh) 确定拉远射频单元rru的方法与设备
WO2012031565A1 (zh) 一种测量干扰的方法、***和设备
WO2012094995A1 (zh) 一种comp的实现方法、装置及基站
WO2011157110A2 (zh) 一种协作多点传输方法、设备以及***
WO2013116977A1 (zh) 确定下行协作多点测量集合的方法及其装置
WO2016180054A1 (zh) 一种协作波束赋形的方法及装置
WO2016165436A1 (zh) 一种自适应的下行CoMP传输方法和装置
WO2014191026A1 (en) Cooperating clusters in cellular communications systems
JP6580702B2 (ja) 協調型マルチセル通信技術に基づくワイヤレスネットワークの接続障害検出
WO2012155695A1 (zh) 一种选择协作节点的基站、***及方法
WO2013044461A1 (zh) 信道状态信息的测量方法、用户设备及基站
WO2019237801A1 (zh) 一种小区间干扰抑制方法、设备、装置和计算机存储介质
WO2014108028A1 (zh) 无线通信方法和无线通信设备
WO2018187973A1 (zh) 调度用户的确定方法、装置及***
WO2016061942A1 (zh) 联合干扰抑制方法及装置、实现上行CoMP方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001647.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857989

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011857989

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE