WO2012155695A1 - 一种选择协作节点的基站、***及方法 - Google Patents

一种选择协作节点的基站、***及方法 Download PDF

Info

Publication number
WO2012155695A1
WO2012155695A1 PCT/CN2012/073180 CN2012073180W WO2012155695A1 WO 2012155695 A1 WO2012155695 A1 WO 2012155695A1 CN 2012073180 W CN2012073180 W CN 2012073180W WO 2012155695 A1 WO2012155695 A1 WO 2012155695A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
node
rsrp
information
load information
Prior art date
Application number
PCT/CN2012/073180
Other languages
English (en)
French (fr)
Inventor
陈思
郁光辉
李湧
谭中一
周文安
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2012155695A1 publication Critical patent/WO2012155695A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a service base station, system, and method for cooperative node selection in a plurality of eNodeB cooperative joint multi-point processing scenarios.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • LTE Long Term Evolution
  • the access technology adopted by the LTE system is Orthogonal Frequency Division Multiplexing (OFDM) technology.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the radio resource management of the LTE system has the characteristics of large bandwidth and multiple time processes.
  • the wireless resources appear in two dimensions of time and frequency, and the number of users that can be carried is greatly increased.
  • wireless signals from several neighboring base stations in the vicinity may be simultaneously received, and the transmitted wireless signals may also be received by multiple base stations in the vicinity.
  • multiple base stations can be coordinated to simultaneously receive and transmit uplink and downlink data of the UE.
  • C1 and C2 jointly serve UE1, and C3 and C2 jointly serve UE2.
  • the so-called CoMP (Coordinated Multiple Point) technology can be used to gain data diversity and spatial multiplexing for uplink and downlink wireless signals, improving the reliability and data throughput of wireless data transmission.
  • Multiple neighboring cells participating in CoMP cooperation may belong to the same eNodeB control or may belong to different eNodeBs (Inter eNodeBs).
  • the UE When the CoMP cooperation occurs on different eNodeBs, the UE only accepts the uplink and downlink resource scheduling commands on the downlink control channel (PDCCH) of one of the eNodeBs, and only uploads the HARQ feedback information and other measurement report information to the same eNodeB.
  • This eNodeB is called a Serving eNodeB.
  • the other eNodeBs are called Cooperative eNodeBs.
  • the set of Cooperative eNodeBs is called a Cooperative Node Set, which is called CoMP Cooperating Set.
  • the main target factors considered by the selected cooperative node are the signal to interference and noise ratio of the cooperative signal transmitted by the UE received by the UE, the signal delay, the cooperative node load, and the like.
  • the problem of considering load balancing is proposed, and a node with a low degree of load is selected as a cooperative node.
  • the above method considers the signal to interference and noise ratio information and the cooperative node load information separately, and is used to select different cooperation sets, and can obtain the optimality of a single target. But the intersection of the resulting collaboration sets may not be optimal for multiple goals.
  • the cooperative signal-to-noise ratio information and the cooperative node load information are respectively used to obtain two cooperation sets, the number of nodes included in the intersection of the two cooperation sets cannot be determined, and the number of nodes may be too large, and it is also possible Only get an empty collection. Therefore, it is necessary to provide a multi-objective decision-making based on a comprehensive analysis of the impact of different factors to solve the above problems.
  • the present invention provides a base station, a system, and a method for selecting a cooperative node, which can effectively solve the problem that a plurality of factors cannot be comprehensively selected when selecting a cooperative node.
  • a method of selecting a cooperative node comprising:
  • the serving base station selects one or more cell nodes as the cooperative nodes of the terminal from the potential cooperation set according to the load information of each cell in the potential cooperation set of the terminal and the reference signal received power RSRP of each of the cells.
  • the method further includes:
  • the serving base station After receiving the potential cooperation set information sent by the terminal, the serving base station requests load information of each cell to each cell base station in the potential cooperation set; the potential cooperation set information includes an identifier of each cell and an RSRP.
  • the potential cooperation set refers to the terminal measuring the largest one of the RSRP values of the neighboring cell Or a collection of multiple cells/base stations.
  • the step of the serving base station selecting one or more cell nodes as the cooperation nodes of the terminal from the potential cooperation set:
  • the serving base station combines the RSRP and the load information of each cell to represent the coordinates of the cell node, and combines the maximum value of the RSRP of each cell and the minimum value of the load information into an ideal node, and the maximum RSRP minimum value and load information of each cell.
  • the value combination is a negative ideal node; the serving base station calculates a distance between each of the cell nodes in the potential cooperation set and the ideal node, and a distance between the negative ideal node, and calculates one or more of the largest ratios
  • the cell node or the cell node whose selection ratio/greater than the preset threshold is used as the cooperation node.
  • the serving base station combines RSRP and load information of each cell to indicate the coordinates of the cell node, and combines the maximum value of the RSRP of each cell and the minimum value of the load information into an ideal node, and the RSRP minimum value and load information of each cell.
  • the maximum value is combined into a negative ideal node; the serving base station calculates a distance between each of the cell nodes in the potential cooperation set and the ideal node and a distance s from the negative ideal node; and the steps include:
  • the serving base station expresses the cell node coordinates as ( , ), where i represents the i th cell, and the x is the RSRP information of the cell node, and is the negative of the cell node.
  • the maximum value is the RSRP cell node information
  • the load information 3 ⁇ 4 cell node when the load information 3 ⁇ 4 cell node, the maximum value of each cell is provided for information RSRP /! +, The minimum value of RSRP information / load information of each cell is r 2 -
  • the minimum value of the load information in each cell is:
  • the load information of the cell node is the RSRP information of the cell node
  • the minimum value of the load information in each cell is /!+
  • the maximum value of the load information is /
  • the minimum value of the RSRP information in each cell is ⁇ -
  • the serving base station combines RSRP and load information of each cell to indicate the coordinates of the cell node, and combines the maximum value of the RSRP of each cell and the minimum value of the load information into an ideal node, and the RSRP minimum value and load information of each cell.
  • the maximum value is combined into a negative ideal node;
  • the step of calculating, by the serving base station, the distance between each of the cell nodes in the potential cooperation set and the ideal node and the distance between the negative ideal nodes includes: It is ( , ) , where i represents the i-th cell, and the 3 ⁇ 4 is the RSRP information of the cell node, and the 3 ⁇ 4 is the negative of the cell node.
  • the maximum value of the RSRP information in the matrix V is, the minimum value of the RSRP information is /, and the maximum value of the load information in each cell is r 2 -
  • the minimum value of the load information in the cell is: when the load information of the cell node is the RSRP information of the cell node, the minimum value of the load information in the matrix V is, and the maximum value of the load information is /, and the RSRP information in each cell
  • the minimum value is ⁇ -
  • the maximum value of RSRP information in each cell is r 2 +
  • the ideal node is ( , v 2 + ) and the negative ideal node is ( , V- ), and the coordinates of each cell node are further represented. For ( v 'i , v ' 2 ) ;
  • a service base station that selects a cooperative node, where:
  • the serving base station is configured to: select one or more neighboring cell nodes from the potential cooperation set as the terminal according to load information of each cell in a potential cooperation set of the terminal and reference signal received power RSRP of the cell Collaboration node. among them:
  • the serving base station is further configured to: after receiving the potential cooperation set information sent by the terminal, request load information of each cell from each cell base station in the potential cooperation set; the potential cooperation set information includes an identifier of each cell And RSRP.
  • the potential cooperation set is a set of one or more cells/base stations that the terminal measures the largest of the RSRP values of the neighboring cells.
  • the serving base station is configured to select one or more neighboring cell nodes from the potential cooperation set as the cooperation node of the terminal in the following manner:
  • the cell node acts as a collaboration node.
  • the serving base station is configured to combine the RSRP and the load information of each cell to represent the cell node coordinates, and combine the RSRP maximum value of each cell and the minimum value of the load information into an ideal node, and the RSRP minimum value is The maximum value of the load information is combined into a negative ideal node; the distance between each cell node in the potential cooperation set and the ideal node and the distance from the negative ideal node are calculated:
  • the cell node coordinates are represented as ( ), where i represents the i th cell, the 3 ⁇ 4
  • each The minimum value of the load information in the cell is: when the load information of the cell node is the RSRP information of the cell node, the minimum value of the load information in each cell is /!+, and the maximum value of the load information is /, each cell
  • the minimum value of the RSRP information is ⁇ -
  • the number of coordinates of each cell node is formed as follows: normalized target matrix
  • the maximum value of the RSRP information in the matrix V is, the minimum value of the RSRP information is /, and the maximum value of the load information in each cell is r 2 - , a matrix
  • the minimum value of the load information in V is: when the load information of the cell node is the RSRP information of the cell node, the minimum value of the load information in each cell is /!+, and the maximum value of the load information is /, each cell
  • the minimum value of the RSRP information is ⁇ -
  • the maximum value of the RSRP information in each cell is r 2 +
  • the ideal node is ( , v 2 + ) and the negative ideal node is ( , V- )
  • the nodes of each cell One step is expressed as ( v 'i , v ' 2 ) ;
  • a system for selecting a cooperative node comprising: a terminal and any one of the serving base stations as described above; a reference signal receiving power RSRP, selecting N cells in which the RSRP is the largest as a potential cooperation set, and transmitting the potential cooperation set information to the
  • the serving base station the potential cooperation set information includes identifiers of N of the cells and an RSRP thereof.
  • the terminal needs to select a cooperative node, measure the RSRP of the neighboring cell or the measurement set cell, select the N cells with the largest RSRP as the potential cooperation set, and send the potential cooperation set information to the serving base station, the potential collaboration
  • the set information includes an identifier of the N cells and its RSRP.
  • the cooperative node selection strategy of the above technical solution comprehensively analyzes the influence of different factors based on multi-objective decision making, and utilizes the specifications and protocols of the existing system to the utmost extent, with few changes and simple implementation. Not only comprehensively consider the influence of different factors, but also adjust the influence weight of different factors through practice feedback, which can solve the problem of selecting the set of cooperative nodes.
  • BRIEF abstract 1 is a schematic diagram of a network structure for performing joint processing of multiple eNodeBs by using CoMP technology
  • FIG. 2 is a flowchart of a method for selecting cooperative nodes in Embodiment 4 of the present invention
  • FIG. 3 is a flowchart of a method for selecting a cooperative node according to Embodiment 5 of the present invention. Preferred embodiment of the invention
  • the inventors believe that the most feasible target at present is to reflect the reference signal receiving power (RSRP, Reference Signal Receiving Power) of the signal to interference and noise ratio information and the system resource utilization reflecting the load information of the cooperative node. Rate (Total PRB usage).
  • RSRP Reference Signal Receiving Power
  • the LTE network supports the RSRP measurement function. During cell access and cell re-access,
  • the UE will automatically search for RSRP at different frequencies in the E-UTRAN.
  • the RSRP measurement and loopback reporting mechanism has been determined.
  • the RSRP information of the coordinated cell in the measurement set is obtained by making minimal modifications to the existing standards in the CoMP.
  • the LTE network supports the measurement function of Total PRB usage, which is fed back to the serving eNodeB through the X2 interface by the eNodeB in the measurement set.
  • the periodic notification mechanism between existing eNodeBs can bear the load messaging between eNodeBs.
  • the capacity of the fiber-based X2 interface is sufficient to cover the overhead of transmitting load information.
  • the LTE network After receiving the CoMP request from the UE, the LTE network obtains the RSRP information and the Total PRB usage information of the cell in the measurement set of the UE through the feedback of the UE and X2.
  • the impact of different factors is considered by using a multi-objective decision-making approach.
  • a decision matrix is proposed. Through the practice feedback to adjust the impact weights of different factors, choose the best set of collaborative nodes.
  • the present invention provides a base station, a system, and a method for selecting a cooperative node.
  • the serving eNodeB selects one or more from the potential cooperation set according to load information of each cell in the potential cooperation set of the terminal and reference signal received power RSRP of the cell.
  • the neighboring base stations serve as cooperative nodes of the terminal.
  • This embodiment provides a service eNodeB that selects a cooperative node, and the service eNodeB sets According to the load information of each cell in the potential cooperation set of the terminal and the reference signal received power RSRP of the cell, one or more cell nodes (ie, neighboring base stations) are selected from the potential cooperation set as the cooperative node of the terminal.
  • the serving eNodeB is further configured to: after receiving the potential cooperation set information sent by the terminal, request the load information from each cell base station in the potential cooperation set; the potential cooperation set information includes an identifier of each cell and an RSRP.
  • a potential cooperative set refers to a set of one or more cells/base stations in which the terminal measures the largest RSRP value of a neighboring cell.
  • the serving eNodeB is arranged to select one or more cell nodes from the above-mentioned potential coordination set as a cooperative node of the terminal in the following manner:
  • the serving eNodeB combines the RSRP and the load information of each cell to represent the coordinates of the cell node, and combines the maximum value of the RSRP maximum value of each cell and the load information into an ideal node, and combines the minimum value of the RSRP minimum value and the load information into Negative ideal node;
  • the serving eNodeB calculates a distance between each of the cell nodes in the potential collaboration set and the ideal node and a distance from the negative ideal node, and calculates a selection M to select the largest M or a selection ratio / greater than a preset threshold
  • the cell node acts as a collaboration node.
  • the eNodeB expresses the coordinates of the cell node as ( , r i2 ), where i represents the i-th cell, and 3 ⁇ 4 is the RSRP information or load information of the cell node,
  • the present embodiment provides a service eNodeB that selects a cooperative node, and the service eNodeB is configured to: select one or more from the foregoing potential cooperation set according to load information of each cell in the potential cooperation set of the terminal and reference signal received power RSRP of the cell.
  • a plurality of adjacent base stations serve as cooperative nodes of the terminal.
  • the serving eNodeB is further configured to: after receiving the potential cooperation set information sent by the terminal, requesting load information from each cell base station in the potential cooperation set; the potential cooperation set information includes an identifier of each cell and an RSRP.
  • a potential cooperative set refers to a set of one or more cells/base stations in which the terminal measures the largest RSRP value of a neighboring cell.
  • the serving eNodeB is arranged to select one or more cell nodes from the above-mentioned potential coordination set as a cooperative node of the terminal in the following manner:
  • the node acts as a collaboration node.
  • the serving eNodeB expresses the cell node coordinates as ( , r i2 ) , where i represents the i th cell, and the 3 ⁇ 4 is the RSRP information or the load signal of the cell node.
  • the weight matrix W is the same as described in the fifth embodiment.
  • the serving eNodeB is further configured to: use the decision weight matrix to perform the weighted normalized decision matrix calculated by the normalized target matrix R as follows:
  • each cell When the RSRP information of the cell node is the load information of the cell node, the maximum value of the RSRP information in each cell is, the minimum value of the RSRP information is /, and the maximum value of the load information in each cell is r 2 - , each The minimum value of the load information in the cell is: when the load information of the cell node is the RSRP information of the cell node, the minimum value of the load information in each cell is /!+, and the maximum value of the load information is /, each cell The minimum value of the RSRP information is ⁇ - , and the maximum value of the RSRP information in each cell is r+, then the ideal node is ( , v 2 + ) and the negative ideal node is ( , V- );
  • the embodiment provides a system for selecting a cooperative node, including a terminal and a service eNodeB as described in the first embodiment or the second embodiment;
  • the terminal is configured to: when the coordinated node needs to be selected, measure the RSRP of the neighboring cell or the measurement set cell, select the N cells with the largest RSRP as the potential cooperation set U1, and send the potential cooperation set U1 information to the service.
  • the eNodeB, the potential cooperation set information includes identifiers of N cells and their RSRP strength.
  • the embodiment provides a method for selecting a cooperative node.
  • the serving base station selects one or more neighboring base stations from the potential cooperation set according to the load information of each cell in the potential cooperation set of the terminal and the reference signal received power RSRP of the cell.
  • RSRP reference signal received power
  • the UE When the UE needs CoMP, the UE starts a process of measuring a reference signal received power RSRP of a neighboring cell or a measurement set cell, and arranges the measured results in descending order: the measurement set is a pre-configured set of cells for measurement, which is all or Partially adjacent cells.
  • n is the number of measured cells.
  • the UE selects the first N (N ⁇ n) cells with the strong RSRP strength as the potential cooperation set U1, and sends the data to the serving eNodeB through the uplink channel, where the message carries the identifier of the cell in the U1 set and the RSRP. strength.
  • the serving eNodeB After receiving the feedback information of the UE (that is, the RSRP strength of the cell in the U1 set), the serving eNodeB communicates with the base station of each cell in the U1 set through the X2 interface, and requests the load information of each cell in the U1 set (Total PRB usage ).
  • the serving eNodeB receives the load information of the cell in the Ul set, and combines the RSRP information of each cell in the U1 set to represent the cell node coordinates.
  • the service eNodeB combines the maximum RSRP value of each cell and the minimum value of the load information into an ideal node, and combines the minimum value of the RSRP minimum value and the load information into a negative ideal node;
  • the maximum value of the RSRP information in each cell is, the minimum value of the RSRP information is /, and the maximum value of the load information in each cell is r 2 - , each The minimum value of the load information in the cell is, when it is the load signal of the cell node
  • the minimum value of the load information in each cell is /!+, the maximum value of the load information is /, and the minimum value of the RSRP information in each cell is ⁇ - , and the RSRP information in each cell
  • the maximum value is r 2 + ; then the ideal node is (r , V ) and the negative ideal node is (r ", r- );
  • C can be further normalized.
  • the serving eNodeB sorts the relative ideal proximity of each cell, selects the largest M (M ⁇ N) cell nodes as the cooperative node or selects the cell node whose relative ideal proximity is above the threshold as the cooperative node.
  • the serving eNodeB After determining the set of cooperative nodes, the serving eNodeB will send a specific message to the coordinated cell and the UE to perform the remaining operations of the CoMP.
  • Embodiment 5 After determining the set of cooperative nodes, the serving eNodeB will send a specific message to the coordinated cell and the UE to perform the remaining operations of the CoMP.
  • This embodiment provides another method for selecting a collaboration node, including the following steps:
  • the UE starts a process of measuring a reference signal received power RSRP of a neighboring cell or a measurement set cell when the CoMP is required, and the measurement result is arranged in descending order: the measurement set is a pre-configured cell set for measurement, which is all or Partially adjacent cells.
  • S202 The UE selects the first N (N ⁇ n) cells with the strong RSRP strength as the potential cooperation set U1, and sends the data to the serving eNodeB through the uplink channel, where the message carries the identifier of the cell in the U1 set and the RSRP. strength.
  • the serving eNodeB receives the feedback information of the UE (that is, the cell in the U1 set). After RSRP strength, the X2 interface communicates with the base stations of each cell in the U1 set, and requests the load information (Total PRB usage) of each cell in the U1 set.
  • the serving eNodeB receives the load information of the cell in the Ul set, and combines the RSRP information of each cell in the U1 set to represent the node coordinates of the cell;
  • the serving eNodeB forms the coordinates of each cell node into the following normalized target matrix R:
  • the decision weight matrix reflects the effects of different factors. Here you can use but not limited to using the entropy method (without introducing subjective judgment) to determine the weight, or the square root method (introducing subjective judgment). Moreover, the decision weight matrix can be adjusted through practical feedback to optimize the actual effect.
  • the square root method compares the target (RSRP and load information) in pairs and obtains the relative weight value between the two targets.
  • the weight relative value is determined by subjective evaluation.
  • the weight of the relative weight of a target is multiplied by the square root to obtain its root weight value.
  • the square root weight values of all the targets are normalized to obtain the target weight matrix.
  • the entropy method refers to calculating the entropy value of the target.
  • the entropy value is small, indicating that the effective information of the target is large and its weight should be large; otherwise, if a target The difference between the values is small and the entropy value is large, indicating that the amount of information provided by the indicator is small and its weight should be small.
  • Calculate the entropy values of each target then calculate their entropy weights, and finally normalize the processing to obtain the target weight matrix. Since the entropy value of the target is determined by objective data, the target weight matrix obtained by this method is objective.
  • the purpose of the above methods is to evaluate the impact of different targets on different targets.
  • the impact of energy can be given a larger weight value for a target with a large performance impact, and a smaller weight value for a target with a smaller performance impact, thereby obtaining a target weight matrix.
  • the assessment of the target will vary depending on the network conditions. For example, when the channel quality is poor, the improvement of information quality caused by the increase of RSRP is very important. At this time, the CoMP performance is sensitive to the change of RSRP, and the RSRP is given a larger weight value; when the load is high, PRB Usage If it is reduced, it can provide collaborative resources. CoMP performance is more sensitive to changes in PRB usage. At this time, the PRB usage has a high weight value.
  • the coordinates of each cell node can be further expressed as ( v a , .
  • S206 The service eNodeB determines an ideal node and a negative ideal node.
  • the RSRP strength in the ideal cooperative node should be as large as possible, taking the maximum value.
  • the load of the ideal cooperative node is as small as possible, taking the minimum value.
  • the maximum value of the RSRP strength and the minimum value of the cooperative node load information are combined as the ideal node:
  • the maximum value of the RSRP information in the matrix V is set to be RSRP information.
  • the minimum value is /
  • the maximum value of the load information in each cell is r 2 -
  • the minimum value of the load information in each cell is, when the load information of the cell node is 3 ⁇ 4 is the RSRP information of the cell node, the load in each cell is set.
  • the minimum value of the information is / !+
  • the maximum value of the load information is /
  • the minimum value of the RSRP information in each cell is ⁇ -
  • the maximum value of the RSRP information in each cell is r 2 +
  • the ideal node is ( , ;
  • the negative ideal node is ( Vl - , V- ) ;
  • the serving eNodeB calculates the distance between each node and the ideal node and the distance of the negative ideal node, and the relative ideal proximity.
  • Distance from ideal node In the formula, i denotes a cell identifier, indicating the distance between the i-th cell and the ideal node.
  • the ⁇ can be further normalized.
  • the serving eNodeB sorts the relative ideal proximity of each cell, selects the largest M (M ⁇ N) cell nodes as the cooperative node, or selects the cell node whose relative ideal proximity is above the threshold as the cooperative node.
  • the serving eNodeB After determining the set of cooperative nodes, the serving eNodeB will send a specific message to the coordinated cell and the UE to perform the remaining operations of the CoMP.
  • the cooperative node selection strategy of the above technical solution comprehensively analyzes the influence of different factors based on multi-objective decision making, and utilizes the specifications and protocols of the existing system to the utmost extent, with few changes and simple implementation. Not only comprehensively consider the influence of different factors, but also adjust the influence weight of different factors through practice feedback, which can solve the problem of selecting the set of cooperative nodes. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种选择协作节点的方法、服务基站和***,所述方法包括:服务基站根据终端的潜在协作集中各个小区的负载信息以及各所述小区的参考信号接收功率RSRP,从所述潜在协作集中选择一个或多个小区节点作为所述终端的协作节点。上述技术方案的协作节点选择策略,基于多目标决策来综合分析不同因素的影响,最大限度的利用了现有***的规范和协议,改动要求很少,实现简单。不仅综合考虑不同因素的影响,而且能够通过实践反馈调节不同因素的影响权重,能够很好的解决选择协作节点集合的问题。

Description

一种选择协作节点的基站、 ***及方法
技术领域
本发明涉及无线通信技术领域, 特别涉及在多个 eNodeB协同联合多点 处理场景下协作节点选择的服务基站、 ***及方法。
背景技术
第三代移动通信长期演进 ( LTE, Long Term Evolution ) ***的演进型 通用陆地无线接入网 (E-UTRAN, Evolved Universal Terrestrial Radio Access Network ) 中, 由基站( Evolved NodeB )分配资源给每个用户设备。 LTE系 统釆用的接入技术是正交频分复用 (OFDM, Orthogonal Frequency Division Multiplexing )技术, LTE ***的无线资源管理和第二代移动通信***相比, 具有大带宽、 多时间进程的特点, 其无线资源是以时间和频率两维出现的, 能够承载的用户数量大大增加。
对于位于 eNodeB覆盖边缘的用户终端 (UE, User Equipment ) , 可能 会同时接收到来自附近几个相邻基站的无线信号, 其发射的无线信号也可以 被附近的多个基站接收。 如图 1所示, 在这种情况下, 可以协调多个基站同 时对该 UE进行上下行数据的联合接收和发送, 例如 C1和 C2联合为 UE1 服务, C3 和 C2联合为 UE2服务, 这就是所谓的联合多点处理(CoMP, Coordinated Multiple Point )技术。 利用 CoMP及相关的信号处理技术, 可以 对上下行无线信号起到数据分集和空间复用的增益, 提高无线数据传输的可 靠性和数据吞吐量。
参与 CoMP协作的多个相邻小区可能属于同一个 eNodeB控制, 也可能 属于不同的 eNodeB ( Inter eNodeB )。 当 CoMP协作发生在不同 eNodeB时, UE只在其中一个 eNodeB的下行控制信道(PDCCH )上接受上下行资源调 度指令, 也只向同一个 eNodeB上传 HARQ反馈信息和其他测量报告信息。 这个 eNodeB称为服务 eNodeB ( Serving eNodeB ) , 其他的 eNodeB称之为 协作 eNodeB , 协作 eNodeB 的集合称之为协作节点集合, 简称为协作集 ( CoMP cooperating set)。 在多个 eNodeB参与 CoMP协同的场景下, 为达到最佳的***性能, 需 要选择一些协作 eNodeB来构成一个最佳的协作节点集合。 如何来选择最佳 的协作节点集合? 如何在选择最佳的协作节点集合时, 需要的***开销和复 杂度较少, 最大限度的保持与现有网络的兼容性? 总之, 需要一种 CoMP协 作节点选择方法来简单有效地选择最佳的协作节点集合。
选择协作节点考虑的主要目标因素有 UE接收到的协作节点中发送的协 作信号的信干噪比、 信号时延以及协作节点负载等等。 在一些文献中提出了 考虑负载均衡的问题, 选择负载程度低的节点作为协作节点。 但是, 上述的 方法将信干噪比信息和协作节点负载信息分别加以考虑, 用于选择不同的协 作集, 能够取得单个目标的最优。 但是得到的协作集的交集, 可能不是多目 标的最优。 而且由于分别利用信干噪比信息和协作节点负载信息得到的是两 个协作集, 而这两个协作集的交集所包含的节点数目的大小是无法确定的, 可能节点数目过多, 也有可能只得到一个空集合。 因此, 有必要提供一种基 于多目标决策来综合分析不同因素的影响, 以解决上述问题。
发明内容
为了解决上述技术问题, 本发明提供一种选择协作节点的基站、 ***及 方法, 可有效解决选择协作节点时无法综合考虑多种因素进行选择的问题。
为解决上述技术问题, 釆用如下技术方案:
一种选择协作节点的方法, 所述方法包括:
服务基站根据终端的潜在协作集中各个小区的负载信息以及各所述小区 的参考信号接收功率 RSRP, 从所述潜在协作集中选择一个或多个小区节点 作为所述终端的协作节点。
所述方法还包括:
所述服务基站收到所述终端发来的潜在协作集信息后, 向所述潜在协作 集中的各个小区基站请求各个小区的负载信息; 所述潜在协作集信息包括各 小区的标识符及 RSRP。
其中: 所述潜在协作集是指终端测量相邻小区的 RSRP值中最大的一个 或多个小区 /基站的集合。
其中, 所述服务基站从所述潜在协作集中选择一个或多个小区节点作为 所述终端的协作节点的步骤:
所述服务基站将各小区的 RSRP及负载信息组合表示该小区节点坐标, 以及将各小区的 RSRP最大值与负载信息的最小值组合为理想节点, 将各小 区的 RSRP最小值与负载信息的最大值组合为负理想节点; 所述服务基站计 算所述潜在协作集中每个小区节点与所述理想节点间的距离 及与负理想节 点间的距离 , 并计算 选择将比值 中最大的一个或多个小区节点 或选择比值 / 大于预设阔值的小区节点作为协作节点。 其中, 所述服务基站将各小区的 RSRP及负载信息组合表示该小区节点 坐标, 以及将各小区的 RSRP最大值与负载信息的最小值组合为理想节点, 将各小区的 RSRP最小值与负载信息的最大值组合为负理想节点; 所述服务 基站计算所述潜在协作集中每个小区节点与所述理想节点间的距离 及与负 理想节点间的距离 s;的步骤包括:
述服务基站将小区节点坐标表示为( , ) ,其中 i表示第 i个小区, 所述 x , 为小区节点的 RSRP信息, ¾为小区节点的负
Figure imgf000005_0001
载信息, 或者, xil为小区节点的负载信息, xi2为小区节点的 RSRP信息; j=l或 j=2 , N为所述潜在协作集中小区个数;
当 为小区节点的 RSRP信息, ¾为小区节点的负载信息时, 设各小区 中 RSRP信息的最大值为/ !+ , RSRP信息的最小值为 / , 各小区中负载信息 的最大值为 r2 - , 各小区中负载信息的最小值为 , 当 为小区节点的负载信 息, ¾为小区节点的 RSRP信息时, 设各小区中负载信息的最小值为/ !+ , 负 载信息的最大值为 / , 各小区中 RSRP信息的最小值为^ - , 各小区中 RSRP 信息的最大值为 ; 则所述理想节点为 ( , r2 + ), 所述负理想节点为 ( - , r- ) ; 所述 =
Figure imgf000005_0002
其中, 所述服务基站将各小区的 RSRP及负载信息组合表示该小区节点 坐标, 以及将各小区的 RSRP最大值与负载信息的最小值组合为理想节点, 将各小区的 RSRP最小值与负载信息的最大值组合为负理想节点; 所述服务 基站计算所述潜在协作集中每个小区节点与所述理想节点间的距离 及与负 理想节点间的距离 的步骤包括: 所 站将小区节点坐标表示为( , ) ,其中 i表示第 i个小区, 所述 ¾ 或 为小区节点的 RSRP信息, ¾为小区节点的负
Figure imgf000006_0001
载信息, 或者, xil为小区节点的负载信息, xi2为小区节点的 RSRP信息; j=l或 j=2, N为所述潜在协作集中小区个数; 将各个小区节点的坐标形成如 下规 标矩阵 R:
, 以及使用该决策权重矩
Figure imgf000006_0002
阵对所述规范化目标矩阵 R进行如下计算得到的加权规范化决策矩阵:
Figure imgf000006_0003
当 为小区节点的 RSRP信息, ¾为小区节点的负载信息时, 设矩阵 V 中 RSRP信息的最大值为 , RSRP信息的最小值为 / , 各小区中负载信息 的最大值为 r2 - , 各小区中负载信息的最小值为 , 当 为小区节点的负载信 息, ¾为小区节点的 RSRP信息时, 设矩阵 V中负载信息的最小值为 , 负 载信息的最大值为 / , 各小区中 RSRP信息的最小值为^ - , 各小区中 RSRP 信息的最大值为 r2+ ,则所述理想节点为 ( , v2+ ) , 负理想节点为 ( , V- ) , 各小区节点的坐标进一步表示为 (v'i , v'2 ) ;
Figure imgf000007_0001
一种选择协作节点的服务基站, 其中:
所述服务基站设置成: 根据终端的潜在协作集中各个小区的负载信息以 及所述小区的参考信号接收功率 RSRP, 从所述潜在协作集中选择一个或多 个的相邻小区节点作为所述终端的协作节点。 其中:
所述服务基站还设置成: 收到所述终端发来的潜在协作集信息后, 向所 述潜在协作集中的各个小区基站请求各个小区的负载信息; 所述潜在协作集 信息包括各小区的标识符及 RSRP。
其中:
所述潜在协作集是终端测量相邻小区的 RSRP值中最大的一个或多个小 区 /基站的集合。
其中, 所述服务基站设置成按照以下方式从所述潜在协作集中选择一个 或多个的相邻小区节点作为所述终端的协作节点:
将各小区的 RSRP及负载信息组合表示该小区节点坐标, 以及将各小区 的 RSRP最大值与负载信息的最小值组合为理想节点, 将 RSRP最小值与负 载信息的最大值组合为负理想节点; 计算所述潜在协作集中每个小区节点与 所述理想节点间的距离 及与负理想节点间的距离 , 并计算 选择将 比值 中最大的一个或多个小区节点或选择比值 / 大于预设阔值的小 区节点作为协作节点。
其中, 所述服务基站设置成按照以下方式将各小区的 RSRP及负载信息 组合表示该小区节点坐标, 以及将各小区的 RSRP最大值与负载信息的最小 值组合为理想节点,将 RSRP最小值与负载信息的最大值组合为负理想节点; 计算所述潜在协作集中每个小区节点与所述理想节点间的距离 及与负理想 节点间的距离 : 将小区节点坐标表示为( ),其中 i表示第 i个小区,所述 ¾
或 为小区节点的 RSRP信息, ¾为小区节点的负载信息, 或者, xil为小区节点的负载信息, xi2为小区节点的 RSRP信息; j=l或 j=2, N为 所述潜在协作集中小区个数;
当 为小区节点的 RSRP信息, ¾为小区节点的负载信息时, 设各小区 中 RSRP信息的最大值为 , RSRP信息的最小值为 / , 各小区中负载信息 的最大值为 r2 - , 各小区中负载信息的最小值为 , 当 为小区节点的负载信 息, ¾为小区节点的 RSRP信息时, 设各小区中负载信息的最小值为/ !+ , 负 载信息的最大值为 / , 各小区中 RSRP信息的最小值为^ - , 各小区中 RSRP 信息的最大值为 r+; 则所述理想节点为 ( , r2+ ) , 负理想节点为 ( /!- , r2- ); 所述 =
Figure imgf000008_0001
其中, 所述服务基站设置成按照以下方式将各小区的 RSRP及负载信息 组合表示该小区节点坐标, 以及将各小区的 RSRP最大值与负载信息的最小 值组合为理想节点,将 RSRP最小值与负载信息的最大值组合为负理想节点; 计算所述潜在协作集中每个小区节点与所述理想节点间的距离 及与负理想 节点间的距离 : 将小区节点坐标表示为( ),其中 i表示第 i个小区,所述 ¾
Figure imgf000008_0002
或 为小区节点的 RSRP信息, ¾为小区节点的负载信息, 或者, xil为小区节点的负载信息, xi2为小区节点的 RSRP信息; j=l或 j=2, N为 所述潜在协作集中小区个数; 各个小区节点的坐标形成如下规范化目标矩阵
Figure imgf000008_0003
确定决策权重矩阵 , 以及使用该决策权重矩阵对所述规范化 目标 计算 加权规范化决策矩阵:
Figure imgf000009_0001
当 为小区节点的 RSRP信息, ¾为小区节点的负载信息时, 设矩阵 V 中 RSRP信息的最大值为 , RSRP信息的最小值为 / , 各小区中负载信息 的最大值为 r2 - , 矩阵 V中负载信息的最小值为 , 当 为小区节点的负载信 息, ¾为小区节点的 RSRP信息时, 设各小区中负载信息的最小值为/ !+ , 负 载信息的最大值为 / , 各小区中 RSRP信息的最小值为^ - , 各小区中 RSRP 信息的最大值为 r2+ ,则所述理想节点为 ( , v2+ ) , 负理想节点为 ( , V- ) , 各小区节点的 一步表示为 (v'i , v'2 ) ; 所述 =
Figure imgf000009_0002
一种选择协作节点的***,包括:终端及如上所述的任意一种服务基站; 参考信号接收功率 RSRP, 选择其中 RSRP最大的 N个小区作为潜在协 作集, 并将潜在协作集信息发送至所述服务基站, 所述潜在协作集信息包括 N个所述小区的标识符及其 RSRP。 所述终端用于需要选择协作节点时, 测 量相邻小区或者测量集小区的 RSRP, 选择其中 RSRP最大的 N个小区作为 潜在协作集, 并将该潜在协作集信息发送至服务基站, 该潜在协作集信息包 括所述 N个小区的标识符及其 RSRP。
综上所述, 上述技术方案的协作节点选择策略, 基于多目标决策来综合 分析不同因素的影响, 最大限度的利用了现有***的规范和协议, 改动要求 很少, 实现简单。 不仅综合考虑不同因素的影响, 而且能够通过实践反馈调 节不同因素的影响权重, 能够很好的解决选择协作节点集合的问题。
附图概述 图 1为利用 CoMP技术进行多个 eNodeB联合处理的网络结构示意图; 图 2为本发明实施例四中进行协作节点选择的方法流程图;
图 3为本发明实施例五中进行协作节点选择的方法流程图。 本发明的较佳实施方式
在调研选择协作节点考虑的主要目标因素之后, 发明人认为当前最为可 行的目标是反映信干噪比信息的参考信号接收功率(RSRP, Reference Signal Receiving Power )和反映协作节点负载信息的***资源利用率 (Total PRB usage ) 。
LTE 网络支持 RSRP的测量功能, 在小区接入和小区重新接入过程中,
UE会自动搜寻 E-UTRAN中不同频点处的 RSRP。在 LTE标准中, 已经确定 了 RSRP的测量和回送报告机制。在 CoMP中通过对现有标准做最小的修改, 来获取测量集中的协作小区的 RSRP信息。
LTE网络支持 Total PRB usage的测量功能, 由测量集中的 eNodeB通过 X2接口反馈给服务 eNodeB。 在 LTE标准中, 已经存在的 eNodeB之间的周 期性通报机制, 可以承担 eNodeB之间的负载消息传递。 目前, 基于光纤的 X2接口的容量足以承担传送负载信息的开销。
LTE网络在接收的 UE发出的 CoMP请求后, 通过 UE的反馈和 X2获 取到 UE的测量集中的小区的 RSRP信息和 Total PRB usage信息。 通过釆用 多目标决策的方法, 来综合考虑不同因素的影响。 为了更好的反应不同因素 对于 CoMP效果的影响, 提出了决策矩阵。 通过实践反馈调节不同因素的影 响权重, 选择最佳的协作节点集合。
本发明提供一种选择协作节点的基站、 ***及方法, 服务 eNodeB根据 终端的潜在协作集中各个小区的负载信息以及所述小区的参考信号接收功率 RSRP,从所述潜在协作集中选择一个或多个的相邻基站作为所述终端的协作 节点。
实施例一
本实施例提供一种选择协作节点的服务 eNodeB,所述服务 eNodeB设置 成: 根据终端的潜在协作集中各个小区的负载信息以及所述小区的参考信号 接收功率 RSRP, 从上述潜在协作集中选择一个或多个小区节点 (即相邻基 站)作为该终端的协作节点。
所述服务 eNodeB还设置成: 收到终端发来的潜在协作集信息后, 向所 述潜在协作集中的各个小区基站请求其负载信息; 所述潜在协作集信息包括 各小区的标识符及 RSRP。
潜在协作集是指终端测量相邻小区的 RSRP值中最大的一个或多个小区 / 基站的集合。
所述服务 eNodeB设置成按照以下方式从上述潜在协作集中选择一个或 多个小区节点作为该终端的协作节点:
所述服务 eNodeB将各小区的 RSRP及负载信息组合表示该小区节点坐 标, 以及将各小区的 RSRP最大值与负载信息的最小值组合为理想节点, 将 RSRP最小值与负载信息的最大值组合为负理想节点;
所述服务 eNodeB计算所述潜在协作集中每个小区节点与所述理想节点 间的距离 及与负理想节点间的距离 , 并计算 选择将比值 中最 大的 M个或选择比值 / 大于预设阔值的小区节点作为协作节点。
其中, 所述 eNodeB将小区节点坐标表示为 ( , ri2 ) , 其中 i表示 第 i个小区, ¾ 为小区节点的 RSRP信息或负载信息,
Figure imgf000011_0001
¾为小区节点的负载信息或 RSRP信息; j=l或 j=2, N为所述潜在协作集中 小区个数;
当 为小区节点的 RSRP信息, ¾为小区节点的负载信息时, 设各小区 中 RSRP信息的最大值为 , RSRP信息的最小值为 / , 各小区中负载信息 的最大值为 r2 - , 各小区中负载信息的最小值为 , 当 为小区节点的负载信 息, ¾为小区节点的 RSRP信息时, 设各小区中负载信息的最小值为/ !+ , 负 载信息的最大值为 / , 各小区中 RSRP信息的最小值为^ - , 各小区中 RSRP 信息的最大值为 r2+ ; 则理想节点为 (r , V ) , 负理想节点为 (r「, r- ) ; 因此, Si =
Figure imgf000012_0001
实施例二
本实施例提供一种选择协作节点的服务 eNodeB,所述服务 eNodeB设置 成: 根据终端的潜在协作集中各个小区的负载信息以及所述小区的参考信号 接收功率 RSRP, 从上述潜在协作集中选择一个或多个相邻基站作为该终端 的协作节点。
所述服务 eNodeB还设置成: 收到终端发来的潜在协作集信息后, 向所 述潜在协作集中的各个小区基站请求其负载信息; 潜在协作集信息包括各小 区的标识符及 RSRP。
潜在协作集是指终端测量相邻小区的 RSRP值中最大的一个或多个小区 / 基站的集合。
所述服务 eNodeB设置成按照以下方式从上述潜在协作集中选择一个或 多个小区节点作为该终端的协作节点:
将各小区的 RSRP及负载信息组合表示该小区节点坐标, 以及将各小区 的 RSRP最大值与负载信息的最小值组合为理想节点, 将 RSRP最小值与负 载信息的最大值组合为负理想节点; 计算潜在协作集中每个小区节点与所述 理想节点间的距离 及与负理想节点间的距离 , 并计算 选择将比值 中最大的一个或多个小区节点或选择比值 / 大于预设阔值的小区节 点作为协作节点。
其中, 所述服务 eNodeB将小区节点坐标表示为 ( , ri2 ) , 其中 i表示 第 i个小区, 所述 ¾ 为小区节点的 RSRP信息或负载信
Figure imgf000012_0002
息, ¾为小区节点的负载信息或 RSRP信息; j=l或 j=2, N为所述潜在协作 集中小区个数; 各个小区节点的坐标形成如下规范化目标矩阵 R: , 确定决策
Figure imgf000013_0001
权重矩阵 W是方法同实施例五中所述。
所述服务 eNodeB还设置成: 使用该决策权重矩阵对所述规范化目标矩 阵 R进行如下计算得到的加权规范化决策矩阵:
Figure imgf000013_0002
当 为小区节点的 RSRP信息, ¾为小区节点的负载信息时, 设各小区 中 RSRP信息的最大值为 , RSRP信息的最小值为 / , 各小区中负载信息 的最大值为 r2 - , 各小区中负载信息的最小值为 , 当 为小区节点的负载信 息, ¾为小区节点的 RSRP信息时, 设各小区中负载信息的最小值为/ !+ , 负 载信息的最大值为 / , 各小区中 RSRP信息的最小值为^ - , 各小区中 RSRP 信息的最大值为 r+ ,则所述理想节点为 ( , v2+ ) , 负理想节点为 ( , V- ); 因此,
Figure imgf000013_0003
实施例三
本实施例提供一种选择协作节点的***, 包括终端及如实施例一或实施 例二所述的服务 eNodeB;
所述终端设置成: 需要选择协作节点时, 测量相邻小区或者测量集小区 的 RSRP, 选择其中 RSRP最大的 N个小区作为潜在协作集 Ul , 并将该潜在 协作集 U1信息发送至所述服务 eNodeB,该潜在协作集信息包括 N个小区的 标识符及其 RSRP强度。 实施例四
本实施例提供一种协作节点的选择方法, 服务基站根据终端的潜在协作 集中各个小区的负载信息以及所述小区的参考信号接收功率 RSRP, 从上述 潜在协作集中选择一个或多个的相邻基站作为该终端的协作节点。
如图 2所示, 包括以下步骤:
S101 : UE在需要 CoMP时, 启动测量相邻小区或者测量集小区的参考 信号接收功率 RSRP的过程, 并对测量的结果按照降序排列: 测量集为预先 配置的进行测量的小区集合, 为全部或部分相邻小区。
RSRPo≥RSRP,≥RSRP2≥- -≥RSRPnn为测量小区的数目。
S102: UE选择获得 RSRP强度较大的前 N ( N≤n )个小区作为潜在协 作集 U1 , 将数据通过上行信道发送给服务 eNodeB, 在消息中将携带 Ul集 合中的小区的标识符和 RSRP强度。
S103: 服务 eNodeB在接收到 UE的反馈信息 (即 U1集合中的小区的 RSRP强度)后, 通过 X2接口与 U1 集合中的各个小区的基站通信, 请求 U1集合中的各小区的负载信息 ( Total PRB usage ) 。
S104: 服务 eNodeB接收到 Ul集合中的小区的负载信息, 将其和 U1集 合中的各小区的 RSRP信息组合表示该小区节点坐标;
其中, 服务基站将小区节点坐标表示为 ( ^ ) , 其中 i表示第 i个小 区, 所述 ½■= 「J 或 = , 为小区节点的 RSRP信息, ¾为小区节点 的负载信息, 或者, xil为小区节点的负载信息, xi2为小区节点的 RSRP信 息; 其中, j=l或 j=2;
S105: 服务 eNodeB将各小区的 RSRP最大值与负载信息的最小值组合 为理想节点, 将 RSRP最小值与负载信息的最大值组合为负理想节点;
当 为小区节点的 RSRP信息, ¾为小区节点的负载信息时, 设各小区 中 RSRP信息的最大值为 , RSRP信息的最小值为 / , 各小区中负载信息 的最大值为 r2 - , 各小区中负载信息的最小值为 , 当 为小区节点的负载信 息, ¾为小区节点的 RSRP信息时, 设各小区中负载信息的最小值为/ !+ , 负 载信息的最大值为 / , 各小区中 RSRP信息的最小值为^ - , 各小区中 RSRP 信息的最大值为 r2+ ; 则理想节点为 (r , V ) , 负理想节点为 (r「, r- ) ;
S106:服务 eNodeB计算各小区节点与理想节点及负理想节点间的距离, 并计算相对理想接近度: 与理想节点间的距离: Si =
Figure imgf000015_0001
与负理想节点间的距离: =、|∑<¾ - ) 相对理想接近度:
Figure imgf000015_0002
在该步骤中, 还可以进一步对 C,进行归一化处理得
C max °
S107: 服务 eNodeB对各个小区的相对理想接近度进行排序, 选择最大 的 M ( M≤N )个小区节点作为协作节点或者选择相对理想接近度在阔值之 上的小区节点为协作节点。
确定了协作节点集合后, 服务 eNodeB将向协作小区和 UE发送特定的 消息, 进行 CoMP的余下操作。 实施例五
本实施例提供另一种协作节点的选择方法, 包括以下步骤:
S201 : UE在需要 CoMP时, 启动测量相邻小区或者测量集小区的参考 信号接收功率 RSRP的过程, 并对测量的结果按照降序排列: 测量集为预先 配置的进行测量的小区集合, 为全部或部分相邻小区。
RSRPo≥ RSRPi≥ RSRP 2 > · ·· > RSRPnn为;;则量小区的数目。
S202: UE选择获得 RSRP强度较大的前 N ( N≤n )个小区作为潜在协 作集 U1 , 将数据通过上行信道发送给服务 eNodeB, 在消息中将携带 Ul集 合中的小区的标识符和 RSRP强度。
S203: 服务 eNodeB在接收到 UE的反馈信息 (即 U1集合中的小区的 RSRP强度)后, 通过 X2接口与 Ul 集合中的各个小区的基站通信, 请求 U1集合中的各小区的负载信息 ( Total PRB usage ) 。
S204: 服务 eNodeB接收到 Ul集合中的小区的负载信息, 将其和 U1集 合中的各小区的 RSRP信息组合表示该小区节点坐标;
其中 服务基站将小区节点坐标表示为 ( ^ ) , 其中 i表示第 i个小 区, 所述 = xi 为小区节点的 RSRP信息, ¾为小区节点
Figure imgf000016_0001
的负载信息, 或者, xil为小区节点的负载信息, xi2为小区节点的 RSRP信 息; j=l或 j=2;
其中, 服务 eNodeB将各小区节点的坐标形成如下规范化目标矩阵 R:
「 ^12 Ί
21 22
S205: 确定决策权重矩阵 W, 计算加权规范化决策矩阵 V。
决策权重矩阵反映了不同因素的影响效果。 这里可以釆用但不限于釆用 熵值法(不引入主观判断)来确定权重, 或者方根法(引入主观判断) 。 而 且能够通过实践反馈调节决策权重矩阵, 优化实际效果。
方根法是将目标(RSRP和负载信息) 两两比较, 得到目标两两之间的 权重相对值, 这个权重相对值是通过主观评估来确定的。 然后将某个目标的 所有权重相对值相乘取方根, 得到了它的方根权重值。 最后, 将所有目标的 方根权重值归一化, 得到目标权重矩阵。
熵值法是指计算目标的熵值, 当某个目标的值相差较大时, 熵值较小, 说明该目标的有效信息量较大, 其权重也应较大; 反之, 若某个目标的值相 差较小, 熵值较大, 说明该指标提供的信息量较小, 其权重也应较小。 计算 每一个目标的熵值, 然后再计算它们的熵权, 最后归一化处理, 就能得到目 标权重矩阵。 由于目标的熵值是由客观数据确定的, 该方法得到的目标权重 矩阵是客观的。
上述方法目的都是通过对于不同目标的影响评估, 比较不同目标对于性 能的影响, 对于性能影响大的目标赋予较大的权重值, 对于性能影响较小的 目标赋予较小的权重值, 从而得到目标权重矩阵。
目标的评估会根据网络条件的不同而发生变化。 例如当信道质量较差的 时候, RSRP的增加带来的信息质量改善就很重要,此时 CoMP性能对 RSRP 的变动敏感, 对于 RSRP就要赋予较大的权重值; 当负载较高时, PRB usage 如果降低,就能提供协作资源, CoMP性能对于 PRB usage的变动更加敏感, 此时 PRB usage的权重值高。
设确定的决策权重矩阵 = 1 用 W 对规范化目标矩阵 R 进行处理得到加权规范化决策矩阵:
Figure imgf000017_0001
因此, 各小区节点的坐标可进一步表示为 (va , 。
S206: 服务 eNodeB确定理想节点和负理想节点。
在当前的目标下, 理想的协作节点中的 RSRP强度, 应该是越大越好, 取最大值, 理想的协作节点的负载是越小越好, 取最小值。
将 RSRP强度的最大值及协作节点负载信息的最小值组合作为理想节点: 当 为小区节点的 RSRP信息, ¾为小区节点的负载信息时, 设矩阵 V 中 RSRP信息的最大值为 , RSRP信息的最小值为 / , 各小区中负载信息的最 大值为 r2 - ,各小区中负载信息的最小值为 ,当 为小区节点的负载信息, ¾ 为小区节点的 RSRP信息时, 设各小区中负载信息的最小值为/ !+ , 负载信息 的最大值为 / , 各小区中 RSRP信息的最小值为^ - , 各小区中 RSRP信息的 最大值为 r2+ , 则理想节点为 ( , ; , 负理想节点为 (Vl - , V- ) ;
S207: 服务 eNodeB计算每一个节点与理想节点的距离和负理想节点的 距离, 以及相对理想接近度。 与理想节点的距离:
Figure imgf000018_0001
公式中 i表示小区标识, 表示第 i个小区与理想节点的距离。
与负理想节点的距离:
Figure imgf000018_0002
相对理想接近度:
在该步骤中, 还可以进一步对 ς进行归一化处理得到 。
Figure imgf000018_0003
S208: 服务 eNodeB对各个小区的相对理想接近度进行排序, 选择最大 的 M ( M≤N )个小区节点作为协作节点, 或者选择相对理想接近度在阔值 之上的小区节点为协作节点。
确定了协作节点集合后, 服务 eNodeB将向协作小区和 UE发送特定的 消息, 进行 CoMP的余下操作。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保护 范围。 本发明还可有其他多种实施例, 在不背离本发明精神及其实质的情况 这些相应的改变和变形都应属于本发明所附的权利要求的保护范围。
工业实用性
上述技术方案的协作节点选择策略, 基于多目标决策来综合分析不同因 素的影响, 最大限度的利用了现有***的规范和协议, 改动要求很少, 实现 简单。 不仅综合考虑不同因素的影响, 而且能够通过实践反馈调节不同因素 的影响权重, 能够很好的解决选择协作节点集合的问题。 因此本发明具有很 强的工业实用性。

Claims

权 利 要 求 书
1、 一种选择协作节点的方法, 所述方法包括:
服务基站根据终端的潜在协作集中各个小区的负载信息以及各所述小区 的参考信号接收功率 RSRP, 从所述潜在协作集中选择一个或多个小区节点 作为所述终端的协作节点。
2、 如权利要求 1所述的方法, 所述方法还包括:
所述服务基站收到所述终端发来的潜在协作集信息后, 向所述潜在协作 集中的各个小区基站请求各个小区的负载信息; 所述潜在协作集信息包括各 小区的标识符及 RSRP。
3、 如权利要求 1或 2所述的方法, 其中:
所述潜在协作集是指终端测量相邻小区的 RSRP值中最大的一个或多个 小区 /基站的集合。
4、如权利要求 1或 2所述的方法, 其中, 所述服务基站从所述潜在协作 集中选择一个或多个小区节点作为所述终端的协作节点的步骤包括:
所述服务基站将各小区的 RSRP及负载信息组合表示该小区节点坐标, 以及将各小区的 RSRP最大值与负载信息的最小值组合为理想节点, 将各小 区的 RSRP最小值与负载信息的最大值组合为负理想节点; 所述服务基站计 算所述潜在协作集中每个小区节点与所述理想节点间的距离 及与负理想节 点间的距离 , 并计算 选择将比值 中最大的一个或多个小区节点 或选择比值 / 大于预设阔值的小区节点作为协作节点。
5、 如权利要求 4 所述的方法, 其中, 所述服务基站将各小区的 RSRP 及负载信息组合表示该小区节点坐标, 以及将各小区的 RSRP最大值与负载 信息的最小值组合为理想节点, 将各小区的 RSRP最小值与负载信息的最大 值组合为负理想节点; 所述服务基站计算所述潜在协作集中每个小区节点与 所述理想节点间的距离 及与负理想节点间的距离 s;的步骤包括:
所述服务基站将小区节点坐标表示为( , ) ,其中 i表示第 i个小区, 所述 ½■ = ,N 或 为小区节点的 RSRP信息, ¾为小区节点的负
载信息, 或者, xil为小区节点的负载信息, xi2为小区节点的 RSRP信息; j=l或 j=2, N为所述潜在协作集中小区个数;
当 为小区节点的 RSRP信息, ¾为小区节点的负载信息时, 设各小区 中 RSRP信息的最大值为 , RSRP信息的最小值为 / , 各小区中负载信息 的最大值为 r2 -, 各小区中负载信息的最小值为 , 当 为小区节点的负载信 息, ¾为小区节点的 RSRP信息时, 设各小区中负载信息的最小值为/ !+, 负 载信息的最大值为 / , 各小区中 RSRP信息的最小值为^ -, 各小区中 RSRP 信息的最大值为 ; 则所述理想节点为( , r2 + ) , 所述负理想节点为( -,
所迷 ^.- 2
Figure imgf000020_0001
^=^|∑¾-^)2
6、 如权利要求 4 所述的方法, 其中, 所述服务基站将各小区的 RSRP 及负载信息组合表示该小区节点坐标, 以及将各小区的 RSRP最大值与负载 信息的最小值组合为理想节点, 将各小区的 RSRP最小值与负载信息的最大 值组合为负理想节点; 所述服务基站计算所述潜在协作集中每个小区节点与 所述理想节点间的距离 及与负理想节点间的距离 的步骤包括: 所述服务基站将小区节点坐标表示为( , ),其中 i表示第 i个小区, 所述 ½■ = 「J ^ =xi 为小区节点的 RSRP信息, ¾为小区节点的负
载信息, 或者, xil为小区节点的负载信息, xi2为小区节点的 RSRP信息; j=l或 j=2, N为所述潜在协作集中小区个数; 将各个小区节点的坐标形成如 下规 阵 R:
Figure imgf000020_0002
所述服务基站还确定决策权重矩阵 IV: , 以及使用该决策权重矩
Figure imgf000021_0001
阵对 计算得到的加权规范化决策矩阵:
Figure imgf000021_0002
当 为小区节点的 RSRP信息, ¾为小区节点的负载信息时, 设矩阵 V 中 RSRP信息的最大值为 , RSRP信息的最小值为 / , 各小区中负载信息 的最大值为 r2 - , 各小区中负载信息的最小值为 , 当 为小区节点的负载信 息, ¾为小区节点的 RSRP信息时, 设矩阵 V中负载信息的最小值为 , 负 载信息的最大值为 / , 各小区中 RSRP信息的最小值为^ - , 各小区中 RSRP 信息的最大值为 r2+ ,则所述理想节点为 ( , v2+ ) , 负理想节点为 ( , V- ) , 各小区节 一步表示为 (v'i , v'2 ) ; 所述
Figure imgf000021_0003
7、 一种选择协作节点的服务基站, 其中:
所述服务基站设置成: 根据终端的潜在协作集中各个小区的负载信息以 及所述小区的参考信号接收功率 RSRP, 从所述潜在协作集中选择一个或多 个的相邻小区节点作为所述终端的协作节点。
8、 如权利要求 7所述的服务基站, 其中:
所述服务基站还设置成: 收到所述终端发来的潜在协作集信息后, 向所 述潜在协作集中的各个小区基站请求各个小区的负载信息; 所述潜在协作集 信息包括各小区的标识符及 RSRP。
9、 如权利要求 7或 8所述的服务基站, 其中:
所述潜在协作集是终端测量相邻小区的 RSRP值中最大的一个或多个小 区 /基站的集合。
10、 如权利要求 7或 8所述的服务基站, 其中, 所述服务基站设置成按 照以下方式从所述潜在协作集中选择一个或多个的相邻小区节点作为所述终 端的协作节点:
将各小区的 RSRP及负载信息组合表示该小区节点坐标, 以及将各小区 的 RSRP最大值与负载信息的最小值组合为理想节点, 将 RSRP最小值与负 载信息的最大值组合为负理想节点; 计算所述潜在协作集中每个小区节点与 所述理想节点间的距离 及与负理想节点间的距离 , 并计算 选择将 比值 中最大的一个或多个小区节点或选择比值 / 大于预设阔值的小 区节点作为协作节点。
11、如权利要求 10所述的服务基站, 其中, 所述服务基站设置成按照以 下方式将各小区的 RSRP及负载信息组合表示该小区节点坐标, 以及将各小 区的 RSRP最大值与负载信息的最小值组合为理想节点, 将 RSRP最小值与 负载信息的最大值组合为负理想节点; 计算所述潜在协作集中每个小区节点 与所述理想节点间的距离 及与负理想节点间的距离 s;: 将小区节点坐标表示为( ),其中 i表示第 i个小区,所述 ¾
Figure imgf000022_0001
或 为小区节点的 RSRP信息, ¾为小区节点的负载信息, 或者, xil为小区节点的负载信息, xi2为小区节点的 RSRP信息; j=l或 j=2, N为 所述潜在协作集中小区个数;
当 为小区节点的 RSRP信息, ¾为小区节点的负载信息时, 设各小区 中 RSRP信息的最大值为 , RSRP信息的最小值为 / , 各小区中负载信息 的最大值为 r2 - , 各小区中负载信息的最小值为 , 当 为小区节点的负载信 息, ¾为小区节点的 RSRP信息时, 设各小区中负载信息的最小值为/ !+ , 负 载信息的最大值为 / , 各小区中 RSRP信息的最小值为^ - , 各小区中 RSRP 信息的最大值为 r+; 则所述理想节点为 ( , r2+ ) , 负理想节点为 ( /!- , r2- ) ; 所述 =
Figure imgf000022_0002
12、如权利要求 10所述的服务基站, 其中, 所述服务基站设置成按照以 下方式将各小区的 RSRP及负载信息组合表示该小区节点坐标, 以及将各小 区的 RSRP最大值与负载信息的最小值组合为理想节点, 将 RSRP最小值与 负载信息的最大值组合为负理想节点; 计算所述潜在协作
与所述理想节点间的距离 及与负理想节点间的距离 : 将小区节点坐标表示为( ),其中 i表示第 i个小区,所述 ¾
Figure imgf000023_0001
或 为小区节点的 RSRP信息, ¾为小区节点的负载信息, 或者, xil为小区节点的负载信息, xi2为小区节点的 RSRP信息; j=l或 j=2, N为 所述潜在协作集中小区个数; 各个小区节点的坐标形成如下规范化目标矩阵 R:
, 以及使用该决策权重矩阵对所述规范化
Figure imgf000023_0002
目标矩阵 R进行如下计算得到的加权规范化决策矩阵:
Figure imgf000023_0003
当 为小区节点的 RSRP信息, ¾为小区节点的负载信息时, 设矩阵 V 中 RSRP信息的最大值为 , RSRP信息的最小值为 / , 各小区中负载信息 的最大值为 r2 - , 矩阵 V中负载信息的最小值为 , 当 为小区节点的负载信 息, ¾为小区节点的 RSRP信息时, 设各小区中负载信息的最小值为/ !+ , 负 载信息的最大值为 / , 各小区中 RSRP信息的最小值为^ - , 各小区中 RSRP 信息的最大值为 r2+ ,则所述理想节点为 ( , v2+ ) , 负理想节点为 ( , V- ) , 各小区节点的坐标进一步表示为 (v'i , v'2 ) ; 所述 i
Figure imgf000023_0004
13、一种选择协作节点的***, 包括: 终端及如权利要求 7至 12中任一 项所述的服务基站;
所述终端设置成: 需要选择协作节点时, 测量相邻小区或者测量集小区 的参考信号接收功率 RSRP, 选择其中 RSRP最大的 N个小区作为潜在协作 集, 并将潜在协作集信息发送至所述服务基站, 所述潜在协作集信息包括 N 个所述小区的标识符及其 RSRP。
PCT/CN2012/073180 2011-07-29 2012-03-28 一种选择协作节点的基站、***及方法 WO2012155695A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110216371.XA CN102905277B (zh) 2011-07-29 2011-07-29 一种选择协作节点的基站、***及方法
CN201110216371.X 2011-07-29

Publications (1)

Publication Number Publication Date
WO2012155695A1 true WO2012155695A1 (zh) 2012-11-22

Family

ID=47176262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/073180 WO2012155695A1 (zh) 2011-07-29 2012-03-28 一种选择协作节点的基站、***及方法

Country Status (2)

Country Link
CN (1) CN102905277B (zh)
WO (1) WO2012155695A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298132A (zh) * 2013-05-08 2013-09-11 东南大学 基于多点协作的发送点选择方法
CN106604311A (zh) * 2015-10-13 2017-04-26 华为技术有限公司 一种选择参与协作多点传输的传输节点的方法及装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9439176B2 (en) 2014-02-10 2016-09-06 Huawei Technologies, Co., Ltd. System and method for virtual multi-point transceivers
CN106031212B (zh) * 2014-02-14 2020-01-10 瑞典爱立信有限公司 用于适配无线电协作方案的方法、节点、计算机程序以及计算机程序产品
CN105657837B (zh) * 2014-11-24 2021-08-24 中兴通讯股份有限公司 虚拟小区资源分配方法、装置和***
CN108512583B (zh) * 2018-02-06 2020-06-12 北京邮电大学 多个移动设备间计算协作方法、装置及移动设备
CN110876153B (zh) * 2018-08-30 2021-09-03 海信集团有限公司 一种构建CoMP集合的方法和设备
CN115842698A (zh) * 2021-09-18 2023-03-24 成都极米科技股份有限公司 多点协同操作的方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101583161A (zh) * 2009-05-26 2009-11-18 北京邮电大学 协作节点单元选择方法及装置
CN101873661A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种CoMP***中确定协同小区的方法、***及终端
CN101895921A (zh) * 2009-05-18 2010-11-24 普天信息技术研究院有限公司 一种选取协同多点小区的方法
CN101931438A (zh) * 2009-06-26 2010-12-29 华为技术有限公司 一种协作节点选择方法及装置
CN102104932A (zh) * 2010-12-14 2011-06-22 北京邮电大学 一种lte-a***中选取协作节点的方法、基站和协作节点

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101873661A (zh) * 2009-04-27 2010-10-27 大唐移动通信设备有限公司 一种CoMP***中确定协同小区的方法、***及终端
CN101895921A (zh) * 2009-05-18 2010-11-24 普天信息技术研究院有限公司 一种选取协同多点小区的方法
CN101583161A (zh) * 2009-05-26 2009-11-18 北京邮电大学 协作节点单元选择方法及装置
CN101931438A (zh) * 2009-06-26 2010-12-29 华为技术有限公司 一种协作节点选择方法及装置
CN102104932A (zh) * 2010-12-14 2011-06-22 北京邮电大学 一种lte-a***中选取协作节点的方法、基站和协作节点

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103298132A (zh) * 2013-05-08 2013-09-11 东南大学 基于多点协作的发送点选择方法
CN103298132B (zh) * 2013-05-08 2016-03-02 东南大学 基于多点协作的发送点选择方法
CN106604311A (zh) * 2015-10-13 2017-04-26 华为技术有限公司 一种选择参与协作多点传输的传输节点的方法及装置
CN106604311B (zh) * 2015-10-13 2020-11-17 华为技术有限公司 一种选择参与协作多点传输的传输节点的方法及装置

Also Published As

Publication number Publication date
CN102905277A (zh) 2013-01-30
CN102905277B (zh) 2017-07-11

Similar Documents

Publication Publication Date Title
WO2012155695A1 (zh) 一种选择协作节点的基站、***及方法
Andreev et al. Cellular traffic offloading onto network-assisted device-to-device connections
JP2018129807A (ja) 分散アンテナシステムで干渉測定方法及び装置
EP2712228B1 (en) Method, equipment and system for coordinated multi-point transmission/reception
WO2014101243A1 (zh) 负载均衡的方法和网络控制节点
WO2019080119A1 (zh) 一种广播波束域调整方法及装置
WO2020243971A1 (zh) 一种车联网***中的资源选取方法及其用户设备
CN113615279B (zh) 无线链路管理方法及相关设备
WO2014177103A1 (zh) 数据传输调度方法、装置和***
WO2016000491A1 (zh) 确定拉远射频单元rru的方法与设备
WO2012051861A1 (zh) 一种多点协作传输接收***测量上报方法及***
WO2013127140A1 (zh) 异构网络中干扰管理方法及装置
JP6580702B2 (ja) 協調型マルチセル通信技術に基づくワイヤレスネットワークの接続障害検出
US9332444B2 (en) Communication system and base station apparatus
WO2009155740A1 (zh) 一种高速上行分组接入业务分扇区调度方法和***
US10271242B2 (en) Method and apparatus for traffic load balancing in mobile communication system
WO2011157110A2 (zh) 一种协作多点传输方法、设备以及***
WO2021056844A1 (zh) 数据处理方法、主机单元、基站***和存储介质
WO2018187973A1 (zh) 调度用户的确定方法、装置及***
JP2017509258A (ja) 協調多地点に基づいて複数のセル間にリソースを配分する方法および装置
WO2015085494A1 (zh) 基站及用户调度方法
WO2013139291A1 (zh) 确定发射功率的方法和设备
WO2013086941A1 (zh) 一种多小区检测探测参考信号的方法及相关基站、***
Zhang et al. Congestion-aware user-centric cooperative base station selection in ultra-dense networks
WO2014198067A1 (zh) 一种下行功率分配参数的通知方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785137

Country of ref document: EP

Kind code of ref document: A1