WO2012105626A1 - ポリエステル樹脂組成物 - Google Patents

ポリエステル樹脂組成物 Download PDF

Info

Publication number
WO2012105626A1
WO2012105626A1 PCT/JP2012/052315 JP2012052315W WO2012105626A1 WO 2012105626 A1 WO2012105626 A1 WO 2012105626A1 JP 2012052315 W JP2012052315 W JP 2012052315W WO 2012105626 A1 WO2012105626 A1 WO 2012105626A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester resin
acid
aliphatic
resin composition
weight
Prior art date
Application number
PCT/JP2012/052315
Other languages
English (en)
French (fr)
Inventor
中野 博
裕之 金子
雅申 三輪
楠野 篤志
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to EP12741597.4A priority Critical patent/EP2671921B1/en
Priority to CN201280007399.5A priority patent/CN103339195B/zh
Publication of WO2012105626A1 publication Critical patent/WO2012105626A1/ja
Priority to US13/957,963 priority patent/US8747974B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • C08L91/06Waxes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1334Nonself-supporting tubular film or bag [e.g., pouch, envelope, packet, etc.]
    • Y10T428/1345Single layer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1352Polymer or resin containing [i.e., natural or synthetic]

Definitions

  • the present invention relates to a resin composition containing an aliphatic polyester resin that can provide a film having excellent mechanical properties.
  • plastic films are excellent in strength, water resistance, moldability, transparency, cost, etc., and are used in many applications as bags and containers.
  • typical plastic films include those made of polyethylene, polypropylene, polystyrene, polyvinyl chloride, and the like.
  • these resins are difficult to decompose in a natural environment, and there are problems such as generation of harmful gases and damage to the incinerator when incineration is performed.
  • aliphatic polyester resins such as polybutylene succinate and polybutylene succinate adipate
  • aliphatic oxycarboxylic acid resins such as polylactic acid
  • aromatic aliphatic copolymer polyesters such as polybutylene adipate terephthalate
  • Patent Document 1 A technique for solving the above problem by using a resin is known (see, for example, Patent Document 1).
  • aromatic aliphatic copolyester resins such as polybutylene adipate terephthalate have been known to improve biodegradability by the presence of aliphatic units between aromatic units.
  • aromatic aliphatic polyester resin excellent in crystallinity and moldability an aromatic aliphatic copolymer polyester resin having a low aromatic dicarboxylic acid component content, and an aliphatic oxycarboxylic acid resin Have been disclosed in a predetermined ratio (for example, see Patent Document 2).
  • Aliphatic polyester resins such as polybutylene succinate and polybutylene succinate adipate have a high crystallization rate and good moldability, but the tear strength of the film after molding may be insufficient. It was.
  • aliphatic oxycarboxylic acid resins such as polylactic acid have high rigidity and can be improved in film strength by being included in the film.
  • the crystallization rate is slow and the moldability is poor. Even when the technique described in Patent Document 1 is used, the crystallization rate is still slow and the moldability may be poor.
  • the flexibility is sufficient, but the tensile strength is weak, and a so-called waistless film may be formed. Even when the described technique is used, the tear strength of the film may be inferior, and the impact strength has room for improvement.
  • An object of the present invention is to provide a resin composition having excellent tear strength and excellent impact strength when molded into a film, and a film or bag formed by molding the resin composition.
  • the present inventor contains the polyester resin (A), the polyester resin (B), and the polyester resin (C) in a predetermined ratio, and the polyester resin (A). It was found that by making the amount of the structural unit derived from succinic acid within a predetermined range, a film having excellent tear strength and excellent impact strength can be obtained.
  • the gist of the present invention is as follows.
  • An aromatic aliphatic copolyester resin comprising an aliphatic diol unit, an aliphatic dicarboxylic acid unit, and an aromatic dicarboxylic acid unit, wherein the aromatic dicarboxylic acid unit is contained in an amount of 5 mol% or more and 95 mol in all dicarboxylic acid units.
  • the bag when a resin composition according to the present invention is used as a film and then formed into a bag, the bag is excellent in tear strength and can be prevented from tearing.
  • the impact strength is excellent, it is possible to prevent the bag from tearing when the bag is opened or when an object is packed in the bag.
  • molding the resin composition which concerns on this invention is excellent in tear strength, and can be used suitably.
  • the polyester resin composition of the present invention contains the following polyester resins (A) to (C).
  • the polyester resin (A) is an aliphatic polyester resin containing an aliphatic diol unit and an aliphatic dicarboxylic acid unit, and among all the aliphatic dicarboxylic acid-derived units, succinic acid-derived units are contained in an amount of 5 mol% to 86 mol%.
  • the polyester resin (B) is an aromatic aliphatic copolymerized polyester-based resin containing an aliphatic diol unit, an aliphatic dicarboxylic acid unit, and an aromatic dicarboxylic acid unit. It is a polyester resin containing 5 mol% or more and 95 mol% or less of an acid unit.
  • the polyester resin (C) is a polyester resin containing an aliphatic oxycarboxylic acid. Further, in the polyester resin composition of the present invention, the polyester resin (A) is 10 to 89% by weight and the polyester resin (B) is 11 to 90% by weight with respect to the total of the polyester resin (A) and the polyester resin (B). And the polyester resin (C) is contained in an amount of 1 to 40% by weight based on the total of the polyester resin (A), the polyester resin (B) and the polyester resin (C).
  • an aliphatic diol refers to an aliphatic hydrocarbon group having two hydroxyl groups bonded.
  • a straight chain aliphatic hydrocarbon group is usually used, but it has a branched structure. May have a ring structure, or may have a plurality of them.
  • the aliphatic dicarboxylic acid unit refers to an aliphatic hydrocarbon group in which two carboxyl groups are bonded.
  • a straight chain aliphatic hydrocarbon group is usually used. May have a ring structure, or may have a plurality of them.
  • the polyester resin according to the present invention is a polymer having repeating units, and each repeating unit is also referred to as a compound unit for the compound from which each repeating unit is derived.
  • a repeating unit derived from an aliphatic diol is an “aliphatic diol unit”
  • a repeating unit derived from an aliphatic dicarboxylic acid is an “aliphatic dicarboxylic acid unit”
  • a repeating unit derived from an aromatic dicarboxylic acid is The “aromatic dicarboxylic acid unit” and the repeating unit derived from the aliphatic oxycarboxylic acid are also referred to as “aliphatic oxycarboxylic acid unit”.
  • polyester resin composition of the present invention is a resin composition characterized by containing specific amounts of a polyester resin (A), a polyester resin (B), and a polyester resin (C). ) And polyester resin (B), the polyester resin (A) is contained in an amount of 10 to 89% by weight, the polyester resin (B) is contained in an amount of 11 to 90% by weight, and the polyester resin (A) and the polyester resin ( A polyester resin composition containing 1 to 40% by weight of the polyester resin (C) with respect to the total of B) and the polyester resin (C).
  • the content ratio of the polyester resin (A) and the polyester resin (B) is usually 10 to 89% by weight of the polyester resin (A) and the polyester resin (A) with respect to the total of the polyester resin (A) and the polyester resin (B). B) is contained in an amount of 11 to 90% by weight.
  • the content ratio of the polyester resin (A) is preferably 40% by weight or more, more preferably 51% by weight or more, and particularly preferably. Is 61% by weight or more.
  • the content ratio of the polyester resin (B) is preferably 15% by weight or more, more preferably 18% by weight or more, and particularly preferably 20% by weight or more.
  • the polyester resin (A) is usually contained in an amount of 1 to 40% by weight, preferably 3 to 35% by weight, more preferably 6 to 30% by weight, based on the total of (B) and the polyester resin (C).
  • the polyester resin composition of the present invention may contain various compounds other than the polyester resin (A), the polyester resin (B), and the polyester resin (C). These other components will be described later.
  • polyester resin (A) used in the present invention is an aliphatic polyester-based resin containing an aliphatic diol unit and an aliphatic dicarboxylic acid unit, and 5 mol% of succinic acid-derived units in all aliphatic dicarboxylic acid-derived units. More than 86 mol% is contained.
  • the polyester resin (A) may be a mixture of polyester resins having different amounts of succinic acid units, for example, an aliphatic polyester-based resin not containing dicarboxylic acid structural units other than those derived from succinic acid, and those other than those derived from succinic acid. It is also possible to blend with an aliphatic polyester-based resin containing a structural unit and adjust the amount of succinic acid-derived structural units in the polyester resin (A) within the above predetermined range.
  • the polyester resin (A) is a polyester resin containing an aliphatic diol unit represented by the following formula (1) and an aliphatic dicarboxylic acid unit represented by the following formula (2).
  • R 1 represents a divalent aliphatic hydrocarbon group.
  • the polyester resin (A) may contain two or more types of aliphatic diol units represented by the formula (1).
  • R 2 is a divalent aliphatic hydrocarbon group.
  • the aliphatic diol unit and the aliphatic dicarboxylic acid unit represented by the above formulas (1) and (2) may be derived from a compound derived from petroleum or a compound derived from a plant raw material. Although not desirable, it is desirable to include compounds derived from plant materials.
  • the polyester resin (A) is a copolymer
  • the polyester resin (A) may contain two or more aliphatic dicarboxylic acid units represented by the formula (2).
  • the aliphatic dicarboxylic acid unit represented by the formula (2) contains a structural unit derived from succinic acid in an amount of 5 mol% to 86 mol% with respect to the total aliphatic dicarboxylic acid unit.
  • the structural unit derived from succinic acid is preferably at least 10 mol%, more preferably at least 50 mol%, even more preferably at least 64 mol%, particularly preferably the total aliphatic dicarboxylic acid unit. It is 68 mol% or more, preferably 83 mol% or less, more preferably 81 mol% or less, and particularly preferably 79 mol% or less.
  • aliphatic diol which gives the diol unit of Formula (1)
  • a C2-C10 aliphatic diol is preferable, C4-C6 is preferable.
  • Aliphatic diols are particularly preferred.
  • ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like can be mentioned, among which 1,4-butanediol is particularly preferable.
  • Two or more kinds of the aliphatic diols can be used.
  • C2-C40 aliphatic dicarboxylic acid is preferable, C4-C10 aliphatic dicarboxylic acid is especially preferable.
  • adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid and the like can be mentioned, among which adipic acid and sebacic acid are preferable, and adipic acid is particularly preferable. Two or more kinds of the dicarboxylic acids can be used.
  • the polyester resin (A) in the present invention may have a repeating unit (aliphatic oxycarboxylic acid unit) derived from an aliphatic oxycarboxylic acid.
  • aliphatic oxycarboxylic acid unit derived from an aliphatic oxycarboxylic acid.
  • Specific examples of the aliphatic oxycarboxylic acid that gives an aliphatic oxycarboxylic acid unit include, for example, lactic acid, glycolic acid, 2-hydroxy-n-butyric acid, 2-hydroxycaproic acid, 6-hydroxycaproic acid, 2-hydroxy- Examples include 3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-hydroxyisocaproic acid, and the like, or lower alkyl esters or intramolecular esters thereof.
  • any of D-form, L-form and racemic form may be sufficient, and the form may be solid, liquid, or aqueous solution.
  • lactic acid or glycolic acid is particularly preferred.
  • These aliphatic oxycarboxylic acids can be used alone or as a mixture of two or more.
  • the amount of the aliphatic oxycarboxylic acid unit is preferably 20 mol% or less, more preferably 10 mol% or less, particularly preferably in all repeating units constituting the polyester resin (A) from the viewpoint of moldability. 5 mol% or less.
  • the polyester resin (A) in the present invention is “trifunctional or higher aliphatic polyhydric alcohol”, “trifunctional or higher aliphatic polyvalent carboxylic acid or acid anhydride thereof” or “trifunctional or higher aliphatic polyvalent alcohol”.
  • trimerizing “oxycarboxylic acid” the melt viscosity may be increased, or the chain length may be extended by a coupling agent.
  • trifunctional aliphatic polyhydric alcohol examples include trimethylolpropane and glycerin, and specific examples of the tetrafunctional aliphatic polyhydric alcohol include pentaerythritol. These may be used alone or in combination of two or more.
  • trifunctional aliphatic polyvalent carboxylic acid or its acid anhydride examples include propanetricarboxylic acid or its acid anhydride
  • tetrafunctional polyvalent carboxylic acid or its acid anhydride examples include: Examples include cyclopentanetetracarboxylic acid or acid anhydrides thereof. These may be used alone or in combination of two or more.
  • the trifunctional aliphatic oxycarboxylic acid includes (i) a type having two carboxyl groups and one hydroxyl group in the same molecule, and (ii) one carboxyl group and two hydroxyl groups. Any type can be used, but from the viewpoint of moldability, mechanical strength and appearance of the molded product, (i) two carboxyl groups and one hydroxyl group such as malic acid are contained in the same molecule. The type which has is preferable, and, specifically, malic acid is preferably used.
  • the tetrafunctional aliphatic oxycarboxylic acid component includes (i) a type in which three carboxyl groups and one hydroxyl group are shared in the same molecule, and (ii) two carboxyl groups and two hydroxyl groups.
  • a group that shares a group in the same molecule; (iii) a group that shares three hydroxyl groups and one carboxyl group in the same molecule, and any type can be used. What has two or more is preferable and a citric acid, tartaric acid, etc. are mentioned more specifically. These may be used alone or in combination of two or more.
  • the amount of the structural unit derived from such a tri- or higher functional component is 100 mol% based on all structural units constituting the polyester resin (A), and the lower limit is usually 0 mol% or more, preferably 0.01 mol% or more.
  • the upper limit is usually 5 mol% or less, preferably 2.5 mol% or less.
  • Examples of the coupling agent include diisocyanate, oxazoline, diepoxy compound, acid anhydride and the like. Specifically, 2,4-tolylene diisocyanate, diphenylmethane diisocyanate, 1,5-naphthylene diisocyanate, hydrogen Xylylene diisocyanate, hexamethylene diisocyanate and the like. These addition amounts are 0.1 to 5 parts by weight per 100 parts by weight of the polyester resin (A).
  • the polyester resin (A) has a structural unit derived from succinic acid, has a structural unit derived from the dicarboxylic acid component other than succinic acid, and a structural unit derived from the diol component, and has a structure derived from the polyhydric alcohol component.
  • a unit, a structural unit derived from the polyvalent carboxylic acid component, a structural unit derived from an aliphatic oxycarboxylic acid component, and a coupling agent are optionally included.
  • the polyester resin (A) used in the present invention can be produced by a known method.
  • a general method of melt polymerization in which the above-mentioned aliphatic dicarboxylic acid containing succinic acid and an aliphatic diol are esterified and / or transesterified, followed by a polycondensation reaction under reduced pressure,
  • a method of production by melt polymerization carried out in the absence of solvent is preferred from the viewpoint of economy and simplicity of the production process.
  • the average molecular weight of the polyester resin (A) can be measured by gel permeation chromatography (GPC), and the weight average molecular weight of polystyrene as a standard substance is usually 10,000 or more and 1,000,000 or less. However, since it is advantageous in terms of moldability and mechanical strength, it is preferably 20,000 or more and 500,000 or less, more preferably 50,000 or more and 400,000 or less.
  • the melt flow rate (MFR) of the polyester resin (A) is usually 0.1 g / 10 min or more and usually 100 g / 10 min or less when measured at 190 ° C. and 2.16 kg. From the viewpoint of moldability and mechanical strength, it is preferably 50 g / 10 min or less, particularly preferably 30 g / 10 min or less.
  • the melting point of the polyester resin (A) is preferably 70 ° C. or higher, more preferably 75 ° C. or higher, preferably 170 ° C. or lower, more preferably 119 ° C. or lower, and particularly preferably lower than 100 ° C.
  • at least one melting point is preferably within the above range.
  • the elastic modulus is preferably 180 to 500 MPa. When the melting point is out of the range, the moldability is inferior, when the elastic modulus is 180 MPa or less, problems easily occur in the moldability and bag-making property, and when the elastic modulus is 500 MPa or more, it is difficult to obtain the effect of improving the tear strength and impact strength.
  • the method for adjusting the melting point and elastic modulus of the polyester resin (A) is not particularly limited.
  • the type of copolymerization component other than succinic acid can be selected, the copolymerization ratio of each can be adjusted, It can be adjusted by combining them.
  • polyester resin (B) used in the present invention is an aromatic aliphatic copolymer polyester resin containing an aliphatic diol unit, an aliphatic dicarboxylic acid unit, and an aromatic dicarboxylic acid unit.
  • the main component is an aromatic aliphatic copolyester composed of an aromatic dicarboxylic acid unit, and preferably has biodegradability.
  • R 3 represents a divalent aliphatic hydrocarbon group.
  • the polyester resin (B) is a copolymer, two or more kinds of R 3 may be contained in the polyester resin (B).
  • R 4 represents a divalent aliphatic hydrocarbon group.
  • the polyester resin (B) is a copolymer, two or more kinds of R 4 may be contained in the polyester resin (B).
  • R 5 represents a divalent aromatic hydrocarbon group.
  • the polyester resin (B) is a copolymer, two or more kinds of R 5 may be contained in the polyester resin (B).
  • the diol that gives the diol unit of the formula (3) is not particularly limited, but those having 2 to 10 carbon atoms are preferred from the balance of cost and mechanical strength.
  • ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like can be mentioned.
  • diols having 2 to 4 carbon atoms are preferable, ethylene glycol and 1,4-butanediol are more preferable, and 1,4-butanediol is particularly preferable.
  • the dicarboxylic acid that gives the dicarboxylic acid unit of the formula (4) is not particularly limited, but preferably has 2 to 12 carbon atoms from the balance between cost and biodegradability.
  • succinic acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid and the like can be mentioned.
  • sebacic acid or adipic acid is preferred.
  • the ring structure of R 5 is preferably 2 or less, and more specifically, for example, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, etc.
  • R 5 is preferably a phenylene group, and more specifically, for example, terephthalic acid and isophthalic acid are preferable, and terephthalic acid is particularly preferable.
  • the aromatic dicarboxylic acid by which a part of aromatic ring was substituted by the sulfonate may be sufficient.
  • Two or more types of aliphatic dicarboxylic acids, aliphatic diols, and aromatic dicarboxylic acids can be used.
  • the polyester resin (B) may have an aliphatic oxycarboxylic acid unit.
  • Specific examples of the aliphatic oxycarboxylic acid that gives an aliphatic oxycarboxylic acid unit include lactic acid, glycolic acid, 2-hydroxy-n-butyric acid, 2-hydroxycaproic acid, 6-hydroxycaproic acid, 2-hydroxy-3, Examples thereof include 3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-hydroxyisocaproic acid, or a mixture thereof.
  • these lower alkyl esters or intramolecular esters may be used.
  • any of D-form, L-form and racemic form may be sufficient, and the form may be any of solid, liquid or aqueous solution.
  • lactic acid or glycolic acid is preferable.
  • These aliphatic oxycarboxylic acids can be used alone or as a mixture of two or more.
  • the amount of the aliphatic oxycarboxylic acid is preferably 20 mol% or less, more preferably 10 mol% or less in all the constituent components constituting the polyester resin (B).
  • the polyester resin (B) is similar to the polyester resin (A) in that “trifunctional or higher aliphatic polyhydric alcohol”, “trifunctional or higher aliphatic polyvalent carboxylic acid or acid anhydride thereof” or “trifunctional” is used.
  • the melt viscosity may be increased by copolymerizing the above ⁇ aliphatic polyvalent oxycarboxylic acid '', and the chain length may be extended by a coupling agent such as diisocyanate or diepoxy compound. May be.
  • the content of the aromatic dicarboxylic acid unit in the polyester resin (B) is preferably from the viewpoint of the melting point and biodegradability with respect to the total (100 mol%) of the aliphatic dicarboxylic acid unit and the aromatic dicarboxylic acid unit. It is 5 mol% or more, more preferably 35 mol% or more, particularly preferably 40 mol% or more, preferably 95 mol% or less, more preferably 65 mol% or less, and particularly preferably 60 mol% or less.
  • the polyester resin (B) can be produced by a known production method in the same manner as the polyester resin (A).
  • the average molecular weight of the polyester resin (B) can be measured by gel permeation chromatography (GPC), and the weight average molecular weight using polystyrene as a standard substance is usually 5,000 or more and 1,000,000 or less. However, since it is advantageous in terms of moldability and mechanical strength, it is preferably 10,000 or more and 500,000 or less.
  • melt flow rate (MFR) of the polyester resin (B) used in the present invention is measured at 190 ° C. and 2.16 kg, the lower limit is usually 0.1 g / 10 min or more, and the upper limit is usually 100 g / 10 min. It is preferable that it is below, More preferably, it is 50 g / 10min or less, Most preferably, it is 30 g / 10min or less.
  • the melt flow rate (MFR) of the polyester resin (B) can be adjusted by the molecular weight.
  • the melting point of the polyester resin (B) is preferably 70 ° C. or higher, more preferably 75 ° C. or higher, preferably 205 ° C. or lower, more preferably 180 ° C. or lower, and particularly preferably 140 ° C. or lower. If the melting point is 70 ° C. or lower, the moldability and heat resistance of the composition are poor, and if it is 205 ° C. or higher, the melting point difference from other components becomes large and the moldability is poor.
  • the melting point of the polyester resin (B) can be adjusted by the amount of aromatic dicarboxylic acid or oxycarboxylic acid.
  • polyester resin (C) used in the present invention is mainly composed of a polyester resin composed of aliphatic oxycarboxylic acid units.
  • Examples of the aliphatic oxycarboxylic acid that gives an aliphatic oxycarboxylic acid unit include lactic acid, glycolic acid, 2-hydroxy-n-butyric acid, 3-hydroxybutyric acid, 4-hydroxybutyric acid, 4-hydroxyvaleric acid, 5-hydroxy Valeric acid, 2-hydroxycaproic acid, 6-hydroxycaproic acid, 3-hydroxyhexanoic acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-hydroxyisocaproic acid, etc. Or these lower alkyl ester or intramolecular ester is mentioned.
  • any of D-form, L-form and racemic form may be sufficient, and the form may be solid, liquid, or aqueous solution.
  • lactic acid or glycolic acid is particularly preferable, and lactic acid is most preferable.
  • These aliphatic oxycarboxylic acids can be used alone or as a mixture of two or more.
  • the polyester resin (C) may have an aliphatic oxycarboxylic acid unit derived from a tri- or higher functional aliphatic oxycarboxylic acid component.
  • the trifunctional aliphatic oxycarboxylic acid component includes (i) a type having two carboxyl groups and one hydroxyl group in the same molecule, and (ii) a type having one carboxyl group and two hydroxyl groups. Any type can be used, but from the viewpoint of improving the quality by reducing coloring and foreign matter of the polyester resin (C), (i) two carboxyl groups such as malic acid and a hydroxyl group Is preferably a type having one in the same molecule, and more specifically, malic acid or the like is preferably used.
  • the tetrafunctional aliphatic oxycarboxylic acid component includes (i) a type in which three carboxyl groups and one hydroxyl group are shared in the same molecule, and (ii) two carboxyl groups and two hydroxyl groups. It is divided into a type sharing a group in the same molecule, and (iii) a type sharing three hydroxyl groups and one carboxyl group in the same molecule, and any type can be used. Specific examples include citric acid and tartaric acid. These may be used alone or in combination of two or more.
  • the polyester resin (C) may contain other structural units derived from the above aliphatic polyester or aromatic aliphatic polyester.
  • the content of the other structural unit in the polyester resin (C) is 100 mol% in total of the structural unit derived from the aliphatic oxycarboxylic acid and the other structural unit, and the lower limit is usually 0 mol% or more, preferably It is 0.01 mol% or more, and an upper limit is 5 mol% or less normally, Preferably it is 2.5 mol% or less.
  • the polyester resin (C) can be obtained by a method of directly dehydrating polycondensation of the above raw materials, a method of ring-opening polymerization of a cyclic dimer of lactic acid or hydroxycarboxylic acid, production by microorganisms, or the like.
  • the lower limit is usually 0.1 g / 10 min or more, and the upper limit is usually 100 g / 10 min.
  • it is preferably 50 g / 10 min or less, particularly preferably 30 g / 10 min or less.
  • the resin composition according to the present invention includes lubricants, fillers (fillers), plasticizers, antistatic agents, antioxidants, light stabilizers, ultraviolet absorbers, dyes, pigments, hydrolysis inhibitors, and the like.
  • Various additives, synthetic resin such as polycaprolactone, polyamide, polyvinyl alcohol, cellulose ester, animal / plant material fine powder such as starch, cellulose, paper, wood powder, chitin / chitosan, coconut shell powder, walnut shell powder, etc.
  • a mixture thereof may be included as “other components”. These can be arbitrarily used as long as the effects of the present invention are not impaired. These may be used alone or in combination of two or more.
  • the amount of these additives is usually 0.01% by weight or more and 40% by weight based on the total amount of the biodegradable resin composition in order not to impair the physical properties of the biodegradable resin composition. It is preferable that it is below wt%.
  • Lubricant For example, when a lubricant is included in the resin composition according to the present invention, the moldability when the resin composition is made into a film and then molded into a bag can be improved. Moreover, the opening of the bag can be easily opened, and the usability of the bag can be improved. Furthermore, if the opening of the bag is easy to open, the inspection at the time of manufacturing the bag becomes easy.
  • paraffins such as paraffin oil and solid paraffin, higher fatty acids such as stearic acid and palmitic acid, higher alcohols such as palmityl alcohol and stearyl alcohol, calcium stearate, zinc stearate, barium stearate, aluminum stearate, Metal salts of fatty acids such as magnesium stearate and sodium palmitate, fatty acid esters such as butyl stearate, glycerin monostearate and diethylene glycol monostearate, stearamide, methylene bisstearamide, ethylene bisstearamide, oxystearic acid Waxes such as fatty acid amides such as ethylenediamide, methylolamide, oleylamide, stearic acid amide, erucic acid amide, carnauba wax, montan wax, etc.
  • paraffins such as paraffin oil and solid paraffin
  • higher fatty acids such as stearic acid and palmitic acid
  • alcohols such as palmityl alcohol and ste
  • a lubricant and wax may be used individually by 1 type, and may be used 2 or more types by arbitrary ratios and combinations. Of these, erucic acid amide is particularly preferred. These lubricants are usually used in an amount of 0.01 to 2% by weight, preferably 0.05 to 0.5% by weight in the resin composition.
  • the resin composition according to the present invention contains a filler, it can contribute to the stabilization of the film formation by improving the fluidity and crystallization speed of the resin composition, and the reduction of the anisotropy of film mechanical properties. it can. Moreover, when a resin composition is used as a film, blocking between films can be prevented. Alternatively, when the film is formed into a bag, the opening of the bag can be easily opened. Furthermore, the film and the bag can be colored to improve the light shielding property and the light reflecting property.
  • the filler there are fibrous, powdery, plate-like, and needle-like fillers, and powdery and plate-like fillers are particularly preferable.
  • the particulate filler mineral particles such as talc, zeolite, diatomaceous earth, kaolin, clay, silica, quartz powder, metal carbonate particles such as calcium carbonate, magnesium carbonate, heavy calcium carbonate, calcium silicate, aluminum silicate, silicic acid
  • Metal silicate particles such as magnesium, metal oxide particles such as alumina, silica, zinc oxide and titanium oxide, metal hydroxide particles such as aluminum hydroxide, calcium hydroxide and magnesium hydroxide, barium sulfate and calcium sulfate Examples thereof include metal sulfate particles and carbon particles such as carbon black.
  • mica is mentioned as a plate-shaped filler.
  • talc calcium carbonate, or silica is preferably used.
  • Carbon black or titanium oxide may be used.
  • the dispersion state of the filler in a molded article such as a film or the resin composition is 0.08 to 25 ⁇ m, more preferably 0.1 to 5 ⁇ m in terms of number average particle diameter. When it deviates from this range, the addition effect of the said filler will become low.
  • a filler may be used individually by 1 type and may be used in mixture of 2 or more types. These fillers are generally used in the range of 0.05 to 40% by weight in the resin composition.
  • the surface-treated filler may be used.
  • the filler is improved in dispersibility, the fluidity of the resin composition is improved, and the smoothness and opening of the film are improved. Can be improved.
  • additives such as a plasticizer to be blended in the resin composition are reduced by surface treatment.
  • a surface treatment method for the filler it is common to mix the surface treatment agent and the filler by a generally known method, but the method is not limited to the treatment method.
  • the surface treatment agent include straight chain fatty acids having 6 to 40 carbon atoms, branched chain fatty acids, and ester compounds thereof.
  • the particle size of the filler to be used is not particularly limited, but the average particle size is preferably 0.5 ⁇ m or more, more preferably 0.6 ⁇ m or more, and still more preferably 0.8 ⁇ m or more for reasons of improving film properties and handling. 7 ⁇ m or more. Moreover, it is preferable that an average particle diameter is 7 micrometers or less for the reason of a film physical property improvement, More preferably, it is 2 micrometers or less, More preferably, it is 1.0 micrometer or less.
  • the measurement method of the average particle diameter is not particularly limited, but specific examples of the measurement method include obtaining a specific surface area value per gram of powder measured with a powder specific surface area measuring device SS-100 type (constant pressure air permeation method) manufactured by Shimadzu Corporation. From the measurement result of the specific surface area by the air permeation method according to JIS M-8511, the average particle diameter of the filler is calculated by the following formula.
  • the aspect ratio when the needle filler is used usually has an upper limit of 1000 or less and a lower limit of 1 or more, preferably an upper limit of 500 or less and a lower limit of 10 or more. Most preferably, the upper limit is 100 or less and the lower limit is 15 or more. If this ratio is too low, the expected physical properties such as rigidity and heat resistance tend not to be expressed, and if it is too high, there is a tendency for poor appearance and a decrease in film physical properties.
  • the aspect ratio here is the ratio of the major axis to the minor axis of the filler.
  • the aspect ratio of the particles is the arithmetic average value of the ratio of the longest diameter to the shortest diameter of at least 10 particles observed in an electron micrograph having a field of view of 100 ⁇ m ⁇ 100 ⁇ m.
  • the measuring method of the volume average particle diameter is not particularly limited, but the particles dispersed in the dispersion medium can be measured by a sedimentation method, measured by a laser scattering analysis, or measured by a laser Doppler method. More specifically, it is a value measured based on the sedimentation rate (Stokes's law) of particles using a centrifugal sedimentation type particle size distribution analyzer SA-CP4L manufactured by Shimadzu Corporation and an automatic particle size distribution measuring apparatus RS-1000 manufactured by Shimadzu Corporation. .
  • the hardness of the filler there is no particular limitation on the hardness of the filler to be used, but if the hardness is too low, physical properties such as rigidity and heat resistance tend to be low, and if it is too high, it tends to cause poor appearance and reduced physical properties of the film strength. Therefore, it is preferable that the hardness is not too high or too low.
  • the upper limit of the hardness (Mohs hardness) of the filler used is preferably 9 or less, and the lower limit is 1 or more, more preferably the upper limit is 8 or less, and the lower limit is 2 or more, and the upper limit is particularly preferably 7 or less. Is 3 or more.
  • the Mohs hardness here refers to a value obtained by rubbing a standard substance with a sample substance and measuring the hardness with or without scratches.
  • the standard substances are as follows. Hardness 1) talc, hardness 2) gypsum, hardness 3) calcite, hardness 4) fluorite, hardness 5) apatite, hardness 6) feldspar, hardness 7) crystal, hardness 8) yellow jade, hardness 9) corundum (steel ball) ), Hardness 10) diamond.
  • talc, calcium carbonate, silica, titanium oxide, barium sulfate or the like can be used as the filler.
  • talc calcium carbonate
  • silica titanium oxide
  • barium sulfate or the like can be used as the filler.
  • talc calcium carbonate
  • examples of calcium carbonate include NITREX30P, NITREX23P, NS # 100, NCC series NITREX30PS, NCC # 2310, NCC # 1010, NCC-V2300, NCC-V1000 manufactured by Nitto Flour, and Whiscal A manufactured by Maruo Calcium.
  • silica particles include Nippon Aerosil Co., Ltd., Aerosil 200, Aerosil 300, and the like.
  • titanium oxide CR-60, CR-80, CR-68 manufactured by Ishihara Sangyo Co., Ltd. can be used.
  • Plasticizer If the flowability of the resin composition is poor, a plasticizer may be added. In particular, when a filler is included in the resin composition, the viscosity of the resin composition may increase and the flowability of the resin composition may deteriorate, and this is improved by adding a plasticizer to the resin composition. be able to.
  • a known plasticizer can be used without any particular limitation.
  • Antistatic agent when an antistatic agent is included in the resin composition according to the present invention, it is possible to improve moldability when the resin composition is formed into a bag after being formed into a film. In addition, handling of the film and the resin becomes easy. Any antistatic agent can be used as long as the effects of the present invention are not significantly impaired. As a specific example, a surfactant type nonionic, cationic or anionic type is preferable.
  • Nonionic antistatic agents include glycerin fatty acid ester, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, alkyldiethanolamine, hydroxyalkyl monoethanolamine, polyoxyethylene alkylamine, polyoxyethylene alkylamine fatty acid ester alkyldiethanol Amides and the like are listed. Of these, alkyldiethanolamines are preferred.
  • Examples of cationic antistatic agents include tetraalkylammonium salts and trialkylbenzylammonium salts.
  • Examples of the anionic antistatic agent include alkyl sulfonates, alkyl benzene sulfonates, and alkyl phosphates. Of these, alkylbenzene sulfonate is preferable. This is because the kneadability with the resin is good and the antistatic effect is high.
  • the amount of the antistatic agent used is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.5% by weight or more, preferably 1% by weight or more, and usually 5% by weight with respect to the biodegradable resin composition. % By weight or less, preferably 3% by weight or less. If it exceeds the above range, the biodegradable resin composition will have surface stickiness and the product value tends to be reduced. On the other hand, if it is below the above range, the effect of improving antistatic properties tends to be reduced.
  • starch examples include corn starch, waxy corn starch, high amylose corn starch, wheat starch, rice starch, potato starch, sweet potato starch, tapioca starch, and pea starch. These are unmodified and modified products. Either can be used. Modification includes all modification methods such as chemical, physical, and biological, and chemical modification includes esterification, etherification, oxidation, reduction, or partial or all of the structural units of carbohydrates (polysaccharides). It shows that it is modified by a chemical reaction such as coupling, dehydration, hydrolysis, dehydrogenation, halogenation, etc., and particularly shows that a hydroxyl group is etherified or esterified.
  • Physical modification means changing physical properties such as changing the crystallinity.
  • Biological degeneration refers to changing a chemical structure or the like using a living organism.
  • Examples of the light stabilizer include bis (2,2,6,6-tetramethyl-1 (octyloxy) -4-piperidinyl) ester decanoate, a reaction product of 1,1-dimethylethyl hydroperoxide and octane, bis ( 1,2,2,6,6-pentamethyl-4-piperidyl) [[3,5-bis (1,1-dimethylethyl) -4-hydroxyphenyl] methyl] butyl malonate, bis (1,2,2 , 6,6-pentamethyl-4-piperidyl) sebacate, methyl 1,2,2,6,6-pentamethyl-4-piperidyl sebacate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate 1- [2- [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionyloxy] ethyl] -4- [3- (3,5-di-tert-butyl) Ru-4-
  • the amount of the light-resistant agent to be mixed is usually 100 ppm or more, preferably 200 ppm or more, and usually 5 parts by weight or less, preferably 1 part by weight or less, more preferably, on a weight basis with respect to the biodegradable resin composition. 0.5 parts by weight or less. Below this range, the effect of the light resisting agent tends to be small. Moreover, when it exceeds this range, the manufacturing cost tends to be high, the heat resistance of the biodegradable resin composition tends to be inferior, and the light-proofing agent tends to bleed out.
  • ultraviolet absorbers examples include 2- (2H-benzotriazol-2-yl) -4-6-bis (1-methyl-1-phenylethyl) phenol, 2- (4,6-diphenyl-1,3,5 -Triazin-2-yl) -5-[(hexyl) oxy] phenol and the like.
  • the ultraviolet absorber it is particularly preferable to use two or more different types of ultraviolet absorbers in combination.
  • the amount of the ultraviolet absorber to be mixed is arbitrary as long as the effects of the present invention are not significantly impaired.
  • the biodegradable resin composition is usually 100 ppm or more, preferably 200 ppm or more, and usually 5 wt. % Or less, preferably 2% by weight or less, more preferably 0.5% by weight or less. Below this range, the effect of the ultraviolet absorber tends to decrease. Moreover, when it exceeds this range, the manufacturing cost tends to be too high, the heat resistance of the biodegradable resin composition is inferior, or the ultraviolet absorber bleeds out.
  • heat stabilizer examples include dibutylhydroxytoluene (BHT; 2,6-di-t-butyl-4-methylphenol), 2,2′-methylenebis (4-methyl-6-t-butylphenol), pentaerythritol tetrakis [ 3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 3,3 ′, 3 ′′, 5,5 ′, 5 ′′ -hexa-tert-butyl-a, a ′, a ′′ -(Mesitylene-2,4,6-triyl) tri-p-cresol, octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 1,3,5-tris [(4 -Tert-butyl-3-hydroxy-2,6-xylyl) methyl] -1,3,5-triazine-2,4,6 (1H, 3H, 5H) -
  • the amount of the heat stabilizer to be mixed is usually 100 ppm or more, preferably 200 ppm or more, and usually 5 parts by weight or less, preferably 1 part by weight or less, more preferably on a weight basis with respect to the biodegradable resin composition. Is 0.5 parts by weight or less. Below this range, the effect of the heat stabilizer tends to be small. On the other hand, if it exceeds this range, the manufacturing cost tends to be high, and the bleedout of the thermal stabilizer may occur.
  • End-capping agents used mainly for the purpose of suppressing hydrolysis due to moisture in the atmosphere include carbodiimide compounds, epoxy compounds, oxazoline compounds, etc.
  • carbodiimide compounds as monocarbodiimide compounds, Examples include dicyclohexylcarbodiimide, diisopropylcarbodiimide, dimethylcarbodiimide, diisobutylcarbodiimide, dioctylcarbodiimide, t-butylisopropylcarbodiimide, diphenylcarbodiimide, di-t-butylcarbodiimide, di- ⁇ -naphthylcarbodiimide, and the like.
  • dicyclohexylcarbodiimide and diisopropylcarbodiimide are preferred because they are easily available industrially.
  • polycarbodiimide compounds for example, US Pat. No. 2,941,956, Japanese Patent Publication No. 47-33279, J. Pat. Org. Chem. 28, p2069-2075 (1963), and Chemical Review 1981, 81, No. 4, p. What was manufactured by the method described in 619-621 etc. can be used.
  • organic diisocyanates that are raw materials for producing polycarbodiimide compounds include aromatic diisocyanates, aliphatic diisocyanates, alicyclic diisocyanates, and mixtures thereof. Specifically, 1,5-naphthalene diisocyanate, 4, 4'-diphenylmethane diisocyanate, 4,4'-diphenyldimethylmethane diisocyanate, 1,3-phenylene diisocyanate, 1,4-phenylene diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, 2,4- A mixture of tolylene diisocyanate and 2,6-tolylene diisocyanate, hexamethylene diisocyanate, cyclohexane-1,4-diisocyanate, xylylene diisocyanate, isophorone diisocyanate And dicyclohexylmethane-4,4′-diisocyanate,
  • Examples of the carbodiimidization catalyst used in the decarboxylation condensation reaction of organic diisocyanate include organophosphorus compounds and organometallic compounds represented by the general formula M (OR) n (where M is titanium, sodium, potassium, vanadium, tungsten, hafnium).
  • a metal atom such as zirconium, lead, manganese, nickel, calcium or barium, R represents an alkyl group having 1 to 20 carbon atoms or an aryl group having 6 to 20 carbon atoms, and n can be a metal atom M. Is preferred).
  • phospholene oxides are preferable for organic phosphorus compounds, and alcosides of titanium, hafnium, or zirconium are preferable for organometallic compounds.
  • phospholene oxides include 3-methyl-1-phenyl-2-phospholene-1-oxide, 3-methyl-1-ethyl-2-phospholene-1-oxide, and 1,3-dimethyl-2.
  • -Phospholene-1-oxide, 1-phenyl-2-phospholene-1-oxide, 1-ethyl-2-phospholene-1-oxide, 1-methyl-2-phospholene-1-oxide and their double bond isomers Can be illustrated.
  • 3-methyl-1-phenyl-2-phospholene-1-oxide which is easily available industrially, is particularly preferred.
  • a desired degree of polymerization can be controlled by using an active hydrogen-containing compound capable of reacting with monoisocyanate or other terminal isocyanate groups.
  • Compounds used for such purposes include monoisocyanate compounds such as phenyl isocyanate, tolyl isocyanate, dimethylphenyl isocyanate, cyclohexyl isocyanate, butyl isocyanate and naphthyl isocyanate, methanol, ethanol, phenol, cyclohexanol, N-methylethanolamine, Hydroxyl group-containing compounds such as polyethylene glycol monomethyl ether and polypropylene glycol monomethyl ether, amino group-containing compounds such as diethylamine, dicyclohexylamine, ⁇ -naphthylamine and cyclohexylamine, carboxyl group-containing compounds such as succinic acid, benzoic acid and cyclohexane acid, ethyl
  • carbodiimide compounds may be used alone or in combination of two or more.
  • it is particularly preferable to use a polycarbodiimide compound and the degree of polymerization of the lower limit is 2 or more, preferably 4 or more, and the upper limit is usually 40 or less, preferably 20 or less.
  • the amount of carbodiimide used is usually 0.1 to 5% by weight based on the entire resin composition.
  • the resin composition according to the present invention comprises the polyester resin (A), the polyester resin (B), and the polyester resin (C), and is derived from succinic acid in the polyester resin (A). It is characterized in that the amount of the structural unit is within a predetermined range and the blending ratio of the resins (A) to (C) is within a predetermined range.
  • the tear strength of the film is improved and the impact strength is excellent.
  • the resin composition according to the present invention it is possible to obtain a bag that is less likely to tear due to tearing and less likely to tear due to impact.
  • a known method can be applied as a production method of the resin composition according to the present invention.
  • blended polyester resin (A), polyester resin (B) and polyester resin (C) raw material chips are melt-mixed in the same extruder, each is melted in a separate extruder and then mixed.
  • the extruder a single screw or a twin screw extruder can be used.
  • the polyester resins (A) to (C) are mixed and heated and melted, other components can be added and blended.
  • blending oil or the like can be used for the purpose of uniformly dispersing other components.
  • each raw material chip relating to the polyester resins (A) to (C) can be directly supplied to a molding machine to prepare a resin composition, and at the same time, a molded body such as a film can be obtained as it is.
  • the resin composition according to the present invention can be formed into a film by various molding methods applied to general-purpose plastics.
  • the effects of the present invention are particularly prominent when molded by extrusion molding or inflation molding. More specifically, for example, a method of cooling and solidifying a film, sheet or cylinder extruded to a predetermined thickness from a T die, I die or round die with a cooling roll, water, compressed air, etc. Is mentioned. Under the present circumstances, it is also possible to set it as the laminated
  • the film-like molded body thus obtained may then be uniaxially or biaxially stretched by a roll method, a tenter method, a tubular method or the like.
  • the stretching temperature is usually in the range of 30 ° C. to 110 ° C.
  • the stretching ratio is in the range of 0.6 to 10 times in the longitudinal and lateral directions.
  • heat treatment may be performed by a method of blowing hot air, a method of irradiating infrared rays, a method of irradiating microwaves, a method of contacting on a heat roll, or the like.
  • Multi film It is still more preferable when the resin composition according to the present invention is molded into a multi film for agriculture or the like. A known method as described above may be used for forming the multifilm.
  • the multifilm obtained by molding the resin composition according to the present invention has the following effects. In the case of a multi-film, it can be said that a film excellent in tear strength is preferably used. In this respect, the multi-film obtained by molding the resin composition according to the present invention has improved tear strength and excellent impact strength. Therefore, in the laid multi film, it can suppress that a film tears and a defect part becomes large, and can also prevent that a multi film is torn by an impact.
  • the resin composition according to the present invention has components such as aliphatic polyester, aromatic aliphatic copolymer polyester, and aliphatic oxycarboxylic acid as main components, it is problematic even if it is embedded in the soil as it is after using a multi-film. There is no.
  • Bag The film obtained as described above may be formed into a bag.
  • a known method can be applied for forming the bag.
  • it can be molded by heat-sealing the end of a blown tubular body.
  • the film constituting the bag has an improved impact strength and an improved impact strength. If the film is excellent in tear strength, it becomes possible to prevent the bag from tearing. In addition, since the impact strength is excellent, it is possible to prevent the bag from tearing when the bag is opened or when an object is packed in the bag.
  • the melting point was measured by using a differential scanning calorimeter manufactured by Perkin Elmer Co., Ltd., product name: DSC7, and 10 mg sample was heated and melted in a nitrogen stream at a flow rate of 50 mL / min, and then 10 ° C / min. After cooling at a rate of 1, the melting peak temperature at the time of heating at a rate of 10 ° C./min was used.
  • This mixed solution was transferred to an eggplant-shaped flask and concentrated under reduced pressure by an evaporator in an oil bath at 60 ° C. After 1 hour, most of the ethanol was distilled off, leaving a translucent viscous liquid. The temperature of the oil bath was further increased to 80 ° C., and further concentration was performed under a reduced pressure of 5 Torr. The viscous liquid gradually changed from the surface to a powder form, and was completely powdered after 2 hours. Furthermore, a powdery catalyst was dissolved in 1,4-butanediol to prepare a titanium atom having a concentration of 10,000 ppm.
  • polyester resin was obtained.
  • this polyester resin may be referred to as “resin 1”.
  • the obtained polyester resin had a melting point of 114 ° C., an MFR value of 4.4 g / 10 min, and the succinic acid unit in the dicarboxylic acid unit constituting the aliphatic polyester resin was 100 mol%.
  • polyester resin 2 this polyester resin may be referred to as “resin 2”.
  • the obtained polyester resin had a melting point of 88 ° C., an MFR value of 4.2 g / 10 min, and a succinic acid unit in the dicarboxylic acid unit constituting the polyester resin was 79 mol%.
  • Production Example 3 In Production Example 1, polymerization was carried out in the same manner as in Production Example 1 except that 100 parts by weight of succinic acid, 31.0 parts by weight of adipic acid, 143 parts by weight of 1,4-butanediol, and 0.345 parts by weight of malic acid were obtained. A polyester resin was obtained. Hereinafter, this polyester resin may be referred to as “resin 3”. The obtained polyester resin had a melting point of 91 ° C., an MFR value of 3.7 g / 10 min, and a succinic acid unit in the dicarboxylic acid unit constituting the polyester resin was 80 mol%.
  • Production Example 4 In Production Example 1, polymerization was performed in the same manner as in Production Example 1, except that 100 parts by weight of succinic acid, 43.6 parts by weight of adipic acid, 155 parts by weight of 1,4-butanediol, and 0.382 parts by weight of malic acid were obtained. A polyester resin was obtained. Hereinafter, this polyester resin may be referred to as “resin 4”.
  • the obtained polyester resin (resin 4) had a melting point of 83.8 ° C., an MFR value of 3.2 g / 10 min, and a succinic acid unit in the dicarboxylic acid unit constituting the polyester resin was 74 mol%. .
  • Production Example 5 In the same manner as in Production Example 2, 100 parts by weight of succinic acid, 44.6 parts by weight of sebacic acid, 112 parts by weight of 1,4-butanediol, 0.472 parts by weight of malic acid, and 1% by weight of germanium oxide were dissolved in advance. 7.0 parts by weight of 90% DL lactic acid aqueous solution was charged. While stirring the contents of the vessel, nitrogen gas was introduced, the reaction was started from 160 ° C. under a nitrogen gas atmosphere, the temperature was raised to 220 ° C. over 1 hour, and held for 1 hour. Thereafter, the temperature was raised to 230 ° C.
  • polyester resin this polyester resin may be referred to as “resin 5”.
  • the obtained polyester resin (resin 5) had a melting point of 87.8 ° C., and the succinic acid units in the dicarboxylic acid units constituting the polyester resin were 79 mol%.
  • Filler 3 Calcium carbonate NITREX23PS (Nitto Flour Chemical Co., Ltd. average particle size: 0.96 ⁇ m, specific gravity: 2.7, specific surface area: 23000 cm 2 / g, fatty acid treatment)
  • Filler 4 Calcium carbonate NCC # 1010 (Nitto Flour Chemical Industries average particle size: 1.2 ⁇ m, specific gravity: 2.7, specific surface area: 19000 cm 2 / g, untreated)
  • Filler 5 calcium carbonate NS # 100 (manufactured by Nitto Flour Industry Co., Ltd. average particle size: 2.1 ⁇ m, specific gravity: 2.7, specific surface area: 10500 cm 2 / g, untreated)
  • the films according to Examples 1 to 9 were obtained from the polyester resin (A), the amount of structural units derived from succinic acid, the polyester resin (A), the polyester resin (B), and the polyester resin.
  • the composition ratio of (C) is within the range specified in the present invention, it has a tear strength of 10 N / mm or more and 3.6 ⁇ 10 4 [J / m] or more. It can be seen that it has excellent impact strength and mechanical strength.
  • the tear strengths of the films according to Comparative Examples 1 to 9 are all below 11 N / mm.
  • the films according to Examples 10 to 23 were obtained from the polyester resin (A), the amount of structural units derived from succinic acid, the polyester resin (A), the polyester resin (B), and the polyester resin.
  • the composition ratio of (C) is within the range specified in the present invention, and the composition to which the filler is added has a tear strength of 20 N / mm or more and 1.1 ⁇ 10 It has an impact strength of 4 [J / m] or more, and also has good moldability, openability and surface appearance, and is excellent in mechanical strength and moldability.
  • the resin composition according to the present invention comprises a polyester resin (A), a polyester resin (B), and a polyester resin (C), and the amount of structural units derived from succinic acid in the polyester resin (A). Is within the predetermined range, and the blending ratio of the resins (A) to (C) is within the predetermined range.
  • the tear strength of the film is improved and the impact strength is excellent.
  • the resin composition according to the present invention it is possible to obtain a bag that is less likely to tear due to tearing and less likely to tear due to impact.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Protection Of Plants (AREA)
  • Bag Frames (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 フィルムとした場合において引き裂き強度に優れるとともに、衝撃強度にも優れる樹脂組成物を提供することを目的とする。 本発明は、全脂肪族ジカルボン酸単位中、コハク酸単位を5モル%以上86モル%以下含有するポリエステル樹脂(A)、全ジカルボン酸単位中、芳香族ジカルボン酸単位を5モル%以上95モル%以下含有するポリエステル樹脂(B)、および脂肪族オキシカルボン酸を含むポリエステル樹脂(C)を含有するポリエステル樹脂組成物であって、ポリエステル樹脂(A)およびポリエステル樹脂(B)の合計に対して、ポリエステル樹脂(A)を10~89重量%、ポリエステル樹脂(B)を11~90重量%含有し、且つ、ポリエステル樹脂(A)、ポリエステル樹脂(B)およびポリエステル樹脂(C)の合計に対してポリエステル樹脂(C)を1~40重量%含有する、ポリエステル樹脂組成物に関する。

Description

ポリエステル樹脂組成物
 本発明は、力学特性に優れたフィルムを提供し得る、脂肪族ポリエステル系樹脂を含む樹脂組成物に関する。
 従来、各種食品、薬品、雑貨用等の液状物や粉粒物、固形物の包装用資材、農業用資材、建築資材等、幅広い用途において、紙、プラスチックフィルム、金属箔等が用いられている。特にプラスチックフィルムは強度、耐水性、成形性、透明性、コスト等において優れており、袋や容器として多くの用途で使用されている。代表的なプラスチックフィルムとしては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル等によって構成されたものがある。しかしながら、これら樹脂は、自然環境下において分解し難く、また、焼却処理を行う場合に有害なガスを発生したり、焼却炉を傷めたりする等の問題がある。
 上記問題を解決すべく、様々な樹脂が研究されている。例えば、ポリブチレンスクシネート、ポリブチレンスクシネートアジペート等の脂肪族ポリエステル系樹脂、ポリ乳酸等の脂肪族オキシカルボン酸系樹脂、さらにはポリブチレンアジペートテレフタレート等の芳香族脂肪族共重合ポリエステル系樹脂を用いることで、上記問題を解決する技術が知られている(例えば、特許文献1参照)。
 また、ポリブチレンアジペートテレフタレート等の芳香族脂肪族共重合ポリエステル系樹脂は、芳香族単位の合間に脂肪族単位を存在させることにより生分解性を向上させることが知られていたが、柔軟性と引張強度を改善するため、結晶性および成形性に優れた脂肪族ポリエステル系樹脂と、芳香族ジカルボン酸成分含有量の少ない芳香族脂肪族共重合ポリエステル系樹脂と、脂肪族オキシカルボン酸系樹脂とを、所定の比率で含有する脂肪族ポリエステル系樹脂組成物が開示されている(例えば、特許文献2参照)。
日本国特表2001-500907号公報 日本国特開2005-281677号公報
 ポリブチレンスクシネート、ポリブチレンスクシネートアジペート等の脂肪族ポリエステル系樹脂は、結晶化速度が速く、成形性が良好であるが、成形後のフィルムの引き裂き強度が不十分となる場合があった。また、ポリ乳酸等の脂肪族オキシカルボン酸系樹脂は、剛性が高く、フィルム中に含ませることでフィルム強度を向上させることができる。しかしながら、結晶化速度が遅く成形性に劣る場合があった。また、特許文献1に記載の技術を利用した場合でも、未だ結晶化速度が遅く成形性に劣る場合があった。
 また、芳香族脂肪族共重合ポリエステル系樹脂を用いてフィルムを成形した場合、柔軟性は十分となるものの、引張強度が弱く、いわゆる腰のないフィルムとなってしまう場合があり、特許文献2に記載の技術を利用した場合でも、フィルムの引き裂き強度に劣る場合があり、また、衝撃強度についても改善の余地があった。
 本発明は、フィルムに成形した場合において、引き裂き強度に優れるとともに、衝撃強度にも優れる樹脂組成物、および、当該樹脂組成物を成形してなるフィルムや袋を提供することを課題とする。
 本発明者は、上記の課題を解決すべく鋭意研究を行った結果、ポリエステル樹脂(A)、ポリエステル樹脂(B)およびポリエステル樹脂(C)を所定の比率で含有させるとともに、ポリエステル樹脂(A)におけるコハク酸由来の構造単位量を所定の範囲内とすることによって、引き裂き強度に優れるとともに、衝撃強度にも優れたフィルムを得ることができることを見出した。
 すなわち、本発明は以下を要旨とする。
[1]
 脂肪族ジオール単位と脂肪族ジカルボン酸単位とを含む脂肪族ポリエステル系樹脂であって、全脂肪族ジカルボン酸単位中、コハク酸単位を5モル%以上86モル%以下含有するポリエステル樹脂(A)、
 脂肪族ジオール単位、脂肪族ジカルボン酸単位、および芳香族ジカルボン酸単位を含む芳香族脂肪族共重合ポリエステル系樹脂であって、全ジカルボン酸単位中、芳香族ジカルボン酸単位を5モル%以上95モル%以下含有するポリエステル樹脂(B)、および
 脂肪族オキシカルボン酸を含むポリエステル樹脂(C)を含有するポリエステル樹脂組成物であって、
 ポリエステル樹脂(A)およびポリエステル樹脂(B)の合計に対して、ポリエステル樹脂(A)を10~89重量%、ポリエステル樹脂(B)を11~90重量%含有し、且つ、
 ポリエステル樹脂(A)、ポリエステル樹脂(B)およびポリエステル樹脂(C)の合計に対してポリエステル樹脂(C)を1~40重量%含有する、ポリエステル樹脂組成物。
[2]
 ポリエステル樹脂(A)を構成する脂肪族ジカルボン酸単位が、炭素数2以上40以下の脂肪族ジカルボン酸単位を含有する、上記[1]に記載の樹脂組成物。
[3]
 さらに滑材を含有する、上記[1]または[2]に記載の樹脂組成物。
[4]
 さらにフィラーを含有する、上記[1]から[3]のいずれか1つに記載の樹脂組成物。
[5]
 上記[1]から[4]のいずれか1つに記載の樹脂組成物を成形して得られるフィルム。
[6]
 上記[1]から[4]のいずれか1つに記載の樹脂組成物を成形して得られるマルチフィルム。
[7]
 上記[5]に記載のフィルムを成形して得られる袋。
 本発明によれば、成形性が良好でフィルムとした場合において引き裂き強度に優れるとともに、衝撃強度にも優れる樹脂組成物を提供することができる。
 例えば、本発明に係る樹脂組成物をフィルムとしたのち袋に成形した場合、引き裂き強度に優れ、袋の裂けを防止することが可能となる。また、衝撃強度に優れることで、袋を開ける際や袋に物を詰める際、袋の裂けを防止することが可能となる。さらに、本発明に係る樹脂組成物を成形して得られるマルチフィルムも、引き裂き強度に優れ、好適に使用することができる。
 以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 本発明のポリエステル樹脂組成物は、以下のポリエステル樹脂(A)~(C)を含有する。ポリエステル樹脂(A)とは、脂肪族ジオール単位と脂肪族ジカルボン酸単位とを含む脂肪族ポリエステル樹脂であって、全脂肪族ジカルボン酸由来単位中、コハク酸由来単位を5モル%以上86モル%以下含有するポリエステル樹脂である。ポリエステル樹脂(B)とは、脂肪族ジオール単位、脂肪族ジカルボン酸単位、および芳香族ジカルボン酸単位を含む芳香族脂肪族共重合ポリエステル系樹脂であって、全ジカルボン酸由来単位中、芳香族ジカルボン酸単位を5モル%以上95モル%以下含有するポリエステル樹脂である。ポリエステル樹脂(C)とは、脂肪族オキシカルボン酸を含むポリエステル樹脂である。さらに、本発明のポリエステル樹脂組成物は、ポリエステル樹脂(A)およびポリエステル樹脂(B)の合計に対して、ポリエステル樹脂(A)を10~89重量%、ポリエステル樹脂(B)を11~90重量%含有し、且つ、ポリエステル樹脂(A)、ポリエステル樹脂(B)およびポリエステル樹脂(C)の合計に対してポリエステル樹脂(C)を1~40重量%含有する。
 本発明において、脂肪族ジオールとは脂肪族炭化水素基に水酸基が2つ結合したものをいい、脂肪族炭化水素基としては、通常直鎖脂肪族炭化水素基が用いられるが、分岐構造を有していても構わないし、環状構造を有していても構わず、それらを複数有していても構わない。また、脂肪族ジカルボン酸単位とは、脂肪族炭化水素基にカルボキシル基が2つ結合したものをいい、脂肪族炭化水素基としては、通常直鎖脂肪族炭化水素基が用いられるが、分岐構造を有していても構わないし、環状構造を有していても構わず、それらを複数有していても構わない。
 また、本発明に係るポリエステル樹脂は、繰返し単位を有する重合体であるが、それぞれの繰返し単位は、それぞれの繰返し単位の由来となる化合物に対する化合物単位とも呼ぶ。具体的には例えば、脂肪族ジオールに由来する繰返し単位を「脂肪族ジオール単位」、脂肪族ジカルボン酸に由来する繰返し単位を「脂肪族ジカルボン酸単位」、芳香族ジカルボン酸に由来する繰返し単位を「芳香族ジカルボン酸単位」、脂肪族オキシカルボン酸に由来する繰返し単位を「脂肪族オキシカルボン酸単位」とも呼ぶ。
1.ポリエステル樹脂組成物
 本発明の樹脂組成物は、ポリエステル樹脂(A)、ポリエステル樹脂(B)およびポリエステル樹脂(C)を特定量含有する事を特徴とする樹脂組成物であって、ポリエステル樹脂(A)およびポリエステル樹脂(B)の合計に対して、ポリエステル樹脂(A)を10~89重量%、ポリエステル樹脂(B)を11~90重量%含有し、且つ、ポリエステル樹脂(A)、ポリエステル樹脂(B)およびポリエステル樹脂(C)の合計に対してポリエステル樹脂(C)を1~40重量%含有する、ポリエステル樹脂組成物である。
 ポリエステル樹脂(A)とポリエステル樹脂(B)との含有比率は、通常ポリエステル樹脂(A)とポリエステル樹脂(B)の合計に対して、ポリエステル樹脂(A)を10~89重量%、ポリエステル樹脂(B)を11~90重量%含有する。このような比率で含有させることにより、本発明のポリエステル樹脂組成物を用いてフィルムに成形した場合において、フィルムの成形性、衝撃強度や引き裂き強度を優れたものとすることが可能である。また、これらの物性をより優れたものとすることが可能であるため、ポリエステル樹脂(A)の含有比率が40重量%以上であることが好ましく、さらに好ましくは51重量%以上であり、特に好ましくは 61重量%以上である。また、同様の理由により、ポリエステル樹脂(B)の含有比率は15重量%以上であることが好ましく、さらに好ましくは18重量%以上であり、特に好ましくは20重量%以上である。
 また、本発明に係る樹脂組成物を用いてフィルムを成形した場合において、フィルムの引き裂き強度やフィルムの衝撃強度をさらに優れたものとすることが可能であるため、ポリエステル樹脂(A)、ポリエステル樹脂(B)およびポリエステル樹脂(C)の合計に対してポリエステル樹脂(C)を通常1~40重量%含有するが、好ましくは3~35重量%、より好ましくは6~30重量%含有する。
 本発明のポリエステル樹脂組成物は、ポリエステル樹脂(A)、ポリエステル樹脂(B)およびポリエステル樹脂(C)以外にも様々な化合物を含有していても構わない。これらのその他の構成成分については、後述する。
1.1.ポリエステル樹脂(A)
 本発明に用いられるポリエステル樹脂(A)は脂肪族ジオール単位、脂肪族ジカルボン酸単位とを含む脂肪族ポリエステル系樹脂であって、全脂肪族ジカルボン酸由来単位中、コハク酸由来単位を5モル%以上86モル%以下含有する。ポリエステル樹脂(A)は、コハク酸単位の量が異なるポリエステル樹脂の混合物であってもよく、例えば、コハク酸由来以外のジカルボン酸構造単位を含まない脂肪族ポリエステル系樹脂と、コハク酸由来以外の構造単位を含む脂肪族ポリエステル系樹脂とをブレンドして、ポリエステル樹脂(A)におけるコハク酸由来の構造単位量を上記所定範囲内に調整して使用する事も可能である。
 より具体的には、ポリエステル樹脂(A)は、下記式(1)で表される脂肪族ジオール単位、および下記式(2)で表される脂肪族ジカルボン酸単位を含むポリエステル樹脂である。
  -O-R-O-   (1)
  -OC-R-CO- (2)
 式(1)中、Rは、2価の脂肪族炭化水素基を表す。ポリエステル樹脂(A)が共重合体である場合には、ポリエステル樹脂(A)中に2種以上の式(1)で表される脂肪族ジオール単位が含まれていてもよい。上記式(2)中、Rは、2価の脂肪族炭化水素基を表す。上記式(1)、(2)で表される脂肪族ジオール単位、脂肪族ジカルボン酸単位は、石油から誘導された化合物由来であっても、植物原料から誘導された化合物由来であってもかまわないが、植物原料から誘導された化合物を含む事が望ましい。ポリエステル樹脂(A)が共重合体である場合には、ポリエステル樹脂(A)中に2種以上の式(2)で表される脂肪族ジカルボン酸単位が含まれていてもよい。そして、式(2)で表される脂肪族ジカルボン酸単位には、コハク酸に由来する構造単位が、全脂肪族ジカルボン酸単位に対して5モル%以上86モル%以下含まれている。ポリエステル樹脂(A)におけるコハク酸由来の構造単位量を所定範囲内とすることで、引き裂き強度が向上されるとともに衝撃強度にも優れたフィルムを得ることが可能となる。そして同様の理由から、コハク酸に由来する構造単位は、全脂肪族ジカルボン酸単位に対して好ましくは10モル%以上、より好ましくは50モル%以上、更に好ましくは64モル%以上、特に好ましくは68モル%以上であり、好ましくは83モル%以下、より好ましくは81モル%以下、特に好ましくは79モル%以下含まれている。
 式(1)のジオール単位を与える脂肪族ジオールとしては、特に限定されないが、成形性や機械強度の観点から、炭素数が2以上10以下の脂肪族ジオールが好ましく、炭素数4以上6以下の脂肪族ジオールが特に好ましい。例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール等が挙げられ、中でも1,4-ブタンジオールが特に好ましい。尚、上記脂肪族ジオールは、それぞれ2種類以上を用いることもできる。
 式(2)のジカルボン酸単位を与えるジカルボン酸成分としては、特に限定されないが、炭素数が2以上40以下の脂肪族ジカルボン酸が好ましく、炭素数が4以上10以下の脂肪族ジカルボン酸が特に好ましい。例えば、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸、ダイマー酸等が挙げられ、中でもアジピン酸、セバシン酸が好ましく、アジピン酸が特に好ましい。尚、上記ジカルボン酸は、それぞれ2種類以上を用いることもできる。
 さらに、本発明におけるポリエステル樹脂(A)は、脂肪族オキシカルボン酸に由来する繰返し単位(脂肪族オキシカルボン酸単位)を有していてもよい。脂肪族オキシカルボン酸単位を与える脂肪族オキシカルボン酸の具体例としては、例えば、乳酸、グリコール酸、2-ヒドロキシ-n-酪酸、2-ヒドロキシカプロン酸、6-ヒドロキシカプロン酸、2-ヒドロキシ-3,3-ジメチル酪酸、2-ヒドロキシ-3-メチル酪酸、2-ヒドロキシイソカプロン酸等、またはこれらの低級アルキルエステル若しくは分子内エステルが挙げられる。これらに光学異性体が存在する場合には、D体、L体またはラセミ体の何れでもよく、形態としては固体、液体または水溶液であってもよい。これらの中で特に好ましいものは、乳酸またはグリコール酸である。これら脂肪族オキシカルボン酸は単独でも、2種以上の混合物としても使用することもできる。
 上記脂肪族オキシカルボン酸単位の量は、成形性の観点からポリエステル樹脂(A)を構成する全繰返し単位中、20モル%以下であることが好ましく、より好ましくは10モル%以下、特に好ましくは5モル%以下である。
 また、本発明におけるポリエステル樹脂(A)は「3官能以上の脂肪族多価アルコール」、「3官能以上の脂肪族多価カルボン酸またはその酸無水物」または「3官能以上の脂肪族多価オキシカルボン酸」を共重合することによって、溶融粘度が高められたものであってもよく、カップリング剤により鎖長延長されたものであってもよい。
 3官能の脂肪族多価アルコールの具体例としては、トリメチロールプロパン、グリセリン等が挙げられ、4官能の脂肪族多価アルコールの具体例としては、ペンタエリスリトール等が挙げられる。これらは単独でも2種以上混合して使用することもできる。
 3官能の脂肪族多価カルボン酸またはその酸無水物の具体例としては、プロパントリカルボン酸またはその酸無水物が挙げられ、4官能の多価カルボン酸またはその酸無水物の具体例としては、シクロペンタンテトラカルボン酸またはその酸無水物等が挙げられる。これらは単独でも2種以上混合して使用することもできる。
 また、3官能の脂肪族オキシカルボン酸は、(i)カルボキシル基が2個とヒドロキシル基が1個を同一分子中に有するタイプと、(ii)カルボキシル基が1個とヒドロキシル基が2個のタイプとに分かれ、何れのタイプも使用可能であるが、成形性、機械強度や成形品外観の観点からリンゴ酸等の(i)カルボキシル基が2個とヒドロキシル基が1個を同一分子中に有するタイプが好ましく、より具体的には、リンゴ酸が好ましく用いられる。また、4官能の脂肪族オキシカルボン酸成分は、(i)3個のカルボキシル基と1個のヒドロキシル基とを同一分子中に共有するタイプ、(ii)2個のカルボキシル基と2個のヒドロキシル基とを同一分子中に共有するタイプ、(iii)3個のヒドロキシル基と1個のカルボキシル基とを同一分子中に共有するタイプに分かれ、何れのタイプも使用可能であるが、カルボキシル基を複数有するものが好ましく、より具体的には、クエン酸、酒石酸等が挙げられる。これらは単独でも2種以上混合して使用することもできる。
 このような3官能以上の成分由来の構造単位の量は、ポリエステル樹脂(A)を構成する全構造単位を100モル%として、下限が、通常0モル%以上、好ましくは0.01モル%以上であり、上限が、通常5モル%以下、好ましくは2.5モル%以下である。
 カップリング剤としては、ジイソシアネート、オキサゾリン、ジエポキシ化合物、酸無水物等が挙げられ、具体的には、2,4-トリレンジイソシアナート、ジフェニルメタンジイソシアナート、1,5-ナフチレンジイソシアナート、水素化キシリレンジイソシアナート、ヘキサメチレンジイソシアナート等が挙げられる。これらの添加量はポリエステル樹脂(A)100重量部に対して0.1~5重量部である。
 ポリエステル樹脂(A)は、コハク酸由来の構造単位を必須とし、さらにコハク酸以外の上記ジカルボン酸成分由来の構造単位や上記ジオール成分由来の構造単位を有し、上記多価アルコール成分由来の構造単位、上記多価カルボン酸成分由来の構造単位、脂肪族オキシカルボン酸成分由来の構造単位やカップリング剤を任意に有するものである。
 本発明で使用するポリエステル樹脂(A)は、公知の方法で製造することができる。例えば、コハク酸を含む上記の脂肪族ジカルボン酸と脂肪族ジオールとのエステル化反応および/またはエステル交換反応を行った後、減圧下での重縮合反応を行うといった溶融重合の一般的な方法や、有機溶媒を用いた公知の溶液加熱脱水縮合方法によっても製造することができるが、経済性や製造工程の簡略性の観点から、無溶媒下で行う溶融重合で製造する方法が好ましい。
 ポリエステル樹脂(A)の平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定することが可能であって、ポリスチレンを標準物質とした重量平均分子量が、通常10,000以上1,000,000以下であるが、成形性と機械強度の点において有利なため、好ましくは20,000以上500,000以下、より好ましくは50,000以上400,000以下である。
 ポリエステル樹脂(A)のメルトフローレート(MFR)は、190℃、2.16kgで測定した場合、通常0.1g/10分以上であり、通常100g/10分以下である。成形性と機械強度の観点から、好ましくは50g/10分以下、特に好ましくは30g/10分以下である。
 ポリエステル樹脂(A)の融点は70℃以上が好ましく、さらに好ましくは75℃以上であり、170℃以下であることが好ましく、さらに好ましくは119℃以下、特に好ましくは100℃未満である。融点が複数存在する場合には、少なくとも1つの融点が上記範囲内にあることが好ましい。弾性率は180~500MPaである事が好ましい。融点が範囲外では成形性に劣り、弾性率が180MPa以下では成形性や製袋性に問題が起こり易く、弾性率は500MPa以上では引き裂き強度や衝撃強度の改良効果が得られにくい。ポリエステル樹脂(A)の融点や弾性率の調整法は特に限定されないが、例えば、コハク酸以外の共重合成分の種類を選択したり、ぞれぞれの共重合比率を調節したり、それらを組み合わせたりすることにより調節することが可能である。
1.2.ポリエステル樹脂(B)
 本発明に用いられるポリエステル樹脂(B)は、脂肪族ジオール単位、脂肪族ジカルボン酸単位、および芳香族ジカルボン酸単位を含む芳香族脂肪族共重合ポリエステル系樹脂である。具体的には、例えば、下記式(3)で表される脂肪族ジオ-ル単位、下記式(4)で表される脂肪族ジカルボン酸単位、および、下記式(5)で表される芳香族ジカルボン酸単位からなる芳香族脂肪族共重合ポリエステルを主成分とするものが好ましく、生分解性を有することが好ましい。
 -O-R-O-      (3) 
 式(3)中、Rは2価の脂肪族炭化水素基を表す。ポリエステル樹脂(B)が共重合体である場合には、ポリエステル樹脂(B)中に2種以上のRが含まれていてもよい。
 -OC-R-CO-    (4)
 式(4)中、Rは2価の脂肪族炭化水素基を表す。ポリエステル樹脂(B)が共重合体である場合には、ポリエステル樹脂(B)中に2種以上のRが含まれていてもよい。
 -OC-R-CO-    (5)
 式(5)中、Rは2価の芳香族炭化水素基を示す。ポリエステル樹脂(B)が共重合体である場合には、ポリエステル樹脂(B)中に2種以上のRが含まれていてもよい。
 式(3)のジオール単位を与えるジオールは、特に限定はされないが、コストと機械強度のバランスから炭素数が2以上10以下のものが好ましい。例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール等が挙げられる。中でも、炭素数2以上4以下のジオールが好ましく、エチレングリコール、1,4-ブタンジオールがより好ましく、1,4-ブタンジオールが特に好ましい。
 式(4)のジカルボン酸単位を与えるジカルボン酸は、特に限定はされないが、コストと生分解性とのバランスから炭素数が2以上12以下のものが好ましい。例えば、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカン二酸等が挙げられる。中でも、セバシン酸またはアジピン酸が好ましい。
 式(5)の芳香族ジカルボン酸単位を与える芳香族ジカルボン酸としては、Rの環構造が2以下であることが好ましく、より具体的には例えば、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸等が挙げられ、中でも、生分解性の観点からRはフェニレン基であることが好ましく、より具体的には例えばテレフタル酸、イソフタル酸が好ましく、テレフタル酸が特に好ましい。また、芳香環の一部がスルホン酸塩で置換されている芳香族ジカルボン酸であってもよい。
 尚、脂肪族ジカルボン酸、脂肪族ジオール、および芳香族ジカルボン酸は、それぞれ2種類以上を用いることもできる。
 ポリエステル樹脂(B)は、脂肪族オキシカルボン酸単位を有していてもよい。脂肪族オキシカルボン酸単位を与える脂肪族オキシカルボン酸の具体例としては、乳酸、グリコール酸、2-ヒドロキシ-n-酪酸、2-ヒドロキシカプロン酸、6-ヒドロキシカプロン酸、2-ヒドロキシ-3,3-ジメチル酪酸、2-ヒドロキシ-3-メチル酪酸、2-ヒドロキシイソカプロン酸、またはこれらの混合物等が挙げられる。さらに、これらの低級アルキルエステルまたは分子内エステルであってもよい。これらに光学異性体が存在する場合には、D体、L体またはラセミ体の何れでもよく、形態としては固体、液体または水溶液の何れであってもよい。これらの中で好ましいものは、乳酸またはグリコール酸である。これら脂肪族オキシカルボン酸は単独でも、2種以上の混合物としても使用することもできる。
 この脂肪族オキシカルボン酸の量は、ポリエステル樹脂(B)を構成する全構成成分中、好ましくは20モル%以下、より好ましくは10モル%以下である。
 また、ポリエステル樹脂(B)は、ポリエステル樹脂(A)と同様、「3官能以上の脂肪族多価アルコール」、「3官能以上の脂肪族多価カルボン酸またはその酸無水物」または「3官能以上の脂肪族多価オキシカルボン酸」を共重合することによって、溶融粘度が高められたものであってもよく、ジイソシアナートやジエポキシ化合物等のカップリング剤により鎖長延長されたものであってもよい。
 ポリエステル樹脂(B)における、芳香族ジカルボン酸単位の含有量は、脂肪族ジカルボン酸単位と芳香族ジカルボン酸単位との合計(100モル%)に対して、融点と生分解性の観点から好ましくは5モル%以上、より好ましくは35モル%以上、特に好ましくは40モル%以上であり、好ましくは95モル%以下、より好ましくは65モル%以下、特に好ましくは60モル%以下である。
 ポリエステル樹脂(B)は、上記ポリエステル樹脂(A)と同様、公知の製法により製造することができる。
 ポリエステル樹脂(B)の平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定することが可能であって、ポリスチレンを標準物質とした重量平均分子量が、通常5,000以上1,000,000以下であるが、成形性と機械強度の点において有利なため、好ましくは10,000以上500,000以下である。
 本発明に用いられるポリエステル樹脂(B)のメルトフローレート(MFR)は、190℃、2.16kgで測定した場合、下限が通常0.1g/10分以上であり、上限が通常100g/10分以下である事が好ましく、さらに好ましくは50g/10分以下、特に好ましくは30g/10分以下である。ポリエステル樹脂(B)のメルトフローレート(MFR)は、分子量により調節することが可能となる。
 ポリエステル樹脂(B)の融点は70℃以上が好ましく、さらに好ましくは75℃以上であり、205℃以下であることが好ましく、さらに好ましくは180℃以下、特に好ましくは140℃以下である。融点が70℃以下では組成物の成形性や耐熱性が劣り、205℃以上では他成分との融点差が大きくなり成形性に劣る事になる。ポリエステル樹脂(B)の融点は、芳香族ジカルボン酸量やオキシカルボン酸量により調節することが可能となる。
1.3.ポリエステル樹脂(C)
 本発明に用いられるポリエステル樹脂(C)は、脂肪族オキシカルボン酸単位からなるポリエステル樹脂を主成分とする。
 脂肪族オキシカルボン酸単位を与える脂肪族オキシカルボン酸としては、例えば、乳酸、グリコール酸、2-ヒドロキシ-n-酪酸、3-ヒドロキシ酪酸、4-ヒドロキシ酪酸、4-ヒドロキシ吉草酸、5-ヒドロキシ吉草酸、2-ヒドロキシカプロン酸、6-ヒドロキシカプロン酸、3-ヒドロキシへキサン酸、2-ヒドロキシ-3,3-ジメチル酪酸、2-ヒドロキシ-3-メチル酪酸、2-ヒドロキシイソカプロン酸等、またはこれらの低級アルキルエステル若しくは分子内エステルが挙げられる。これらに光学異性体が存在する場合には、D体、L体またはラセミ体の何れでもよく、形態としては固体、液体または水溶液であってもよい。これらの中で特に好ましいものは、乳酸またはグリコール酸であり、乳酸が最も好ましい。これら脂肪族オキシカルボン酸は単独でも、2種以上の混合物としても使用することもできる。
 また、ポリエステル樹脂(C)は、3官能以上の脂肪族オキシカルボン酸成分由来の脂肪族オキシカルボン酸単位を有していてもよい。3官能の脂肪族オキシカルボン酸成分は、(i)カルボキシル基が2個とヒドロキシル基が1個を同一分子中に有するタイプと、(ii)カルボキシル基が1個とヒドロキシル基が2個のタイプとに分かれ、何れのタイプも使用可能であるが、ポリエステル樹脂(C)の着色や異物などを低減して品質を高めるという観点で、リンゴ酸等の(i)カルボキシル基が2個とヒドロキシル基が1個を同一分子中に有するタイプが好ましく、より具体的には、リンゴ酸等好ましく用いられる。また、4官能の脂肪族オキシカルボン酸成分は、(i)3個のカルボキシル基と1個のヒドロキシル基とを同一分子中に共有するタイプ、(ii)2個のカルボキシル基と2個のヒドロキシル基とを同一分子中に共有するタイプ、(iii)3個のヒドロキシル基と1個のカルボキシル基とを同一分子中に共有するタイプに分かれ、何れのタイプも使用可能である。具体的には、クエン酸、酒石酸等が挙げられる。これらは単独でも2種以上混合して使用することもできる。
 ポリエステル樹脂(C)は、上記したような脂肪族ポリエステルや芳香族脂肪族ポリエステルに由来するその他の構造単位を含んでいてもよい。ポリエステル樹脂(C)におけるその他の構造単位の含有量は、脂肪族オキシカルボン酸由来の構造単位と、その他の構造単位との合計を100モル%として、下限が、通常0モル%以上、好ましくは0.01モル%以上であり、上限が、通常5モル%以下、好ましくは2.5モル%以下である。
 ポリエステル樹脂(C)は、上記の原料を直接脱水重縮合する方法、乳酸やヒドロキシカルボン酸類の環状2量体を開環重合させる方法、微生物による産生等により得る事ができる。
 本発明に用いられるポリエステル樹脂(C)のメルトフローレート(MFR)は、190℃、2.16kgで測定した場合、下限が通常0.1g/10分以上であり、上限が通常100g/10分以下、好ましくは50g/10分以下、特に好ましくは30g/10分以下である。
1.4.その他の成分
 本発明に係る樹脂組成物には、滑剤、フィラー(充填剤)、可塑剤、帯電防止剤、酸化防止剤、光安定剤、紫外線吸収剤、染料、顔料、加水分解防止剤等の各種添加剤や、ポリカプロラクトン、ポリアミド、ポリビニルアルコール、セルロースエステル等の合成樹脂や、澱粉、セルロース、紙、木粉、キチン・キトサン質、椰子殻粉末、クルミ殻粉末等の動物/植物物質微粉末、或いはこれらの混合物が「その他の成分」として含まれていてもよい。これらは、本発明の効果を損なわない範囲で任意に使用できる。これらは1種を単独で用いてもよく、2種以上を混合して使用してもよい。これら添加剤の添加量は、通常、生分解性樹脂組成物の物性を損なわないために、混合する物質の総量が、生分解性樹脂組成物の総量に対して、0.01重量%以上40重量%以下であることが好ましい。
1.4.1.滑剤
 例えば、本発明に係る樹脂組成物に滑剤を含ませると、樹脂組成物をフィルムとしたのち袋に成形する際の成形性を向上させることができる。また、袋の口を開き易くすることができ、袋の使用性を向上させることができる。さらに、袋の口が開き易くなると、袋製造時の検査も容易となる。
 滑剤としては、公知のものを特に限定されることなく用いることができる。具体的には、パラフィン油、固形パラフィン等のパラフィン、ステアリン酸、パルミチン酸等の高級脂肪酸、パルミチルアルコール、ステアリルアルコール等の高級アルコール、ステアリン酸カルシウム、ステアリン酸亜鉛、ステアリン酸バリウム、ステアリン酸アルミニウム、ステアリン酸マグネシウム、パルミチン酸ナトリウム等の脂肪酸の金属塩、ステアリン酸ブチル、グリセリンモノステアレート、ジエチレングリコールモノステアレート等の脂肪酸エステル、ステアロアミド、メチレンビスステアロアミド、エチレンビスステアロアミド、オキシステアリン酸のエチレンジアミド、メチロールアミド、オレイルアミド、ステアリン酸アミド、エルカ酸アミド等の脂肪酸アミド等、カルナウバワックス、モンタンワックス等のワックス類などが挙げられる。なお、滑剤やワックス類は、1種を単独で用いても良く、2種以上を任意の比率および組み合わせで用いてもよい。この中でもエルカ酸アミドが特に好ましい。これらの滑剤は通常、樹脂組成物中0.01~2重量%であり、好ましくは0.05~0.5重量%の範囲で使用される。
1.4.2.フィラー
 本発明に係る樹脂組成物にフィラーを含ませると、樹脂組成物の流動性と結晶化速度の改良によるフィルム成形時の安定化、フィルム機械物性の異方向性の低減にも寄与させることができる。また、樹脂組成物をフィルムとした場合にフィルム同士のブロッキングを防止することができる。或いは、フィルムを袋に成形した場合に袋の口を開き易くすることもできる。さらに、フィルムや袋を着色し、遮光性や光反射性を向上させることもできる。
 フィラーは、その形状により繊維状、粉粒状、板状、針状のものがあり、特に粉粒状、板状のものが好ましい。粉粒状フィラーとしては、タルク、ゼオライト、ケイソウ土、カオリン、クレー、シリカ、石英粉末等の鉱物粒子、炭酸カルシウム、炭酸マグネシウム、重質炭酸カルシウム等の金属炭酸塩粒子、珪酸カルシウム、珪酸アルミニウム、珪酸マグネシウム等の金属珪酸塩粒子、アルミナ、シリカ、酸化亜鉛、酸化チタン等の金属酸化物粒子、水酸化アルミニウム、水酸化カルシウム、水酸化マグネシウム等の金属水酸化物粒子、硫酸バリウム、硫酸カルシウム等の金属硫酸塩粒子、カーボンブラック等の炭素粒子等が挙げられる。また板状フィラーとしては、マイカが挙げられる。袋の口を開き易くするとともにブロッキングを防止する観点からは、タルク、炭酸カルシウム、或いはシリカを用いるとよく、また、フィルムや袋を着色するとともに、遮光性或いは光反射性を向上させる観点からは、カーボンブラックや酸化チタンを用いるとよい。フィルム等の成形体或いは樹脂組成物中におけるフィラーの分散状態は、数平均粒径で0.08~25μmであり、より好ましくは0.1μm~5μmである。この範囲からはずれると、上記フィラーの添加効果が低くなる。フィラーは1種を単独で用いてもよく、2種以上を混合して用いてもよい。これらのフィラーは樹脂組成物中、通常0.05~40重量%の範囲で使用される。
 本発明において、フィラーは表面処理を施したものを使用してもよく、この場合、フィラーの分散性の向上、樹脂組成物の流動性の向上、フィルムとした場合の平滑性の向上や口開き性の向上が可能である。さらに、表面処理することにより、樹脂組成物に配合する可塑剤等の添加剤を低減することが期待できる。フィラーの表面処理方法としては、表面処理剤とフィラーとを通常知られる方法により混合することが一般的であるが、処理方法には限定されない。表面処理剤の種類は、炭素数6以上40以下の直鎖状脂肪酸、分岐鎖状脂肪酸、それらのエステル化合物などが挙げられる。
 用いるフィラーの粒径に特に制限は無いが、フィルム物性向上、ハンドリングの理由から平均粒子径が0.5μm以上であることが好ましく、より好ましくは0.6μm以上であって、更に好ましくは0.7μm以上である。また、フィルム物性向上の理由から平均粒子径が7μm以下であることが好ましく、より好ましくは2μm以下であって、更に好ましくは1.0μm以下である。平均粒子径の測定方法は特に限定されないが、測定法の具体例は島津製作所製 粉体比表面積測定装置 SS-100型(恒圧式空気透過法) で測定した粉末1gあたりの比表面積値を求め、 JIS M-8511 に準じた空気透過法による比表面積の測定結果から、下記式によりフィラーの平均粒子径を計算する。
Figure JPOXMLDOC01-appb-M000001
 また針状フィラーを使用したときのアスペクト比は、通常、上限が1000以下であり、下限が1以上であり、好ましくは、上限が500以下、下限が10以上である。最も好ましくは、上限が100以下、下限15以上である。この比が低すぎると、剛性、耐熱性などの期待していた物性が発現しない傾向があり、高すぎると、外観不良の原因やフィルム物性の低下傾向がある。ここでいうアスペクト比とは、フィラーの長径と短径の比である。粒子のアスペクト比は、視野100μm×100μmの電子顕微鏡写真において観察される少なくとも10個以上の粒子の最長径と最短径の比率の算術平均値とする。
 体積平均粒子径の測定方法に特に制限は無いが、分散媒中に分散した粒子を沈降法で測定したり、レーザー散乱解析で測定したり、レーザードップラー法で測定したりすることができる。より具体的には、島津製作所製遠心沈降式粒度分布測定装置 SA- CP4L、島津製作所製粒度分布自動測定装置 RS-1000により、粒子の沈降速度(ストークスの法則)に基づいて測定した値とする。
 用いるフィラーの硬度には特に制限は無いが、硬度が低すぎると、剛性、耐熱性などの物性が低くなる傾向があり、高すぎると、外観不良やフィルム強度の物性低下を起こしやすい傾向があるため、硬度が高すぎたり低すぎたりしないことが好ましい。使用するフィラーの硬度(モース硬度)は、好ましくは上限が9以下、下限が1以上であって、より好ましくは上限が8以下、下限2以上であって、特に好ましくは上限が7以下、下限が3以上である。ここでいうモース硬度とは、試料物質で標準物質をこすり、ひっかき傷の有無で硬さを測定した値を言う。標準物質は以下である。硬度1)滑石、硬度2)石膏、硬度3)方解石、硬度4)蛍石、硬度5)リン灰石、硬度6)正長石、硬度7)水晶、硬度8)黄玉、硬度9)コランダム(鋼玉)、硬度10)ダイヤモンドである。
 より具体的には、フィラーとして、タルク、炭酸カルシウム、シリカ、酸化チタン、硫酸バリウム等を使用することが可能であって、例えばタルクとしては、富士タルク工業製のLMS100、LMR100、PKP80、PKP53Sが挙げられる。炭酸カルシウムとしては、日東粉化製のNITOREX30P、NITOREX23P、NS#100、NCCシリーズのNITOREX30PS、NCC#2310、NCC#1010、NCC-V2300、NCC-V1000、また丸尾カルシウム社製のウィスカルA等が挙げられる。シリカ粒子としては、日本アエロジル社製、アエロジル200、アエロジル300等が挙げられる。酸化チタンとしては、石原産業社製CR-60、CR-80、CR-68を使用することができる。
1.4.3.可塑剤
 尚、樹脂組成物の流れ性が悪い場合は、可塑剤を加えるとよい。特に、樹脂組成物にフィラーを含ませた場合、樹脂組成物の粘度が上昇して樹脂組成物の流れ性が悪くなる場合があり、樹脂組成物に可塑剤を加えることによって、これを改善することができる。
 可塑剤としては、公知のものを特に限定されることなく用いることができる。例えば、メチルアジペート、ジエチルアジペート、ジイソプロピルアジペート、ジ-n-プロピルアジペート、ジ-2-エチルヘキシルアジペート、ジイソブチルアジペート、ジブチルアジペート、ジイソデシルアジペート、ジブチルジグリコールアジペート、ジ-2-エチルヘキシルアゼレート、ジブチルセバケート、ジ-2-エチルヘキシルセバケート、メチルアセチルリシレート等の脂肪酸エステル、トリアセチン等のグリセリンエステル、ジエチルマレエート、ジブチルマレエート、ジオクチルマレエート、ジブチルフマレート、ジオクチルフマレート等のマレイン酸およびフマル酸エステル、アジピン酸-1,3-ブチレングリコール、エポキシ化大豆油等のポリエステル・エポキシ化エステル、トリオクチルトリメリテート等のトリメリット酸エステル、トリエチレングリコールジアセテート、アセチルクエン酸トリブチル、グリセリンジアセトモノプロピオネート、グリセリンジアセトモノカプリレート、グリセリンジアセトモノカプレート、グリセリンジアセトモノラウレート、グリセリンジアセトモノオレート、グリセリンモノアセトモノベヘネート、グリセリンモノアセトモノステアレート等のアセチル化モノグリセライド、ジグリセリンアセテート、デカグリセリンプロピオネート、テトラグリセリンカプリレート、デカグリセリンラウレート、デカグリセリンオレート、デカグリセリンベヘネート等のポリグリセリン脂肪酸エステル、ロジン誘導体等が挙げられる。これらの可塑剤は、樹脂組成物中、通常0.05~10重量%の範囲で使用される。
1.4.4.帯電防止剤
 また、本発明に係る樹脂組成物に帯電防止剤を含ませると、樹脂組成物をフィルムとした後に袋に成形する場合の成形性を向上させることができる。また、フィルムや樹脂の取り扱いも容易となる。帯電防止剤としては、本発明の効果を著しく損なわない限り任意のものを用いることができる。具体例としては、界面活性剤型のノニオン系、カチオン系、アニオン系が好ましい。
 ノニオン系の帯電防止剤としては、グリセリン脂肪酸エステル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、アルキルジエタノールアミン、ヒドロキシアルキルモノエタノールアミン、ポリオキシエチレンアルキルアミン、ポリオキシエチレンアルキルアミン脂肪酸エステルアルキルジエタノールアマイド類等があげられる。中でもアルキルジエタノールアミン類等が好ましい。
 カチオン系の帯電防止剤としては、テトラアルキルアンモニウム塩、トリアルキルベンジルアンモニウム塩等があげられる。アニオン系の帯電防止剤としては、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルホスフェート等があげられる。中でも、アルキルベンゼンスルホン酸塩が好ましい。樹脂との混練性がよく、帯電防止効果も高いためである。
 帯電防止剤の使用量は本発明の効果を著しく損なわない限り任意であるが、生分解性樹脂組成物に対して、通常0.5重量%以上、好ましくは1重量%以上、また、通常5重量%以下、好ましくは3重量%以下である。上記範囲を上回ると、さらに、生分解性樹脂組成物の表面べたつきが発生し、製品価値が低下する傾向がある。また、上記範囲を下回ると、帯電防止性向上効果が低減する傾向がある。
1.4.5.その他添加剤
 澱粉としては、具体的にはコーンスターチ、ワキシーコーンスターチ、ハイアミロースコーンスターチ、小麦澱粉、米澱粉、馬鈴薯澱粉、甘藷澱粉、タピオカ澱粉、エンドウ澱粉等が挙げられ、これらは未変性品、変性品どちらも使用できる。変性とは化学的、物理的、生物学的等のあらゆる変性方法を含み、化学的変性としては、炭水化物(多糖類)の構成単位の一部または全部をエステル化、エーテル化、酸化、還元、カップリング、脱水、加水分解、脱水素、ハロゲン化等の化学反応により変性することを示し、特には、水酸基をエーテル化、エステル化することを示す。また、物理的変性は、結晶化度を変化させること等、物理的性質を変化させることを示す。また、生物学的変性は、生物を用いて化学構造等を変化させることを示す。
 耐光剤としては、デカンニ酸ビス(2,2,6,6-テトラメチル-1(オクチルオキシ)-4-ピペリジニル)エステル、1,1-ジメチルエチルヒドロペルオキシドとオクタンとの反応生成物、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ブチルマロネート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)セバケート、メチル1,2,2,6,6-ペンタメチル-4-ピペリジルセバケート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、1-[2-[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ]エチル]-4-[3-(3,5-ジ-tert-ブチル-4-ヒドトキシフェニル)プロピオニルオキシ]-2,2,6,6-テトラメチルピペリジン、ポリ[[6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル][(2,2,6,6-テトラメチル-4-ピペリジル)イミノ]ヘキサメチレン{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]等のヒンダードアミン系安定剤等があげられる。耐光剤は、紫外線吸収剤と組み合わせて用いることが好ましく、ヒンダードアミン系安定剤と紫外線吸収剤との組み合わせが有効である。
 耐光剤を混合する量は、生分解性樹脂組成物に対して、重量基準で通常100ppm以上、好ましくは200ppm以上であり、また、通常5重量部以下、好ましくは1重量部以下、より好ましくは0.5重量部以下である。この範囲を下回ると耐光剤の効果が小さくなる傾向がある。また、この範囲を上回ると製造費が高くなる傾向があり、生分解性樹脂組成物の耐熱性が劣ったり、耐光剤のブリードアウトが生じたりする傾向がある。
 紫外線吸収剤としては、2-(2H-ベンゾトリアゾール-2-イル)-4-6-ビス(1-メチル-1-フェニルエチル)フェノール、2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]フェノール等があげられる。紫外線吸収剤は、特に異なる種類の紫外線吸収剤を2種以上組み合わせて用いることが好ましい。
 紫外線吸収剤を混合する量は、本発明の効果を著しく損なわない限り任意であるが、生分解性樹脂組成物に対して、重量基準で通常100ppm以上、好ましくは200ppm以上、また、通常5重量%以下、好ましくは2重量%以下、より好ましくは0.5重量%以下である。この範囲を下回ると紫外線吸収剤の効果が低下する傾向がある。また、この範囲を上回ると製造費が高くなりすぎたり、生分解性樹脂組成物の耐熱性が劣ったり、紫外線吸収剤のブリードアウトが生じたりする傾向ある。
 熱安定剤としては、ジブチルヒドロキシトルエン(BHT;2,6-ジ-t-ブチル-4-メチルフェノール)、2,2’-メチレンビス(4-メチル-6-t-ブチルフェノール)、ペンタエリスリトールテトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、3,3’,3”,5,5’,5”-ヘキサ-tert-ブチル-a,a’,a”-(メシチレン-2,4,6-トリイル)トリ-p-クレゾール、オクタデシル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、1,3,5-トリス[(4-tert-ブチル-3-ヒドロキシ-2,6-キシリル)メチル]-1,3,5-トリアジン-2,4,6(1H、3H,5H)-トリオン、1,3,5-トリス(3,5-ジ-tert-ブチル-4-ヒドロキシベンジル)-1,3,5-トリアジン-2,4,6(1H、3H,5H)-トリオン、カルシウムジエチルビス[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]ホスホネート、ビス(2,2’-ジヒドロキシ-3,3’-ジ-tert-ブチル-5,5’-ジメチルフェニル)エタン、N,N’-ヘキサン-1,6-ジイルビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニルプロピオンアミド等のヒンダードフェノール系熱安定剤;トリデシルホスファイト、ジフェニルデシルホスファイト、テトラキス(2,4-ジ-tert-ブチルフェニル)[1,1-ビフェニル]-4,4’-ジイルビスホスフォナイト、ビス[2,4-ビス(1,1-ジメチルエチル)-6-メチルフェニル]エチルエステル亜リン酸、ビス(2,4-ジ-tert-ブチルフェニル)ペンタエリスリトールジファスファイト等のリン系熱安定剤;3-ヒドロキシ-5,7-ジ-tert-ブチル-フラン-2-オンとキシレンの反応性生物等のラクトン系熱安定剤;ジラウリルチオジプロピオネート、ジステアリルチオジプロピオネート等の硫黄系酸化防止剤;等があげられる。
 熱安定剤を混合する量は、生分解性樹脂組成物に対して、重量基準で通常100ppm以上、好ましくは200ppm以上であり、また、通常5重量部以下、好ましくは1重量部以下、より好ましくは0.5重量部以下である。この範囲を下回ると熱安定剤の効果が小さくなる傾向がある。一方、この範囲を上回ると、製造費が高くなる傾向があり、熱安定剤のブリードアウトが生じたりする可能性がある。
 主に大気中の水分等による加水分解を抑制する目的で用いられる末端封止剤として、カルボジイミド化合物、エポキシ化合物、オキサゾリン化合物等が挙げられるが、上記のカルボジイミド化合物の内、モノカルボジイミド化合物としては、ジシクロヘキシルカルボジイミド、ジイソプロピルカルボジイミド、ジメチルカルボジイミド、ジイソブチルカルボジイミド、ジオクチルカルボジイミド、t-ブチルイソプロピルカルボジイミド、ジフェニルカルボジイミド、ジ-t-ブチルカルボジイミド、ジ-β-ナフチルカルボジイミド等を例示することができる。これらの中では、工業的に入手が容易であるので、ジシクロヘキシルカルボジイミドやジイソプロピルカルボジイミドが好ましい。
 また、ポリカルボジイミド化合物としては、例えば米国特許第2941956号明細書、日本国特公昭47-33279号公報、J.Org.Chem.28巻、p2069-2075(1963)、およびChemicalReview1981、81巻、第4号、p.619-621等に記載された方法により製造したものを用いることができる。
 ポリカルボジイミド化合物の製造原料である有機ジイソシアネートとしては、例えば芳香族ジイソシアネート、脂肪族ジイソシアネート、脂環族ジイソシアネートやこれらの混合物を挙げることができ、具体的には、1,5-ナフタレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、4,4’-ジフェニルジメチルメタンジイソシアネート、1,3-フェニレンジイソシアネート、1,4-フェニレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの混合物、ヘキサメチレンジイソシアネート、シクロヘキサン-1,4-ジイソシアネート、キシリレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、メチルシクロヘキサンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,6-ジイソプロピルフェニルイソシアネート、1,3,5-トリイソプロピルベンゼン-2,4-ジイソシアネート等を例示することができる。
 有機ジイソシアネートの脱炭酸縮合反応に用いられるカルボジイミド化触媒としては、有機リン系化合物や一般式M(OR)nで示される有機金属化合物(但し、Mはチタン、ナトリウム、カリウム、バナジウム、タングステン、ハフニウム、ジルコニウム、鉛、マンガン、ニッケル、カルシウムやバリウム等の金属原子を、Rは炭素原子数1~20のアルキル基または炭素原子数6~20のアリール基を示し、nは金属原子Mが取り得る原子価を示す)が好適である。中でも、有機リン系化合物ではホスフォレンオキシド類が、有機金属化合物ではチタン、ハフニウム、またはジルコニウムのアルコシド類が活性が高く好ましい。
 ホスフォレンオキシド類の具体例としては、3-メチル-1-フェニル-2-ホスフォレン-1-オキシド、3-メチル-1-エチル-2-ホスフォレン-1-オキシド、1,3-ジメチル-2-ホスフォレン-1-オキシド、1-フェニル-2-ホスフォレン-1-オキシド、1-エチル-2-ホスフォレン-1-オキシド、1-メチル-2-ホスフォレン-1-オキシドおよびこれらの二重結合異性体を例示することができる。中でも工業的に入手が容易な3-メチル-1-フェニル-2-ホスフォレン-1-オキシドが特に好ましい。
 これらのポリカルボジイミド化合物の合成時には、モノイソシアネートやその他の末端イソシアネート基と反応可能な活性水素含有化合物を用いて、所望の重合度に制御することもできる。このような目的に用いられる化合物としては、フェニルイソシアネート、トリルイソシアネート、ジメチルフェニルイソシアネート、シクロヘキシルイソシアネート、ブチルイソシアネート、ナフチルイソシアネート等のモノイソシアネート化合物、メタノール、エタノール、フェノール、シクロヘキサノール、N-メチルエタノールアミン、ポリエチレングリコールモノメチルエーテル、ポリプロピレングリコールモノメチルエーテル等の水酸基含有化合物、ジエチルアミン、ジシクロヘキシルアミン、β-ナフチルアミン、シクロヘキシルアミン等のアミノ基含有化合物、コハク酸、安息香酸、シクロヘキサン酸等のカルボキシル基含有化合物、エチルメルカプタン、アリルメルカプタン、チオフェノール等のメルカプト基含有化合物、および種々のエポキシ基含有化合物等を例示することができる。
 これらのカルボジイミド化合物は1種を単独で用いても良く、2種以上を混合して用いてもよい。本発明においては、特に、ポリカルボジイミド化合物を用いることが好ましく、その重合度は、下限が2以上、好ましくは4以上であり、上限が通常40以下、好ましくは20以下である。これら、カルボジイミドの使用量は、樹脂組成全体に対して物通常0.1~5重量%である。
 これらの他、公知の表面ぬれ改善剤、難燃剤、離型剤、焼却補助剤、顔料、分散助剤、界面活性剤、加水分解防止剤、末端封止剤、結晶核剤、相溶化剤、等が含まれていてもよい。
 このように、本発明に係る樹脂組成物は、ポリエステル樹脂(A)とポリエステル樹脂(B)とポリエステル樹脂(C)とを含んでなるものであり、上記ポリエステル樹脂(A)におけるコハク酸由来の構造単位の量を所定範囲内とするとともに、上記樹脂(A)~(C)の配合比を所定範囲内としたことに特徴を有する。このような特徴を有する樹脂組成物によってフィルムを成形すると、フィルムの引き裂き強度が向上されたものとなり、また、優れた衝撃強度を有するものとなる。本発明に係る樹脂組成物により得られたフィルムは袋に成形することで、引き裂きによる裂けが生じ難く、且つ、衝撃による裂けも生じ難い袋とすることができる。或いは、本発明に係る樹脂組成物を農業用等のマルチフィルムの材料として用いることも好適である。
2.樹脂組成物の製造方法
 本発明に係る樹脂組成物の製造方法としては、公知の手法を適用することができる。例えば、ブレンドしたポリエステル樹脂(A)、ポリエステル樹脂(B)およびポリエステル樹脂(C)の原料チップを同一の押出機で溶融混合する方法、各々別々の押出機で溶融させた後に混合する方法等が挙げられる。押出機としては、単軸または2軸押出機が利用できる。また、ポリエステル樹脂(A)~(C)を混合して加熱溶融させたところに、その他成分を添加して配合することもできる。この際、その他成分を均一に分散させる目的で、ブレンド用オイル等を使用することもできる。一方、ポリエステル樹脂(A)~(C)に係る各々の原料チップを直接成形機に供給して、樹脂組成物を調製すると同時に、そのままフィルム等の成形体を得ることも可能である。
3.フィルム
 本発明に係る樹脂組成物は、汎用プラスチックに適用される各種成形法によりフィルム状に成形することができる。成形法に関しては、特に、押し出し成形やインフレーション成形によって成形すると、本発明の効果が顕著に現れる。より具体的には、例えば、Tダイ、Iダイまたは丸ダイ等から所定の厚みに押し出したフィルム状、シート状物または円筒状物を、冷却ロールや水、圧空等により冷却、固化させる方法等が挙げられる。この際、本発明の効果を阻害しない範囲で、数種の組成物を積層させた積層フィルムとすることも可能である。
 このようにして得られたフィルム状成形体は、その後、ロール法、テンター法、チューブラー法等によって一軸または二軸延伸を施してもよい。延伸する場合は、延伸温度は通常30℃~110℃の範囲で、延伸倍率は縦、横方向、それぞれ0.6~10倍の範囲で行われる。また、延伸後、熱風を吹き付ける方法、赤外線を照射する方法、マイクロ波を照射する方法、ヒートロール上に接触させる方法等によって熱処理を施してもよい。
4.マルチフィルム
 本発明に係る樹脂組成物を成形して農業用等のマルチフィルムとすると尚好ましい。マルチフィルムの成形については、上記したような公知の方法を用いればよい。本発明に係る樹脂組成物を成形して得られたマルチフィルムは以下の効果を奏する。マルチフィルムにあっては、引き裂き強度に優れるものが好適に用いられると言える。この点、本発明に係る樹脂組成物を成形して得られるマルチフィルムは、引き裂き強度が向上されたものであり、且つ、衝撃強度にも優れている。よって、敷設したマルチフィルムにおいて、フィルムが裂けて欠陥部分が大きくなることを抑制することができ、また、衝撃によってマルチフィルムが裂けることも防止することができる。尚、本発明に係る樹脂組成物は、脂肪族ポリエステル、芳香族脂肪族共重合ポリエステル、脂肪族オキシカルボン酸といった成分を主成分としているため、マルチフィルムを使用後、そのまま土中に埋め込んでも問題がない。
5.袋
 上記のようにして得られるフィルムを成形して袋としてもよい。袋の成形については、公知の方法を適用することができる。例えば、インフレーション成形した筒状体の末端をヒートシールすることによって成形可能である。ここで、上述したように、袋を構成するフィルムは引き裂き強度が向上されるとともに優れた衝撃強度を有している。フィルムが引き裂き強度に優れると、袋の縦裂けを防止することが可能となる。また、衝撃強度に優れることで、袋を開ける際や袋に物を詰める際、袋の裂けを防止することが可能となる。
 以下、実施例および比較例を挙げて本発明をさらに詳細に説明する。なお、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその趣旨に反しない限り以下の実施例に限定されるものではない。
<物性の評価>
・MFR値の測定
 MFR値は、JIS K7210(1990)に基づき、メルトインデクサーを用いて190℃、荷重2.16kgにて測定した。
H-NMRの測定
 H-NMRの測定では、試料約30mgを外径5mmのNMR試料管に量り取り、重クロロホルム0.75mLに加えて溶かした後に、Bruker社製AVANCE400分光計を用い、室温でH-NMRスペクトルを測定した。化学シフトの基準は、テトラメチルシラン(TMS)を0.00ppmとした。
・融点の測定
融点の測定は、パーキンエルマー(株)製示差走査熱量計,製品名:DSC7を用い、10mgのサンプルを流量50mL/分の窒素気流下で加熱溶融させた後、10℃/分の速度で冷却後、引き続き10℃/分の速度で昇温する際の融解ピーク温度を使用した。
製造例1
[重縮合用触媒の調製]
 撹拌装置付きのガラス製ナス型フラスコに酢酸マグネシウム・4水和物を100重量部入れ、更に400重量部の無水エタノール(純度99重量%以上)を加えた。更にエチルアシッドホスフェート(モノエステル体とジエステル体の混合重量比は45:55)を65.3重量部加え、23℃で撹拌を行った。15分後に酢酸マグネシウムが完全に溶解したことを確認後、テトラ-n-ブチルチタネートを122.2重量部添加した。更に10分間撹拌を継続し、均一混合溶液を得た。この混合溶液を、ナス型フラスコに移し、60℃のオイルバス中でエバポレーターによって減圧下で濃縮を行った。1時間後に殆どのエタノールが留去され、半透明の粘稠な液体が残った。オイルバスの温度を更に80℃まで上昇させ、5Torrの減圧下で更に濃縮を行った。粘稠な液体は表面から粉体状へと徐々に変化し、2時間後には完全に粉体化した。更に、粉体状の触媒を1,4-ブタンジオールに溶解させ、チタン原子として10,000ppmとなるように調製した。
[脂肪族ポリエステル系樹脂の製造]
 攪拌装置、窒素導入口、加熱装置、温度計および減圧用排気口を備えた反応容器に、原料としてコハク酸100重量部、1,4-ブタンジオール99.2重量部、リンゴ酸0.24重量部を仕込み、窒素-減圧置換によって系内を窒素雰囲気下にした。
 次に、系内を撹拌しながら1時間かけて230℃まで昇温し、この温度で1時間反応させた。その後、前記の触媒溶液を添加した。添加量は得られるポリエステル樹脂あたりチタン原子として50ppmとなる量とした。30分かけて250℃まで昇温し、同時に1時間30分かけて0.06×10Paになるように減圧し、更に0.06×10Paの減圧下で4.2時間反応させポリエステル樹脂を得た。以下、このポリエステル樹脂を、樹脂1と呼ぶことがある。
 得られたポリエステル樹脂の融点は114℃で、MFR値は4.4g/10分であり、脂肪族ポリエステル系樹脂を構成するジカルボン酸単位中のコハク酸単位は100モル%であった。
製造例2
 攪拌装置、窒素導入口、加熱装置、温度計および減圧用排気口を備えた反応容器に、原料としコハク酸100重量部、アジピン酸32.2重量部、1,4-ブタンジオール111重量部、DLリンゴ酸0.31重量部、酸化ゲルマニウムを予め1重量%溶解させた90%DL乳酸水溶液7.0重量部を仕込んだ。容器内容物を攪拌下、窒素ガスを導入し、窒素ガス雰囲気下120℃から反応を開始し、1時間40分かけて200℃まで昇温した。引き続き、1時間25分かけて230℃に昇温すると同時に1mmHg(133Pa)まで減圧し、230℃、1mmHg(133Pa)にて4時間重合を行い、ポリエステル樹脂を得た。以下、このポリエステル樹脂を、樹脂2と呼ぶことがある。
 得られたポリエステル樹脂の融点は88℃で、MFR値は4.2g/10分、ポリエステル樹脂を構成するジカルボン酸単位中のコハク酸単位は79モル%であった。
製造例3
 製造例1において、コハク酸100重量部、アジピン酸31.0重量部、1,4-ブタンジオール143重量部、リンゴ酸0.345重量部とした以外は製造例1と同様に重合を行い、ポリエステル樹脂を得た。以下、このポリエステル樹脂を、樹脂3と呼ぶことがある。
 得られたポリエステル樹脂の融点は91℃で、MFR値は3.7g/10分、ポリエステル樹脂を構成するジカルボン酸単位中のコハク酸単位は80モル%であった。
製造例4
 製造例1において、コハク酸100重量部、アジピン酸43.6重量部、1,4-ブタンジオール155重量部、リンゴ酸0.382重量部とした以外は製造例1と同様に重合を行い、ポリエステル樹脂を得た。以下、このポリエステル樹脂を、樹脂4と呼ぶことがある。
 得られたポリエステル系樹脂(樹脂4)の融点は83.8℃であり、MFR値は3.2g/10分、ポリエステル樹脂を構成するジカルボン酸単位中のコハク酸単位は74モル%であった。
製造例5
 製造例2と同様にして、コハク酸100重量部、セバシン酸44.6重量部、1,4-ブタンジオール112重量部、リンゴ酸0.472重量部、酸化ゲルマニウムを予め1重量%溶解させた90%DL乳酸水溶液7.0重量部を仕込んだ。容器内容物を攪拌下、窒素ガスを導入し、窒素ガス雰囲気下160℃から反応を開始し、1時間かけて220℃まで昇温し、1時間保持した。その後、1時間25分かけて230℃に昇温すると同時に1mmHg(133Pa)まで減圧し、230℃、1mmHg(133Pa)にて4時間重合を行いポリエステル樹脂を得た。以下、このポリエステル樹脂を樹脂5と呼ぶことがある。得られたポリエステル樹脂(樹脂5)の融点は87.8℃であり、ポリエステル樹脂を構成するジカルボン酸単位中のコハク酸単位は79モル%であった。
 実施例1~23、比較例1~4
 製造例1~5で製造した、ポリエステル樹脂(A)に該当する各樹脂と、ポリエステル樹脂(B)に該当する芳香族脂肪族共重合ポリエステル系樹脂として以下に示すEcoflexを、ポリエステル樹脂(C)に該当する脂肪族オキシカルボン酸からなるポリエステル樹脂として以下に示すレイシアH-400、フィラー(D)として以下に示す炭酸カルシウムを用いて、下記表1、表2に記載された組成比となるように配合し、200℃において二軸混練機(池貝鉄鋼社製PCM30)にて混練し、175℃でインフレーション成形し、21μm厚みのフィルムを作成した。
・Ecoflex(ポリブチレンアジペート-ブチレンテレフタレート系樹脂、BASF社製 融点:120℃)
・レイシアH-400(ポリ乳酸、三井化学社製)
・フィラー(D)
フィラー1:炭酸カルシウム NITREX 30P (日東粉化工業製 平均粒子径:0.76μm、比重:2.7、比表面積:30000cm/g、無処理)
フィラー2:炭酸カルシウム NCC V2300 (日東粉化工業製 平均粒子径:0.96μm、比重:2.7、比表面積:23000cm/g、脂肪酸処理と有機化合物処理)
フィラー3:炭酸カルシウム NITREX23PS (日東粉化工業製 平均粒子径:0.96μm、比重:2.7、比表面積:23000cm/g、脂肪酸処理)
フィラー4:炭酸カルシウム NCC#1010 (日東粉化工業製 平均粒子径:1.2μm、比重:2.7、比表面積:19000cm/g、無処理)
フィラー5:炭酸カルシウム NS#100 (日東粉化工業製 平均粒子径:2.1μm、比重:2.7、比表面積:10500cm/g、無処理)
得られたフィルムそれぞれについて、以下の評価を実施した。
<エルメンドルフ引き裂き強度>
 JIS K7128-2(1998)に準拠して、フィルム成形時のフィルム流れ方向の引き裂き強度を測定した。 
<打ち抜き衝撃強度>
 東洋精機社製フィルムインパクトテスターを用い、直径50mmのフィルムの打ち抜き衝撃強度をJIS P8134(1998)に準じて測定した。尚、インパクトテスター打ち抜き部先端には直径25.4mmの半球状金属製治具を取り付けて評価を行った。
<成形性の評価>
 40mmの押出し機、直径60mmの丸ダイを有するインフレーション成型機にて、ブロー比2.5mm、厚み20ミクロンとし、吐出量8kg/h、エアブロー一定にて、成型性(バブル、フロストの状態)、フィルムの口開き性、表面外観を評価した。
〔成型性の評価基準〕
○:フロストラインが低く、成型性が良好
△:フロストラインは少し高いが、成型性に問題ない状態
×:バブルが安定しなく成型できない状態
〔口開き性の評価基準〕
○:抵抗なくフィルムが開く状態
△:少し抵抗はあるが開く状態
×:抵抗があり、開きにくい状態
〔表面外観の評価基準〕
○:表面状態が平滑で、極めて良好な状態
△:少し凹凸があるが、良好な状態
×:凹凸がひどく表面が荒れた状態
 評価結果を下記表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1から明らかなように、実施例1~9に係るフィルムは、ポリエステル系樹脂(A)におけるコハク酸由来の構造単位の量と、ポリエステル樹脂(A)、ポリエステル系樹脂(B)およびポリエステル樹脂(C)の組成比とが、いずれも本発明に規定された範囲内にあることによって、10N/mm以上の引き裂き強度を有し、且つ、3.6×10[J/m]以上の衝撃強度も有する、機械的強度に優れたものであることがわかる。一方で、比較例1~9に係るフィルムは、いずれも引き裂き強度が11N/mmを下回っている。
 表2から明らかなように、実施例10~23にかかるフィルムは、ポリエステル系樹脂(A)におけるコハク酸由来の構造単位の量と、ポリエステル樹脂(A)、ポリエステル系樹脂(B)およびポリエステル樹脂(C)の組成比とが、いずれも本発明に規定された範囲内であって、フィラーを添加された組成物が、20N/mm以上の引き裂き強度を有し、且つ、1.1×10[J/m]以上の衝撃強度も有し、さらに、成型性、口開き性、表面外観ともに良好であり、機械的強度、成形性に優れたものであることがわかる。
 以上、現時点において、最も実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う樹脂組成物、フィルム、マルチフィルムおよび袋もまた本発明の技術的範囲に包含されるものとして理解されなければならない。
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2011年2月2日出願の日本特許出願(特願2011-020820)、2011年7月20日出願の日本特許出願(特願2011-159398)に基づくものであり、その内容はここに参照として取り込まれる。
 本発明に係る樹脂組成物は、ポリエステル樹脂(A)とポリエステル樹脂(B)とポリエステル樹脂(C)とを含んでなるものであり、上記ポリエステル樹脂(A)におけるコハク酸由来の構造単位の量を所定範囲内とするとともに、上記樹脂(A)~(C)の配合比を所定範囲内としたことに特徴を有する。このような特徴を有する樹脂組成物によってフィルムを成形すると、フィルムの引き裂き強度が向上されたものとなり、また、優れた衝撃強度を有するものとなる。本発明に係る樹脂組成物により得られたフィルムは袋に成形することで、引き裂きによる裂けが生じ難く、且つ、衝撃による裂けも生じ難い袋とすることができる。或いは、本発明に係る樹脂組成物を農業用等のマルチフィルムの材料として用いることも好適である。

Claims (7)

  1.  脂肪族ジオール単位と脂肪族ジカルボン酸単位とを含む脂肪族ポリエステル系樹脂であって、全脂肪族ジカルボン酸単位中、コハク酸単位を5モル%以上86モル%以下含有するポリエステル樹脂(A)、
     脂肪族ジオール単位、脂肪族ジカルボン酸単位、および芳香族ジカルボン酸単位を含む芳香族脂肪族共重合ポリエステル系樹脂であって、全ジカルボン酸単位中、芳香族ジカルボン酸単位を5モル%以上95モル%以下含有するポリエステル樹脂(B)、および
     脂肪族オキシカルボン酸を含むポリエステル樹脂(C)を含有するポリエステル樹脂組成物であって、
     ポリエステル樹脂(A)およびポリエステル樹脂(B)の合計に対して、ポリエステル樹脂(A)を10~89重量%、ポリエステル樹脂(B)を11~90重量%含有し、且つ、
     ポリエステル樹脂(A)、ポリエステル樹脂(B)およびポリエステル樹脂(C)の合計に対してポリエステル樹脂(C)を1~40重量%含有する、ポリエステル樹脂組成物。
  2.  ポリエステル樹脂(A)を構成する脂肪族ジカルボン酸単位が、炭素数2以上40以下の脂肪族ジカルボン酸単位を含有する、請求項1に記載の樹脂組成物。
  3.  さらに滑材を含有する、請求項1または請求項2に記載の樹脂組成物。
  4.  さらにフィラーを含有する、請求項1から請求項3のいずれか1項に記載の樹脂組成物。
  5.  請求項1から請求項4のいずれか1項に記載の樹脂組成物を成形して得られるフィルム。
  6.  請求項1から請求項4のいずれか1項に記載の樹脂組成物を成形して得られるマルチフィルム。
  7.  請求項5に記載のフィルムを成形して得られる袋。
PCT/JP2012/052315 2011-02-02 2012-02-01 ポリエステル樹脂組成物 WO2012105626A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP12741597.4A EP2671921B1 (en) 2011-02-02 2012-02-01 Polyester resin composition
CN201280007399.5A CN103339195B (zh) 2011-02-02 2012-02-01 聚酯树脂组合物
US13/957,963 US8747974B2 (en) 2011-02-02 2013-08-02 Polyester resin composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011020820 2011-02-02
JP2011159398 2011-07-20
JP2011-159398 2011-07-20
JP2011-020820 2011-09-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/957,963 Continuation US8747974B2 (en) 2011-02-02 2013-08-02 Polyester resin composition

Publications (1)

Publication Number Publication Date
WO2012105626A1 true WO2012105626A1 (ja) 2012-08-09

Family

ID=46602832

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052315 WO2012105626A1 (ja) 2011-02-02 2012-02-01 ポリエステル樹脂組成物

Country Status (5)

Country Link
US (1) US8747974B2 (ja)
EP (1) EP2671921B1 (ja)
JP (2) JP5942447B2 (ja)
CN (2) CN104945861A (ja)
WO (1) WO2012105626A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077061A (ja) * 2012-10-10 2014-05-01 Mitsubishi Chemicals Corp 樹脂組成物および該樹脂組成物を成形してなる成形品

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160041917A (ko) * 2013-08-09 2016-04-18 암테크 리서치 인터내셔널 엘엘씨 즉각적으로 습윤 가능한 중합체 섬유 시트
JP6394181B2 (ja) * 2013-08-29 2018-09-26 三菱ケミカル株式会社 脂肪族ポリエステル樹脂組成物
JP6174453B2 (ja) * 2013-10-28 2017-08-02 帝人フィルムソリューション株式会社 白色ポリエステルフィルム
US10987299B2 (en) * 2015-01-30 2021-04-27 Toyobo Co., Ltd. Polylactic acid-containing aqueous dispersion
ITUB20152688A1 (it) 2015-07-31 2017-01-31 Novamont Spa Composizione polimerica per la realizzazione di articoli stampati biodegradabili in compostaggio industriale.
JP6683007B2 (ja) * 2016-05-13 2020-04-15 昭和電工株式会社 樹脂組成物および生分解性フィルム
JP6717657B2 (ja) * 2016-05-13 2020-07-01 昭和電工株式会社 生分解性フィルム
JP6885826B2 (ja) * 2016-09-15 2021-06-16 デクセリアルズ株式会社 水浄化剤の製造方法、及び排水処理方法
JP6885147B2 (ja) * 2017-03-28 2021-06-09 三菱ケミカル株式会社 樹脂組成物及び該樹脂組成物を成形してなる樹脂成形品
US20190269815A1 (en) 2018-03-01 2019-09-05 Tepha, Inc. Yarns and fibers of poly(butylene succinate) and copolymers thereof, and methods of use therof
US20210047484A1 (en) 2018-03-01 2021-02-18 Tepha, Inc. Medical devices containing poly(butylene succinate) and copolymers thereof
KR102556596B1 (ko) * 2018-08-17 2023-07-17 오사카 가스 케미칼 가부시키가이샤 위상차 필름 및 그 제조 방법
KR102229124B1 (ko) * 2018-12-06 2021-03-16 에스케이씨 주식회사 폴리에스테르 수지 조성물, 폴리에스테르 필름 및 이의 제조방법
KR102176955B1 (ko) * 2019-03-27 2020-11-10 한국생산기술연구원 생분해성 고분자 조성물, 그를 포함하는 멀칭 필름 및 그의 제조방법
CN114008137B (zh) * 2019-06-28 2024-06-28 科思创德国股份有限公司 矿物增强的共聚酯共混物
WO2021042044A1 (en) 2019-08-29 2021-03-04 Tepha, Inc. Medical devices containing poly(butylene succinate) and copolymers thereof
JP6675700B1 (ja) * 2019-10-31 2020-04-01 株式会社Tbm 樹脂組成物、及び樹脂成形品の製造方法
IT202000007963A1 (it) * 2020-04-15 2021-10-15 Novamont Spa Composizione polimerica biodegradabile per la realizzazione di articoli stampati.
CN116490290A (zh) * 2020-11-18 2023-07-25 关西涂料株式会社 高固体含量涂料组合物及多层涂膜形成方法
JP6916571B1 (ja) 2021-03-25 2021-08-11 株式会社Tbm 樹脂組成物、及び成形品
WO2023229209A1 (ko) 2022-05-21 2023-11-30 에코밴스 주식회사 생분해성 성형품 및 생분해성 폴리에스테르 수지 조성물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128900A (ja) * 2001-10-23 2003-05-08 Mitsubishi Plastics Ind Ltd 乳酸系樹脂製品及びそのリサイクル方法
JP2003171474A (ja) * 2001-12-07 2003-06-20 C I Kasei Co Ltd 生分解性フィルム
JP2003284478A (ja) * 2002-03-29 2003-10-07 C I Kasei Co Ltd 松食い虫などの燻蒸駆除用生分解性フィルム
JP2005281677A (ja) * 2004-03-02 2005-10-13 Mitsubishi Chemicals Corp 脂肪族ポリエステル系樹脂組成物及びその成形体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19638488A1 (de) 1996-09-20 1998-03-26 Basf Ag Biologisch abbaubare Polyester
JP3481461B2 (ja) * 1998-06-03 2003-12-22 三菱樹脂株式会社 生分解性フィルム
JP3710726B2 (ja) * 2001-06-27 2005-10-26 シーアイ化成株式会社 生分解性フイルム
WO2004005369A1 (ja) * 2002-07-03 2004-01-15 Mitsubishi Chemical Corporation 脂肪族ポリエステルポリエーテル共重合体及びその製造方法、並びに該共重合体を用いてなる脂肪族ポリエステル組成物
US7226655B2 (en) * 2002-07-26 2007-06-05 Asahi Kasei Kabushiki Kaisha Wrap film
KR101052990B1 (ko) * 2002-10-22 2011-07-29 미쓰비시 쥬시 가부시끼가이샤 수지 조성물 및 이 수지 조성물을 이용하여 형성된 성형체
JP2006117749A (ja) * 2004-10-20 2006-05-11 Sekisui Seikei Ltd プラスチック材の変形保持性改良方法
JP2007254670A (ja) * 2006-03-24 2007-10-04 Toli Corp 内装材用組成物、及びその組成物からなる内装材
JP4895664B2 (ja) * 2006-04-17 2012-03-14 ユニチカ株式会社 生分解性合成紙およびその製造方法
JP2008195788A (ja) * 2007-02-09 2008-08-28 Sumitomo Electric Fine Polymer Inc 電子機器用の外装部材、該外装部材からなる外部接続端子用キャップを備えた電子機器
JP2008195784A (ja) * 2007-02-09 2008-08-28 Mitsubishi Chemicals Corp ポリエステル系樹脂組成物及びその成形体
JP2009221337A (ja) * 2008-03-14 2009-10-01 Mitsubishi Chemicals Corp 樹脂組成物並びに該樹脂組成物からなる成形品及びフィルム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003128900A (ja) * 2001-10-23 2003-05-08 Mitsubishi Plastics Ind Ltd 乳酸系樹脂製品及びそのリサイクル方法
JP2003171474A (ja) * 2001-12-07 2003-06-20 C I Kasei Co Ltd 生分解性フィルム
JP2003284478A (ja) * 2002-03-29 2003-10-07 C I Kasei Co Ltd 松食い虫などの燻蒸駆除用生分解性フィルム
JP2005281677A (ja) * 2004-03-02 2005-10-13 Mitsubishi Chemicals Corp 脂肪族ポリエステル系樹脂組成物及びその成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2671921A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014077061A (ja) * 2012-10-10 2014-05-01 Mitsubishi Chemicals Corp 樹脂組成物および該樹脂組成物を成形してなる成形品

Also Published As

Publication number Publication date
EP2671921A1 (en) 2013-12-11
JP2013040321A (ja) 2013-02-28
CN103339195B (zh) 2015-08-12
CN104945861A (zh) 2015-09-30
EP2671921A4 (en) 2014-12-17
JP2016106171A (ja) 2016-06-16
CN103339195A (zh) 2013-10-02
US8747974B2 (en) 2014-06-10
JP5942447B2 (ja) 2016-06-29
US20130316106A1 (en) 2013-11-28
EP2671921B1 (en) 2016-10-19

Similar Documents

Publication Publication Date Title
JP5942447B2 (ja) ポリエステル樹脂組成物、該樹脂組成物を成形してなるフィルム、および該フィルムを成形してなる袋
JP4687129B2 (ja) 脂肪族ポリエステル系樹脂組成物及びその成形体
JP6874294B2 (ja) ポリエステル樹脂組成物、該樹脂組成物を成形してなるフィルム、および該フィルムを成形してなる袋
JP6880597B2 (ja) 樹脂組成物、該樹脂組成物を成形してなるフィルム、および該フィルムを成形してなる袋
JP2005281678A (ja) 脂肪族ポリエステル系樹脂組成物及びその成形体
JP2014156539A (ja) ポリエステル樹脂組成物、該樹脂組成物を成形してなるフィルム、及び該フィルムを成形してなる袋
JP6102315B2 (ja) ポリエステル樹脂組成物及び該ポリエステル樹脂組成物を成形してなるフィルム
WO2020202813A1 (ja) ポリエステル系樹脂組成物、その製造方法及び成形体
JP2015071714A (ja) 脂肪族ポリエステル樹脂組成物の製造方法
JP2013049760A (ja) 樹脂組成物の製造方法、並びに、成形体、フィルム及び袋の製造方法
JP2008195784A (ja) ポリエステル系樹脂組成物及びその成形体
JP6102314B2 (ja) ポリエステル樹脂組成物及び該ポリエステル樹脂組成物を成形してなるフィルム
JP6885147B2 (ja) 樹脂組成物及び該樹脂組成物を成形してなる樹脂成形品
JP6074995B2 (ja) 樹脂組成物、および、該樹脂組成物を成形してなる成形品
JP5935565B2 (ja) 樹脂組成物、および、該樹脂組成物を成形してなる成形品
JP2014118543A (ja) ポリエステル樹脂組成物及びその成形体
JP2011127132A (ja) 脂肪族ポリエステル系樹脂組成物及びその成形体
JP6065512B2 (ja) 樹脂組成物および該樹脂組成物を成形してなる成形品
JP2015048445A (ja) 脂肪族ポリエステル樹脂組成物
JP7151122B2 (ja) ポリエステル系樹脂組成物の製造方法及びポリエステル系樹脂組成物並びに成形体
JP5978827B2 (ja) 樹脂組成物、および、該樹脂組成物を成形してなる成形品
JP6394181B2 (ja) 脂肪族ポリエステル樹脂組成物
JP2012031329A (ja) 生分解性樹脂組成物及びそれを成形してなる成形体
JP2013049759A (ja) 樹脂組成物、成形体、フィルム及び袋
JP2022145600A (ja) 生分解性フィルム及び袋

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741597

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012741597

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012741597

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301004287

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 201400814

Country of ref document: EA