WO2012105456A1 - Glass-integrated antenna and vehicle-use glazing provided with same - Google Patents

Glass-integrated antenna and vehicle-use glazing provided with same Download PDF

Info

Publication number
WO2012105456A1
WO2012105456A1 PCT/JP2012/051866 JP2012051866W WO2012105456A1 WO 2012105456 A1 WO2012105456 A1 WO 2012105456A1 JP 2012051866 W JP2012051866 W JP 2012051866W WO 2012105456 A1 WO2012105456 A1 WO 2012105456A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
linear conductor
antenna
glass
power feeding
Prior art date
Application number
PCT/JP2012/051866
Other languages
French (fr)
Japanese (ja)
Inventor
潤 野田
宏之 早川
建 室伏
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to EP12741960.4A priority Critical patent/EP2672565B1/en
Priority to JP2012555845A priority patent/JP5867416B2/en
Publication of WO2012105456A1 publication Critical patent/WO2012105456A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1271Supports; Mounting means for mounting on windscreens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant antennas with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength

Definitions

  • the present invention relates to a glass antenna provided on a glass plate. Moreover, it is related with the window glass for vehicles provided with a glass antenna.
  • DAB digital audio broadcasting
  • an object of the present invention is to provide a glass antenna that can handle a dual band such as DAB and has high reception sensitivity, and a vehicle window glass including the glass antenna.
  • a glass antenna according to the present invention comprises: A glass antenna provided on a glass plate, When facing the surface of the glass plate facing, Connected to the first power feeding unit, the second power feeding unit arranged side by side with the first power feeding unit, the first antenna element connected to the first power feeding unit, and the second power feeding unit An antenna conductor having a second antenna element to be Of the first power supply unit and the second power supply unit, one power supply unit is a signal side power supply unit, and the other power supply unit is a ground side power supply unit.
  • the first antenna element is: A first linear conductor having one end connected directly or via a connecting conductor to the first power feeding portion and extending in the left-right direction, and extending in the vertical direction starting from the other end of the first linear conductor And a third linear conductor extending in the same direction as the second linear conductor starting from an intermediate portion of the first linear conductor.
  • the second antenna element is A fourth end is connected to the second power feeding portion directly or via a connecting conductor and extends in the left-right direction on the side where the second linear conductor extends with respect to the first linear conductor.
  • an L-shaped element formed in an L shape by a fifth linear conductor extending in the vertical direction starting from the other end of the fourth linear conductor. It is a feature.
  • a vehicle window glass according to the present invention includes the glass antenna.
  • Plan view of vehicle glass antenna 100 Plan view of vehicle glass antenna 200 Plan view of glass antenna 300 for vehicle Plan view of vehicle glass antenna 400 Plan view of vehicle glass antenna 500 Plan view of vehicle glass antenna 600 Plan view of glass antenna 700 for vehicle Measured data of antenna gain in band III when conductor length L3 is changed Measured data of antenna gain in band III when conductor length L5 is changed Measured data of antenna gain in L band when conductor length L5 is changed Measured data of antenna gain in band III when conductor length L5 is changed Measured data of antenna gain in band III when conductor length L5 is changed Measured data of antenna gain in band III when conductor length L2 is changed Measured data of antenna gain in L band when conductor length L2 is changed Measured data of antenna gain in L band when conductor length L2 is changed Measured data of frequency characteristics of antenna gain in band III when conductor length L2 is changed Measured data of antenna gain in band III when conductor length L6 is changed Measured data of antenna gain in L band when conductor length L6 is changed Measured data of frequency characteristics of antenna gain of each glass antenna
  • each top view is a figure when the surface of glass is seen facing.
  • Each plan view is a view of the interior of the vehicle with the window glass according to the present invention attached to the vehicle, but may be referred to as a view of the exterior of the vehicle.
  • the vertical direction on each plan view corresponds to the vertical direction of the vehicle, and the lower side of each figure corresponds to the road surface side.
  • the window glass is a side window attached to the side portion of the vehicle
  • the left-right direction on the drawing corresponds to the front-rear direction of the vehicle.
  • the present invention is not limited to a side window of a vehicle, but a rear glass attached to the rear portion of the vehicle, a windshield attached to the front portion of the vehicle, and a window glass other than a vehicle window glass (for example, a window glass for a building, a ship) It may be applied to a window glass for use.
  • FIG. 1 is a plan view of a glass antenna 100 for a vehicle that is a first embodiment of the present invention.
  • FIG. 2 is a plan view of a glass antenna 200 for a vehicle that is a second embodiment of the present invention.
  • Glass antennas 100 and 200 are antennas provided on window glass 23 that is a side window of a vehicle.
  • 1 and 2 are views of the interior of the vehicle, and the left side of each figure corresponds to the rear side of the vehicle.
  • the glass antenna of the present invention includes a first power feeding unit, a second power feeding unit arranged side by side with the first power feeding unit, a first antenna element connected to the first power feeding unit, and a second antenna
  • An antenna conductor having a second antenna element connected to the feeder is provided on the window glass.
  • the first power supply unit can be electrically connected to a signal path of an external signal processing device (for example, an in-vehicle amplifier) via a predetermined first conductive member, and the first conductive member can be connected.
  • the signal-side power feeding unit is formed of a conductor having a predetermined area
  • the second power feeding unit has a predetermined second conductivity on an external ground path (for example, the ground of the signal processing device or the vehicle body).
  • the first feeding unit and the second feeding unit constitute a pair of feeding points of the antenna conductor.
  • the glass antennas 100 and 200 are arranged on the upper side of the antenna conductor and the side edge 23a of the window glass 23 with an interval in the vertical direction, and are located on the upper side.
  • This is a two-pole type antenna that is provided on the window glass 23 in a planar manner, and includes a ground-side power feeding portion 17 located at the position.
  • Glass antennas 100 and 200 have at least a first antenna element connected to signal-side power feeding unit 16 and a second antenna element connected to ground-side power feeding unit 17 as antenna conductor patterns. Yes.
  • the signal-side power supply unit 16 and the ground-side power supply unit 17 may be arranged upside down, or may be arranged at intervals in the left-right direction.
  • the first antenna element has one end connected to the signal-side power feeding unit 16 directly or via a connecting conductor and extending in the left-right direction, and the other end of the first linear conductor as a starting point.
  • F-shaped by a second linear conductor extending in the vertical direction and a third linear conductor extending in the same direction as the second linear conductor, starting from an intermediate portion of the first linear conductor The F-shaped element formed in the shape is included.
  • the second and third linear conductors extend in a direction perpendicular to or substantially perpendicular to the extending direction of the first linear conductor so that an F-shaped element is formed.
  • linear conductor 1 and 2 exemplify a linear conductor 1 that linearly extends to the left starting from an end a connected to the signal-side power feeding unit 16 as a first linear conductor.
  • An example of the linear conductor is a linear conductor 2 that extends linearly downward from the end c of the linear conductor 1 extending leftward, and the third linear conductor is the left of the linear conductor 1.
  • a linear conductor 3 extending linearly downward starting from an intermediate portion b extending in the direction is illustrated.
  • the linear conductor 2 extends to the end d of the downward extension, and the linear conductor 3 extends to the end e of the downward extension.
  • the intermediate part b is a point between the end part a and the terminal part c on the linear conductor 1.
  • the second antenna element has one end connected to the ground-side power feeding portion 17 directly or via a connecting conductor and the left and right directions on the side where the second linear conductor extends with respect to the first linear conductor.
  • a fourth linear conductor extending in the vertical direction and a fifth linear conductor extending in the vertical direction between the second linear conductor and the third linear conductor starting from the other end of the fourth linear conductor.
  • An L-shaped element formed in an L shape by a linear conductor is included.
  • the fifth linear conductor extends in a direction perpendicular to or substantially perpendicular to the direction in which the fourth linear conductor extends so that an L-shaped element is formed.
  • FIG. 1 as a fourth linear conductor, starting from an end f connected to the ground-side power feeding unit 17, on the lower side where the linear conductor 2 extends from the linear conductor 1, to the left
  • the linear conductor 4 that extends linearly is exemplified
  • the fifth linear conductor is a line between the linear conductor 2 and the linear conductor 3 starting from the terminal end h of the linear conductor 4 extending leftward.
  • a linear conductor 5 extending upward is illustrated. The linear conductor 5 extends to the terminal end i of the upward extension.
  • the linear conductor 7 is illustrated as a connection conductor that connects the fourth linear conductor and the ground-side power feeding portion 17.
  • the linear conductor 7 is a conductor that linearly extends downward from an end g that is connected to the ground-side power feeding unit 17, and connects the end g and an end f that is one end of the linear conductor 4. Is to do.
  • the linear conductor 7 does not necessarily have to be a linear conductor that extends downward linearly. For example, a line that extends obliquely in the lower left direction when starting from an end g connected to the ground-side power feeding portion 17. A conductor may be used.
  • FIG. 2 illustrates a configuration in which the end f of the linear conductor 4 is connected to the ground-side power feeding unit 17 via the linear conductor 7, but the end a of the linear conductor 1 is a signal. You may connect to the side electric power feeding part 16 via a connection conductor.
  • the first antenna element of the glass antennas 100 and 200 may include a sixth linear conductor that is connected to the end c that is the other end of the first linear conductor and extends in the left-right direction.
  • . 1 and 2 illustrate a linear conductor 6 that linearly extends to the left starting from an end c of the linear conductor 1 as the sixth linear conductor.
  • the linear conductor 6 extends to the end portion j of the extension to the left.
  • the antenna conductor illustrated in FIGS. 1 and 2 extends the first antenna element and the second antenna element to the left, but extends the first antenna element and the second antenna element to the right. 1, that is, it may be symmetrical with respect to the signal-side power feeding unit in the left and right directions, and the signal-side power feeding unit and the first antenna element, and the earth-side power feeding unit and the second antenna
  • the element may be inverted upside down, that is, it may be line-symmetric or point-symmetric with respect to the signal-side power feeding unit in FIGS.
  • the present invention as two broadcast frequency bands to be received, there are a predetermined first broadcast frequency band and a predetermined second broadcast frequency band whose band is lower than the first broadcast frequency band.
  • the conductor length L3 of the linear conductor 3 corresponding to the third linear conductor that is the vertical component of the first antenna element is linear. If the conductor 3 is not in contact with the linear conductor 4 and is (1/5) ⁇ g1 or more, more preferably (1/4) ⁇ g1 or more, the antenna gain in the first broadcast frequency band is improved. Gives favorable results.
  • the conductor length L3 of the linear conductor 3 is adjusted to 30 mm or more, more preferably 40 mm or more, when the radio wave speed is 3.0 ⁇ 10 8 m / s. Good. In consideration of the area occupied by the glass antenna, it is preferably 80 mm or less.
  • the two broadcast frequency bands to be received include a predetermined first broadcast frequency band and a predetermined second broadcast frequency band lower than the first broadcast frequency band.
  • the conductor length L5 of the linear conductor 5 corresponding to the fifth linear conductor that is the vertical component of the second antenna element is linear. If the conductor 5 is not in contact with the linear conductor 1 and is (1/26) ⁇ g2 or more, more preferably (1/20) ⁇ g2 or more, the antenna gain of the second broadcast frequency band is improved. Gives favorable results.
  • band III (174 to 240 MHz) is set as the second broadcast frequency band
  • the center frequency is 207 MHz. Therefore, when it is desired to improve the antenna gain of band III, the conductor length L5 of the linear conductor 5 is adjusted to 30 mm or more, more preferably 40 mm or more, when the radio wave speed is 3.0 ⁇ 10 8 m / s. Good.
  • the conductor length L5 is increased, the antenna gain is effectively improved in a high band of 200 MHz or higher in the band III. In consideration of the area occupied by the glass antenna, it is preferably 80 mm or less.
  • vertical component of a 1st antenna element will be the following.
  • the linear conductor 2 is in the range where it does not come into contact with other conductors or does not come off the window glass 23, it is 30 mm or more and 120 mm or less. More preferably, it is 30 mm or more and 100 mm or less. Moreover, if it is 40 mm or more and 100 mm or less, a favorable result will be obtained at the point of the L-band antenna gain improvement.
  • the conductor length L6 of the linear conductor 6 equivalent to the 6th linear conductor which is a horizontal component of a 1st antenna element will be the following.
  • the conductor length L6 is increased, the antenna gain is effectively improved in a low band of 220 MHz or less in the band III.
  • it is 20 mm or more and 60 mm or less, a favorable result is obtained at the point of the L-band antenna gain improvement.
  • the band III and L band antennas are used. A favorable result is obtained in terms of gain improvement.
  • FIG. 3 is a plan view of a glass antenna 300 for a vehicle that is a third embodiment of the present invention.
  • FIG. 4 is a plan view of a glass antenna 400 for a vehicle that is a fourth embodiment of the present invention. A description of the same configuration as that of the above-described embodiment and the similar effect produced by the configuration will be omitted.
  • the glass antennas 300 and 400 in FIGS. 3 and 4 are different from the glass antenna 200 in FIG. 2 in the positional relationship between the linear conductors 2, 3, and 5.
  • the linear conductors 2 and 3 connected to the signal-side power feeding portion 16 via the linear conductor 1 are linear conductors connected to the ground-side power feeding portion 17 via the linear conductors 4 and 7.
  • 5 extends in the vertical direction in a region opposite to the signal-side power feeding unit 16 and the ground-side power feeding unit 17 side.
  • the linear conductor 5 extends in the vertical direction in a region near the signal-side power feeding unit 16 and the ground-side power feeding unit 17 with respect to the linear conductors 2 and 3.
  • the linear conductors 2 and 3 connected to the signal-side power feeding unit 16 via the linear conductor 1 are lines connected to the ground-side power feeding unit 17 via the linear conductors 4 and 7. It extends in the vertical direction in a region near the signal-side power supply unit 16 and the ground-side power supply unit 17 with respect to the conductor 5.
  • the linear conductor 5 extends in the vertical direction in a region opposite to the signal-side power feeding unit 16 and the ground-side power feeding unit 17 side with respect to the linear conductors 2 and 3.
  • the antenna conductor illustrated in FIGS. 3 and 4 extends the first antenna element and the second antenna element to the left, but extends the first antenna element and the second antenna element to the right. That is, in FIG. 3 and FIG. 4, the signal side power supply unit may be symmetrical with respect to the left and right, and the signal side power supply unit and the first antenna element, and the earth side power supply unit and the second antenna element May be reversed vertically, that is, in FIG.
  • the signal-side power feeding unit 16 is connected to the signal path of the external signal processing device (for example, in-vehicle amplifier) with a predetermined first conductivity.
  • the external signal processing device for example, in-vehicle amplifier
  • DAB and other dual band reception characteristics can be obtained.
  • ground planes extending upward or downward are ground planes (
  • the attachment angle of the window glass 23 to the vehicle is preferably 30 to 90 °, particularly 60 to 90 ° with respect to the ground plane.
  • the first and second conductive members for example, power supply lines such as AV lines and coaxial cables are used.
  • the inner conductor of the coaxial cable may be electrically connected to the signal-side power feeding unit 16 and the outer conductor of the coaxial cable may be electrically connected to the ground-side power feeding unit 17.
  • a configuration may be adopted in which a male connector is attached to the tip of the coaxial cable and a female connector is mounted on the signal-side power feeding unit 16 and the ground-side power feeding unit 17. With such a connector, it becomes easy to attach the inner conductor of the coaxial cable to the signal-side power feeding portion 16 and to easily attach the outer conductor of the coaxial cable to the ground-side power feeding portion 17.
  • a projecting conductive member is installed in each of the signal side power feeding unit 16 and the ground side power feeding unit 17, and the projecting conductive member is attached to a connection portion provided on the flange of the vehicle body to which the window glass 23 is attached. It is good also as a structure which contacts and fits.
  • the length of the third linear conductor or the like so that radio waves in the high frequency band of the dual band can be received satisfying a predetermined requirement standard. Even if the tuning is performed, it is possible to hardly influence the reception characteristics of radio waves in the low frequency band of the dual band. Similarly, even if tuning such as the length of the fifth linear conductor is performed so that low frequency radio waves in the dual band can be received satisfying a predetermined required standard, The reception characteristics can be hardly affected. That is, it is easy to perform tuning.
  • the “end” may be the starting point or the end point of the linear conductor, or may be in the vicinity of the starting point or the end point that is the conductor portion before the starting point or the end point.
  • the connection part of linear conductors may have a curvature, and may be connected.
  • the antenna conductor, the signal-side power feeding unit 16 and the ground-side power feeding unit 17 are formed by printing and baking a paste containing a conductive metal, such as a silver paste, on the inner surface of a window glass, for example.
  • a conductive metal such as a silver paste
  • the present invention is not limited to this forming method, and a linear or foil-like body made of a conductive material such as copper may be formed on the vehicle inner surface or vehicle outer surface of the window glass. It may be attached by, for example, or may be provided inside the window glass itself.
  • the shape of the signal-side power feeding unit 16 and the ground-side power feeding unit 17 and the distance between the signal-side power feeding unit 16 and the ground-side power feeding unit 17 are the shape of the mounting surface of the conductive member or connector, or the mounting surface of those mounting surfaces. It is good to decide according to the interval.
  • a square shape or a polygonal shape such as a square, a substantially square, a rectangle, or a substantially rectangle is preferable for mounting. It may be a circle such as a circle, a substantially circle, an ellipse, or a substantially ellipse.
  • the area of the signal-side power feeding unit 16 and the area of the ground-side power feeding unit 17 may be the same or different.
  • a conductor layer composed of each antenna conductor may be provided inside or on the surface of the synthetic resin film, and a synthetic resin film with a conductor layer may be formed on the vehicle inner surface or vehicle outer surface of the window glass plate to form a glass antenna.
  • a glass antenna by forming the flexible circuit board in which each antenna conductor was formed in the vehicle inner surface or vehicle outer surface of a window glass.
  • a concealing film may be formed on the surface of the window glass 23, and a signal side power feeding unit, a ground side power feeding unit, and a part or the whole of the antenna conductor may be provided on the concealing film.
  • the concealing film may be a ceramic such as a black ceramic film.
  • the portion of the antenna conductor provided on the masking film by the masking film becomes invisible from the outside of the vehicle, and the window glass has an excellent design.
  • the signal-side feeding unit, the ground-side feeding unit, and a part of the antenna conductor are formed on the shielding film (between the edge of the shielding film and the side edge 23a of the window glass 23). In this case, only the thin linear portion of the conductor is seen, which is preferable in terms of design.
  • At least one linear conductor (in this case, the linear conductor 3) connected to the signal-side power supply unit 16 is connected to the ground-side power supply unit. If the antenna extends in the vertical direction in the region near the signal-side power feeding unit 16 with respect to at least one linear conductor (in this case, the linear conductor 5) connected to the antenna 17, the band III antenna A favorable result is obtained in terms of gain improvement.
  • FIG. 5 is a plan view of a glass antenna 500 for a vehicle that is the fifth embodiment of the present invention.
  • FIG. 6 is a plan view of a glass antenna 600 for a vehicle that is a sixth embodiment of the present invention.
  • FIG. 7 is a plan view of a glass antenna 700 for a vehicle that is a seventh embodiment of the present invention. A description of the same configuration as that of the above-described embodiment and the similar effect produced by the configuration will be omitted.
  • the first power feeding portion of the glass antenna shown in FIGS. 5 to 7 constitutes the signal side power feeding unit.
  • the first antenna element including the F-shaped element formed in an F-shape is connected to the signal-side power feeding unit 16 whereas FIG.
  • a first antenna element including an F-shaped element formed in an F-shape is connected to the ground-side feeding unit 17.
  • the glass antennas shown in FIGS. 1 to 4 are connected to the ground-side power feeding portion 17 while the second antenna element including the L-shaped element formed in the L-shape is connected to the ground-side power feeding portion 17.
  • a second antenna element including an L-shaped element formed in an L-shape is connected to the signal-side feeding unit 16.
  • the first antenna element includes a first linear conductor having one end connected to the ground-side power feeding portion 17 directly or via a connection conductor and extending in the left-right direction, A second linear conductor extending in the vertical direction starting from the other end of the first linear conductor, and a second linear conductor extending in the same direction as the second linear conductor starting from an intermediate portion of the first linear conductor.
  • F-shaped elements formed in an F-shape by three linear conductors are included.
  • the second and third linear conductors extend in a direction perpendicular to or substantially perpendicular to the extending direction of the first linear conductor so that an F-shaped element is formed.
  • a linear conductor 11 that extends linearly to the left starting from the end a ⁇ b> 1 connected to the ground-side power feeding unit 17 is illustrated.
  • Examples of the second linear conductor include a linear conductor 12 that linearly extends upward starting from a terminal end c1 extending leftward of the linear conductor 11, and a linear conductor as the third linear conductor.
  • 11 illustrates a linear conductor 13 that linearly extends upward starting from an intermediate portion b1 extending leftward.
  • the linear conductor 12 extends to the end portion d1 of the upward extension, and the linear conductor 13 extends to the end portion e1 of the upward extension.
  • the intermediate part b1 is a point between the end part a1 and the terminal part c1 on the linear conductor 11.
  • a linear conductor 19 as a connection conductor that connects the first linear conductor and the ground-side power feeding unit 17.
  • the linear conductor 19 is a conductor that linearly extends downward starting from an end g1 connected to the ground-side power feeding unit 17, and connects the end g1 and the end a1 that is one end of the linear conductor 11. Is to do.
  • the linear conductor 19 does not necessarily have to be a linear conductor that extends linearly downward. For example, a line that extends obliquely in the lower left direction when starting from the end g1 connected to the ground-side power feeding unit 17. A conductor may be used.
  • the second antenna element has one end connected to the signal-side power feeding unit 16 directly or via a connecting conductor and the second line to the first linear conductor.
  • a fourth linear conductor extending in the left-right direction on the side where the linear conductor extends, and a fifth linear conductor extending in the vertical direction starting from the other end of the fourth linear conductor.
  • An L-shaped element formed in a letter shape is included.
  • the fifth linear conductor extends in a direction perpendicular to or substantially perpendicular to the direction in which the fourth linear conductor extends so that an L-shaped element is formed.
  • FIG. 5 as the fourth linear conductor, starting from the end f ⁇ b> 1 connected to the signal-side power feeding unit 16, on the upper side where the linear conductor 12 extends with respect to the linear conductor 11, A linear conductor 14 that extends linearly is illustrated, and the fifth linear conductor is a line between the linear conductor 12 and the linear conductor 13 starting from an end portion h1 of the linear conductor 14 that extends to the left.
  • a linear conductor 15 extending downward is illustrated. The linear conductor 15 extends to the end portion i1 of the downward extension.
  • the linear conductor 15 connected to the signal-side power feeding unit 16 via the linear conductor 14 is connected to the linear conductor 12 connected to the ground-side power feeding unit 17 via the linear conductors 11 and 19. On the other hand, it extends in the vertical direction in a region near the signal-side power supply unit 16 and the ground-side power supply unit 17.
  • the linear conductor 15 connected to the signal-side power feeding unit 16 via the linear conductor 14 is the linear conductor 12 connected to the ground-side power feeding unit 17 via the linear conductors 11 and 19. 13 extends in the vertical direction in a region near the signal-side power supply unit 16 and the ground-side power supply unit 17.
  • the linear conductors 12 and 13 extend in the vertical direction in a region on the opposite side of the linear conductor 15 from the signal-side power feeding unit 16 and the ground-side power feeding unit 17 side.
  • the linear conductor 15 connected to the signal-side power feeding unit 16 via the linear conductor 14 is the linear conductor 12 connected to the ground-side power feeding unit 17 via the linear conductors 11 and 19. 13 extends in the vertical direction in a region opposite to the signal-side power supply unit 16 and the ground-side power supply unit 17 side.
  • the linear conductors 12 and 13 extend in the vertical direction in a region near the signal-side power feeding unit 16 and the ground-side power feeding unit 17 with respect to the linear conductor 15.
  • the first antenna element of the glass antenna of FIGS. 5, 6, and 7 is a sixth linear conductor that is connected to the end h1 that is the other end of the fourth linear conductor and extends in the left-right direction. May be included. 5, 6, and 7 exemplify a linear conductor 18 that linearly extends to the left starting from the end h ⁇ b> 1 of the linear conductor 14 as the sixth linear conductor. The linear conductor 18 extends to the end portion j1 of the extension to the left.
  • the antenna conductor illustrated in FIGS. 5, 6, and 7 extends the first antenna element and the second antenna element to the left, but the first antenna element and the second antenna element are on the right side. 5, that is, it may be symmetrical with respect to the signal-side power feeding unit in the left and right directions in FIGS. 5, 6, and 7, and the signal-side power feeding unit, the first antenna element, and the ground side
  • the feed unit and the second antenna element may be inverted upside down, that is, in FIG.
  • the signal-side power feeding unit 16 is connected to the signal path of the external signal processing device (for example, in-vehicle amplifier) with a predetermined first. And electrically connecting the ground-side power feeding portion 17 to an external ground path (for example, the ground of the signal processing device) via a predetermined second conductive member.
  • At least one linear conductor (in this case, the linear conductor 15) connected to the signal-side power supply unit 16 is at least connected to the ground-side power supply unit 17. If it extends in the vertical direction in a region near the signal-side power feeding portion 16 with respect to one linear conductor (in this case, the linear conductor 12), a favorable result in terms of improving the antenna gain of band III Is obtained. As shown in FIG. 5, when the linear conductor 15 extends in the vertical direction between the linear conductor 12 and the linear conductor 13, a favorable result is obtained in terms of improving the antenna gain of the band III. can get.
  • the antenna gain was measured by assembling an automotive window glass on which a glass antenna was formed, with the vehicle window frame on the turntable being inclined at about 75 ° with respect to the horizontal plane.
  • Connectors are attached to the signal-side power supply unit and the ground-side power supply unit, and are connected to a network analyzer via a feeder line.
  • the turntable rotates so that radio waves are applied from all directions to the window glass from the horizontal direction.
  • the antenna gain is measured by setting the center of the car with the glass antenna glass installed at the center of the turntable and rotating the car 360 °.
  • the antenna gain data is measured every 3 MHz in the band III frequency range at every rotation angle of 5 °, and is measured every 1.7 MHz in the L band frequency range.
  • the antenna gain was standardized so that the antenna gain of the half-wave dipole antenna was 0 dB with reference to the half-wave dipole antenna.
  • Example 1 the conductor length L3 of the linear conductor 3 is changed for a high-frequency glass antenna for an automobile manufactured by attaching the form of the glass antenna 200 shown in FIG. 2 to an actual vehicle side window. This is actually measured data of antenna gain.
  • the vertical axis of FIG. 8A shows the average value in the band of the antenna gain at every rotation angle of 5 ° measured every 3 MHz in band III (174 to 240 MHz).
  • the vertical axis of FIG. 8B shows the average value of the antenna gain in the band at every rotation angle of 5 ° measured every 1.7 MHz in the L band (1452 to 1492 MHz).
  • each part of each glass antenna when FIG. 8A and FIG. 8B are actually measured are as follows: L1: 60 L2: 80 L4: 50 L5: 50 L6: 35 L7: 30 It is. However, “L *” (* represents a sign) indicates the conductor length of the linear conductor *.
  • the conductor width of each linear conductor is 0.8 mm.
  • Both the signal-side power supply unit 16 and the ground-side power supply unit 17 are squares with a side of 12 mm. The gap between the signal side power supply unit 16 and the ground side power supply unit 17 is 13 mm.
  • the antenna gain of the L band can be improved as the conductor length L3 of the linear conductor 3 is increased.
  • the conductor length L3 of the linear conductor 3 is 30 mm or more, the L-band antenna gain can be improved while suppressing the change in the band-III antenna gain. .
  • Example 2 show that the conductor length L5 of the linear conductor L5 is changed in the high-frequency glass antenna for an automobile manufactured by attaching the form of the glass antenna 200 shown in FIG. 2 to an actual vehicle side window. This is actually measured data of antenna gain.
  • the vertical axis in FIG. 9A shows the average value in the band of the antenna gain at every rotation angle of 5 ° measured every 3 MHz in band III (174 to 240 MHz).
  • the vertical axis of FIG. 9B shows the average value in the antenna gain band for each rotation angle of 5 ° measured at 1.7 MHz in the L band (1452 to 1492 MHz).
  • each part of each glass antenna when FIG. 9A and FIG. 9B are actually measured are as follows: L1: 60 L2: 80 L3: 60 L5: 50 L6: 35 L7: 30 It is. Other dimensions are the same as in Example 1.
  • the antenna gain of band III can be improved as the conductor length L5 of the linear conductor 5 is increased.
  • the antenna gain of the band III can be improved while suppressing the change of the antenna gain of the L band. .
  • FIG. 10A, 10B, and 10C show the conductor length L2 of the linear conductor 2 for an automotive high-frequency glass antenna manufactured by attaching the form of the glass antenna 200 shown in FIG. 2 to an actual vehicle side window. This is measured data of antenna gain when changed.
  • the vertical axis of FIG. 10A shows the average value in the band of the antenna gain for every rotation angle of 5 ° measured every 3 MHz in band III (174 to 240 MHz).
  • the vertical axis of FIG. 10B shows the average value in the antenna gain band for each rotation angle of 5 ° measured at 1.7 MHz in the L band (1452 to 1492 MHz).
  • the vertical axis of FIG. 10C shows the average value of the antenna gain at each frequency measured at every rotation angle of 5 °.
  • the antenna gain of the band III can be improved.
  • the antenna gain in the high band of 210 MHz or higher in the band III can be improved (when the conductor length L2 is 10 mm and 100 mm).
  • the conductor length L2 of the linear conductor 2 is not less than 40 mm and not more than 100 mm, the L-band antenna gain can be improved.
  • Example 4 the conductor length L6 of the linear conductor 6 is changed for a high-frequency glass antenna for an automobile manufactured by attaching the form of the glass antenna 200 shown in FIG. 2 to an actual vehicle side window. This is actually measured data of antenna gain.
  • the vertical axis in FIG. 11A shows the average value in the band of the antenna gain at every rotation angle of 5 ° measured every 3 MHz in band III (174 to 240 MHz).
  • the vertical axis of FIG. 11B shows the average value in the antenna gain band for each rotation angle of 5 ° measured at 1.7 MHz in the L band (1452 to 1492 MHz).
  • each part of each glass antenna when FIG. 11A and FIG. 11B are actually measured are as follows: L1: 60 L2: 80 L3: 60 L4: 50 L5: 50 L7: 30 It is. Other dimensions are the same as in Example 1.
  • the antenna gain of the band III can be improved.
  • the conductor length L6 of the linear conductor 6 is 20 mm or more and 100 mm or less, the antenna gain of the band III can be improved.
  • the conductor length L6 of the linear conductor 6 is not less than 20 mm and not more than 60 mm, the L-band antenna gain can be improved.
  • FIG. 12 shows an antenna gain in band III for an automotive high-frequency glass antenna manufactured by attaching the glass antennas 200, 300, and 400 shown in FIGS. 2, 3, and 4 to the side window of an actual vehicle. It is actual measurement data.
  • the vertical axis in FIG. 12 indicates the average value of the antenna gain at each frequency measured at every rotation angle of 5 °.
  • the average value of the antenna gain shown in FIG. 12 in the band III is “ ⁇ 1.0 dBd” in the case of the glass antenna 200 and “ ⁇ 1.8 dBd” in the case of the glass antenna 300.
  • the case of 400 is “ ⁇ 0.9 dBd”.
  • At least one of the linear conductors 2 and 3 connected to the signal-side power feeding unit 16 is on the signal side with respect to the linear conductor 5 connected to the ground-side power feeding unit 17.
  • the antenna gain of the band III can be further increased.
  • FIG. 13 shows a high-frequency glass antenna for an automobile manufactured by attaching the glass antennas 200, 500, 600, and 700 shown in FIGS. 2, 5, 6, and 7 to a side window of an actual vehicle. This is actual measurement data of antenna gain in band III.
  • the vertical axis in FIG. 13 indicates the average value of the antenna gain at each frequency measured at each rotation angle of 5 °.
  • the average value of the antenna gain shown in FIG. 13 in the band III is “ ⁇ 1.0 dBd” in the case of the glass antenna 200 and “ ⁇ 1.1 dBd” in the case of the glass antenna 500.
  • the case of 600 is “ ⁇ 1.2 dBd”, and the case of the glass antenna 700 is “ ⁇ 1.4 dBd”.
  • a sufficient antenna gain can be obtained in the band III band.
  • the linear conductor 15 connected to the signal-side power feeding unit 16 is on the signal side with respect to at least one of the linear conductors 12 and 13 connected to the ground-side power feeding unit 17.
  • the antenna gain of the band III can be further increased.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Details Of Aerials (AREA)

Abstract

The present invention is a glass-integrated antenna provided in a glazing (23), wherein the glass-integrated antenna is characterized in being provided with a signal-side feed unit (16) and a ground-side feed unit (17) which are ordered in the vertical direction, an F-shaped element formed into an F-shape by way of a wire-shaped conductor (1) connected to the signal-side feed unit (16) so as to extend in the horizontal direction and wire-shaped conductors (2, 3) extending from the wire-shaped conductor (1) as an origin, and an L-shaped element formed into an L-shape by way of a wire-shaped conductor (4) connected to the ground-side feed unit (17) so as to extend in the horizontal direction and a wire-shaped conductor (5) extending upward from the wire-shaped conductor (4) as an origin.

Description

ガラスアンテナ及びそれを備える車両用窓ガラスGlass antenna and vehicle window glass including the same
 本発明は、ガラス板に設けられるガラスアンテナに関する。また、ガラスアンテナを備える車両用窓ガラスに関する。 The present invention relates to a glass antenna provided on a glass plate. Moreover, it is related with the window glass for vehicles provided with a glass antenna.
 従来技術として、デジタルオーディオ放送(Digital Audio Broadcasting:DAB)を受信可能なガラスアンテナが知られている(例えば、特許文献1~4参照)。DABは、174~240MHzのband III(バンドIII)と1452~1492MHzのL band(Lバンド)の2つの異なる周波数帯から構成されている。 As a conventional technique, a glass antenna capable of receiving digital audio broadcasting (DAB) is known (see, for example, Patent Documents 1 to 4). DAB is composed of two different frequency bands, band III (band III) of 174 to 240 MHz and L band (L band) of 1452 to 1492 MHz.
特開平10-327009号公報Japanese Patent Laid-Open No. 10-327090 特開2000-307321号公報JP 2000-307321 A 米国特許第6924771号明細書US Pat. No. 6,924,771 欧州特許出願公開第1732160号明細書European Patent Application No. 1732160
 DABのように周波数帯域がデュアルバンドの場合、帯域が離れているため、両方の帯域に対応可能な十分な受信性能を持つガラスアンテナを設計することは難しく、デュアルバンドに対応可能で高い受信感度を有するガラスアンテナが要望されている。 When the frequency band is dual band like DAB, it is difficult to design a glass antenna with sufficient reception performance that can handle both bands because of the distance between the bands. There is a need for a glass antenna having
 そこで、本発明は、DABなどのデュアルバンドに対応可能で高い受信感度を有するガラスアンテナ、及び該ガラスアンテナを備える車両用窓ガラスの提供を目的とする。 Therefore, an object of the present invention is to provide a glass antenna that can handle a dual band such as DAB and has high reception sensitivity, and a vehicle window glass including the glass antenna.
 上記目的を達成するため、本発明に係るガラスアンテナは、
 ガラス板に設けられるガラスアンテナであって、
 前記ガラス板の面を対向して見たときに、
 第1の給電部と、前記第1の給電部に並んで配置された第2の給電部と、前記第1の給電部に接続される第1のアンテナエレメント及び前記第2の給電部に接続される第2のアンテナエレメントを有するアンテナ導体とを備え、
 前記第1の給電部と前記第2の給電部のうち、一方の給電部が信号側給電部であり、他方の給電部がアース側給電部であり、
 前記第1のアンテナエレメントは、
 一端が前記第1の給電部に直接又は接続導体を介して接続され左右方向に延在する第1の線状導体と、前記第1の線状導体の他端を起点に上下方向に延在する第2の線状導体と、前記第1の線状導体の中間部を起点に前記第2の線状導体と同方向に延在する第3の線状導体とによって、F字状に形成されたF字状エレメントを含み、
 前記第2のアンテナエレメントは、
 一端が前記第2の給電部に直接又は接続導体を介して接続されかつ前記第1の線状導体に対して前記第2の線状導体が延在する側で左右方向に延在する第4の線状導体と、前記第4の線状導体の他端を起点に上下方向に延在する第5の線状導体とによって、L字状に形成されたL字状エレメントを含む、ことを特徴とするものである。
In order to achieve the above object, a glass antenna according to the present invention comprises:
A glass antenna provided on a glass plate,
When facing the surface of the glass plate facing,
Connected to the first power feeding unit, the second power feeding unit arranged side by side with the first power feeding unit, the first antenna element connected to the first power feeding unit, and the second power feeding unit An antenna conductor having a second antenna element to be
Of the first power supply unit and the second power supply unit, one power supply unit is a signal side power supply unit, and the other power supply unit is a ground side power supply unit.
The first antenna element is:
A first linear conductor having one end connected directly or via a connecting conductor to the first power feeding portion and extending in the left-right direction, and extending in the vertical direction starting from the other end of the first linear conductor And a third linear conductor extending in the same direction as the second linear conductor starting from an intermediate portion of the first linear conductor. Including an F-shaped element,
The second antenna element is
A fourth end is connected to the second power feeding portion directly or via a connecting conductor and extends in the left-right direction on the side where the second linear conductor extends with respect to the first linear conductor. And an L-shaped element formed in an L shape by a fifth linear conductor extending in the vertical direction starting from the other end of the fourth linear conductor. It is a feature.
 また、上記目的を達成するため、本発明に係る車両用窓ガラスは、該ガラスアンテナを備えるものである。 In order to achieve the above object, a vehicle window glass according to the present invention includes the glass antenna.
 本発明によれば、DABなどのデュアルバンドに対応可能で高い受信感度を得ることができる。 According to the present invention, it is possible to deal with dual bands such as DAB and to obtain high receiving sensitivity.
車両用ガラスアンテナ100の平面図Plan view of vehicle glass antenna 100 車両用ガラスアンテナ200の平面図Plan view of vehicle glass antenna 200 車両用ガラスアンテナ300の平面図Plan view of glass antenna 300 for vehicle 車両用ガラスアンテナ400の平面図Plan view of vehicle glass antenna 400 車両用ガラスアンテナ500の平面図Plan view of vehicle glass antenna 500 車両用ガラスアンテナ600の平面図Plan view of vehicle glass antenna 600 車両用ガラスアンテナ700の平面図Plan view of glass antenna 700 for vehicle 導体長L3を変化させたときのバンドIIIでのアンテナ利得の実測データMeasured data of antenna gain in band III when conductor length L3 is changed 導体長L3を変化させたときのLバンドでのアンテナ利得の実測データMeasured data of antenna gain in L band when conductor length L3 is changed 導体長L5を変化させたときのバンドIIIでのアンテナ利得の実測データMeasured data of antenna gain in band III when conductor length L5 is changed 導体長L5を変化させたときのLバンドでのアンテナ利得の実測データMeasured data of antenna gain in L band when conductor length L5 is changed 導体長L2を変化させたときのバンドIIIでのアンテナ利得の実測データMeasured data of antenna gain in band III when conductor length L2 is changed 導体長L2を変化させたときのLバンドでのアンテナ利得の実測データMeasured data of antenna gain in L band when conductor length L2 is changed 導体長L2を変化させたときのバンドIIIでのアンテナ利得の周波数特性の実測データMeasured data of frequency characteristics of antenna gain in band III when conductor length L2 is changed 導体長L6を変化させたときのバンドIIIでのアンテナ利得の実測データMeasured data of antenna gain in band III when conductor length L6 is changed 導体長L6を変化させたときのLバンドでのアンテナ利得の実測データMeasured data of antenna gain in L band when conductor length L6 is changed 各ガラスアンテナのアンテナ利得の周波数特性の実測データMeasured data of frequency characteristics of antenna gain of each glass antenna 各ガラスアンテナのアンテナ利得の周波数特性の実測データMeasured data of frequency characteristics of antenna gain of each glass antenna
 以下、図面を参照しながら、本発明を実施するための形態の説明を行う。なお、形態を説明するための図面において、方向について特に記載のない場合には図面上での方向をいうものとし、各図面の基準の方向は、記号、数字の方向に対応する。また、平行、直角などの方向は、本発明の効果を損なわない程度のズレを許容するものである。また、各平面図は、ガラスの面を対向して見たときの図である。各平面図は、本発明に係る窓ガラスが車両に取り付けられた状態での車内視の図であるが、車外視の図として参照してもよい。各平面図上での上下方向が車両の上下方向に相当し、各図の下側が路面側に相当する。また、窓ガラスが車両の側部に取り付けられるサイドウィンドウである場合、図面上での左右方向が車両の前後方向に相当する。なお、本発明は、車両のサイドウィンドウに限らず、車両の後部に取り付けられるリヤガラス、車両の前部に取り付けられるフロントガラス、車両用窓ガラス以外の窓ガラス(例えば、建物用の窓ガラス、船舶用の窓ガラスなど)に適用してもよい。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. Note that in the drawings for explaining the embodiments, unless there is a particular description of the direction, the direction on the drawing is referred to, and the reference direction in each drawing corresponds to the direction of a symbol or number. Further, the directions such as parallel and right angles allow a deviation that does not impair the effects of the present invention. Moreover, each top view is a figure when the surface of glass is seen facing. Each plan view is a view of the interior of the vehicle with the window glass according to the present invention attached to the vehicle, but may be referred to as a view of the exterior of the vehicle. The vertical direction on each plan view corresponds to the vertical direction of the vehicle, and the lower side of each figure corresponds to the road surface side. Further, when the window glass is a side window attached to the side portion of the vehicle, the left-right direction on the drawing corresponds to the front-rear direction of the vehicle. The present invention is not limited to a side window of a vehicle, but a rear glass attached to the rear portion of the vehicle, a windshield attached to the front portion of the vehicle, and a window glass other than a vehicle window glass (for example, a window glass for a building, a ship) It may be applied to a window glass for use.
 [第1群の実施形態]
 図1は、本発明の第1の実施形態である車両用ガラスアンテナ100の平面図である。図2は、本発明の第2の実施形態である車両用ガラスアンテナ200の平面図である。ガラスアンテナ100,200は、車両のサイドウィンドウである窓ガラス23に設けられるアンテナである。図1,図2は、車内視の図であって、各図の左側が車両の後ろ側に相当する。
[First Embodiment]
FIG. 1 is a plan view of a glass antenna 100 for a vehicle that is a first embodiment of the present invention. FIG. 2 is a plan view of a glass antenna 200 for a vehicle that is a second embodiment of the present invention. Glass antennas 100 and 200 are antennas provided on window glass 23 that is a side window of a vehicle. 1 and 2 are views of the interior of the vehicle, and the left side of each figure corresponds to the rear side of the vehicle.
 本発明のガラスアンテナは、第1の給電部と、第1の給電部に並んで配置された第2の給電部と、第1の給電部に接続される第1のアンテナエレメント及び第2の給電部に接続される第2のアンテナエレメントを有するアンテナ導体とが窓ガラスに設けられることにより構成される。例えば、第1の給電部は、外部の信号処理装置(例えば、車載アンプ)の信号経路に所定の第1の導電性部材を介して電気的に接続され、第1の導電性部材を接続できるように所定の面積を有する導体で形成された信号側給電部であり、第2の給電部は、外部のアース経路(例えば、該信号処理装置のアースや車体)に所定の第2の導電性部材を介して電気的に接続され、第2の導電性部材を接続できるように所定の面積を有する導体で形成されたアース側給電部である。第1の給電部と第2の給電部とはアンテナ導体の一対の給電点を構成する。 The glass antenna of the present invention includes a first power feeding unit, a second power feeding unit arranged side by side with the first power feeding unit, a first antenna element connected to the first power feeding unit, and a second antenna An antenna conductor having a second antenna element connected to the feeder is provided on the window glass. For example, the first power supply unit can be electrically connected to a signal path of an external signal processing device (for example, an in-vehicle amplifier) via a predetermined first conductive member, and the first conductive member can be connected. In this way, the signal-side power feeding unit is formed of a conductor having a predetermined area, and the second power feeding unit has a predetermined second conductivity on an external ground path (for example, the ground of the signal processing device or the vehicle body). It is an earth-side power feeding portion that is electrically connected through a member and is formed of a conductor having a predetermined area so that the second conductive member can be connected. The first feeding unit and the second feeding unit constitute a pair of feeding points of the antenna conductor.
 図1,図2において、ガラスアンテナ100,200は、アンテナ導体、並びに窓ガラス23の側縁23aに沿って上下方向に間隔を空けて並べられ、上側に位置する信号側給電部16及び下側に位置するアース側給電部17を備える、窓ガラス23に平面的に設けられた2極タイプのアンテナである。ガラスアンテナ100,200は、アンテナ導体のパターンとして、少なくとも、信号側給電部16に接続された第1のアンテナエレメントと、アース側給電部17に接続された第2のアンテナエレメントとを有している。なお、信号側給電部16及びアース側給電部17は、上下逆に配置されていてもよく、また左右方向に間隔を空けて並べられていてもよい。 1 and 2, the glass antennas 100 and 200 are arranged on the upper side of the antenna conductor and the side edge 23a of the window glass 23 with an interval in the vertical direction, and are located on the upper side. This is a two-pole type antenna that is provided on the window glass 23 in a planar manner, and includes a ground-side power feeding portion 17 located at the position. Glass antennas 100 and 200 have at least a first antenna element connected to signal-side power feeding unit 16 and a second antenna element connected to ground-side power feeding unit 17 as antenna conductor patterns. Yes. Note that the signal-side power supply unit 16 and the ground-side power supply unit 17 may be arranged upside down, or may be arranged at intervals in the left-right direction.
 第1のアンテナエレメントは、一端が信号側給電部16に直接又は接続導体を介して接続され左右方向に延在する第1の線状導体と、第1の線状導体の他端を起点に上下方向に延在する第2の線状導体と、第1の線状導体の中間部を起点に第2の線状導体と同方向に延在する第3の線状導体とによって、F字状に形成されたF字状エレメントを含んでいる。例えば、F字状のエレメントが形成されるように、第2及び第3の線状導体は、第1の線状導体の延在方向に対して直角又は略直角な向きに延伸する。 The first antenna element has one end connected to the signal-side power feeding unit 16 directly or via a connecting conductor and extending in the left-right direction, and the other end of the first linear conductor as a starting point. F-shaped by a second linear conductor extending in the vertical direction and a third linear conductor extending in the same direction as the second linear conductor, starting from an intermediate portion of the first linear conductor The F-shaped element formed in the shape is included. For example, the second and third linear conductors extend in a direction perpendicular to or substantially perpendicular to the extending direction of the first linear conductor so that an F-shaped element is formed.
 図1,図2には、第1の線状導体として、信号側給電部16と接続する端部aを起点として左方に直線的に延伸する線状導体1が例示され、第2の線状導体として、線状導体1の左方への延伸の終端部cを起点として下方に直線的に延伸する線状導体2が例示され、第3の線状導体として、線状導体1の左方への延伸の中間部bを起点として下方に直線的に延伸する線状導体3が例示されている。線状導体2は、下方への延伸の終端部dまで延伸し、線状導体3は、下方への延伸の終端部eまで延伸する。なお、中間部bとは、線状導体1上の端部aと終端部cとの間にある点である。 1 and 2 exemplify a linear conductor 1 that linearly extends to the left starting from an end a connected to the signal-side power feeding unit 16 as a first linear conductor. An example of the linear conductor is a linear conductor 2 that extends linearly downward from the end c of the linear conductor 1 extending leftward, and the third linear conductor is the left of the linear conductor 1. A linear conductor 3 extending linearly downward starting from an intermediate portion b extending in the direction is illustrated. The linear conductor 2 extends to the end d of the downward extension, and the linear conductor 3 extends to the end e of the downward extension. The intermediate part b is a point between the end part a and the terminal part c on the linear conductor 1.
 一方、第2のアンテナエレメントは、一端がアース側給電部17に直接又は接続導体を介して接続されかつ第1の線状導体に対して第2の線状導体が延在する側で左右方向に延在する第4の線状導体と、第4の線状導体の他端を起点として第2の線状導体と第3の線状導体との間を上下方向に延在する第5の線状導体とによって、L字状に形成されたL字状エレメントを含んでいる。例えば、L字状のエレメントが形成されるように、第5の線状導体は、第4の線状導体が延伸する向きに対して直角又は略直角な向きに延伸する。 On the other hand, the second antenna element has one end connected to the ground-side power feeding portion 17 directly or via a connecting conductor and the left and right directions on the side where the second linear conductor extends with respect to the first linear conductor. A fourth linear conductor extending in the vertical direction and a fifth linear conductor extending in the vertical direction between the second linear conductor and the third linear conductor starting from the other end of the fourth linear conductor. An L-shaped element formed in an L shape by a linear conductor is included. For example, the fifth linear conductor extends in a direction perpendicular to or substantially perpendicular to the direction in which the fourth linear conductor extends so that an L-shaped element is formed.
 図1には、第4の線状導体として、アース側給電部17に接続する端部fを起点として、線状導体1に対して線状導体2が延在する下方側で、左方に直線的に延伸する線状導体4が例示され、第5の線状導体として、線状導体4の左方への延伸の終端部hを起点として線状導体2と線状導体3との間を上方に延伸する線状導体5が例示されている。線状導体5は、上方への延伸の終端部iまで延伸する。 In FIG. 1, as a fourth linear conductor, starting from an end f connected to the ground-side power feeding unit 17, on the lower side where the linear conductor 2 extends from the linear conductor 1, to the left The linear conductor 4 that extends linearly is exemplified, and the fifth linear conductor is a line between the linear conductor 2 and the linear conductor 3 starting from the terminal end h of the linear conductor 4 extending leftward. A linear conductor 5 extending upward is illustrated. The linear conductor 5 extends to the terminal end i of the upward extension.
 また、図2には、第4の線状導体とアース側給電部17とを接続する接続導体として、線状導体7が例示されている。線状導体7は、アース側給電部17と接続する端部gを起点として下方に直線的に延伸する導体であって、端部gと線状導体4の一端である端部fとを接続するためのものである。線状導体7は、必ずしも下方に直線的に延伸する線状導体でなくてもよく、例えば、アース側給電部17と接続する端部gを起点としたときに左下方向に斜めに延伸する線状導体でもよい。 Further, in FIG. 2, the linear conductor 7 is illustrated as a connection conductor that connects the fourth linear conductor and the ground-side power feeding portion 17. The linear conductor 7 is a conductor that linearly extends downward from an end g that is connected to the ground-side power feeding unit 17, and connects the end g and an end f that is one end of the linear conductor 4. Is to do. The linear conductor 7 does not necessarily have to be a linear conductor that extends downward linearly. For example, a line that extends obliquely in the lower left direction when starting from an end g connected to the ground-side power feeding portion 17. A conductor may be used.
 なお、図2には、線状導体4の端部fがアース側給電部17に線状導体7を介して接続された構成が例示されているが、線状導体1の端部aが信号側給電部16に接続導体を介して接続されてもよい。 FIG. 2 illustrates a configuration in which the end f of the linear conductor 4 is connected to the ground-side power feeding unit 17 via the linear conductor 7, but the end a of the linear conductor 1 is a signal. You may connect to the side electric power feeding part 16 via a connection conductor.
 また、ガラスアンテナ100,200の第1のアンテナエレメントは、第1の線状導体の他端である端部cに接続され左右方向に延在する第6の線状導体を含んでいてもよい。図1,図2には、第6の線状導体として、線状導体1の端部cを起点として左方に直線的に延伸する線状導体6が例示されている。線状導体6は、左方への延伸の終端部jまで延伸する。 Further, the first antenna element of the glass antennas 100 and 200 may include a sixth linear conductor that is connected to the end c that is the other end of the first linear conductor and extends in the left-right direction. . 1 and 2 illustrate a linear conductor 6 that linearly extends to the left starting from an end c of the linear conductor 1 as the sixth linear conductor. The linear conductor 6 extends to the end portion j of the extension to the left.
 図1,図2に例示したアンテナ導体は、第1のアンテナエレメント及び第2のアンテナエレメントを左方に延在させているが、第1のアンテナエレメント及び第2のアンテナエレメントを右方に延在させる、すなわち、図1,2において信号側給電部に対して左右に線対称であってもよく、また、信号側給電部及び第1のアンテナエレメントと、アース側給電部及び第2のアンテナエレメントとを上下反転させる、すなわち図1,図2において信号側給電部に対して上下に線対称又は点対称であってもよい。 The antenna conductor illustrated in FIGS. 1 and 2 extends the first antenna element and the second antenna element to the left, but extends the first antenna element and the second antenna element to the right. 1, that is, it may be symmetrical with respect to the signal-side power feeding unit in the left and right directions, and the signal-side power feeding unit and the first antenna element, and the earth-side power feeding unit and the second antenna The element may be inverted upside down, that is, it may be line-symmetric or point-symmetric with respect to the signal-side power feeding unit in FIGS.
 ところで、本発明において、受信すべき2つの放送周波数帯として、所定の第1の放送周波数帯と第1の放送周波数帯より帯域が低い所定の第2の放送周波数帯とがあり、第1の放送周波数帯の中心周波数における空気中の波長をλ01とし、ガラス波長短縮率をk(ただしk=0.74)とし、ガラス上の波長をλg1=λ01・kとするとき、図1,2に例示されるガラスアンテナのような態様であれば、第1のアンテナエレメントの垂直成分である第3の線状導体に相当する線状導体3の導体長L3が、線状導体3が線状導体4に接しない範囲内で、(1/5)λg1以上、より好ましくは(1/4)λg1以上であれば、第1の放送周波数帯のアンテナ利得向上の点で好ましい結果が得られる。 By the way, in the present invention, as two broadcast frequency bands to be received, there are a predetermined first broadcast frequency band and a predetermined second broadcast frequency band whose band is lower than the first broadcast frequency band. When the wavelength in the air at the center frequency of the broadcast frequency band is λ 01 , the glass wavelength shortening rate is k 1 (where k 1 = 0.74), and the wavelength on the glass is λ g1 = λ 01 · k 1 In the case of the glass antenna illustrated in FIGS. 1 and 2, the conductor length L3 of the linear conductor 3 corresponding to the third linear conductor that is the vertical component of the first antenna element is linear. If the conductor 3 is not in contact with the linear conductor 4 and is (1/5) λ g1 or more, more preferably (1/4) λ g1 or more, the antenna gain in the first broadcast frequency band is improved. Gives favorable results.
 ここで、第1の放送周波数帯としてLバンド(1452~1492MHz)を設定した場合、その中心周波数は1472MHzである。したがって、Lバンドのアンテナ利得を向上させたい場合、電波の速さを3.0×10m/sとすると、線状導体3の導体長L3を、30mm以上、より好ましくは40mm以上に調整するとよい。なお、ガラスアンテナの占有面積を考慮すると80mm以下であることが好ましい。 Here, when the L band (1452 to 1492 MHz) is set as the first broadcast frequency band, the center frequency is 1472 MHz. Therefore, when it is desired to improve the antenna gain of the L band, the conductor length L3 of the linear conductor 3 is adjusted to 30 mm or more, more preferably 40 mm or more, when the radio wave speed is 3.0 × 10 8 m / s. Good. In consideration of the area occupied by the glass antenna, it is preferably 80 mm or less.
 また、本発明において、受信すべき2つの放送周波数帯として、所定の第1の放送周波数帯と第1の放送周波数帯より帯域が低い所定の第2の放送周波数帯とがあり、第2の放送周波数帯の中心周波数における空気中の波長をλ02とし、ガラス波長短縮率をk(ただしk=0.54)とし、ガラス上の波長をλg2=λ02・kとするとき、図1,2に例示されるガラスアンテナのような態様であれば、第2のアンテナエレメントの垂直成分である第5の線状導体に相当する線状導体5の導体長L5が、線状導体5が線状導体1に接しない範囲内で、(1/26)λg2以上、より好ましくは(1/20)λg2以上であれば、第2の放送周波数帯のアンテナ利得向上の点で好ましい結果が得られる。 In the present invention, the two broadcast frequency bands to be received include a predetermined first broadcast frequency band and a predetermined second broadcast frequency band lower than the first broadcast frequency band. When the wavelength in the air at the center frequency of the broadcast frequency band is λ 02 , the glass wavelength shortening rate is k 2 (where k 2 = 0.54), and the wavelength on the glass is λ g2 = λ 02 · k 2 In the case of the glass antenna illustrated in FIGS. 1 and 2, the conductor length L5 of the linear conductor 5 corresponding to the fifth linear conductor that is the vertical component of the second antenna element is linear. If the conductor 5 is not in contact with the linear conductor 1 and is (1/26) λ g2 or more, more preferably (1/20) λ g2 or more, the antenna gain of the second broadcast frequency band is improved. Gives favorable results.
 ここで、第2の放送周波数帯としてバンドIII(174~240MHz)を設定した場合、その中心周波数は207MHzである。したがって、バンドIIIのアンテナ利得を向上させたい場合、電波の速さを3.0×10m/sとすると、線状導体5の導体長L5を、30mm以上、より好ましくは40mm以上に調整するとよい。特に、導体長L5を長くするにつれて、バンドIIIの帯域のうち200MHz以上の高域でのアンテナ利得の向上に効果的である。なお、ガラスアンテナの占有面積を考慮すると80mm以下であることが好ましい。 Here, when band III (174 to 240 MHz) is set as the second broadcast frequency band, the center frequency is 207 MHz. Therefore, when it is desired to improve the antenna gain of band III, the conductor length L5 of the linear conductor 5 is adjusted to 30 mm or more, more preferably 40 mm or more, when the radio wave speed is 3.0 × 10 8 m / s. Good. In particular, as the conductor length L5 is increased, the antenna gain is effectively improved in a high band of 200 MHz or higher in the band III. In consideration of the area occupied by the glass antenna, it is preferably 80 mm or less.
 また、図1,図2に例示されるガラスアンテナのような態様であれば、第1のアンテナエレメントの垂直成分である第2の線状導体に相当する線状導体2の導体長L2が、線状導体2が他の導体に接しない範囲内で又は窓ガラス23を外れない範囲内で、30mm以上120mm以下であれば、バンドIIIのアンテナ利得向上の点で好ましい結果が得られる。さらに好ましくは30mm以上100mm以下である。また、40mm以上100mm以下であれば、Lバンドのアンテナ利得向上の点で好ましい結果が得られる。 Moreover, if it is an aspect like the glass antenna illustrated in FIG. 1, FIG. 2, the conductor length L2 of the linear conductor 2 equivalent to the 2nd linear conductor which is a perpendicular | vertical component of a 1st antenna element will be the following. If the linear conductor 2 is in the range where it does not come into contact with other conductors or does not come off the window glass 23, it is 30 mm or more and 120 mm or less. More preferably, it is 30 mm or more and 100 mm or less. Moreover, if it is 40 mm or more and 100 mm or less, a favorable result will be obtained at the point of the L-band antenna gain improvement.
 また、図1,図2に例示されるガラスアンテナのような態様であれば、第1のアンテナエレメントの水平成分である第6の線状導体に相当する線状導体6の導体長L6が、線状導体6が他の導体に接しない範囲内で又は窓ガラス23を外れない範囲内で、20mm以上100mm以下であれば、バンドIIIのアンテナ利得向上の点で好ましい結果が得られる。特に、導体長L6を長くするにつれて、バンドIIIの帯域のうち220MHz以下の低域でのアンテナ利得の向上に効果的である。また、20mm以上60mm以下であれば、Lバンドのアンテナ利得向上の点で好ましい結果が得られる。 Moreover, if it is an aspect like the glass antenna illustrated by FIG. 1, FIG. 2, the conductor length L6 of the linear conductor 6 equivalent to the 6th linear conductor which is a horizontal component of a 1st antenna element will be the following. In the range where the linear conductor 6 does not come into contact with other conductors or in the range where the window glass 23 does not come off, a preferable result is obtained in terms of improving the band III antenna gain if it is 20 mm or more and 100 mm or less. In particular, as the conductor length L6 is increased, the antenna gain is effectively improved in a low band of 220 MHz or less in the band III. Moreover, if it is 20 mm or more and 60 mm or less, a favorable result is obtained at the point of the L-band antenna gain improvement.
 また、図1,図2に例示されるガラスアンテナのような態様の場合、並走する線状導体2と線状導体5の距離が2mm以上20mm以下であれば、バンドIII及びLバンドのアンテナ利得向上の点で好ましい結果が得られる。 In the case of the glass antenna illustrated in FIGS. 1 and 2, if the distance between the linear conductor 2 and the linear conductor 5 running in parallel is 2 mm or more and 20 mm or less, the band III and L band antennas are used. A favorable result is obtained in terms of gain improvement.
 図3は、本発明の第3の実施形態である車両用ガラスアンテナ300の平面図である。図4は、本発明の第4の実施形態である車両用ガラスアンテナ400の平面図である。上述の実施形態と同様の構成及びその構成によって生ずる同様の効果についての説明は省略する。図3,4のガラスアンテナ300,400は、図2のガラスアンテナ200に対して、線状導体2,3,5の互いの位置関係が異なっている。 FIG. 3 is a plan view of a glass antenna 300 for a vehicle that is a third embodiment of the present invention. FIG. 4 is a plan view of a glass antenna 400 for a vehicle that is a fourth embodiment of the present invention. A description of the same configuration as that of the above-described embodiment and the similar effect produced by the configuration will be omitted. The glass antennas 300 and 400 in FIGS. 3 and 4 are different from the glass antenna 200 in FIG. 2 in the positional relationship between the linear conductors 2, 3, and 5.
 図3の場合、信号側給電部16に線状導体1を介して接続される線状導体2,3は、アース側給電部17に線状導体4,7を介して接続される線状導体5に対して、信号側給電部16及びアース側給電部17側とは反対側の領域で、上下方向に延在している。言い換えれば、線状導体5は、線状導体2,3に対して信号側給電部16及びアース側給電部17寄りの領域で、上下方向に延在している。 In the case of FIG. 3, the linear conductors 2 and 3 connected to the signal-side power feeding portion 16 via the linear conductor 1 are linear conductors connected to the ground-side power feeding portion 17 via the linear conductors 4 and 7. 5 extends in the vertical direction in a region opposite to the signal-side power feeding unit 16 and the ground-side power feeding unit 17 side. In other words, the linear conductor 5 extends in the vertical direction in a region near the signal-side power feeding unit 16 and the ground-side power feeding unit 17 with respect to the linear conductors 2 and 3.
 一方、図4の場合、信号側給電部16に線状導体1を介して接続される線状導体2,3は、アース側給電部17に線状導体4,7を介して接続される線状導体5に対して、信号側給電部16及びアース側給電部17寄りの領域で、上下方向に延在している。言い換えれば、線状導体5は、線状導体2,3に対して信号側給電部16及びアース側給電部17側とは反対側の領域で、上下方向に延在している。 On the other hand, in the case of FIG. 4, the linear conductors 2 and 3 connected to the signal-side power feeding unit 16 via the linear conductor 1 are lines connected to the ground-side power feeding unit 17 via the linear conductors 4 and 7. It extends in the vertical direction in a region near the signal-side power supply unit 16 and the ground-side power supply unit 17 with respect to the conductor 5. In other words, the linear conductor 5 extends in the vertical direction in a region opposite to the signal-side power feeding unit 16 and the ground-side power feeding unit 17 side with respect to the linear conductors 2 and 3.
 図3,4に例示したアンテナ導体は、第1のアンテナエレメント及び第2のアンテナエレメントを左方に延在させているが、第1のアンテナエレメント及び第2のアンテナエレメントを右方に延在させる、すなわち、図3,4において信号側給電部に対して左右に線対称であってもよく、また、信号側給電部及び第1のアンテナエレメントと、アース側給電部及び第2のアンテナエレメントとを上下反転させる、すなわち図3,4において信号側給電部に対して上下に線対称又は点対称であってもよい。 The antenna conductor illustrated in FIGS. 3 and 4 extends the first antenna element and the second antenna element to the left, but extends the first antenna element and the second antenna element to the right. That is, in FIG. 3 and FIG. 4, the signal side power supply unit may be symmetrical with respect to the left and right, and the signal side power supply unit and the first antenna element, and the earth side power supply unit and the second antenna element May be reversed vertically, that is, in FIG.
 このように、図1から図4に例示したような形態のガラスアンテナであれば、信号側給電部16を外部の信号処理装置(例えば、車載アンプ)の信号経路に所定の第1の導電性部材を介して電気的に接続するとともに、アース側給電部17を外部のアース経路(例えば、該信号処理装置のアース)に所定の第2の導電性部材を介して電気的に接続することによって、DABなどのデュアルバンドに対応可能な受信特性を得ることができる。特に、線状導体2,線状導体3,線状導体5及び線状導体7などの上方又は下方に向けて延伸する線状導体の中で一又は二以上の線状導体が、地平面(特には、水平面)に対して垂直方向の成分を有するように窓ガラス23に設けられることによって、DABなどのデュアルバンドの垂直偏波の電波を一層感度良く受信することができる。車両に対する窓ガラス23の取り付け角度は、地平面に対し、30~90°、特には、60~90°が好ましい。 As described above, in the case of the glass antenna having the form illustrated in FIGS. 1 to 4, the signal-side power feeding unit 16 is connected to the signal path of the external signal processing device (for example, in-vehicle amplifier) with a predetermined first conductivity. By electrically connecting through a member and electrically connecting the ground-side power feeding unit 17 to an external ground path (for example, the ground of the signal processing device) through a predetermined second conductive member , DAB and other dual band reception characteristics can be obtained. In particular, one or more linear conductors among the linear conductors 2, 2, 3, 5, 7, etc. extending upward or downward are ground planes ( In particular, by providing the window glass 23 so as to have a component perpendicular to the horizontal plane), it is possible to receive a dual-band vertically polarized radio wave such as DAB with higher sensitivity. The attachment angle of the window glass 23 to the vehicle is preferably 30 to 90 °, particularly 60 to 90 ° with respect to the ground plane.
 上記の第1及び第2の導電性部材として、例えば、AV線や同軸ケーブルなどの給電線が用いられる。同軸ケーブルを用いる場合には、同軸ケーブルの内部導体を信号側給電部16に電気的に接続し、同軸ケーブルの外部導体をアース側給電部17に電気的に接続すればよい。また、同軸ケーブルの先端にオス型コネクタを取り付け、信号側給電部16とアース側給電部17にメス型コネクタを実装する構成を採用してもよい。このようなコネクタによって、同軸ケーブルの内部導体を信号側給電部16に取り付けることが容易になるとともに、同軸ケーブルの外部導体をアース側給電部17に取り付けることが容易になる。さらに、信号側給電部16とアース側給電部17のそれぞれに突起状の導電性部材を設置し、窓ガラス23が取り付けられる車体のフランジに設けられた接続部にその突起状の導電性部材が接触、嵌合するような構成としてもよい。 As the first and second conductive members, for example, power supply lines such as AV lines and coaxial cables are used. When a coaxial cable is used, the inner conductor of the coaxial cable may be electrically connected to the signal-side power feeding unit 16 and the outer conductor of the coaxial cable may be electrically connected to the ground-side power feeding unit 17. Alternatively, a configuration may be adopted in which a male connector is attached to the tip of the coaxial cable and a female connector is mounted on the signal-side power feeding unit 16 and the ground-side power feeding unit 17. With such a connector, it becomes easy to attach the inner conductor of the coaxial cable to the signal-side power feeding portion 16 and to easily attach the outer conductor of the coaxial cable to the ground-side power feeding portion 17. Further, a projecting conductive member is installed in each of the signal side power feeding unit 16 and the ground side power feeding unit 17, and the projecting conductive member is attached to a connection portion provided on the flange of the vehicle body to which the window glass 23 is attached. It is good also as a structure which contacts and fits.
 また、図1から図4に例示したような形態のガラスアンテナであれば、デュアルバンドのうち高周波帯の電波を所定の要求基準を満たして受信できるように第3の線状導体の長さなどのチューニングを行っても、デュアルバンドのうち低周波帯の電波の受信特性に影響をほとんど及ぼさないようにすることができる。同様に、デュアルバンドのうち低周波帯の電波を所定の要求基準を満たして受信できるように第5の線状導体の長さなどのチューニングを行っても、デュアルバンドのうち高周波帯の電波の受信特性に影響をほとんど及ぼさないようにすることができる。すなわち、チューニングを行いやすい。 In the case of the glass antenna having the form illustrated in FIGS. 1 to 4, the length of the third linear conductor or the like so that radio waves in the high frequency band of the dual band can be received satisfying a predetermined requirement standard. Even if the tuning is performed, it is possible to hardly influence the reception characteristics of radio waves in the low frequency band of the dual band. Similarly, even if tuning such as the length of the fifth linear conductor is performed so that low frequency radio waves in the dual band can be received satisfying a predetermined required standard, The reception characteristics can be hardly affected. That is, it is easy to perform tuning.
 また、「端部」は、線状導体の延伸の始点又は終点であってもよいし、その始点又は終点手前の導体部分である始点近傍又は終点近傍であってもよい。また、線状導体同士の接続部は、曲率を有して接続されていてもよい。 Further, the “end” may be the starting point or the end point of the linear conductor, or may be in the vicinity of the starting point or the end point that is the conductor portion before the starting point or the end point. Moreover, the connection part of linear conductors may have a curvature, and may be connected.
 また、アンテナ導体、信号側給電部16及びアース側給電部17は、銀ペースト等の、導電性金属を含有するペーストを、例えば窓ガラスの車内側表面にプリントし、焼付けて形成される。しかし、この形成方法に限定されず、銅等の導電性物質からなる、線状体又は箔状体を、窓ガラスの車内側表面又は車外側表面に形成してもよく、窓ガラスに接着剤等により貼付してもよく、窓ガラス自身の内部に設けてもよい。 Further, the antenna conductor, the signal-side power feeding unit 16 and the ground-side power feeding unit 17 are formed by printing and baking a paste containing a conductive metal, such as a silver paste, on the inner surface of a window glass, for example. However, the present invention is not limited to this forming method, and a linear or foil-like body made of a conductive material such as copper may be formed on the vehicle inner surface or vehicle outer surface of the window glass. It may be attached by, for example, or may be provided inside the window glass itself.
 信号側給電部16及びアース側給電部17の形状、並びに信号側給電部16とアース側給電部17との間隔は、上記の導電性部材又はコネクタの実装面の形状や、それらの実装面の間隔に応じて決めるとよい。例えば、正方形、略正方形、長方形、略長方形などの方形状や多角形状が実装上好ましい。なお、円、略円、楕円、略楕円などの円状でもよい。また、信号側給電部16の面積とアース側給電部17の面積は等しくても、異なっていてもよい。 The shape of the signal-side power feeding unit 16 and the ground-side power feeding unit 17 and the distance between the signal-side power feeding unit 16 and the ground-side power feeding unit 17 are the shape of the mounting surface of the conductive member or connector, or the mounting surface of those mounting surfaces. It is good to decide according to the interval. For example, a square shape or a polygonal shape such as a square, a substantially square, a rectangle, or a substantially rectangle is preferable for mounting. It may be a circle such as a circle, a substantially circle, an ellipse, or a substantially ellipse. Further, the area of the signal-side power feeding unit 16 and the area of the ground-side power feeding unit 17 may be the same or different.
 また、各アンテナ導体からなる導体層を合成樹脂製フィルムの内部又はその表面に設け、導体層付き合成樹脂製フィルムを窓ガラス板の車内側表面又は車外側表面に形成してガラスアンテナとしてもよい。さらに、各アンテナ導体が形成されたフレキシブル回路基板を窓ガラスの車内側表面又は車外側表面に形成してガラスアンテナとしてもよい。 Further, a conductor layer composed of each antenna conductor may be provided inside or on the surface of the synthetic resin film, and a synthetic resin film with a conductor layer may be formed on the vehicle inner surface or vehicle outer surface of the window glass plate to form a glass antenna. . Furthermore, it is good also as a glass antenna by forming the flexible circuit board in which each antenna conductor was formed in the vehicle inner surface or vehicle outer surface of a window glass.
 また、窓ガラス23の面上に隠蔽膜を形成し、この隠蔽膜の上に信号側給電部、アース側給電部及びアンテナ導体の一部分又は全体を設けてもよい。隠蔽膜は黒色セラミックス膜等のセラミックスが挙げられる。この場合、窓ガラスの車外側から見ると、隠蔽膜により隠蔽膜上に設けられているアンテナ導体の部分が車外から見えなくなり、デザインの優れた窓ガラスとなる。図示の構成では、信号側給電部及びアース側給電部とアンテナ導体の一部を隠蔽膜上に(隠蔽膜の縁と窓ガラス23の側縁23aとの間に)形成させることで、車外視において導体の細い直線部分のみを見ることになり、デザイン上好ましい。 Further, a concealing film may be formed on the surface of the window glass 23, and a signal side power feeding unit, a ground side power feeding unit, and a part or the whole of the antenna conductor may be provided on the concealing film. The concealing film may be a ceramic such as a black ceramic film. In this case, when viewed from the outside of the window glass, the portion of the antenna conductor provided on the masking film by the masking film becomes invisible from the outside of the vehicle, and the window glass has an excellent design. In the configuration shown in the figure, the signal-side feeding unit, the ground-side feeding unit, and a part of the antenna conductor are formed on the shielding film (between the edge of the shielding film and the side edge 23a of the window glass 23). In this case, only the thin linear portion of the conductor is seen, which is preferable in terms of design.
 また、特に、図1、図2及び図4に示されるように、信号側給電部16に接続される少なくとも一本の線状導体(この場合は、線状導体3)が、アース側給電部17に接続される少なくとも一本の線状導体(この場合は、線状導体5)に対して、信号側給電部16寄りの領域で、上下方向に延在していると、バンドIIIのアンテナ利得向上の点で好ましい結果が得られる。 In particular, as shown in FIGS. 1, 2, and 4, at least one linear conductor (in this case, the linear conductor 3) connected to the signal-side power supply unit 16 is connected to the ground-side power supply unit. If the antenna extends in the vertical direction in the region near the signal-side power feeding unit 16 with respect to at least one linear conductor (in this case, the linear conductor 5) connected to the antenna 17, the band III antenna A favorable result is obtained in terms of gain improvement.
 [第2群の実施形態]
 図5は、本発明の第5の実施形態である車両用ガラスアンテナ500の平面図である。図6は、本発明の第6の実施形態である車両用ガラスアンテナ600の平面図である。図7は、本発明の第7の実施形態である車両用ガラスアンテナ700の平面図である。上述の実施形態と同様の構成及びその構成によって生ずる同様の効果についての説明は省略する。
[Second Embodiment]
FIG. 5 is a plan view of a glass antenna 500 for a vehicle that is the fifth embodiment of the present invention. FIG. 6 is a plan view of a glass antenna 600 for a vehicle that is a sixth embodiment of the present invention. FIG. 7 is a plan view of a glass antenna 700 for a vehicle that is a seventh embodiment of the present invention. A description of the same configuration as that of the above-described embodiment and the similar effect produced by the configuration will be omitted.
 上述の図1から図4のガラスアンテナと図5,図6,図7のガラスアンテナとの違いのひとつは、図5,図6,図7のガラスアンテナの第1の給電部がアース側給電部を構成しており、第2の給電部が信号側給電部を構成していることである。 One of the differences between the glass antenna shown in FIGS. 1 to 4 and the glass antenna shown in FIGS. 5, 6 and 7 is that the first power feeding portion of the glass antenna shown in FIGS. The second power feeding unit constitutes the signal side power feeding unit.
 また、図1から図4のガラスアンテナは、F字状に形成されたF字状エレメントを含んでいる第1のアンテナエレメントが、信号側給電部16に接続されるのに対し、図5,図6,図7のガラスアンテナは、F字状に形成されたF字状エレメントを含んでいる第1のアンテナエレメントが、アース側給電部17に接続される。そして、図1から図4のガラスアンテナは、L字状に形成されたL字状エレメントを含んでいる第2のアンテナエレメントが、アース側給電部17に接続されるのに対し、図5,図6,図7のガラスアンテナは、L字状に形成されたL字状エレメントを含んでいる第2のアンテナエレメントが、信号側給電部16に接続される。 Further, in the glass antenna of FIGS. 1 to 4, the first antenna element including the F-shaped element formed in an F-shape is connected to the signal-side power feeding unit 16, whereas FIG. In the glass antenna of FIGS. 6 and 7, a first antenna element including an F-shaped element formed in an F-shape is connected to the ground-side feeding unit 17. The glass antennas shown in FIGS. 1 to 4 are connected to the ground-side power feeding portion 17 while the second antenna element including the L-shaped element formed in the L-shape is connected to the ground-side power feeding portion 17. In the glass antenna of FIGS. 6 and 7, a second antenna element including an L-shaped element formed in an L-shape is connected to the signal-side feeding unit 16.
 図5,図6,図7において、第1のアンテナエレメントは、一端がアース側給電部17に直接又は接続導体を介して接続され左右方向に延在する第1の線状導体と、第1の線状導体の他端を起点に上下方向に延在する第2の線状導体と、第1の線状導体の中間部を起点に第2の線状導体と同方向に延在する第3の線状導体とによって、F字状に形成されたF字状エレメントを含んでいる。例えば、F字状のエレメントが形成されるように、第2及び第3の線状導体は、第1の線状導体の延在方向に対して直角又は略直角な向きに延伸する。 In FIGS. 5, 6, and 7, the first antenna element includes a first linear conductor having one end connected to the ground-side power feeding portion 17 directly or via a connection conductor and extending in the left-right direction, A second linear conductor extending in the vertical direction starting from the other end of the first linear conductor, and a second linear conductor extending in the same direction as the second linear conductor starting from an intermediate portion of the first linear conductor. F-shaped elements formed in an F-shape by three linear conductors are included. For example, the second and third linear conductors extend in a direction perpendicular to or substantially perpendicular to the extending direction of the first linear conductor so that an F-shaped element is formed.
 図5,図6,図7には、第1の線状導体として、アース側給電部17と接続する端部a1を起点として左方に直線的に延伸する線状導体11が例示され、第2の線状導体として、線状導体11の左方への延伸の終端部c1を起点として上方に直線的に延伸する線状導体12が例示され、第3の線状導体として、線状導体11の左方への延伸の中間部b1を起点として上方に直線的に延伸する線状導体13が例示されている。線状導体12は、上方への延伸の終端部d1まで延伸し、線状導体13は、上方への延伸の終端部e1まで延伸する。なお、中間部b1とは、線状導体11上の端部a1と終端部c1との間にある点である。 5, 6, and 7, as the first linear conductor, a linear conductor 11 that extends linearly to the left starting from the end a <b> 1 connected to the ground-side power feeding unit 17 is illustrated. Examples of the second linear conductor include a linear conductor 12 that linearly extends upward starting from a terminal end c1 extending leftward of the linear conductor 11, and a linear conductor as the third linear conductor. 11 illustrates a linear conductor 13 that linearly extends upward starting from an intermediate portion b1 extending leftward. The linear conductor 12 extends to the end portion d1 of the upward extension, and the linear conductor 13 extends to the end portion e1 of the upward extension. The intermediate part b1 is a point between the end part a1 and the terminal part c1 on the linear conductor 11.
 また、図5,図6,図7には、第1の線状導体とアース側給電部17とを接続する接続導体として、線状導体19が例示されている。線状導体19は、アース側給電部17と接続する端部g1を起点として下方に直線的に延伸する導体であって、端部g1と線状導体11の一端である端部a1とを接続するためのものである。線状導体19は、必ずしも下方に直線的に延伸する線状導体でなくてもよく、例えば、アース側給電部17と接続する端部g1を起点としたときに左下方向に斜めに延伸する線状導体でもよい。 5, 6, and 7 exemplify a linear conductor 19 as a connection conductor that connects the first linear conductor and the ground-side power feeding unit 17. The linear conductor 19 is a conductor that linearly extends downward starting from an end g1 connected to the ground-side power feeding unit 17, and connects the end g1 and the end a1 that is one end of the linear conductor 11. Is to do. The linear conductor 19 does not necessarily have to be a linear conductor that extends linearly downward. For example, a line that extends obliquely in the lower left direction when starting from the end g1 connected to the ground-side power feeding unit 17. A conductor may be used.
 一方、図5,図6,図7において、第2のアンテナエレメントは、一端が信号側給電部16に直接又は接続導体を介して接続されかつ第1の線状導体に対して第2の線状導体が延在する側で左右方向に延在する第4の線状導体と、第4の線状導体の他端を起点として上下方向に延在する第5の線状導体とによって、L字状に形成されたL字状エレメントを含んでいる。例えば、L字状のエレメントが形成されるように、第5の線状導体は、第4の線状導体が延伸する向きに対して直角又は略直角な向きに延伸する。 On the other hand, in FIG. 5, FIG. 6 and FIG. 7, the second antenna element has one end connected to the signal-side power feeding unit 16 directly or via a connecting conductor and the second line to the first linear conductor. A fourth linear conductor extending in the left-right direction on the side where the linear conductor extends, and a fifth linear conductor extending in the vertical direction starting from the other end of the fourth linear conductor. An L-shaped element formed in a letter shape is included. For example, the fifth linear conductor extends in a direction perpendicular to or substantially perpendicular to the direction in which the fourth linear conductor extends so that an L-shaped element is formed.
 図5には、第4の線状導体として、信号側給電部16に接続する端部f1を起点として、線状導体11に対して線状導体12が延在する上方側で、左方に直線的に延伸する線状導体14が例示され、第5の線状導体として、線状導体14の左方への延伸の終端部h1を起点として線状導体12と線状導体13との間を下方に延伸する線状導体15が例示されている。線状導体15は、下方への延伸の終端部i1まで延伸する。 In FIG. 5, as the fourth linear conductor, starting from the end f <b> 1 connected to the signal-side power feeding unit 16, on the upper side where the linear conductor 12 extends with respect to the linear conductor 11, A linear conductor 14 that extends linearly is illustrated, and the fifth linear conductor is a line between the linear conductor 12 and the linear conductor 13 starting from an end portion h1 of the linear conductor 14 that extends to the left. A linear conductor 15 extending downward is illustrated. The linear conductor 15 extends to the end portion i1 of the downward extension.
 図5の場合、信号側給電部16に線状導体14を介して接続される線状導体15は、アース側給電部17に線状導体11,19を介して接続される線状導体12に対して、信号側給電部16及びアース側給電部17寄りの領域で、上下方向に延在している。 In the case of FIG. 5, the linear conductor 15 connected to the signal-side power feeding unit 16 via the linear conductor 14 is connected to the linear conductor 12 connected to the ground-side power feeding unit 17 via the linear conductors 11 and 19. On the other hand, it extends in the vertical direction in a region near the signal-side power supply unit 16 and the ground-side power supply unit 17.
 図6には、第4の線状導体として、信号側給電部16に接続する端部f1を起点として、線状導体11に対して線状導体12が延在する上方側で、左方に直線的に延伸する線状導体14が例示され、第5の線状導体として、線状導体14の左方への延伸の終端部h1を起点として線状導体12,13に対して信号側給電部16及びアース側給電部17寄りの領域を下方に延伸する線状導体15が例示されている。線状導体15は、下方への延伸の終端部i1まで延伸する。 In FIG. 6, as the fourth linear conductor, starting from the end f <b> 1 connected to the signal-side power feeding unit 16, on the upper side where the linear conductor 12 extends with respect to the linear conductor 11, The linear conductor 14 that extends linearly is exemplified, and the fifth linear conductor is a signal-side power supply to the linear conductors 12 and 13 starting from the end h1 of the linear conductor 14 that extends to the left. A linear conductor 15 that extends downward in a region near the portion 16 and the ground-side power feeding portion 17 is illustrated. The linear conductor 15 extends to the end portion i1 of the downward extension.
 図6の場合、信号側給電部16に線状導体14を介して接続される線状導体15は、アース側給電部17に線状導体11,19を介して接続される線状導体12,13に対して、信号側給電部16及びアース側給電部17寄りの領域で、上下方向に延在している。言い換えれば、線状導体12,13は、線状導体15に対して信号側給電部16及びアース側給電部17側とは反対側の領域で、上下方向に延在している。 In the case of FIG. 6, the linear conductor 15 connected to the signal-side power feeding unit 16 via the linear conductor 14 is the linear conductor 12 connected to the ground-side power feeding unit 17 via the linear conductors 11 and 19. 13 extends in the vertical direction in a region near the signal-side power supply unit 16 and the ground-side power supply unit 17. In other words, the linear conductors 12 and 13 extend in the vertical direction in a region on the opposite side of the linear conductor 15 from the signal-side power feeding unit 16 and the ground-side power feeding unit 17 side.
 図7には、第4の線状導体として、信号側給電部16に接続する端部f1を起点として、線状導体11に対して線状導体12が延在する上方側で、左方に直線的に延伸する線状導体14が例示され、第5の線状導体として、線状導体14の左方への延伸の終端部h1を起点として線状導体12,13に対して信号側給電部16及びアース側給電部17側とは反対側の領域を下方に延伸する線状導体15が例示されている。線状導体15は、下方への延伸の終端部i1まで延伸する。 In FIG. 7, as the fourth linear conductor, starting from the end f <b> 1 connected to the signal-side power feeding unit 16, on the upper side where the linear conductor 12 extends with respect to the linear conductor 11, to the left The linear conductor 14 that extends linearly is exemplified, and the fifth linear conductor is a signal-side power supply to the linear conductors 12 and 13 starting from the end h1 of the linear conductor 14 that extends to the left. A linear conductor 15 that extends downward in a region opposite to the portion 16 and the ground-side power feeding portion 17 side is illustrated. The linear conductor 15 extends to the end portion i1 of the downward extension.
 図7の場合、信号側給電部16に線状導体14を介して接続される線状導体15は、アース側給電部17に線状導体11,19を介して接続される線状導体12,13に対して、信号側給電部16及びアース側給電部17側とは反対側の領域で、上下方向に延在している。言い換えれば、線状導体12,13は、線状導体15に対して信号側給電部16及びアース側給電部17寄りの領域で、上下方向に延在している。 In the case of FIG. 7, the linear conductor 15 connected to the signal-side power feeding unit 16 via the linear conductor 14 is the linear conductor 12 connected to the ground-side power feeding unit 17 via the linear conductors 11 and 19. 13 extends in the vertical direction in a region opposite to the signal-side power supply unit 16 and the ground-side power supply unit 17 side. In other words, the linear conductors 12 and 13 extend in the vertical direction in a region near the signal-side power feeding unit 16 and the ground-side power feeding unit 17 with respect to the linear conductor 15.
 また、図5,図6,図7のガラスアンテナの第1のアンテナエレメントは、第4の線状導体の他端である端部h1に接続され左右方向に延在する第6の線状導体を含んでいてもよい。図5,図6,図7には、第6の線状導体として、線状導体14の端部h1を起点として左方に直線的に延伸する線状導体18が例示されている。線状導体18は、左方への延伸の終端部j1まで延伸する。 In addition, the first antenna element of the glass antenna of FIGS. 5, 6, and 7 is a sixth linear conductor that is connected to the end h1 that is the other end of the fourth linear conductor and extends in the left-right direction. May be included. 5, 6, and 7 exemplify a linear conductor 18 that linearly extends to the left starting from the end h <b> 1 of the linear conductor 14 as the sixth linear conductor. The linear conductor 18 extends to the end portion j1 of the extension to the left.
 また、図5,図6,図7には、線状導体11の端部a1がアース側給電部17に線状導体19を介して接続された構成が例示されているが、線状導体14の端部f1が信号側給電部16に接続導体を介して接続されてもよい。 5, 6, and 7 exemplify a configuration in which the end a <b> 1 of the linear conductor 11 is connected to the ground-side power feeding unit 17 via the linear conductor 19. May be connected to the signal-side power feeding unit 16 via a connection conductor.
 図5,図6,図7に例示したアンテナ導体は、第1のアンテナエレメント及び第2のアンテナエレメントを左方に延在させているが、第1のアンテナエレメント及び第2のアンテナエレメントを右方に延在させる、すなわち、図5,図6,図7において信号側給電部に対して左右に線対称であってもよく、また、信号側給電部及び第1のアンテナエレメントと、アース側給電部及び第2のアンテナエレメントとを上下反転させる、すなわち図5,6,7において信号側給電部に対して上下に線対称又は点対称であってもよい。 The antenna conductor illustrated in FIGS. 5, 6, and 7 extends the first antenna element and the second antenna element to the left, but the first antenna element and the second antenna element are on the right side. 5, that is, it may be symmetrical with respect to the signal-side power feeding unit in the left and right directions in FIGS. 5, 6, and 7, and the signal-side power feeding unit, the first antenna element, and the ground side The feed unit and the second antenna element may be inverted upside down, that is, in FIG.
 このように、図5,図6,図7に例示したような形態のガラスアンテナであれば、信号側給電部16を外部の信号処理装置(例えば、車載アンプ)の信号経路に所定の第1の導電性部材を介して電気的に接続するとともに、アース側給電部17を外部のアース経路(例えば、該信号処理装置のアース)に所定の第2の導電性部材を介して電気的に接続することによって、DABなどのデュアルバンドに対応可能な受信特性を得ることができる。 As described above, in the case of the glass antenna having the form illustrated in FIGS. 5, 6, and 7, the signal-side power feeding unit 16 is connected to the signal path of the external signal processing device (for example, in-vehicle amplifier) with a predetermined first. And electrically connecting the ground-side power feeding portion 17 to an external ground path (for example, the ground of the signal processing device) via a predetermined second conductive member. By doing so, it is possible to obtain reception characteristics that are compatible with dual bands such as DAB.
 特に、図5,図6に示されるように、信号側給電部16に接続される少なくとも一本の線状導体(この場合、線状導体15)が、アース側給電部17に接続される少なくとも一本の線状導体(この場合、線状導体12)に対して、信号側給電部16寄りの領域で、上下方向に延在していると、バンドIIIのアンテナ利得向上の点で好ましい結果が得られる。また、図5に示されるように、線状導体15が線状導体12と線状導体13との間に上下方向に延在していると、バンドIIIのアンテナ利得向上の点で好ましい結果が得られる。 In particular, as shown in FIGS. 5 and 6, at least one linear conductor (in this case, the linear conductor 15) connected to the signal-side power supply unit 16 is at least connected to the ground-side power supply unit 17. If it extends in the vertical direction in a region near the signal-side power feeding portion 16 with respect to one linear conductor (in this case, the linear conductor 12), a favorable result in terms of improving the antenna gain of band III Is obtained. As shown in FIG. 5, when the linear conductor 15 extends in the vertical direction between the linear conductor 12 and the linear conductor 13, a favorable result is obtained in terms of improving the antenna gain of the band III. can get.
 本発明に係るガラスアンテナ及び窓ガラスを、車両用窓ガラスに適用した例を説明する。図1,図2に示すガラスアンテナの形態を実際の車両のサイドウィンドウに取り付けることにより作製された自動車用ガラスアンテナのアンテナ利得の実測結果について説明する。 An example in which the glass antenna and the window glass according to the present invention are applied to a vehicle window glass will be described. An actual measurement result of the antenna gain of a glass antenna for an automobile manufactured by attaching the glass antenna shown in FIGS. 1 and 2 to a side window of an actual vehicle will be described.
 アンテナ利得は、ガラスアンテナが形成された自動車用窓ガラスを、ターンテーブル上の自動車の窓枠に水平面に対して約75°傾けた状態で組みつけて実測した。信号側給電部及びアース側給電部にはコネクタが取り付けられていて、フィーダ線を介してネットワークアナライザに接続される。水平方向から窓ガラスに対して全方向から電波が照射されるように、ターンテーブルが回転する。 The antenna gain was measured by assembling an automotive window glass on which a glass antenna was formed, with the vehicle window frame on the turntable being inclined at about 75 ° with respect to the horizontal plane. Connectors are attached to the signal-side power supply unit and the ground-side power supply unit, and are connected to a network analyzer via a feeder line. The turntable rotates so that radio waves are applied from all directions to the window glass from the horizontal direction.
 アンテナ利得の測定は、ターンテーブルの中心に、ガラスアンテナのガラスを組みつけた自動車の車両中心をセットして、自動車を360°回転させて行われる。アンテナ利得のデータは、回転角度5°毎に、バンドIIIの周波数範囲において3MHz毎に測定され、Lバンドの周波数範囲において1.7MHz毎に測定される。電波の発信位置とアンテナ導体との仰角は略水平方向(地面と平行な面を仰角=0°、天頂方向を仰角=90°とする場合、仰角=0°の方向)で測定した。アンテナ利得は、半波長ダイポールアンテナを基準とし、半波長ダイポールアンテナのアンテナ利得が0dBとなるように標準化した。 The antenna gain is measured by setting the center of the car with the glass antenna glass installed at the center of the turntable and rotating the car 360 °. The antenna gain data is measured every 3 MHz in the band III frequency range at every rotation angle of 5 °, and is measured every 1.7 MHz in the L band frequency range. The elevation angle between the transmission position of the radio wave and the antenna conductor was measured in a substantially horizontal direction (when the plane parallel to the ground is elevation angle = 0 ° and the zenith direction is elevation angle = 90 °, the elevation angle = 0 ° direction). The antenna gain was standardized so that the antenna gain of the half-wave dipole antenna was 0 dB with reference to the half-wave dipole antenna.
 [例1]
 図8A,図8Bは、図2に示すガラスアンテナ200の形態を実際の車両のサイドウィンドウに取り付けたことにより作製された自動車用高周波ガラスアンテナについて、線状導体3の導体長L3を変化させたときの、アンテナ利得の実測データである。図8Aの縦軸は、バンドIII(174~240MHz)において3MHz毎に計測された回転角度5°毎のアンテナ利得の帯域での平均値を示している。図8Bの縦軸は、Lバンド(1452~1492MHz)において1.7MHz毎に計測された回転角度5°毎の帯域でのアンテナ利得の平均値を示している。
[Example 1]
8A and 8B, the conductor length L3 of the linear conductor 3 is changed for a high-frequency glass antenna for an automobile manufactured by attaching the form of the glass antenna 200 shown in FIG. 2 to an actual vehicle side window. This is actually measured data of antenna gain. The vertical axis of FIG. 8A shows the average value in the band of the antenna gain at every rotation angle of 5 ° measured every 3 MHz in band III (174 to 240 MHz). The vertical axis of FIG. 8B shows the average value of the antenna gain in the band at every rotation angle of 5 ° measured every 1.7 MHz in the L band (1452 to 1492 MHz).
 図8A,図8Bを実測したときの各ガラスアンテナの各部の寸法は、単位をmmとすると、
 L1:60
 L2:80
 L4:50
 L5:50
 L6:35
 L7:30
である。ただし、「L*」は(*は符号を表す)、線状導体*の導体長を示している。各線状導体の導体幅は、0.8mmである。信号側給電部16及びアース側給電部17は、共に、一辺が12mmの正方形である。信号側給電部16とアース側給電部17との間隙は、13mmである。
The dimensions of each part of each glass antenna when FIG. 8A and FIG. 8B are actually measured are as follows:
L1: 60
L2: 80
L4: 50
L5: 50
L6: 35
L7: 30
It is. However, “L *” (* represents a sign) indicates the conductor length of the linear conductor *. The conductor width of each linear conductor is 0.8 mm. Both the signal-side power supply unit 16 and the ground-side power supply unit 17 are squares with a side of 12 mm. The gap between the signal side power supply unit 16 and the ground side power supply unit 17 is 13 mm.
 図8A,図8Bに示されるように、線状導体3の導体長L3を長くするにつれて、Lバンドのアンテナ利得を向上させることができる。例えば、図8Bに示されるように、線状導体3の導体長L3が30mm以上であれば、バンドIIIのアンテナ利得が変化することを抑えたまま、Lバンドのアンテナ利得を向上させることができる。 As shown in FIGS. 8A and 8B, the antenna gain of the L band can be improved as the conductor length L3 of the linear conductor 3 is increased. For example, as shown in FIG. 8B, if the conductor length L3 of the linear conductor 3 is 30 mm or more, the L-band antenna gain can be improved while suppressing the change in the band-III antenna gain. .
 [例2]
 図9A,図9Bは、図2に示すガラスアンテナ200の形態を実際の車両のサイドウィンドウに取り付けたことにより作製された自動車用高周波ガラスアンテナについて、線状導体L5の導体長L5を変化させたときの、アンテナ利得の実測データである。図9Aの縦軸は、バンドIII(174~240MHz)において3MHz毎に計測された回転角度5°毎のアンテナ利得の帯域での平均値を示している。図9Bの縦軸は、Lバンド(1452~1492MHz)において1.7MHz毎に計測された回転角度5°毎のアンテナ利得の帯域での平均値を示している。
[Example 2]
9A and 9B show that the conductor length L5 of the linear conductor L5 is changed in the high-frequency glass antenna for an automobile manufactured by attaching the form of the glass antenna 200 shown in FIG. 2 to an actual vehicle side window. This is actually measured data of antenna gain. The vertical axis in FIG. 9A shows the average value in the band of the antenna gain at every rotation angle of 5 ° measured every 3 MHz in band III (174 to 240 MHz). The vertical axis of FIG. 9B shows the average value in the antenna gain band for each rotation angle of 5 ° measured at 1.7 MHz in the L band (1452 to 1492 MHz).
 図9A,図9Bを実測したときの各ガラスアンテナの各部の寸法は、単位をmmとすると、
 L1:60
 L2:80
 L3:60
 L5:50
 L6:35
 L7:30
である。それ以外の寸法は、例1の場合と同様である。
The dimensions of each part of each glass antenna when FIG. 9A and FIG. 9B are actually measured are as follows:
L1: 60
L2: 80
L3: 60
L5: 50
L6: 35
L7: 30
It is. Other dimensions are the same as in Example 1.
 図9A,図9Bに示されるように、線状導体5の導体長L5を長くするにつれて、バンドIIIのアンテナ利得を向上させることができる。例えば、図9Aに示されるように、線状導体5の導体長L5が30mm以上であれば、Lバンドのアンテナ利得が変化することを抑えたまま、バンドIIIのアンテナ利得を向上させることができる。 As shown in FIGS. 9A and 9B, the antenna gain of band III can be improved as the conductor length L5 of the linear conductor 5 is increased. For example, as shown in FIG. 9A, if the conductor length L5 of the linear conductor 5 is 30 mm or more, the antenna gain of the band III can be improved while suppressing the change of the antenna gain of the L band. .
 [例3]
 図10A,図10B,図10Cは、図2に示すガラスアンテナ200の形態を実際の車両のサイドウィンドウに取り付けたことにより作製された自動車用高周波ガラスアンテナについて、線状導体2の導体長L2を変化させたときの、アンテナ利得の実測データである。図10Aの縦軸は、バンドIII(174~240MHz)において3MHz毎に計測された回転角度5°毎のアンテナ利得の帯域での平均値を示している。図10Bの縦軸は、Lバンド(1452~1492MHz)において1.7MHz毎に計測された回転角度5°毎のアンテナ利得の帯域での平均値を示している。図10Cの縦軸は、回転角度5°毎に計測された各周波数でのアンテナ利得の平均値を示している。
[Example 3]
10A, 10B, and 10C show the conductor length L2 of the linear conductor 2 for an automotive high-frequency glass antenna manufactured by attaching the form of the glass antenna 200 shown in FIG. 2 to an actual vehicle side window. This is measured data of antenna gain when changed. The vertical axis of FIG. 10A shows the average value in the band of the antenna gain for every rotation angle of 5 ° measured every 3 MHz in band III (174 to 240 MHz). The vertical axis of FIG. 10B shows the average value in the antenna gain band for each rotation angle of 5 ° measured at 1.7 MHz in the L band (1452 to 1492 MHz). The vertical axis of FIG. 10C shows the average value of the antenna gain at each frequency measured at every rotation angle of 5 °.
 図10A,図10B,図10Cを実測したときの各ガラスアンテナの各部の寸法は、単位をmmとすると、
 L1:60
 L3:60
 L4:50
 L5:50
 L6:35
 L7:30
である。それ以外の寸法は、例1の場合と同様である。
The dimensions of each part of each glass antenna when FIG. 10A, FIG. 10B, and FIG.
L1: 60
L3: 60
L4: 50
L5: 50
L6: 35
L7: 30
It is. Other dimensions are the same as in Example 1.
 図10Aに示されるように、線状導体2の導体長L2が30mm以上100mm以下であれば、バンドIIIのアンテナ利得を向上させることができる。特に、図10Cに示されるように、導体長L2を長くするにつれて、バンドIIIの帯域のうち210MHz以上の高域でのアンテナ利得を向上させることができる(導体長L2が10mmと100mmの場合を比べると、約4dBの上昇)。また、図10Bに示されるように、線状導体2の導体長L2が40mm以上100mm以下であれば、Lバンドのアンテナ利得を向上させることができる。 As shown in FIG. 10A, if the conductor length L2 of the linear conductor 2 is 30 mm or more and 100 mm or less, the antenna gain of the band III can be improved. In particular, as shown in FIG. 10C, as the conductor length L2 is increased, the antenna gain in the high band of 210 MHz or higher in the band III can be improved (when the conductor length L2 is 10 mm and 100 mm). Compared to an increase of about 4 dB). As shown in FIG. 10B, if the conductor length L2 of the linear conductor 2 is not less than 40 mm and not more than 100 mm, the L-band antenna gain can be improved.
 [例4]
 図11A,図11Bは、図2に示すガラスアンテナ200の形態を実際の車両のサイドウィンドウに取り付けたことにより作製された自動車用高周波ガラスアンテナについて、線状導体6の導体長L6を変化させたときの、アンテナ利得の実測データである。図11Aの縦軸は、バンドIII(174~240MHz)において3MHz毎に計測された回転角度5°毎のアンテナ利得の帯域での平均値を示している。図11Bの縦軸は、Lバンド(1452~1492MHz)において1.7MHz毎に計測された回転角度5°毎のアンテナ利得の帯域での平均値を示している。
[Example 4]
11A and 11B, the conductor length L6 of the linear conductor 6 is changed for a high-frequency glass antenna for an automobile manufactured by attaching the form of the glass antenna 200 shown in FIG. 2 to an actual vehicle side window. This is actually measured data of antenna gain. The vertical axis in FIG. 11A shows the average value in the band of the antenna gain at every rotation angle of 5 ° measured every 3 MHz in band III (174 to 240 MHz). The vertical axis of FIG. 11B shows the average value in the antenna gain band for each rotation angle of 5 ° measured at 1.7 MHz in the L band (1452 to 1492 MHz).
 図11A,図11Bを実測したときの各ガラスアンテナの各部の寸法は、単位をmmとすると、
 L1:60
 L2:80
 L3:60
 L4:50
 L5:50
 L7:30
である。それ以外の寸法は、例1の場合と同様である。
The dimensions of each part of each glass antenna when FIG. 11A and FIG. 11B are actually measured are as follows:
L1: 60
L2: 80
L3: 60
L4: 50
L5: 50
L7: 30
It is. Other dimensions are the same as in Example 1.
 図11Aに示されるように、線状導体6の導体長L6が20mm以上100mm以下であれば、バンドIIIのアンテナ利得を向上させることができる。図11Bに示されるように、線状導体6の導体長L6が20mm以上60mm以下であれば、Lバンドのアンテナ利得を向上させることができる。 As shown in FIG. 11A, if the conductor length L6 of the linear conductor 6 is 20 mm or more and 100 mm or less, the antenna gain of the band III can be improved. As shown in FIG. 11B, if the conductor length L6 of the linear conductor 6 is not less than 20 mm and not more than 60 mm, the L-band antenna gain can be improved.
 [例5]
 図12は、図2,図3,図4に示すガラスアンテナ200,300,400の形態を実際の車両のサイドウィンドウに取り付けたことにより作製された自動車用高周波ガラスアンテナについて、バンドIIIにおけるアンテナ利得の実測データである。図12の縦軸は、回転角度5°毎に計測された各周波数でのアンテナ利得の平均値を示している。
[Example 5]
FIG. 12 shows an antenna gain in band III for an automotive high-frequency glass antenna manufactured by attaching the glass antennas 200, 300, and 400 shown in FIGS. 2, 3, and 4 to the side window of an actual vehicle. It is actual measurement data. The vertical axis in FIG. 12 indicates the average value of the antenna gain at each frequency measured at every rotation angle of 5 °.
 図12を実測したときの各ガラスアンテナの各部の寸法は、単位をmmとすると、
[ガラスアンテナ200]
 L1:60
 L2:40
 L3:60
 L4:50
 L5:60
 L6:50
 L7:30
 H1:35
 a-b間:40
[ガラスアンテナ300]
 L1:70
 L2:60
 L3:40
 L4:50
 L5:60
 L6:40
 L7:30
 H1:35
 a-b間:60
[ガラスアンテナ400]
 L1:40
 L2:60
 L3:60
 L4:50
 L5:60
 L6:70
 L7:30
 H1:35
 a-b間:30
である。それ以外の寸法は、例1の場合と同様である。
The dimensions of each part of each glass antenna when actually measuring FIG.
[Glass antenna 200]
L1: 60
L2: 40
L3: 60
L4: 50
L5: 60
L6: 50
L7: 30
H1: 35
Between a and b: 40
[Glass antenna 300]
L1: 70
L2: 60
L3: 40
L4: 50
L5: 60
L6: 40
L7: 30
H1: 35
Between ab: 60
[Glass antenna 400]
L1: 40
L2: 60
L3: 60
L4: 50
L5: 60
L6: 70
L7: 30
H1: 35
Between ab: 30
It is. Other dimensions are the same as in Example 1.
 図12に示されるアンテナ利得をバンドIIIの帯域で平均した値は、ガラスアンテナ200の場合が「-1.0dBd」であり、ガラスアンテナ300の場合が「-1.8dBd」であり、ガラスアンテナ400の場合が「-0.9dBd」である。このように、F字状エレメントとL字状エレメントが向かい合って配置されたガラスアンテナ200,300,400のいずれについても、バンドIIIの帯域で充分なアンテナ利得が得られる。 The average value of the antenna gain shown in FIG. 12 in the band III is “−1.0 dBd” in the case of the glass antenna 200 and “−1.8 dBd” in the case of the glass antenna 300. The case of 400 is “−0.9 dBd”. Thus, sufficient antenna gain can be obtained in the band III for any of the glass antennas 200, 300, and 400 in which the F-shaped element and the L-shaped element are arranged to face each other.
 特に、ガラスアンテナ200,400のように、信号側給電部16に接続される線状導体2,3の少なくとも一方が、アース側給電部17に接続される線状導体5に対して、信号側給電部16及びアース側給電部17寄りの領域で、上下方向に延在していることによって、バンドIIIのアンテナ利得を更に上げることができる。 In particular, like the glass antennas 200 and 400, at least one of the linear conductors 2 and 3 connected to the signal-side power feeding unit 16 is on the signal side with respect to the linear conductor 5 connected to the ground-side power feeding unit 17. By extending in the vertical direction in a region near the power feeding unit 16 and the ground side power feeding unit 17, the antenna gain of the band III can be further increased.
 [例6]
 図13は、図2,図5,図6,図7に示すガラスアンテナ200,500,600,700の形態を実際の車両のサイドウィンドウに取り付けたことにより作製された自動車用高周波ガラスアンテナについて、バンドIIIにおけるアンテナ利得の実測データである。図13の縦軸は、回転角度5°毎に計測された各周波数でのアンテナ利得の平均値を示している。
[Example 6]
FIG. 13 shows a high-frequency glass antenna for an automobile manufactured by attaching the glass antennas 200, 500, 600, and 700 shown in FIGS. 2, 5, 6, and 7 to a side window of an actual vehicle. This is actual measurement data of antenna gain in band III. The vertical axis in FIG. 13 indicates the average value of the antenna gain at each frequency measured at each rotation angle of 5 °.
 図13を実測したときの各ガラスアンテナの各部の寸法は、単位をmmとすると、
[ガラスアンテナ200]
 例5と同じ
[ガラスアンテナ500]
 L11:50
 L12:40
 L13:60
 L14:40
 L15:60
 L18:70
 L19:30
 H1:35
 a1-b1間:30
[ガラスアンテナ600]
 L11:60
 L12:60
 L13:30
 L14:40
 L15:60
 L18:70
 L19:30
 H1:35
 a1-b1間:50
[ガラスアンテナ700]
 L11:30
 L12:60
 L13:60
 L14:40
 L15:60
 L18:70
 L19:30
 H1:35
 a1-b1間:20
それ以外の寸法は、例1の場合と同様である。
The dimensions of each part of each glass antenna when actually measuring FIG.
[Glass antenna 200]
Same as Example 5 [Glass antenna 500]
L11: 50
L12: 40
L13: 60
L14: 40
L15: 60
L18: 70
L19: 30
H1: 35
Between a1-b1: 30
[Glass antenna 600]
L11: 60
L12: 60
L13: 30
L14: 40
L15: 60
L18: 70
L19: 30
H1: 35
Between a1-b1: 50
[Glass antenna 700]
L11: 30
L12: 60
L13: 60
L14: 40
L15: 60
L18: 70
L19: 30
H1: 35
Between a1 and b1: 20
Other dimensions are the same as in Example 1.
 図13に示されるアンテナ利得をバンドIIIの帯域で平均した値は、ガラスアンテナ200の場合が「-1.0dBd」であり、ガラスアンテナ500の場合が「-1.1dBd」であり、ガラスアンテナ600の場合が「-1.2dBd」であり、ガラスアンテナ700の場合が「-1.4dBd」である。このように、F字状エレメントとL字状エレメントが向かい合って配置されたガラスアンテナ200,500,600,700のいずれについても、バンドIIIの帯域で充分なアンテナ利得が得られる。 The average value of the antenna gain shown in FIG. 13 in the band III is “−1.0 dBd” in the case of the glass antenna 200 and “−1.1 dBd” in the case of the glass antenna 500. The case of 600 is “−1.2 dBd”, and the case of the glass antenna 700 is “−1.4 dBd”. As described above, for any of the glass antennas 200, 500, 600, and 700 in which the F-shaped element and the L-shaped element are arranged to face each other, a sufficient antenna gain can be obtained in the band III band.
 特に、ガラスアンテナ500,600のように、信号側給電部16に接続される線状導体15が、アース側給電部17に接続される線状導体12,13の少なくとも一方に対して、信号側給電部16及びアース側給電部17寄りの領域で、上下方向に延在していることによって、バンドIIIのアンテナ利得を更に上げることができる。 In particular, like the glass antennas 500 and 600, the linear conductor 15 connected to the signal-side power feeding unit 16 is on the signal side with respect to at least one of the linear conductors 12 and 13 connected to the ground-side power feeding unit 17. By extending in the vertical direction in a region near the power feeding unit 16 and the ground side power feeding unit 17, the antenna gain of the band III can be further increased.
 本国際出願は、2011年2月4日に出願した日本国特許出願第2011-023359号に基づく優先権を主張するものであり、日本国特許出願第2011-023359号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2011-023359 filed on Feb. 4, 2011. The entire contents of Japanese Patent Application No. 2011-023359 are hereby incorporated by reference. Incorporated into.
 1-7,11-15,18,19 線状導体
 16 信号側給電部
 17 アース側給電部
 23 窓ガラス
 23a 側縁
 100,200,300,400,500,600,700 車両用ガラスアンテナ
1-7, 11-15, 18, 19 Linear conductor 16 Signal side power supply unit 17 Ground side power supply unit 23 Window glass 23a Side edge 100, 200, 300, 400, 500, 600, 700 Glass antenna for vehicle

Claims (13)

  1.  ガラス板に設けられるガラスアンテナであって、
     前記ガラス板の面を対向して見たときに、
     第1の給電部と、前記第1の給電部に並んで配置された第2の給電部と、前記第1の給電部に接続される第1のアンテナエレメント及び前記第2の給電部に接続される第2のアンテナエレメントを有するアンテナ導体とを備え、
     前記第1の給電部と前記第2の給電部のうち、一方の給電部が信号側給電部であり、他方の給電部がアース側給電部であり、
     前記第1のアンテナエレメントは、
     一端が前記第1の給電部に直接又は接続導体を介して接続され左右方向に延在する第1の線状導体と、前記第1の線状導体の他端を起点に上下方向に延在する第2の線状導体と、前記第1の線状導体の中間部を起点に前記第2の線状導体と同方向に延在する第3の線状導体とによって、F字状に形成されたF字状エレメントを含み、
     前記第2のアンテナエレメントは、
     一端が前記第2の給電部に直接又は接続導体を介して接続されかつ前記第1の線状導体に対して前記第2の線状導体が延在する側で左右方向に延在する第4の線状導体と、前記第4の線状導体の他端を起点に上下方向に延在する第5の線状導体とによって、L字状に形成されたL字状エレメントを含む、ことを特徴とする、ガラスアンテナ。
    A glass antenna provided on a glass plate,
    When facing the surface of the glass plate facing,
    Connected to the first power feeding unit, the second power feeding unit arranged side by side with the first power feeding unit, the first antenna element connected to the first power feeding unit, and the second power feeding unit An antenna conductor having a second antenna element to be
    Of the first power supply unit and the second power supply unit, one power supply unit is a signal side power supply unit, and the other power supply unit is a ground side power supply unit.
    The first antenna element is:
    A first linear conductor having one end connected directly or via a connecting conductor to the first power feeding portion and extending in the left-right direction, and extending in the vertical direction starting from the other end of the first linear conductor And a third linear conductor extending in the same direction as the second linear conductor starting from an intermediate portion of the first linear conductor. Including an F-shaped element,
    The second antenna element is
    A fourth end is connected to the second power feeding portion directly or via a connecting conductor and extends in the left-right direction on the side where the second linear conductor extends with respect to the first linear conductor. And an L-shaped element formed in an L shape by a fifth linear conductor extending in the vertical direction starting from the other end of the fourth linear conductor. Characteristic glass antenna.
  2.  前記第2の線状導体と前記第3の線状導体と前記第5の線状導体のうち、前記信号側給電部に接続される線状導体の少なくとも一本が、前記アース側給電部に接続される残りの線状導体の少なくとも一本に対して、前記信号側給電部寄りに延在する、請求項1に記載のガラスアンテナ。 Of the second linear conductor, the third linear conductor, and the fifth linear conductor, at least one of the linear conductors connected to the signal-side power feeding unit is connected to the ground-side power feeding unit. The glass antenna according to claim 1, wherein the glass antenna extends toward the signal-side power feeding portion with respect to at least one of the remaining linear conductors to be connected.
  3.  前記第5の線状導体は、前記第2の線状導体と前記第3の線状導体との間に延在する、請求項1又は2に記載のガラスアンテナ。 The glass antenna according to claim 1 or 2, wherein the fifth linear conductor extends between the second linear conductor and the third linear conductor.
  4.  前記第1の給電部が信号側給電部であり、前記第2の給電部がアース側給電部である、請求項1から3のいずれか一項に記載のガラスアンテナ。 The glass antenna according to any one of claims 1 to 3, wherein the first power feeding unit is a signal side power feeding unit, and the second power feeding unit is a ground side power feeding unit.
  5.  前記アンテナ導体が、第1の周波数帯と該第1の周波数帯よりも低い第2の周波数帯に対応する共用アンテナ導体であって、
     前記第1の周波数帯の中心周波数における空気中の波長をλ01とし、ガラス波長短縮率をk(ただしk=0.74)とし、ガラス上での波長をλg1=λ01・kとしたとき、
     前記第3の線状導体の導体長が、(1/5)λg1以上である、請求項4に記載のガラスアンテナ。
    The antenna conductor is a shared antenna conductor corresponding to a first frequency band and a second frequency band lower than the first frequency band;
    The wavelength in the air at the center frequency of the first frequency band is λ 01 , the glass wavelength reduction rate is k 1 (where k 1 = 0.74), and the wavelength on the glass is λ g1 = λ 01 · k. When 1
    The glass antenna according to claim 4, wherein a conductor length of the third linear conductor is (1/5) λ g1 or more.
  6.  前記第3の線状導体の導体長が、30mm以上である、請求項4に記載のガラスアンテナ。 The glass antenna according to claim 4, wherein a conductor length of the third linear conductor is 30 mm or more.
  7.  前記アンテナ導体が、第1の周波数帯と該第1の周波数帯よりも低い第2の周波数帯に対応する共用アンテナ導体であって、
     前記第2の周波数帯の中心周波数における空気中の波長をλ02とし、ガラス波長短縮率をk(ただしk=0.54)とし、ガラス上での波長をλg2=λ02・kとしたとき、
     前記第5の線状導体の導体長が、(1/26)λg2以上である、請求項4から6のいずれか一項に記載のガラスアンテナ。
    The antenna conductor is a shared antenna conductor corresponding to a first frequency band and a second frequency band lower than the first frequency band;
    The wavelength in the air at the center frequency of the second frequency band is λ 02 , the glass wavelength reduction rate is k 2 (where k 2 = 0.54), and the wavelength on the glass is λ g2 = λ 02 · k. 2
    The glass antenna according to any one of claims 4 to 6, wherein a conductor length of the fifth linear conductor is (1/26) λ g2 or more.
  8.  前記第5の線状導体の導体長が、30mm以上である、請求項4から6のいずれか一項に記載のガラスアンテナ。 The glass antenna according to any one of claims 4 to 6, wherein a conductor length of the fifth linear conductor is 30 mm or more.
  9.  前記第2の線状導体の導体長が、30mm以上100mm以下である、請求項4から8のいずれか一項に記載のガラスアンテナ。 The glass antenna according to any one of claims 4 to 8, wherein a conductor length of the second linear conductor is 30 mm or more and 100 mm or less.
  10.  前記アンテナ導体が、前記第1の線状導体及び前記第4の線状導体のうち前記信号側給電部に接続される線状導体の他端に接続され左右方向に延在する第6の線状導体を含む、請求項1から9のいずれか一項に記載のガラスアンテナ。 The antenna conductor is connected to the other end of the linear conductor connected to the signal-side power feeding portion of the first linear conductor and the fourth linear conductor, and extends in the left-right direction. The glass antenna as described in any one of Claim 1 to 9 containing a shaped conductor.
  11.  前記第6の線状導体の導体長が、20mm以上100mm以下である、請求項10に記載のガラスアンテナ。 The glass antenna according to claim 10, wherein a conductor length of the sixth linear conductor is 20 mm or more and 100 mm or less.
  12.  前記アンテナ導体が、174~240MHzと1452~1492MHzに対応する共用アンテナ導体である、請求項1から11のいずれか一項に記載のガラスアンテナ。 The glass antenna according to any one of claims 1 to 11, wherein the antenna conductor is a shared antenna conductor corresponding to 174 to 240 MHz and 1452 to 1492 MHz.
  13.  請求項1から12のいずれか一項に記載のガラスアンテナを備える車両用窓ガラス。 A vehicle window glass comprising the glass antenna according to any one of claims 1 to 12.
PCT/JP2012/051866 2011-02-04 2012-01-27 Glass-integrated antenna and vehicle-use glazing provided with same WO2012105456A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12741960.4A EP2672565B1 (en) 2011-02-04 2012-01-27 Glass-integrated antenna and vehicle-use glazing provided with same
JP2012555845A JP5867416B2 (en) 2011-02-04 2012-01-27 Glass antenna and vehicle window glass including the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-023359 2011-02-04
JP2011023359 2011-02-04

Publications (1)

Publication Number Publication Date
WO2012105456A1 true WO2012105456A1 (en) 2012-08-09

Family

ID=46602672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051866 WO2012105456A1 (en) 2011-02-04 2012-01-27 Glass-integrated antenna and vehicle-use glazing provided with same

Country Status (3)

Country Link
EP (1) EP2672565B1 (en)
JP (1) JP5867416B2 (en)
WO (1) WO2012105456A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013063207A1 (en) 2011-10-28 2013-05-02 Corning Incorporated Glass articles with infrared reflectivity and methods for making the same
CN107531562B (en) 2015-04-30 2021-05-28 康宁股份有限公司 Conductive articles having discrete metallic silver layers and methods of making the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327009A (en) 1997-04-30 1998-12-08 Ford Motor Co Plural-band reception antenna
JP2000307321A (en) 1999-04-02 2000-11-02 Ford Motor Co Double loop multi-band reception antenna for terrestrial digital audio broadcast
US6924771B2 (en) 2002-07-16 2005-08-02 Yen Tjing Ling Industrial Development Foundation Multi-meandered antennas with multiple bands and single input
EP1732160A1 (en) 2005-06-10 2006-12-13 Matsushita Electric Industrial Co., Ltd. Dual-band digital audio broadcasting antenna
JP2007300398A (en) * 2006-04-28 2007-11-15 Ntt Docomo Inc Multi-band antenna and multi-band multi-antenna
JP2010273310A (en) * 2009-04-20 2010-12-02 Central Glass Co Ltd Glass antenna

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1174714A (en) * 1997-06-16 1999-03-16 Asahi Glass Co Ltd High-frequency glass antenna for automobile
JP3565406B2 (en) * 1998-11-16 2004-09-15 セントラル硝子株式会社 Glass antenna for vehicles
JP2010154504A (en) * 2008-11-20 2010-07-08 Asahi Glass Co Ltd Glass antenna and window glass for vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327009A (en) 1997-04-30 1998-12-08 Ford Motor Co Plural-band reception antenna
JP2000307321A (en) 1999-04-02 2000-11-02 Ford Motor Co Double loop multi-band reception antenna for terrestrial digital audio broadcast
US6924771B2 (en) 2002-07-16 2005-08-02 Yen Tjing Ling Industrial Development Foundation Multi-meandered antennas with multiple bands and single input
EP1732160A1 (en) 2005-06-10 2006-12-13 Matsushita Electric Industrial Co., Ltd. Dual-band digital audio broadcasting antenna
JP2007300398A (en) * 2006-04-28 2007-11-15 Ntt Docomo Inc Multi-band antenna and multi-band multi-antenna
JP2010273310A (en) * 2009-04-20 2010-12-02 Central Glass Co Ltd Glass antenna

Also Published As

Publication number Publication date
JP5867416B2 (en) 2016-02-24
EP2672565B1 (en) 2018-11-14
JPWO2012105456A1 (en) 2014-07-03
EP2672565A1 (en) 2013-12-11
EP2672565A4 (en) 2014-12-24

Similar Documents

Publication Publication Date Title
EP2173008B1 (en) High frequency glass antenna for automobiles
JP6503842B2 (en) Window plate provided with vehicle antenna and vehicle antenna
CN102396106B (en) Vehicle glass antenna, vehicle window glass, and vehicle glass antenna feeding structure
JP5655522B2 (en) Vehicle antenna device
JP2017005354A (en) Glass antenna for vehicle and rear window glass with antenna for vehicle
JP5115359B2 (en) Glass antenna for vehicle and window glass plate for vehicle
JP2009246844A (en) Vehicle high-frequency glass antenna and vehicle windowpane
JP5141503B2 (en) Glass antenna for vehicle and window glass for vehicle
WO2012073796A1 (en) Vehicle-use windshield-integrated antenna and vehicle-use glazing
US9837699B2 (en) Multi-element window antenna
JP2013026697A (en) Glass antenna and windowpane
EP2940793B1 (en) Glass antenna-equipped vehicle front glass
EP2355237B1 (en) Glass antenna and vehicular window glass including the same
JP2020099003A (en) Antenna device, antenna device-equipped window glass, and antenna system
JP5003627B2 (en) Glass antenna for vehicle and window glass for vehicle
JP5867416B2 (en) Glass antenna and vehicle window glass including the same
JP6007700B2 (en) Glass antenna and window glass
JP7077772B2 (en) Antenna device and window glass with antenna device
US20170324141A1 (en) Cpw-fed modified sleeve monopole for gps, glonass, and sdars bands
WO2013011886A1 (en) Glass antenna for vehicle
JP5499810B2 (en) Glass antenna for vehicle and window glass for vehicle
JP5929904B2 (en) Glass antenna and window glass
JP2007174513A (en) High frequency glass antenna for automobile
JP2005354176A (en) Vehicle-mounted antenna

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741960

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555845

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2012741960

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE