WO2012102292A1 - Method for producing electrostatic capacitance device - Google Patents

Method for producing electrostatic capacitance device Download PDF

Info

Publication number
WO2012102292A1
WO2012102292A1 PCT/JP2012/051507 JP2012051507W WO2012102292A1 WO 2012102292 A1 WO2012102292 A1 WO 2012102292A1 JP 2012051507 W JP2012051507 W JP 2012051507W WO 2012102292 A1 WO2012102292 A1 WO 2012102292A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
silicon
movable
fixed
metal film
Prior art date
Application number
PCT/JP2012/051507
Other languages
French (fr)
Japanese (ja)
Inventor
巧 田浦
友洋 中谷
真 奥村
江田 和夫
後藤 浩嗣
秀一 屋地
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012102292A1 publication Critical patent/WO2012102292A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/00182Arrangements of deformable or non-deformable structures, e.g. membrane and cavity for use in a transducer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/0825Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass
    • G01P2015/0831Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass for one single degree of freedom of movement of the mass the mass being of the paddle type having the pivot axis between the longitudinal ends of the mass, e.g. see-saw configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0845Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration using a plurality of spring-mass systems being arranged on one common planar substrate, the systems not being mechanically coupled and the sensitive direction of each system being different

Definitions

  • the present invention relates to a method for manufacturing a capacitance type device.
  • the center of the movable electrode is supported by a beam, and the center of gravity on both ends of the movable electrode is asymmetrical with the center supported by the beam as the boundary, so that acceleration is input.
  • a movable electrode is swung when it is applied (see, for example, Patent Document 1).
  • a movable electrode is formed on a silicon substrate that is a movable substrate, while a fixed electrode that is opposed to the movable electrode is formed on a glass substrate that is a stationary substrate, and both substrates are joined by anodic bonding. .
  • the pressure contact electrode provided on the silicon substrate and the terminal electrode extending from the fixed electrode formed on the glass substrate are crushed and made conductive, thereby fixing the silicon substrate.
  • the electrode is at the same potential.
  • an object of the present invention is to obtain a manufacturing method of a capacitance type device that can suppress the influence on the device characteristics.
  • a first feature of the present invention is an electrostatic comprising: a movable body substrate on which a movable electrode is formed; and a fixed side substrate on which a fixed electrode facing the movable electrode is formed and is anodically bonded to the movable body substrate.
  • a method of manufacturing a capacitive device wherein a through silicon formed by penetrating silicon so as to be exposed on both surfaces of the fixed side substrate is used as the fixed electrode, and at least the fixed side substrate of the movable substrate is an anode.
  • a portion to be joined is formed of silicon, a first metal film is formed on the outer exposed surface of the through silicon, and the first metal film is formed on the surface of the fixed side substrate at a portion other than the outer exposed surface of the through silicon.
  • a second metal film is formed so as to be separated from the first metal film, and the first metal film and the second metal film are used when anodic bonding the movable substrate and the stationary substrate.
  • the gist of the second feature of the present invention is that the shortest distance between the second metal film and the through silicon is made larger than the thickness of the fixed substrate.
  • the third feature of the present invention is summarized in that the material of the first metal film and the second metal film is aluminum.
  • a fourth feature of the present invention is that the anodic bonding of the movable substrate and the fixed substrate is performed at a wafer level, and the film is formed on the outer exposed surface of the penetrating silicon serving as the fixed electrode over the entire wafer surface.
  • the gist is that the metal films 1 are electrically connected to each other by metal wiring.
  • a potential difference is provided between the fixed substrate and the movable substrate, and anodic bonding between the movable substrate and the fixed substrate is performed with the through silicon and the movable substrate at the same potential. ing. Therefore, anodic bonding can be performed without using a stepping-down structure. As a result, it is possible to suppress the formation of an oxide film at the bonding portion, resulting in poor conduction, and to suppress the stress from acting on the squashed portion and affecting the device characteristics. it can.
  • a metal film is used to provide a potential difference between the fixed-side substrate and the movable substrate, while the through silicon and the movable substrate are set to the same potential. Can be done.
  • FIG. 1 It is a disassembled perspective view which shows the electrostatic capacitance type device concerning one Embodiment of this invention.
  • substrate of the electrostatic capacitance type device shown in FIG. 1 is shown, (a) is a top view of a movable body board
  • an acceleration sensor is illustrated as an electrostatic capacitance type device.
  • the side of the weight portion on which the movable electrode is formed is defined as the surface side of the silicon substrate.
  • the short direction of the silicon substrate is the X direction
  • the long direction of the silicon substrate is the Y direction
  • the thickness direction of the silicon substrate is the Z direction.
  • the acceleration sensor S includes a silicon substrate 1 as a movable substrate having movable electrodes 4 and 5, and anodically bonded to the surface of the silicon substrate 1 (upper surface in FIG. 1).
  • An upper fixing plate 2a as a fixed-side substrate on which opposed fixed electrodes 20a, 20b, 21a and 21b are formed, and a lower fixing plate 2b which is bonded to the back surface (the lower surface in FIG. 1) of the silicon substrate 1 and serves as a closing plate It has.
  • the acceleration sensor S according to the present embodiment is configured as a sensor chip in which the silicon substrate 1 is sandwiched between the upper fixed plate 2a and the lower fixed plate 2b.
  • the silicon substrate 1 is formed of a silicon SOI substrate. As shown in FIG. 1, the frame 3 having two rectangular frames 3a and 3b and a side wall of the rectangular frames 2a and 3b are spaced from each other. Two movable electrodes 4 and 5 having a rectangular shape arranged in the rectangular frames 3a and 3b are provided.
  • the movable electrodes 4 and 5 are connected to the side walls of the rectangular frames 3a and 3b by the pair of beams 6a and 6b and 7a and 7b at substantially the center of the two opposite sides of each side surface. That is, one movable electrode 4 is swingably supported with respect to the frame 3 by the beams 6a and 6b, and the other movable electrode 5 is swingably supported with respect to the frame 3 by the beams 7a and 7b.
  • the beams 6a and 6b and the beams 7a and 7b are biased to the surface side (upper surface side in FIG. 1) facing the upper fixing plate 2a with respect to the Z direction (thickness direction) of the silicon substrate 1. Are arranged.
  • a ground electrode 10 is formed on the surface of the frame 3 of the silicon substrate 1.
  • the movable electrodes 4 and 5 are formed thick and have a function as weights.
  • a boundary line M a straight line connecting the centers of the beam 6 a and the beam 6 b in a plan view
  • FIGS. 2B and 3 one side of a boundary line M (a straight line connecting the centers of the beam 6 a and the beam 6 b in a plan view) M on the back side of the movable electrode 4 (FIG. 2B ) (Lower side) is formed with a recess 11 so that the center of gravity of the movable electrode 4 is shifted to the other side (upper side in FIG. 2B).
  • the concave portion 11 is formed on the other side (the upper side of FIG. 2B) opposite to the one side where the concave portion 11 is provided on the movable electrode 4 on the back side of the movable electrode 5. Is shifted to one side (the lower side in FIG. 2B).
  • the upper fixed plate 2a is formed of a glass substrate, and is disposed to face the surfaces of the movable electrodes 4 and 5 with a predetermined interval as shown in FIG. Then, fixed electrodes 20a and 20b are provided on one side and the other side of the boundary line M on the side of the upper fixed plate 2a facing the one movable electrode 4, respectively.
  • the fixed electrodes 20a and 20b are arranged to face the surface 4a of one movable electrode 4 with a predetermined interval.
  • fixed electrodes 21a and 21b are respectively provided on one side and the other side of the boundary line M on the surface side facing the other movable electrode 5 of the upper fixed plate 2a. It is arranged opposite to the surface of the other movable electrode 5 at a predetermined interval.
  • a through hole 22a is formed at a position facing the ground electrode 10 of the upper fixing plate 2a, and the ground electrode 10 is exposed and wired through the through hole 22a.
  • the potential of the ground electrode 10, that is, the potential of the movable electrodes 4 and 5 can be taken out to the outside.
  • the lower fixed plate 2b is formed of a glass substrate, and is disposed so as to face the back surfaces of both movable electrodes 4 and 5 with a predetermined interval as shown in FIG. Then, on the surface of the lower fixed plate 2b, adhesion preventing films 28 and 29 are formed in areas corresponding to the installation areas of the movable electrodes 4 and 5, respectively (see FIG. 1).
  • the acceleration sensor S described above is manufactured as follows.
  • recesses 32a and 32b for moving the movable electrodes 4 and 5 are formed on the front side and the back side of the silicon substrate 1 by wet etching, dry etching, or the like. Moreover, both the movable electrodes 4 and 5 and the recessed part 11 are formed by further etching the back surface side of the silicon substrate 1.
  • the lower fixing plate 2b is anodically bonded to the back side of the silicon substrate 1, and fixed electrodes 20a, 20b, 21a, 21b and through holes 22a are formed on the upper fixing plate 2a. Anodically bonded to the surface side of the silicon substrate 1.
  • both the movable electrodes 4 and 5 swing, so that both end sides of the movable electrodes 4 and 5 and the fixed electrode are moved.
  • the gap d between 20a, 20b, 21a and 21b changes, and the capacitances C1, C2, C3 and C4 between these gaps d change.
  • the capacitance C decreases, and the capacitance C increases as the gap d decreases.
  • the detected capacitances C1, C2, C3, and C4 are sent to an arithmetic circuit constituted by, for example, an ASIC, and the acceleration in the X direction and the acceleration in the Z direction are obtained to indicate the acceleration. Data is output.
  • each acceleration sensor unit Sa, Sb is arranged in a state of being relatively rotated 180 degrees (see FIG. 1).
  • the first acceleration sensor unit Sa and the second acceleration sensor unit Sb are arranged such that the center of gravity positions of the movable electrode 4 and the movable electrode 5 are opposite to the boundary line M.
  • the calculation processing for obtaining the direction and magnitude of the acceleration in the X direction and the Z direction is well known in the art and will not be described.
  • a potential difference is provided between the upper fixed plate (fixed side substrate) 2a and the silicon substrate (movable body substrate) 1, and the through silicones 23a, 23b, 24a, 24b and the silicon substrate (movable body) are provided.
  • the substrate 1 being at the same potential, anodic bonding between the silicon substrate (movable substrate) 1 and the upper fixed plate (fixed side substrate) 2a is performed.
  • anodic bonding between the silicon substrate 1 and the upper fixing plate 2a is performed as follows.
  • the portion corresponding to the movable electrodes 4, 5 in a plan view of the upper fixed plate 2 a that is, the portion where the above-described fixed electrodes 20 a, 20 b, 21 a, 21 b are arranged.
  • a plurality of through silicones 23a, 23b, 24a, 24b are formed by penetrating silicon so as to be exposed on both the front and back surfaces of the upper fixing plate 2a. Then, the back surfaces of the through silicones 23a, 23b, 24a and 24b are fixed electrodes 20a, 20b, 21a and 21b.
  • Such a glass-embedded silicon substrate is formed by, for example, forming a depression on the surface of a flat silicon substrate, superimposing the surface on which the depression of the silicon substrate is formed on the flat glass substrate, and heating the glass substrate to After a part of the substrate is embedded in the recess, the glass substrate can be re-solidified, and the front and back surfaces of the flat substrate can be polished to remove silicon.
  • the silicon substrate 1 to be anodically bonded to the upper fixing plate 2a is formed of silicon.
  • both-surface peripheral portions of the silicon substrate 1 are anodically bonded to the peripheral portions of the upper fixing plate 2a and the lower fixing plate 2b, respectively.
  • an SOI substrate in which a buried insulating layer 1a made of SiO2 is interposed between a silicon active layer 1b made of Si and a support substrate 1c made of Si is used as the silicon substrate 1.
  • the SOI substrate as the silicon substrate 1, at least the portion to be anodically bonded to the upper fixing plate 2a of the silicon substrate 1 is formed of silicon.
  • an aluminum film 25 as a first metal film is formed on the outer exposed surfaces of the penetrating silicons 23a, 23b, 24a, 24b, and the outer peripheral edge of the upper fixing plate 2a (the penetration on the surface of the upper fixing plate 2a).
  • An aluminum film 26 as a second metal film is formed on the silicon 23 a, 23 b, 24 a, 24 b other than the outer exposed surface so as to be separated from the aluminum film 25. In this way, the aluminum film 25 and the aluminum film 26 are formed so as not to contact each other, thereby preventing the aluminum film 25 and the aluminum film 26 from being short-circuited.
  • the through silicones 23a, 23b, 24a, and 24b are grounded through the aluminum film 25 and the metal wiring w2, and the peripheral portion of the silicon substrate 1 is grounded through the metal wiring w3. 24a, 24b and the silicon substrate 1 are set to the same potential.
  • a voltage is applied to the joint portion (peripheral portion) of the upper fixed plate 2a with the silicon substrate 1 via the aluminum film 26 and the metal wiring w1, and the upper fixed plate (fixed side substrate) 2a and the silicon substrate (movable body).
  • a potential difference between the silicon substrate (movable substrate) 1 and the upper portion of the silicon substrate (movable substrate) 1 and the silicon substrate (movable substrate) 1 at the same potential.
  • Anodic bonding with the fixed plate (fixed side substrate) 2a is performed.
  • the silicon substrate (movable substrate) 1 and the upper fixed plate (fixed side substrate) 2a are anodically bonded, the aluminum films (first and second metal films) 25 and 26 are used.
  • a potential difference is provided between the upper fixed plate (fixed side substrate) 2a and the silicon substrate (movable substrate) 1, and the through silicones 23a, 23b, 24a, 24b and the silicon substrate (movable substrate) 1 are the same. The electric potential is set.
  • the aluminum film spaced apart from the aluminum film 25 as the first metal film in a portion other than the outer exposed surface of the through silicon vias 23a, 23b, 24a, 24b on the surface of the upper fixing plate 2a. It is preferable that the shortest distance a between the second metal film 26 formed in this way and the penetrating silicons 23a, 23b, 24a, 24b is larger than the thickness b of the upper fixing plate 2a (a> b). is there.
  • a plurality of through silicons (four in this embodiment) serving as fixed electrodes are provided, and an aluminum film (a plurality of through silicons formed on each through silicon 23a, 23b, 24a, 24b) is provided.
  • the first metal film 25 formed on the outer exposed surface is electrically connected to each other by metal wiring (metal wiring 27 and metal wiring w2) (see FIG. 6).
  • a plurality of aluminum films 25 are electrically connected to each other by the metal wiring (metal wiring 27 and metal wiring w2), so that the silicon substrate (movable body substrate) is obtained at the wafer level as shown in FIG. ) 1 and the upper fixing plate (fixed side substrate) 2a are anodic bonded.
  • a plurality of movable electrodes 4 and 5 are formed so that the above-described acceleration sensor S is formed when the wafer W is divided.
  • the glass substrate (the member that becomes the upper fixing plate 2a when divided) is embedded in the through silicones 23a, 23b, 24a, in which the through silicons 23a, 23b, 24a, 24b to be the fixed electrodes 20a, 20b, 21a, 21b are embedded.
  • 24b face the movable electrodes 4 and 5.
  • an aluminum film (first metal film formed on the outer exposed surface of the plurality of through silicon) 25 is formed on the surface of the glass substrate.
  • a metal wiring 27 is provided between the aluminum films 25 of the adjacent through silicones 23a and 23b and between the aluminum films 25 of the adjacent through silicones 24a and 24b.
  • the plurality of aluminum films 25 are electrically connected to each other by the metal wiring (metal wiring 27 and metal wiring w2), and are electrically connected to the ground electrode Wa disposed on a part of the outer periphery of the wafer W via the metal wiring w2. Yes.
  • the aluminum films (first metal films) 25 formed on the outer exposed surfaces of the through silicon vias 23a, 23b, 24a, and 24b that become the fixed electrodes 20a, 20b, 21a, and 21b over the entire surface of the wafer W are metal wirings. They are electrically connected to each other by (metal wiring 27 and metal wiring w2).
  • an aluminum film is formed on the surface of the glass substrate so as to be separated from the aluminum film 25 as the first metal film in a portion other than the outer exposed surface of the through silicones 23a, 23b, 24a, 24b on the surface of the upper fixing plate 2a. 26) (corresponding to the second metal film formed).
  • the aluminum film 26 is formed on a portion that becomes the peripheral edge of the acceleration sensor S when it is divided on the surface of the glass substrate.
  • the aluminum film 26 is electrically connected to the voltage application electrode Wb disposed so as to surround the outer periphery of the wafer W through the metal wiring w1.
  • the aluminum film 25, the aluminum film 26, the metal wiring 27, the metal wiring w1, and the metal wiring w2 may be formed at the same time, or any one of them may be formed first.
  • the silicon substrate 1 is grounded through the metal wiring w3.
  • anodic bonding of the silicon substrate (movable body substrate) 1 and the upper fixed plate (fixed side substrate) 2a is achieved by connecting a plurality of aluminum films 25 to each other through metal wiring (metal wiring 27 and metal wiring w2). It can be done at the wafer level.
  • the voltage value applied to the aluminum film 26 from the voltage application electrode Wb is exemplified as -600 V.
  • the voltage value can be appropriately set according to the conditions for anodic bonding. It is.
  • anodic bonding between the silicon substrate 1 and the lower fixed plate 2b can be performed by a conventional method. Anodic bonding may be performed by the same method.
  • the portions left on the surface are patterned to remove the other portions.
  • the aluminum films 25, 26, the metal wirings w 1, w 2, w 3 and the metal wiring 27 are removed after anodic bonding.
  • the aluminum film 25 is left and the wire that will be implemented later is used. It is used as a bonding pad.
  • a plurality of acceleration sensors S are manufactured by dividing into individual chips.
  • the potentials of the fixed electrodes 20a and 20b and the fixed electrodes 21a and 21b can be extracted to the outside.
  • a potential difference is provided between the upper fixed plate (fixed side substrate) 2a and the silicon substrate (movable body substrate) 1, and the through silicones 23a, 23b, 24a, 24b and the silicon substrate are provided.
  • the anodic bonding of the silicon substrate (movable substrate) 1 and the upper fixed plate (fixed side substrate) 2a is performed with the (movable substrate) 1 at the same potential. Therefore, anodic bonding can be performed without using a stepping-down structure. As a result, it is possible to suppress the formation of an oxide film at the bonding portion, resulting in poor conduction, and to suppress the stress from acting on the squashed portion and affecting the device characteristics. it can.
  • an acceleration sensor (capacitive device) S capable of suppressing the influence on the device characteristics.
  • a potential difference is provided between the upper fixed plate (fixed side substrate) 2a and the silicon substrate (movable substrate) 1 using the aluminum films (first and second metal films) 25 and 26, while penetrating silicon. Since 23a, 23b, 24a, 24b and the silicon substrate (movable body substrate) 1 are set to the same potential, it is possible to more reliably apply the voltage and make the same potential.
  • film formation and patterning can be easily performed by a method suitable for a MEMS device such as sputtering or vapor deposition.
  • Such patterning by the aluminum films 25 and 26 has an advantage that it is easy to process because both wet etching and dry etching techniques have been established. In particular, it is more effective to use aluminum when forming a minute MEMS device pattern of about several ⁇ m.
  • the shortest distance a between the second metal film formed so as to be separated from the penetrating silicons 23a, 23b, 24a, and 24b is set larger than the thickness b of the upper fixing plate 2a.
  • the anodic bonding of the silicon substrate (movable substrate) 1 and the upper fixed plate (fixed side substrate) 2a is performed at the wafer level, and the fixed electrode 20a,
  • the aluminum films (first metal films) 25 formed on the outer exposed surfaces of the penetrating silicons 23a, 23b, 24a, 24b to be 20b, 21a, 21b are mutually connected by metal wiring (metal wiring 27 and metal wiring w2). Conducted.
  • metal wiring metal wiring 27 and metal wiring w2
  • the acceleration sensor S has an aluminum film (when the silicon substrate 1 and the upper fixing plate 2a are anodically bonded, the through silicones 23a, 23b, 24a, 24b and the silicon substrate 1 are set to the same potential.
  • a metal film 25 is formed on the outer exposed surface of the through silicon vias 23a, 23b, 24a, 24b. That is, the aluminum film 25 formed for the same potential of the through silicones 23a, 23b, 24a, 24b and the silicon substrate (movable substrate) 1 can be used as a wire bonding pad.
  • metal film If aluminum is used as the material of the metal film, film formation and patterning can be easily performed by a method suitable for a MEMS device such as sputtering or vapor deposition, and cost reduction can be achieved because the material is inexpensive. it can.
  • an acceleration sensor that detects acceleration in two directions of the X direction and the Z direction has been exemplified.
  • one of the weight portions is arranged by being rotated 90 degrees in the XY plane, and the Y direction is added.
  • An acceleration sensor that detects acceleration in three directions may be used.
  • the acceleration sensor is exemplified as the capacitive device.
  • the present invention is not limited to this and can be applied to other capacitive devices.
  • the ground electrode is exposed to the outside through the through hole and wired so that the potential of the ground electrode (potential of the movable electrode) can be taken out to the outside.
  • Through silicon may be formed, and the potential of the ground electrode (potential of the movable electrode) may be taken out from the through silicon. This facilitates the manufacture of the glass-embedded silicon substrate.
  • movable electrodes can be changed as appropriate.
  • fixed electrodes can be changed as appropriate.
  • other detailed specifications shape, size, layout, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

Penetrating silicon (23a, 23b, 24a, 24b) formed by causing silicon to penetrate in a manner so as to be exposed at both surfaces of an affixed-side substrate (2a) are considered affixed electrodes (20a, 20b, 21a, 21b), a metal film (25) is formed on the outside exposed surface of the penetrating silicon (23a, 23b, 24a, 24b), and a metal film (26) is formed in a manner so as to be separated from metal film (25) at a position other than the outside exposed surface of the penetrating silicon (23a, 23b, 24a, 24b) at the surface of the affixed-side substrate (2a). Also, during positive electrode connection of a mobile body substrate (1) and the affixed-side substrate (2a), using the metal films (25, 26), an electrical potential difference is provided between the affixed-side substrate (2a) and the mobile body substrate (1), while the penetrating silicon (23a, 23b, 24a, 24b) and the mobile body substrate (1) form in the same electrical potential.

Description

静電容量式デバイスの製造方法Capacitive device manufacturing method
 本発明は、静電容量式デバイスの製造方法に関する。 The present invention relates to a method for manufacturing a capacitance type device.
 従来、静電容量式デバイスとして、可動電極の中央部をビームによって支持するとともに、当該ビームで支持された中央部を境に可動電極の両端側の重心位置を非対称とすることで、加速度が入力された際に可動電極を揺動させるようにしたものが知られている(例えば、特許文献1参照)。 Conventionally, as a capacitive device, the center of the movable electrode is supported by a beam, and the center of gravity on both ends of the movable electrode is asymmetrical with the center supported by the beam as the boundary, so that acceleration is input. There is known one in which a movable electrode is swung when it is applied (see, for example, Patent Document 1).
 この特許文献1では、可動電極を可動体基板となるシリコン基板に形成する一方、可動電極に対向する固定電極を固定側基板となるガラス基板に形成し、両基板を陽極接合により接合している。 In Patent Document 1, a movable electrode is formed on a silicon substrate that is a movable substrate, while a fixed electrode that is opposed to the movable electrode is formed on a glass substrate that is a stationary substrate, and both substrates are joined by anodic bonding. .
 ところで、両基板を陽極接合により接合する際、シリコン基板に設けられた圧接電極とガラス基板に形成された固定電極から延設された端子電極とを踏み潰して導通させることで、シリコン基板と固定電極とが同電位となるようにするのが一般的である。 By the way, when bonding both substrates by anodic bonding, the pressure contact electrode provided on the silicon substrate and the terminal electrode extending from the fixed electrode formed on the glass substrate are crushed and made conductive, thereby fixing the silicon substrate. In general, the electrode is at the same potential.
特開2010-210419号公報JP 2010-210419 A
 しかしながら、上記従来技術のように、電極同士を踏み潰すことでシリコン基板と固定電極とが同電位となるように導通させる方法では、踏み潰しを行う接合面に酸化膜などが形成されて導通不良が生じてしまうおそれがあった。また、このような踏み潰し構造を用いると、踏み潰し部分が応力の発生起点となって構造体に応力が作用し、デバイス特性に影響を与えてしまうおそれがあった。 However, as in the above prior art, in the method in which the silicon substrate and the fixed electrode are made to have the same potential by stepping on the electrodes, an oxide film or the like is formed on the joint surface where the stepping is performed, resulting in poor conduction. Could occur. Further, when such a crushing structure is used, there is a possibility that the crushing portion serves as a starting point of stress and stress acts on the structure to affect the device characteristics.
 そこで、本発明は、デバイス特性に影響を与えてしまうのを抑制することのできる静電容量式デバイスの製造方法を得ることを目的とする。 Therefore, an object of the present invention is to obtain a manufacturing method of a capacitance type device that can suppress the influence on the device characteristics.
 本発明の第1の特徴は、可動電極が形成された可動体基板と、前記可動電極に対向する固定電極が形成され、前記可動体基板に陽極接合される固定側基板と、を備える静電容量式デバイスの製造方法であって、前記固定側基板の両面に露出するようにシリコンを貫通させて形成した貫通シリコンを前記固定電極とするとともに、前記可動体基板の少なくとも前記固定側基板に陽極接合される部位をシリコンで形成し、前記貫通シリコンの外側露出面に第1の金属膜を成膜するとともに、前記固定側基板の表面における前記貫通シリコンの外側露出面以外の部位に、前記第1の金属膜と離間するように第2の金属膜を成膜し、前記可動体基板と前記固定側基板とを陽極接合する際に、前記第1の金属膜および第2の金属膜を用いて、前記固定側基板と前記可動体基板との間に電位差を設ける一方、前記貫通シリコンと前記可動体基板とが同電位となるようにしたことを要旨とする。 A first feature of the present invention is an electrostatic comprising: a movable body substrate on which a movable electrode is formed; and a fixed side substrate on which a fixed electrode facing the movable electrode is formed and is anodically bonded to the movable body substrate. A method of manufacturing a capacitive device, wherein a through silicon formed by penetrating silicon so as to be exposed on both surfaces of the fixed side substrate is used as the fixed electrode, and at least the fixed side substrate of the movable substrate is an anode. A portion to be joined is formed of silicon, a first metal film is formed on the outer exposed surface of the through silicon, and the first metal film is formed on the surface of the fixed side substrate at a portion other than the outer exposed surface of the through silicon. A second metal film is formed so as to be separated from the first metal film, and the first metal film and the second metal film are used when anodic bonding the movable substrate and the stationary substrate. The fixed While a potential difference between the substrate and the movable member substrate, and summarized in that said movable body substrate and the through-silicon was set to be the same potential.
 本発明の第2の特徴は、前記第2の金属膜と前記貫通シリコンとの最短距離を、前記固定側基板の厚さよりも大きくしたことを要旨とする。 The gist of the second feature of the present invention is that the shortest distance between the second metal film and the through silicon is made larger than the thickness of the fixed substrate.
 本発明の第3の特徴は、前記第1の金属膜および第2の金属膜の材料がアルミであることを要旨とする。 The third feature of the present invention is summarized in that the material of the first metal film and the second metal film is aluminum.
 本発明の第4の特徴は、前記可動体基板と前記固定側基板との陽極接合はウエハレベルで行われ、ウエハ全面に亘って前記固定電極となる貫通シリコンの外側露出面に成膜した第1の金属膜どうしが金属配線によって相互に導通されていることを要旨とする。 A fourth feature of the present invention is that the anodic bonding of the movable substrate and the fixed substrate is performed at a wafer level, and the film is formed on the outer exposed surface of the penetrating silicon serving as the fixed electrode over the entire wafer surface. The gist is that the metal films 1 are electrically connected to each other by metal wiring.
 本発明によれば、固定側基板と可動体基板との間に電位差を設けるとともに、貫通シリコンと可動体基板とを同電位にした状態で、可動体基板と固定側基板との陽極接合を行っている。そのため、踏み潰し構造を用いることなく陽極接合を行うことが可能となる。その結果、接合部分に酸化膜が形成されて導通不良が生じてしまうのを抑制することができる上、踏み潰し部分に応力が作用してデバイス特性に影響を与えてしまうのを抑制することができる。 According to the present invention, a potential difference is provided between the fixed substrate and the movable substrate, and anodic bonding between the movable substrate and the fixed substrate is performed with the through silicon and the movable substrate at the same potential. ing. Therefore, anodic bonding can be performed without using a stepping-down structure. As a result, it is possible to suppress the formation of an oxide film at the bonding portion, resulting in poor conduction, and to suppress the stress from acting on the squashed portion and affecting the device characteristics. it can.
 また、金属膜を用いて、固定側基板と可動体基板との間に電位差を設ける一方、貫通シリコンと可動体基板とが同電位となるようにしたため、電圧の印加や同電位化をより確実に行うことができる。 In addition, a metal film is used to provide a potential difference between the fixed-side substrate and the movable substrate, while the through silicon and the movable substrate are set to the same potential. Can be done.
本発明の一実施形態にかかる静電容量式デバイスを示す分解斜視図である。It is a disassembled perspective view which shows the electrostatic capacitance type device concerning one Embodiment of this invention. 図1に示す静電容量式デバイスの可動体基板を示し、(a)は可動体基板の平面図、(b)は可動体基板の底面図である。The movable body board | substrate of the electrostatic capacitance type device shown in FIG. 1 is shown, (a) is a top view of a movable body board | substrate, (b) is a bottom view of a movable body board | substrate. 図1に示す静電容量式デバイスの模式的な断面図である。It is typical sectional drawing of the electrostatic capacitance type device shown in FIG. 図1に示す静電容量式デバイスの製造途中を示すウエハの平面図である。It is a top view of the wafer which shows the middle of manufacture of the electrostatic capacitance type device shown in FIG. 図4中I部の拡大図である。It is an enlarged view of the I section in FIG. 図5中II部の拡大図である。It is an enlarged view of the II section in FIG.
 以下、本発明の実施形態について図面を参照しつつ詳細に説明する。以下では、静電容量式デバイスとして、加速度センサを例示する。また、錘部の可動電極が形成される側をシリコン基板の表面側と定義する。そして、シリコン基板の短手方向をX方向、シリコン基板の長手方向をY方向、シリコン基板の厚さ方向をZ方向として説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. Below, an acceleration sensor is illustrated as an electrostatic capacitance type device. Further, the side of the weight portion on which the movable electrode is formed is defined as the surface side of the silicon substrate. In the following description, the short direction of the silicon substrate is the X direction, the long direction of the silicon substrate is the Y direction and the thickness direction of the silicon substrate is the Z direction.
 本実施形態にかかる加速度センサSは、可動電極4、5を有する可動体基板としてのシリコン基板1と、このシリコン基板1の表面(図1の上面)に陽極接合されて可動電極4、5に対向する固定電極20a、20b、21a、21bが形成された固定側基板としての上部固定板2aと、シリコン基板1の裏面(図1の下面)に接合されて閉塞板となる下部固定板2bとを備えている。このように、本実施形態にかかる加速度センサSは、上部固定板2aと下部固定板2bとの間にシリコン基板1が挟持されたセンサチップとして構成されている。 The acceleration sensor S according to this embodiment includes a silicon substrate 1 as a movable substrate having movable electrodes 4 and 5, and anodically bonded to the surface of the silicon substrate 1 (upper surface in FIG. 1). An upper fixing plate 2a as a fixed-side substrate on which opposed fixed electrodes 20a, 20b, 21a and 21b are formed, and a lower fixing plate 2b which is bonded to the back surface (the lower surface in FIG. 1) of the silicon substrate 1 and serves as a closing plate It has. Thus, the acceleration sensor S according to the present embodiment is configured as a sensor chip in which the silicon substrate 1 is sandwiched between the upper fixed plate 2a and the lower fixed plate 2b.
 シリコン基板1は、シリコンSOI基板により形成されており、図1に示すように、2つの矩形枠3a、3bを有するフレーム3と、矩形枠2a、3bの側壁に対して隙間をあけた状態で矩形枠3a、3bに配置された矩形形状の2つの可動電極4、5とを備えている。 The silicon substrate 1 is formed of a silicon SOI substrate. As shown in FIG. 1, the frame 3 having two rectangular frames 3a and 3b and a side wall of the rectangular frames 2a and 3b are spaced from each other. Two movable electrodes 4 and 5 having a rectangular shape arranged in the rectangular frames 3a and 3b are provided.
 可動電極4、5は、それぞれの側面の対向する二辺のほぼ中央が、一対のビーム6a、6bおよび7a、7bによって矩形枠3a、3bの側壁に連結されている。すなわち、一方の可動電極4がビーム6a、6bによってフレーム3に対して揺動自在に支持されるとともに、他方の可動電極5がビーム7a、7bによってフレーム3に対して揺動自在に支持されている。なお、本実施形態では、ビーム6a、6bおよびビーム7a、7bは、シリコン基板1のZ方向(厚さ方向)に対して上部固定板2aに対向した表面側(図1の上面側)に偏って配置されている。また、可動電極4、5の表裏面には、可動電極4、5が固定電極20a、20b、21a、21bや後述する付着防止膜28,29に直接衝突するのを防止するための突起部41,51が突設されている。また、シリコン基板1のフレーム3表面には接地電極10が形成されている。 The movable electrodes 4 and 5 are connected to the side walls of the rectangular frames 3a and 3b by the pair of beams 6a and 6b and 7a and 7b at substantially the center of the two opposite sides of each side surface. That is, one movable electrode 4 is swingably supported with respect to the frame 3 by the beams 6a and 6b, and the other movable electrode 5 is swingably supported with respect to the frame 3 by the beams 7a and 7b. Yes. In this embodiment, the beams 6a and 6b and the beams 7a and 7b are biased to the surface side (upper surface side in FIG. 1) facing the upper fixing plate 2a with respect to the Z direction (thickness direction) of the silicon substrate 1. Are arranged. Further, on the front and back surfaces of the movable electrodes 4 and 5, the protrusions 41 for preventing the movable electrodes 4 and 5 from directly colliding with the fixed electrodes 20a, 20b, 21a and 21b and the adhesion preventing films 28 and 29 described later. , 51 are projected. A ground electrode 10 is formed on the surface of the frame 3 of the silicon substrate 1.
 また、可動電極4、5は肉厚に形成されており、重りとしての機能も有している。本実施形態では、図2(b)および図3に示すように、可動電極4の裏側における境界線(平面視でビーム6aとビーム6bの中心を結ぶ直線)Mの一方側(図2(b)の下側)に凹部11が形成されており、可動電極4の重心が他方側(図2(b)の上側)に片寄るようにしている。同様に、可動電極5の裏側における可動電極4に凹部11を設けた一方側とは反対となる他方側(図2(b)の上側)に凹部11が形成されており、可動電極5の重心が一方側(図2(b)の下側)に片寄るようにしている。そして、X方向もしくはZ方向に加速度が印加された場合に、X方向およびZ方向に印加される加速度を検出できるようにしている。 The movable electrodes 4 and 5 are formed thick and have a function as weights. In this embodiment, as shown in FIGS. 2B and 3, one side of a boundary line M (a straight line connecting the centers of the beam 6 a and the beam 6 b in a plan view) M on the back side of the movable electrode 4 (FIG. 2B ) (Lower side) is formed with a recess 11 so that the center of gravity of the movable electrode 4 is shifted to the other side (upper side in FIG. 2B). Similarly, the concave portion 11 is formed on the other side (the upper side of FIG. 2B) opposite to the one side where the concave portion 11 is provided on the movable electrode 4 on the back side of the movable electrode 5. Is shifted to one side (the lower side in FIG. 2B). When acceleration is applied in the X direction or the Z direction, the acceleration applied in the X direction and the Z direction can be detected.
 上部固定板2aは、ガラス基板により形成されており、図3に示すように、可動電極4、5の表面に対して所定間隔をあけて対向配置されている。そして、上部固定板2aの一方の可動電極4と対向する面側には、境界線Mの一方側および他方側にそれぞれ固定電極20a、20bが設けられている。この固定電極20a、20bは、一方の可動電極4の表面4aに対して所定の間隔をあけて対向配置されている。 The upper fixed plate 2a is formed of a glass substrate, and is disposed to face the surfaces of the movable electrodes 4 and 5 with a predetermined interval as shown in FIG. Then, fixed electrodes 20a and 20b are provided on one side and the other side of the boundary line M on the side of the upper fixed plate 2a facing the one movable electrode 4, respectively. The fixed electrodes 20a and 20b are arranged to face the surface 4a of one movable electrode 4 with a predetermined interval.
 また、上部固定板2aの他方の可動電極5と対向する表面側には、境界線Mの一方側および他方側にそれぞれ固定電極21a、21bが設けられており、この固定電極21a、21bは、他方の可動電極5の表面に対して所定間隔をあけて対向配置されている。 Further, fixed electrodes 21a and 21b are respectively provided on one side and the other side of the boundary line M on the surface side facing the other movable electrode 5 of the upper fixed plate 2a. It is arranged opposite to the surface of the other movable electrode 5 at a predetermined interval.
 さらに、図1に示すように、上部固定板2aの接地電極10と対向する位置には、スルーホール22aが形成されており、このスルーホール22aを介して接地電極10を外部に露出、配線させることで、接地電極10の電位、すなわち、可動電極4,5の電位を外部に取り出せるようにしている。 Further, as shown in FIG. 1, a through hole 22a is formed at a position facing the ground electrode 10 of the upper fixing plate 2a, and the ground electrode 10 is exposed and wired through the through hole 22a. Thus, the potential of the ground electrode 10, that is, the potential of the movable electrodes 4 and 5 can be taken out to the outside.
 下部固定板2bは、ガラス基板により形成されており、図3に示すように、双方の可動電極4、5の裏面に所定間隔をあけて対向するように配置されている。そして、この下部固定板2bの表面には、可動電極4、5の設置領域に対応した領域に付着防止膜28,29がそれぞれ形成されている(図1参照)。 The lower fixed plate 2b is formed of a glass substrate, and is disposed so as to face the back surfaces of both movable electrodes 4 and 5 with a predetermined interval as shown in FIG. Then, on the surface of the lower fixed plate 2b, adhesion preventing films 28 and 29 are formed in areas corresponding to the installation areas of the movable electrodes 4 and 5, respectively (see FIG. 1).
 上述した加速度センサSは以下のようにして製造される。 The acceleration sensor S described above is manufactured as follows.
 まず、図3に示すように、シリコン基板1の表面側および裏面側に、湿式エッチングやドライエッチング等により可動電極4、5が変位するための凹部32a、32bを形成する。また、シリコン基板1の裏面側を更にエッチングすることで、双方の可動電極4、5および凹部11を形成する。 First, as shown in FIG. 3, recesses 32a and 32b for moving the movable electrodes 4 and 5 are formed on the front side and the back side of the silicon substrate 1 by wet etching, dry etching, or the like. Moreover, both the movable electrodes 4 and 5 and the recessed part 11 are formed by further etching the back surface side of the silicon substrate 1.
 その後、下部固定板2bをシリコン基板1の裏面側に陽極接合するとともに、上部固定板2aに、固定電極20a、20b、21a、21bおよびスルーホール22aを形成しておき、この上部固定板2aをシリコン基板1の表面側に陽極接合する。 Thereafter, the lower fixing plate 2b is anodically bonded to the back side of the silicon substrate 1, and fixed electrodes 20a, 20b, 21a, 21b and through holes 22a are formed on the upper fixing plate 2a. Anodically bonded to the surface side of the silicon substrate 1.
 このように構成された加速度センサSは、図3の矢印kで示す加速度が印加されると、双方の可動電極4、5がそれぞれ揺動運動し、可動電極4、5の両端側と固定電極20a、20b、21a、21bとの間のギャップdが変化し、それらのギャップd間の静電容量C1、C2、C3、C4が変化する。 In the acceleration sensor S configured as described above, when the acceleration indicated by the arrow k in FIG. 3 is applied, both the movable electrodes 4 and 5 swing, so that both end sides of the movable electrodes 4 and 5 and the fixed electrode are moved. The gap d between 20a, 20b, 21a and 21b changes, and the capacitances C1, C2, C3 and C4 between these gaps d change.
 このときの静電容量Cは、C=ε×S/dとなることが知られており(ε:誘電率、S:電極面積、d:ギャップ)、この式からギャップdが大きくなると静電容量Cは減少し、ギャップdが小さくなると静電容量Cは増加することになる。 The capacitance C at this time is known to be C = ε × S / d (ε: dielectric constant, S: electrode area, d: gap), and the electrostatic capacity increases as the gap d increases from this equation. The capacitance C decreases, and the capacitance C increases as the gap d decreases.
 本実施形態では、検出された静電容量C1、C2、C3、C4が、例えば、ASICで構成される演算回路に送られてX方向の加速度およびZ方向の加速度が求められ、当該加速度を示すデータが出力されるようになっている。 In the present embodiment, the detected capacitances C1, C2, C3, and C4 are sent to an arithmetic circuit constituted by, for example, an ASIC, and the acceleration in the X direction and the acceleration in the Z direction are obtained to indicate the acceleration. Data is output.
 ところで、本実施形態では、一方の可動電極4を備えた第1の加速度センサ単体Saと、他方の可動電極5を備えた第2の加速度センサ単体Sbとを同一チップ面内に配置するとともに、それぞれの加速度センサ単体Sa、Sbを相対的に180度回転した状態で配置している(図1参照)。このように、第1の加速度センサ単体Saと第2の加速度センサ単体Sbとを、それぞれの可動電極4および可動電極5の重心位置が境界線Mに対して互いに反対側に位置するように配置することで、X方向およびZ方向の加速度を検出できるようにしている。なお、X方向およびZ方向の加速度の向き及び大きさを求める演算処理については従来周知であるため説明を省略する。 By the way, in this embodiment, while arrange | positioning 1st acceleration sensor single-piece | unit Sa provided with one movable electrode 4 and 2nd acceleration sensor single-piece | unit Sb provided with the other movable electrode 5, in the same chip surface, Each acceleration sensor unit Sa, Sb is arranged in a state of being relatively rotated 180 degrees (see FIG. 1). In this way, the first acceleration sensor unit Sa and the second acceleration sensor unit Sb are arranged such that the center of gravity positions of the movable electrode 4 and the movable electrode 5 are opposite to the boundary line M. By doing so, the acceleration in the X direction and the Z direction can be detected. The calculation processing for obtaining the direction and magnitude of the acceleration in the X direction and the Z direction is well known in the art and will not be described.
 ここで、本実施形態では、上部固定板(固定側基板)2aとシリコン基板(可動体基板)1との間に電位差を設けるとともに、貫通シリコン23a、23b、24a、24bとシリコン基板(可動体基板)1とを同電位にした状態で、シリコン基板(可動体基板)1と上部固定板(固定側基板)2aとの陽極接合を行うようにしている。 Here, in this embodiment, a potential difference is provided between the upper fixed plate (fixed side substrate) 2a and the silicon substrate (movable body substrate) 1, and the through silicones 23a, 23b, 24a, 24b and the silicon substrate (movable body) are provided. With the substrate 1 being at the same potential, anodic bonding between the silicon substrate (movable substrate) 1 and the upper fixed plate (fixed side substrate) 2a is performed.
 具体的には、以下のようにしてシリコン基板1と上部固定板2aとの陽極接合を行うようにしている。 Specifically, anodic bonding between the silicon substrate 1 and the upper fixing plate 2a is performed as follows.
 まず、図1および図3に示すように、上部固定板2aの平面視で可動電極4、5と対応する部位、すなわち、上述した固定電極20a、20b、21a、21bが配置される部位に、上部固定板2aの表裏両面に露出するようにシリコンを貫通させて複数の貫通シリコン23a、23b、24a、24bを形成する。そして、この貫通シリコン23a、23b、24a、24bの裏面側が固定電極20a、20b、21a、21bとなるようにする。 First, as shown in FIG. 1 and FIG. 3, the portion corresponding to the movable electrodes 4, 5 in a plan view of the upper fixed plate 2 a, that is, the portion where the above-described fixed electrodes 20 a, 20 b, 21 a, 21 b are arranged, A plurality of through silicones 23a, 23b, 24a, 24b are formed by penetrating silicon so as to be exposed on both the front and back surfaces of the upper fixing plate 2a. Then, the back surfaces of the through silicones 23a, 23b, 24a and 24b are fixed electrodes 20a, 20b, 21a and 21b.
 このようなガラス埋込シリコン基板は、例えば、平坦なシリコン基板の表面に窪みを形成し、平坦なガラス基板にシリコン基板の窪みが形成された面を重ね合わせ、ガラス基板を加熱することでガラス基板の一部をこの窪みの中に埋め込んだ後、ガラス基板を再固化させ、フラット基板の表裏面を研磨してシリコンを除去することで形成することができる。 Such a glass-embedded silicon substrate is formed by, for example, forming a depression on the surface of a flat silicon substrate, superimposing the surface on which the depression of the silicon substrate is formed on the flat glass substrate, and heating the glass substrate to After a part of the substrate is embedded in the recess, the glass substrate can be re-solidified, and the front and back surfaces of the flat substrate can be polished to remove silicon.
 そして、シリコン基板1の少なくとも上部固定板2aに陽極接合される部位をシリコンで形成する。 Then, at least a portion of the silicon substrate 1 to be anodically bonded to the upper fixing plate 2a is formed of silicon.
 本実施形態では、シリコン基板1の両面周縁部が上部固定板2aおよび下部固定板2bの周縁部にそれぞれ陽極接合されるようになっている。このシリコン基板1として、本実施形態では、Siからなるシリコン活性層1bとSiからなる支持基板1cとの間にSiO2からなる埋込絶縁層1aが介在するSOI基板を用いている。 In the present embodiment, both-surface peripheral portions of the silicon substrate 1 are anodically bonded to the peripheral portions of the upper fixing plate 2a and the lower fixing plate 2b, respectively. In this embodiment, an SOI substrate in which a buried insulating layer 1a made of SiO2 is interposed between a silicon active layer 1b made of Si and a support substrate 1c made of Si is used as the silicon substrate 1.
 このように、シリコン基板1としてSOI基板を用いることで、シリコン基板1の少なくとも上部固定板2aに陽極接合される部位がシリコンで形成されることとなる。 As described above, by using the SOI substrate as the silicon substrate 1, at least the portion to be anodically bonded to the upper fixing plate 2a of the silicon substrate 1 is formed of silicon.
 そして、貫通シリコン23a、23b、24a、24bの外側露出面に第1の金属膜としてのアルミ膜25を成膜するとともに、上部固定板2aの外側面周縁部(上部固定板2aの表面における貫通シリコン23a、23b、24a、24bの外側露出面以外の部位)に、第2の金属膜としてのアルミ膜26をアルミ膜25と離間するように成膜する。このように、アルミ膜25とアルミ膜26とを互いに接触しないように成膜することで、アルミ膜25とアルミ膜26とが短絡してしまうのを抑制している。 Then, an aluminum film 25 as a first metal film is formed on the outer exposed surfaces of the penetrating silicons 23a, 23b, 24a, 24b, and the outer peripheral edge of the upper fixing plate 2a (the penetration on the surface of the upper fixing plate 2a). An aluminum film 26 as a second metal film is formed on the silicon 23 a, 23 b, 24 a, 24 b other than the outer exposed surface so as to be separated from the aluminum film 25. In this way, the aluminum film 25 and the aluminum film 26 are formed so as not to contact each other, thereby preventing the aluminum film 25 and the aluminum film 26 from being short-circuited.
 そして、貫通シリコン23a、23b、24a、24bをアルミ膜25および金属配線w2を介してアースするとともに、シリコン基板1の周縁部を金属配線w3を介してアースすることで、貫通シリコン23a、23b、24a、24bとシリコン基板1とが同電位となるようにする。 The through silicones 23a, 23b, 24a, and 24b are grounded through the aluminum film 25 and the metal wiring w2, and the peripheral portion of the silicon substrate 1 is grounded through the metal wiring w3. 24a, 24b and the silicon substrate 1 are set to the same potential.
 そして、上部固定板2aのシリコン基板1との接合部(周縁部)にアルミ膜26および金属配線w1を介して電圧を印加して、上部固定板(固定側基板)2aとシリコン基板(可動体基板)1との間に電位差を設けることで、貫通シリコン23a、23b、24a、24bとシリコン基板(可動体基板)1とを同電位にした状態で、シリコン基板(可動体基板)1と上部固定板(固定側基板)2aとの陽極接合を行う。 Then, a voltage is applied to the joint portion (peripheral portion) of the upper fixed plate 2a with the silicon substrate 1 via the aluminum film 26 and the metal wiring w1, and the upper fixed plate (fixed side substrate) 2a and the silicon substrate (movable body). By providing a potential difference between the silicon substrate (movable substrate) 1 and the upper portion of the silicon substrate (movable substrate) 1 and the silicon substrate (movable substrate) 1 at the same potential. Anodic bonding with the fixed plate (fixed side substrate) 2a is performed.
 すなわち、本実施形態では、シリコン基板(可動体基板)1と上部固定板(固定側基板)2aとを陽極接合する際に、アルミ膜(第1および第2の金属膜)25,26を用いて、上部固定板(固定側基板)2aとシリコン基板(可動体基板)1との間に電位差を設けるとともに、貫通シリコン23a、23b、24a、24bとシリコン基板(可動体基板)1とが同電位となるようにしている。 That is, in this embodiment, when the silicon substrate (movable substrate) 1 and the upper fixed plate (fixed side substrate) 2a are anodically bonded, the aluminum films (first and second metal films) 25 and 26 are used. In addition, a potential difference is provided between the upper fixed plate (fixed side substrate) 2a and the silicon substrate (movable substrate) 1, and the through silicones 23a, 23b, 24a, 24b and the silicon substrate (movable substrate) 1 are the same. The electric potential is set.
 このとき、図3に示すように、アルミ膜(上部固定板2aの表面における貫通シリコン23a、23b、24a、24bの外側露出面以外の部位に第1の金属膜としてのアルミ膜25と離間するように成膜した第2の金属膜)26と貫通シリコン23a、23b、24a、24bとの最短距離aを、上部固定板2aの厚さbよりも大きく(a>b)するのが好適である。 At this time, as shown in FIG. 3, the aluminum film (spaced apart from the aluminum film 25 as the first metal film in a portion other than the outer exposed surface of the through silicon vias 23a, 23b, 24a, 24b on the surface of the upper fixing plate 2a). It is preferable that the shortest distance a between the second metal film 26 formed in this way and the penetrating silicons 23a, 23b, 24a, 24b is larger than the thickness b of the upper fixing plate 2a (a> b). is there.
 上部固定板2aとシリコン基板1との接合部と、貫通シリコン23a、23b、24a、24bの貫通部には共にガラスとシリコンの界面が生じているため、a<bとした場合、上部固定板2aのアルミ膜26に電圧を印加した際に、距離が近い貫通シリコン23a、23b、24a、24bの貫通部で接合反応が起こりやすくなってしまう。しかしながら、a>bとすれば、貫通シリコン23a、23b、24a、24bの貫通部で接合反応が起こってしまうのを抑制することができ、積極的に上部固定板2aとシリコン基板1との接合部で接合反応を起こさせることができるようになる。 Since an interface between glass and silicon is generated at the junction between the upper fixing plate 2a and the silicon substrate 1 and the through portions of the through silicones 23a, 23b, 24a, and 24b, when a <b, the upper fixing plate When a voltage is applied to the aluminum film 26 of 2a, a bonding reaction is likely to occur at the through portions of the through silicones 23a, 23b, 24a, and 24b that are close to each other. However, if a> b, it is possible to suppress a bonding reaction from occurring in the through portions of the through silicones 23a, 23b, 24a, and 24b, and to actively join the upper fixing plate 2a and the silicon substrate 1. It becomes possible to cause a bonding reaction at the part.
 また、本実施形態では、固定電極となる貫通シリコンを複数(本実施形態では4つ)備えており、それぞれの貫通シリコン23a、23b、24a、24bに成膜したアルミ膜(複数の貫通シリコンの外側露出面に成膜した第1の金属膜)25を金属配線(金属配線27および金属配線w2)によって相互に導通させている(図6参照)。 Further, in this embodiment, a plurality of through silicons (four in this embodiment) serving as fixed electrodes are provided, and an aluminum film (a plurality of through silicons formed on each through silicon 23a, 23b, 24a, 24b) is provided. The first metal film 25 formed on the outer exposed surface is electrically connected to each other by metal wiring (metal wiring 27 and metal wiring w2) (see FIG. 6).
 このように、本実施形態では、複数のアルミ膜25を金属配線(金属配線27および金属配線w2)によって相互に導通させることで、図4に示すようなウエハレベルで、シリコン基板(可動体基板)1と上部固定板(固定側基板)2aとの陽極接合を行っている。 As described above, in the present embodiment, a plurality of aluminum films 25 are electrically connected to each other by the metal wiring (metal wiring 27 and metal wiring w2), so that the silicon substrate (movable body substrate) is obtained at the wafer level as shown in FIG. ) 1 and the upper fixing plate (fixed side substrate) 2a are anodic bonded.
 以下、ウエハレベルでの陽極接合について説明する。 Hereinafter, anodic bonding at the wafer level will be described.
 まず、1枚のウエハWをエッチング等により加工することで、分断した際に上述の加速度センサSが形成されるように可動電極4,5等を複数形成する。 First, by processing one wafer W by etching or the like, a plurality of movable electrodes 4 and 5 are formed so that the above-described acceleration sensor S is formed when the wafer W is divided.
 次に、固定電極20a、20b、21a、21bとなる貫通シリコン23a、23b、24a、24bが埋め込まれたガラス基板(分断した際に上部固定板2aとなる部材)を貫通シリコン23a、23b、24a、24bが可動電極4,5と対向するように載置する。 Next, the glass substrate (the member that becomes the upper fixing plate 2a when divided) is embedded in the through silicones 23a, 23b, 24a, in which the through silicons 23a, 23b, 24a, 24b to be the fixed electrodes 20a, 20b, 21a, 21b are embedded. 24b face the movable electrodes 4 and 5.
 次に、ガラス基板の表面にアルミ膜(複数の貫通シリコンの外側露出面に成膜した第1の金属膜)25を成膜する。このとき、隣り合う貫通シリコン23a、23bのアルミ膜25の間、および隣り合う貫通シリコン24a、24bのアルミ膜25の間に、双方のアルミ膜25を相互に導通させる金属配線27を設けている。さらに、複数のアルミ膜25を金属配線(金属配線27および金属配線w2)によって相互に導通させるとともに、金属配線w2を介してウエハWの外周の一部に配置されたアース電極Waに導通させている。すなわち、ウエハW全面に亘って固定電極20a、20b、21a、21bとなる貫通シリコン23a、23b、24a、24bの外側露出面に成膜したアルミ膜(第1の金属膜)25どうしが金属配線(金属配線27および金属配線w2)によって相互に導通されている。 Next, an aluminum film (first metal film formed on the outer exposed surface of the plurality of through silicon) 25 is formed on the surface of the glass substrate. At this time, a metal wiring 27 is provided between the aluminum films 25 of the adjacent through silicones 23a and 23b and between the aluminum films 25 of the adjacent through silicones 24a and 24b. . Further, the plurality of aluminum films 25 are electrically connected to each other by the metal wiring (metal wiring 27 and metal wiring w2), and are electrically connected to the ground electrode Wa disposed on a part of the outer periphery of the wafer W via the metal wiring w2. Yes. That is, the aluminum films (first metal films) 25 formed on the outer exposed surfaces of the through silicon vias 23a, 23b, 24a, and 24b that become the fixed electrodes 20a, 20b, 21a, and 21b over the entire surface of the wafer W are metal wirings. They are electrically connected to each other by (metal wiring 27 and metal wiring w2).
 また、ガラス基板の表面にアルミ膜(上部固定板2aの表面における貫通シリコン23a、23b、24a、24bの外側露出面以外の部位に第1の金属膜としてのアルミ膜25と離間するように成膜した第2の金属膜に相当)26を成膜する。このアルミ膜26は、ガラス基板表面における分断した際に加速度センサSの周縁部となる部位に成膜される。そして、このアルミ膜26は、ウエハWの外周を取り囲むように配置された電圧印加電極Wbに金属配線w1を介して導通されている。 Further, an aluminum film is formed on the surface of the glass substrate so as to be separated from the aluminum film 25 as the first metal film in a portion other than the outer exposed surface of the through silicones 23a, 23b, 24a, 24b on the surface of the upper fixing plate 2a. 26) (corresponding to the second metal film formed). The aluminum film 26 is formed on a portion that becomes the peripheral edge of the acceleration sensor S when it is divided on the surface of the glass substrate. The aluminum film 26 is electrically connected to the voltage application electrode Wb disposed so as to surround the outer periphery of the wafer W through the metal wiring w1.
 なお、アルミ膜25,アルミ膜26,金属配線27,金属配線w1および金属配線w2は、同時に成膜してもよいし、いずれかを先に成膜するようにしてもよい。 The aluminum film 25, the aluminum film 26, the metal wiring 27, the metal wiring w1, and the metal wiring w2 may be formed at the same time, or any one of them may be formed first.
 また、シリコン基板1は、上述したように、金属配線w3を介してアースされている。 Further, as described above, the silicon substrate 1 is grounded through the metal wiring w3.
 かかる状態で、上部固定板2aのシリコン基板1との接合部(周縁部)に電圧印加電極Wbを介して電圧を印加して、上部固定板(固定側基板)2aとシリコン基板(可動体基板)1との間に電位差を設けることで、貫通シリコン23a、23b、24a、24bとシリコン基板(可動体基板)1とを同電位にした状態で一括して陽極接合を行うことができる。 In this state, a voltage is applied to the joint portion (peripheral portion) of the upper fixed plate 2a with the silicon substrate 1 via the voltage application electrode Wb, and the upper fixed plate (fixed side substrate) 2a and the silicon substrate (movable substrate). ) By providing a potential difference with respect to 1, anodic bonding can be performed in a lump with the through silicones 23 a, 23 b, 24 a, 24 b and the silicon substrate (movable substrate) 1 at the same potential.
 すなわち、複数のアルミ膜25を金属配線(金属配線27および金属配線w2)によって相互に導通させることで、シリコン基板(可動体基板)1と上部固定板(固定側基板)2aとの陽極接合をウエハレベルで行うことができる。 That is, anodic bonding of the silicon substrate (movable body substrate) 1 and the upper fixed plate (fixed side substrate) 2a is achieved by connecting a plurality of aluminum films 25 to each other through metal wiring (metal wiring 27 and metal wiring w2). It can be done at the wafer level.
 なお、本実施形態では、電圧印加電極Wbからアルミ膜26に印加する電圧値を-600Vに設定したものを例示したが、電圧値は陽極接合する際の条件に応じて適宜設定することが可能である。 In the present embodiment, the voltage value applied to the aluminum film 26 from the voltage application electrode Wb is exemplified as -600 V. However, the voltage value can be appropriately set according to the conditions for anodic bonding. It is.
 また、下部固定板2b側は固定電極や可動電極が設けられない部分であるため、シリコン基板1と下部固定板2bとの陽極接合は従来の方法で行うことができるが、上部固定板2aと同様の方法で陽極接合を行ってもよい。 Since the lower fixed plate 2b is a portion where no fixed electrode or movable electrode is provided, anodic bonding between the silicon substrate 1 and the lower fixed plate 2b can be performed by a conventional method. Anodic bonding may be performed by the same method.
 そして、アルミ膜25、26や金属配線w1、w2、w3および金属配線27のうち、表面に残す部分にパターニングを行ってその他の部分を除去する。 Then, of the aluminum films 25 and 26, the metal wirings w1, w2, and w3 and the metal wiring 27, the portions left on the surface are patterned to remove the other portions.
 本来、アルミ膜25、26や金属配線w1、w2、w3および金属配線27は、陽極接合した後に除去されるものであるが、本実施形態では、アルミ膜25を残して、後ほど施行されるワイヤーボンディングのパッドとして用いるようにしている。 Originally, the aluminum films 25, 26, the metal wirings w 1, w 2, w 3 and the metal wiring 27 are removed after anodic bonding. However, in this embodiment, the aluminum film 25 is left and the wire that will be implemented later is used. It is used as a bonding pad.
 そして、ウエハレベルでの陽極接合を行った後に、個々のチップに分断することで複数の加速度センサSが製造される。 Then, after anodic bonding at the wafer level, a plurality of acceleration sensors S are manufactured by dividing into individual chips.
 なお、残されたアルミ膜25をワイヤーボンディングパッドとして活用することで、固定電極20a、20bおよび固定電極21a、21bの電位を外部に取り出せるようになる。 In addition, by using the remaining aluminum film 25 as a wire bonding pad, the potentials of the fixed electrodes 20a and 20b and the fixed electrodes 21a and 21b can be extracted to the outside.
 以上説明したように、本実施形態では、上部固定板(固定側基板)2aとシリコン基板(可動体基板)1との間に電位差を設けるとともに、貫通シリコン23a、23b、24a、24bとシリコン基板(可動体基板)1とを同電位にした状態で、シリコン基板(可動体基板)1と上部固定板(固定側基板)2aとの陽極接合を行っている。そのため、踏み潰し構造を用いることなく陽極接合を行うことが可能となる。その結果、接合部分に酸化膜が形成されて導通不良が生じてしまうのを抑制することができる上、踏み潰し部分に応力が作用してデバイス特性に影響を与えてしまうのを抑制することができる。 As described above, in this embodiment, a potential difference is provided between the upper fixed plate (fixed side substrate) 2a and the silicon substrate (movable body substrate) 1, and the through silicones 23a, 23b, 24a, 24b and the silicon substrate are provided. The anodic bonding of the silicon substrate (movable substrate) 1 and the upper fixed plate (fixed side substrate) 2a is performed with the (movable substrate) 1 at the same potential. Therefore, anodic bonding can be performed without using a stepping-down structure. As a result, it is possible to suppress the formation of an oxide film at the bonding portion, resulting in poor conduction, and to suppress the stress from acting on the squashed portion and affecting the device characteristics. it can.
 このように、本実施形態によれば、デバイス特性に影響を与えてしまうのを抑制することのできる加速度センサ(静電容量式デバイス)Sを得ることができる。 As described above, according to the present embodiment, it is possible to obtain an acceleration sensor (capacitive device) S capable of suppressing the influence on the device characteristics.
 また、アルミ膜(第1および第2の金属膜)25、26を用いて、上部固定板(固定側基板)2aとシリコン基板(可動体基板)1との間に電位差を設ける一方、貫通シリコン23a、23b、24a、24bとシリコン基板(可動体基板)1とが同電位となるようにしたため、電圧の印加や同電位化をより確実に行うことができる。また、スパッタリングや蒸着法等MEMSデバイスに適した方法で成膜やパターニングを容易に行うことができるようになる。 In addition, a potential difference is provided between the upper fixed plate (fixed side substrate) 2a and the silicon substrate (movable substrate) 1 using the aluminum films (first and second metal films) 25 and 26, while penetrating silicon. Since 23a, 23b, 24a, 24b and the silicon substrate (movable body substrate) 1 are set to the same potential, it is possible to more reliably apply the voltage and make the same potential. In addition, film formation and patterning can be easily performed by a method suitable for a MEMS device such as sputtering or vapor deposition.
 このとき、第1および第2の金属膜の材料としてアルミを用いれば、材料的にも安価なためコスト低減を達成することができる。このようなアルミ膜25、26によるパターニングは、ウエットエッチングおよびドライエッチング共に技術が確立されているため、加工がし易いという利点もある。特に、数μm程度の微細なMEMSデバイスパターン形成の際にアルミを用いるとより効果的である。 At this time, if aluminum is used as the material of the first and second metal films, the cost can be reduced because the material is inexpensive. Such patterning by the aluminum films 25 and 26 has an advantage that it is easy to process because both wet etching and dry etching techniques have been established. In particular, it is more effective to use aluminum when forming a minute MEMS device pattern of about several μm.
 また、本実施形態によれば、アルミ膜26、すなわち、上部固定板2aの表面における貫通シリコン23a、23b、24a、24bの外側露出面以外の部位に第1の金属膜としてのアルミ膜25と離間するように成膜した第2の金属膜と、貫通シリコン23a、23b、24a、24bとの最短距離aを、上部固定板2aの厚さbよりも大きくしている。 Further, according to the present embodiment, the aluminum film 26, that is, the aluminum film 25 as the first metal film on the surface of the upper fixing plate 2a other than the outer exposed surface of the through silicones 23a, 23b, 24a, 24b, The shortest distance a between the second metal film formed so as to be separated from the penetrating silicons 23a, 23b, 24a, and 24b is set larger than the thickness b of the upper fixing plate 2a.
 そのため、上部固定板2aのアルミ膜26に電圧を印加した際に、貫通シリコン23a、23b、24a、24bの貫通部で接合反応が起こってしまうのが抑制され、積極的に上部固定板2aとシリコン基板1との接合部で接合反応を起こさせることができるようになる。すなわち、シリコン基板1と上部固定板2aの接合させたい部位における接合反応をより確実に起こすことができるようになる。 Therefore, when a voltage is applied to the aluminum film 26 of the upper fixing plate 2a, it is possible to suppress the occurrence of a bonding reaction in the through portions of the through silicones 23a, 23b, 24a, and 24b. It becomes possible to cause a bonding reaction at the bonding portion with the silicon substrate 1. That is, it is possible to cause a bonding reaction more reliably at a portion where the silicon substrate 1 and the upper fixing plate 2a are to be bonded.
 また、本実施形態によれば、ウエハレベルで、シリコン基板(可動体基板)1と上部固定板(固定側基板)2aとの陽極接合を行っており、ウエハW全面に亘って固定電極20a、20b、21a、21bとなる貫通シリコン23a、23b、24a、24bの外側露出面に成膜したアルミ膜(第1の金属膜)25どうしを金属配線(金属配線27および金属配線w2)によって相互に導通している。このように、複数の加速度センサSの陽極接合をウエハ上で一括して行うことで、デバイス特性に影響を与えてしまうのを抑制することのできる加速度センサSの生産性をより一層向上させることができる。 Further, according to the present embodiment, the anodic bonding of the silicon substrate (movable substrate) 1 and the upper fixed plate (fixed side substrate) 2a is performed at the wafer level, and the fixed electrode 20a, The aluminum films (first metal films) 25 formed on the outer exposed surfaces of the penetrating silicons 23a, 23b, 24a, 24b to be 20b, 21a, 21b are mutually connected by metal wiring (metal wiring 27 and metal wiring w2). Conducted. In this way, by performing anodic bonding of a plurality of acceleration sensors S collectively on the wafer, it is possible to further improve the productivity of the acceleration sensor S that can suppress the influence on the device characteristics. Can do.
 また、本実施形態にかかる加速度センサSは、アルミ膜(シリコン基板1と上部固定板2aとを陽極接合する際に、貫通シリコン23a、23b、24a、24bとシリコン基板1とを同電位化するために貫通シリコン23a、23b、24a、24bの外側露出面に成膜した金属膜)25を備えている。すなわち、貫通シリコン23a、23b、24a、24bとシリコン基板(可動体基板)1との同電位化のために成膜したアルミ膜25をワイヤーボンディングパッドとして活用できるようにしている。 In addition, the acceleration sensor S according to the present embodiment has an aluminum film (when the silicon substrate 1 and the upper fixing plate 2a are anodically bonded, the through silicones 23a, 23b, 24a, 24b and the silicon substrate 1 are set to the same potential. For this purpose, a metal film 25 is formed on the outer exposed surface of the through silicon vias 23a, 23b, 24a, 24b. That is, the aluminum film 25 formed for the same potential of the through silicones 23a, 23b, 24a, 24b and the silicon substrate (movable substrate) 1 can be used as a wire bonding pad.
 その結果、ワイヤーボンディングのために再度金属膜などを成膜する必要がなくなり、パターニングやエッチング工程を省略することができ、工程の簡略化を図ることができる。 As a result, there is no need to form a metal film or the like again for wire bonding, the patterning or etching process can be omitted, and the process can be simplified.
 この金属膜の材料としてアルミを用いれば、スパッタリングや蒸着法等MEMSデバイスに適した方法で成膜やパターニングを容易に行うことができる上、材料的にも安価なためコスト低減を達成することができる。 If aluminum is used as the material of the metal film, film formation and patterning can be easily performed by a method suitable for a MEMS device such as sputtering or vapor deposition, and cost reduction can be achieved because the material is inexpensive. it can.
 以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態には限定されず、種々の変形が可能である。 The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above embodiments, and various modifications can be made.
 例えば、上記実施形態では、X方向とZ方向の2方向の加速度を検出する加速度センサを例示したが、錘部の1つをXY平面内で90度回転させて配置し、Y方向を加えた3方向の加速度を検出する加速度センサとしてもよい。 For example, in the above-described embodiment, an acceleration sensor that detects acceleration in two directions of the X direction and the Z direction has been exemplified. However, one of the weight portions is arranged by being rotated 90 degrees in the XY plane, and the Y direction is added. An acceleration sensor that detects acceleration in three directions may be used.
 また、上記実施形態では、静電容量式デバイスとして加速度センサを例示したが、これに限ることなく、その他の静電容量式デバイスであっても本発明を適用することができる。 In the above embodiment, the acceleration sensor is exemplified as the capacitive device. However, the present invention is not limited to this and can be applied to other capacitive devices.
 また、上記実施形態では、スルーホールを介して接地電極を外部に露出、配線させることで、接地電極の電位(可動電極の電位)を外部に取り出せるようにしたものを例示したが、スルーホールに貫通シリコンを形成し、当該貫通シリコンから接地電極の電位(可動電極の電位)を外部に取り出すようにしてもよい。こうすれば、ガラス埋込シリコン基板の製造が容易になる。 In the above embodiment, the ground electrode is exposed to the outside through the through hole and wired so that the potential of the ground electrode (potential of the movable electrode) can be taken out to the outside. Through silicon may be formed, and the potential of the ground electrode (potential of the movable electrode) may be taken out from the through silicon. This facilitates the manufacture of the glass-embedded silicon substrate.
 また、可動電極や固定電極その他細部のスペック(形状、大きさ、レイアウト等)も適宜に変更可能である。 Also, movable electrodes, fixed electrodes, and other detailed specifications (shape, size, layout, etc.) can be changed as appropriate.
 本発明によれば、デバイス特性に影響を与えてしまうのを抑制することのできる静電容量式デバイスの製造方法を得ることができる。 According to the present invention, it is possible to obtain a method for manufacturing a capacitance device that can suppress the influence on device characteristics.

Claims (4)

  1.  可動電極が形成された可動体基板と、前記可動電極に対向する固定電極が形成され、前記可動体基板に陽極接合される固定側基板と、を備える静電容量式デバイスの製造方法であって、
     前記固定側基板の両面に露出するようにシリコンを貫通させて形成した貫通シリコンを前記固定電極とするとともに、前記可動体基板の少なくとも前記固定側基板に陽極接合される部位をシリコンで形成し、
     前記貫通シリコンの外側露出面に第1の金属膜を成膜するとともに、前記固定側基板の表面における前記貫通シリコンの外側露出面以外の部位に、前記第1の金属膜と離間するように第2の金属膜を成膜し、
     前記可動体基板と前記固定側基板とを陽極接合する際に、前記第1の金属膜および第2の金属膜を用いて、前記固定側基板と前記可動体基板との間に電位差を設ける一方、前記貫通シリコンと前記可動体基板とが同電位となるようにしたことを特徴とする静電容量式デバイスの製造方法。
    A method of manufacturing a capacitive device, comprising: a movable substrate on which a movable electrode is formed; and a fixed substrate on which a fixed electrode facing the movable electrode is formed and is anodically bonded to the movable substrate. ,
    A through silicon formed by penetrating silicon so as to be exposed on both surfaces of the fixed side substrate is used as the fixed electrode, and at least a portion of the movable substrate that is anodically bonded to the fixed side substrate is formed of silicon,
    A first metal film is formed on the outer exposed surface of the through silicon, and the first metal film is spaced apart from the first metal film at a portion other than the outer exposed surface of the through silicon on the surface of the fixed substrate. 2 metal films are formed,
    When anodically bonding the movable substrate and the fixed substrate, a potential difference is provided between the fixed substrate and the movable substrate using the first metal film and the second metal film. A method of manufacturing a capacitance type device, wherein the through silicon and the movable substrate have the same potential.
  2.  前記第2の金属膜と前記貫通シリコンとの最短距離を、前記固定側基板の厚さよりも大きくしたことを特徴とする請求項1に記載の静電容量式デバイスの製造方法。 2. The method of manufacturing a capacitive device according to claim 1, wherein the shortest distance between the second metal film and the penetrating silicon is larger than the thickness of the fixed substrate.
  3.  前記第1の金属膜および第2の金属膜の材料がアルミであることを特徴とする請求項1または請求項2に記載の静電容量式デバイスの製造方法。 3. The method of manufacturing a capacitive device according to claim 1, wherein the material of the first metal film and the second metal film is aluminum.
  4.  前記可動体基板と前記固定側基板との陽極接合はウエハレベルで行われ、
     ウエハ全面に亘って前記固定電極となる貫通シリコンの外側露出面に成膜した第1の金属膜どうしが金属配線によって相互に導通されていることを特徴とする請求項1~3のうちいずれか1項に記載の静電容量式デバイスの製造方法。
    The anodic bonding of the movable substrate and the fixed substrate is performed at a wafer level,
    The first metal film formed on the outer exposed surface of the through silicon serving as the fixed electrode over the entire surface of the wafer is electrically connected to each other by a metal wiring. 2. A method for manufacturing a capacitance type device according to item 1.
PCT/JP2012/051507 2011-01-27 2012-01-25 Method for producing electrostatic capacitance device WO2012102292A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011015796A JP2012156401A (en) 2011-01-27 2011-01-27 Electrostatic capacitance type device and method of manufacturing the same
JP2011-015796 2011-01-27

Publications (1)

Publication Number Publication Date
WO2012102292A1 true WO2012102292A1 (en) 2012-08-02

Family

ID=46580857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051507 WO2012102292A1 (en) 2011-01-27 2012-01-25 Method for producing electrostatic capacitance device

Country Status (3)

Country Link
JP (1) JP2012156401A (en)
TW (1) TW201234013A (en)
WO (1) WO2012102292A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101459977B1 (en) 2013-12-18 2014-11-07 현대자동차주식회사 Wafer level package of mems senser and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273442A (en) * 1993-03-18 1994-09-30 Omron Corp Capacitance-type semiconductor acceleration sensor and its manufacture as well as mounting structure of the sensor
JPH10160611A (en) * 1996-11-27 1998-06-19 Nagano Keiki Co Ltd Electrostatic capacity type transducer
JP2000074768A (en) * 1998-08-31 2000-03-14 Akebono Brake Ind Co Ltd Capacitance type pressure sensor and manufacture thereof
JP2009250874A (en) * 2008-04-09 2009-10-29 Nagano Keiki Co Ltd Physical quantity sensor and method for manufacturing the same
JP2010054210A (en) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Method of manufacturing capacitance type semiconductor physical quantity sensor and capacitance-type semiconductor physical quantity sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06273442A (en) * 1993-03-18 1994-09-30 Omron Corp Capacitance-type semiconductor acceleration sensor and its manufacture as well as mounting structure of the sensor
JPH10160611A (en) * 1996-11-27 1998-06-19 Nagano Keiki Co Ltd Electrostatic capacity type transducer
JP2000074768A (en) * 1998-08-31 2000-03-14 Akebono Brake Ind Co Ltd Capacitance type pressure sensor and manufacture thereof
JP2009250874A (en) * 2008-04-09 2009-10-29 Nagano Keiki Co Ltd Physical quantity sensor and method for manufacturing the same
JP2010054210A (en) * 2008-08-26 2010-03-11 Panasonic Electric Works Co Ltd Method of manufacturing capacitance type semiconductor physical quantity sensor and capacitance-type semiconductor physical quantity sensor

Also Published As

Publication number Publication date
TW201234013A (en) 2012-08-16
JP2012156401A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
US9791472B2 (en) Acceleration sensor
JP6295435B2 (en) MEMS device
KR20150052802A (en) Pressure sensor
JP2001007346A (en) Manufacture of external force detection sensor
WO2010032820A1 (en) Mems sensor
US9274153B2 (en) Electrostatic capacitance sensor
JP2009272477A (en) Mems sensor and its manufacturing method
JP6123613B2 (en) Physical quantity sensor and manufacturing method thereof
WO2012102292A1 (en) Method for producing electrostatic capacitance device
JP3938199B1 (en) Wafer level package structure and sensor device
TWI782345B (en) Dual micro-electro mechanical system and manufacturing method thereof
JP5130151B2 (en) Capacitive semiconductor physical quantity sensor manufacturing method and capacitive semiconductor physical quantity sensor
JP2010127648A (en) Acceleration sensor
JP2015182158A (en) MEMS device
JP2011095010A (en) Electrostatic sensor
JP2012220376A (en) Acceleration sensor
JP3938201B1 (en) Sensor device and manufacturing method thereof
JP2018025530A (en) Dynamic-quantity sensor and method for manufacturing the same
JPH1151966A (en) Semiconductor acceleration sensor and manufacture thereof
WO2018030045A1 (en) Dynamic quantity sensor and method for manufacturing same
JP2013186061A (en) Capacitive sensor
JP2013124949A (en) Electrostatic capacitance type sensor
TWI525777B (en) MEMS components
JP4000167B2 (en) Manufacturing method of sensor device
JP2010221307A (en) Electric device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739547

Country of ref document: EP

Kind code of ref document: A1