WO2012098743A1 - 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム - Google Patents

回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム Download PDF

Info

Publication number
WO2012098743A1
WO2012098743A1 PCT/JP2011/074130 JP2011074130W WO2012098743A1 WO 2012098743 A1 WO2012098743 A1 WO 2012098743A1 JP 2011074130 W JP2011074130 W JP 2011074130W WO 2012098743 A1 WO2012098743 A1 WO 2012098743A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
electric motor
hybrid vehicle
required torque
improvement rate
Prior art date
Application number
PCT/JP2011/074130
Other languages
English (en)
French (fr)
Inventor
真弘 鈴木
Original Assignee
日野自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日野自動車株式会社 filed Critical 日野自動車株式会社
Priority to CN201180040644.8A priority Critical patent/CN103068648B/zh
Priority to US13/819,449 priority patent/US20130166182A1/en
Priority to AU2011355952A priority patent/AU2011355952A1/en
Priority to JP2012514260A priority patent/JP5059246B2/ja
Priority to EP11856032.5A priority patent/EP2666689A1/en
Publication of WO2012098743A1 publication Critical patent/WO2012098743A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2045Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for optimising the use of energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • B60W20/14Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion in conjunction with braking regeneration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/443Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/18081With torque flow from driveshaft to engine, i.e. engine being driven by vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18072Coasting
    • B60W2030/1809Without torque flow between driveshaft and engine, e.g. with clutch disengaged or transmission in neutral
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/10Historical data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0625Fuel consumption, e.g. measured in fuel liters per 100 kms or miles per gallon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the present invention relates to a regeneration control device, a hybrid vehicle, a regeneration control method, and a program.
  • the hybrid vehicle has an engine and an electric motor, and can be driven by the engine or the electric motor, or can be driven in cooperation with the engine and the electric motor.
  • the motor is operated as a generator by being rotated by the rotational force of the wheel, and the battery of the hybrid vehicle can be charged (this is referred to as regenerative power generation).
  • regenerative power generation a generator by being rotated by the rotational force of the wheel
  • regenerative torque is generated in the electric motor in proportion to the regenerative electric power of the electric motor.
  • This regenerative torque acts as a braking force when the hybrid vehicle is decelerated (see, for example, Patent Document 1).
  • the engine rotation shaft and the motor rotation shaft are separated, the engine is separated from the traveling system of the hybrid vehicle, the braking force by the engine brake is eliminated, and the electric motor is Control is performed so that regenerative power generation can be performed with a regenerative torque of (that is, maximum regenerative power).
  • the engine rotates autonomously in an idle state while the rotational shaft of the engine and the rotational shaft of the electric motor are separated. As a result, the engine consumes a small amount of fuel.
  • the engine rotation shaft and the motor rotation shaft are connected at the time of deceleration, the engine can maintain its rotation without performing fuel injection, and therefore does not consume any fuel.
  • the rotating shaft of the engine and the rotating shaft of the electric motor are connected, the friction of the magnitude obtained by adding the engine friction and the electric motor friction acts as a braking force, and the deceleration of the hybrid vehicle increases. The vehicle speed of the hybrid vehicle decreases without obtaining a regenerative electric power.
  • both the fuel consumption of the engine and the regenerative power of the motor are affected by whether the engine rotation shaft and the motor rotation shaft are disconnected or connected.
  • the present invention has been made under such a background, and can optimally determine whether to disconnect or connect the rotating shaft of the engine and the rotating shaft of the motor in the regenerative state during deceleration.
  • An object is to provide a regeneration control device, a hybrid vehicle, a regeneration control method, and a program.
  • the regenerative control device of the present invention includes an engine and an electric motor, and can be driven by the engine or the electric motor, or can be driven in cooperation with the engine and the electric motor, and regenerative power generation is performed by the electric motor at least during deceleration.
  • the cargo loading amount is set in multiple stages for each of a plurality of travel patterns in advance.
  • the fuel efficiency improvement rate is calculated based on the formula, and the calculated fuel efficiency improvement rate satisfies the predetermined condition.
  • the Sutoki, and control means for controlling to perform regenerative power generation in a state where the rotary shaft are connected to each other in the rotating shaft of the electric motor of the engine, and has.
  • the calculation formula can be obtained by varying the cargo loading amount in a plurality of stages for each of a plurality of travel patterns in a state where the engine rotation shaft and the motor rotation shaft are connected to each other during deceleration of the hybrid vehicle.
  • the average value, the average value of the required torque, the variance value of the engine rotational speed, and the regression formula to the variance value of the required torque, and the control means is the engine rotation when traveling for a predetermined time during deceleration of the hybrid vehicle
  • the average value of engine speed, average value of required torque, variance value of engine speed, and required torque The Chichi calculated, it is possible to calculate the fuel consumption improvement rate by substituting the calculation result in the regression equation.
  • the holding means replaces the calculation formula with a plurality of cargo loading amounts in advance for each of a plurality of travel patterns in a state where the rotation shaft of the engine and the rotation shaft of the electric motor are connected to each other during deceleration of the hybrid vehicle.
  • a neural network created based on the engine rotation speed, required torque, and fuel efficiency improvement rate when the vehicle travels for a predetermined time in variable stages is maintained, and the control means is an engine that travels for a predetermined time during deceleration of the hybrid vehicle.
  • the fuel efficiency improvement rate can be calculated by inputting the rotation speed and the required torque into the neural network.
  • the calculation formula can be obtained by varying the cargo loading amount in a plurality of stages for each of a plurality of travel patterns in a state where the engine rotation shaft and the motor rotation shaft are connected to each other during deceleration of the hybrid vehicle.
  • the membership function is created based on the engine rotational speed, the required torque, and the fuel efficiency improvement rate when traveling, and the control means uses the engine rotational speed and the required torque when traveling for a predetermined time during deceleration of the hybrid vehicle as members.
  • the fuel efficiency improvement rate can be calculated by substituting it into the ship function.
  • Another aspect of the present invention is a viewpoint as a hybrid vehicle.
  • the hybrid vehicle of the present invention has the regeneration control device of the present invention.
  • Still another aspect of the present invention is a viewpoint as a regeneration control method.
  • the regenerative control method of the present invention includes an engine and an electric motor, and can be driven by the engine or the electric motor, or can be driven in cooperation with the engine and the electric motor, and regenerative power generation is performed by the electric motor at least during deceleration.
  • the cargo loading amount is set in multiple stages for each of a plurality of travel patterns in advance.
  • the fuel efficiency improvement rate is calculated based on the formula and the calculated fuel efficiency improvement rate satisfies a predetermined condition.
  • Still another aspect of the present invention is a viewpoint as a program.
  • the program of the present invention causes the information processing apparatus to realize the function of the regeneration control device of the present invention.
  • FIG. 1 is a block diagram showing an example of the configuration of the hybrid vehicle 1.
  • the hybrid vehicle 1 is an example of a vehicle.
  • the hybrid vehicle 1 is driven by an engine (internal combustion engine) 10 and / or an electric motor 13 via a transmission of a semi-automatic transmission, and generates a braking force such as an engine brake of the engine 10 by regenerative torque of the electric motor 13 during deceleration. be able to.
  • the semi-automatic transmission is a transmission that can automatically perform a shifting operation while having the same configuration as a manual transmission.
  • the hybrid vehicle 1 includes an engine 10, an engine ECU (Electronic Control Unit) 11, a clutch 12, an electric motor 13, an inverter 14, a battery 15, a transmission 16, an electric motor ECU 17, a hybrid ECU 18 (a regenerative control device in the claims, an internal memory 32) Means for holding the calculation formula in the claims), a wheel 19, a key switch 20, and a shift unit 21.
  • the transmission 16 has the above-described semi-automatic transmission and is operated by a shift unit 21 having a drive range (hereinafter referred to as a D (Drive) range). When the shift unit 21 is in the D range, the shifting operation of the semi-automatic transmission is automated.
  • the engine 10 is an example of an internal combustion engine, and is controlled by the engine ECU 11 to rotate gasoline, light oil, CNG (Compressed Natural Gas), LPG (Liquefied ⁇ Petroleum Gas), or alternative fuel and the like, and rotate the rotating shaft.
  • the generated power is generated, and the generated power is transmitted to the clutch 12.
  • the engine ECU 11 is a computer that operates in cooperation with the electric motor ECU 17 by following instructions from the hybrid ECU 18, and controls the engine 10 such as fuel injection amount and valve timing.
  • the engine ECU 11 includes a CPU (Central Processing Unit), an ASIC (Application Specific Integrated Circuit), a microprocessor (microcomputer), a DSP (Digital Signal Processor), and the like. O (Input / Output) port and the like.
  • the clutch 12 is controlled by the hybrid ECU 18 and transmits the shaft output from the engine 10 to the wheels 19 via the electric motor 13 and the transmission 16. That is, the clutch 12 mechanically connects the rotating shaft of the engine 10 and the rotating shaft of the electric motor 13 under the control of the hybrid ECU 18 to transmit the shaft output of the engine 10 to the electric motor 13, or By disconnecting the mechanical connection between the rotating shaft of the motor 10 and the rotating shaft of the electric motor 13, the rotating shaft of the engine 10 and the rotating shaft of the electric motor 13 can be rotated at different rotational speeds.
  • the clutch 12 causes the hybrid vehicle 1 to travel by the power of the engine 10, thereby causing the electric motor 13 to generate electric power, when the engine 10 is assisted by the driving force of the electric motor 13, and to start the engine 10 by the electric motor 13.
  • the rotating shaft of the engine 10 and the rotating shaft of the electric motor 13 are mechanically connected.
  • the clutch 12 is in a state where the engine 10 is stopped or idling and the hybrid vehicle 1 is running by the driving force of the electric motor 13 and when the engine 10 is stopped or idling and the hybrid vehicle 1 is decelerated.
  • the mechanical connection between the rotating shaft of the engine 10 and the rotating shaft of the electric motor 13 is disconnected.
  • the clutch 12 is different from the clutch that is operated by the driver operating the clutch pedal, and operates under the control of the hybrid ECU 18.
  • the electric motor 13 is a so-called motor generator, which generates electric power for rotating the rotating shaft by the electric power supplied from the inverter 14 and supplies the shaft output to the transmission 16 or the rotation supplied from the transmission 16. Electricity is generated by the power that rotates the shaft, and the electric power is supplied to the inverter 14. For example, when the hybrid vehicle 1 is accelerating or traveling at a constant speed, the electric motor 13 generates power for rotating the rotating shaft, and supplies the shaft output to the transmission 16. The hybrid vehicle 1 is driven in cooperation with the vehicle. Further, for example, when the electric motor 13 is driven by the engine 10, or when the hybrid vehicle 1 is decelerating or traveling downhill, the electric motor 13 operates as a generator.
  • the power is generated by the power that rotates the rotating shaft supplied from the transmission 16, the electric power is supplied to the inverter 14, and the battery 15 is charged.
  • the electric motor 13 generates a regenerative torque having a magnitude corresponding to the regenerative power.
  • the inverter 14 is controlled by the electric motor ECU 17 and converts the DC voltage from the battery 15 into an AC voltage, or converts the AC voltage from the electric motor 13 into a DC voltage.
  • the inverter 14 converts the DC voltage of the battery 15 into an AC voltage and supplies electric power to the electric motor 13.
  • the inverter 14 converts the AC voltage from the electric motor 13 into a DC voltage. That is, in this case, the inverter 14 serves as a rectifier and a voltage regulator for supplying a DC voltage to the battery 15.
  • the battery 15 is a chargeable / dischargeable secondary battery.
  • the electric power is supplied to the electric motor 13 via the inverter 14 or when the electric motor 13 is generating electric power, It is charged by the power it generates.
  • the battery 15 has a range of an appropriate state of charge (hereinafter referred to as SOC (State-of-Charge)), and is managed so that the SOC does not deviate from the range.
  • SOC State-of-Charge
  • the transmission 16 has a semi-automatic transmission (not shown) that selects one of a plurality of gear ratios (speed ratios) in accordance with a speed change instruction signal from the hybrid ECU 18.
  • the power and / or power of the electric motor 13 is transmitted to the wheel 19. Further, the transmission 16 transmits the power from the wheels 19 to the electric motor 13 when decelerating or traveling downhill.
  • the driver can manually change the gear position to an arbitrary gear stage by operating the shift unit 21.
  • the electric motor ECU 17 is a computer that operates in cooperation with the engine ECU 11 according to an instruction from the hybrid ECU 18, and controls the electric motor 13 by controlling the inverter 14.
  • the electric motor ECU 17 is configured by a CPU, an ASIC, a microprocessor (microcomputer), a DSP, and the like, and has an arithmetic unit, a memory, an I / O port, and the like.
  • the hybrid ECU 18 is an example of a computer, and for hybrid traveling, accelerator opening information, brake operation information, vehicle speed information, gear position information acquired from the transmission 16, engine rotation speed information acquired from the engine ECU 11, and a battery 15
  • the clutch 12 is controlled on the basis of the SOC information acquired from the control information, and the transmission 16 is controlled by supplying a shift instruction signal.
  • the control instruction for the motor 13 and the inverter 14 is given to the motor ECU 17, and the engine ECU 11 is given control.
  • the control instruction of the engine 10 is given.
  • These control instructions include a regenerative control instruction to be described later.
  • the hybrid ECU 18 includes a CPU, an ASIC, a microprocessor (microcomputer), a DSP, and the like, and has an arithmetic unit, a memory, an I / O port, and the like.
  • the program executed by the hybrid ECU 18 can be installed in advance in the hybrid ECU 18 that is a computer by storing the program in a nonvolatile memory inside the hybrid ECU 18 in advance.
  • the engine ECU 11, the electric motor ECU 17, and the hybrid ECU 18 are connected to each other by a bus that conforms to a standard such as CAN (Control Area Network).
  • CAN Controller Area Network
  • Wheel 19 is a driving wheel that transmits driving force to the road surface. Although only one wheel 19 is shown in FIG. 1, the hybrid vehicle 1 actually has a plurality of wheels 19.
  • the key switch 20 is a switch that is turned on / off by a user, for example, when a key is started. When the key switch 20 is turned on, each part of the hybrid vehicle 1 is activated and the key switch 20 is turned off. Each part of the hybrid vehicle 1 is stopped by entering the state.
  • the shift unit 21 gives an instruction from the driver to the semi-automatic transmission of the transmission 16, and when the shift unit 21 is in the D range, the shifting operation of the semi-automatic transmission is automated.
  • FIG. 2 is a block diagram illustrating an example of a functional configuration realized in the hybrid ECU 18 that executes the program. That is, when the hybrid ECU 18 executes the program, the function of the regeneration control unit 30 (control means in the claims) is realized.
  • the calculation formula holding unit 31 (means for holding the calculation formula in the claims) is a storage area that holds a calculation formula for reference by the regenerative control unit 30, and is a part of the memory 32 included in the hybrid ECU 18. This can be realized by allocating a storage area.
  • This calculation formula is a regression formula for deriving the fuel efficiency improvement rate from the average value and variance value of the engine rotation speed calculated from the engine rotation speed and the average value and variance value of the request torque calculated from the request torque, Details thereof will be described later.
  • the fuel efficiency improvement rate is a state in which the rotation shaft of the engine 10 and the rotation shaft of the electric motor 13 are connected to each other during the deceleration of the hybrid vehicle 1 (that is, the clutch 12 is in a contact state), and a plurality of driving patterns in advance.
  • the rotating shaft of the engine 10 and the rotating shaft of the electric motor 13 are disconnected (that is, the clutch 12 is disconnected). )
  • the fuel consumption is compared in advance for each of the plurality of travel patterns when the cargo loading amount is changed in a plurality of stages and the vehicle travels for a predetermined time.
  • the fuel efficiency improvement rate is, for example, a negative value, and conversely, the clutch 12 is in the disconnected state. If the fuel consumption clutch 12 is improved than the fuel economy of the contact state, the fuel economy improvement ratio, for example a positive value.
  • Such fuel consumption comparison is carried out by the manufacturer of the hybrid vehicle 1 performing a test drive on a predetermined route with each driving pattern.
  • the regression equation described below is created based on the result of a test run performed by the manufacturer of such a hybrid vehicle 1. If this regression equation is used, the fuel efficiency improvement rate can be calculated if the engine speed and the required torque are known without knowing the cargo load amount and travel pattern of the hybrid vehicle 1. In FIG. 4, the fuel efficiency improvement rate is described as (F / E: Fuel improvement Effect rate).
  • the regenerative control unit 30 regenerates the engine ECU 11, the clutch 12, and the electric motor ECU 17 based on the engine rotational speed information, the accelerator opening information, the vehicle speed information, the motor control information, and the calculation formula held in the calculation formula holding unit 31. This is a function for instructing control.
  • step S1 the key switch 20 is in the ON state, the hybrid ECU 18 executes the program, and the function of the regenerative control unit 30 is realized in the hybrid ECU 18, and the procedure proceeds to step S1.
  • step S1 the regeneration control unit 30 determines whether or not the hybrid vehicle 1 is decelerating from the accelerator opening information and the vehicle speed information. That is, if the accelerator opening is 0 degrees from the accelerator opening information, the motor 13 is being regenerated from the motor control information, and the vehicle speed is decreasing from the vehicle speed information, the hybrid vehicle 1 is decelerating. If it is determined in step S1 that the hybrid vehicle 1 is decelerating, the procedure proceeds to step S2. On the other hand, if it is determined in step S1 that the hybrid vehicle 1 is not decelerating, the procedure repeats step S1.
  • step S2 the regeneration control unit 30 acquires the engine rotation speed information and the required torque information within a predetermined period, calculates the average value and the variance value, and the procedure proceeds to step S3.
  • the regeneration control part 30 acquires a driver
  • step S3 the regeneration control unit 30 holds the average value of the engine speed, the average value of the required torque, the variance value of the engine speed, and the variance value of the required torque calculated in step S2 in the calculation formula holding unit 31. If the value is substituted into a regression equation (described later in FIG. 4), the procedure proceeds to step S4.
  • step S4 the regeneration control unit 30 proceeds to the procedure of step S5 after calculating the fuel efficiency improvement rate from the regression equation.
  • step S5 the regeneration control unit 30 determines whether or not the fuel efficiency improvement rate is equal to or greater than a threshold value. If it is determined in step S5 that the fuel improvement rate is equal to or greater than the threshold value, the procedure proceeds to step S6. On the other hand, if it is determined in step S5 that the fuel improvement rate is less than the threshold value, the procedure proceeds to step S7. This threshold will be described later.
  • step S6 the regeneration control unit 30 performs regeneration by the electric motor 13 with the clutch 12 in the engaged state, and ends the process for one cycle (END).
  • step S7 the regeneration control unit 30 performs regeneration by the electric motor 13 with the clutch 12 disengaged, and ends the processing for one cycle (END).
  • Patterns # 1, # 2, # 3 and # 4 in FIG. 4 are travel patterns of the hybrid vehicle 1. For example, pattern # 1 is general road driving, pattern # 2 is highway driving, pattern # 3 is congestion road driving, pattern # 4 is city road driving, and the like.
  • the vehicle weight is the total weight of the hybrid vehicle 1 and is A ⁇ B ⁇ C ⁇ D ⁇ E (unit: tons, etc.). Note that the various data in FIG. 4 are data for one vehicle type, and the difference in the total weight is due to, for example, the difference in the weight of the loaded cargo.
  • the various data shown in FIG. 4 indicate that the hybrid vehicle 1 is made to run for a predetermined period of time with each vehicle weight A, B, C, D, E in each pattern # 1, # 2, # 3, # 4.
  • the average value of the engine speed, the average value of the required torque, the variance value of the engine speed, the variance value of the required torque, and the fuel efficiency improvement rate are tabulated.
  • the coefficients a, b, c, d of the regression equation are calculated so that when a predetermined numerical value is substituted for each variable W, X, Y, Z, a predetermined fuel efficiency improvement rate is calculated.
  • Each is decided.
  • the regression equation and its creation method are well-known matters, and detailed description thereof is omitted.
  • the hybrid vehicle 1 acquires engine rotation speed information and required torque information (according to accelerator opening information) by holding the regression equation thus created in the calculation formula holding unit 31 of the regeneration control unit 30.
  • the fuel efficiency improvement rate F / E
  • the fuel efficiency improvement rate indicates that the fuel efficiency is improved as the numerical value described in the column of the fuel efficiency improvement rate in FIG. 4 is larger. Therefore, for example, the threshold value is set to “0”, clutch engagement regeneration is performed when the threshold value is a positive number that is greater than or equal to “0” or greater, and clutch disconnection regeneration is performed when the threshold value is a negative number that is less than or less than “0”. Control to implement. In addition, for example, the threshold value is set to “2” and the clutch engagement / regeneration is performed only when the fuel consumption improvement rate is very good. The threshold value may be set based on the user's various vehicle operation policies. it can.
  • FIG. 5 is a conceptual diagram of a neural network that inputs an engine speed and a required torque and outputs a fuel efficiency improvement rate.
  • a neural network may be created and held in the calculation formula holding unit 31 of the regeneration control unit 30.
  • the method for creating the neural network is similar to the regression equation described above, in which the hybrid vehicle 1 is subjected to the vehicle weights A, B, C, D, E in the patterns # 1, # 2, # 3, and # 4.
  • a neural network is created so that the fuel efficiency improvement rate is calculated from the engine speed and the required torque at that time.
  • the creation method is a well-known matter and will not be described in detail. In this case, in the procedure of step S2 in the flowchart of FIG.
  • step S3 it is not necessary to acquire engine rotation speed information and required torque information within a predetermined period and calculate the average value and the variance value.
  • the processing can be simplified by acquiring the engine rotation speed information and the required torque information within the period and using the “input to the neural network” instead of “substitute into the regression equation” in step S3 as it is.
  • membership functions used in fuzzy inference may be used instead of regression equations.
  • the membership function is created in the same manner as the regression equation described above, with the hybrid vehicle 1 having the respective vehicle weights A, B, C, D, in each of the patterns # 1, # 2, # 3, and # 4.
  • a membership function is created so that the fuel efficiency improvement rate is calculated from the engine speed and the required torque at that time when the vehicle is run on a trial basis for a predetermined period at E.
  • the creation method is a well-known matter and will not be described in detail. In this case, in the procedure of step S2 in the flowchart of FIG. 3, it is not necessary to acquire engine rotation speed information and required torque information within a predetermined period and calculate the average value and the variance value.
  • the processing can be simplified by acquiring the engine rotation speed information and the required torque information within the period and using “substitute into membership function” instead of “substitute into regression equation” in step S3.
  • the determination boundary value may be variously changed such that “above” is “exceeded” and “less than” is “below”.
  • the engine 10 has been described as an internal combustion engine, it may be a heat engine including an external combustion engine.
  • the program executed by the hybrid ECU 18 has been described as being installed in the hybrid ECU 18 in advance.
  • a removable medium in which the program is recorded (a program is stored) is attached to a drive or the like (not shown), and the removable medium is removed.
  • the program read from the medium is stored in a non-volatile memory inside the hybrid ECU 18 or the program transmitted via a wired or wireless transmission medium is received by a communication unit (not shown), and the hybrid ECU 18 Can be installed in the hybrid ECU 18 as a computer.
  • each ECU may be realized by an ECU in which these are combined into one, or an ECU that further subdivides the functions of each ECU may be provided.
  • the program executed by the computer may be a program that is processed in time series in the order described in this specification, or in parallel or at a necessary timing such as when a call is made. It may be a program for processing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Power Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

 減速時の回生状態においてエンジンの回転軸と電動機の回転軸とを切り離すか接続するかの最適な判断を行うこと。 ハイブリッド自動車1の減速中にエンジン10の回転軸と電動機13の回転軸とが互いに接続された状態で、予め複数の走行パターンのそれぞれについて貨物積載量を複数段階に可変して所定時間走行したときのエンジン回転速度および要求トルクから燃費向上率を算出する算出式を保持し、ハイブリッド自動車1の減速時に、所定時間走行したときのエンジン回転速度および要求トルクと算出式とに基づいて燃費向上率を算出し、その結果算出された燃費向上率が所定の条件を満たすときには、エンジン10の回転軸と電動機13の回転軸とが互いに接続された状態で回生発電を実施するように制御するハイブリッドECU18を構成する。

Description

回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
 本発明は、回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラムに関する。
 ハイブリッド自動車は、エンジンと電動機とを有し、エンジンもしくは電動機により走行可能であり、またはエンジンと電動機とが協働して走行可能である。ここで、ハイブリッド自動車の減速時には、電動機が車輪の回転力によって回されるようにすることにより、電動機が発電機として動作し、ハイブリッド自動車のバッテリを充電することができる(これを回生発電と称する)。このように電動機が回生発電を行っているときには、電動機の回生電力に比例して電動機には回生トルクが発生する。この回生トルクは、ハイブリッド自動車の減速時に制動力として作用する(たとえば特許文献1参照)。このとき、電動機による回生発電を効率良く行うためには、エンジンの回転軸と電動機の回転軸とを切り離し、エンジンをハイブリッド自動車の走行系から分離させ、エンジンブレーキによる制動力を無くし、電動機が最大の回生トルク(すなわち最大の回生電力)で回生発電を実施できるように制御する。
特開2007-223421号公報
 上述のように、電動機による回生発電を効率良く行うために、エンジンの回転軸と電動機の回転軸とを切り離している間は、エンジンはアイドル状態で自律回転している。これによりエンジンは、少ないながらも燃料を消費している。一方、減速時に、エンジンの回転軸と電動機の回転軸とが接続されていれば、エンジンは、燃料噴射を行わなくても回転を維持できるため、全く燃料を消費しないで済む。しかしながらエンジンの回転軸と電動機の回転軸とが接続されていれば、エンジンのフリクションと電動機のフリクションとが加算された大きさのフリクションが制動力として働き、ハイブリッド自動車の減速度は大きくなり、十分な回生電力を得ることができないままハイブリッド自動車の車速が低下する。
 このように、ハイブリッド自動車の減速時に、エンジンの回転軸と電動機の回転軸とを切り離すか接続するかによって、エンジンの燃費と電動機の回生電力とが双方共に影響を受ける。ここで、ハイブリッド自動車の減速時に、エンジンの燃費と電動機の回生電力とが双方共に好ましい状態となるように、エンジンの回転軸と電動機の回転軸とを切り離すか接続するかを判断することは様々な要因が複雑に絡み合っているため難しい。
 本発明は、このような背景の下に行われたものであって、減速時の回生状態においてエンジンの回転軸と電動機の回転軸とを切り離すか接続するかの最適な判断を行うことができる回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラムを提供することを目的とする。
 本発明の1つの観点は、回生制御装置としての観点である。本発明の回生制御装置は、エンジンと電動機とを有し、エンジンもしくは電動機により走行可能であり、またはエンジンと電動機とが協働して走行可能であり、少なくとも減速中に、電動機により回生発電が可能であるハイブリッド自動車の回生制御装置において、ハイブリッド自動車の減速中にエンジンの回転軸と電動機の回転軸とが互いに接続された状態で、予め複数の走行パターンのそれぞれについて貨物積載量を複数段階に可変して所定時間走行したときのエンジン回転速度および要求トルクから燃費向上率を算出する算出式を保持する手段と、ハイブリッド自動車の減速時に、所定時間走行したときのエンジン回転速度および要求トルクと算出式とに基づいて燃費向上率を算出し、その結果算出された燃費向上率が所定の条件を満たすときには、エンジンの回転軸と電動機の回転軸とが互いに接続された状態で回生発電を実施するように制御する制御手段と、有するものである。
 たとえば、算出式は、ハイブリッド自動車の減速中にエンジンの回転軸と電動機の回転軸とが互いに接続された状態で、予め複数の走行パターンのそれぞれについて貨物積載量を複数段階に可変して所定時間走行したときのエンジン回転速度の平均値、要求トルクの平均値、エンジン回転速度の分散値、要求トルクの分散値、およびそのときの燃費向上率に基づき作成された燃料向上率のエンジン回転速度の平均値、前記要求トルクの平均値、前記エンジン回転速度の分散値、および前記要求トルクの分散値への回帰式であり、制御手段は、ハイブリッド自動車の減速時に、所定時間走行したときのエンジン回転速度および要求トルクからエンジン回転速度の平均値、要求トルクの平均値、エンジン回転速度の分散値、および要求トルクの分散値を計算し、この計算結果を回帰式に代入して燃費向上率を算出することができる。
 あるいは、保持する手段は、算出式に代えて、ハイブリッド自動車の減速中にエンジンの回転軸と電動機の回転軸とが互いに接続された状態で、予め複数の走行パターンのそれぞれについて貨物積載量を複数段階に可変して所定時間走行したときのエンジン回転速度、要求トルク、および燃費向上率に基づき作成されたニューラルネットワークを保持し、制御手段は、ハイブリッド自動車の減速時に、所定時間走行したときのエンジン回転速度および要求トルクをニューラルネットワークに入力して燃費向上率を算出することができる。
 もしくは、算出式は、ハイブリッド自動車の減速中にエンジンの回転軸と電動機の回転軸とが互いに接続された状態で、予め複数の走行パターンのそれぞれについて貨物積載量を複数段階に可変して所定時間走行したときのエンジン回転速度、要求トルク、および燃費向上率に基づき作成されたメンバシップ関数であり、制御手段は、ハイブリッド自動車の減速時に、所定時間走行したときのエンジン回転速度および要求トルクをメンバシップ関数に代入して燃費向上率を算出することができる。
 本発明の他の観点は、ハイブリッド自動車としての観点である。本発明のハイブリッド自動車は、本発明の回生制御装置を有するものである。
 本発明のさらに他の観点は、回生制御方法としての観点である。本発明の回生制御方法は、エンジンと電動機とを有し、エンジンもしくは電動機により走行可能であり、またはエンジンと電動機とが協働して走行可能であり、少なくとも減速中に、電動機により回生発電が可能であるハイブリッド自動車の回生制御方法において、ハイブリッド自動車の減速中にエンジンの回転軸と電動機の回転軸とが互いに接続された状態で、予め複数の走行パターンのそれぞれについて貨物積載量を複数段階に可変して所定時間走行したときのエンジン回転速度および要求トルクと燃費向上率との関係を表す算出式を保持し、ハイブリッド自動車の減速時に、所定時間走行したときのエンジン回転速度および要求トルクと算出式とに基づいて燃費向上率を算出し、その結果算出された燃費向上率が所定の条件を満たすときには、エンジンの回転軸と電動機の回転軸とが互いに接続された状態で回生発電を実施するように制御する制御ステップを有するものである。
 本発明のさらに他の観点は、プログラムとしての観点である。本発明のプログラムは、情報処理装置に、本発明の回生制御装置の機能を実現させるものである。
 本発明によれば、減速時の回生状態においてエンジンの回転軸と電動機の回転軸とを切り離すか接続するかの最適な判断を行うことができる。
本発明の実施の形態のハイブリッド自動車の構成の例を示すブロック図である。 図1のハイブリッドECUにおいて実現される機能の構成の例を示すブロック図である。 図2の回生制御部の動作を示すフローチャートである。 図2の算出式保持部の保持されている回帰式を説明するための図である。 その他の実施の形態のニューラルネットワークの概念図である。
 以下、本発明の実施の形態のハイブリッド自動車について、図1~図5を参照しながら説明する。
 図1は、ハイブリッド自動車1の構成の例を示すブロック図である。ハイブリッド自動車1は、車両の一例である。ハイブリッド自動車1は、半自動トランスミッションの変速機を介したエンジン(内燃機関)10および/または電動機13によって駆動され、減速時には、電動機13の回生トルクによってエンジン10のエンジンブレーキのような制動力を発生させることができる。なお、半自動トランスミッションとは、マニュアルトランスミッションと同じ構成を有しながら変速操作を自動的に行うことができるトランスミッションである。
 ハイブリッド自動車1は、エンジン10、エンジンECU(Electronic Control Unit)11、クラッチ12、電動機13、インバータ14、バッテリ15、トランスミッション16、電動機ECU17、ハイブリッドECU18(請求項でいう回生制御装置、内部のメモリ32が請求項でいう算出式を保持する手段)、車輪19、キースイッチ20、およびシフト部21を有して構成される。なお、トランスミッション16は、上述した半自動トランスミッションを有し、ドライブレンジ(以下では、D(Drive)レンジと記す)を有するシフト部21により操作される。シフト部21がDレンジにあるときには、半自動トランスミッションの変速操作が自動化される。
 エンジン10は、内燃機関の一例であり、エンジンECU11によって制御され、ガソリン、軽油、CNG(Compressed Natural Gas)、LPG(Liquefied Petroleum Gas)、または代替燃料等を内部で燃焼させて、回転軸を回転させる動力を発生させ、発生した動力をクラッチ12に伝達する。
 エンジンECU11は、ハイブリッドECU18からの指示に従うことにより、電動機ECU17と連携動作するコンピュータであり、燃料噴射量やバルブタイミングなど、エンジン10を制御する。たとえば、エンジンECU11は、CPU(Central Processing Unit)、ASIC(Application Specific Integrated Circuit)、マイクロプロセッサ(マイクロコンピュータ)、DSP(Digital Signal Processor)などにより構成され、内部に、演算部、メモリ、およびI/O(Input/Output)ポートなどを有する。
 クラッチ12は、ハイブリッドECU18によって制御され、エンジン10からの軸出力を、電動機13およびトランスミッション16を介して車輪19に伝達する。すなわち、クラッチ12は、ハイブリッドECU18の制御によって、エンジン10の回転軸と電動機13の回転軸とを機械的に接続することにより、エンジン10の軸出力を電動機13に伝達させたり、または、エンジン10の回転軸と電動機13の回転軸との機械的な接続を切断することにより、エンジン10の回転軸と、電動機13の回転軸とが互いに異なる回転速度で回転できるようにする。
 たとえば、クラッチ12は、エンジン10の動力によってハイブリッド自動車1が走行し、これにより電動機13に発電させる場合、電動機13の駆動力によってエンジン10がアシストされる場合、および電動機13によってエンジン10を始動させる場合などに、エンジン10の回転軸と電動機13の回転軸とを機械的に接続する。
 また、たとえば、クラッチ12は、エンジン10が停止またはアイドリング状態にあり、電動機13の駆動力によってハイブリッド自動車1が走行している場合、およびエンジン10が停止またはアイドリング状態にあり、ハイブリッド自動車1が減速中または下り坂を走行中であり、電動機13が回生発電している場合、エンジン10の回転軸と電動機13の回転軸との機械的な接続を切断する。
 なお、クラッチ12は、運転者がクラッチペダルを操作して動作しているクラッチとは異なるものであり、ハイブリッドECU18の制御によって動作する。
 電動機13は、いわゆる、モータジェネレータであり、インバータ14から供給された電力により、回転軸を回転させる動力を発生させて、その軸出力をトランスミッション16に供給するか、またはトランスミッション16から供給された回転軸を回転させる動力によって発電し、その電力をインバータ14に供給する。たとえば、ハイブリッド自動車1が加速しているとき、または定速で走行しているときにおいて、電動機13は、回転軸を回転させる動力を発生させて、その軸出力をトランスミッション16に供給し、エンジン10と協働してハイブリッド自動車1を走行させる。また、たとえば、電動機13がエンジン10によって駆動されているとき、またはハイブリッド自動車1が減速しているとき、もしくは下り坂を走行しているときなどにおいて、電動機13は、発電機として動作し、この場合、トランスミッション16から供給された回転軸を回転させる動力によって発電して、電力をインバータ14に供給し、バッテリ15が充電される。このとき、電動機13は、回生電力に応じた大きさの回生トルクを発生する。
 インバータ14は、電動機ECU17によって制御され、バッテリ15からの直流電圧を交流電圧に変換するか、または電動機13からの交流電圧を直流電圧に変換する。電動機13が動力を発生させる場合、インバータ14は、バッテリ15の直流電圧を交流電圧に変換して、電動機13に電力を供給する。電動機13が発電する場合、インバータ14は、電動機13からの交流電圧を直流電圧に変換する。すなわち、この場合、インバータ14は、バッテリ15に直流電圧を供給するための整流器および電圧調整装置としての役割を果たす。
 バッテリ15は、充放電可能な二次電池であり、電動機13が動力を発生させるとき、電動機13にインバータ14を介して電力を供給するか、または電動機13が発電しているとき、電動機13が発電する電力によって充電される。バッテリ15には、適切な充電状態(以下では、SOC(State of Charge)と称する)の範囲が決められており、SOCがその範囲を外れないように管理されている。
 トランスミッション16は、ハイブリッドECU18からの変速指示信号に従って、複数のギア比(変速比)のいずれかを選択する半自動トランスミッション(図示せず)を有し、変速比を切り換えて、変速されたエンジン10の動力および/または電動機13の動力を車輪19に伝達する。また、減速しているとき、もしくは下り坂を走行しているときなど、トランスミッション16は、車輪19からの動力を電動機13に伝達する。なお、半自動トランスミッションは、運転者がシフト部21を操作して手動で任意のギア段にギア位置を変更することもできる。
 電動機ECU17は、ハイブリッドECU18からの指示に従うことにより、エンジンECU11と連携動作するコンピュータであり、インバータ14を制御することによって電動機13を制御する。たとえば、電動機ECU17は、CPU、ASIC、マイクロプロセッサ(マイクロコンピュータ)、DSPなどにより構成され、内部に、演算部、メモリ、およびI/Oポートなどを有する。
 ハイブリッドECU18は、コンピュータの一例であり、ハイブリッド走行のために、アクセル開度情報、ブレーキ操作情報、車速情報、トランスミッション16から取得したギア位置情報、エンジンECU11から取得したエンジン回転速度情報、およびバッテリ15から取得したSOC情報に基づいて、クラッチ12を制御すると共に、変速指示信号を供給することでトランスミッション16を制御し、電動機ECU17に対して電動機13およびインバータ14の制御指示を与え、エンジンECU11に対してエンジン10の制御指示を与える。これらの制御指示には、後述する回生制御指示も含まれる。たとえば、ハイブリッドECU18は、CPU、ASIC、マイクロプロセッサ(マイクロコンピュータ)、DSPなどにより構成され、内部に、演算部、メモリ、およびI/Oポートなどを有する。
 なお、ハイブリッドECU18によって実行されるプログラムは、ハイブリッドECU18の内部の不揮発性のメモリにあらかじめ記憶しておくことで、コンピュータであるハイブリッドECU18にあらかじめインストールしておくことができる。
 エンジンECU11、電動機ECU17、およびハイブリッドECU18は、CAN(Control Area Network)などの規格に準拠したバスなどにより相互に接続されている。
 車輪19は、路面に駆動力を伝達する駆動輪である。なお、図1において、1つの車輪19のみが図示されているが、実際には、ハイブリッド自動車1は、複数の車輪19を有する。
 キースイッチ20は、運転を開始するときにユーザにより、たとえばキーが差し込まれてON/OFFされるスイッチであり、これがON状態になることによってハイブリッド自動車1の各部は起動し、キースイッチ20がOFF状態になることによってハイブリッド自動車1の各部は停止する。
 シフト部21は、既に説明したように、トランスミッション16の半自動トランスミッションに運転者からの指示を与えるものであり、シフト部21がDレンジにあるときには、半自動トランスミッションの変速操作が自動化される。
 図2は、プログラムを実行するハイブリッドECU18において実現される機能の構成の例を示すブロック図である。すなわち、ハイブリッドECU18がプログラムを実行すると、回生制御部30(請求項でいう制御手段)の機能が実現される。なお、算出式保持部31(請求項でいう算出式を保持する手段)は、回生制御部30が参照するための算出式を保持する記憶領域であり、ハイブリッドECU18が有するメモリ32の一部の記憶領域を割り当てることにより実現できる。この算出式は、ここではエンジン回転速度から計算されたエンジン回転速度の平均値および分散値と要求トルクから計算された要求トルクの平均値および分散値とから燃費向上率を導き出す回帰式であり、その詳細については後述する。
 ここで、燃費向上率とは、ハイブリッド自動車1の減速中にエンジン10の回転軸と電動機13の回転軸とが互いに接続された状態(すなわちクラッチ12が接状態)で、予め複数の走行パターンのそれぞれについて貨物積載量を複数段階に変化させて所定時間走行したときと、ハイブリッド自動車1の減速中にエンジン10の回転軸と電動機13の回転軸とが切り離された状態(すなわちクラッチ12が断状態)で、予め複数の走行パターンのそれぞれについて貨物積載量を複数段階に変化させて所定時間走行したときとで、それぞれ燃費を比較し、それぞれの走行パターンにおいて、クラッチ12が接状態の燃費がクラッチ12が断状態の燃費よりも向上した場合、燃費向上率は、たとえば負値となり、反対に、クラッチ12が断状態の燃費がクラッチ12が接状態の燃費よりも向上した場合、燃費向上率は、たとえば正値となる。
 このような燃費の比較は、ハイブリッド自動車1のメーカ側で、それぞれの走行パターンで所定のルートをテスト走行させて実施される。以下で説明する回帰式は、このようなハイブリッド自動車1のメーカ側が行ったテスト走行の結果に基づき作成されたものである。この回帰式を用いれば、ハイブリッド自動車1の貨物積載量および走行パターンが分からなくてもエンジン回転速度と要求トルクが分かれば燃費向上率が算出可能になる。なお、図4では、燃費向上率を(F/E:Fuel cost improvement Effect rate)と記述している。
 回生制御部30は、エンジン回転速度情報、アクセル開度情報、車速情報、電動機制御情報、および算出式保持部31に保持されている算出式に基づいてエンジンECU11、クラッチ12、および電動機ECU17に回生制御の指示を行う機能である。
 次に、図3のフローチャートを参照して、プログラムを実行するハイブリッドECU18において行われる、回生制御の処理を説明する。なお、図3のステップS1~S7までのフローは1周期分の処理であり、キースイッチ20がON状態である限り処理は繰り返し実行されるものとする。
 図3の「START」では、キースイッチ20がON状態であり、ハイブリッドECU18がプログラムを実行し、ハイブリッドECU18に回生制御部30の機能が実現されている状態であり、手続きはステップS1に進む。
 ステップS1において、回生制御部30は、ハイブリッド自動車1が減速中か否かをアクセル開度情報および車速情報から判定する。すなわち、アクセル開度情報からアクセル開度が0度であり電動機制御情報から電動機13が回生中であり車速情報から車速が低下しつつあればハイブリッド自動車1は減速中である。ステップS1において、ハイブリッド自動車1が減速中であると判定されると、手続きはステップS2に進む。一方、ステップS1において、ハイブリッド自動車1が減速中ではないと判定されると、手続きはステップS1を繰り返す。
 ステップS2において、回生制御部30は、所定の期間内のエンジン回転速度情報および要求トルク情報を取得してその平均値および分散値を計算すると手続きはステップS3に進む。なお、回生制御部30は、アクセル開度情報から運転者の要求トルク情報を取得する。
 ステップS3において、回生制御部30は、ステップS2で計算したエンジン回転速度の平均値、要求トルクの平均値、エンジン回転速度の分散値、および要求トルクの分散値を算出式保持部31に保持されている算出式である回帰式(図4で後述する)に代入すると手続きはステップS4に進む。
 ステップS4において、回生制御部30は、回帰式から燃費向上率を算出するとステップS5の手続きに進む。
 ステップS5において、回生制御部30は、燃費向上率が閾値以上か否かを判定する。ステップS5において、燃料向上率が閾値以上であると判定されると、手続きはステップS6に進む。一方、ステップS5において、燃料向上率が閾値未満であると判定されると、手続きはステップS7に進む。なお、この閾値については後述する。
 ステップS6において、回生制御部30は、クラッチ12を接状態として電動機13による回生を実施して1周期分の処理を終了する(END)。
 ステップS7において、回生制御部30は、クラッチ12を断状態として電動機13による回生を実施して1周期分の処理を終了する(END)。
 次に、上述した算出式である回帰式および燃費向上率の閾値について図4を参照して説明する。図4の表は、回帰式(aW+bX+cY+dZ=(F/E);係数:a,b,c,d;変数:W,X,Y,Z;(F/E):燃費向上率)を作成するための各種データをまとめたものである。図4のパターン#1,#2,#3,#4は、ハイブリッド自動車1の走行パターンである。たとえば、パターン#1は、一般道路走行、パターン#2は、高速道路走行、パターン#3は、渋滞路走行、パターン#4は、市街路走行などである。また、車両重量は、ハイブリッド自動車1の総重量であり、A<B<C<D<Eである(単位はトンなど)。なお、図4の各種データは、1車種のデータであり、総重量の相違は、たとえば積載貨物の重量の相違によるものである。
 すなわち、図4の各種データは、ハイブリッド自動車1をそれぞれのパターン#1,#2,#3,#4において、それぞれの車両重量A,B,C,D,Eで試験的に所定期間走行させ、そのときのエンジン回転速度の平均値、要求トルクの平均値、エンジン回転速度の分散値、要求トルクの分散値、燃費向上率を集計したものである。これらの各種データにより、各変数W,X,Y,Zに所定の数値を代入したときに、所定の燃費向上率が算出されるように、回帰式の各係数a,b,c,dがそれぞれ決定される。なお、回帰式およびその作成手法は周知の事項であり、詳細な説明は省略する。
 ハイブリッド自動車1は、このようにして作成された回帰式を回生制御部30の算出式保持部31に保持することにより、エンジン回転速度情報および要求トルク情報(アクセル開度情報による)を取得してエンジン回転速度の平均値、要求トルクの平均値、エンジン回転速度の分散値、要求トルクの分散値を計算して各変数W,X,Y,Zに代入することにより、燃費向上率(F/E)を算出することができる。
 なお、燃費向上率は、図4の燃費向上率の欄に記載されている数値が大きいほど燃費が改善されることを示している。そこで、たとえば閾値を「0」とし、閾値が「0」以上、または超えている正数のときにはクラッチ接回生を実施し、閾値が「0」未満、または以下である負数のときにはクラッチ断回生を実施するように制御する。その他にもたとえば閾値を「2」とし、燃費向上率がきわめて良い場合にだけクラッチ接回生を実施するようにするなど、閾値の設定についてはユーザの様々な車両の運用方針に基づいて行うことができる。
(効果について)
 以上説明したように、燃費の向上がある程度見込まれる状況下では、減速時にクラッチ12を接続して電動機13の回生を実施することができる。これによれば、電動機13の回生の効率は低下するもののエンジン10の燃料の消費量が減るので、総合的に見た場合、ハイブリッド自動車1の消費エネルギを低減させることができる。また、回帰式に代入するための情報は、エンジン回転速度情報および要求トルク情報のみであるため、別途にセンサ類を取り付けるなどの必要が無く、装置の構成が簡単であると共にコストを低く抑えることができる。 
(その他の実施の形態)
 図5は、エンジン回転速度および要求トルクを入力し、燃費向上率を出力するニューラルネットワークの概念図である。このようなニューラルネットワークを作成し、これを回生制御部30の算出式保持部31に保持してもよい。なお、ニューラルネットワークの作成方法は、上述の回帰式と同様に、ハイブリッド自動車1をそれぞれのパターン#1,#2,#3,#4において、それぞれの車両重量A,B,C,D,Eで試験的に所定期間走行させ、そのときのエンジン回転速度および要求トルクから燃費向上率が算出されるようにニューラルネットワークを作成する。その作成手法については周知の事項であり、詳細な説明は省略する。この場合、図3のフローチャートにおけるステップS2の手続きにおいて、所定期間内のエンジン回転速度情報および要求トルク情報を取得してその平均値および分散値を計算する必要が無く、ステップS2の手続きとして、所定期間内のエンジン回転速度情報および要求トルク情報を取得してそのままステップS3の「回帰式に代入」に代えて「ニューラルネットワークに入力」とすることにより、処理を単純化することができる。
 また、回帰式の変わりにファジー推論で用いられるメンバシップ関数などを用いてもよい。なお、メンバシップ関数の作成方法は、上述の回帰式と同様に、ハイブリッド自動車1をそれぞれのパターン#1,#2,#3,#4において、それぞれの車両重量A,B,C,D,Eで試験的に所定期間走行させ、そのときのエンジン回転速度および要求トルクから燃費向上率が算出されるようにメンバシップ関数を作成する。その作成手法については周知の事項であり、詳細な説明は省略する。この場合、図3のフローチャートにおけるステップS2の手続きにおいて、所定期間内のエンジン回転速度情報および要求トルク情報を取得してその平均値および分散値を計算する必要が無く、ステップS2の手続きとして、所定期間内のエンジン回転速度情報および要求トルク情報を取得してそのままステップS3の「回帰式に代入」に代えて「メンバシップ関数に代入」とすることにより、処理を単純化することができる。
 図3のフローチャートの説明において、「以上」は、「超える」とし、「未満」は、「以下」とするなど、判定の境界値については様々に変更してもよい。
 エンジン10は、内燃機関であると説明したが、外燃機関を含む熱機関であってもよい。
 また、ハイブリッドECU18によって実行されるプログラムは、ハイブリッドECU18にあらかじめインストールされると説明したが、プログラムが記録されている(プログラムを記憶している)リムーバブルメディアを図示せぬドライブなどに装着し、リムーバブルメディアから読み出したプログラムをハイブリッドECU18の内部の不揮発性のメモリに記憶することにより、または、有線または無線の伝送媒体を介して送信されてきたプログラムを、図示せぬ通信部で受信し、ハイブリッドECU18の内部の不揮発性のメモリに記憶することで、コンピュータであるハイブリッドECU18にインストールすることができる。
 また、各ECUは、これらを1つにまとめたECUにより実現してもよいし、あるいは、各ECUの機能をさらに細分化したECUを新たに設けてもよい。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであってもよいし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであってもよい。
 また、本発明の実施の形態は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更が可能である。
 1…ハイブリッド自動車、10…エンジン、11…エンジンECU、12…クラッチ、13…電動機、14…インバータ、15…バッテリ、16…トランスミッション、17…電動機ECU、18…ハイブリッドECU(回生制御装置)、19…車輪、30…回生制御部(制御手段)、31…算出式保持部(算出式を保持する手段)

Claims (7)

  1.  エンジンと電動機とを有し、前記エンジンもしくは前記電動機により走行可能であり、または前記エンジンと前記電動機とが協働して走行可能であり、少なくとも減速中に、前記電動機により回生発電が可能であるハイブリッド自動車の回生制御装置において、
     前記ハイブリッド自動車の減速中に前記エンジンの回転軸と前記電動機の回転軸とが互いに接続された状態で、予め複数の走行パターンのそれぞれについて貨物積載量を複数段階に可変して所定時間走行したときのエンジン回転速度および要求トルクから燃費向上率を算出する算出式を保持する手段と、
     前記ハイブリッド自動車の減速時に、所定時間走行したときのエンジン回転速度および要求トルクと前記算出式とに基づいて前記燃費向上率を算出し、その結果算出された前記燃費向上率が所定の条件を満たすときには、前記エンジンの回転軸と前記電動機の回転軸とが互いに接続された状態で回生発電を実施するように制御する制御手段と、
     を有する、
     ことを特徴とする回生制御装置。
  2.  請求項1記載の回生制御装置であって、
     前記算出式は、前記ハイブリッド自動車の減速中に前記エンジンの回転軸と前記電動機の回転軸とが互いに接続された状態で、予め複数の走行パターンのそれぞれについて貨物積載量を複数段階に可変して所定時間走行したときのエンジン回転速度の平均値、要求トルクの平均値、エンジン回転速度の分散値、要求トルクの分散値、およびそのときの燃費向上率に基づき作成された前記燃料向上率の前記エンジン回転速度の平均値、前記要求トルクの平均値、前記エンジン回転速度の分散値、および前記要求トルクの分散値への回帰式であり、
     前記制御手段は、前記ハイブリッド自動車の減速時に、所定時間走行したときのエンジン回転速度および要求トルクから前記エンジン回転速度の平均値、前記要求トルクの平均値、前記エンジン回転速度の分散値、および前記要求トルクの分散値を計算し、この計算結果を前記回帰式に代入して前記燃費向上率を算出する、
     ことを特徴とする回生制御装置。
  3.  請求項1記載の回生制御装置であって、
     前記保持する手段、前記算出式に代えて、前記ハイブリッド自動車の減速中に前記エンジンの回転軸と前記電動機の回転軸とが互いに接続された状態で、予め複数の走行パターンのそれぞれについて貨物積載量を複数段階に可変して所定時間走行したときのエンジン回転速度、要求トルク、および燃費向上率に基づき作成されたニューラルネットワークを保持し、
     前記制御手段は、前記ハイブリッド自動車の減速時に、所定時間走行したときのエンジン回転速度および要求トルクを前記ニューラルネットワークに入力して前記燃費向上率を算出する、
     ことを特徴とする回生制御装置。
  4.  請求項1記載の回生制御装置であって、
     前記算出式は、前記ハイブリッド自動車の減速中に前記エンジンの回転軸と前記電動機の回転軸とが互いに接続された状態で、予め複数の走行パターンのそれぞれについて貨物積載量を複数段階に可変して所定時間走行したときのエンジン回転速度、要求トルク、および燃費向上率に基づき作成されたメンバシップ関数であり、
     前記制御手段は、前記ハイブリッド自動車の減速時に、所定時間走行したときのエンジン回転速度および要求トルクを前記メンバシップ関数に代入して前記燃費向上率を算出する、
     ことを特徴とする回生制御装置。
  5.  請求項1から4のいずれか1項記載の回生制御装置を有することを特徴とするハイブリッド自動車。
  6.  エンジンと電動機とを有し、前記エンジンもしくは前記電動機により走行可能であり、または前記エンジンと前記電動機とが協働して走行可能であり、少なくとも減速中に、前記電動機により回生発電が可能であるハイブリッド自動車の回生制御方法において、
     前記ハイブリッド自動車の減速中に前記エンジンの回転軸と前記電動機の回転軸とが互いに接続された状態で、予め複数の走行パターンのそれぞれについて貨物積載量を複数段階に可変して所定時間走行したときのエンジン回転速度および要求トルクと燃費向上率との関係を表す算出式を保持し、
     前記ハイブリッド自動車の減速時に、所定時間走行したときのエンジン回転速度および要求トルクと前記算出式とに基づいて前記燃費向上率を算出し、その結果算出された前記燃費向上率が所定の条件を満たすときには、前記エンジンの回転軸と前記電動機の回転軸とが互いに接続された状態で回生発電を実施するように制御する制御ステップを有する、
     ことを特徴とする回生制御方法。
  7.  情報処理装置に、請求項1から4のいずれか1項記載の回生制御装置の機能を実現させることを特徴とするプログラム。
PCT/JP2011/074130 2011-01-20 2011-10-20 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム WO2012098743A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201180040644.8A CN103068648B (zh) 2011-01-20 2011-10-20 再生控制装置、混合动力汽车以及再生控制方法
US13/819,449 US20130166182A1 (en) 2011-01-20 2011-10-20 Regenerative control device, hybrid vehicle,regenerative control method, and computer program
AU2011355952A AU2011355952A1 (en) 2011-01-20 2011-10-20 Regenerative control device, hybrid automobile, regenerative control method, and program
JP2012514260A JP5059246B2 (ja) 2011-01-20 2011-10-20 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
EP11856032.5A EP2666689A1 (en) 2011-01-20 2011-10-20 Regenerative control device, hybrid automobile, regenerative control method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011009761 2011-01-20
JP2011-009761 2011-04-27

Publications (1)

Publication Number Publication Date
WO2012098743A1 true WO2012098743A1 (ja) 2012-07-26

Family

ID=46515385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074130 WO2012098743A1 (ja) 2011-01-20 2011-10-20 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム

Country Status (6)

Country Link
US (1) US20130166182A1 (ja)
EP (1) EP2666689A1 (ja)
JP (1) JP5059246B2 (ja)
CN (1) CN103068648B (ja)
AU (1) AU2011355952A1 (ja)
WO (1) WO2012098743A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034974A (ja) * 2012-08-07 2014-02-24 Hyundai Motor Company Co Ltd 車両の荷重に基づいてエンジントルクを補正する方法及び装置
KR20150129322A (ko) * 2013-03-14 2015-11-19 알리손 트랜스미션, 인크. 하이브리드 차량들에서 회생 동안 엔진 구동라인을 연결 해제하기 위한 시스템 및 방법
US11753028B1 (en) * 2022-08-31 2023-09-12 Nissan North America, Inc. Pedal control system and method for an electric vehicle

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10487891B2 (en) * 2016-02-04 2019-11-26 Ford Global Technologies, Llc Temperature based clutch control
WO2013088530A1 (ja) * 2011-12-14 2013-06-20 トヨタ自動車株式会社 車両の制御装置
CN103738195B (zh) * 2013-11-12 2016-08-17 浙江师范大学 一种复合能源电动车能量控制方法
JP5880533B2 (ja) * 2013-12-13 2016-03-09 トヨタ自動車株式会社 車両制御装置
EP3345798B1 (en) * 2015-09-01 2022-04-20 Nissan Motor Co., Ltd. Vehicle travel control method and vehicle travel control device
JP6753340B2 (ja) * 2017-03-14 2020-09-09 トヨタ自動車株式会社 ハイブリッド自動車
WO2020061421A1 (en) * 2018-09-21 2020-03-26 ePower Engine Systems Inc Ai-controlled multi-channel power divider / combiner for a power-split series electric hybrid heavy vehicle
US10928275B1 (en) * 2019-11-18 2021-02-23 Ford Global Technologies, Llc Systems and methods for coordinating engine-off vehicle diagnostic monitors
DE102020204284A1 (de) 2020-04-02 2021-10-07 Zf Friedrichshafen Ag Verfahren zum Betrieb eines Hybrid-Antriebsstrangs für ein Kraftfahrzeug

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223421A (ja) 2006-02-22 2007-09-06 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2007223404A (ja) * 2006-02-22 2007-09-06 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2010095067A (ja) * 2008-10-15 2010-04-30 Hino Motors Ltd ハイブリッド自動車およびコンピュータ装置ならびにプログラム

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4405029A (en) * 1980-01-02 1983-09-20 Hunt Hugh S Hybrid vehicles
JP3380642B2 (ja) * 1995-01-18 2003-02-24 本田技研工業株式会社 車両の駆動力演算装置
US6116363A (en) * 1995-05-31 2000-09-12 Frank Transportation Technology, Llc Fuel consumption control for charge depletion hybrid electric vehicles
US5842534A (en) * 1995-05-31 1998-12-01 Frank; Andrew A. Charge depletion control method and apparatus for hybrid powered vehicles
US6278986B1 (en) * 1996-06-27 2001-08-21 Yahama Hatsudoki Kabushiki Kaisha Integrated controlling system
US6032139A (en) * 1996-09-27 2000-02-29 Yamaha Hatsudoki Kabushiki Kaisha Electronic controller using genetic evolution techniques suitable for controlling a motor
US6314412B1 (en) * 1997-09-29 2001-11-06 Yamaha Hatsudoki Kabushiki Kaisha Evolutionary control of machine based on user's preference inferred from user's operation
US6324529B1 (en) * 1996-09-27 2001-11-27 Yamaha Hatsudoki Kabushiki Kaisha Evolutionary controlling system
JPH11327606A (ja) * 1998-05-14 1999-11-26 Yamaha Motor Co Ltd 総合制御方式
US6466859B1 (en) * 1998-06-04 2002-10-15 Yamaha Motor Co Ltd Control system
JP2000020103A (ja) * 1998-07-02 2000-01-21 Yamaha Motor Co Ltd 遺伝的アルゴリズムの評価方法
JP2000054862A (ja) * 1998-08-07 2000-02-22 Yamaha Motor Co Ltd 動力源付き乗物における出力制御方法
US6554088B2 (en) * 1998-09-14 2003-04-29 Paice Corporation Hybrid vehicles
US6079204A (en) * 1998-09-21 2000-06-27 Ford Global Technologies, Inc. Torque control for direct injected engines using a supplemental torque apparatus
US6321157B1 (en) * 1999-04-27 2001-11-20 Ford Global Technologies, Inc. Hybrid modeling and control of disc engines
JP2001159903A (ja) * 1999-12-01 2001-06-12 Yamaha Motor Co Ltd 組合せ完成品用単位装置の最適化装置
US6304812B1 (en) * 2000-04-28 2001-10-16 Ford Global Technologies, Inc. Calibration optimization method
US6363317B1 (en) * 2000-08-26 2002-03-26 Ford Global Technologies, Inc. Calibration method for disc engines
US7084602B2 (en) * 2004-02-17 2006-08-01 Railpower Technologies Corp. Predicting wheel slip and skid in a locomotive
DE102004026583B3 (de) * 2004-05-28 2005-11-24 Robert Bosch Gmbh Verfahren zur Optimierung von Kennfeldern
US7940016B2 (en) * 2004-08-09 2011-05-10 Railpower, Llc Regenerative braking methods for a hybrid locomotive
WO2006020667A2 (en) * 2004-08-09 2006-02-23 Railpower Technologies Corp. Locomotive power train architecture
EP1705352B1 (en) * 2005-03-04 2012-11-21 STMicroelectronics Srl Method and relative device for sensing the air/fuel ratio of an internal combustion engine
JP4175370B2 (ja) * 2006-01-13 2008-11-05 トヨタ自動車株式会社 ハイブリッド車両およびその制御方法
US20070233326A1 (en) * 2006-03-31 2007-10-04 Caterpillar Inc. Engine self-tuning methods and systems
US7826939B2 (en) * 2006-09-01 2010-11-02 Azure Dynamics, Inc. Method, apparatus, signals, and medium for managing power in a hybrid vehicle
US7832511B2 (en) * 2006-10-20 2010-11-16 Ford Global Technologies Hybrid electric vehicle control system and method of use
JP4380700B2 (ja) * 2006-12-29 2009-12-09 トヨタ自動車株式会社 電動車両
JP4229185B2 (ja) * 2007-01-12 2009-02-25 トヨタ自動車株式会社 ハイブリッド自動車およびその制御方法
US7849944B2 (en) * 2007-06-12 2010-12-14 Ut-Battelle, Llc Self-learning control system for plug-in hybrid vehicles
US9002550B2 (en) * 2007-07-02 2015-04-07 GM Global Technology Operations LLC Use of torque model at virtual engine conditions
US8108136B2 (en) * 2007-08-09 2012-01-31 Ford Global Technologies, Llc. Driver advisory system for fuel economy improvement of a hybrid electric vehicle
US7593804B2 (en) * 2007-10-31 2009-09-22 Caterpillar Inc. Fixed-point virtual sensor control system and method
TWI346056B (en) * 2007-12-07 2011-08-01 Ind Tech Res Inst Mixed type vehicle power system and method of forming multidimentional data of fuel consumption
US7954579B2 (en) * 2008-02-04 2011-06-07 Illinois Institute Of Technology Adaptive control strategy and method for optimizing hybrid electric vehicles
US8190318B2 (en) * 2008-04-15 2012-05-29 The Uwm Research Foundation, Inc. Power management systems and methods in a hybrid vehicle
WO2010119498A1 (ja) * 2009-04-13 2010-10-21 トヨタ自動車株式会社 駆動力制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007223421A (ja) 2006-02-22 2007-09-06 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車の制御装置
JP2007223404A (ja) * 2006-02-22 2007-09-06 Honda Motor Co Ltd ハイブリッド車両の制御装置
JP2010095067A (ja) * 2008-10-15 2010-04-30 Hino Motors Ltd ハイブリッド自動車およびコンピュータ装置ならびにプログラム

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014034974A (ja) * 2012-08-07 2014-02-24 Hyundai Motor Company Co Ltd 車両の荷重に基づいてエンジントルクを補正する方法及び装置
KR101795378B1 (ko) 2012-08-07 2017-11-09 현대자동차 주식회사 차량 하중에 기초하여 엔진 토크를 보정하는 방법 및 장치
KR20150129322A (ko) * 2013-03-14 2015-11-19 알리손 트랜스미션, 인크. 하이브리드 차량들에서 회생 동안 엔진 구동라인을 연결 해제하기 위한 시스템 및 방법
CN105189235A (zh) * 2013-03-14 2015-12-23 艾里逊变速箱公司 用于混合动力车的在再生过程中断开发动机动力传动系的***及方法
US20150367843A1 (en) * 2013-03-14 2015-12-24 Allison Transmission, Inc. System and method for engine driveline disconnect during regeneration in hybrid vehicles
EP2969688A4 (en) * 2013-03-14 2017-04-26 Allison Transmission, Inc. System and method for engine driveline disconnect during regeneration in hybrid vehicles
US9738272B2 (en) * 2013-03-14 2017-08-22 Allison Transmission, Inc. System and method for engine driveline disconnect during regeneration in hybrid vehicles
US10562519B2 (en) 2013-03-14 2020-02-18 Allison Transmission, Inc. System and method for engine driveline disconnect during regeneration in hybrid vehicles
KR102165371B1 (ko) 2013-03-14 2020-10-14 알리손 트랜스미션, 인크. 하이브리드 차량들에서 회생 동안 엔진 구동라인을 연결 해제하기 위한 시스템 및 방법
US11753028B1 (en) * 2022-08-31 2023-09-12 Nissan North America, Inc. Pedal control system and method for an electric vehicle

Also Published As

Publication number Publication date
US20130166182A1 (en) 2013-06-27
CN103068648A (zh) 2013-04-24
JP5059246B2 (ja) 2012-10-24
AU2011355952A1 (en) 2013-05-09
JPWO2012098743A1 (ja) 2014-06-09
EP2666689A1 (en) 2013-11-27
CN103068648B (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
JP5059246B2 (ja) 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
JP4988046B1 (ja) 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
JP5079864B2 (ja) 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
JP5362107B2 (ja) 発進制御方法、発進制御装置およびハイブリッド自動車、並びにプログラム
JP5073875B2 (ja) 車両および制御方法、並びにプログラム
JP5001475B1 (ja) 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
WO2012053607A1 (ja) 車両および制御方法、並びにプログラム
JP5165812B2 (ja) 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
JP6361634B2 (ja) ハイブリッド自動車
WO2012101878A1 (ja) 制御装置、ハイブリッド自動車および制御方法、並びにプログラム
JP5063829B2 (ja) 回生制御装置、ハイブリッド自動車および回生制御方法、並びにプログラム
WO2012053603A1 (ja) 再生制御装置、ハイブリッド自動車および再生制御方法、並びにプログラム
CN103661363B (zh) 控制混合动力系的方法
JP6582928B2 (ja) ハイブリッド車両の変速制御装置
JP2018034671A (ja) ハイブリッド車両およびその制御方法
JP2008207577A (ja) 駆動装置およびこれを搭載する車両並びに駆動装置の制御方法
JP6428658B2 (ja) ハイブリッド車両
JP6447473B2 (ja) ハイブリッド車両
JP2020019457A (ja) ハイブリッド車両
JP2012148702A (ja) 制御装置、ハイブリッド自動車および制御方法、並びにプログラム
JP2012236566A (ja) 制御装置、ハイブリッド自動車および制御方法、並びにプログラム
JP2013220663A (ja) ハイブリッド自動車の制御装置、ハイブリッド自動車、およびハイブリッド自動車の制御方法、並びにプログラム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180040644.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012514260

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856032

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2011856032

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011856032

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13819449

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2011355952

Country of ref document: AU

Date of ref document: 20111020

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE