WO2012097480A1 - 一种液-液-液三相连续逆流萃取装置及其使用方法 - Google Patents

一种液-液-液三相连续逆流萃取装置及其使用方法 Download PDF

Info

Publication number
WO2012097480A1
WO2012097480A1 PCT/CN2011/000635 CN2011000635W WO2012097480A1 WO 2012097480 A1 WO2012097480 A1 WO 2012097480A1 CN 2011000635 W CN2011000635 W CN 2011000635W WO 2012097480 A1 WO2012097480 A1 WO 2012097480A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
mixing chamber
liquid
control
flow
Prior art date
Application number
PCT/CN2011/000635
Other languages
English (en)
French (fr)
Inventor
刘会洲
黄焜
安震涛
Original Assignee
中国科学院过程工程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院过程工程研究所 filed Critical 中国科学院过程工程研究所
Priority to US13/978,863 priority Critical patent/US9399181B2/en
Publication of WO2012097480A1 publication Critical patent/WO2012097480A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0446Juxtaposition of mixers-settlers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/04Solvent extraction of solutions which are liquid
    • B01D11/0446Juxtaposition of mixers-settlers
    • B01D11/0457Juxtaposition of mixers-settlers comprising rotating mechanisms, e.g. mixers, mixing pumps
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/12Activated sludge processes
    • C02F3/1205Particular type of activated sludge processes
    • C02F3/121Multistep treatment

Definitions

  • the invention belongs to the technical field of extraction and separation chemical industry, in particular to a liquid-liquid-liquid three-phase continuous countercurrent extraction device and a method thereof, which are used for three-phase extraction of various target components in a complex system to realize three liquid phases simultaneously Separation.
  • Extraction is an important chemical separation technology. It has the advantages of high selectivity to targets, strong adaptability to various materials, low energy consumption, easy operation, and large-scale continuous production. In chemical, metallurgical, and new energy sources. It is widely used in biological and pharmaceutical engineering, environmental engineering, natural product extraction, new material preparation and efficient and comprehensive utilization of resources. It is known as "the most promising green chemical separation technology in the 21st century". With the increasing complexity of separation objects and separation systems, traditional liquid-liquid two-phase extraction techniques and their equipment are far from being able to adapt to the requirements of emerging chemical separation systems. The structure design of the existing extraction separation device is mostly directed to the liquid-liquid two-phase extraction process.
  • step-by-step contact and continuous contact
  • the traditional liquid-liquid two-phase extraction process has poor selectivity, the separation step is tedious and long, and the separation efficiency is low.
  • the device has a complicated liquid flow direction and cascade structure design, and it is difficult to effectively control the complex system.
  • phase-to-phase mass transfer and phase separation process high operation and maintenance costs. Taking the separation of biochemical systems as an example, the cost of the separation process often accounts for more than 80% of the production cost of the entire product.
  • the development of separation equipment is seriously lagging behind, and it has become a "bottleneck" problem that restricts the technological progress in the field of chemical process engineering in China.
  • the liquid-liquid-liquid three-phase extraction is a new method with enhanced selectivity and enhanced mass transfer and separation based on the interface effect of the extraction process developed by microemulsion phase extraction technology. From the characteristics of the interface of the nano-microphase structure regulating the separation medium, the phase formation and separation behavior of three macroscopic coexisting liquid phases with different structures and properties can be used to realize one-step extraction and three-phase simultaneous extraction of multiple target components in a complex system. Separation or group separation.
  • biochemical products such as penicillin, lincomycin, glutamic acid fermentation broth
  • Chinese patent ZL00107655. 8 proposes a three-liquid phase extraction system consisting of organic phase-polymer phase-saturated brine phase, which can realize brine-rich phase.
  • the novel three-phase extraction system can easily control the phase behavior of the system.
  • the phase separation behavior of the three target liquid phases in the macroscopic coexistence can be phased by the three-phase system. Effective control of behavior.
  • the processes of extracting, purifying, and removing impurities of the target can be combined into one step, thereby eliminating the demulsification and cold.
  • the intermediate process of freezing dehydration and decolorization has a simple process.
  • the three-phase extraction separates impurities and by-products with high efficiency, and the yield and purity of the target product can be greatly improved compared with the conventional two-phase extraction process.
  • the separation of complex multi-component systems for three-phase extraction has become a hot topic and frontier topic in the international related field.
  • the basic theory and process research of three-phase extraction have made breakthroughs.
  • new three-phase extraction techniques have not been able to achieve industrial applications.
  • Chinese patent ZL00107700. 7 proposes a series self-priming multi-channel phase dispersion extraction device.
  • the device is suitable for a three-phase extraction system consisting of an organic solvent and a polymer aqueous two-phase extraction system.
  • the self-priming agitator is used for the first time to realize the mass transfer and phase dispersion between the three liquid phases in the three-phase extraction system.
  • the effective control can also effectively avoid the emulsification of the extraction process.
  • Chinese patent ZL02106742. 2 proposes a liquid-liquid-liquid three-phase continuous extraction vibrating sieve tray tower. Although the device solves the problem of continuous extraction operation, the structural design of the tower separation device cannot effectively control the three liquid flow directions and three-phase countercurrent operation in the three-phase system, and the mass transfer efficiency and separation index are low. The operating conditions are harsh, easy to flood and axial back mixing, and it is difficult to enlarge.
  • the device essentially combines two liquid-liquid two-phase extraction processes in series in the device to realize the two-phase contact mass transfer between the three liquid phases, and the design idea has not yet deviated from the two-phase extraction, which does not realize the true meaning.
  • Liquid-liquid-liquid three-phase in-situ contact and phase separation operations are proposed.
  • Chinese patent ZL02121210. 4 proposes a liquid-liquid-liquid three-phase horizontal continuous lifting and stirring extraction device. The device realizes liquid-liquid-liquid three-phase continuous in-situ contact mass transfer for the first time, with reduced back mixing, high theoretical level, high extraction efficiency, simple structure, easy amplification, continuous operation, low energy consumption, and land occupation.
  • the device cannot realize multi-stage continuous countercurrent extraction operation, and the three main phases cannot be well mixed.
  • the mass transfer only occurs on the contact surface of the phase and the phase, the processing capability is small, the structure of the device is complicated, and the amplification is difficult.
  • the Chinese patent CN200910090899. X also proposes a liquid-liquid-liquid three-phase continuous extraction mixing clarification tank device. The device solves the problem of how to control the three liquid flow directions in the three-phase extraction system, and can perform multi-stage serial continuous extraction operation.
  • this device does not design the device structure from the essential characteristics of the phase behavior of the three-phase extraction system.
  • Bayer AG has proposed a multi-stage three-phase extractor (Chinese patent ZL96197714. 0) to solve the three-phase countercurrent continuous operation.
  • the structural design of the device is based on three liquid flows in a three-phase system during the mixed phase contact process. It is necessary to maintain mutual immiscibility, and two phases in the three-phase system are used as the continuous phase and the other phase as the continuous phase.
  • the phase behavior of the three phase system is due to the three phase system composed of the organic phase-polymer phase-saturated brine phase.
  • the polymer phase and the brine-rich phase first form a two-aqueous phase extraction system to complete the mass transfer of the target from the brine-rich phase (lower phase) to the polymer phase (middle phase); then, the aqueous two-phase extraction system and the organic phase After mixing, the mass transfer of the target from the polymer phase (middle phase) to the organic phase (upper phase) is completed.
  • phase formation of a two-phase system consisting of a polymer phase-saturated brine phase is a prerequisite for the formation of a stable three-phase system.
  • the mass transfer behavior of the three-phase system is closely related to the phase-forming behavior.
  • the device can not effectively control the phase behavior of the organic phase-polymer phase-saturated brine phase three-phase system and the phase of the dispersed phase and the continuous phase. Summary of the invention
  • the object of the present invention is to provide a liquid-liquid-liquid three-phase multi-stage continuous countercurrent extraction operation suitable for industrial production to solve two liquid phase flows in a liquid-liquid-liquid three-phase continuous extraction process. How to realize the combination of two countercurrent operation operations, and can meet the requirements of phase and mass transfer behavior control of the three-phase system to control the mass transfer behavior between the two liquid phases of the three-liquid phase system.
  • the device is a three-chamber combination structure comprising a three-phase mixing chamber, a clarifying phase separation chamber, and a two-phase mixing chamber.
  • the clarification phase separation indoor setting can flexibly control the control plug-in of the three liquid flow directions in the three-phase system, and the combination of different control plug-ins can realize the countercurrent operation of the middle-lower phase of the three-phase system and the upper phase; or The upper middle phase is combined with the lower phase for countercurrent operation.
  • the multi-stage series connection of the device can realize continuous operation of two-to-two reverse flow in the middle and lower three streams on the three-phase system.
  • the introduction of the control plug-in can take advantage of the combined structure of the three-phase mixing chamber and the two-phase mixing chamber, meet the requirements of phase behavior and phase-to-phase mass transfer control of the three-phase system, and meet the characteristics of the three-phase extraction process, and can realize various components.
  • the complex system extracts three-phase simultaneous separation and continuous countercurrent controllable operation.
  • the apparatus of the present invention comprises a three-phase mixing chamber, a clarifying phase separation chamber, and a two-phase mixing chamber.
  • the three-phase mixing chamber 1 is composed of three phases of a three-phase mixing chamber mixed phase a, a three-phase mixing chamber overflow region b and a three-phase mixing chamber inlet region c; a three-phase mixing chamber mixed phase a and three phases
  • the mixing chamber overflow area b, the three-phase mixing chamber mixed phase area a and the three-phase mixing chamber liquid inlet area c are respectively provided with partitions separated; the three-phase mixing chamber mixed phase area a is provided with self-suction type
  • the agitator 6 is connected to the motor motor whose speed is continuously adjustable through the stirring shaft; the lower part of the two side walls of the cavity of the three-phase mixing chamber is provided with two independent first liquid inlets 7 and a second liquid flow respectively
  • the clarified phase separation chamber 2 is adjacent to the side of the three-phase mixing chamber overflow weir 11 and is provided with a longitudinal baffle baffle 12 parallel to the longitudinal baffle of the three-phase mixing chamber 1, in which the longitudinal baffle baffle There is a transverse baffle 13 connected to the longitudinal baffle of the three-phase mixing chamber perpendicular to the lower side; between the bottom end of the longitudinal baffle 12 and the lateral baffle 13 below the longitudinal baffle 12 A gap is left for the passage of the overflow liquid in the overflow zone b of the three-phase mixing chamber.
  • the longitudinal baffle baffle 12 and the transverse baffle 13 function to block the flow of liquid to promote the clarified phase separation of the three-phase mixed liquid overflowing from the three-phase mixing chamber 1.
  • the clarified phase separation chamber 2 is adjacent to the two-phase mixing chamber 3 side, and has a three-phase liquid flow plug-in control area d, which can be loaded with two different types of movable three-phase liquid flow first control according to requirements.
  • the insert 4 or the second control insert 5 is fixed by the positioner 14; using the first control insert 4 or the second control insert 5, the three-phase flow of the three-phase system can be controlled, and the three-phase system can be realized as needed.
  • the bottom of the three-phase liquid flow insert control zone d is provided with a liquid phase outlet 15 on the end wall of the clarification separation chamber 2, and adjacent to the three-phase liquid flow plug control zone d a rectangular liquid flow outlet 16 is formed on the side wall of the longitudinal partition of the two-phase mixing chamber 3;
  • the first control insert 4 is used when it is required to separate the lightest upper and lower middle phases of the three-phase liquid flow, the first control a rectangular liquid flow outlet 20 is opened on the lower side wall of the insert 4, the height and width of which are equal to the outlet 16;
  • the second control insert 5 is used, the second The side wall of the control insert 5 is not open, but the second control The height H of the insert 5 is half of the height L of the outlet 16; when the first control insert 4 is used, the upper phase is introduced from above the first control insert 4 into the liquid outlet 15 at the bottom of the control zone d of the three
  • the two-phase mixing chamber 3 is provided with a stirrer 17 connected to the motor motor whose speed is continuously adjustable through the stirring shaft; an overflow tank 18 is provided on the inner side wall of the two-phase mixing chamber 3, and the top of the overflow tank 18 The edge height is located in the middle of the two-phase mixing chamber 3, and a liquid outlet 19 is provided at the bottom of the overflow tank 18.
  • the function of the overflow tank 18 is to allow the two-phase mixed liquid flow in the two-phase mixing chamber 3 to overflow during the stirring process, and to flow out from the liquid outlet 19 at the bottom of the overflow tank 18.
  • the two-phase mixing chamber 3 is adjacent to the three-phase flow plug control zone d-side of the clarified phase separation chamber 2, and at the liquid flow outlet 16 on the longitudinal partition side wall of the two-phase mixing chamber 3, is mounted parallel to the longitudinal partition
  • the width and length of the plate are equal to the size of the split flow outlet 16 of the splitter baffle 21; there is a gap between the splitter baffle 21 and the longitudinal baffle outlet 16 for liquid passage, which has two functions: one is to prevent two phases When the liquid in the mixing chamber 3 is mixed, it is mixed back into the clarified phase separation chamber 2 from the liquid outlet 16 on the side wall of the longitudinal partition; the second is beneficial to the first control from the clarification separation chamber 2 three-phase liquid flow plug control area d
  • the liquid flow branched by the insert 4 or the second control insert 5 flows into the two-phase mixing chamber 3.
  • the device of the invention is a cubic trough device, the three-phase mixing chamber 1: the clarified phase separation chamber 2: the length ratio of the two-phase mixing chamber 3 is preferably 1: 5: 1, under the condition of a certain width and height, three chambers The volume ratio is also 1: 5: 1.
  • the device of the present invention can be used alone as a certain stage in continuous multi-stage extraction.
  • a two-phase mixed liquid flow from the liquid outlet 19 at the bottom of the overflow tank 18 in the two-phase mixing chamber 3 of the upper-stage extraction device, from the cavity of the three-phase mixing chamber
  • the c-connected liquid flow inlet 7 flows into the three-phase mixing chamber inlet zone c; the three-phase outflow from the liquid phase outflow port 15 at the bottom of the three-phase liquid flow plug-in control zone d in the clarified phase separation chamber 2 of the upper-stage extraction device
  • the lightest upper phase or the heaviest lower phase in the system flows into the three-phase mixing chamber mixed phase a from the liquid flow inlet 8 communicating with the cavity of the three-phase mixing chamber mixed phase a; in the mixed phase cavity of the three-phase mixing chamber Under the agitation of the self-priming agitator 6 in a, the liquid from the cavity of the three-phase mixing chamber inlet c and the liquid from the in
  • the device of the invention can also be used in series in multiple stages.
  • the polymer phase (middle phase) and brine-rich phase in the three-phase system consisting of the organic phase-polymer phase-saturated brine phase are completed in the two-phase mixing chamber 3 of each stage.
  • Phase, or the organic phase (upper phase) and the polymer phase (middle phase) contact the mass transfer between the two phases, and then enter the three-phase mixing chamber 1 of the next stage, and the third liquid phase (the former is The organic phase, the latter being a brine-rich phase, is mixed.
  • the phase separation room is equipped with a three-phase liquid flow plug-in control area d.
  • Two different types of movable three-phase liquid flow control plug-ins can be installed as needed to flexibly control the three-phase flow direction of the three-phase system. It is necessary to realize two different combinations and separations of the middle and lower liquid flow phases on the three-phase system.
  • phase separation chamber does not need to obtain a clear phase interface of the three liquid phase flow, and the lightest upper phase and middle phase of the three-phase system can be made through the three-phase liquid flow control plug-in even if the phase separation interface is not clear.
  • the lower phase separation or the heaviest lower phase is separated from the upper phase.
  • the multi-stage series arrangement of the device of the invention can realize the continuous controllable extraction operation of the reverse flow mass transfer between the upper, middle and lower three streams of the three-phase extraction system.
  • By switching to different control plug-ins it is possible to combine the middle and lower phases in the three-phase system with the upstream phase, or to combine the upper and middle phases and perform the countercurrent operation with the lower phase.
  • the three-chamber combination structure of the three-phase mixing chamber, the clarification phase separation chamber and the two-phase mixing chamber of the device of the invention cooperates with the control plug-in in the clarification phase separation chamber to satisfy the phase-forming behavior and phase-to-phase mass transfer behavior of the three-phase extraction process.
  • the control requirements are in line with the characteristics of the three-phase extraction process.
  • the device has simple structure, simple operation control, strong process adaptability, easy enlargement, low maintenance and operation cost.
  • the new technology for multi-target product extraction in a complex system for three-phase extraction and one-step extraction provides a viable equipment solution for large-scale industrial applications.
  • Figure 1 is a front elevational view of the apparatus of the present invention.
  • three-phase mixing chamber 1 clarifying phase separation chamber 2, two-phase mixing chamber 3, insert 4, insert 5, self-priming agitator 6, liquid inlet 7, liquid inlet 8, overflow weir 11, longitudinal folding Flow baffle 12, transverse baffle 13, three-phase flow plug locator 14, liquid flow outlet 15, stir The stirrer 17, the overflow tank 18, the liquid flow outlet 19, and the flow dividing baffle 21.
  • a is a three-phase mixing chamber mixed phase zone
  • b is a three-phase mixing chamber overflow zone
  • c is a three-phase mixing chamber inlet zone
  • d is a three-phase fluid flow plug-in control zone.
  • Figure 2 is a top plan view of the apparatus of the present invention. Among them, the liquid flow inlet 7, the liquid flow inlet 8, the gas flow port 9, the gas flow port 10, the three-phase liquid flow insert positioner 14, the liquid flow outlet 15, and the liquid flow outlet 19.
  • Fig. 3 is a left side view of the A-A plane, and L is the height of the liquid discharge port 16.
  • FIG. 4 is a right side view of the B-B plane. Wherein, the baffle 21 is divided.
  • Figure 5 is a cross-sectional right side view of the C-C plane. Wherein, the overflow mouth 11, the longitudinal baffle 12, the transverse baffle
  • Figure 6 is a perspective view of the insert 4 (angle 1). Wherein, the insert side wall opening 20 is provided.
  • Figure 7 is a perspective view of the insert 4 (angle 2). Wherein, the insert side wall opening 20 is provided.
  • Figure 8 is a perspective view of the insert 5, and H is the height of the insert 5.
  • Figure 9 is a schematic diagram of the three-phase flow direction of a three-stage series extraction apparatus.
  • the device of the invention consists of a three-phase mixing chamber 1, a clarifying phase separation chamber 2, and a two-phase mixing chamber.
  • the two-phase mixed liquid flow from the liquid outlet 19 at the bottom of the overflow tank 18 in the two-phase mixing chamber 3 of the upper-stage extraction device flows from the liquid flow inlet 7 communicating with the three-phase mixing chamber inlet region cavity c
  • the heavy lower phase flows from the liquid flow inlet 8 communicating with the cavity of the three-phase mixing chamber mixed phase a into the mixed phase a of the three-phase mixing chamber; the self-priming agitator 6 in the cavity a of the mixed phase of the three-phase mixing chamber Under the action of agitation, the liquid from the cavity of the three-phase mixing chamber inlet area c and the liquid from the liquid inlet port 8 are sucked into the three through the first and second diversion ports 9 and 10 which are isolated from each other.
  • the mixing chamber of the phase mixing chamber is fully stirred and mixed in the cavity; after the mixture stays in the cavity of the three-phase mixing chamber a phase for a certain period of time, the overflow zone b of the three-phase mixing chamber from the top of the three-phase mixing chamber is close to the clarification phase separation.
  • the overflow weir 11 on one side of the chamber flows out from the side of the clarified splitting chamber 2 near the side of the three-phase mixing chamber overflow weir 11
  • the liquid passage of the gap between the bottom end of the flow baffle 12 and the lateral baffle 13 below flows into the clarified splitting chamber 2; after the mixed liquid enters the clarified splitting chamber 2, under the action of gravity, the clarified phase separation forms a macroscopic coexistence due to the density
  • the first control insert 4 is used when it is desired to separate the lightest upper and lower middle phases of the three-phase flow;
  • the second control insert is used when it is desired to separate the heaviest lower phase of the three-phase flow from the upper phase 5; when the first control insert 4 is used, the upper phase is introduced from above the first control insert 4 into
  • the multi-stage series connection of the apparatus of the present invention can realize the continuous extraction operation of the reverse flow mass transfer between the upper, middle and lower three streams of the three-phase extraction system, and the specific embodiment thereof can be explained with reference to Fig. 9.
  • the first group implements a combination of the middle and lower phases of the three-phase system and a countercurrent operation mode with the upper phase, and loads the three-phase flow control zone d in the clarified phase separation chamber 2 Three-phase flow control plug-in 4.
  • Upper phase course The upper phase flows into the three-phase mixing chamber 1 of the first group of first-stage extraction devices, and the two-phase mixed liquid stream from the two-phase mixing chamber 3 of the second-stage extraction device is thoroughly stirred and mixed in the three-phase mixing chamber 1 After that, enter the clarified phase separation chamber 2. Under the action of gravity, the upper phase is separated from the middle and lower phases of the three-phase system in the clarified phase separation chamber 2. The phased upper phase is split by the plug-in 4 of the three-phase liquid flow control zone d and the middle-lower phase of the three-phase system, and is introduced from the flow channel above the insert 4 into the liquid outlet 15 at the bottom thereof, and enters the second-stage extraction. Three-phase mixing chamber 1 of the device. This repetition is finally carried out from the liquid outlet 15 at the bottom of the three-phase flow control zone d of the clarification separation chamber 2 of the tertiary extraction apparatus.
  • Middle and lower phase orientation the middle and lower phase are combined and merged into a three-phase mixing chamber 1 in which the liquid flows into the first group of third-stage extraction devices, and the three-phase liquid flow control plug-in in the clarified phase separation chamber 2 from the second-stage extraction device
  • the upper phase of the 4-point outflow is sufficiently stirred and mixed in the three-phase mixing chamber 1, and then enters the clarified phase separation chamber 2.
  • the middle and lower phases are separated from the upper phase of the three-phase system in the clarified phase separation chamber 2, and then flow through the lower side wall opening 20 of the three-phase flow control insert 4, from the longitudinal separation of the two-phase mixing chamber 3.
  • the plate side wall flow outlet 16 flows into the two-phase mixing chamber 3 via the splitter baffle 21 to be branched from the upper phase of the three-phase system.
  • the lower middle phase flowing into the two-phase mixing chamber 3 is further stirred and mixed, and then flows out from the bottom liquid outlet 19 of the overflow tank 18 of the two-phase mixing chamber 3 to enter the three-phase mixing chamber 1 of the second-stage extraction apparatus. This is repeated, and finally flows out from the bottom outlet 19 of the overflow tank 18 of the two-phase mixing chamber 3 of the first-stage extraction apparatus.
  • the middle and lower phases obtained by gravity clarification and phase separation from the first-stage three-stage series extraction apparatus enter the first and third stages of the second-stage three-stage series extraction apparatus, respectively.
  • the second group implements a countercurrent operation mode in which the upper middle phase of the three-phase system is combined and the lower phase, and a three-phase liquid flow control plug-in is installed in the three-phase liquid flow control zone d in the clarified phase separation chamber 2
  • Upper middle phase strike the middle phase obtained after the phase separation from the first group first stage device, and the upper phase flowing out from the first group third stage device are mixed and merged into one liquid flow into the second group first
  • the three-phase mixing chamber 1 of the stage extraction apparatus is thoroughly stirred and mixed with the lower phase from the clarified phase separation chamber 2 of the second-stage second-stage extraction apparatus via the three-phase liquid flow control insert 5 in the three-phase mixing chamber 1 Enter the clarified phase separation chamber 2.
  • the upper middle phase is separated from the lower phase of the three-phase system in the clarified phase separation chamber 2, and then flows through the longitudinal separator side wall liquid flow outlet 16 above the three-phase liquid flow control insert 5 and the three-phase
  • the lower phase of the system is split, flows into the two-phase mixing chamber 3, is further stirred and mixed, and then flows out from the bottom liquid outlet 19 of the overflow tank 18 of the two-phase mixing chamber 3 to enter the three-phase mixing chamber 1 of the second-stage extraction apparatus. This is repeated, and finally flows out from the bottom outlet 19 of the overflow tank 18 of the two-phase mixing chamber 3 of the third-stage extraction apparatus.
  • the lower phase direction the lower phase obtained by the phase separation from the first group first stage device flows into the three-phase mixing chamber 1 of the second group third stage device, and the two-phase mixing chamber 3 from the second group second stage device
  • the mixture of the upper and middle phases is thoroughly stirred and mixed in the three-phase mixing chamber 1, and then enters the clarified phase separation chamber 2.
  • the upper and middle phases of the three-phase system are phase-separated.
  • the phase-separated lower phase is split by the three-phase flow control insert 5 and the upper middle phase of the three-phase system, flows out from the liquid outlet 15 below the insert 5, and enters the three-phase mixing chamber 1 of the second group of second-stage extraction devices. . This is repeated, and finally the liquid outlet 15 below the three-phase flow control insert 5 of the phase separation chamber 2 is clarified from the second group first stage extraction unit.
  • the upper and middle phases obtained by gravity clarification and phase separation from the second-stage three-stage series extraction apparatus enter the first and third stages of the first three-stage series extraction apparatus, respectively.
  • the combination of the above two sets of three-stage series extraction apparatus can realize the continuous extraction operation of the countercurrent mass transfer of the upper, middle and lower three streams of the three-phase extraction system.
  • Example 1 Liquid-liquid three-phase extraction and separation of platinum, palladium and rhodium ternary metal mixture
  • the effect of the three-phase system consisting of a mixed solution of thioether-polyethylene glycol-ammonium sulfate-platinum-palladium-ruthenium ternary metal in one-step extraction of three-phase simultaneous separation of platinum-palladium-iridium was investigated.
  • the experiment was carried out on a platinum-palladium-ruthenium ternary metal mixture (the initial concentrations of platinum, palladium and rhodium were 0.52 ol/L 0. 94 mmol/L, 0.997 mmol/L, respectively).
  • Example 2 Liquid-liquid three-phase extraction and separation of titanium-iron-magnesium ternary metal mixture
  • the experiment is directed to Panzhihua Titanium and Magnesium ternary metal mixture (the initial concentrations of titanium, iron and magnesium are 30mm O l/L, 5mm 0 l/L and 15mm 0 l/L respectively), and the two groups of three consecutive continuous countercurrent three-phase Extraction, respectively, the P204 organic upper phase titanium iron magnesium content obtained by the three-phase flow plug 4 or 5 split, the polyethylene glycol polymer intermediate phase titanium iron magnesium content, and the ammonium sulfate ammonium salt content of the titanium iron and magnesium content.
  • the upper phase is enriched in titanium, but the iron and magnesium are not extracted, the titanium extraction rate is 99.0%; the middle phase is enriched in iron, and the titanium and magnesium content is small, the iron extraction rate is 92.0%; the lower phase is enriched in magnesium, magnesium 0% ⁇ Magnesium enrichment rate of 99.0%.
  • Example 3 Liquid-liquid three-phase extraction separation of o- and p-nitrophenol binary mixed aqueous solution
  • the three-liquid phase system consisting of a mixture of decane-polyethylene glycol-ammonium sulfate-ortho and p-nitrophenol was used to extract three-phase system and simultaneously separate ortho- and para-nitrophenol. Effect.
  • the experiment was carried out for the ortho- and para-nitrophenol mixed aqueous solution (the initial concentration of ortho and para-nitrophenols was 7.19mmol/L), and the three groups of three consecutive continuous countercurrent three-phase extraction were used for analysis and detection.
  • the experimental results show that: the upper phase is enriched with ortho-nitrophenol, the extraction rate is 98.0%, the para-nitrophenol is not extracted; the intermediate phase is enriched with p-nitrophenol, the extraction rate reaches 93.0%. , ortho-nitrophenol content ⁇ 1%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Microbiology (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

禾中
技术领域
本发明属于萃取分离化工技术领域,特别是涉及一种液-液-液三相连续逆流 萃取装置及其使用方法,用于复杂体系中多种目标组分的三相萃取以实现三液相 同时分离。
背景技术
萃取是一种重要的化工分离技术, 具有对目标物选择性高、对各种物料适应 性强、 能耗低、 易于操作、 可实现大规模连续化生产等优点, 在化工、 冶金、 新 能源、 生物和医药工程、 环境工程、 天然产物提取、 新材料制备和资源的高效综 合利用等方面应用广泛, 被誉为 " 21 世纪最有前途的绿色化工分离技术" 。 随 着分离对象和分离体系的日趋复杂, 传统的液 -液两相萃取技术及其装备已远不 能适应新兴化工分离体系的要求。 现有萃取分离装置的结构设计大多针对液-液 两相萃取过程, 按其传质特点和相分离工艺要求, 分为逐级接触式和连续接触式 两大类型萃取设备, 如混合澄清萃取槽、转盘萃取塔和振动筛板塔等。对一些多 组分复杂体系和易乳化体系,传统液液两相萃取过程存在选择性差、分离步骤繁 琐冗长、 分离效率低, 其装置存在液流走向和级联结构设计复杂、难于有效控制 复杂体系相间传质和相分离过程、运行及维护成本高等诸多不足。 以生化体系的 分离为例, 其分离工序的成本往往占到了整个产品生产成本的 80%以上。 分离装 备的发展严重滞后, 成为制约我国化工过程工程领域技术进步的 "瓶颈" 问题。
液-液 -液三相萃取是由微乳相萃取技术发展起来的一种具有高选择性的、基 于萃取过程界面效应强化传质和分离的新方法。从调控分离介质的纳微相结构界 面的特性出发,利用结构和性质各异的三个宏观共存液相的成相和分离行为, 可 实现复杂体系中多种目标组分一步萃取和三相同时分离或分组分离。对于生化产 品, 如青霉素、 洁霉素、 谷氨酸发酵液, 中国专利 ZL00107655. 8提出一种由有 机相 -聚合物相-富盐水相构成的三液相萃取体系,可实现富盐水相中多种目标萃 取物的三相萃取分离。该新型三相萃取体系相比其他类型的三液相萃取体系而言, 体系成相行为容易控制,不同的目标萃取物在宏观共存的三个液相的相间分配行 为可由三相体系的成相行为有效控制。该三相萃取技术应用于青霉素发酵液处理 时, 可实现目标物的萃取、 纯化、 除杂等过程合并为一步完成, 省去了破乳、 冷 冻脱水和脱色等中间环节, 工艺流程简洁。 因选择性高, 三相萃取分离杂质和副 产物效率高, 目标产品的收率和纯度相比传统两相萃取工艺可大大提高。 目前, 关于三相萃取针对复杂多组分体系的分离已成为国际上相关领域的热点和前沿 课题, 三相萃取基础理论和工艺研究已取得突破进展。但是, 由于缺乏适应三相 连续萃取工艺的工业装置, 三相萃取新技术一直无法实现工业应用。
为发挥液-液-液三相萃取技术在分离复杂多组分体系方面的特殊优势,前人 研制开发了一系列针对三相萃取技术特点和工艺要求的三相萃取装置。中国专利 ZL00107700. 7提出一种串联自吸式多通道相分散萃取装置。该装置适用于由有机 溶剂和聚合物双水相萃取体系组成的三相萃取体系,利用自吸式搅拌器首次实现 了三相萃取体系中的三个液相间两两相互传质和相分散的有效控制,还可有效避 免萃取过程的乳化现象。但该装置只能实现间歇式操作, 设备处理能力有限, 不 能适用工业上连续化生产的要求。中国专利 ZL02106742. 2提出一种液 -液-液三相 连续萃取振动筛板塔。该装置虽然解决了连续化萃取操作的问题,但由于塔器分 离装置的结构设计无法有效控制三相体系中三个液流的走向和三相逆流操作,且 传质级效率和分离指标偏低, 操作条件苛刻, 容易液泛和轴向返混, 放大困难。 该装置实质上是将两个液 -液两相萃取过程在装置中串联在一起实现三液相流间 的两两相接触传质, 其设计思路仍未脱离两相萃取, 并未实现真正意义上的液- 液 -液三相原位接触和相分离操作。 为解决上述问题, 中国专利 ZL02121210. 4提 出一种液-液-液三相卧式连续提升搅拌萃取装置。该装置首次实现了液-液 -液三 相连续原位接触传质, 具有降低返混、 理论级数高、 萃取效率高、 结构简单、 容 易放大、 可连续运行、 能耗低、 占地省、 易于恢复稳态操作等优点, 适用于易乳 化的生化产品三相萃取分离过程。但该装置不能实现多级连续逆流萃取操作, 且 三个主体相不能很好的混合, 传质只发生在相与相的接触面上, 处理能力小, 设 备结构复杂, 放大困难。 为此, 中国专利 CN200910090899. X又提出一种液-液- 液三相连续萃取混合澄清槽装置。该装置解决了三相萃取体系中三个液流走向如 何控制的问题, 并可以进行多级串联连续萃取操作。但此装置并未从三相萃取体 系的成相行为本质特征来设计设备结构,萃取分离操作须以三个液相能快速澄清 分相为前提, 并且无法实现三个液相间的两两逆流操作组合, 因此无法满足如何 控制三相体系萃取过程中三个液相间进行两两相互传质和分配的工艺要求。德国 拜尔公司曾提出一种多级三相萃取器(中国专利 ZL96197714. 0)以解决三液相逆 流连续操作。但该装置的结构设计是以三相体系中的三个液流在混相接触过程中 需保持互不混溶为前提,将三相体系中的某两相作为分散相与另一相作为连续相 逆流流动。该装置虽然解决了连续相与第一或第二分散相的同流或逆流问题,但 对于有机相-聚合物相 -富盐水相构成的三相体系而言,由于三相体系的成相行为 是聚合物相与富盐水相首先形成双水相萃取体系,完成目标物从富盐水相(下相) 向聚合物相 (中相) 的传质; 然后, 该双水相萃取体系与有机相混合后, 又完成 目标物从聚合物相 (中相) 向有机相 (上相) 的传质。 聚合物相-富盐水相组成 的双水相体系的成相与否是形成稳定三相体系的先决条件。三相体系的传质行为 与成相行为密切相关,该装置无法实现对有机相 -聚合物相-富盐水相三相体系成 相行为以及分散相和连续相相型的有效控制。 发明内容
本发明的目的在于提供一种适合于工业生产要求的液-液-液三相多级连续 逆流萃取操作的装置,以解决液-液-液三相连续萃取过程中三个液相流的两两间 相互逆流操作组合如何实现的问题,并且能够满足对三相体系成相和传质行为控 制的要求, 以控制目标萃取物在三液相体系的两两液相间的传质分配行为。该装 置为包括三相混合室、 澄清分相室、 两相混合室三部分的三室组合结构。 其中, 澄清分相室内设置可灵活调控三相体系中三个液流走向的控制插件,可通过不同 的控制插件组合实现将三相体系的中下相合并后与上相进行逆流操作;或者将上 中相合并后与下相进行逆流操作。该装置多级串联可实现三相体系上中下三个液 流的两两间相互逆流连续操作。控制插件的引入可发挥三相混合室与两相混合室 组合结构的优势,满足对三相体系成相行为和相间传质控制的要求,符合三相萃 取工艺特点,可实现含多种组分复杂体系一步萃取三相同时分离的连续逆流可控 操作。
本发明的装置包括三相混合室、 澄清分相室、 两相混合室三部分。
所述的三相混合室 1由三相混合室混相区 a、三相混合室溢流区 b和三相混 合室进液区 c三个空腔组成; 三相混合室混相区 a和三相混合室溢流区 b之间、 三相混合室混相区 a和三相混合室进液区 c之间分别设有隔板分隔开;三相混合 室混相区 a空腔内设置自吸式搅拌器 6, 通过搅拌轴与转速连续可调的电机马达 相连;三相混合室进液区 c空腔两侧壁的下部分别设有两个独立的第一液流进口 7和第二液流进口 8,其中第一液流进口 7与三相混合室进液区 c空腔直接连通; 第二液流进口 8用管道与三相混合室混相区 a空腔连通; 三相混合室混相区 a 和三相混合室进液区 c空腔之间的隔板中央设置相互隔离的第一导流口 9和第二 导流口 10, 分别与三相混合室进液区 c空腔和第二液流进口 8连通; 三相混合 室 1顶端的三相混合室溢流区 b靠近澄清分相室 2的一侧设有溢流堰口 11, 与 澄清分相室 2相通;
所述的澄清分相室 2靠近三相混合室溢流堰口 11的一侧, 设有一个与三相 混合室 1纵向隔板相平行的纵向折流挡板 12, 在该纵向折流挡板的下方设有一 个与之相垂直的连接在三相混合室纵向隔板上的横向挡板 13; 纵向折流挡板 12 的底端与纵向折流挡板 12下方的横向挡板 13之间留有空隙,以作三相混合室溢 流区 b溢流液体的通道。纵向折流挡板 12和横向挡板 13的作用在于阻碍液流以 促进从三相混合室 1溢流出来的三相混合液的澄清分相。
所述的澄清分相室 2靠近两相混合室 3—侧,设有一个三相液流插件控制区 d, 可按需求装入两种不同类型可活动插拨的三相液流第一控制插件 4或第二控 制插件 5, 用*** 14固定; 使用第一控制插件 4或第二控制插件 5, 可控制三 相体系的三液相流的走向、根据需要实现三相体系上中下三相液流的两两不同组 合和分离;三相液流插件控制区 d底部在澄清分相室 2末端侧壁上设有一个液相 流出口 15, 而紧邻三相液流插件控制区 d的两相混合室 3的纵向隔板侧壁上开 有一长方形液流出口 16; 当需要将三相液流中最轻的上相与中下相分开时使用 第一控制插件 4,第一控制插件 4下方侧壁上开有一长方形液流出口 20,其高度 和宽度等于出口 16; 当需要将三相液流中最重的下相与上中相分开时使用第二 控制插件 5, 第二控制插件 5侧壁不开口, 但第二控制插件 5高度 H是出口 16 高度 L的一半; 使用第一控制插件 4时, 上相从第一控制插件 4的上方导入三相 液流插件控制区 d底部的液流出口 15流出, 中下相从第一控制插件 4的下方侧 壁上的液流开口 20穿过纵向隔板侧壁液流出口 16流入两相混合室 3; 使用第二 控制插件 5时, 下相从第二控制插件 5 的下方位于插件控制区底部的液流出口 15流出, 上中相从控制插件 5的上方由纵向隔板侧壁上的液流出口 16流入两相 混合室 3。
所述两相混合室 3 内设有搅拌器 17, 通过搅拌轴与转速连续可调的电机马 达相连; 在两相混合室 3内部侧壁上设有一溢流槽 18, 溢流槽 18顶端的边缘高 度位于两相混合室 3中部, 溢流槽 18底部设有一液体出口 19。 溢流槽 18的作 用在于使两相混合室 3内的两相混合液流在搅拌过程中溢流, 从溢流槽 18底部 液体出口 19流出。 所述两相混合室 3靠近澄清分相室 2的三相液流插件控制区 d—侧,在两相 混合室 3的纵向隔板侧壁上液流出口 16处, 装有一平行于纵向隔板的宽度和长 度等于长方形液流出口 16尺寸的分流挡板 21 ; 该分流挡板 21与纵向隔板出口 16之间留有空隙, 以作液体通道, 其作用有二: 一是防止两相混合室 3 内液体 混合时从纵向隔板侧壁上的液流出口 16返混进入澄清分相室 2; 二是有利于从 澄清分相室 2三相液流插件控制区 d经第一控制插件 4或第二控制插件 5分流过 来的液流流入两相混合室 3。
本发明装置为立方体槽式装置, 其三相混合室 1 : 澄清分相室 2: 两相混合 室 3的长度比值优选为 1 : 5 : 1, 在宽度和高度一定的条件下, 三个室的容积之比 也为 1 : 5 : 1。
本发明装置可单独使用, 作为连续多级萃取中的某一级。当进行单级连续萃 取操作时, 从上一级萃取装置的两相混合室 3 内溢流槽 18底部的液体出口 19 流出的两相混合液流,从与三相混合室进液区空腔 c相连通的液流进口 7流入三 相混合室进液区 c; 从上一级萃取装置的澄清分相室 2内三相液流插件控制区 d 底部的液相流出口 15流出的三相体系中最轻的上相或最重的下相, 从与三相混 合室混相区 a空腔相连通的液流进口 8流入三相混合室混相区 a; 在三相混合室 混相区空腔 a内的自吸式搅拌器 6搅拌作用下,来自于三相混合室进液区 c空腔 内的液体和来自于液流进口 8的液体分别通过相互隔离的第一导流口 9和第二导 流口 10被抽吸进入三相混合室混相区 a空腔内进行充分搅拌混合; 混合液在三 相混合室混相区 a空腔内停留一定时间后,从三相混合室顶端三相混合室溢流区 b靠近澄清分相室 2一侧的溢流堰口 11流出, 从澄清分相室 2靠近三相混合室 溢流堰口 11一侧的纵向折流挡板 12的底端与其下方的横向挡板 13之间空隙的 液体通道流入澄清分相室 2; 混合液进入澄清分相室 2后在重力作用下, 因密度 不同澄清分相形成宏观共存的三个液相;三相液体流经澄清分相室 2内靠近两相 混合室 3—侧的三相液流插件控制区 d时, 在第一控制插件 4或第二控制插件 5 的作用下实现分流;当需要将三相液流中最轻的上相与中下相分开时使用第一控 制插件 4;当需要将三相液流中最重的下相与上中相分开时使用第二控制插件 5; 使用第一控制插件 4时,上相从第一控制插件 4的上方导入三相液流插件控制区 d底部的液流出口 15流出, 中下相从第一控制插件 4的下方侧壁开口 20穿过纵 向隔板侧壁上的液流出口 16流入两相混合室 3; 使用第二控制插件 5时, 下相 从第二控制插件 5的下方位于三相液流插件控制区 d底部的液流出口 15流出, 上中相从第二控制插件 5的上方由纵向隔板侧壁上的液流出口 16流入两相混合 室 3; 两相混合液体流经两相混合室纵向隔板侧壁上的分流挡板 21后进入两相 混合室 3, 在搅拌器 17的作用下, 进一步搅拌混合, 然后从两相混合室 3内部 侧壁上的溢流槽 18经液流出口 19流出。
本发明装置亦可多级串联使用。当多级串联操作时,在每一级的两相混合室 3内完成由有机相-聚合物相 -富盐水相构成的三相体系中的聚合物相 (中相)和 富盐水相 (下相) 间、 或者有机相 (上相)和聚合物相 (中相) 间两两相接触传 质, 然后进入下一级的三相混合室 1内, 与第三个液流相(前者为有机相, 后者 为富盐水相) 相混合。
本发明装置的优点在于:
1. 澄清分相室内设有三相液流插件控制区 d, 可根据需要安装两种不同类 型可活动插拨的三相液流控制插件, 以灵活控制三相体系的三液相流走向,根据 需要可实现三相体系上中下三个液流相的两两不同组合和分离。
2. 澄清分相室内无须获得三液相流清晰的相界面, 可以在三相即使分相界 面不清晰的情况下,通过三相液流控制插件使得三相体系中最轻的上相与中下相 分离或最重的下相与上中相分离。
3. 本发明装置的多级串联可实现三相萃取体系的上中下三个液流的两两间 相互逆流传质的连续可控萃取操作。通过换用不同的控制插件, 可以实现将三相 体系中的中下相合并后与上相进行逆流操作,或者将上中相合并后与下相进行逆 流操作。
4. 本发明装置的三相混合室、 澄清分相室、 两相混合室的三室组合结构, 配合澄清分相室内的控制插件,能够满足三相萃取过程对体系成相行为和相间传 质行为控制的要求, 符合三相萃取工艺特点。
5. 本装置结构简单, 操作控制简便, 工艺适应性强, 易于放大, 维护及运 行费用低。为三相萃取一步法萃取分离复杂体系中多目标产物新技术在工业上大 规模应用提供了一种可行的设备解决方案。
附图说明
图 1为本发明装置的主视图。 其中, 三相混合室 1、 澄清分相室 2、 两相混 合室 3、 插件 4、 插件 5、 自吸式搅拌器 6、 液流进口 7、 液流进口 8、 溢流堰口 11、 纵向折流挡板 12、 横向挡板 13、 三相液流插件*** 14、 液流出口 15、 搅 拌器 17、 溢流槽 18、 液流出口 19、 分流挡板 21。 a为三相混合室混相区; b为 三相混合室溢流区; c为三相混合室进液区; d为三相液流插件控制区。
图 2 为本发明装置的俯视图。 其中, 液流进口 7、 液流进口 8、 导流口 9、 导流口 10、 三相液流插件*** 14、 液流出口 15、 液流出口 19。
图 3为 A-A面剖左视图, L为液流出口 16的高度。
图 4为 B-B面剖右视图。 其中, 分流挡板 21。
图 5为 C-C面剖右视图。 其中, 溢流堰口 11、 纵向折流挡板 12、 横向挡板
13。
图 6为插件 4立体示意图 (角度 1 )。 其中, 插件侧壁开口 20。
图 7为插件 4立体示意图 (角度 2)。 其中, 插件侧壁开口 20。
图 8为插件 5立体示意图, H为插件 5的高度。
图 9为一组三级串联萃取装置三相液流走向示意图。
具体实 式
下面结合附图, 对本发明装置的使用方法进行说明。
本发明装置由三相混合室 1、 澄清分相室 2、 两相混合室 3三部分组成。
( 1 ) 进行单级连续萃取操作时, 其具体实施方式如下:
从上一级萃取装置的两相混合室 3内溢流槽 18底部的液体出口 19流出的两 相混合液流,从与三相混合室进液区空腔 c相连通的液流进口 7流入三相混合室 进液区 c; 从上一级萃取装置的澄清分相室 2内三相液流插件控制区 d底部的液 相流出口 15流出的三相体系中最轻的上相或最重的下相, 从与三相混合室混相 区 a空腔相连通的液流进口 8流入三相混合室混相区 a; 在三相混合室混相区空 腔 a内的自吸式搅拌器 6搅拌作用下,来自于三相混合室进液区 c空腔内的液体 和来自于液流进口 8的液体通过相互隔离的第一导流口 9和第二导流口 10被抽 吸进入三相混合室混相区 a空腔内进行充分搅拌混合;混合液在三相混合室混相 区 a空腔内停留一定时间后,从三相混合室顶端三相混合室溢流区 b靠近澄清分 相室一侧的溢流堰口 11流出,从澄清分相室 2靠近三相混合室溢流堰口 11一侧 的纵向折流挡板 12的底端与其下方的横向挡板 13之间空隙的液体通道流入澄清 分相室 2; 混合液进入澄清分相室 2后在重力作用下, 因密度不同澄清分相形成 宏观共存的三个液相;三相液体流经澄清分相室 2内靠近两相混合室 3—侧的三 相液流插件控制区 d时,在第一控制插件 4或第二控制插件 5的作用下实现分流; 当需要将三相液流中最轻的上相与中下相分开时使用第一控制插件 4; 当需要将 三相液流中最重的下相与上中相分开时使用第二控制插件 5; 使用第一控制插件 4时, 上相从第一控制插件 4的上方导入三相液流插件控制区 d底部的液流出口 15流出, 中下相从第一控制插件 4的下方侧壁开口 20穿过纵向隔板侧壁上的液 流出口 16流入两相混合室 3; 使用第二控制插件 5时, 下相从第二控制插件 5 的下方位于三相液流插件控制区 d底部的液流出口 15流出, 上中相从第二控制 插件 5的上方由纵向隔板侧壁上的液流出口 16流入两相混合室 3; 两相混合液 体流经两相混合室纵向隔板侧壁上的分流挡板 21后进入两相混合室 3, 在搅拌 器 17 的作用下, 进一步搅拌混合, 然后从两相混合室内部侧壁上的溢流槽 18 经液流出口 19流出。
( 2 ) 本发明装置的多级串联可实现三相萃取体系的上中下三个液流的两两 间相互逆流传质的连续萃取操作, 其具体实施方式可结合图 9进行说明。
以两组各三级串联操作为例,第一组实施将三相体系的中下相合并后与上相 进行逆流操作模式,在澄清分相室 2内的三相液流控制区 d装入三相液流控制插 件 4。
上相走向: 上相流入第一组第一级萃取装置的三相混合室 1, 与来自第二级 萃取装置两相混合室 3的两相混合液流在三相混合室 1内充分搅拌混合后,进入 澄清分相室 2。 在重力作用下, 上相在澄清分相室 2内与三相体系的中下两相分 相。分相后的上相通过三相液流控制区 d的插件 4与三相体系的中下相分流, 从 插件 4上方的导流槽导入其底部的液流出口 15流出, 进入第二级萃取装置的三 相混合室 1。 如此重复, 最终从第三级萃取装置的澄清分相室 2的三相液流控制 区 d底部的液流出口 15流出。
中下相走向:中下相混合后合并为一个液流流入第一组第三级萃取装置的三 相混合室 1, 与来自第二级萃取装置澄清分相室 2内经三相液流控制插件 4分流 出的上相在三相混合室 1内充分搅拌混合后,进入澄清分相室 2。在重力作用下, 中下相在澄清分相室 2 内与三相体系的上相分相后, 流经三相液流控制插件 4 下方侧壁开口 20, 从两相混合室 3的纵向隔板侧壁液流出口 16经分流挡板 21 流入两相混合室 3, 从而与三相体系的上相分流。 流入两相混合室 3的中下相进 一步搅拌混合后从两相混合室 3的溢流槽 18底部液体出口 19流出,进入第二级 萃取装置的三相混合室 1。 如此重复, 最终从第一级萃取装置的两相混合室 3的 溢流槽 18底部出口 19流出。 从第一组三级串联萃取装置流出的中下相混合液经重力澄清分相后得到的 中相和下相分别进入第二组三级串联萃取装置的第一级和第三级。
第二组实施将三相体系的上中相合并后与下相进行逆流操作模式,在澄清分 相室 2内的三相液流控制区 d装入三相液流控制插件 5
上中相走向: 从第一组第一级装置流出经分相后得到的中相, 与从第一组第 三级装置流出的上相,混合后合并为一个液流流入第二组第一级萃取装置的三相 混合室 1, 与来自第二组第二级萃取装置澄清分相室 2内经三相液流控制插件 5 分流出的下相在三相混合室 1内充分搅拌混合后, 进入澄清分相室 2。 在重力作 用下, 上中相在澄清分相室 2内与三相体系的下相分相后,流经三相液流控制插 件 5上方的纵向隔板侧壁液流出口 16时与三相体系的下相分流, 流入两相混合 室 3, 进一步搅拌混合后从两相混合室 3的溢流槽 18底部液体出口 19流出, 进 入第二级萃取装置的三相混合室 1。 如此重复, 最终从第三级萃取装置的两相混 合室 3的溢流槽 18底部出口 19流出。
下相走向:从第一组第一级装置流出经分相后得到的下相流入第二组第三级 装置的三相混合室 1, 与来自第二组第二级装置两相混合室 3的上中两相混合液 在三相混合室 1内充分搅拌混合后, 进入澄清分相室 2。 在重力作用下, 在澄清 分相室 2内与三相体系的上中两相分相。分相后的下相通过三相液流控制插件 5 与三相体系的上中相分流, 从插件 5下方的液流出口 15流出, 进入第二组第二 级萃取装置的三相混合室 1。 如此重复, 最终从第二组第一级萃取装置澄清分相 室 2的三相液流控制插件 5下方的液流出口 15流出。
从第二组三级串联萃取装置流出的上中相混合液经重力澄清分相后得到的 上相和中相分别进入第一组三级串联萃取装置的第一级和第三级。
上述两组三级串联萃取装置的组合即可实现三相萃取体系的上中下三个液 流的两两间相互逆流传质的连续萃取操作。
实施例 1. 液液液三相萃取分离铂钯铑三元金属混合液
利用本发明装置考察了由硫醚 -聚乙二醇-硫酸铵 -铂钯铑三元金属混合水溶 液组成的三液相体系一步萃取三相同时分离铂钯铑的效果。实验针对铂钯铑三元 金属混合液 (铂、 钯、 铑的初始浓度分别为 0. 52 ol/L 0. 94 mmol/L , 0. 97 mmol/L), 经两组各三级连续逆流三相萃取, 分别分析检测经三相液流插件 4或 5分流得到的硫醚有机上相铂钯铑含量、 聚乙二醇聚合物中间相铂钯铑含量、 硫 酸铵盐水下相铂钯铑含量。 实验结果得知: 上相富集钯, 但铂和铑不萃取, 钯萃 取率 98. 0%; 中相富集铂, 而钯和铑含量很小, 铂萃取率 90. 5%; 下相富集铑, 铑不萃取, 铑富集率 98. 2%。
实施例 2. 液液液三相萃取分离钛铁镁三元金属混合液
利用本发明装置考察了由 P204 (磷酸二异辛酯) -聚乙二醇-硫酸铵-钛铁镁 三元金属混合水溶液组成的三液相体系一步萃取三相同时分离钛铁镁的效果。实 验针对攀枝花钛铁镁三元金属混合液 (钛、 铁、 镁初始浓度分别为 30mmOl/L, 5mm0l/L和 15mm0l/L), 经两组各三级连续逆流三相萃取, 分别分析检测经三相 液流插件 4或 5分流得到的 P204有机上相钛铁镁含量、 聚乙二醇聚合物中间相 钛铁镁含量、硫酸铵盐水下相钛铁镁含量。 上相富集钛, 但铁和镁不萃取, 钛萃 取率 99. 0%; 中相富集铁, 而钛和镁含量很小, 铁萃取率 92. 0%; 下相富集镁, 镁不萃取, 镁富集率 99. 0%。
实施例 3. 液液液三相萃取分离邻、 对位硝基苯酚二元混合水溶液
利用本发明装置考察了由壬烷-聚乙二醇-硫酸铵-邻位、 对位硝基苯酚二元 混合水溶液组成的三液相体系一步萃取三相同时分离邻位、对位硝基苯酚的效果。 实验针对邻位、对位硝基苯酚二元混合水溶液(邻位、对位硝基苯酚的初始浓度 均为 7. 19mmol/L), 经两组各三级连续逆流三相萃取, 分别分析检测经三相液流 插件 4或 5分流得到的壬烷有机上相邻位、对位硝基苯酚含量; 聚乙二醇聚合物 中间相邻位、 对位硝基苯酚含量; 硫酸铵盐水下相邻位、 对位硝基苯酚含量。 实 验结果得知: 上相富集邻位硝基苯酚, 其萃取率达到 98. 0%, 对位硝基苯酚不萃 取; 中相富集对位硝基苯酚, 其萃取率达到 93. 0%, 邻位硝基苯酚含量〈1%。

Claims

权利要求
1. 一种液 -液-液三相连续逆流萃取装置, 包括三相混合室、 澄清分相室、 两相混合室三部分; 其特征在于,
三相混合室 (1) 由三相混合室混相区 (a)、 三相混合室溢流区 (b)和三相 混合室进液区 (c)三个空腔组成; 三相混合室混相区 (a)和三相混合室溢流区
(b) 之间、 三相混合室混相区 (a) 和三相混合室进液区 (c) 之间分别设有隔 板分隔开; 三相混合室混相区 (a) 空腔内设置自吸式搅拌器 (6), 通过搅拌轴 与转速连续可调的电机马达相连; 三相混合室进液区 (c) 空腔两侧壁的下部分 别设有两个独立的第一液流进口 (7) 和第二液流进口 (8), 其中第一液流进口
(7) 与三相混合室进液区 (c) 空腔直接连通; 第二液流进口 (8) 用管道与三 相混合室混相区(a)空腔连通;三相混合室混相区(a)和三相混合室进液区(c) 空腔之间的隔板中央设置相互隔离的第一导流口 (9)和第二导流口 (10), 分别 与三相混合室进液区 (c) 空腔和第二液流进口 (8) 连通; 三相混合室 (1) 顶 端的三相混合室溢流区 (b) 靠近澄清分相室 (2)的一侧设有溢流堰口 (11), 与 澄清分相室 (2) 相通;
澄清分相室 (2) 靠近三相混合室溢流堰口 (11) 的一侧, 设有一个与三相 混合室(1)纵向隔板相平行的纵向折流挡板(12), 在该纵向折流挡板的下方设 有一个与之相垂直的连接在三相混合室纵向隔板上的横向挡板 (13); 纵向折流 挡板 (12) 的底端与纵向折流挡板 (12) 下方的横向挡板 (13) 之间留有空隙。
澄清分相室(2)靠近两相混合室(3)—侧, 设有一个三相液流插件控制区
(d), 可按需求装入两种不同类型可活动插拨的三相液流第一控制插件 (4) 或 第二控制插件 (5), 用*** (14) 固定; 使用第一控制插件 (4) 或第二控制 插件(5), 可控制三相体系三液相流走向、根据需要实现三相体系上中下三相液 流的两两不同组合和分离; 三相液流插件控制区 (d)底部在澄清分相室(2)末 端侧壁上设有一个液相流出口 (15), 而紧邻三相液流插件控制区(d) 的两相混 合室(3) 的纵向隔板侧壁上开有一长方形液流出口 (16); 当需要将三相液流中 最轻的上相与中下相分开时使用第一控制插件 (4), 第一控制插件 (4) 下方侧 壁上开有一长方形液流出口 (20), 其高度和宽度等于出口 (16); 当需要将三相 液流中最重的下相与上中相分开时使用第二控制插件 (5), 第二控制插件 (5) 侧壁不开口, 但第二控制插件 (5) 高度 H是出口 (16) 高度 L的一半; 使用第 一控制插件(4) 时, 上相从第一控制插件(4) 的上方导入三相液流插件控制区 (d)底部的液流出口(15)流出, 中下相从第一控制插件 (4)的下方侧壁上的液流 开口(20)穿过纵向隔板侧壁液流出口 (16) 流入两相混合室(3); 使用第二控制 插件 (5)时,下相从第二控制插件 (5)的下方位于插件控制区底部的液流出口(15) 流出, 上中相从控制插件(5)的上方由纵向隔板侧壁上的液流出口(16)流入两相 混合室 (3);
所述两相混合室 (3) 内设有搅拌器(17), 通过搅拌轴与转速连续可调的电 机马达相连; 在两相混合室 (3)内部侧壁上设有一溢流槽(18), 溢流槽(18)顶端 的边缘高度位于两相混合室(3)中部, 溢流槽(18)底部设有一液体出口(19); 所述两相混合室 (3) 靠近澄清分相室 (2) 的三相液流插件控制区 (d) — 侧, 在两相混合室 (3)的纵向隔板侧壁上液流出口(16)处, 装有一平行于纵向隔 板的宽度和长度等于长方形液流出口(16)尺寸的分流挡板 (21);该分流挡板 (21) 与纵向隔板出口(16)之间留有空隙。
2. 根据权利要求 1所述的装置, 其特征在于: 三相混合室 (1): 澄清分相 室 (2): 两相混合室 (3) 的长度比值为 1:5:1, 在宽度和高度一定的条件下, 三个室的容积之比也为 1:5:1。
3. 一种权利要求 1所述的液-液 -液三相连续逆流萃取装置的使用方法, 其 特征在于: 从上一级萃取装置的两相混合室 (3) 内溢流槽 (18) 底部的液体出 口 (19) 流出的两相混合液流, 从与三相混合室进液区空腔 (c) 相连通的液流 进口(7)流入三相混合室进液区(c); 从上一级萃取装置的澄清分相室 (2)内三相 液流插件控制区 (d) 底部的液相流出口(15)流出的三相体系中最轻的上相或最 重的下相, 从与三相混合室混相区(a)空腔相连通的液流进口(8)流入三相混合 室混相区 (a);在三相混合室混相区空腔(a)内的自吸式搅拌器 (6)搅拌作用下, 来自于三相混合室进液区(c)空腔内的液体和来自于液流进口(8)的液体分别通 过相互隔离的第一导流口(9)和第二导流口(10)被抽吸进入三相混合室混相区(a) 空腔内进行充分搅拌混合; 混合液在三相混合室混相区 (a) 空腔内停留一定时 间后, 从三相混合室顶端三相混合室溢流区 (b)靠近澄清分相室(2)—侧的溢 流堰口(11)流出, 从澄清分相室 (2)靠近三相混合室溢流堰口(11)一侧的纵向折 流挡板(12)的底端与其下方的横向挡板(13)之间空隙的液体通道流入澄清分相 室 (2); 混合液进入澄清分相室(2)后在重力作用下, 因密度不同澄清分相形成 宏观共存的三个液相;三相液体流经澄清分相室 (2)内靠近两相混合室 (3)—侧的 三相液流插件控制区 (d) 时, 在第一控制插件 (4)或第二控制插件 (5)的作用下 实现分流; 当需要将三相液流中最轻的上相与中下相分开时使用第一控制插件 (4); 当需要将三相液流中最重的下相与上中相分开时使用第二控制插件 (5) ; 使 用第一控制插件 (4)时,上相从第一控制插件 (4)的上方导入三相液流插件控制区
( d)底部的液流出口(15)流出,中下相从第一控制插件 (4)的下方侧壁开口( 20) 穿过纵向隔板侧壁上的液流出口 (16)流入两相混合室(3); 使用第二控制插件
( 5) 时, 下相从第二控制插件 (5) 的下方位于三相液流插件控制区 (d) 底部 的液流出口 (15) 流出, 上中相从第二控制插件 (5) 的上方由纵向隔板侧壁上 的液流出口 (16)流入两相混合室(3); 两相混合液体流经两相混合室纵向隔板 侧壁上的分流挡板(21 )后进入两相混合室 (3), 在搅拌器(17) 的作用下, 进 一步搅拌混合, 然后从两相混合室 (3 ) 内部侧壁上的溢流槽 (18) 经液流出口
( 19) 流出。
4. 根据权利要求 3所述的液-液 -液三相连续逆流萃取装置的使用方法, 其 特征在于: 当多级串联操作时, 在每一级的两相混合室 (3 ) 内完成由有机相- 聚合物相-富盐水相构成的三相体系中的聚合物相和富盐水相间、 或者有机相和 聚合物相间两两相接触传质, 然后进入下一级的三相混合室 (1 ) 内, 与第三个 液流相相混合。
PCT/CN2011/000635 2011-01-19 2011-04-11 一种液-液-液三相连续逆流萃取装置及其使用方法 WO2012097480A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/978,863 US9399181B2 (en) 2011-01-19 2011-04-11 Liquid-liquid-liquid three-phase continuous countercurrent extraction device and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110021141.8A CN102091436B (zh) 2011-01-19 2011-01-19 一种液-液-液三相连续逆流萃取装置及其使用方法
CN201110021141.8 2011-01-19

Publications (1)

Publication Number Publication Date
WO2012097480A1 true WO2012097480A1 (zh) 2012-07-26

Family

ID=44124811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/000635 WO2012097480A1 (zh) 2011-01-19 2011-04-11 一种液-液-液三相连续逆流萃取装置及其使用方法

Country Status (3)

Country Link
US (1) US9399181B2 (zh)
CN (1) CN102091436B (zh)
WO (1) WO2012097480A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680607A (zh) * 2020-12-16 2021-04-20 核工业北京化工冶金研究院 铀提取过程高澄清度结晶反萃取方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103122410B (zh) * 2013-01-28 2015-02-18 中国科学院过程工程研究所 一种多稀土复杂溶液萃取分组分离轻中重稀土元素的方法
CN104815459B (zh) * 2015-04-13 2016-06-22 昆明理工大学 一种迷宫式超重力液液萃取分离器
CN107385242B (zh) * 2017-07-07 2019-05-17 中国科学院过程工程研究所 一种溶剂萃取动力学分组分离稀土离子的***和方法
CN108328805A (zh) * 2018-04-18 2018-07-27 刘亚平 一种湿式脱硫浆液处理装置及方法
CN108642281A (zh) * 2018-07-26 2018-10-12 万宝矿产有限公司 一种用于萃取工艺中三相物处理以及有机相净化的方法
CN109321750B (zh) * 2018-10-10 2020-06-19 紫金矿业集团股份有限公司 一种处理萃取过程产生三相的方法
EP3673967A1 (en) 2018-12-27 2020-07-01 Vito NV A device and method for separating at least one compound and at least one further compound contained in a fluidic mixture
CN109680168B (zh) * 2019-02-22 2023-04-07 广东省富远稀土有限公司 稀土萃取分离回流有机相稳流装置
CN110694300B (zh) * 2019-10-23 2021-08-27 金川集团股份有限公司 一种铂钯高效萃取分离***及其萃取分离的方法
CN114100193A (zh) * 2021-11-05 2022-03-01 金川集团股份有限公司 一种高效混合澄清分离式萃取装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200050A (zh) * 1995-10-19 1998-11-25 拜尔公司 多级三相萃取器
CN1463782A (zh) * 2002-06-10 2003-12-31 中国科学院过程工程研究所 液-液-液三相卧式连续提升搅拌萃取装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3362791A (en) * 1964-08-24 1968-01-09 Atomic Energy Commission Usa Apparatus for separation of immiscible liquid pairs including remote interface control
NO135084C (zh) * 1974-07-03 1977-02-09 Sjeldne Jordarter Forskning
US4439405A (en) * 1980-09-24 1984-03-27 Unc Recovery Corporation Method for varying the mixing time and proportions in the contacting of substantially immiscible liquids
US4898672A (en) * 1987-09-14 1990-02-06 Clifft Ricky C Oxygen controlling wastewater treatment method
FR2707416B1 (fr) * 1993-07-08 1995-08-18 Cogema Procédé et installation de décontamination d'effluents nitriques radioactifs contenant du strontium et du sodium.
US5466375A (en) * 1993-07-21 1995-11-14 Galik; George M. Liquid-liquid extraction
US5662861A (en) * 1995-01-20 1997-09-02 Mincorp Ltd. Liquid extraction
ATE183108T1 (de) * 1995-10-19 1999-08-15 Bayer Ag Mehrstufiges extraktionsverfahren
US5772887A (en) * 1997-03-28 1998-06-30 Lockheed Martin Idaho Technologies Company Modular bioreactor for the remediation of liquid streams and methods for using the same
US20040188334A1 (en) * 1998-09-28 2004-09-30 Mcwhirter John R. Novel biochemical oxidation system
CN1132652C (zh) * 2000-05-23 2003-12-31 中国科学院化工冶金研究所 一种串联自吸式多通道相分散萃取装置
CN1168518C (zh) * 2002-03-05 2004-09-29 中国科学院过程工程研究所 液-液-液三相连续萃取震动筛板塔
CN2799036Y (zh) * 2005-05-20 2006-07-26 吴伦祥 一种简易萃取分离装置
CN200942305Y (zh) * 2006-09-15 2007-09-05 中国科学院长春应用化学研究所 一种可以分离有机相和水相并单独对水相进行操作的萃取槽
EP2172254B1 (en) * 2008-09-30 2017-05-17 Japan Atomic Energy Agency Continuous collection method of particle component in aqueous solution and apparatus therefor
CN102302865B (zh) * 2011-03-02 2013-06-05 中国科学院过程工程研究所 一种参数可调的三相萃取槽

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1200050A (zh) * 1995-10-19 1998-11-25 拜尔公司 多级三相萃取器
CN1463782A (zh) * 2002-06-10 2003-12-31 中国科学院过程工程研究所 液-液-液三相卧式连续提升搅拌萃取装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112680607A (zh) * 2020-12-16 2021-04-20 核工业北京化工冶金研究院 铀提取过程高澄清度结晶反萃取方法

Also Published As

Publication number Publication date
US20130315803A1 (en) 2013-11-28
CN102091436A (zh) 2011-06-15
CN102091436B (zh) 2015-05-06
US9399181B2 (en) 2016-07-26

Similar Documents

Publication Publication Date Title
WO2012097480A1 (zh) 一种液-液-液三相连续逆流萃取装置及其使用方法
CN102512848B (zh) 一种大相比液液两相连续萃取装置
CN101991971A (zh) 用于三相萃取的混合澄清槽
Lee et al. Continuous extraction of penicillin G by an emulsion liquid membrane in a countercurrent extraction column
CN202131345U (zh) 一种从电路板浸取液中萃取铜的萃取槽
CN102772914B (zh) 一种空气搅拌立式多级混合澄清萃取装置及萃取方法
JPH11514916A (ja) 多段相抽出装置
CN202387248U (zh) 一种工业化应用的新型箱式萃取槽
CN204502463U (zh) 一种萃取装置
CN102743896B (zh) 一种多段气提的塔式混合澄清萃取装置及萃取方法
TWI330543B (en) Liquid-liquid extracting method
CN102728098B (zh) 一种槽塔组合式连续萃取装置及萃取方法
CN217613059U (zh) 湿法磷酸净化萃取装置
CN106432410A (zh) 一种蛋白质分离纯化装置及其分离纯化方法
CN202945078U (zh) 一种桨叶改进的搅拌式萃取塔
CN217230328U (zh) 混凝剂加药装置
CN102380227B (zh) 一种极低浓度萃取方法
CN115501646A (zh) 一种新型高效环隙式离心萃取器
CN111607696A (zh) 一种萃取分离金属的装置及组件
CN2703571Y (zh) 折流式连续逆流提取机
CN1133478C (zh) 轻相或重相分散低剪切力自吸式搅拌萃取装置和操作方法
CN2776511Y (zh) 粉体提取分离机
CN112299635A (zh) 一种化学抛光废液的净化处理的方式
CN102302865A (zh) 一种参数可调的三相萃取槽
CN2762859Y (zh) 提取分离机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856041

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13978863

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856041

Country of ref document: EP

Kind code of ref document: A1