WO2012093423A1 - 非接触充電システムの給電装置 - Google Patents

非接触充電システムの給電装置 Download PDF

Info

Publication number
WO2012093423A1
WO2012093423A1 PCT/JP2011/001901 JP2011001901W WO2012093423A1 WO 2012093423 A1 WO2012093423 A1 WO 2012093423A1 JP 2011001901 W JP2011001901 W JP 2011001901W WO 2012093423 A1 WO2012093423 A1 WO 2012093423A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
switching elements
power supply
output voltage
voltage
Prior art date
Application number
PCT/JP2011/001901
Other languages
English (en)
French (fr)
Inventor
秀樹 定方
藤田 篤志
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012093423A1 publication Critical patent/WO2012093423A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power feeding device in a contactless charging system that charges a secondary battery mounted in, for example, an electric propulsion vehicle (electric vehicle or hybrid vehicle) in a contactless manner.
  • a contactless charging system that charges a secondary battery mounted in, for example, an electric propulsion vehicle (electric vehicle or hybrid vehicle) in a contactless manner.
  • each of the power feeding device and the power receiving device includes a resonance unit that resonates an AC signal, thereby reducing the restriction on the positional relationship between the power feeding device and the power receiving device (for example, see Patent Document 1).
  • the present invention has been made in view of such problems of the prior art, and not only can reduce the current / voltage ripple of the commercial frequency component in the output of the power supply apparatus, but also reduce the number of parts of the power supply apparatus. Accordingly, it is an object of the present invention to provide a power supply device for a non-contact charging system that can reduce the size or cost of the power supply device and can reduce power supply loss as much as possible.
  • the present invention provides a power supply device that supplies power to a power receiving device in a non-contact manner, a power factor improvement circuit that outputs a DC voltage by improving the power factor, and an output of the power factor improvement circuit
  • a DC voltage When a DC voltage is applied, it has an electrolytic capacitor that accumulates electric charge and a plurality of switching elements, operates using the electrolytic capacitor as a power source, generates an AC signal, and receives an AC signal from the inverter circuit Then, a resonance capacitor and an inductor that perform power supply to the power receiving device in a non-contact manner, and a power supply side control circuit that changes at least one of the energization rate and the drive frequency of the plurality of switching elements are provided.
  • the power supply apparatus can be reduced in size or cost by reducing the number of parts of the power supply apparatus, and power supply loss can be minimized. Can be reduced.
  • FIG. 1 is a circuit diagram of a contactless charging system according to an embodiment of the present invention.
  • FIG. 2 is a circuit diagram of a feeding power detection unit provided in the non-contact charging system of FIG.
  • FIG. 3 is a diagram showing waveforms of respective parts of a conventional non-contact charging system for comparison with waveforms of respective parts in the non-contact charging system of FIG.
  • FIG. 4 is a diagram illustrating waveforms of respective parts in the non-contact charging system when the energization rates of a plurality of switching elements provided in the non-contact charging system of FIG. 1 are changed.
  • FIG. 5 is a diagram showing waveforms of respective parts in the non-contact charging system when the driving frequency of a plurality of switching elements is changed.
  • FIG. 6 is a diagram showing waveforms of respective parts in the non-contact charging system when both the energization rate and the driving frequency of the plurality of switching elements are changed.
  • FIG. 7 is a diagram showing operation waveforms of the main part of the power feeding device when the input power to the inverter circuit 4 of FIG. 1 is high.
  • FIG. 8 is a diagram illustrating operation waveforms of main parts of the power feeding device when the input power to the inverter circuit 4 in FIG. 1 is low.
  • FIG. 9 is a circuit diagram of another contactless charging system according to the present invention.
  • the present invention is a power supply device that supplies power to a power receiving device in a non-contact manner.
  • the power factor improvement circuit that performs power factor improvement and outputs a DC voltage, and the output DC voltage of the power factor improvement circuit is given a charge.
  • an inverter circuit that operates using the electrolytic capacitor as a power source to generate an AC signal, and when an AC signal from the inverter circuit is input, the power receiving device is A resonance capacitor and an inductor that perform power supply by contact, and a power supply-side control circuit that changes at least one of a conduction rate and a drive frequency of the plurality of switching elements are provided.
  • the power supply device further includes a power supply power detection unit that detects a current flowing through the inductor or a voltage of the inductor, and the power supply side control circuit performs a plurality of switching operations based on the current or voltage detected by the power supply power detection unit. You may change at least one of the electricity supply rate and drive frequency of an element.
  • the power supply side control circuit receives the power command value by wireless communication with the power receiving device side, determines the basic energization rate of the plurality of switching elements so as to become the received power command value, and When the output voltage is high, the energization rate of the plurality of switching elements may be set lower than the basic energization rate, and when the output voltage is low, the energization rate of the plurality of switching elements may be set higher than the basic energization rate.
  • the power supply side control circuit receives the power command value by wireless communication with the power receiving device side, determines the basic drive frequency of the plurality of switching elements so as to become the received power command value, and detects the power supply power When the output voltage of the unit is high, the driving frequency of the plurality of switching elements can be set higher than the basic driving frequency, and when the output voltage is low, the driving frequency of the plurality of switching elements can be set lower than the basic driving frequency.
  • the power supply side control circuit has an output voltage detection unit that detects the output voltage of the power factor correction circuit, and based on the output voltage of the power factor correction circuit detected by the output voltage detection unit, the energization of a plurality of switching elements. At least one of the rate and the driving frequency may be changed.
  • the power supply side control circuit receives the power command value by wireless communication with the power receiving device side, determines the basic energization rate of the plurality of switching elements so as to become the received power command value, and outputs the power command value.
  • the energization rate of the plurality of switching elements is set lower than the basic energization rate, and when low, the energization rate of the plurality of switching elements is set higher than the basic energization rate.
  • the power supply side control circuit receives the power command value by wireless communication with the power receiving device side, determines the basic drive frequency of the plurality of switching elements so as to become the received power command value, and detects the output voltage.
  • the driving frequency of the plurality of switching elements can be set higher than the basic driving frequency
  • the driving frequency of the plurality of switching elements can be set lower than the basic driving frequency
  • FIG. 1 is a circuit diagram of the non-contact charging system in the present embodiment.
  • the contactless charging system includes, for example, a power feeding device installed in a parking space and a power receiving device mounted in, for example, an electric propulsion vehicle.
  • the non-contact charging system includes a commercial power source 1, a first rectifier circuit 2, a power factor correction circuit 3, an inverter circuit 4, a feed power detection unit 5, a first resonance capacitor 6, and a first power supply device.
  • control circuit 13 The inductor 7 and the control circuit 13 on the power feeding device side (hereinafter simply referred to as “control circuit 13”), and the configuration on the power receiving device side include a second inductor 8, a second resonance capacitor 9, a second rectifier circuit 11, A load (battery) 12, a control circuit 14 on the power receiving device side (hereinafter simply referred to as “control circuit 14”), and a received power detection unit 10 are provided.
  • the power factor improving circuit 3 is a circuit for improving the power factor of the commercial power source 1, and includes a bypass capacitor 29, a choke coil 15 serving as a first choke coil, and a first switching element 16 (in the present embodiment, a MOSFET). ), A diode 17 that is a first diode, and a smoothing capacitor (electrolytic capacitor) 18.
  • the commercial power source 1 is a 200 V commercial power source that is a low-frequency AC power source, and is connected to the input terminal of the first rectifier circuit 2 including a bridge diode and an input filter.
  • the high potential terminal (positive electrode side) output terminal of the first rectifier circuit 2 is connected to the high potential terminal of the bypass capacitor 29 and the input terminal of the choke coil 15. Further, the high potential side terminal (drain) of the switching element 16 is connected to a connection line between the output side terminal of the choke coil 15 and the anode side terminal of the diode 17.
  • a low potential side terminal of the bypass capacitor 29, a low potential side terminal (source) of the switching element 16, and a low potential side terminal of the smoothing capacitor 18 are connected to the low potential side (negative electrode side) output terminal of the first rectifier circuit 2.
  • the high potential side terminal of the smoothing capacitor 18 is connected to the cathode side terminal of the diode 17.
  • the power factor correction circuit 3 is supplied with the output voltage of the first rectifier circuit 2 as a DC power supply, and the voltage fluctuation of the input output voltage of the first rectifier circuit 2 is suppressed by the bypass capacitor 29.
  • 15 and the switching element 16 are turned on and off, and a DC voltage having a peak value larger than the peak value and boosted to an arbitrary voltage is supplied across the smoothing capacitor 18 and smoothed.
  • a MOSFET having a high switching speed is used as a typical example of the switching element 16 in order to increase the power factor improvement effect by operating the power factor improvement circuit 3 at a high frequency.
  • a diode is attached to the MOSFET in the opposite direction, it is not shown in the figure because it does not affect the basic operation of the present embodiment even without this diode.
  • the output voltage of the smoothing capacitor 18 is supplied between the input terminals of the inverter circuit 4.
  • the input terminal of the inverter circuit 4 is connected to the output terminal of the power factor correction circuit 3, that is, to both ends of the smoothing capacitor 18.
  • a series connection body of switching elements (second and third switching elements) 19 and 20 and a series connection body of switching elements (fourth and fifth switching elements) 24 and 26 are parallel. Connected to.
  • Diodes (second and third diodes) 21 and 22 are connected in antiparallel to the switching elements 19 and 20, respectively (the high potential side terminal (collector) of the switching element and the cathode side terminal of the diode are connected). ). Further, a snubber capacitor 23 is connected in parallel to the switching element 20 (which may be the switching element 19).
  • diodes (fourth and fifth diodes) 25 and 27 are connected in antiparallel to the switching elements 24 and 26 (the high potential side terminal (collector) of the switching element and the cathode side terminal of the diode are connected to each other). Connected). A snubber capacitor 28 is connected in parallel to the switching element 26 (which may be the switching element 24).
  • a series connection body of the first resonance capacitor 6, the first inductor 7, and the feeding power detection unit 5 is connected to the connection line of the switching element 19 and the switching element 20 and the connection line of the switching element 24 and the switching element 26. Is done.
  • the second inductor 8 is disposed so as to face the first inductor 7 as the electric propulsion vehicle moves, for example.
  • a second resonant capacitor 9 is connected to the high potential side of the second inductor 8, and the low potential side of the second inductor 8 and the second resonant capacitor 9 include a second rectifier circuit 11 including a smoothing filter.
  • the received power detection unit 10 is connected to the high potential side of the second rectifier circuit 11, and the load (battery) 12 is connected to the low potential side of the received power detection unit 10 and the second rectifier circuit 11. .
  • the supply power detection unit 5 in the present embodiment includes a current detection unit 30, a voltage detection unit 31, and a power calculation unit 32.
  • the current detection unit 30 and the voltage detection unit 31 may be used when the power supply power can be estimated using either the current or the voltage.
  • the feed power detection unit 5 is connected in series to the series resonance circuit of the first inductor 7 and the first resonance capacitor 6, only one of the current and voltage is correlated. The power supply can be estimated by detection.
  • the received power detection unit 10 may have the same configuration as the power supply power detection unit 5.
  • the control circuit 13 receives a power command value from the control circuit 14 by wireless communication.
  • the control circuit 13 compares the supplied power detected by the supplied power detection unit 5 with the received power command value, and the switching elements 19 and 20 and the switching elements 24 and 26 of the inverter circuit 4 are obtained so that the power command value is obtained.
  • the switching element 16 of the power factor correction circuit 3 is driven.
  • a dedicated control IC may be used for controlling the switching element 16 of the power factor correction circuit 3.
  • the control circuit 14 determines a power command value according to the remaining voltage of the battery 12 detected by the received power detection unit 10 and transmits it to the control circuit 13 by wireless communication. Further, the received power is detected by the received power detection unit 10 during operation of the power supply apparatus, and the control circuit 14 changes the power command value to the control circuit 13 so that the load (battery) 12 is not overcurrent or overvoltage.
  • a battery for an electric propulsion vehicle is used as the load 12 of the first embodiment.
  • Battery charging is performed by supplying a voltage equal to or higher than the remaining voltage of the battery, but when the power supply voltage exceeds the remaining battery voltage, a charging current suddenly flows. This means that the load impedance as viewed from the power supply device varies greatly depending on the remaining battery voltage and the power supply voltage.
  • FIG. 3A is a schematic diagram showing an AC voltage waveform of the commercial power source 1
  • FIG. 3B is a schematic diagram showing an output voltage waveform of the DC power source, that is, an output voltage waveform of the first rectifier circuit 2. It is. This voltage is input to the power factor correction circuit 3, boosted, and then output to the smoothing capacitor 18.
  • FIG. 3C is a schematic diagram showing a waveform applied to the smoothing capacitor 18, that is, an output voltage waveform of the power factor correction circuit 3 and an input voltage waveform of the inverter circuit 4.
  • FIG. 3D is a schematic diagram showing a high-frequency current waveform generated in the first inductor 7
  • FIG. 3E is a schematic diagram showing a power waveform fed from the power feeding device to the power receiving device.
  • 3F is a schematic diagram illustrating an output current waveform of the second rectifier circuit 11, that is, an input current waveform of the load 2.
  • 3 (g) and 3 (h) are schematic diagrams showing an energization rate (duty ratio) and an operating frequency, respectively.
  • FIG. 4 shows voltage waveforms, current waveforms, etc. of each part of the non-contact charging system according to the present invention.
  • FIGS. 4 (a) to 4 (h) are respectively shown in FIGS. 3 (a) to 3 (h). It corresponds.
  • the commercial power source 1 shown in FIG. 4A is full-wave rectified by the first rectifier circuit 2 to form a DC power source as shown in the voltage waveform of FIG.
  • This DC power supply is supplied between the input terminals of the power factor correction circuit 3.
  • the diode 17 included in the power factor correction circuit 3 and the bridge diode of the first rectifier circuit 2 are turned on when the instantaneous value of the DC power supply voltage is smaller than the voltage of the smoothing capacitor 18. If not, the input current waveform is distorted and the power factor is significantly reduced. At that time, the control circuit 13 improves the power factor by turning the switching element 16 on and off.
  • the power factor correction circuit 3 has not only a power factor correction function but also a boosting function at the same time. For this reason, as shown in FIG.
  • the voltage of the smoothing capacitor 18 is the peak value of the input voltage of the power factor correction circuit 3 whose peak value is the peak value of the commercial power source 1, that is, the peak value of the DC power source. The voltage becomes higher and is supplied to the inverter circuit 4 through the smoothing capacitor 18.
  • FIGS. 3 (a) to 3 (c) and FIGS. 4 (a) to 4 (c) the commercial power supply in the power transmission system described in Patent Document 1 and the non-contact charging system according to the present invention. There is no significant difference between the AC voltage waveform of 1, the output voltage waveform of the first rectifier circuit 2, and the output voltage waveform of the power factor correction circuit 3.
  • the smoothed DC voltage output to both ends of the smoothing capacitor 18 connected between the output ends of the power factor correction circuit 3 shown in FIG. 4C is supplied to the inverter circuit 4.
  • the inverter circuit 4 is shown in FIG. 4D by the first resonant capacitor 6 and the first inductor 7 depending on whether the switching elements 19 and 20 are turned on / off and the switching elements 24 and 26 are turned on / off. Thus, a high-frequency current having a predetermined frequency is generated.
  • the on / off control of the switching elements 19 and 20 and the on / off control of the switching elements 24 and 26 are performed by the control circuit 13 applying an on signal to the gates of the switching elements 19, 20, 24 and 26. .
  • FIG. 7 and 8 show enlarged operation waveforms of the inverter circuit 4 at high input power and low input power, respectively.
  • (A), (c), and (d) are the switching elements 19 and 26 and the diode 21, respectively. , 27, the voltage of the switching elements 19, 26, and the gate voltage of the switching elements 19, 26, respectively, (b) and (e) flow in the switching elements 20, 24 and the diodes 22, 25. The current and the gate voltage of the switching elements 20 and 24 are shown.
  • (f) shows the current flowing through the first inductor 7, and the current flowing through the switching elements 19 and 26 and the diodes 21 and 27 flows during the Ton period in the figure, and the remainder of one cycle (in the figure) During the period of (T ⁇ Td ⁇ Ton), the current flowing through the switching elements 20 and 24 and the diodes 22 and 25 flows. During the dead time Td described later, the resonance current of the first inductor 7, the first resonance capacitor 6, and the snubber capacitors 23 and 28 flows.
  • the two switching elements 19 and 20 connected in series are exclusively energized, and the two switching elements 24 and 24 connected in series to the two switching elements 19 and 20 are connected in parallel. 26 is energized exclusively by shifting the drive signal phase of the switching elements 19 and 20.
  • the switching element 19 and the switching element 26 are repeatedly turned on and off in synchronization.
  • the switching element 20 and the switching element 24 are turned off, and the switching element 19 and the switching element 26 are turned on.
  • the switching element 20 and the switching element 24 are turned on, the switching element 20 and the switching element 24 are repeatedly turned on and off in synchronization.
  • the ON period of the switching elements 19 and 24 and the switching element 20 are set so that the switching element 19 and the switching element 20 are not turned on simultaneously, and so that the switching element 24 and the switching element 26 are not turned on simultaneously.
  • the dead time Td is set so as not to overlap.
  • the switching elements 19 and 26 are turned off from the on state, the snubber capacitor 23 is discharged with a gentle inclination due to resonance of the first inductor 7, the first resonance capacitor 6, and the snubber capacitor 23.
  • the switching elements 19, 26 realize a zero volt switching (ZVS) turn-off operation.
  • ZVS zero volt switching
  • the snubber capacitor 28 is discharged with a gentle slope due to resonance of the first inductor 7, the first resonant capacitor 6, and the snubber capacitor 28.
  • the elements 20 and 24 realize a ZVS turn-off operation.
  • the snubber capacitor 23 is charged and the snubber capacitor 28 is completely discharged, the diodes 21 and 27 are turned on, and an on signal is sent to the gates of the switching elements 19 and 26 during the period in which the diodes 21 and 27 are on.
  • the switching elements 19 and 26 and the switching elements 20 and 24 are alternately turned on / off by providing a dead time Td (for example, about 2 ⁇ s) so as not to short-circuit the smoothing capacitor 18.
  • Td for example, about 2 ⁇ s
  • the drive (operation) frequency of the switching elements 19, 20, 24, and 26 is made constant, and as shown in FIG. 4 (g), the energization rate (duty ratio).
  • the high frequency power is controlled by controlling.
  • the “energization rate” here means the switching element 19 with respect to the time required for one cycle of ON / OFF of the switching elements 19 and 26 (or the switching elements 20 and 24), as shown in FIGS. , 26 (or switching elements 20, 24).
  • the inverter circuit 4 has a voltage ripple of 120 Hz as shown in FIG.
  • a current ripple is generated in the current of the first inductor 7. Therefore, the feed power fluctuates as shown in FIG. 3E, and a 120-Hz current ripple occurs in the input current of the load 12 as shown in FIG.
  • the inverter circuit 4 when the input voltage including the voltage ripple shown in FIG. 4C is applied to the inverter circuit 4, the current (or the first current) of the first inductor 7 detected by the feed power detector 5.
  • the energization rates (duty ratios) of the switching elements 19, 20, 24, and 26 are controlled so that the magnetic field generated by the inductor 7 becomes substantially constant.
  • the electric current which flows through the 1st inductor 7, and the electric power feeding electric power by the side of an electric power feeder become substantially constant, as FIG.4 (d) and (e) show.
  • the control circuit 13 compares the power supply power detected by the power supply power detection unit 5 with the received power command value to obtain a power command value.
  • the switching elements 19 and 20 of the inverter circuit 4 the switching elements 24 and 26, and the switching element 16 of the power factor correction circuit 3 are driven.
  • the energization rate is set so that the power supply power increases when the energization rates of the switching elements 19 and 20 and the switching elements 24 and 26 are increased.
  • the basic energization rate is determined so that the power command value is obtained.
  • the control circuit 13 lowers the energization rate below the basic energization rate when the output voltage of the power factor correction circuit 3 is high, and sets the energization rate at the low voltage. Control is performed so that it is set higher than the rate (see FIG. 4G). As a result, the current flowing through the first inductor 7 and the feed power can be made substantially constant.
  • the basic energization rate is selected so that the supply power matches the power command value when the energization rate control is performed so that the supply power is substantially constant.
  • the basic energization rate is 50% and the output is maximum, and the basic energization rate is variable in the range of 0 to 50%. Therefore, when the feed power that becomes the power command value cannot be obtained by the energization rate control, the control circuit 13 changes the drive frequency. When the feed power is low, the drive frequency is set lower, and the control circuit 13 resets the basic energization rate. On the contrary, when the feed power is high, the drive frequency is set higher and the basic energization rate is also reset.
  • the energization rate is set to be higher at high input power than at low input power (for example, 50%, 40%, etc.
  • the control circuit 13 controls the switching elements 19, 20, 24, and 26, so that the current flowing through the first inductor 7 and the feeding power are made substantially constant. can do.
  • the control circuit 14 determines command values such as charging current, voltage, and power according to the remaining voltage of the battery detected by the received power detection unit 10 at the start of charging, and transmits the command value to the control circuit 13 by wireless communication. Even during charging, information such as charging current, voltage, and power is transmitted to the control circuit 13 by wireless communication, and the control circuit 13 performs control based on the received information such as charging current, voltage, and power.
  • the power transmission efficiency between the first inductor 7 and the second inductor 8 can be increased by causing the second inductor 8 and the second resonant capacitor 9 to resonate. This is because, when the impedance component due to the leakage inductance that cannot be magnetically coupled to the first inductor 7 among the second inductors 8 is canceled by the second resonance capacitor 9, the impedance on the secondary side is lowered and it becomes easy to transmit power. Can also explain. Even if the second resonant capacitor 9 is not provided, the present invention is not affected.
  • control circuit 13 drives and controls the power factor correction circuit 3 and the inverter circuit 4 so that the power command value and the detection result of the feed power detection unit 5 are matched by the above-described operation.
  • the switching elements 19, 20, 24, and 26 are controlled based on the current value detected by the power supply power detection unit 5, but the power supply voltage detection unit 5 detects the power supply voltage. By controlling the switching elements 19, 20, 24, and 26 so that the detected voltage value becomes substantially constant, the voltage applied to the first inductor 7 and the feeding power can be made substantially constant.
  • the driving frequency of the switching elements 19, 20, 24, and 26 is made constant, and the energization rate is controlled to control the high frequency power, but in the present embodiment, FIG. As shown in FIG. 4, the high-frequency power is controlled by controlling the drive frequency of the switching elements 19, 20, 24, and 26 while keeping the energization rate constant.
  • the driving frequency is set so that the feeding power increases when the driving frequency is lowered (the operation is performed at a frequency higher than the frequency at which the feeding power becomes maximum), and is detected by the feeding power detection unit 5.
  • the control circuit 13 is set so that the drive frequency is set high when the output voltage of the power factor correction circuit 3 is high and the drive frequency is set low when the output voltage is low (see FIG. 5H).
  • the control circuit 13 compares the power supply power detected by the power supply power detection unit 5 with the received power command value to obtain a power command value.
  • the switching elements 19 and 20 of the inverter circuit 4 the switching elements 24 and 26, and the switching element 16 of the power factor correction circuit 3 are driven.
  • the driving frequency is set so that the feeding power increases when the driving frequency of the switching elements 19 and 20 and the switching elements 24 and 26 is lowered (maximum feeding power).
  • the control circuit 13 determines the basic drive frequency so that the power command value is obtained.
  • the control circuit 13 sets the drive frequency higher than the basic frequency when the output voltage of the power factor correction circuit 3 is high, and sets the drive frequency higher than the basic frequency when the output voltage is low. Control is performed so that it is set low (see FIG. 5H). As a result, the current flowing through the first inductor 7 and the feed power can be made substantially constant.
  • the basic drive frequency is selected so that the feed power matches the power command value when such drive frequency control is performed to make the feed power substantially constant.
  • the energization rate is basically 50%. However, when the energization rate is set higher, the power supply becomes larger, while when the energization rate is set lower, the power supply is reduced. Yes. By changing this energization rate, the supplied power and the power command value can be made more consistent.
  • the current ripple in the load is generated when the output voltage of the power factor correction circuit 3, that is, the voltage of the electrolytic capacitor, changes as shown in FIG. Since the magnitude of this voltage increases as the feed power increases, in a charging system in which the power command value sent by wireless communication from the control circuit 14 varies as in this embodiment, the current ripple in the load Will also change depending on the power command value. For example, when the power command value increases, the voltage change width of the electrolytic capacitor increases and the load current ripple also increases.
  • the total power command value is The load current ripple is improved and the operation is performed so that the power supply becomes substantially constant.
  • the drive frequency is high when the output voltage of the power factor correction circuit 3 is high.
  • the control circuit 13 controls the drive frequency of the switching elements 19, 20, 24, and 26 so that the drive frequency is low when the voltage is low, the voltage ripple is reduced and the power supply voltage can be made substantially constant.
  • the high frequency power is controlled by controlling both the energization rate and the drive frequency of the switching elements 19, 20, 24, and 26.
  • control circuit 13 controls the switching elements 19, 20, 24, and 26 so as to reduce the current ripple, thereby reducing the current ripple and making the current flowing through the first inductor 7 substantially constant.
  • FIG. 9 is a circuit diagram of the non-contact charging system in the present embodiment. 9 is that the control circuit 13 is provided with an output voltage detector 33 that detects the output voltage of the smoothing capacitor 18 of the power factor correction circuit 3 (input voltage of the inverter circuit 4). It is different from the circuit diagram.
  • control circuit 13 controls the switching elements 19, 20, 24, and 26 based on the output voltage of the smoothing capacitor 18 detected by the output voltage detector 33 (energization rate control and / or / (Or frequency control), the feeding current or feeding voltage is controlled to a desired value.
  • the switching elements 19, 20, 24, and 26 are controlled as follows, as in the above-described first to third embodiments.
  • (I) Energization rate control (drive frequency is constant) In this control, the control circuit 13 switches the switching elements 19, 20, 24, and 26 so that the energization rate is small when the output voltage of the smoothing capacitor 18 detected by the output voltage detection unit 33 is high and the energization rate is large when the output voltage is low. By controlling the above, the current or voltage of the first inductor 7 and the feeding power are made substantially constant.
  • Energization rate control and drive frequency control In this control, the energization rate is small and the drive frequency is high when the output voltage of the smoothing capacitor 18 detected by the output voltage detector 33 is high, and the energization rate is large when the output voltage is low.
  • the control circuit 13 controls the switching elements 19, 20, 24, and 26 so that the drive frequency is lowered, so that the current or voltage of the first inductor 7 and the feeding power are made substantially constant.
  • the power feeding device of the non-contact charging system can not only reduce the current / voltage ripple of the power feeding device, but also reduce the number of parts of the power feeding device to reduce the size or cost of the power feeding device. Since the power loss can be reduced as much as possible, it is useful for power feeding to a power receiving device of an electric propulsion vehicle, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 非接触給電装置に、力率改善を行って直流電圧を出力する力率改善回路3と、力率改善回路3の出力端に接続される電解コンデンサ18と、複数のスイッチング素子19,20,24,26を有し電解コンデンサ18の電圧を電源として交流信号を発生するインバータ回路4と、インバータ回路4の出力端に接続される第1の共振コンデンサ6及び第1のインダクタ7と、給電装置制御回路13とを設けた。また、受電装置に給電するに際し、第1のインダクタ7を受電装置の第2のインダクタ8に対向させ、給電装置制御回路13は、インバータ回路4の出力に基づいて、複数のスイッチング素子19,20,24,26の通電時間及び駆動周波数の少なくとも一つを変化させるようにした。

Description

非接触充電システムの給電装置
 本発明は、例えば電気推進車両(電気自動車やハイブリッド車)などに搭載される二次電池に非接触で充電する非接触充電システムにおける給電装置に関する。
 非接触で電力伝送するための技術として、磁界、電界、電波などを用いる技術が開発されており、このような非接触電力伝送技術によって、給電装置と受電装置とを接続する電線が不要となるため、ユーザにとっては、接続の手間が省けたり、雨天時などの漏電や感電の心配がなくなったりする。
 ところで、非接触電力伝送では、例えば高効率化のため、給電装置と受電装置との位置関係が重要となる。この問題に対処するため、従来、給電装置及び受電装置のそれぞれに交流信号を共振させる共振部を備えることで、給電装置と受電装置との位置関係の制約を低減する技術が提案されている(例えば、特許文献1参照)。
 しかしながら、特許文献1に記載の技術の場合、給電装置から出力される給電電力には商用周波数成分が重畳することから、給電装置の出力には商用周波数成分の電流リプルあるいは電圧リプルが発生し、電解コンデンサの寿命が短くなるなどの課題がある。
 そこで、直列接続された4段の回路からなる三つの列回路(コンバータ)を複数の平滑コンデンサを共有して並列接続し、各列回路毎に位相を2π/3(rad)ずらして各列回路を駆動し、複数の平滑コンデンサへの充放電電流を列回路間で融通し合うことにより、電圧リプルを低減するようにしたものも提案されている(例えば、特許文献2参照)。
特開2009-296857号公報 特開2008-263715号公報
 特許文献2に記載の構成の場合、電圧リプルを低減することはできるものの、列回路(コンバータ)を複数必要とすることから、給電装置の部品点数が多く、給電装置の大型化やコストアップを招き、給電損失が増加するという問題がある。
 本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、給電装置の出力における商用周波数成分の電流・電圧リプルを低減できるばかりでなく、給電装置の部品点数を少なくして給電装置の小型化あるいはコストダウンを図ることができ、給電損失を極力低減することができる非接触充電システムの給電装置を提供することを目的としている。
 上記目的を達成するために、本発明は、受電装置に非接触で給電を行う給電装置であって、力率改善を行って直流電圧を出力する力率改善回路と、力率改善回路の出力直流電圧が与えられると、電荷を蓄積する電解コンデンサと、複数のスイッチング素子を有しており、電解コンデンサを電源として動作し、交流信号を発生するインバータ回路と、インバータ回路からの交流信号が入力されると、受電装置に非接触で給電を行う共振コンデンサ及びインダクタと、複数のスイッチング素子の通電率及び駆動周波数の少なくとも一方を変化させる給電側制御回路とを備えている。
 本発明によれば、上記構成により給電装置の電流・電圧リプルを低減できるばかりでなく、給電装置の部品点数を少なくして給電装置の小型化あるいはコストダウンを図ることができ、給電損失を極力低減することができる。
図1は本発明の一実施の形態に係る非接触充電システムの回路図 図2は図1の非接触充電システムに設けられた給電電力検知部の回路図 図3は図1の非接触充電システムにおける各部の波形と比較するための従来の非接触充電システムの各部の波形を示す図 図4は図1の非接触充電システムに設けられた複数のスイッチング素子の通電率を変えた場合の非接触充電システムにおける各部の波形を示す図 図5は複数のスイッチング素子の駆動周波数を変えた場合の非接触充電システムにおける各部の波形を示す図 図6は複数のスイッチング素子の通電率及び駆動周波数の両方を変えた場合の非接触充電システムにおける各部の波形を示す図 図7は図1のインバータ回路4への入力電力が高い場合における、給電装置の要部の動作波形を示す図 図8は図1のインバータ回路4への入力電力が低い場合における、給電装置の要部の動作波形を示す図 図9は本発明に係る別の非接触充電システムの回路図
 本発明は、受電装置に非接触で給電を行う給電装置であって、力率改善を行って直流電圧を出力する力率改善回路と、力率改善回路の出力直流電圧が与えられると、電荷を蓄積する電解コンデンサと、複数のスイッチング素子を有しており、電解コンデンサを電源として動作し、交流信号を発生するインバータ回路と、インバータ回路からの交流信号が入力されると、受電装置に非接触で給電を行う共振コンデンサ及びインダクタと、複数のスイッチング素子の通電率及び駆動周波数の少なくとも一方を変化させる給電側制御回路とを備えている。
 この構成により、給電装置の電流・電圧リプルを低減できるばかりでなく、給電装置の部品点数を少なくして給電装置の小型化あるいはコストダウンを図ることができ、給電損失を極力低減することができる。
 また、給電装置は、インダクタに流れる電流、又は該インダクタの電圧を検知する給電電力検知部をさらに備え、給電側制御回路は、給電電力検知部が検知した電流あるいは電圧に基づいて、複数のスイッチング素子の通電率及び駆動周波数の少なくとも一方を変化させてもよい。
 また、給電側制御回路は、受電装置側との無線通信により電力指令値を受信し、受信した電力指令値になるように、複数のスイッチング素子の基本通電率を決定し、給電電力検知部の出力電圧が高い時には、複数のスイッチング素子の通電率を基本通電率より低く設定し、低い時には複数のスイッチング素子の通電率を基本通電率より高く設定してもかまわない。
 他にも、給電側制御回路は、受電装置側との無線通信により電力指令値を受信し、受信した電力指令値になるように、複数のスイッチング素子の基本駆動周波数を決定し、給電電力検知部の出力電圧が高い時には、複数のスイッチング素子の駆動周波数を基本駆動周波数より高く設定し、低い時には複数のスイッチング素子の駆動周波数を基本駆動周波数より低く設定することもできる。
 さらに、給電側制御回路は、力率改善回路の出力電圧を検知する出力電圧検知部を有し、出力電圧検知部が検知した力率改善回路の出力電圧に基づいて、複数のスイッチング素子の通電率及び駆動周波数の少なくとも一つを変化させてもかまわない。
 給電側制御回路は、より具体的には、受電装置側との無線通信により電力指令値を受信し、受信した電力指令値になるように、複数のスイッチング素子の基本通電率を決定し、出力電圧検知部の出力電圧が高い時には、複数のスイッチング素子の通電率を基本通電率より低く設定し、低い時には複数のスイッチング素子の通電率を基本通電率より高く設定する。
 他にも、給電側制御回路は、受電装置側との無線通信により電力指令値を受信し、受信した電力指令値になるように、複数のスイッチング素子の基本駆動周波数を決定し、出力電圧検知部の出力電圧が高い時には、複数のスイッチング素子の駆動周波数を基本駆動周波数より高く設定し、低い時には複数のスイッチング素子の駆動周波数を基本駆動周波数より低く設定することもできる。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。
(実施の形態1)
 図1は、本実施の形態における非接触充電システムの回路図である。
 図1に示されるように、非接触充電システムは、例えば駐車スペースに設置される給電装置と、例えば電気推進車両に搭載される受電装置とを備えている。非接触充電システムは、給電装置側の構成として、商用電源1、第1の整流回路2、力率改善回路3、インバータ回路4、給電電力検知部5、第1の共振コンデンサ6、第1のインダクタ7及び給電装置側の制御回路13(以下、単に「制御回路13」という)と、受電装置側の構成として、第2のインダクタ8、第2の共振コンデンサ9、第2の整流回路11、負荷(バッテリー)12、受電装置側の制御回路14(以下、単に「制御回路14」という)、及び受電電力検知部10とを備えている。
 以下これらの回路ブロックの構成について説明する。
 まず、力率改善回路3の構成について説明する。力率改善回路3は、商用電源1の力率を改善する回路であって、バイパスコンデンサ29、第1のチョークコイルであるチョークコイル15、第1のスイッチング素子16(本実施の形態においてはMOSFETが例示)、第1のダイオードであるダイオード17、及び、平滑コンデンサ(電解コンデンサ)18を含んでいる。
 商用電源1は、低周波交流電源である200V商用電源であり、ブリッジダイオードと入力フィルタを含む第1の整流回路2の入力端に接続される。第1の整流回路2の高電位側(正極側)出力端子に、バイパスコンデンサ29の高電位端子とチョークコイル15の入力側端子が接続される。さらに、チョークコイル15の出力側端子とダイオード17のアノード側端子との接続ラインにスイッチング素子16の高電位側端子(ドレイン)が接続される。第1の整流回路2の低電位側(負極側)出力端子に、バイパスコンデンサ29の低電位側端子とスイッチング素子16の低電位側端子(ソース)と平滑コンデンサ18の低電位側端子が接続される。また、平滑コンデンサ18の高電位側端子は、ダイオード17のカソード側端子に接続される。力率改善回路3には、第1の整流回路2の出力電圧が直流電源として入力され、入力された第1の整流回路2の出力電圧はバイパスコンデンサ29により電圧変動が抑制され、さらにチョークコイル15とスイッチング素子16のオン・オフ動作によりそのピーク値より大きいピーク値を有する直流電圧であって任意の電圧に昇圧した電圧が、平滑コンデンサ18の両端に供給され、平滑される。
 本実施の形態においては、力率改善回路3を高周波動作させ力率改善効果を高めるために、スイッチング速度の速いMOSFETをスイッチング素子16の典型例として使用している。MOSFETに逆向きにダイオードが付帯するが、このダイオードが無くても本実施の形態の基本動作に何ら影響を与えないため、図には記載していない。平滑コンデンサ18の出力電圧はインバータ回路4の入力端子間に供給される。
 インバータ回路4の入力端子は力率改善回路3の出力端子、つまり平滑コンデンサ18の両端に接続される。平滑コンデンサ18の両端には、スイッチング素子(第2及び第3のスイッチング素子)19,20の直列接続体とスイッチング素子(第4及び第5のスイッチング素子)24,26の直列接続体が、並列に接続される。
 スイッチング素子19,20には、それぞれダイオード(第2及び第3のダイオード)21、22が逆並列に接続される(スイッチング素子の高電位側端子(コレクタ)とダイオードのカソード側端子が接続される)。また、スイッチング素子20(スイッチング素子19であってもよい)に並列にスナバコンデンサ23が接続される。
 同様に、スイッチング素子24,26には、それぞれダイオード(第4及び第5のダイオード)25,27が逆並列に接続される(スイッチング素子の高電位側端子(コレクタ)とダイオードのカソード側端子が接続される)。また、スイッチング素子26(スイッチング素子24であってもよい)に並列にスナバコンデンサ28が接続される。
 さらに、スイッチング素子19とスイッチング素子20の接続ラインと、スイッチング素子24とスイッチング素子26の接続ラインに、第1の共振コンデンサ6と第1のインダクタ7と給電電力検知部5の直列接続体が接続される。
 第2のインダクタ8は、例えば電気推進車両の移動に伴い、第1のインダクタ7と対向するように配置される。また、第2のインダクタ8の高電位側に第2の共振コンデンサ9が接続され、第2のインダクタ8の低電位側と第2の共振コンデンサ9は平滑フィルタを内包する第2の整流回路11に接続され、第2の整流回路11の高電位側に受電電力検知部10が接続され、受電電力検知部10と第2の整流回路11の低電位側に負荷(バッテリー)12が接続される。
 本実施の形態における給電電力検知部5は、図2に示されるように、電流検知部30、電圧検知部31、電力演算部32で構成されている。ただし、電流または電圧のいずれか一方で給電電力を推定できる場合は、電流検知部30と電圧検知部31のいずれか一方だけでもよい。本実施の形態のように、給電電力検知部5を第1のインダクタ7と第1の共振コンデンサ6の直列共振回路に直列接続する場合、電流と電圧には相関があるためいずれか一方だけの検知で給電電力を推定できる。
 なお、受電電力検知部10については詳述しないが、受電電力検知部10は、給電電力検知部5の構成と同じであってもよい。
 次に、制御回路13の構成について説明する。制御回路13は、無線通信により、制御回路14より電力指令値を受信する。制御回路13は、給電電力検知部5によって検知する給電電力と、受信した電力指令値とを比較し、電力指令値が得られるようにインバータ回路4のスイッチング素子19,20とスイッチング素子24,26、及び、力率改善回路3のスイッチング素子16を駆動する。なお、力率改善回路3のスイッチング素子16の制御には専用の制御ICを用いてもよい。
 制御回路14は、受電電力検知部10によって検知するバッテリー12の残電圧に応じて電力指令値を決定し、無線通信により制御回路13に送信する。また、給電装置動作中に受電電力検知部10によって受電電力を検知し、負荷(バッテリー)12に過電流や過電圧がかからないように、制御回路14は制御回路13への電力指令値を変更する。
 また、本実施の形態1の負荷12には、電気推進車両用のバッテリーを用いている。バッテリー充電は、バッテリーの残電圧以上の電圧を供給して充電するが、給電電圧がバッテリー残電圧を超えると、急激に充電電流が流れる。このことは給電装置からみた負荷インピーダンスがバッテリー残電圧や給電電圧によって大きく変動することを意味している。
 以上のように構成された非接触充電システムの動作を以下説明するが、上述した特許文献1に記載の電力伝送システムにおける各部の電圧波形、電流波形等を図3を参照しながらまず説明する。ただし、本発明に係る非接触充電システムと、特許文献1に記載の電力伝送システムは、当然のことながら回路構成は異なっているが、図3において、「第1の整流回路2の出力電圧」、「力率改善回路3の出力電圧」等と記載したのは、特許文献1に記載の電力伝送システムにおける対応部位の出力電圧等を示すためである。
 図3(a)は、商用電源1の交流電圧波形を示す模式図であり、図3(b)は、直流電源の出力電圧波形、すなわち第1の整流回路2の出力電圧波形を示す模式図である。この電圧は、力率改善回路3に入力され、昇圧された後に平滑コンデンサ18に出力される。図3(c)は、平滑コンデンサ18に印加される波形、すなわち力率改善回路3の出力電圧波形であり、かつインバータ回路4の入力電圧波形を示す模式図である。図3(d)は、第1のインダクタ7に発生する高周波電流波形を示す模式図であり、図3(e)は、給電装置から受電装置に給電される電力波形を示す模式図である。図3(f)は、第2の整流回路11の出力電流波形、すなわち負荷2の入力電流波形を示す模式図である。また、図3(g)及び(h)は、それぞれ通電率(デューティ比)及び動作周波数を示す模式図である。
 一方、図4は、本発明に係る非接触充電システムの各部の電圧波形、電流波形等を示しており、図4(a)~(h)は、図3(a)~(h)にそれぞれ対応している。
 まず、力率改善回路3の動作について説明する。
 図4(a)に示される商用電源1は第1の整流回路2により全波整流され、図4(b)の電圧波形に示されるような直流電源が形成される。この直流電源は、力率改善回路3の入力端子間に供給される。力率改善回路3は、この直流電源電圧の瞬時値の大きさが平滑コンデンサ18の電圧よりも小さい場合に力率改善回路3に含まれるダイオード17及び第1の整流回路2のブリッジダイオードがターンオンできずに入力電流波形が歪み、力率が著しく低くなる。その際に、制御回路13は、スイッチング素子16をターンオン・オフさせることにより力率を改善する。
 第1のスイッチング素子16がターンオンしている状態では、商用電源1からチョークコイル15にエネルギーが蓄えられており、その後、スイッチング素子16がターンオフし、チョークコイル15に蓄えられたエネルギーがダイオード17を介して、平滑コンデンサ18に供給される。これにより、商用電源1からチョークコイル15を介して入力電流が流れるようになり、商用電源1側から歪んだ入力電流を流さないようにする。また、本実施の形態では、力率改善回路3は、力率改善機能だけでなく、昇圧機能を同時に有する。このため、図4(c)に示されるように、平滑コンデンサ18の電圧は、そのピーク値が商用電源1のピーク値すなわち直流電源のピーク値である力率改善回路3の入力電圧のピーク値より高い電圧となり、平滑コンデンサ18を介してインバータ回路4に供給される。
 なお、図3(a)~(c)及び図4(a)~(c)を比較すれば分かるように、特許文献1に記載の電力伝送システムと本発明に係る非接触充電システムにおける商用電源1の交流電圧波形、第1の整流回路2の出力電圧波形、及び、力率改善回路3の出力電圧波形に大きな違いはない。
 次に、インバータ回路4の動作について説明する。
 図4(c)に示される力率改善回路3の出力端間に接続された平滑コンデンサ18の両端に出力され平滑された直流電圧はインバータ回路4に供給される。インバータ回路4は、スイッチング素子19,20のオン・オフ、及び、スイッチング素子24,26のオン・オフによって、第1の共振コンデンサ6と第1のインダクタ7に、図4(d)に示されるように所定の周波数の高周波電流を発生させる。
 スイッチング素子19,20のオン・オフ制御、及び、スイッチング素子24,26のオン・オフ制御は、制御回路13が各スイッチング素子19,20,24,26のゲートにオン信号を加えることで行われる。
 図7及び図8は、高入力電力時と低入力電力時における拡大したインバータ回路4の動作波形をそれぞれ示しており、(a)(c)(d)は、スイッチング素子19,26及びダイオード21,27に流れる電流、スイッチング素子19,26の電圧、及び、スイッチング素子19,26のゲート電圧をそれぞれ示しており、(b)(e)は、スイッチング素子20,24及びダイオード22,25に流れる電流、及び、スイッチング素子20,24のゲート電圧をそれぞれ示している。また、(f)は第1のインダクタ7に流れる電流を示しており、図中のTon期間中はスイッチング素子19,26及びダイオード21,27に流れる電流が流れ、1周期の残り(図中のT-Td-Ton)期間中はスイッチング素子20,24及びダイオード22,25に流れる電流が流れる。後述するデッドタイムTd期間中は第1のインダクタ7と第1の共振コンデンサ6とスナバコンデンサ23,28の共振電流が流れる。
 図7及び図8に示されるように、直列接続された二つのスイッチング素子19,20を排他的に通電し、これら二つのスイッチング素子19,20に並列に直列接続された二つのスイッチング素子24,26を、スイッチング素子19,20の駆動信号位相をずらして排他的に通電している。
 すなわち、スイッチング素子19とスイッチング素子26は同期してオン・オフを繰り返し、スイッチング素子19とスイッチング素子26がオンのときに、スイッチング素子20とスイッチング素子24がオフし、スイッチング素子19とスイッチング素子26がオフのときに、スイッチング素子20とスイッチング素子24がオンすることで、スイッチング素子20とスイッチング素子24は同期してオン・オフを繰り返す。
 なお、後述するように、スイッチング素子19とスイッチング素子20が同時にオンにならないように、またスイッチング素子24とスイッチング素子26が同時にオンにならないように、スイッチング素子19,24のオン期間とスイッチング素子20,26のオン期間は重ならないようにデッドタイムTdが設定されている。
 さらに詳述すると、スイッチング素子19,26がオンしている状態からオフすると、第1のインダクタ7と第1の共振コンデンサ6とスナバコンデンサ23の共振による緩やかな傾きでスナバコンデンサ23が放電するため、スイッチング素子19,26は零ボルトスイッチング(ZVS)ターンオフ動作を実現する。また、このときスナバコンデンサ28が充電され、スナバコンデンサ23が放電しきると、ダイオード22,25がオンし、ダイオード22,25がオンしている期間中にスイッチング素子20,24のゲートにオン信号を加え待機すると、第1のインダクタ7の共振電流の向きが反転しダイオード22がターンオフしてスイッチング素子20,24に電流が転流し、スイッチング素子20,24はZVS&零電流スイッチング(ZCS)ターンオン動作を実現する。
 次に、スイッチング素子20,24がオンしている状態からオフすると、第1のインダクタ7と第1の共振コンデンサ6とスナバコンデンサ28の共振による緩やかな傾きでスナバコンデンサ28が放電するため、スイッチング素子20,24はZVSターンオフ動作を実現する。また、このときスナバコンデンサ23が充電され、スナバコンデンサ28が放電しきると、ダイオード21,27がオンし、ダイオード21,27がオンしている期間中にスイッチング素子19,26のゲートにオン信号を加え待機すると、第1のインダクタ7の共振電流の向きが反転しダイオード27がターンオフしてスイッチング素子19,26に電流が転流し、スイッチング素子19,26はZVS&零電流スイッチング(ZCS)ターンオン動作を実現する。以上がインバータ回路4の動作である。
 本実施の形態では、スイッチング素子19,26及びスイッチング素子20,24は、平滑コンデンサ18を短絡しないようにデッドタイムTd(例えば、約2μs)を設けて、交互にオン・オフさせている。また、図4(h)に示されるように、スイッチング素子19,20,24,26の駆動(動作)周波数を一定にして、図4(g)に示されるように、通電率(デューティ比)を制御することで高周波電力を制御している。なお、ここでいう「通電率」とは、図7及び図8に示されるように、スイッチング素子19,26(あるいはスイッチング素子20,24)のオン・オフの1周期に要する時間に対するスイッチング素子19,26(あるいはスイッチング素子20,24)のオン時間の比として定義している。
 図3、図4、図7及び図8を参照しながらさらに詳述すると、図3に示される従来例の場合、図3(c)に示されるように、インバータ回路4には120Hzの電圧リプルを含む入力電圧が印加され、図3(d)に示されるように、第1のインダクタ7の電流には電流リプルが発生する。したがって、給電電力は、図3(e)に示されるように変動し、図3(f)に示されるように、負荷12の入力電流には120Hzの電流リプルが発生することになる。
 一方、本発明においては、図4(c)に示される電圧リプルを含む入力電圧がインバータ回路4に印加されると、給電電力検知部5で検知した第1のインダクタ7の電流(あるいは第1のインダクタ7が発生する磁界)が略一定になるように、スイッチング素子19,20,24,26の通電率(デューティ比)を制御している。また、このように制御することで、第1のインダクタ7を流れる電流及び給電装置側の給電電力は、図4(d)及び(e)に示されるように、略一定になる。
 スイッチング素子19,20,24,26の通電率制御をさらに詳しく説明する。制御回路13は、制御回路14より無線通信で送信される電力指令値を受信すると、給電電力検知部5によって検知する給電電力と、受信した電力指令値とを比較し、電力指令値が得られるように、インバータ回路4のスイッチング素子19,20と、スイッチング素子24,26と、力率改善回路3のスイッチング素子16とを駆動する。本実施の形態におけるインバータ回路4は、スイッチング素子19,20とスイッチング素子24,26との通電率を高くすると給電電力が大きくなるように、該通電率を設定しており、制御回路13は、電力指令値となるように基本通電率を決定する。制御回路13はさらに、給電電力検知部5で検知した電流に電流リプルが発生すると、力率改善回路3の出力電圧が高い時に通電率を基本通電率より低く、低電圧時には通電率を基本通電率より高く設定されるように(図4(g)参照)制御する。これによって第1のインダクタ7に流れる電流及び給電電力を略一定にすることができる。基本通電率はこのような給電電力を略一定にする通電率制御を行った際に、給電電力が電力指令値と一致するように選定される。
 本実施の形態における基本通電率は50%で出力最大となり、基本通電率は0~50%の範囲で可変される。従って、通電率制御で電力指令値となる給電電力が得られない場合は、制御回路13は、駆動周波数を変化させる。給電電力が低い場合には駆動周波数がさらに低く設定され、制御回路13は基本通電率を再設定する。反対に給電電力が高い場合には駆動周波数がさらに高く設定され、基本通電率も再設定される。このように電力指令値と給電電力が一致するように駆動周波数を変化させて基本通電率を設定することで、より給電電力を電力指令値に一致させることが可能となり、さらに給電電力を略一定にして安定した給電を行うことが可能となる。
 すなわち、図7及び図8に示されるように、高入力電力時は低入力電力時に比べ、通電率が大きくなるように設定され(例えば、高入力電力時は50%、40%等、低入力電力時は30%、20%等)、図4(c)に示されるように、力率改善回路3の出力電圧に電圧リプルがある場合、高電圧時には通電率が小さく、低電圧時には通電率が大きく設定されるように(図4(g)参照)、制御回路13がスイッチング素子19,20,24,26を制御することで、第1のインダクタ7に流れる電流及び給電電力を略一定にすることができる。
 充電動作は、充電開始時に制御回路14が受電電力検知部10によって検知するバッテリーの残電圧に応じて充電電流、電圧、電力などの指令値を決定し、無線通信により制御回路13に送信する。また充電中においても充電電流、電圧、電力などの情報を無線通信により制御回路13に送信し、制御回路13は受信した充電電流、電圧、電力などの情報にも基づいて制御する。
 また、受電装置でも第2のインダクタ8と第2の共振コンデンサ9を共振させることで、第1のインダクタ7と第2のインダクタ8の間の電力伝送効率を高めることができる。これは第2のインダクタ8のうち、第1のインダクタ7と磁気結合できない漏れインダクタンスによるインピーダンス成分を第2の共振コンデンサ9で打ち消すことにより、2次側のインピーダンスが下がり、電力を伝送しやすくなるとも説明できる。なお、第2の共振コンデンサ9は無くても本発明に影響はない。
 制御回路13は電力指令値を受信完了すると、上述した動作によって電力指令値と給電電力検知部5の検知結果が一致するように力率改善回路3とインバータ回路4を駆動・制御する。
 なお、本実施の形態においては、給電電力検知部5で検知した電流値に基づいてスイッチング素子19,20,24,26を制御するようにしたが、給電電力検知部5で給電電圧を検知し、検知した電圧値が略一定になるようにスイッチング素子19,20,24,26を制御することにより、第1のインダクタ7に印加される電圧及び給電電力を略一定にすることができる。
(実施の形態2)
 図1の回路構成については、実施の形態1と同じなので、その説明は省略する。
 実施の形態1においては、スイッチング素子19,20,24,26の駆動周波数を一定にして、通電率を制御することで高周波電力を制御するようにしたが、本実施の形態においては、図5に示されるように、通電率を一定にして、スイッチング素子19,20,24,26の駆動周波数を制御することにより高周波電力を制御している。
 本実施の形態においては、駆動周波数を低くすると給電電力が大きくなるように駆動周波数を設定しており(給電電力最大となる周波数よりも高い周波数で動作させる)、給電電力検知部5で検知した電流に電流リプルが発生すると、力率改善回路3の出力電圧が高電圧時には駆動周波数が高く、低電圧時には駆動周波数が低く設定されるように(図5(h)参照)、制御回路13がスイッチング素子19,20,24,26の駆動周波数を制御することで、第1のインダクタ7に流れる電流及び給電電力を略一定にすることができる。
 スイッチング素子19,20,24,26の駆動周波数制御をさらに詳しく説明する。制御回路13は、制御回路14より無線通信で送信される電力指令値を受信すると、給電電力検知部5によって検知する給電電力と、受信した電力指令値とを比較し、電力指令値が得られるように、インバータ回路4のスイッチング素子19,20と、スイッチング素子24,26と、力率改善回路3のスイッチング素子16とを駆動する。本実施の形態におけるインバータ回路4は、スイッチング素子19,20とスイッチング素子24,26との駆動周波数を低くすると給電電力が大きくなるように、該駆動周波数を設定しており(給電電力最大となる周波数よりも高い周波数で動作させる)、制御回路13は、電力指令値となるように基本駆動周波数を決定する。制御回路13はさらに、給電電力検知部5で検知した電流に電流リプルが発生すると、力率改善回路3の出力電圧が高い時に駆動周波数を基本周波数より高く、低電圧時には駆動周波数を基本周波数より低く設定されるように(図5(h)参照)制御する。これによって第1のインダクタ7に流れる電流及び給電電力を略一定にすることができる。基本駆動周波数はこのような給電電力を略一定にする駆動周波数制御を行った際に、給電電力が電力指令値と一致するように選定される。
 このような制御を行う場合、通電率は50%を基本とするが、通電率をより高く設定すると給電電力が大きくなる一方で、通電率を低く設定すると給電電力が小さくなるように設定されている。この通電率を変化させることにより、給電電力と電力指令値をより一致させることができるようになる。
負荷における電流リプルは、力率改善回路3の出力電圧すなわち電解コンデンサの電圧が図3のように大小に変化することで発生する。この電圧の大小の幅は給電電力が大きくなると増加するため、本実施の形態のように制御回路14より無線通信で送られてくる電力指令値が変動するような充電システムでは、負荷における電流リプルも電力指令値に応じて大小に変化することになる。例えば電力指令値が大きくなると、電解コンデンサの電圧変化幅が増加し、負荷の電流リプルも増加することになる。そこで本実施の形態では、駆動周波数を基本周波数より変化させる幅を電力指令値に応じて変化させることで(電力指令値が大きくなると、駆動周波数の変化幅も大きくする)、全電力指令値において負荷電流リプルを改善し、給電電力を略一定になるように動作させる。
 また、給電電力検知部5で電流に代えて電圧を検知する場合、給電電力検知部5で検知した電圧に電圧リプルが発生すると、力率改善回路3の出力電圧が高電圧時には駆動周波数が高く、低電圧時には駆動周波数が低くなるように制御回路13がスイッチング素子19,20,24,26の駆動周波数を制御することで、電圧リプルが低減し、給電電圧を略一定にすることができる。
(実施の形態3)
 図1の回路構成については、実施の形態1と同じなので、その説明は省略する。
 本実施の形態においては、図6に示されるように、スイッチング素子19,20,24,26の通電率と駆動周波数の両方を制御することにより高周波電力を制御している。
 すなわち、給電電力検知部5で検知した電流に電流リプルが発生すると、力率改善回路3の出力電圧が高電圧時には通電率が小さくて駆動周波数が高く、低電圧時には通電率が大きくて駆動周波数が低くなるように制御回路13がスイッチング素子19,20,24,26を制御することで、電流リプルが低減し、第1のインダクタ7に流れる電流を略一定にすることができる。
 また、給電電力検知部5で電流に代えて電圧を検知する場合についても同様である。
(実施の形態4)
 図9は、本実施の形態における非接触充電システムの回路図である。
 図9の回路図は、制御回路13に、力率改善回路3の平滑コンデンサ18の出力電圧(インバータ回路4の入力電圧)を検知する出力電圧検知部33が設けられている点で、図1の回路図と相違している。
 本実施の形態においては、出力電圧検知部33で検知した平滑コンデンサ18の出力電圧に基づいて、上述したように制御回路13がスイッチング素子19,20,24,26を制御(通電率制御及び/又は周波数制御)することで、給電電流あるいは給電電圧を所望の値に制御している。
 本実施の形態も、上述した実施の形態1-3と同様、スイッチング素子19,20,24,26は次のように制御される。
 (i)通電率制御(駆動周波数は一定)
 この制御では、出力電圧検知部33で検知した平滑コンデンサ18の出力電圧が高電圧時には通電率が小さく、低電圧時には通電率が大きくなるように制御回路13がスイッチング素子19,20,24,26を制御することで、第1のインダクタ7の電流あるいは電圧及び給電電力を略一定にしている。
 (ii)駆動周波数制御(通電率は一定)
 この制御では、出力電圧検知部33で検知した平滑コンデンサ18の出力電圧が高電圧時には駆動周波数が高く、低電圧時には駆動周波数が低くなるように制御回路13がスイッチング素子19,20,24,26を制御することで、第1のインダクタ7の電流あるいは電圧及び給電電力を略一定にしている。
 (iii)通電率制御及び駆動周波数制御
 この制御では、出力電圧検知部33で検知した平滑コンデンサ18の出力電圧が高電圧時には通電率が小さくて駆動周波数が高く、低電圧時には通電率が大きくて駆動周波数が低くなるように制御回路13がスイッチング素子19,20,24,26を制御することで、第1のインダクタ7の電流あるいは電圧及び給電電力を略一定にしている。
 以上のように、本発明に係る非接触充電システムの給電装置は、給電装置の電流・電圧リプルを低減できるばかりでなく、給電装置の部品点数を少なくして給電装置の小型化あるいはコストダウンを図ることができ、給電損失を極力低減することができるので、例えば電気推進車両の受電装置への給電等に有用である。
1 商用電源、 2 第1の整流回路、 3 力率改善回路、
4 インバータ回路、 5 給電電力検知部、
6 第1の共振コンデンサ、 7 第1のインダクタ、
8 第2のインダクタ、 9 第2の共振コンデンサ、
10 受電電力検知部、 11 第2の整流回路、
12 負荷(バッテリー)、 13 給電装置側の制御回路、
14 受電装置側の制御回路、 15 チョークコイル、
16 第1のスイッチング素子、 17 第1のダイオード、
18 平滑コンデンサ、19 第2のスイッチング素子、
20 第3のスイッチング素子、 21 第2のダイオード、
22 第3のダイオード、 23 スナバコンデンサ、
24 第4のスイッチング素子、 25 第4のダイオード、
26 第5のスイッチング素子、 27 第5のダイオード、
28 スナバコンデンサ、 29 バイパスコンデンサ、
30 電流検知部、 31 電圧検知部、 32 電力演算部、
33 力率改善回路の出力電圧検知部。

Claims (7)

  1. 受電装置に非接触で給電を行う給電装置であって、
     力率改善を行って直流電圧を出力する力率改善回路と、
     前記力率改善回路の出力直流電圧が与えられると、電荷を蓄積する電解コンデンサと、
     複数のスイッチング素子を有しており、前記電解コンデンサを電源として動作し、交流信号を発生するインバータ回路と、
     前記インバータ回路からの交流信号が入力されると、前記受電装置に非接触で給電を行う共振コンデンサ及びインダクタと、
     前記複数のスイッチング素子の通電率及び駆動周波数の少なくとも一方を変化させる給電側制御回路と、
    を備える、給電装置。
  2. 前記インダクタに流れる電流、又は該インダクタの電圧を検知する給電電力検知部をさらに備え、
     前記給電側制御回路は、前記給電電力検知部が検知した電流あるいは電圧に基づいて、前記複数のスイッチング素子の通電率及び駆動周波数の少なくとも一方を変化させることを特徴とする、請求項1に記載の給電装置。
  3. 前記給電側制御回路は、
     前記受電装置側との無線通信により電力指令値を受信し、受信した電力指令値になるように、前記複数のスイッチング素子の基本通電率を決定し、
     前記給電電力検知部の出力電圧が高い時には、前記複数のスイッチング素子の通電率を前記基本通電率より低く設定し、低い時には前記複数のスイッチング素子の通電率を基本通電率より高く設定することを特徴とする、請求項2に記載の給電装置。
  4. 前記給電側制御回路は、
     前記受電装置側との無線通信により電力指令値を受信し、受信した電力指令値になるように、前記複数のスイッチング素子の基本駆動周波数を決定し、
     前記給電電力検知部の出力電圧が高い時には、前記複数のスイッチング素子の駆動周波数を前記基本駆動周波数より高く設定し、低い時には前記複数のスイッチング素子の駆動周波数を基本駆動周波数より低く設定することを特徴とする、請求項2に記載の給電装置。
  5. 前記給電側制御回路は、前記力率改善回路の出力電圧を検知する出力電圧検知部を有し、前記出力電圧検知部が検知した前記力率改善回路の出力電圧に基づいて、前記複数のスイッチング素子の通電率及び駆動周波数の少なくとも一つを変化させることを特徴とする、請求項1に記載の給電装置。
  6. 前記給電側制御回路は、
     前記受電装置側との無線通信により電力指令値を受信し、受信した電力指令値になるように、前記複数のスイッチング素子の基本通電率を決定し、
     前記出力電圧検知部の出力電圧が高い時には、前記複数のスイッチング素子の通電率を前記基本通電率より低く設定し、低い時には前記複数のスイッチング素子の通電率を基本通電率より高く設定することを特徴とする、請求項5に記載の給電装置。
  7. 前記給電側制御回路は、
     前記受電装置側との無線通信により電力指令値を受信し、受信した電力指令値になるように、前記複数のスイッチング素子の基本駆動周波数を決定し、
     前記出力電圧検知部の出力電圧が高い時には、前記複数のスイッチング素子の駆動周波数を前記基本駆動周波数より高く設定し、低い時には前記複数のスイッチング素子の駆動周波数を基本駆動周波数より低く設定することを特徴とする、請求項5に記載の給電装置。
PCT/JP2011/001901 2011-01-06 2011-03-30 非接触充電システムの給電装置 WO2012093423A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-001396 2011-01-06
JP2011001396 2011-01-06

Publications (1)

Publication Number Publication Date
WO2012093423A1 true WO2012093423A1 (ja) 2012-07-12

Family

ID=46457294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001901 WO2012093423A1 (ja) 2011-01-06 2011-03-30 非接触充電システムの給電装置

Country Status (1)

Country Link
WO (1) WO2012093423A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014148144A1 (ja) * 2013-03-18 2014-09-25 株式会社Ihi 給電装置及び非接触給電システム
CN104981961A (zh) * 2013-02-20 2015-10-14 松下知识产权经营株式会社 非接触充电装置以及非接触充电方法
WO2016006066A1 (ja) * 2014-07-09 2016-01-14 日産自動車株式会社 非接触給電装置
EP3352329A4 (en) * 2015-09-17 2019-05-08 IHI Corporation POWER TRANSMISSION DEVICE AND CONTACTLESS POWER SUPPLY SYSTEM

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06178550A (ja) * 1992-12-02 1994-06-24 Fuji Electric Co Ltd Vvvfインバータの電流制御装置
JPH11252810A (ja) * 1998-03-03 1999-09-17 Toyota Autom Loom Works Ltd バッテリ車の車載側充電装置
JP2009254031A (ja) * 2008-04-02 2009-10-29 Hitachi Plant Technologies Ltd 非接触給電装置
JP2010233354A (ja) * 2009-03-27 2010-10-14 Nissan Motor Co Ltd 給電装置
JP2010272412A (ja) * 2009-05-22 2010-12-02 Toyota Motor Corp ケーブル収納装置およびそれを備える車両

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06178550A (ja) * 1992-12-02 1994-06-24 Fuji Electric Co Ltd Vvvfインバータの電流制御装置
JPH11252810A (ja) * 1998-03-03 1999-09-17 Toyota Autom Loom Works Ltd バッテリ車の車載側充電装置
JP2009254031A (ja) * 2008-04-02 2009-10-29 Hitachi Plant Technologies Ltd 非接触給電装置
JP2010233354A (ja) * 2009-03-27 2010-10-14 Nissan Motor Co Ltd 給電装置
JP2010272412A (ja) * 2009-05-22 2010-12-02 Toyota Motor Corp ケーブル収納装置およびそれを備える車両

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831712B2 (en) 2013-02-20 2017-11-28 Panasonic Intellectual Property Management Co., Ltd. Non-contact charging device and non-contact charging method
EP2961024A4 (en) * 2013-02-20 2016-01-27 Panasonic Ip Man Co Ltd CONTACTLESS LOADING DEVICE AND CONTACTLESS LOADING PROCEDURE
CN104981961A (zh) * 2013-02-20 2015-10-14 松下知识产权经营株式会社 非接触充电装置以及非接触充电方法
EP2961024A1 (en) * 2013-02-20 2015-12-30 Panasonic Intellectual Property Management Co., Ltd. Non-contact charging device and non-contact charging method
JPWO2014148144A1 (ja) * 2013-03-18 2017-02-16 株式会社Ihi 給電装置及び非接触給電システム
CN105052008A (zh) * 2013-03-18 2015-11-11 株式会社Ihi 供电装置以及非接触供电***
JP5888468B2 (ja) * 2013-03-18 2016-03-22 株式会社Ihi 給電装置及び非接触給電システム
CN105052008B (zh) * 2013-03-18 2018-08-24 株式会社Ihi 供电装置以及非接触供电***
WO2014148144A1 (ja) * 2013-03-18 2014-09-25 株式会社Ihi 給電装置及び非接触給電システム
EP2985868A4 (en) * 2013-03-18 2017-01-11 IHI Corporation Power supply apparatus and non-contact power supply system
US10298063B2 (en) 2013-03-18 2019-05-21 Ihi Corporation Power-supplying device and wireless power supply system
WO2016006066A1 (ja) * 2014-07-09 2016-01-14 日産自動車株式会社 非接触給電装置
EP3352329A4 (en) * 2015-09-17 2019-05-08 IHI Corporation POWER TRANSMISSION DEVICE AND CONTACTLESS POWER SUPPLY SYSTEM
US10498220B2 (en) 2015-09-17 2019-12-03 Ihi Corporation Power transmitter and wireless power transfer system

Similar Documents

Publication Publication Date Title
JP6136025B2 (ja) 非接触充電装置の給電装置
JP6103445B2 (ja) 非接触充電装置の給電装置
JP5472183B2 (ja) スイッチング電源装置
US9287790B2 (en) Electric power converter
KR101223220B1 (ko) 직렬 공진형 컨버터 회로
CN107408889B (zh) 功率转换器
WO2011161729A1 (ja) Dc-dcコンバータ
US8488346B2 (en) Power conversion apparatus and method
JP2012039707A (ja) 非接触充電装置
US8872499B2 (en) Power supply apparatus
US20080037290A1 (en) Ac-dc converter and method for driving for ac-dc converter
CN103368402B (zh) 开关电源装置
US20120218798A1 (en) Power conversion device
US20170155325A1 (en) Resonant power supply device
US20230253885A1 (en) Soft-switching pulse-width modulated dc-dc power converter
WO2012098867A1 (ja) 非接触充電装置の給電装置
JP6361282B2 (ja) 非接触給電装置
US20050041440A1 (en) Switching power supply circuit capable of reducing switching loss and control method used therein
WO2012093423A1 (ja) 非接触充電システムの給電装置
JP5831275B2 (ja) 電力変換装置及びその駆動方法
WO2016006066A1 (ja) 非接触給電装置
US9705409B2 (en) Equations for an LLC converter having increased power output capabilities
WO2014141661A1 (ja) 非接触充電装置の給電装置、給電方法、及び非接触充電装置
WO2020152999A1 (ja) 非接触給電装置及び送電装置
US6788032B2 (en) Softing switching DC-to-DC converter with an active power sink circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP