WO2012090881A1 - Copper-containing composition, process for production of metal copper film, and metal copper film - Google Patents

Copper-containing composition, process for production of metal copper film, and metal copper film Download PDF

Info

Publication number
WO2012090881A1
WO2012090881A1 PCT/JP2011/079925 JP2011079925W WO2012090881A1 WO 2012090881 A1 WO2012090881 A1 WO 2012090881A1 JP 2011079925 W JP2011079925 W JP 2011079925W WO 2012090881 A1 WO2012090881 A1 WO 2012090881A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
containing composition
binder resin
film according
producing
Prior art date
Application number
PCT/JP2011/079925
Other languages
French (fr)
Japanese (ja)
Inventor
木下 智之
憲昭 大島
貴裕 川畑
哲 山川
Original Assignee
東ソー株式会社
公益財団法人相模中央化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東ソー株式会社, 公益財団法人相模中央化学研究所 filed Critical 東ソー株式会社
Publication of WO2012090881A1 publication Critical patent/WO2012090881A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper

Definitions

  • the present invention relates to a copper-containing composition, a method for producing a metal copper film, and a metal copper film.
  • the coating agent used in the metal film production by the coating method requires a step of taking out conductive metal fine particles prepared in advance using a polymer protective colloid or the like (for example, see Non-Patent Document 1).
  • a composition and a production method for producing a metal film from a metal high valence compound using alcohols and a metal catalyst are disclosed (for example, see Patent Document 1). This method is superior to the conventional manufacturing method from the viewpoint of simplifying the manufacturing process.
  • the resistivity of the metal copper film formed by the method described in Patent Document 1 is 20 ⁇ cm or more, and a method for forming a metal copper film having a lower resistance value is required for application to an actual device.
  • An object of this invention is to provide the copper containing composition which solves the said subject, the manufacturing method of a metallic copper film, and a metallic copper film.
  • a copper inorganic compound, a linear, branched or cyclic alcohol having 1 to 18 carbon atoms, a Group VIII metal catalyst, and a binder resin And a binder resin curing agent and a copper organic complex are applied to form a film comprising the copper-containing composition, and the film is further treated with an inert gas, hydrogen.
  • a low resistivity metal copper film can be produced by heating in a mixed gas of an inert gas and hydrogen, and the present invention has been completed.
  • the present invention contains a copper inorganic compound, a linear, branched or cyclic alcohol having 1 to 18 carbon atoms, a Group VIII metal catalyst, a binder resin, a binder resin curing agent, and a copper organic complex.
  • the present invention relates to a copper-containing composition.
  • the present invention forms a coating film comprising the copper-containing composition by applying the copper-containing composition, and further, the coating film in an inert gas, hydrogen, or a mixed gas of inert gas and hydrogen.
  • the present invention relates to a method for producing a metallic copper film characterized by heating.
  • the present invention also relates to a metal copper film comprising copper, a Group VIII metal catalyst, and a cured binder resin.
  • the present invention also provides a copper inorganic compound, a linear, branched or cyclic alcohol having 1 to 18 carbon atoms, a Group VIII metal catalyst, a binder resin, a binder resin curing agent, a copper organic complex, and rheology adjustment. And a copper-containing composition characterized by containing an agent.
  • the copper-containing composition is applied to form a film comprising the copper-containing composition, and the film is further formed in an inert gas, hydrogen, or a mixed gas of inert gas and hydrogen,
  • the present invention relates to a method for producing a metallic copper film characterized by heating.
  • a metal copper film having a low resistivity can be manufactured.
  • the obtained metal copper film can be used for a conductive film, a conductive pattern film, an electromagnetic wave shielding film, an antifogging film, and the like.
  • FIG. 6 is a diagram showing an X-ray diffraction pattern of a film after heating in Example 2.
  • FIG. It is a figure which shows the time-dependent change of the insulation resistance of Example 13.
  • copper inorganic compounds such as (II) or copper (II) nitrate.
  • Copper (I) oxide or copper (II) oxide is preferable because the metal copper film can be easily produced.
  • these oxides may coat metal copper particles. Copper (I) oxide or copper (II) oxide coated with metal copper particles is more preferable in terms of easy production of the metal copper film.
  • the numbers in parentheses represent the valence of copper, and so on.
  • the form of a copper inorganic compound a particulate form is preferable at the point which manufactures a metal copper film
  • the average particle diameter is preferably 5 nm to 500 ⁇ m, more preferably 10 nm to 100 ⁇ m.
  • the thickness of the copper (I) oxide or copper (II) oxide coating coated with the metal copper particles is not particularly limited, but is preferably 1 nm to 100 ⁇ m in terms of easy production of the metal copper film, and 2 nm. To 20 ⁇ m is more preferable.
  • the content of the copper inorganic compound in the copper-containing composition of the present invention is preferably 20% by weight to 95% by weight, more preferably 40% by weight to 90% by weight, from the viewpoint of easy production of the metal copper film.
  • the alcohol that can be used in the copper-containing composition of the present invention include linear, branched, or cyclic alcohols having 1 to 18 carbon atoms, and more specifically, methanol, ethanol, propanol, 2-propanol, allyl alcohol, butanol, 2-butanol, pentanol, 2-pentanol, 3-pentanol, cyclopentanol, hexanol, 2-hexanol, 3-hexanol, cyclohexanol, heptanol, 2-heptanol, 3 -Heptanol, 4-heptanol, cycloheptanol, octanol, 2-octanol, 3-octanol, 4-
  • the alcohol content in the copper-containing composition of the present invention is preferably 0.5% by weight to 80% by weight, and more preferably 1% by weight to 50% by weight from the viewpoint of easy production of the metal copper film.
  • a Group VIII metal catalyst in the periodic table
  • a Group VIII metal salt, a Group VIII metal complex, a zero-valent Group VIII metal catalyst, or the like can be used.
  • Group VIII metal salt examples include ruthenium trichloride, ruthenium tribromide, rhodium trichloride, iridium trichloride, sodium hexachloroiridate, palladium dichloride, potassium tetrachloroparadate, platinum dichloride, potassium tetrachloro.
  • Halates such as platinate, nickel dichloride, iron trichloride and cobalt trichloride; acetates such as ruthenium acetate, rhodium acetate and palladium acetate; sulfates such as ferrous sulfate; ruthenium nitrate, rhodium nitrate and cobalt nitrate Nitrates such as nickel nitrate; carbonates such as cobalt carbonate and nickel carbonate; hydroxides such as cobalt hydroxide and nickel hydroxide; tri (acetylacetonato) ruthenium, di (acetylacetonato) nickel, di (acetylacetate) Nato) Acetylacetonate salt such as palladium It is possible.
  • Group VIII metal complex examples include triruthenium dodecacarbonyl, tetrahydridotetraruthenium dodecacarbonyl, tetrarhodium dodecacarbonyl, hexarhodium hexadecacarbonyl, tetriridium dodecacarbonyl, hexairidium dodecacarbonyl, and the like; diethylene ( Olefin complexes such as acetylacetonato) rhodium; Diene complexes such as acetonitrile (cyclooctadiene) rhodium, bis (1,5-cyclooctadiene) platinum, bis (1,5-cyclooctadiene) nickel; Chloro ( ⁇ - Allyl) palladium dimer, ⁇ -allyl complexes such as chloro ( ⁇ -allyl) tris (trimethylphosphine) ruthenium; acetonitrile pentakis (trichloro
  • Group VIII metal salts and Group VIII metal complexes can also be used in combination with amines or imidazoles.
  • amines include ethylenediamine, 1,1,2,2-tetramethylethylenediamine, 1,3-propanediamine, N, N′-disalicylidenetrimethylenediamine, o-phenylenediamine, 1,10-phenanthroline, Examples include 2,2′-bipyridine, pyridine and the like.
  • imidazoles include imidazole, 1-phenylimidazole, 1,3-diphenylimidazole, imidazole-4,5-dicarboxylic acid, 1,3-bis [2- (1-methyl) phenyl] imidazole, 1,3-di Mesitylimidazole, 1,3-bis (2,6-diisopropylphenyl) imidazole, 1,3-diadamantylimidazole, 1,3-dicyclohexylimidazole, 1,3-bis (2,6-dimethylphenyl) imidazole, 4 , 5-dihydro-1,3-dimesitylimidazole, 4,5-dihydro-1,3-bis (2,6-diisopropylphenyl) imidazole, 4,5-dihydro-1,3-diadamantylimidazole, 4 , 5-dihydro-1,3-dicyclohexylimidazole,
  • the zero-valent group VIII metal catalyst examples include raneruthenium, palladium sponge, platinum sponge, nickel sponge, Raney nickel and the like.
  • An example of the alloy is silver-palladium.
  • a group VIII metal complex is preferable, and a carbonyl complex is particularly preferable in that a metal copper film can be produced efficiently. More preferred is triruthenium dodecacarbonyl.
  • the content of the Group VIII metal catalyst in the copper-containing composition of the present invention is preferably 0.01% by weight to 50% by weight, and 0.01% by weight to 10% by weight from the viewpoint that the copper metal film can be produced efficiently. % Is more preferable.
  • Polymer acrylic ester rubber, polyvinyl butyral, acrylonitrile-butadiene copolymer, styrene-isoprene block copolymer, polybutadiene, ethylcellulose, polyester, polyamide, natural rubber, silicone rubber, polychloroprene, polyvinyl ether, methacrylic acid Resin, vinylpyrrolidone-vinyl acetate copolymer, polyvinylpyrrolidone, urethane resin, cyclized rubber, butyl rubber, hydrocarbon resin, ⁇ -methylstyrene-acrylonitrile copolymer, polyester De, chlorosulfonated polyethylene, polyolefin, melamine resins, urea resins, phenolic resins, unsaturated esters of polycarboxylic acids and the like.
  • An epoxy resin is preferable in that the metal copper film can be produced efficiently. It is more preferable to mix an epoxy resin with another binder resin, and a nylon
  • the content of the binder resin contained in the copper-containing composition of the present invention is preferably 0.05% by weight to 10% by weight, and preferably 0.1% by weight to 5% by weight, from the viewpoint of efficient production of the metal copper film. Is more preferable.
  • Binder resin curing agents that can be used in the copper-containing composition of the present invention include tetrahydromethyl phthalic anhydride, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-benzyl-2-phenylimidazole, 2, Examples include 3-dihydro-1H-pyrrolobenzimidazole, adipic acid, cresol novolac resin, and the like. Tetrahydromethyl phthalic anhydride or 2-ethyl-4-methylimidazole is preferred from the viewpoint that the copper metal film can be produced efficiently.
  • the content of the binder resin curing agent contained in the copper-containing composition of the present invention is preferably 0.005% by weight to 0.1% by weight, and 0.01% by weight to 0.01% by weight from the viewpoint that the binder resin can be cured efficiently. More preferred is 0.08% by weight.
  • the content of the copper organic complex contained in the copper-containing composition of the present invention is preferably 0.01% by weight to 1% by weight, and preferably 0.1% by weight to 0.00% in view of efficient production of the copper metal film. 5% by weight is more preferred.
  • Examples of the rheology modifier that can be used in the copper-containing composition of the present invention include various polyesters such as “SOLPERSE-32000” (trade name, manufactured by Nippon Lubrizol), “SOLSPERSE-20000” (Nippon Lubrizol Corporation).
  • Various polyethers such as “SOLPERSE-76500” (trade name manufactured by Nippon Lubrizol), “DISPERBYK-180” (trade name manufactured by BYK Japan)
  • Various commercially available products such as alkylolamine salts of copolymers containing an acid group such as are particularly representative, and these compounds can be used as they are.
  • Further examples include oxidized polyolefin amide, fatty acid amide, urea-modified urethane, and the like.
  • Polyester is preferable because the copper metal film can be produced efficiently.
  • the content of the rheology modifier contained in the copper-containing composition of the present invention is preferably 0.05% by weight to 10% by weight, and preferably 0.1% by weight to 6% by weight from the viewpoint that the copper metal film can be produced efficiently. % Is more preferable.
  • membrane of this invention is demonstrated.
  • substrate coated with the copper containing composition of this invention Ceramics, glass, a plastics, etc. can be used.
  • the method for coating on the substrate include a screen printing method, a spin coating method, a casting method, a dipping method, an ink jet method, and a spray method.
  • the composition of the present invention can be used as it is, but it may be optionally diluted with a solvent.
  • a dilution solvent having a volume of 0.01 to 10 times the volume of the composition of the present invention.
  • Diluent solvents include methanol, ethanol, propanol, 2-propanol, butanol, pentanol, hexanol, cyclohexanol, heptanol, octanol, ethylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3- Alcohol solvents such as butanediol, 1,4-butanediol, 2,3-butanediol, 1,6-hexanediol, glycerin; diethyl ether, tetrahydrofuran, ethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, Ether solvents such as dioxane, triglyme, tetraglyme; methyl acetate, butyl acetate, benzyl benzoate, dimethyl carbonate, ethylene carbonate, ⁇ Este
  • the method for producing a metal copper film of the present invention be carried out in an inert gas such as nitrogen, argon or helium, or in a hydrogen atmosphere. Moreover, you may carry out in the mixed gas atmosphere of these inert gas and hydrogen. It is preferable to carry out in nitrogen or the mixed gas atmosphere of nitrogen and hydrogen at the point from which a low resistivity metallic copper film
  • an inert gas such as nitrogen, argon or helium
  • the heating temperature in the method for producing a metal copper film of the present invention is preferably a temperature selected from 100 ° C. to 300 ° C., preferably 150 ° C. to 250 ° C., in that a low resistivity metal copper film is obtained. More preferably.
  • the metal copper film of desired resistivity can be manufactured by heating for the time according to conditions, such as a composition of a copper containing composition, heating temperature, and heating atmosphere. For example, the range of 1 minute to 2 hours can be given in terms of high productivity.
  • the weight ratio of the copper inorganic compound and the binder resin in the copper-containing composition of the present invention is preferably 1: 0.01 to 1: 0.08, more preferably 1: 0.02 to 1: 0.05.
  • the weight ratio of the copper inorganic compound and the binder resin curing agent is preferably 1: 0.0003 to 1: 0.002, more preferably 1: 0.0003 to 1: 0.001.
  • the weight ratio of the binder resin curing agent is smaller than 1: 0.0003, the binder resin is not sufficiently cured, and when it is larger than 1: 0.002, the resistivity of the metal copper film is deteriorated.
  • the metal copper film according to the present invention comprises copper, a Group VIII metal catalyst, and a cured binder resin.
  • a film can be obtained by the method for producing a metal copper film of the present invention.
  • the cured binder resin is a product obtained by reacting a binder resin and a binder resin curing agent by heating.
  • the metal copper film of the present invention preferably has a copper content of 60 to 99% by weight, more preferably 80 to 99% by weight.
  • the content of the group VIII metal catalyst is preferably 0.01 to 50% by weight, and more preferably 0.01 to 20% by weight.
  • the content of the cured binder resin is preferably 0.01 to 30% by weight, and more preferably 0.01 to 10% by weight.
  • the group VIII metal catalyst is preferably triruthenium dodecacarbonyl.
  • the binder resin cured product is preferably a reaction product of an epoxy resin and a binder resin curing agent, or a reaction product of an epoxy resin, a nylon resin, and a binder resin curing agent.
  • the binder resin curing agent is preferably tetrahydromethyl phthalic anhydride or 2-ethyl-4-methylimidazole.
  • the resistivity of the metal copper film of the present invention is preferably 1.7 ⁇ cm to 20 ⁇ cm, and more preferably 1.7 ⁇ cm to 15 ⁇ cm.
  • Example 1 A solution (A) in which 0.09 g of triruthenium dodecacarbonyl was dissolved in 20.0 mL of 1,3-butanediol was prepared. In addition, a solution (B) in which 0.5 g of copper (I) 1-butanethiolate was dissolved in 3.0 mL of 1,3-butanediol was prepared.
  • Example 2 The copper-containing composition A obtained in Example 1 was printed in a range of 15 mm ⁇ 15 mm on a polyimide substrate by a screen printing method. Next, the temperature was raised to 200 ° C. at 100 ° C./min in a nitrogen atmosphere, followed by heating at 200 ° C. for 1 hour. The obtained copper metal film had a thickness of 8 ⁇ m and a resistivity of 11 ⁇ cm. When the X-ray diffraction pattern of the obtained film was measured, it is shown in FIG.
  • Example 3 The same operation as in Example 2 was performed except that the heating was performed at 250 ° C.
  • the obtained copper metal film had a thickness of 15 ⁇ m and a resistivity of 11 ⁇ cm.
  • Example 4 Tetrahydromethylphthalic anhydride (Dainippon Ink Co., Ltd. grade: EPLICLON B-570H) was replaced with 0.17 mg, but 2-ethyl-4-methylimidazole (Shikoku Kasei Co., Ltd. grade: 2E4MZ) 0.32 mg was mixed. All performed the same operation as Example 1, and obtained the copper containing composition B.
  • Example 5 When the same operation as in Example 2 was performed using the composition B for producing a metal copper film obtained in Example 4, the film thickness of the obtained metal copper film was 16 ⁇ m, and the resistivity was 15 ⁇ cm. there were.
  • Example 6 The same operation as in Example 2 was performed except that the copper-containing composition A obtained in Example 1 was used and heated in a mixed gas of hydrogen and argon (hydrogen 4%). The obtained copper metal film had a thickness of 12 ⁇ m and a resistivity of 9 ⁇ cm.
  • Example 7 Except that the solution (A) was changed to 0.063 g, the same operation as in Example 1 was performed to obtain a copper-containing composition C.
  • Example 8 When the same operation as in Example 2 was performed using the copper-containing composition C obtained in Example 7, the thickness of the obtained metal copper film was 9 ⁇ m and the resistivity was 15 ⁇ cm.
  • Example 9 Except that tetrahydromethylphthalic anhydride was changed to 0.26 mg, the same operation as in Example 1 was performed to obtain a copper-containing composition D.
  • Example 10 When the same operation as in Example 2 was performed using the copper-containing composition D obtained in Example 9, the thickness of the obtained metal copper film was 12 ⁇ m, and the resistivity was 11 ⁇ cm.
  • Example 11 A copper-containing composition E was obtained in the same manner as in Example 1 except that the amount of tetrahydromethylphthalic anhydride was changed to 0.06 mg.
  • Example 12 When the same operation as in Example 2 was performed using the copper-containing composition E obtained in Example 11, the film thickness of the obtained metal copper film was 13 ⁇ m, and the resistivity was 12 ⁇ cm.
  • Example 13 The copper-containing composition A obtained in Example 1 was printed on a polyimide substrate with a comb-shaped electrode film having a line and space of 300 ⁇ m / 300 ⁇ m by a screen printing method in a range of 70 mm ⁇ 70 mm. Next, the temperature was raised to 200 ° C. at 100 ° C./min in a nitrogen atmosphere, followed by heating at 200 ° C. for 1 hour. A voltage of 100 V was applied to both insulated ends of the obtained comb-shaped electrode copper film, and the insulation resistance value was measured while storing in a constant temperature and humidity chamber for 1000 hours. It was stored at a temperature of 25 ° C.
  • Example 14 A solution (A) in which 0.09 g of triruthenium dodecacarbonyl was dissolved in 20.0 mL of 1,3-butanediol was prepared. In addition, a solution (B) in which 0.5 g of copper (I) 1-butanethiolate was dissolved in 3.0 mL of 1,3-butanediol was prepared.
  • Example 15 When the same operation as in Example 2 was performed using the copper-containing composition F obtained in Example 14, the film thickness of the obtained metal copper film was 10 ⁇ m, and the resistivity was 13 ⁇ cm.
  • Example 17 The composition of the metallic copper film obtained in Example 2 was measured by fluorescent X-ray analysis and combustion-infrared absorption method, and was found to be 97.3% by weight of copper, 0.1% by weight of triruthenium dodecacarbonyl, and binder resin cured. The product was 2.6% by weight.
  • the copper-containing composition of the present invention can be used for the production of conductive films, conductive pattern films, electromagnetic wave shielding films, antifogging films and the like.
  • the entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2010-292582 filed on Dec. 28, 2010 are cited here as disclosure of the specification of the present invention. Incorporated.

Abstract

Provided are: a composition for producing a metal copper film from a compound containing copper having a high atomic valency; a process for producing a metal copper film; and a metal copper film. A metal copper film can be produced by coating a copper-containing composition to form a coating film comprising the copper-containing composition and heating the coating film in an inert gas, a hydrogen gas or a mixed gas composed of an inert gas and a hydrogen gas, wherein the copper-containing composition comprises a copper inorganic compound, a linear, branched or cyclic alcohol having 1-18 carbon atoms, a Group-VIII metal catalyst, a binder resin, a binder resin curing agent and a copper organic complex. A metal copper film can also be produced by coating a copper-containing composition to form a coating film comprising the copper-containing composition and heating the coating film in an inert gas, a hydrogen gas or a mixed gas composed of an inert gas and a hydrogen gas, wherein the copper-containing composition comprises a copper inorganic compound, a linear, branched or cyclic alcohol having 1-18 carbon atoms, a Group-VIII metal catalyst, a binder resin, a binder resin curing agent, a copper organic complex and a rheology control agent.

Description

銅含有組成物、金属銅膜の製造方法、および金属銅膜Copper-containing composition, method for producing metal copper film, and metal copper film
 本発明は、銅含有組成物、金属銅膜の製造方法、および金属銅膜に関するものである。 The present invention relates to a copper-containing composition, a method for producing a metal copper film, and a metal copper film.
 フラットパネルディスプレイの大型化が進むとともに電子ペーパーに代表されるフレキシブルディスプレイが注目されている。フレキシブルディスプレイには、配線や電極用として種々の金属膜が使用されている。金属膜の形成方法としては、スパッタリングや真空蒸着を用い、フォトマスクを使用したフォトリソグラフ法によって種々の回路パターンや電極を形成している。 As flexible flat panel displays become larger, flexible displays such as electronic paper are attracting attention. Various metal films are used for flexible displays for wiring and electrodes. As a method for forming the metal film, various circuit patterns and electrodes are formed by photolithography using a photomask using sputtering or vacuum deposition.
 近年、パターンの形成に必要な工程数の低減が可能であり、大量生産、低コスト化に適した配線・電極膜の形成方法として、スクリーン印刷やインクジェット法等の塗布方式の金属膜形成が盛んに検討されている。この方法は、導電性金属微粒子を有機バインダーや有機溶剤等に混合し、ペーストあるいはインク状にしたものを、スクリーン印刷やインクジェット法により基板上に直接パターン形成した後、焼成して配線、電極を形成するものである。従来のフォトリソグラフ法に比べてプロセスが簡易となり、大量生産、低コストの配線・電極形成が可能となるだけでなく、エッチング工程における排水処理等が不要となるため、環境負荷が小さいという特徴も有する。また、低温プロセスであるため、プラスチックやシート状基板を使用するフレキシブルディスプレイ用の金属膜形成法としても注目されている。 In recent years, it is possible to reduce the number of processes required for pattern formation, and as a method of forming wiring and electrode films suitable for mass production and cost reduction, coating-type metal film formation such as screen printing and ink-jet methods has become popular. Has been considered. In this method, conductive metal fine particles are mixed with an organic binder or an organic solvent, and a paste or ink is formed directly on a substrate by screen printing or an ink jet method, and then baked to form wiring and electrodes. To form. Compared to conventional photolithographic methods, the process is simpler and not only enables mass production and low-cost wiring and electrode formation, but also eliminates the need for wastewater treatment in the etching process, resulting in low environmental impact. Have. Moreover, since it is a low temperature process, it attracts attention also as a metal film formation method for flexible displays using a plastic or a sheet-like substrate.
 塗布方式による金属膜製造で用いる塗布剤は、あらかじめ調製した導電性金属微粒子を高分子保護コロイド等を用いて取り出す工程が必要である(例えば非特許文献1参照)。一方、アルコール類と金属触媒を用いて、金属の高原子価化合物から金属膜を製造する組成物および製造方法が開示されている(例えば特許文献1参照)。この方法は、製造プロセスの簡略化の観点からは、従来の製造法より優れている。 The coating agent used in the metal film production by the coating method requires a step of taking out conductive metal fine particles prepared in advance using a polymer protective colloid or the like (for example, see Non-Patent Document 1). On the other hand, a composition and a production method for producing a metal film from a metal high valence compound using alcohols and a metal catalyst are disclosed (for example, see Patent Document 1). This method is superior to the conventional manufacturing method from the viewpoint of simplifying the manufacturing process.
日本特開2010-121206号公報.Japanese Unexamined Patent Publication No. 2010-121206.
 特許文献1に記載の方法で形成した金属銅膜の抵抗率は、20μΩcm以上であり、実デバイスへの適用に当たっては、より抵抗値の低い金属銅膜の形成法が必要となる。本発明は、上記課題を解決する銅含有組成物、金属銅膜の製造方法、および金属銅膜を提供することを目的とする。 The resistivity of the metal copper film formed by the method described in Patent Document 1 is 20 μΩcm or more, and a method for forming a metal copper film having a lower resistance value is required for application to an actual device. An object of this invention is to provide the copper containing composition which solves the said subject, the manufacturing method of a metallic copper film, and a metallic copper film.
 本発明者らは、先の課題を解決すべく鋭意検討を重ねた結果、銅無機化合物と、直鎖、分岐または環状の炭素数1から18のアルコール類と、VIII族金属触媒と、バインダー樹脂と、バインダー樹脂硬化剤と、銅有機錯体と、を含有することを特徴とする銅含有組成物を塗工して銅含有組成物からなる被膜を形成し、さらに該被膜を不活性ガス、水素、または不活性ガスと水素の混合ガス中で、加熱することにより、低抵抗率の金属銅膜が製造できることを見出し、本発明を完成するに至った。すなわち本発明は、銅無機化合物と、直鎖、分岐または環状の炭素数1から18のアルコール類と、VIII族金属触媒と、バインダー樹脂と、バインダー樹脂硬化剤と、銅有機錯体と、を含有することを特徴とする銅含有組成物に関するものである。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a copper inorganic compound, a linear, branched or cyclic alcohol having 1 to 18 carbon atoms, a Group VIII metal catalyst, and a binder resin And a binder resin curing agent and a copper organic complex are applied to form a film comprising the copper-containing composition, and the film is further treated with an inert gas, hydrogen. Alternatively, it has been found that a low resistivity metal copper film can be produced by heating in a mixed gas of an inert gas and hydrogen, and the present invention has been completed. That is, the present invention contains a copper inorganic compound, a linear, branched or cyclic alcohol having 1 to 18 carbon atoms, a Group VIII metal catalyst, a binder resin, a binder resin curing agent, and a copper organic complex. The present invention relates to a copper-containing composition.
 また、本発明は、本銅含有組成物を塗工して銅含有組成物からなる被膜を形成し、さらに該被膜を、不活性ガス、水素、または、不活性ガスと水素の混合ガス中で、加熱することを特徴とする金属銅膜の製造方法に関するものである。また、本発明は、銅、VIII族金属触媒、およびバインダー樹脂硬化物から成ることを特徴とする金属銅膜に関するものである。 Further, the present invention forms a coating film comprising the copper-containing composition by applying the copper-containing composition, and further, the coating film in an inert gas, hydrogen, or a mixed gas of inert gas and hydrogen. The present invention relates to a method for producing a metallic copper film characterized by heating. The present invention also relates to a metal copper film comprising copper, a Group VIII metal catalyst, and a cured binder resin.
 また本発明は、銅無機化合物と、直鎖、分岐または環状の炭素数1から18のアルコール類と、VIII族金属触媒と、バインダー樹脂と、バインダー樹脂硬化剤と、銅有機錯体と、レオロジー調整剤と、を含有することを特徴とする銅含有組成物に関するものである。また本発明は、本銅含有組成物を塗工して銅含有組成物からなる被膜を形成し、さらに該被膜を、不活性ガス、水素、または、不活性ガスと水素の混合ガス中で、加熱することを特徴とする金属銅膜の製造方法に関するものである。 The present invention also provides a copper inorganic compound, a linear, branched or cyclic alcohol having 1 to 18 carbon atoms, a Group VIII metal catalyst, a binder resin, a binder resin curing agent, a copper organic complex, and rheology adjustment. And a copper-containing composition characterized by containing an agent. In the present invention, the copper-containing composition is applied to form a film comprising the copper-containing composition, and the film is further formed in an inert gas, hydrogen, or a mixed gas of inert gas and hydrogen, The present invention relates to a method for producing a metallic copper film characterized by heating.
 本発明によれば、低抵抗率の金属銅膜を製造することができる。得られた金属銅膜は、導電膜、導電性パターン膜、電磁波遮蔽膜、防曇用膜等に用いることができる。 According to the present invention, a metal copper film having a low resistivity can be manufactured. The obtained metal copper film can be used for a conductive film, a conductive pattern film, an electromagnetic wave shielding film, an antifogging film, and the like.
実施例2の加熱後の膜のX線回折パターンを示す図である。6 is a diagram showing an X-ray diffraction pattern of a film after heating in Example 2. FIG. 実施例13の絶縁抵抗の経時変化を示す図である。It is a figure which shows the time-dependent change of the insulation resistance of Example 13.
 まず、本発明の銅含有組成物について説明する。
 本発明の銅含有組成物に用いることのできる銅無機化合物としては、具体的には、酸化銅(I)、酸化銅(II)、窒化銅(I)、炭酸銅(II)、水酸化銅(II)または硝酸銅(II)等の銅無機化合物を例示することができる。金属銅膜の製造が容易な点で、酸化銅(I)または酸化銅(II)が好ましい。また、これらの酸化物は金属銅粒子を被覆していてもよい。金属銅膜の製造が容易な点で、金属銅粒子を被覆した酸化銅(I)または酸化銅(II)がさらに好ましい。ここで、括弧内の数字は、銅の原子価を表し、以下も同じである。
First, the copper-containing composition of the present invention will be described.
Specific examples of copper inorganic compounds that can be used in the copper-containing composition of the present invention include copper (I) oxide, copper (II) oxide, copper nitride (I), copper carbonate (II), and copper hydroxide. Examples thereof include copper inorganic compounds such as (II) or copper (II) nitrate. Copper (I) oxide or copper (II) oxide is preferable because the metal copper film can be easily produced. Moreover, these oxides may coat metal copper particles. Copper (I) oxide or copper (II) oxide coated with metal copper particles is more preferable in terms of easy production of the metal copper film. Here, the numbers in parentheses represent the valence of copper, and so on.
 銅無機化合物の形態に限定は無いが、金属銅膜の製造が容易な点で、粒子状が好ましい。平均粒子径は、5nmから500μmが好ましく、10nmから100μmがさらに好ましい。また、金属銅粒子を被覆した酸化銅(I)または酸化銅(II)の被覆の厚さに、特に限定はないが、金属銅膜の製造が容易な点で、1nmから100μmが好ましく、2nmから20μmがさらに好ましい。 Although there is no limitation in the form of a copper inorganic compound, a particulate form is preferable at the point which manufactures a metal copper film | membrane easily. The average particle diameter is preferably 5 nm to 500 μm, more preferably 10 nm to 100 μm. Further, the thickness of the copper (I) oxide or copper (II) oxide coating coated with the metal copper particles is not particularly limited, but is preferably 1 nm to 100 μm in terms of easy production of the metal copper film, and 2 nm. To 20 μm is more preferable.
 本発明の銅含有組成物中の銅無機化合物の含有率は、金属銅膜の製造が容易な点で、20重量%~95重量%が好ましく、40重量%~90重量%がさらに好ましい。
 本発明の銅含有組成物に用いることのできるアルコールとしては、直鎖、分岐または環状の炭素数1から18のアルコール類を例示することができ、更に具体的には、メタノール、エタノール、プロパノール、2-プロパノール、アリルアルコール、ブタノール、2-ブタノール、ペンタノール、2-ペンタノール、3-ペンタノール、シクロペンタノール、ヘキサノール、2-ヘキサノール、3-ヘキサノール、シクロヘキサノール、ヘプタノール、2-ヘプタノール、3-ヘプタノール、4-ヘプタノール、シクロヘプタノール、オクタノール、2-オクタノール、3-オクタノール、4-オクタノール、シクロオクタノール、ノナノール、2-ノナノール、3,5,5-トリメチル-1-ヘキサノール、3-メチル-3-オクタノール、3-エチル-2,2-ジメチル-3-ペンタノール、2,6-ジメチル-4-ヘプタノール、デカノール、2-デカノール、3,7-ジメチル-1-オクタノール、3,7-ジメチル-3-オクタノール、ウンデカノール、ドデカノール、2-ドデカノール、2-ブチル-1-オクタノール、トリデカノール、テトラデカノール、2-テトラデカノール、ペンタデカノール、ヘキサデカノール、2-ヘキサデカノール、ヘプタデカノール、オクタデカノール、1-フェネチルアルコール、2-フェネチルアルコール等のモノオール類;エチレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、1,2-ヘキサンジオール、1,5-ヘキサンジオール、1,6-ヘキサンジオール、2,5-ヘキサンジオール、1,7-ヘプタンジオール、1,2-オクタンジオール、1,8-オクタンジオール、1,3-ノナンジオール、1,9-ノナンジオール、1,2-デカンジオール、1,10-デカンジオール、2,7-ジメチル-3,6-オクタンジオール、2,2-ジブチル-1,3-プロパンジオール、1,2-ドデカンジオール、1,12-ドデカンジオール、1,2-テトラデカンジオール、1,14-テトラデカンジオール、2,2,4-トリメチル-1,3-ペンタンジオール、2,4-ペンタンジオール、1,2-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1-ヒドロキシメチル-2-(2-ヒドロキシエチル)シクロヘキサン、1-ヒドロキシ-2-(3-ヒドロキシプロピル)シクロヘキサン、1-ヒドロキシ-2-(2-ヒドロキシエチル)シクロヘキサン、1-ヒドロキシメチル-2-(2-ヒドロキシエチル)ベンゼン、1-ヒドロキシメチル-2-(3-ヒドロキシプロピル)ベンゼン、1-ヒドロキシ-2-(2-ヒドロキシエチル)ベンゼン、1,2-ベンジルジメチロール、1,3-ベンジルジメチロール、1,2-シクロヘキサンジオール,1,3-シクロヘキサンジオール、1,4-シクロヘキサンジオール等のジオール類;グリセリン、1,2,6-ヘキサントリオール、3-メチル-1,3,5-ペンタントリオール等のトリオール類;1,3,5,7-シクロオクタンテトラオールなどのテトラオール類等が例示できる。
The content of the copper inorganic compound in the copper-containing composition of the present invention is preferably 20% by weight to 95% by weight, more preferably 40% by weight to 90% by weight, from the viewpoint of easy production of the metal copper film.
Examples of the alcohol that can be used in the copper-containing composition of the present invention include linear, branched, or cyclic alcohols having 1 to 18 carbon atoms, and more specifically, methanol, ethanol, propanol, 2-propanol, allyl alcohol, butanol, 2-butanol, pentanol, 2-pentanol, 3-pentanol, cyclopentanol, hexanol, 2-hexanol, 3-hexanol, cyclohexanol, heptanol, 2-heptanol, 3 -Heptanol, 4-heptanol, cycloheptanol, octanol, 2-octanol, 3-octanol, 4-octanol, cyclooctanol, nonanol, 2-nonanol, 3,5,5-trimethyl-1-hexanol, 3-methyl- 3-octanol 3-ethyl-2,2-dimethyl-3-pentanol, 2,6-dimethyl-4-heptanol, decanol, 2-decanol, 3,7-dimethyl-1-octanol, 3,7-dimethyl-3-octanol , Undecanol, dodecanol, 2-dodecanol, 2-butyl-1-octanol, tridecanol, tetradecanol, 2-tetradecanol, pentadecanol, hexadecanol, 2-hexadecanol, heptadecanol, octadecanol Monools such as 1-phenethyl alcohol and 2-phenethyl alcohol; ethylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3 -Butanediol, 1,5-pentanediol, 1,2-hexane All, 1,5-hexanediol, 1,6-hexanediol, 2,5-hexanediol, 1,7-heptanediol, 1,2-octanediol, 1,8-octanediol, 1,3-nonanediol 1,9-nonanediol, 1,2-decanediol, 1,10-decanediol, 2,7-dimethyl-3,6-octanediol, 2,2-dibutyl-1,3-propanediol, 2-dodecanediol, 1,12-dodecanediol, 1,2-tetradecanediol, 1,14-tetradecanediol, 2,2,4-trimethyl-1,3-pentanediol, 2,4-pentanediol, 1, 2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1-hydroxymethyl-2- (2-hydroxyethyl) Chlohexane, 1-hydroxy-2- (3-hydroxypropyl) cyclohexane, 1-hydroxy-2- (2-hydroxyethyl) cyclohexane, 1-hydroxymethyl-2- (2-hydroxyethyl) benzene, 1-hydroxymethyl -2- (3-hydroxypropyl) benzene, 1-hydroxy-2- (2-hydroxyethyl) benzene, 1,2-benzyldimethylol, 1,3-benzyldimethylol, 1,2-cyclohexanediol, 1, Diols such as 3-cyclohexanediol and 1,4-cyclohexanediol; Triols such as glycerin, 1,2,6-hexanetriol, 3-methyl-1,3,5-pentanetriol; Examples thereof include tetraols such as 7-cyclooctanetetraol.
 金属銅膜の製造が効率よく行える点で、1,3-ブタンジオール、2,4-ペンタンジオール、2-プロパノール、シクロヘキサノール、エチレングリコール、1,3-プロパンジオール、1,4-シクロヘキサンジオール、またはグリセリンが好ましく、1,3-ブタンジオールがさらに好ましい。これらのアルコール類は、任意の割合で含まれていても良い。 In terms of efficient production of metallic copper film, 1,3-butanediol, 2,4-pentanediol, 2-propanol, cyclohexanol, ethylene glycol, 1,3-propanediol, 1,4-cyclohexanediol, Alternatively, glycerin is preferable, and 1,3-butanediol is more preferable. These alcohols may be contained in an arbitrary ratio.
 本発明の銅含有組成物中のアルコール類の含有率は、金属銅膜の製造が容易な点で、0.5重量%~80重量%が好ましく、1重量%~50重量%がさらに好ましい。
 本発明の銅含有組成物に用いることのできる(周期表の)VIII族金属触媒としては、VIII族金属塩、VIII族金属錯体、0価VIII族金属触媒等を用いることができる。
The alcohol content in the copper-containing composition of the present invention is preferably 0.5% by weight to 80% by weight, and more preferably 1% by weight to 50% by weight from the viewpoint of easy production of the metal copper film.
As a Group VIII metal catalyst (in the periodic table) that can be used in the copper-containing composition of the present invention, a Group VIII metal salt, a Group VIII metal complex, a zero-valent Group VIII metal catalyst, or the like can be used.
 VIII族金属塩としては具体的には、三塩化ルテニウム、三臭化ルテニウム、三塩化ロジウム、三塩化イリジウム、ナトリウムヘキサクロロイリデート、二塩化パラジウム、カリウムテトラクロロパラデート、二塩化白金、カリウムテトラクロロプラチネート、二塩化ニッケル、三塩化鉄、三塩化コバルト等のハロゲン化物塩;酢酸ルテニウム、酢酸ロジウム、酢酸パラジウム等の酢酸塩;硫酸第一鉄等の硫酸塩;硝酸ルテニウム、硝酸ロジウム、硝酸コバルト、硝酸ニッケル等の硝酸塩;炭酸コバルト、炭酸ニッケル等の炭酸塩;水酸化コバルト、水酸化ニッケル等の水酸化物;トリ(アセチルアセトナト)ルテニウム、ジ(アセチルアセトナト)ニッケル、ジ(アセチルアセトナト)パラジウム等のアセチルアセトナト塩等を例示することができる。 Specific examples of the Group VIII metal salt include ruthenium trichloride, ruthenium tribromide, rhodium trichloride, iridium trichloride, sodium hexachloroiridate, palladium dichloride, potassium tetrachloroparadate, platinum dichloride, potassium tetrachloro. Halates such as platinate, nickel dichloride, iron trichloride and cobalt trichloride; acetates such as ruthenium acetate, rhodium acetate and palladium acetate; sulfates such as ferrous sulfate; ruthenium nitrate, rhodium nitrate and cobalt nitrate Nitrates such as nickel nitrate; carbonates such as cobalt carbonate and nickel carbonate; hydroxides such as cobalt hydroxide and nickel hydroxide; tri (acetylacetonato) ruthenium, di (acetylacetonato) nickel, di (acetylacetate) Nato) Acetylacetonate salt such as palladium It is possible.
 VIII族金属錯体としては具体的には、トリルテニウムドデカカルボニル、テトラヒドリドテトラルテニウムドデカカルボニル、テトラロジウムドデカカルボニル、ヘキサロジウムヘキサデカカルボニル、テトライリジウムドデカカルボニル、ヘキサイリジウムドデカカルボニル等のカルボニル錯体;ジエチレン(アセチルアセトナト)ロジウム等のオレフィン錯体;アセトニトリル(シクロオクタジエン)ロジウム、ビス(1,5-シクロオクタジエン)白金、ビス(1,5-シクロオクタジエン)ニッケル等のジエン錯体;クロロ(π-アリル)パラジウム ダイマー、クロロ(π-アリル)トリス(トリメチルホスフィン)ルテニウム等のπ-アリル錯体;アセトニトリルペンタキス(トリクロロスタナト)ルテネート、クロロペンタキス(トリクロロスタナト)ロデート、cis,trans-ジクロロテトラキス(トリクロロスタナト)イリデート、ペンタキス(トリクロロスタナト)パラデート、ペンタキス(トリクロロスタナト)プラチネート等のトリクロロスタナト錯体;トリス(2,2’-ビピリジル)ルテニウム、ジエチル(2,2’-ビピリジル)パラジウム等のビピリジル錯体;フェロセン、ルテノセン、テトラヒドリドビス(ペンタメチルシクロペンタジエニル)ジルテニウム等のシクロペンタジエニル錯体;ジ(ベンザルアセトン)パラジウム、トリ(ベンザルアセトン)ジパラジウム等のベンザルアセトン錯体等が例示できる。 Specific examples of the Group VIII metal complex include triruthenium dodecacarbonyl, tetrahydridotetraruthenium dodecacarbonyl, tetrarhodium dodecacarbonyl, hexarhodium hexadecacarbonyl, tetriridium dodecacarbonyl, hexairidium dodecacarbonyl, and the like; diethylene ( Olefin complexes such as acetylacetonato) rhodium; Diene complexes such as acetonitrile (cyclooctadiene) rhodium, bis (1,5-cyclooctadiene) platinum, bis (1,5-cyclooctadiene) nickel; Chloro (π- Allyl) palladium dimer, π-allyl complexes such as chloro (π-allyl) tris (trimethylphosphine) ruthenium; acetonitrile pentakis (trichlorostanato) ruthenate, chloropene Trichlorostanato complexes such as kiss (trichlorostanato) rhodate, cis, trans-dichlorotetrakis (trichlorostanato) iridate, pentakis (trichlorostanato) paradate, pentakis (trichlorostanato) platinate, etc .; tris (2,2′- Bipyridyl complexes such as bipyridyl) ruthenium and diethyl (2,2′-bipyridyl) palladium; cyclopentadienyl complexes such as ferrocene, ruthenocene and tetrahydridobis (pentamethylcyclopentadienyl) diruthenium; di (benzalacetone) Examples thereof include benzalacetone complexes such as palladium and tri (benzalacetone) dipalladium.
 上記のVIII族金属塩およびVIII族金属錯体はアミン類またはイミダゾール類と組合わせて用いることもできる。
 アミン類としては、エチレンジアミン、1,1,2,2-テトラメチルエチレンジアミン、1,3-プロパンジアミン、N,N’-ジサリチリデントリメチレンジアミン、o-フェニレンジアミン、1,10-フェナントロリン、2,2’-ビピリジン、ピリジン等を例示できる。
The above Group VIII metal salts and Group VIII metal complexes can also be used in combination with amines or imidazoles.
Examples of amines include ethylenediamine, 1,1,2,2-tetramethylethylenediamine, 1,3-propanediamine, N, N′-disalicylidenetrimethylenediamine, o-phenylenediamine, 1,10-phenanthroline, Examples include 2,2′-bipyridine, pyridine and the like.
 イミダゾール類としては、イミダゾール、1-フェニルイミダゾール、1,3-ジフェニルイミダゾール、イミダゾール-4,5-ジカルボン酸、1,3-ビス[2-(1-メチル)フェニル]イミダゾール、1,3-ジメシチルイミダゾール、1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール、1,3-ジアダマンチルイミダゾール、1,3-ジシクロヘキシルイミダゾール、1,3-ビス(2,6-ジメチルフェニル)イミダゾール、4,5-ジヒドロ-1,3-ジメシチルイミダゾール、4,5-ジヒドロ-1,3-ビス(2,6-ジイソプロピルフェニル)イミダゾール、4,5-ジヒドロ-1,3-ジアダマンチルイミダゾール、4,5-ジヒドロ-1,3-ジシクロヘキシルイミダゾール、4,5-ジヒドロ-1,3-ビス(2,6-ジメチルフェニル)イミダゾール等を例示できる。 Examples of imidazoles include imidazole, 1-phenylimidazole, 1,3-diphenylimidazole, imidazole-4,5-dicarboxylic acid, 1,3-bis [2- (1-methyl) phenyl] imidazole, 1,3-di Mesitylimidazole, 1,3-bis (2,6-diisopropylphenyl) imidazole, 1,3-diadamantylimidazole, 1,3-dicyclohexylimidazole, 1,3-bis (2,6-dimethylphenyl) imidazole, 4 , 5-dihydro-1,3-dimesitylimidazole, 4,5-dihydro-1,3-bis (2,6-diisopropylphenyl) imidazole, 4,5-dihydro-1,3-diadamantylimidazole, 4 , 5-dihydro-1,3-dicyclohexylimidazole, 4,5-dihydro- It can be exemplified by 1,3-bis (2,6-dimethylphenyl) imidazole.
 0価VIII族金属触媒としては具体的には、ラネールテニウム、パラジウムスポンジ、白金スポンジ、ニッケルスポンジ、ラネーニッケル等が例示できる。また、銀-パラジウム等の合金も例示できる。
 このVIII族金属触媒としては、金属銅膜の製造が効率よく行える点で、VIII族金属錯体が好ましく、中でもカルボニル錯体が好ましい。トリルテニウムドデカカルボニルがさらに好ましい。
 本発明の銅含有組成物中のVIII族金属触媒の含有率は、金属銅膜の製造が効率よく行える点で、0.01重量%~50重量%が好ましく、0.01重量%~10重量%がさらに好ましい。
Specific examples of the zero-valent group VIII metal catalyst include raneruthenium, palladium sponge, platinum sponge, nickel sponge, Raney nickel and the like. An example of the alloy is silver-palladium.
As this group VIII metal catalyst, a group VIII metal complex is preferable, and a carbonyl complex is particularly preferable in that a metal copper film can be produced efficiently. More preferred is triruthenium dodecacarbonyl.
The content of the Group VIII metal catalyst in the copper-containing composition of the present invention is preferably 0.01% by weight to 50% by weight, and 0.01% by weight to 10% by weight from the viewpoint that the copper metal film can be produced efficiently. % Is more preferable.
 本発明の銅含有組成物で用いることのできるバインダー樹脂としては、エポキシ系樹脂、ナイロン樹脂、無水マレイン酸変性ポリオレフィン、アクリル樹脂、ポリエチレンオキシデート、エチレン-アクリル酸共重合体、エチレンアクリル酸塩共重合体、アクリル酸エステル系ゴム、ポリビニルブチラール、アクリロニトリル-ブタジエン共重合体、スチレン-イソプレンブロック共重合体、ポリブタジエン、エチルセルロース、ポリエステル、ポリアミド、天然ゴム、シリコン系ゴム、ポリクロロプレン、ポリビニルエーテル、メタクリル酸樹脂、ビニルピロリドン-酢酸ビニル共重合体、ポリビニルピロリドン、ウレタン樹脂、環化ゴム、ブチルゴム、炭化水素樹脂、α-メチルスチレン-アクリロニトリル共重合体、ポリエステルイミド、クロロスルホン化ポリエチレン、ポリオレフィン、メラミン樹脂、尿素樹脂、フェノール樹脂、多価カルボン酸の不飽和エステル等が例示できる。金属銅膜の製造が効率よく行える点で、エポキシ樹脂が好ましい。エポキシ樹脂と他のバインダー樹脂を混合することが、さらに好ましく、他のバインダー樹脂としてはナイロン樹脂が好ましい。 Examples of binder resins that can be used in the copper-containing composition of the present invention include epoxy resins, nylon resins, maleic anhydride-modified polyolefins, acrylic resins, polyethylene oxydates, ethylene-acrylic acid copolymers, and ethylene acrylate copolymers. Polymer, acrylic ester rubber, polyvinyl butyral, acrylonitrile-butadiene copolymer, styrene-isoprene block copolymer, polybutadiene, ethylcellulose, polyester, polyamide, natural rubber, silicone rubber, polychloroprene, polyvinyl ether, methacrylic acid Resin, vinylpyrrolidone-vinyl acetate copolymer, polyvinylpyrrolidone, urethane resin, cyclized rubber, butyl rubber, hydrocarbon resin, α-methylstyrene-acrylonitrile copolymer, polyester De, chlorosulfonated polyethylene, polyolefin, melamine resins, urea resins, phenolic resins, unsaturated esters of polycarboxylic acids and the like. An epoxy resin is preferable in that the metal copper film can be produced efficiently. It is more preferable to mix an epoxy resin with another binder resin, and a nylon resin is preferable as the other binder resin.
 本発明の銅含有組成物に含まれるバインダー樹脂の含有率は、金属銅膜の製造が効率よく行える点で、0.05重量%~10重量%が好ましく、0.1重量%~5重量%がさらに好ましい。 The content of the binder resin contained in the copper-containing composition of the present invention is preferably 0.05% by weight to 10% by weight, and preferably 0.1% by weight to 5% by weight, from the viewpoint of efficient production of the metal copper film. Is more preferable.
 本発明の銅含有組成物で用いることのできるバインダー樹脂硬化剤としては、テトラヒドロメチル無水フタル酸、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、1-ベンジル-2-フェニルイミダゾール、2,3-ジヒドロ-1H-ピロロベンズイミダゾール、アジピン酸、クレゾールノボラック樹脂等が例示できる。金属銅膜の製造が効率よく行える点で、テトラヒドロメチル無水フタル酸または2-エチル-4-メチルイミダゾールが好ましい。
 本発明の銅含有組成物に含まれるバインダー樹脂硬化剤の含有率は、バインター樹脂の硬化が効率よく行える点で、0.005重量%~0.1重量%が好ましく、0.01重量%~0.08重量%がさらに好ましい。
Binder resin curing agents that can be used in the copper-containing composition of the present invention include tetrahydromethyl phthalic anhydride, 2-ethyl-4-methylimidazole, 2-phenylimidazole, 1-benzyl-2-phenylimidazole, 2, Examples include 3-dihydro-1H-pyrrolobenzimidazole, adipic acid, cresol novolac resin, and the like. Tetrahydromethyl phthalic anhydride or 2-ethyl-4-methylimidazole is preferred from the viewpoint that the copper metal film can be produced efficiently.
The content of the binder resin curing agent contained in the copper-containing composition of the present invention is preferably 0.005% by weight to 0.1% by weight, and 0.01% by weight to 0.01% by weight from the viewpoint that the binder resin can be cured efficiently. More preferred is 0.08% by weight.
 本発明の銅含有組成物で用いることのできる銅有機錯体としては、具体的には、銅(I)(1-ブタンチオレート)、銅(I)(へキサフルオロペンタンジオネートシクロオクタジエン)、酢酸銅(I)、銅(II)(メトキシド)等が例示できる。金属銅膜の製造が効率よく行える点で、銅(I)(1-ブタンチオレート)または銅(I)(へキサフルオロペンタンジオネートシクロオクタジエン)が好ましく、銅(I)(1-ブタンチオレート)がさらに好ましい。
 本発明の銅含有組成物に含まれる銅有機錯体の含有率は、金属銅膜の製造が効率よく行える点で、0.01重量%~1重量%が好ましく、0.1重量%~0.5重量%がさらに好ましい。
Specific examples of the copper organic complex that can be used in the copper-containing composition of the present invention include copper (I) (1-butanethiolate), copper (I) (hexafluoropentanedionate cyclooctadiene). And copper (I) acetate, copper (II) (methoxide) and the like. Copper (I) (1-butanethiolate) or copper (I) (hexafluoropentanedionate cyclooctadiene) is preferred, and copper (I) (1-butane) can be used to efficiently produce a copper metal film. More preferred is thiolate.
The content of the copper organic complex contained in the copper-containing composition of the present invention is preferably 0.01% by weight to 1% by weight, and preferably 0.1% by weight to 0.00% in view of efficient production of the copper metal film. 5% by weight is more preferred.
 本発明の銅含有組成物で用いることのできるレオロジー調整剤としては、「SOLSPERSE-32000」(日本ルーブリゾール社製の商品名)のような各種のポリエステル、「SOLSPERSE-20000」(日本ルーブリゾール社製の商品名)のような各種のポリエーテル、「SOLSPERSE-76500」(日本ルーブリゾール社製の商品名)のような各種のポリウレタン、「DISPERBYK-180」(ビックケミー・ジャパン社製の商品名)のような酸基を含む共重合物のアルキロールアミン塩、などのような種々の市販品が、特に代表的なものとして挙げられるが、これらの化合物をそのまま使用することが出来る。さらには、酸化ポリオレフィンアマイド、脂肪酸アマイド、ウレア変性ウレタン等が例示できる。金属銅膜の製造が効率よく行える点で、ポリエステルが好ましい。
 本発明の銅含有組成物に含まれるレオロジー調整剤の含有率は、金属銅膜の製造が効率よく行える点で、0.05重量%~10重量%が好ましく、0.1重量%~6重量%がさらに好ましい。
Examples of the rheology modifier that can be used in the copper-containing composition of the present invention include various polyesters such as “SOLPERSE-32000” (trade name, manufactured by Nippon Lubrizol), “SOLSPERSE-20000” (Nippon Lubrizol Corporation). Various polyethers such as “SOLPERSE-76500” (trade name manufactured by Nippon Lubrizol), “DISPERBYK-180” (trade name manufactured by BYK Japan) Various commercially available products such as alkylolamine salts of copolymers containing an acid group such as are particularly representative, and these compounds can be used as they are. Further examples include oxidized polyolefin amide, fatty acid amide, urea-modified urethane, and the like. Polyester is preferable because the copper metal film can be produced efficiently.
The content of the rheology modifier contained in the copper-containing composition of the present invention is preferably 0.05% by weight to 10% by weight, and preferably 0.1% by weight to 6% by weight from the viewpoint that the copper metal film can be produced efficiently. % Is more preferable.
 次に、本発明の金属銅膜の製造方法について説明する。
 本発明の銅含有組成物で被膜する基板に特に制限はなく、セラミックス、ガラス、プラスチック等を用いることができる。また、基板上に被膜する方法として、スクリーン印刷法、スピンコート法、キャスト法、ディップ法、インクジェット法、スプレー法等を例示することができる。
Next, the manufacturing method of the metal copper film | membrane of this invention is demonstrated.
There is no restriction | limiting in particular in the board | substrate coated with the copper containing composition of this invention, Ceramics, glass, a plastics, etc. can be used. Examples of the method for coating on the substrate include a screen printing method, a spin coating method, a casting method, a dipping method, an ink jet method, and a spray method.
 本発明の金属銅膜の製造用組成物を基板に被膜する際に、本発明の組成物をそのまま用いることもできるが、溶媒で任意に希釈して用いてもよい。溶媒で希釈する場合は、本発明の組成物の体積に対し0.01倍~10倍の体積の希釈溶媒を添加するのが好ましい。希釈溶媒としては、メタノール、エタノール、プロパノール、2-プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ヘプタノール、オクタノール、エチレングリコール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,6-ヘキサンジオール、グリセリン等のアルコール系溶媒;ジエチルエーテル、テトラヒドロフラン、エチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、ジオキサン、トリグライム、テトラグライム等のエーテル系溶媒;酢酸メチル、酢酸ブチル、安息香酸ベンジル、ジメチルカーボネート、エチレンカーボネート、γ-ブチロラクトン、カプロラクトン等のエステル系溶媒;ベンゼン、トルエン、エチルベンゼン、テトラリン、ヘキサン、オクタン、シクロヘキサン等の炭化水素系溶媒;ジクロロメタン、トリクロロエタン、クロロベンゼン等のハロゲン化炭化水素系溶媒;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン、ヘキサメチルリン酸トリアミド、N,N-ジメチルイミダゾリジノン等のアミドまたは環状アミド系溶媒類;ジメチルスルホン等のスルホン系溶媒;ジメチルスルホキシド等のスルホキシド系溶媒;水等が例示できる。また、これらの溶媒を任意の割合で混合して用いても良い。低抵抗率の金属銅膜が得られる点で、アルコール系溶媒を用いることが好ましい。 When the composition for producing a metal copper film of the present invention is coated on a substrate, the composition of the present invention can be used as it is, but it may be optionally diluted with a solvent. When diluting with a solvent, it is preferable to add a dilution solvent having a volume of 0.01 to 10 times the volume of the composition of the present invention. Diluent solvents include methanol, ethanol, propanol, 2-propanol, butanol, pentanol, hexanol, cyclohexanol, heptanol, octanol, ethylene glycol, 1,3-propanediol, 1,2-butanediol, 1,3- Alcohol solvents such as butanediol, 1,4-butanediol, 2,3-butanediol, 1,6-hexanediol, glycerin; diethyl ether, tetrahydrofuran, ethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, Ether solvents such as dioxane, triglyme, tetraglyme; methyl acetate, butyl acetate, benzyl benzoate, dimethyl carbonate, ethylene carbonate, γ Ester solvents such as butyrolactone and caprolactone; hydrocarbon solvents such as benzene, toluene, ethylbenzene, tetralin, hexane, octane and cyclohexane; halogenated hydrocarbon solvents such as dichloromethane, trichloroethane and chlorobenzene; N, N-dimethylformamide; Amides such as N, N-dimethylacetamide, N-methylpyrrolidone, hexamethylphosphoric triamide, N, N-dimethylimidazolidinone or cyclic amide solvents; Sulfone solvents such as dimethylsulfone; Sulfoxides such as dimethylsulfoxide A solvent; water etc. can be illustrated. Further, these solvents may be mixed and used at an arbitrary ratio. It is preferable to use an alcohol solvent in that a low resistivity metal copper film can be obtained.
 本発明の金属銅膜の製造方法は、窒素、アルゴン、ヘリウム等の不活性ガス、または、水素雰囲気中で行うことが必須である。また、これらの不活性ガスと水素の混合ガス雰囲気中で行ってもよい。低抵抗率の金属銅膜が得られる点で、窒素、または、窒素と水素の混合ガス雰囲気中で行うことが好ましい。 It is essential that the method for producing a metal copper film of the present invention be carried out in an inert gas such as nitrogen, argon or helium, or in a hydrogen atmosphere. Moreover, you may carry out in the mixed gas atmosphere of these inert gas and hydrogen. It is preferable to carry out in nitrogen or the mixed gas atmosphere of nitrogen and hydrogen at the point from which a low resistivity metallic copper film | membrane is obtained.
 本発明の金属銅膜の製造法の加熱の温度は、低抵抗率の金属銅膜が得られる点で、100℃~300℃から適宜選ばれた温度で加熱することが好ましく、150℃~250℃がさらに好ましい。
 加熱時間に特に制限はなく、銅含有組成物の組成や、加熱温度、加熱雰囲気などの条件に叶った時間加熱することにより、所望の抵抗率の金属銅膜を製造することができる。例えば、生産性が高い点で1分から2時間の範囲を挙げることができる。
The heating temperature in the method for producing a metal copper film of the present invention is preferably a temperature selected from 100 ° C. to 300 ° C., preferably 150 ° C. to 250 ° C., in that a low resistivity metal copper film is obtained. More preferably.
There is no restriction | limiting in particular in heating time, The metal copper film of desired resistivity can be manufactured by heating for the time according to conditions, such as a composition of a copper containing composition, heating temperature, and heating atmosphere. For example, the range of 1 minute to 2 hours can be given in terms of high productivity.
 本発明の銅含有組成物中の銅無機化合物とバインダー樹脂の重量比は1:0.01から1:0.08が好ましく、1:0.02から1:0.05がさらに好ましい。1:0.01よりバインダー樹脂の重量比が小さい場合は金属銅膜が基板から剥離しやすくなり、1:0.08より大きい場合は金属銅膜の抵抗率が悪化する。
 銅無機化合物とバインダー樹脂硬化剤の重量比は、1:0.0003から1:0.002が好ましく、1:0.0003から1:0.001がさらに好ましい。1:0.0003よりバインダー樹脂硬化剤の重量比が小さい場合はバインダー樹脂の硬化が不十分となり、1:0.002より大きい場合は金属銅膜の抵抗率が悪化する。
The weight ratio of the copper inorganic compound and the binder resin in the copper-containing composition of the present invention is preferably 1: 0.01 to 1: 0.08, more preferably 1: 0.02 to 1: 0.05. When the weight ratio of the binder resin is smaller than 1: 0.01, the metal copper film is easily peeled from the substrate, and when it is larger than 1: 0.08, the resistivity of the metal copper film is deteriorated.
The weight ratio of the copper inorganic compound and the binder resin curing agent is preferably 1: 0.0003 to 1: 0.002, more preferably 1: 0.0003 to 1: 0.001. When the weight ratio of the binder resin curing agent is smaller than 1: 0.0003, the binder resin is not sufficiently cured, and when it is larger than 1: 0.002, the resistivity of the metal copper film is deteriorated.
 本発明による金属銅膜は、銅、VIII族金属触媒、およびバインダー樹脂硬化物からなる。このような膜は、本発明の金属銅膜の製造方法によって得ることができる。ここでバインダー樹脂硬化物とは、バインダー樹脂とバインダー樹脂硬化剤とが加熱により反応したものである。
 本発明の金属銅膜は、銅の含有率が60重量%~99重量%であることが好ましく、80~99重量%であることがさらに好ましい。本発明の金属銅膜は、VIII族金属触媒の含有率が0.01重量%~50重量%であることが好ましく、0.01~20重量%であることがさらに好ましい。本発明の金属銅膜は、バインダー樹脂硬化物の含有率が0.01重量%~30重量%であることが好ましく、0.01~10重量%であることがさらに好ましい。
The metal copper film according to the present invention comprises copper, a Group VIII metal catalyst, and a cured binder resin. Such a film can be obtained by the method for producing a metal copper film of the present invention. Here, the cured binder resin is a product obtained by reacting a binder resin and a binder resin curing agent by heating.
The metal copper film of the present invention preferably has a copper content of 60 to 99% by weight, more preferably 80 to 99% by weight. In the metal copper film of the present invention, the content of the group VIII metal catalyst is preferably 0.01 to 50% by weight, and more preferably 0.01 to 20% by weight. In the metal copper film of the present invention, the content of the cured binder resin is preferably 0.01 to 30% by weight, and more preferably 0.01 to 10% by weight.
 また本発明の金属銅膜は、VIII族金属触媒が、トリルテニウムドデカカルボニルであることが好ましい。また本発明の金属銅膜は、バインダー樹脂硬化物が、エポキシ樹脂とバインダー樹脂硬化剤との反応物、または、エポキシ樹脂とナイロン樹脂とバインダー樹脂硬化剤との反応物であることが好ましい。特に、バインダー樹脂硬化剤がテトラヒドロメチル無水フタル酸または2-エチル-4-メチルイミダゾールであることが好ましい。
 本発明の金属銅膜の抵抗率は、1.7μΩcm~20μΩcmであることが好ましく、1.7μΩcm~15μΩcmであることがさらに好ましい。
In the metal copper film of the present invention, the group VIII metal catalyst is preferably triruthenium dodecacarbonyl. In the metal copper film of the present invention, the binder resin cured product is preferably a reaction product of an epoxy resin and a binder resin curing agent, or a reaction product of an epoxy resin, a nylon resin, and a binder resin curing agent. In particular, the binder resin curing agent is preferably tetrahydromethyl phthalic anhydride or 2-ethyl-4-methylimidazole.
The resistivity of the metal copper film of the present invention is preferably 1.7 μΩcm to 20 μΩcm, and more preferably 1.7 μΩcm to 15 μΩcm.
 以下、本発明を実施例に基づいて更に具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited thereto.
 [実施例1]
 トリルテニウムドデカカルボニル0.09gを1,3-ブタンジオール20.0mLに溶解した溶液(A)を調製した。また、銅(I)1-ブタンチオレート0.5gを1,3-ブタンジオール3.0mLに溶解した溶液(B)を調製した。溶液(A)0.044g、溶液(B)0.0075g、酸化銅(I)からなる表層を有する金属銅粒子(藤野金属社製:平均粒径200nm、平均表面酸化層10nm)0.25g、エポキシ系樹脂とナイロン樹脂の混合物からなるバインダー樹脂(東亜合成社製、グレード:BX-60BA)0.035g、およびテトラヒドロメチル無水フタル酸(大日本インキ社製、グレード:EPLICLON B-570H)0.17mgを混合し、銅含有組成物Aを得た。
[Example 1]
A solution (A) in which 0.09 g of triruthenium dodecacarbonyl was dissolved in 20.0 mL of 1,3-butanediol was prepared. In addition, a solution (B) in which 0.5 g of copper (I) 1-butanethiolate was dissolved in 3.0 mL of 1,3-butanediol was prepared. 0.044 g of solution (A), 0.0075 g of solution (B), metal copper particles having a surface layer made of copper oxide (I) (manufactured by Fujino Metal Co., Ltd .: average particle size 200 nm, average surface oxide layer 10 nm) 0.25 g, 0.035 g of binder resin composed of a mixture of epoxy resin and nylon resin (manufactured by Toa Gosei Co., Ltd., grade: BX-60BA), and tetrahydromethylphthalic anhydride (manufactured by Dainippon Ink Co., Ltd., grade: EPLICLON B-570H) 17 mg was mixed and the copper containing composition A was obtained.
[実施例2]
 実施例1で得られた銅含有組成物Aをポリイミド基板上の15mm×15mmの範囲にスクリーン印刷法により印刷した。次いで窒素雰囲気中、100℃/minで200℃まで昇温後、200℃で1時間加熱した。得られた金属銅膜の膜厚は8μmであり、抵抗率は11μΩcmであった。得られた膜のX線回折パターンを測定したところ、図1に示す
[Example 2]
The copper-containing composition A obtained in Example 1 was printed in a range of 15 mm × 15 mm on a polyimide substrate by a screen printing method. Next, the temperature was raised to 200 ° C. at 100 ° C./min in a nitrogen atmosphere, followed by heating at 200 ° C. for 1 hour. The obtained copper metal film had a thickness of 8 μm and a resistivity of 11 μΩcm. When the X-ray diffraction pattern of the obtained film was measured, it is shown in FIG.
 [比較例1]
 トリルテニウムドデカカルボニル0.09gを1,3-ブタンジオール20.0mLに溶解した溶液(A)を調製した。また、銅(I)1-ブタンチオレート0.5gを1,3-ブタンジオール3.0mLに溶解した溶液(B)を調製した。この溶液(A)0.066gと溶液(B)0.01gと銅ナノ粒子(日清エンジニアリング社製:平均粒径100nm、平均表面酸化層10nm(TEMにて観察・測定))0.25gとエポキシ系樹脂(東亜合成社製、グレード:BX-60BA)0.043gを混合してポリイミド基板上にスクリーン印刷法により印刷した。印刷された膜を覆うようにガラスの蓋をし、次いで窒素雰囲気中、100℃/minで200℃まで昇温後、200℃で1時間加熱した。得られた膜の膜厚は8μmであり、抵抗率は20μΩcmであった。
[Comparative Example 1]
A solution (A) in which 0.09 g of triruthenium dodecacarbonyl was dissolved in 20.0 mL of 1,3-butanediol was prepared. In addition, a solution (B) in which 0.5 g of copper (I) 1-butanethiolate was dissolved in 3.0 mL of 1,3-butanediol was prepared. 0.066 g of this solution (A), 0.01 g of solution (B), copper nanoparticles (Nisshin Engineering Co., Ltd .: average particle size 100 nm, average surface oxide layer 10 nm (observed and measured by TEM)) 0.25 g, 0.043 g of an epoxy resin (manufactured by Toa Gosei Co., Ltd., grade: BX-60BA) was mixed and printed on a polyimide substrate by a screen printing method. A glass lid was applied to cover the printed film, and then the temperature was raised to 200 ° C. at 100 ° C./min in a nitrogen atmosphere, followed by heating at 200 ° C. for 1 hour. The obtained film had a thickness of 8 μm and a resistivity of 20 μΩcm.
[比較例2]
 テトラヒドロメチル無水フタル酸を加えなかった以外は全て実施例1,2と同じ操作を行った。得られた膜の膜厚は8μmであり、抵抗率は27μΩcmであった。
[Comparative Example 2]
The same operation as in Examples 1 and 2 was performed except that tetrahydromethylphthalic anhydride was not added. The obtained film had a thickness of 8 μm and a resistivity of 27 μΩcm.
[実施例3]
 250℃で加熱した以外は、全て実施例2と同じ操作を行った。得られた金属銅膜の膜厚は15μmであり、抵抗率は11μΩcmであった。
[Example 3]
The same operation as in Example 2 was performed except that the heating was performed at 250 ° C. The obtained copper metal film had a thickness of 15 μm and a resistivity of 11 μΩcm.
[実施例4]
 テトラヒドロメチル無水フタル酸(大日本インキ社製、グレード:EPLICLON B-570H)0.17mgに替えて2-エチル-4-メチルイミダゾール(四国化成社製、グレード:2E4MZ)0.32mgを混合した以外は、全て実施例1と同様の操作を行い、銅含有組成物Bを得た。
[Example 4]
Tetrahydromethylphthalic anhydride (Dainippon Ink Co., Ltd. grade: EPLICLON B-570H) was replaced with 0.17 mg, but 2-ethyl-4-methylimidazole (Shikoku Kasei Co., Ltd. grade: 2E4MZ) 0.32 mg was mixed. All performed the same operation as Example 1, and obtained the copper containing composition B.
[実施例5]
 実施例4で得られた金属銅膜の製造用組成物Bを用い、実施例2と同様の操作を行ったところ、得られた金属銅膜の膜厚は16μmであり、抵抗率は15μΩcmであった。
[Example 5]
When the same operation as in Example 2 was performed using the composition B for producing a metal copper film obtained in Example 4, the film thickness of the obtained metal copper film was 16 μm, and the resistivity was 15 μΩcm. there were.
[実施例6]
 実施例1で得られた銅含有組成物Aを用い、水素とアルゴンの混合ガス(水素4%)中で加熱した以外は、全て実施例2と同じ操作を行った。得られた金属銅膜の膜厚は12μmであり、抵抗率は9μΩcmであった。
[Example 6]
The same operation as in Example 2 was performed except that the copper-containing composition A obtained in Example 1 was used and heated in a mixed gas of hydrogen and argon (hydrogen 4%). The obtained copper metal film had a thickness of 12 μm and a resistivity of 9 μΩcm.
 [実施例7]
 溶液(A)を0.063gにした以外は、全て実施例1と同じ操作を行い、銅含有組成物Cを得た。
[Example 7]
Except that the solution (A) was changed to 0.063 g, the same operation as in Example 1 was performed to obtain a copper-containing composition C.
[実施例8]
 実施例7で得られた銅含有組成物Cを用い、実施例2と同様の操作を行ったところ、得られた金属銅膜の膜厚は9μmであり、抵抗率は15μΩcmであった。
[Example 8]
When the same operation as in Example 2 was performed using the copper-containing composition C obtained in Example 7, the thickness of the obtained metal copper film was 9 μm and the resistivity was 15 μΩcm.
[実施例9]
 テトラヒドロメチル無水フタル酸を0.26mgにした以外は、全て実施例1と同じ操作を行い、銅含有組成物Dを得た。
[Example 9]
Except that tetrahydromethylphthalic anhydride was changed to 0.26 mg, the same operation as in Example 1 was performed to obtain a copper-containing composition D.
[実施例10]
 実施例9で得られた銅含有組成物Dを用い、実施例2と同様の操作を行ったところ、得られた金属銅膜の膜厚は12μmであり、抵抗率は11μΩcmであった。
[Example 10]
When the same operation as in Example 2 was performed using the copper-containing composition D obtained in Example 9, the thickness of the obtained metal copper film was 12 μm, and the resistivity was 11 μΩcm.
[実施例11]
 テトラヒドロメチル無水フタル酸を0.06mgにした以外は、全て実施例1と同じ操作を行い、銅含有組成物Eを得た。
[Example 11]
A copper-containing composition E was obtained in the same manner as in Example 1 except that the amount of tetrahydromethylphthalic anhydride was changed to 0.06 mg.
[実施例12]
 実施例11で得られた銅含有組成物Eを用い、実施例2と同様の操作を行ったところ、得られた金属銅膜の膜厚は13μmであり、抵抗率は12μΩcmであった。
[Example 12]
When the same operation as in Example 2 was performed using the copper-containing composition E obtained in Example 11, the film thickness of the obtained metal copper film was 13 μm, and the resistivity was 12 μΩcm.
[実施例13]
 実施例1で得た銅含有組成物Aを、ポリイミド基板上の70mm×70mmの範囲にスクリーン印刷法によりライン&スペース=300μm/300μmの櫛型電極膜を印刷した。次いで窒素雰囲気中、100℃/minで200℃まで昇温後、200℃で1時間加熱した。得られた櫛形電極銅膜の絶縁された両端に電圧100Vを印加し、恒温恒湿槽で1000時間保存しながら絶縁抵抗値を測定した。0~800時間までは温度25℃、湿度60%で保存し、800~1000時間までは温度45℃、湿度85%で保存した。絶縁抵抗の経時変化を測定したところ、図2に示すように金属銅膜の絶縁抵抗の低下が確認されなかった。
[Example 13]
The copper-containing composition A obtained in Example 1 was printed on a polyimide substrate with a comb-shaped electrode film having a line and space of 300 μm / 300 μm by a screen printing method in a range of 70 mm × 70 mm. Next, the temperature was raised to 200 ° C. at 100 ° C./min in a nitrogen atmosphere, followed by heating at 200 ° C. for 1 hour. A voltage of 100 V was applied to both insulated ends of the obtained comb-shaped electrode copper film, and the insulation resistance value was measured while storing in a constant temperature and humidity chamber for 1000 hours. It was stored at a temperature of 25 ° C. and a humidity of 60% for 0 to 800 hours, and stored at a temperature of 45 ° C. and a humidity of 85% for 800 to 1000 hours. When the change over time in the insulation resistance was measured, no decrease in the insulation resistance of the metal copper film was confirmed as shown in FIG.
 [実施例14]
 トリルテニウムドデカカルボニル0.09gを1,3-ブタンジオール20.0mLに溶解した溶液(A)を調製した。また、銅(I)1-ブタンチオレート0.5gを1,3-ブタンジオール3.0mLに溶解した溶液(B)を調製した。溶液(A)0.044g、溶液(B)0.0075g、酸化銅(I)からなる表層を有する金属銅粒子(藤野金属社製:平均粒径200nm、平均表面酸化層10nm)0.25g、エポキシ系樹脂とナイロン樹脂の混合物からなるバインダー樹脂(東亜合成社製、グレード:BX-60BA)0.035g、テトラヒドロメチル無水フタル酸(大日本インキ社製、グレード:EPLICLON B-570H)0.17mg、およびポリエステルレオロジー調整剤(日本ルーブリゾール社製、グレード:SOLSPERSE-32000)0.014gを混合し、銅含有組成物Fを得た。
[Example 14]
A solution (A) in which 0.09 g of triruthenium dodecacarbonyl was dissolved in 20.0 mL of 1,3-butanediol was prepared. In addition, a solution (B) in which 0.5 g of copper (I) 1-butanethiolate was dissolved in 3.0 mL of 1,3-butanediol was prepared. 0.044 g of solution (A), 0.0075 g of solution (B), metal copper particles having a surface layer made of copper oxide (I) (manufactured by Fujino Metal Co., Ltd .: average particle size 200 nm, average surface oxide layer 10 nm) 0.25 g, Binder resin composed of a mixture of epoxy resin and nylon resin (manufactured by Toa Gosei Co., Ltd., grade: BX-60BA) 0.035 g, tetrahydromethylphthalic anhydride (manufactured by Dainippon Ink Co., Ltd., grade: EPLICLON B-570H) 0.17 mg And 0.014 g of a polyester rheology modifier (manufactured by Nihon Lubrizol, Grade: SOLPERSE-32000) were mixed to obtain a copper-containing composition F.
[実施例15]
 実施例14で得られた銅含有組成物Fを用い、実施例2と同様の操作を行ったところ、得られた金属銅膜の膜厚は10μmであり、抵抗率は13μΩcmであった。
[Example 15]
When the same operation as in Example 2 was performed using the copper-containing composition F obtained in Example 14, the film thickness of the obtained metal copper film was 10 μm, and the resistivity was 13 μΩcm.
[実施例16]
 実施例14で得られた銅含有組成物Fをガラス基板上にライン&スペース=100μm/100μmの印刷版を用いて、スクリーン印刷法により櫛型電極膜を印刷した。次いで窒素雰囲気中、100℃/minで200℃まで昇温後、200℃で1時間加熱し、ライン&スペース=100μm/100μmの金属銅膜を形成した。
[Example 16]
The copper-containing composition F obtained in Example 14 was printed on a glass substrate by a screen printing method using a printing plate of line & space = 100 μm / 100 μm by a screen printing method. Next, the temperature was raised to 200 ° C. at 100 ° C./min in a nitrogen atmosphere, followed by heating at 200 ° C. for 1 hour to form a metal copper film having a line and space = 100 μm / 100 μm.
[実施例17]
 実施例2で得られた金属銅膜の組成を蛍光X線分析、及び、燃焼-赤外線吸収法により測定したところ、銅97.3重量%、トリルテニウムドデカカルボニル0.1重量%、バインダー樹脂硬化物2.6重量%であった。
[Example 17]
The composition of the metallic copper film obtained in Example 2 was measured by fluorescent X-ray analysis and combustion-infrared absorption method, and was found to be 97.3% by weight of copper, 0.1% by weight of triruthenium dodecacarbonyl, and binder resin cured. The product was 2.6% by weight.
 本発明の銅含有組成物は、導電膜、導電性パターン膜、電磁波遮蔽膜、防曇用膜等の製造に用いることができる。
 なお、2010年12月28日に出願された日本特許出願2010-292582号の明細書、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。
The copper-containing composition of the present invention can be used for the production of conductive films, conductive pattern films, electromagnetic wave shielding films, antifogging films and the like.
The entire contents of the specification, claims, drawings, and abstract of Japanese Patent Application No. 2010-292582 filed on Dec. 28, 2010 are cited here as disclosure of the specification of the present invention. Incorporated.

Claims (50)

  1.  銅無機化合物と、直鎖、分岐または環状の炭素数1から18のアルコール類と、VIII族金属触媒と、バインダー樹脂と、バインダー樹脂硬化剤と、銅有機錯体と、を含有することを特徴とする銅含有組成物。 It contains a copper inorganic compound, a linear, branched or cyclic alcohol having 1 to 18 carbon atoms, a group VIII metal catalyst, a binder resin, a binder resin curing agent, and a copper organic complex. A copper-containing composition.
  2.  銅無機化合物と、直鎖、分岐または環状の炭素数1から18のアルコール類と、VIII族金属触媒と、バインダー樹脂と、バインダー樹脂硬化剤と、銅有機錯体と、レオロジー調整剤と、を含有することを特徴とする銅含有組成物。 Contains a copper inorganic compound, a linear, branched or cyclic alcohol having 1 to 18 carbon atoms, a Group VIII metal catalyst, a binder resin, a binder resin curing agent, a copper organic complex, and a rheology modifier. A copper-containing composition characterized by comprising:
  3.  レオロジー調整剤が、ポリエステルである請求項2に記載の銅含有組成物。 The copper-containing composition according to claim 2, wherein the rheology modifier is polyester.
  4.  銅無機化合物の含有率が20重量%~95重量%である請求項1から3のいずれかに記載の銅含有組成物。 4. The copper-containing composition according to claim 1, wherein the content of the copper inorganic compound is 20% by weight to 95% by weight.
  5.  直鎖、分岐または環状の炭素数1から18のアルコール類の含有率が0.5重量%~80重量%である請求項1から3のいずれかに記載の銅含有組成物。 4. The copper-containing composition according to claim 1, wherein the content of the linear, branched or cyclic alcohol having 1 to 18 carbon atoms is 0.5 wt% to 80 wt%.
  6.  VIII族金属触媒の含有率が0.01重量%~50重量%である請求項1から3のいずれかに記載の銅含有組成物。 The copper-containing composition according to any one of claims 1 to 3, wherein the content of the Group VIII metal catalyst is 0.01 wt% to 50 wt%.
  7.  バインダー樹脂の含有率が0.05重量%~10重量%である請求項1から3のいずれかに記載の銅含有組成物。 4. The copper-containing composition according to claim 1, wherein the content of the binder resin is 0.05% by weight to 10% by weight.
  8.  バインダー樹脂硬化剤の含有率が0.005重量%~0.1重量%である請求項1から3のいずれかに記載の銅含有組成物。 4. The copper-containing composition according to claim 1, wherein the content of the binder resin curing agent is 0.005 wt% to 0.1 wt%.
  9.  銅有機錯体の含有率が0.01重量%~1重量%である請求項1から3のいずれかに記載の銅含有組成物。 The copper-containing composition according to any one of claims 1 to 3, wherein the content of the copper organic complex is 0.01 wt% to 1 wt%.
  10.  レオロジー調整剤の含有率が0.05重量%~10重量%である請求項2または3に記載の銅含有組成物。 4. The copper-containing composition according to claim 2, wherein the content of the rheology modifier is 0.05% by weight to 10% by weight.
  11.  バインダー樹脂硬化剤が、テトラヒドロメチル無水フタル酸または2-エチル-4-メチルイミダゾールである請求項1から10のいずれかに記載の銅含有組成物。 The copper-containing composition according to any one of claims 1 to 10, wherein the binder resin curing agent is tetrahydromethyl phthalic anhydride or 2-ethyl-4-methylimidazole.
  12.  銅無機化合物が、酸化銅(I)または酸化銅(II)である請求項1から11のいずれかに記載の銅含有組成物。 The copper-containing composition according to any one of claims 1 to 11, wherein the copper inorganic compound is copper (I) oxide or copper (II) oxide.
  13.  銅無機化合物が、金属銅粒子を被覆した酸化銅(I)または酸化銅(II)である請求項1から12のいずれかに記載の銅含有組成物。 The copper-containing composition according to any one of claims 1 to 12, wherein the copper inorganic compound is copper oxide (I) or copper oxide (II) coated with metal copper particles.
  14.  直鎖、分岐または環状の炭素数1から18のアルコール類が、1,3-ブタンジオール、2,4-ペンタンジオール、2-プロパノール、シクロヘキサノール、エチレングリコール、1,3-プロパンジオール、1,4-シクロヘキサンジオールまたはグリセリンである請求項1から13のいずれかに記載の銅含有組成物。 Linear, branched or cyclic alcohols having 1 to 18 carbon atoms are 1,3-butanediol, 2,4-pentanediol, 2-propanol, cyclohexanol, ethylene glycol, 1,3-propanediol, 1, The copper-containing composition according to any one of claims 1 to 13, which is 4-cyclohexanediol or glycerin.
  15.  直鎖、分岐または環状の炭素数1から18のアルコール類が、1,3-ブタンジオールである請求項1から14のいずれかに記載の銅含有組成物。 The copper-containing composition according to any one of claims 1 to 14, wherein the linear, branched or cyclic alcohol having 1 to 18 carbon atoms is 1,3-butanediol.
  16.  VIII族金属触媒が、カルボニル錯体である請求項1から15のいずれかに記載の銅含有組成物。 The copper-containing composition according to any one of claims 1 to 15, wherein the Group VIII metal catalyst is a carbonyl complex.
  17.  VIII族金属触媒が、トリルテニウムドデカカルボニルである請求項1から16のいずれかに記載の銅含有組成物。 The copper-containing composition according to any one of claims 1 to 16, wherein the Group VIII metal catalyst is triruthenium dodecacarbonyl.
  18.  バインダー樹脂が、エポキシ樹脂である請求項1から17のいずれかに記載の銅含有組成物。 The copper-containing composition according to any one of claims 1 to 17, wherein the binder resin is an epoxy resin.
  19.  バインダー樹脂が、エポキシ樹脂とナイロン樹脂の混合物である請求項1から18のいずれかに記載の銅含有組成物。 The copper-containing composition according to any one of claims 1 to 18, wherein the binder resin is a mixture of an epoxy resin and a nylon resin.
  20.  銅有機錯体が、銅(I)(1-ブタンチオレート)である請求項1から19のいずれかに記載の銅含有組成物。 The copper-containing composition according to any one of claims 1 to 19, wherein the copper organic complex is copper (I) (1-butanethiolate).
  21.  銅、VIII族金属触媒、およびバインダー樹脂硬化物から成ることを特徴とする金属銅膜。 A metal copper film comprising copper, a Group VIII metal catalyst, and a cured binder resin.
  22.  銅の含有率が60重量%~99重量%である請求項21に記載の金属銅膜。 The metal copper film according to claim 21, wherein the copper content is 60 wt% to 99 wt%.
  23.  VIII族金属触媒の含有率が0.01重量%~50重量%である請求項21に記載の金属銅膜。 The metal copper film according to claim 21, wherein the content of the Group VIII metal catalyst is 0.01 wt% to 50 wt%.
  24.  バインダー樹脂硬化物の含有率が0.01重量%~30重量%である請求項21に記載の金属銅膜。 The metal copper film according to claim 21, wherein the content of the cured binder resin is 0.01 wt% to 30 wt%.
  25.  VIII族金属触媒が、トリルテニウムドデカカルボニルである請求項21から24のいずれかに記載の金属銅膜。 The metal copper film according to any one of claims 21 to 24, wherein the Group VIII metal catalyst is triruthenium dodecacarbonyl.
  26.  バインダー樹脂硬化物が、エポキシ樹脂とバインダー樹脂硬化剤との反応物である請求項21から25のいずれかに記載の金属銅膜。 The metal copper film according to any one of claims 21 to 25, wherein the cured binder resin is a reaction product of an epoxy resin and a binder resin curing agent.
  27.  バインダー樹脂硬化物が、エポキシ樹脂とナイロン樹脂とバインダー樹脂硬化剤との反応物である請求項21から26のいずれかに記載の金属銅膜。 27. The metallic copper film according to claim 21, wherein the cured binder resin is a reaction product of an epoxy resin, a nylon resin, and a binder resin curing agent.
  28.  バインダー樹脂硬化剤がテトラヒドロメチル無水フタル酸または2-エチル-4-メチルイミダゾールである請求項27に記載の金属銅膜。 The metal copper film according to claim 27, wherein the binder resin curing agent is tetrahydromethyl phthalic anhydride or 2-ethyl-4-methylimidazole.
  29.  銅無機化合物と、直鎖、分岐または環状の炭素数1から18のアルコール類と、VIII族金属触媒と、バインダー樹脂と、バインダー樹脂硬化剤と、銅有機錯体と、を含有する銅含有組成物を塗工して銅含有組成物からなる被膜を形成し、さらに該被膜を、不活性ガス、水素、または、不活性ガスと水素の混合ガス中で、加熱することを特徴とする金属銅膜の製造方法。 A copper-containing composition comprising a copper inorganic compound, a linear, branched or cyclic alcohol having 1 to 18 carbon atoms, a group VIII metal catalyst, a binder resin, a binder resin curing agent, and a copper organic complex. To form a film made of a copper-containing composition, and the film is heated in an inert gas, hydrogen, or a mixed gas of an inert gas and hydrogen. Manufacturing method.
  30.  銅無機化合物と、直鎖、分岐または環状の炭素数1から18のアルコール類と、VIII族金属触媒と、バインダー樹脂と、バインダー樹脂硬化剤と、銅有機錯体と、レオロジー調整剤と、を含有する銅含有組成物を塗工して銅含有組成物からなる被膜を形成し、さらに該被膜を、不活性ガス、水素、または、不活性ガスと水素の混合ガス中で、加熱することを特徴とする金属銅膜の製造方法。 Contains a copper inorganic compound, a linear, branched or cyclic alcohol having 1 to 18 carbon atoms, a Group VIII metal catalyst, a binder resin, a binder resin curing agent, a copper organic complex, and a rheology modifier. A copper-containing composition is applied to form a film comprising the copper-containing composition, and the film is further heated in an inert gas, hydrogen, or a mixed gas of an inert gas and hydrogen. A method for producing a metallic copper film.
  31.  レオロジー調整剤が、ポリエステルである請求項30に記載の金属銅膜の製造方法。 The method for producing a metallic copper film according to claim 30, wherein the rheology modifier is polyester.
  32.  銅含有組成物中の銅無機化合物の含有率が20重量%~95重量%である請求項29から31のいずれかに記載の金属銅膜の製造方法。 32. The method for producing a copper metal film according to claim 29, wherein the content of the copper inorganic compound in the copper-containing composition is 20% by weight to 95% by weight.
  33.  銅含有組成物中の直鎖、分岐または環状の炭素数1から18のアルコール類の含有率が0.5重量%~80重量%である請求項29から31のいずれかに記載の金属銅膜の製造方法。 The metal copper film according to any one of claims 29 to 31, wherein the content of the linear, branched or cyclic alcohol having 1 to 18 carbon atoms in the copper-containing composition is 0.5 wt% to 80 wt%. Manufacturing method.
  34.  銅含有組成物中のVIII族金属触媒の含有率が0.01重量%~50重量%である請求項29から31のいずれかに記載の金属銅膜の製造方法。 The method for producing a metallic copper film according to any one of claims 29 to 31, wherein the content of the Group VIII metal catalyst in the copper-containing composition is 0.01 wt% to 50 wt%.
  35.  銅含有組成物中のバインダー樹脂の含有率が0.05重量%~10重量%である請求項29から31のいずれかに記載の金属銅膜の製造方法。 The method for producing a metallic copper film according to any one of claims 29 to 31, wherein the content of the binder resin in the copper-containing composition is 0.05 wt% to 10 wt%.
  36.  銅含有組成物中のバインダー樹脂硬化剤の含有率が0.005重量%~0.1重量%である請求項29から31のいずれかに記載の金属銅膜の製造方法。 The method for producing a metallic copper film according to any one of claims 29 to 31, wherein the content of the binder resin curing agent in the copper-containing composition is 0.005 wt% to 0.1 wt%.
  37.  銅含有組成物中の銅有機錯体の含有率が0.01重量%~1重量%である請求項29から31のいずれかに記載の金属銅膜の製造方法。 32. The method for producing a metal copper film according to claim 29, wherein the content of the copper organic complex in the copper-containing composition is 0.01% by weight to 1% by weight.
  38.  銅含有組成物中のレオロジー調整剤の含有率が0.05重量%~10重量%である請求項30または31に記載の金属銅膜の製造方法。 The method for producing a metallic copper film according to claim 30 or 31, wherein the content of the rheology modifier in the copper-containing composition is 0.05 wt% to 10 wt%.
  39.  バインダー樹脂硬化剤が、テトラヒドロメチル無水フタル酸または2-エチル-4-メチルイミダゾールである請求項29から38のいずれかに記載の金属銅膜の製造方法。 The method for producing a metallic copper film according to any one of claims 29 to 38, wherein the binder resin curing agent is tetrahydromethyl phthalic anhydride or 2-ethyl-4-methylimidazole.
  40.  銅無機化合物が、酸化銅(I)または酸化銅(II)である請求項29から39のいずれかに記載の金属銅膜の製造方法。 The method for producing a metallic copper film according to any one of claims 29 to 39, wherein the copper inorganic compound is copper (I) oxide or copper (II) oxide.
  41.  銅無機化合物が、金属銅粒子を被覆した酸化銅(I)または酸化銅(II)である請求項29から40のいずれかに記載の金属銅膜の製造方法。 The method for producing a metal copper film according to any one of claims 29 to 40, wherein the copper inorganic compound is copper oxide (I) or copper oxide (II) coated with metal copper particles.
  42.  直鎖、分岐または環状の炭素数1から18のアルコール類が、1,3-ブタンジオール、2,4-ペンタンジオール、2-プロパノール、シクロヘキサノール、エチレングリコール、1,3-プロパンジオール、1,4-シクロヘキサンジオールまたはグリセリンである請求項29から41のいずれかに記載の金属銅膜の製造方法。 Linear, branched or cyclic alcohols having 1 to 18 carbon atoms are 1,3-butanediol, 2,4-pentanediol, 2-propanol, cyclohexanol, ethylene glycol, 1,3-propanediol, 1, The method for producing a copper metal film according to any one of claims 29 to 41, which is 4-cyclohexanediol or glycerin.
  43.  直鎖、分岐または環状の炭素数1から18のアルコール類が、1,3-ブタンジオールである請求項29から42のいずれかに記載の金属銅膜の製造方法。 43. The method for producing a metallic copper film according to claim 29, wherein the linear, branched or cyclic alcohol having 1 to 18 carbon atoms is 1,3-butanediol.
  44.  VIII族金属触媒が、カルボニル錯体である請求項29から43のいずれかに記載の金属銅膜の製造方法。 The method for producing a metallic copper film according to any one of claims 29 to 43, wherein the Group VIII metal catalyst is a carbonyl complex.
  45.  VIII族金属触媒が、トリルテニウムドデカカルボニルである請求項29から44のいずれかに記載の金属銅膜の製造方法。 45. The method for producing a metal copper film according to claim 29, wherein the Group VIII metal catalyst is triruthenium dodecacarbonyl.
  46.  バインダー樹脂が、エポキシ樹脂である請求項29から45のいずれかに記載の金属銅膜の製造方法。 The method for producing a metallic copper film according to any one of claims 29 to 45, wherein the binder resin is an epoxy resin.
  47.  バインダー樹脂が、エポキシ樹脂とナイロン樹脂の混合物である請求項29から46のいずれかに記載の金属銅膜の製造方法。 The method for producing a metallic copper film according to any one of claims 29 to 46, wherein the binder resin is a mixture of an epoxy resin and a nylon resin.
  48.  銅有機錯体が、銅(I)(1-ブタンチオレート)である請求項29から47のいずれかに記載の金属銅膜の製造方法。 48. The method for producing a metal copper film according to claim 29, wherein the copper organic complex is copper (I) (1-butanethiolate).
  49.  不活性ガスが、窒素である請求項29から48に記載の金属銅膜の製造方法。 49. The method for producing a metal copper film according to claim 29, wherein the inert gas is nitrogen.
  50.  150℃から250℃の間の選ばれた温度で加熱することを特徴とする請求項29から49に記載の金属銅膜の製造方法。 The method for producing a metallic copper film according to any one of claims 29 to 49, wherein heating is performed at a temperature selected between 150 ° C and 250 ° C.
PCT/JP2011/079925 2010-12-28 2011-12-22 Copper-containing composition, process for production of metal copper film, and metal copper film WO2012090881A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-292582 2010-12-28
JP2010292582 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090881A1 true WO2012090881A1 (en) 2012-07-05

Family

ID=46382987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079925 WO2012090881A1 (en) 2010-12-28 2011-12-22 Copper-containing composition, process for production of metal copper film, and metal copper film

Country Status (3)

Country Link
JP (1) JP2012151093A (en)
TW (1) TW201241840A (en)
WO (1) WO2012090881A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972187B2 (en) * 2013-02-04 2016-08-17 富士フイルム株式会社 Conductive film forming composition and method for producing conductive film
JP2014196384A (en) * 2013-03-29 2014-10-16 富士フイルム株式会社 Conductive film-forming composition and method for producing conductive film using the same
JP2014196427A (en) * 2013-03-29 2014-10-16 富士フイルム株式会社 Composition for forming an electroconductive film and method for manufacturing electroconductive film using the same
JP5993812B2 (en) * 2013-07-10 2016-09-14 富士フイルム株式会社 Manufacturing method of conductive film
JP2016079439A (en) * 2014-10-14 2016-05-16 四国化成工業株式会社 Copper film formation agent and its application
JP6777548B2 (en) * 2015-01-29 2020-10-28 ハリマ化成株式会社 Conductive paste

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087994A (en) * 1996-09-10 1998-04-07 Polymertech Kk Composite electroconductive polymer and composition, and their production
WO2003085052A1 (en) * 2002-04-10 2003-10-16 Fujikura Ltd. Conductive composition, conductive film, and process for the formation of the film
JP2008130301A (en) * 2006-11-20 2008-06-05 Sumitomo Bakelite Co Ltd Conductive copper paste
JP2010121206A (en) * 2008-10-22 2010-06-03 Tosoh Corp Composition for producing metal film, method for producing the metal film, and method for producing metal powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1060319A (en) * 1996-08-22 1998-03-03 Asahi Chem Ind Co Ltd Conductive paste composition and wiring board produced by using the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1087994A (en) * 1996-09-10 1998-04-07 Polymertech Kk Composite electroconductive polymer and composition, and their production
WO2003085052A1 (en) * 2002-04-10 2003-10-16 Fujikura Ltd. Conductive composition, conductive film, and process for the formation of the film
JP2008130301A (en) * 2006-11-20 2008-06-05 Sumitomo Bakelite Co Ltd Conductive copper paste
JP2010121206A (en) * 2008-10-22 2010-06-03 Tosoh Corp Composition for producing metal film, method for producing the metal film, and method for producing metal powder

Also Published As

Publication number Publication date
JP2012151093A (en) 2012-08-09
TW201241840A (en) 2012-10-16

Similar Documents

Publication Publication Date Title
US9624581B2 (en) Composition for production of metal film, method for producing metal film and method for producing metal powder
WO2012090881A1 (en) Copper-containing composition, process for production of metal copper film, and metal copper film
Jeong et al. Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink‐jet printing
KR101263003B1 (en) silver organo-sol ink for forming conductive patterns
JP6354950B2 (en) Electroless plating base material
TWI570097B (en) A copper film forming composition, and a method for producing a copper film using the same
WO2004103043A1 (en) Method for forming fine copper particle sintered product type of electric conductor having fine shape, method for forming fine copper wiring and thin copper film using said method
JP5620795B2 (en) Composition for forming copper film and method for producing copper film using the composition
TWI602947B (en) Composition for copper film formation, and the manufacturing method of the copper film using the same
JP2008041960A (en) Manufacturing method of electronic circuit component
KR20110027487A (en) Composition for metal pattern and method of forming metal pattern using the same
US9133349B2 (en) Zinc oxide film-forming composition, zinc oxide film production method, and zinc compound
JPWO2013073349A1 (en) Composition for forming copper pattern and method for producing copper pattern
WO2015088008A1 (en) Catalyst ink for inkjet printing
KR20170128583A (en) Chemical vapor deposition using raw materials for chemical vapor deposition including heterogeneous nucleoside complexes and chemical vapor deposition materials
TW201036944A (en) Composition for forming conductor layer and conductor substrate, as well as method for making conductor substrate
KR101836803B1 (en) Porous metal-organic framework thin film and Manufacturing method thereof
KR20190031418A (en) Molecular organic reactive inks for conductive metal printing using photoinitiators
KR20140131944A (en) Method for forming electroconductive film
JP2007087735A (en) Metal oxide dispersion
Wang et al. Nano-organic silver composite conductive ink for flexible printed circuit
KR20110059714A (en) Composite nanoparticle and process for producing same
Lee et al. Large-scale synthesis of polymer-stabilized silver nanoparticles
KR101583304B1 (en) Conductive metal ion ink composition and method of making the same
KR20100033143A (en) Organometalic precursor for metal film or patterns and a metal film or patterns by using the precursor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854497

Country of ref document: EP

Kind code of ref document: A1