WO2012090407A1 - 全芳香族液晶ポリエステルおよびその製造方法 - Google Patents

全芳香族液晶ポリエステルおよびその製造方法 Download PDF

Info

Publication number
WO2012090407A1
WO2012090407A1 PCT/JP2011/006971 JP2011006971W WO2012090407A1 WO 2012090407 A1 WO2012090407 A1 WO 2012090407A1 JP 2011006971 W JP2011006971 W JP 2011006971W WO 2012090407 A1 WO2012090407 A1 WO 2012090407A1
Authority
WO
WIPO (PCT)
Prior art keywords
structural unit
aromatic liquid
liquid crystal
wholly aromatic
crystal polyester
Prior art date
Application number
PCT/JP2011/006971
Other languages
English (en)
French (fr)
Inventor
濱口 美都繁
皓平 宮本
梅津 秀之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2012506029A priority Critical patent/JP5062381B2/ja
Priority to CN201180017640.8A priority patent/CN102822232B/zh
Priority to EP11853497.3A priority patent/EP2546277B1/en
Priority to KR1020127023017A priority patent/KR101228705B1/ko
Publication of WO2012090407A1 publication Critical patent/WO2012090407A1/ja
Priority to US13/617,677 priority patent/US8440780B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/19Hydroxy compounds containing aromatic rings
    • C08G63/191Hydroquinones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • C08G63/605Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds the hydroxy and carboxylic groups being bound to aromatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • C09K19/3804Polymers with mesogenic groups in the main chain
    • C09K19/3809Polyesters; Polyester derivatives, e.g. polyamides

Definitions

  • the present invention relates to a wholly aromatic liquid crystal polyester excellent in fogging property, metal adhesion, and creep resistance, a method for producing the same, a resin composition obtained therefrom, and a molded product.
  • liquid crystal polyester has been used in the electric and electronic fields, taking advantage of its heat resistance, fluidity, electrical properties, etc., and its demand is expanding.
  • heat-generating components such as liquid crystal display supporting bases for office automation equipment and mobile phones, and structural parts for lamps.
  • metal terminals are insert-molded, and adhesion to metals is required.
  • JP 2006-89714 A Japanese Patent Laid-Open No. 1-98618 JP-A-5-271394 JP-A-11-263829
  • An object of the present invention is to provide a wholly aromatic liquid crystal polyester excellent in fogging property, metal adhesion, and creep resistance, a resin composition obtained therefrom, and a molded product.
  • the present inventors have found that a wholly aromatic liquid crystal polyester having a specific end group is specifically excellent in fogging properties, metal adhesion properties, and creep resistance properties. Furthermore, when the wholly aromatic liquid crystalline polyester of the present invention is injection-molded, it has been found that mold contamination can be specifically reduced, and the present invention has been achieved.
  • the present invention has been made to solve at least a part of the above-described problems, and embodiments of the present invention can include at least a part of the following configurations.
  • the total amount of hydroxy end group (a) and acetyl end group (b) is 50 to 350 equivalents / (g ⁇ 10 ⁇ 6 ).
  • This wholly aromatic liquid crystalline polyester has a ratio [(a) + (b)] / (c) of the sum of the amount of hydroxy end groups (a) and the amount of acetyl end groups (b) to the amount of carboxy end groups (c). Is 1.05 to 2.00.
  • content of the structural unit derived from hydroquinone is more than 2.0 mol% with respect to the total amount of the structural unit. Moreover, it is preferable that content of the structural unit derived from hydroquinone is less than 15.0 mol% with respect to the structural unit whole quantity.
  • the total of the amount of hydroxy end groups (a) and the amount of acetyl end groups (b) is preferably more than 50 equivalents / (g ⁇ 10 ⁇ 6 ).
  • the total of the hydroxy end group amount (a) and the acetyl end group amount (b) is preferably less than 350 equivalents / (g ⁇ 10 ⁇ 6 ).
  • the ratio [(a) + (b)] / (c) is preferably greater than 1.05.
  • the ratio [(a) + (b)] / (c) is preferably less than 2.00.
  • the ratio (a) / [(a) + (b)] is preferably larger than 0.30.
  • the ratio (a) / [(a) + (b)] is preferably less than 1.00.
  • the ratio (a) / [(a) + (b)] may be less than 0.30.
  • the ratio (a) / [(a) + (b)] may exceed 1.00.
  • the said absolute number average molecular weight is larger than 5000.
  • the absolute number average molecular weight is preferably less than 25000.
  • the absolute number average molecular weight may be less than 5000. In the wholly aromatic liquid crystal polyester described in (1) or (2) above, the absolute number average molecular weight may exceed 25000.
  • the structural unit (I) is 65 to 80 mol% based on the total of the structural units (I), (II) and (III).
  • the structural unit (II) is 55 to 85 mol% with respect to the total of the structural units (II) and (III).
  • the structural unit (IV) is 50 to 95 mol% with respect to the total of the structural units (IV) and (V).
  • the sum of the structural units (II) and (III) and the sum of (IV) and (V) are substantially equimolar.
  • the structural unit (I) is preferably more than 65 mol% with respect to the total of the structural units (I), (II) and (III). Further, the structural unit (I) is preferably less than 80 mol% with respect to the total of the structural units (I), (II) and (III). The structural unit (II) is preferably more than 55 mol% with respect to the total of the structural units (II) and (III). Moreover, it is preferable that structural unit (II) is less than 85 mol% with respect to the sum total of structural unit (II) and (III). The structural unit (IV) is desirably more than 50 mol% with respect to the total of the structural units (IV) and (V). Moreover, it is preferable that structural unit (IV) is less than 95 mol% with respect to the sum total of structural unit (IV) and (V).
  • the structural unit (I) is 65 moles relative to the total of the structural units (I), (II) and (III). It may be less than%. Further, the structural unit (I) may exceed 80 mol% with respect to the total of the structural units (I), (II) and (III). In the wholly aromatic liquid crystal polyester described in any of (1) to (3) above, the structural unit (II) may be less than 55 mol% with respect to the total of the structural units (II) and (III). Further, the structural unit (II) may exceed 85 mol% with respect to the total of the structural units (II) and (III).
  • the structural unit (IV) may be less than 50 mol% with respect to the total of the structural units (IV) and (V). Further, the structural unit (IV) may exceed 95 mol% with respect to the total of the structural units (IV) and (V).
  • substantially equimolar means that the structural units constituting the polymer main chain excluding the terminal are equimolar.
  • the wholly aromatic liquid crystal polyester described in any of (1) to (3) above includes at least a part of the structural units (I), (II), (III), (IV) and (V). It does not have to be included.
  • the temperature is raised to the melting temperature of the wholly aromatic liquid crystal polyester while distilling acetic acid, and deacetic acid polymerization is performed.
  • the distillation rate determined by the following formula [1] when the temperature of the polymerization reaction solution reaches 250 ° C. is 50 to 80%.
  • Distillation rate (%) distillate amount (g) / [(number of moles of acetic anhydride charged (mol) ⁇ number of moles of hydroxy groups in raw material monomer (mol)) ⁇ acetic anhydride molecular weight (g / mol) + (raw material Number of moles of hydroxy groups in the monomer (mol) ⁇ 2 ⁇ acetic acid molecular weight (g / mol))] ⁇ 100 [1]
  • the distillation rate is preferably greater than 50%.
  • the distillation rate is preferably less than 80%.
  • the distillation rate may be less than 50%.
  • the distillation rate may exceed 80%.
  • a wholly aromatic liquid crystal polyester resin composition obtained by blending 10 to 200 parts by weight of a filler with 100 parts by weight of the wholly aromatic liquid crystal polyester according to any one of (1) to (4).
  • the compounding quantity of the filler with respect to 100 weight part of the said wholly aromatic liquid crystalline polyester is more than 10 weight part.
  • the compounding quantity of the filler with respect to 100 weight part of the said wholly aromatic liquid crystalline polyester is less than 200 weight part.
  • the blending amount of the filler with respect to 100 parts by weight of the wholly aromatic liquid crystal polyester may be less than 10 parts by weight.
  • the compounding amount of the filler with respect to 100 parts by weight of the wholly aromatic liquid crystal polyester exceeds 200 parts by weight. Also good.
  • a molded product produced by a method different from melt molding using the wholly aromatic liquid crystalline polyester described in any of (1) to (4) or the liquid crystalline polyester resin composition described in (6) may be used. good.
  • a wholly aromatic liquid crystal polyester excellent in fogging property, metal adhesion property and creep resistance property can be obtained.
  • the wholly aromatic liquid crystal polyester or the wholly aromatic liquid crystal polyester resin composition of the embodiment of the present invention is injection-molded, molding with less mold contamination and excellent fogging properties, metal adhesion, and creep resistance properties Goods can be provided.
  • the wholly aromatic liquid crystal polyester as an embodiment of the present invention is a polyester called a thermotropic liquid crystal polymer that exhibits optical anisotropy when melted.
  • the structural unit derived from hydroquinone is 2.0 to Contains 15.0 mol%.
  • the content of the structural unit derived from hydroquinone is less than 2.0 mol%, the fogging property tends to be lowered.
  • the content of the structural unit derived from hydroquinone exceeds 15.0 mol%, the metal adhesiveness tends to decrease. From the viewpoint of further improving the metal adhesion, it is preferable to contain 10.0 mol% or less of a structural unit derived from hydroquinone.
  • the wholly aromatic liquid crystal polyester of the embodiment of the present invention preferably comprises the structural units (I), (II), (III), (IV), and (V) represented by the following formula.
  • the structural unit (I) is a structural unit derived from p-hydroxybenzoic acid
  • the structural unit (II) is a structural unit derived from 4,4′-dihydroxybiphenyl
  • the structural unit (III) is a structural unit derived from hydroquinone
  • the structural unit (IV) represents a structural unit derived from terephthalic acid
  • the structural unit (V) represents a structural unit derived from isophthalic acid.
  • the content of the structural unit (I) is preferably 65 mol% or more, more preferably 68 mol% or more based on the total content of the structural units (I), (II) and (III). On the other hand, 80 mol% or less is preferable and 78 mol% or less is more preferable.
  • the content of the structural unit (II) is preferably 55 mol% or more, more preferably 58 mol% or more with respect to the total content of the structural units (II) and (III).
  • 85 mol% or less is preferable, 78 mol% or less is more preferable, and 73 mol% or less is more preferable.
  • the content of the structural unit (IV) is preferably 50 mol% or more, more preferably 55 mol% or more, and more preferably 60 mol% or more with respect to the total content of the structural units (IV) and (V). .
  • 95 mol% or less is preferable, 90 mol% or less is more preferable, and 85 mol% or less is more preferable.
  • the total content of the structural units (II) and (III) and the total content of (IV) and (V) are preferably substantially equimolar.
  • substantially equimolar means that the structural unit constituting the polymer main chain excluding the terminal is equimolar. For this reason, when the structural unit constituting the terminal is included, an aspect that is not necessarily equimolar can satisfy the requirement of “substantially equimolar”.
  • the fogging property of the wholly aromatic liquid crystal polyester and the adhesion property to the metal can be further improved.
  • the affinity with a filler improves in the resin composition formed by mix
  • mold contamination that occurs during injection molding can be reduced.
  • the content of each structural unit is determined by measuring the wholly aromatic liquid crystal polyester in an NMR sample tube and dissolving the wholly aromatic liquid crystal polyester in a solvent (for example, pentafluorophenol / 1,1). , 2,2-tetrachloroethane-d 2 mixed solvent) and 1 H-NMR measurement can be performed from the peak area ratio derived from each structural unit.
  • a solvent for example, pentafluorophenol / 1,1). , 2,2-tetrachloroethane-d 2 mixed solvent
  • 1 H-NMR measurement can be performed from the peak area ratio derived from each structural unit.
  • Examples of the terminal group of the wholly aromatic liquid crystal polyester according to the embodiment of the present invention include a hydroxy terminal group, an acetyl terminal group, and a carboxy terminal group.
  • the total of the hydroxy end group amount (a) [unit: equivalent / (g ⁇ 10 ⁇ 6 )] and the acetyl end group amount (b) [unit: equivalent / (g ⁇ 10 ⁇ 6 )] is 50 to 350 equivalent / (G ⁇ 10 ⁇ 6 ).
  • the acetyl end group amount (b) may be zero.
  • the total of (a) + (b) is less than 50 equivalents / (g ⁇ 10 ⁇ 6 )
  • the metal adhesion tends to deteriorate and the creep resistance tends to deteriorate.
  • the total of (a) + (b) is preferably 75 equivalents / (g ⁇ 10 ⁇ 6 ) or more.
  • the sum of (a) + (b) is more than 350 equivalents / (g ⁇ 10 ⁇ 6 )
  • the fogging property tends to be lowered.
  • the total of (a) + (b) is preferably 200 equivalents / (g ⁇ 10 ⁇ 6 ) or less.
  • the terminal group amount of the wholly aromatic liquid crystal polyester is determined by measuring the wholly aromatic liquid crystal polyester in an NMR sample tube and dissolving the wholly aromatic liquid crystal polyester in a solvent (for example, pentafluorophenol / 1,1,2,2-tetra In a mixed solvent of chloroethane-d 2, 13 C-NMR measurement is performed on the hydroxy terminal group and carboxy terminal group, and 1 H-NMR measurement is performed on the acetyl terminal group. It can be calculated from the area ratio with the peak derived from the chain skeleton.
  • a solvent for example, pentafluorophenol / 1,1,2,2-tetra
  • 13 C-NMR measurement is performed on the hydroxy terminal group and carboxy terminal group
  • 1 H-NMR measurement is performed on the acetyl terminal group. It can be calculated from the area ratio with the peak derived from the chain skeleton.
  • the wholly aromatic liquid crystalline polyester according to the embodiment of the present invention has a hydroxy end group amount (a) [unit: equivalent / (g ⁇ 10 ⁇ 6 )] and an acetyl end group amount (b) [unit: equivalent / (g ⁇ 10). -6 )] and the ratio [(a) + (b)] / (c) of the amount of carboxy terminal group (c) [unit: equivalent / (g ⁇ 10 ⁇ 6 )] is 1.05 to 2 .00.
  • liquid crystalline polyesters containing hydroquinone-derived structural units have a high sublimation property of the hydroquinone monomer, so that [(a) + (b)] / (c) is 1 or less, and the carboxy end group is decomposed. Generates carbon dioxide.
  • the wholly aromatic liquid crystal polyester according to the embodiment of the present invention controls the terminal group so that [(a) + (b)] / (c) is 1.05 or more. It is possible to reduce carbon dioxide derived from the origin and improve fogging properties and metal adhesion properties. Preferably it is 1.10 or more, more preferably 1.30 or more, and fogging property and metal adhesion can be further improved.
  • a wholly aromatic liquid crystal polyester that has a small change in melt viscosity during melt residence, that is, has good residence stability, is less likely to cause a change in viscosity during melt processing, and thus is suitable for precision molding and the like.
  • [(a) + (b)] / (c) exceeds 2.00, it becomes difficult to increase the degree of polymerization of the wholly aromatic liquid crystal polyester, and the metal adhesion is remarkably lowered. From the viewpoint of further improving the metal adhesion, [(a) + (b)] / (c) is more preferably 1.60 or less.
  • the wholly aromatic liquid crystalline polyester of the embodiment of the present invention comprises a hydroxy end group amount (a) [unit: equivalent / (g ⁇ 10 ⁇ 6 )] and a hydroxy end group amount (a) [unit: equivalent / (g ⁇ 10 ⁇ 6 )] and the total amount of acetyl end group (b) [unit: equivalent / (g ⁇ 10 ⁇ 6 )] (a) / [(a) + (b)] is 0.30 to 1 Preferably it is 0.00.
  • the amount of the hydroxy end group within the above range, the generated gas derived from the acetyl end group can be reduced and the fogging property can be further improved. From the viewpoint of further improving the fogging property, (a) / [(a) + (b)] is more preferably 0.40 or more, further preferably 0.55 or more, and particularly preferably 0.60 or more.
  • the absolute number average molecular weight of the wholly aromatic liquid crystal polyester of the embodiment of the present invention is preferably 5000 or more, more preferably 7000 or more, and more preferably 8000 or more from the viewpoint of further improving metal adhesion.
  • 25000 or less is preferable, 20000 or less is more preferable, and 18000 or less is more preferable.
  • the absolute number average molecular weight can be measured by GPC / light scattering method (gel permeation chromatography / light scattering method) using a solvent in which the wholly aromatic liquid crystalline polyester is soluble as an eluent.
  • the solvent in which the wholly aromatic liquid crystal polyester is soluble include halogenated phenols and mixed solvents of halogenated phenols and general organic solvents.
  • pentafluorophenol and a mixed solvent of pentafluorophenol and chloroform are particularly preferable from the viewpoint of handleability.
  • the melt viscosity of the wholly aromatic liquid crystal polyester of the embodiment of the present invention is preferably 1 to 200 Pa ⁇ s, more preferably 10 to 100 Pa ⁇ s, and more preferably 20 to 50 Pa ⁇ s.
  • the melt viscosity is a value measured by a Koka flow tester under the condition of the melting point of the wholly aromatic liquid crystal polyester + 10 ° C. and the shear rate of 1000 / sec.
  • the melting point refers to the endothermic peak temperature (Tm1) observed when the fully aromatic liquid crystal polyester that has been polymerized is measured under a temperature rising condition from room temperature to 20 ° C./min in differential scanning calorimetry. After holding at a temperature of Tm1 + 20 ° C. for 5 minutes, the temperature is once cooled to room temperature under a temperature drop condition of 20 ° C./minute, and the endothermic peak temperature (Tm2) observed when measured again under a temperature rise condition of 20 ° C./minute is obtained. Point to.
  • the melting point of the wholly aromatic liquid crystal polyester of the embodiment of the present invention is preferably 220 to 350 ° C., more preferably 250 to 345 ° C., and particularly preferably 270 to 340 ° C.
  • the method for producing the wholly aromatic liquid crystal polyester of the embodiment of the present invention is not particularly limited as long as the wholly aromatic liquid crystal polyester having a specific end group, which is a feature of the embodiment of the present invention, is obtained. It can be manufactured according to the law.
  • polyester polymerization methods include the following production methods. (1) A method for producing a wholly aromatic liquid crystalline polyester from p-acetoxybenzoic acid, 4,4′-diacetoxybiphenyl, diacetoxybenzene (a diacetylated product of hydroquinone), terephthalic acid and isophthalic acid by a deacetic acid polymerization reaction.
  • a predetermined amount of diphenyl carbonate is reacted with p-hydroxybenzoic acid and aromatic dicarboxylic acid such as terephthalic acid and isophthalic acid to form phenyl esters, respectively, and then aromatics such as 4,4′-dihydroxybiphenyl and hydroquinone.
  • aromatics such as 4,4′-dihydroxybiphenyl and hydroquinone.
  • the amount of a distillate produced by a polymerization reaction and discharged outside the polymerization system is defined as a specific range.
  • the method of controlling so that it may be mentioned.
  • a method of performing deacetic acid polymerization by controlling the amount of acetic acid distillate discharged out of the polymerization system during the polymerization reaction to be within a specific range is more preferable.
  • the temperature is raised to the melting temperature of the wholly aromatic liquid crystal polyester while distilling off acetic acid, and deacetic acid polymerization is performed.
  • This is a method for producing a wholly aromatic liquid crystal polyester, and it is preferable that the distillation rate determined by the following formula [1] when the temperature of the polymerization reaction solution reaches 250 ° C. is 50 to 80%.
  • Distillation rate (%) distillate amount (g) / [(number of moles of acetic anhydride charged (mol) ⁇ number of moles of hydroxy groups in raw material monomer (mol)) ⁇ acetic anhydride molecular weight (g / mol) + (raw material Number of moles of hydroxy groups in the monomer (mol) ⁇ 2 ⁇ acetic acid molecular weight (g / mol))] ⁇ 100 [1]
  • acetylation step specifically, a predetermined amount of p-hydroxybenzoic acid, 4,4′-dihydroxybiphenyl, hydroquinone, terephthalic acid, isophthalic acid and acetic anhydride are charged into a reaction vessel, and a nitrogen gas atmosphere It is preferred to acetylate the hydroxy group by heating under stirring.
  • the reaction vessel may be provided with a stirring blade, may be provided with a distillation pipe, and may be provided with a discharge port in the lower part.
  • the conditions for acetylation are usually in the range of 130 to 150 ° C. for 1 to 3 hours.
  • a temperature of 143 ° C. or higher is preferable from the viewpoint of improving the acetylation reaction rate. More preferably, it is 147 degreeC or more.
  • the amount of acetic anhydride used is preferably 1.00 to 1.15 mole equivalent of the total of the phenolic hydroxy groups of p-hydroxybenzoic acid, 4,4′-dihydroxybiphenyl and hydroquinone. 1.03 to 1.12 molar equivalents, more preferably 1.05 to 1.10 molar equivalents.
  • the amount of acetic anhydride used is 1.00 molar equivalent or more with respect to the total of hydroxy groups, since the acetylation of hydroxy groups proceeds quantitatively and the polymerization reaction occurs rapidly.
  • the amount of acetic anhydride used is 1.15 molar equivalents or less based on the total of hydroxy groups, the terminal groups of the wholly aromatic liquid crystal polyester, which is a feature of the embodiment of the present invention, can be more easily within the aforementioned range. This is preferable because it can be controlled.
  • the polymerization is preferably performed so that the distillation rate becomes 50 to 80% when the temperature of the polymerization reaction solution reaches 250 ° C.
  • the distillation rate is set to 50% or more, the polymerization reaction can proceed with a high reaction rate, and a polymer with little composition deviation can be obtained, and 65% or more is more preferable.
  • the distillation rate to 80% or less, the amount of hydroquinone distilled out of the polymerization system together with distilled acetic acid can be reduced, and the terminal groups of the wholly aromatic liquid crystalline polyester can be easily controlled within the aforementioned range. Since it can do, it is preferable and 75 mol% or less is more preferable. Especially preferably, it is 73 mol% or less. While controlling the temperature of the acetylation step within the above range to improve the acetylation reaction rate, and controlling the distillation rate when the temperature of the polymerization reaction solution reaches 250 ° C.
  • the polymerization reaction By performing the above, it is possible to easily obtain a wholly aromatic liquid crystal polyester having [(a) + (b)] / (c) of 1.30 to 2.00.
  • the distillation rate at 250 ° C. was focused as a representative index of the distillation rate.
  • a melt polymerization method in which the reaction is performed under reduced pressure at a temperature at which the wholly aromatic liquid crystalline polyester melts to complete the polymerization reaction is preferable.
  • the melt polymerization method is an advantageous method for producing a uniform polymer, and is preferable because an excellent polymer with less gas generation can be obtained.
  • the polymerization temperature is a general melting temperature of the wholly aromatic liquid crystal polyester, for example, in the range of 250 to 365 ° C., and preferably the melting point of the wholly aromatic liquid crystal polyester + 10 ° C. or more.
  • the degree of vacuum during polymerization is usually 0.1 mmHg (13.3 Pa) to 20 mmHg (2660 Pa), preferably 10 mmHg (1330 Pa) or less, more preferably 5 mmHg (665 Pa) or less.
  • the polymerization stirring speed is preferably 50 rpm or less, and the polymerization time is preferably 0.5 to 1 hour until the predetermined torque is detected and the polymerization is terminated after the degree of vacuum is 665 Pa or less.
  • acetylation and polymerization may be performed continuously in the same reaction vessel or in different reaction vessels.
  • the obtained polymer is taken out from the reaction vessel by pressurizing the inside of the reaction vessel at a temperature at which the polymer melts, discharging the polymer from the discharge port provided in the reaction vessel, and cooling the discharged polymer.
  • the method of cooling in water can be mentioned.
  • the pressurization in the reaction vessel may be 0.02 to 0.5 MPa, for example.
  • the discharge port may be provided at the lower part of the reaction vessel. Moreover, what is necessary is just to discharge a polymer in a strand form from a discharge outlet. Resin pellets can be obtained by cutting the polymer cooled in the cooling liquid into pellets.
  • the polymerization reaction can be completed by a solid phase polymerization method.
  • a solid phase polymerization method there is a method in which the wholly aromatic liquid crystal polyester polymer or oligomer of the embodiment of the present invention is pulverized by a pulverizer, heated in a nitrogen stream or under reduced pressure, polymerized to a desired degree of polymerization, and the reaction is completed.
  • the heating may be performed for 1 to 50 hours in the range of the melting point of the wholly aromatic liquid crystal polyester to ⁇ 5 ° C. to the melting point ⁇ 50 ° C. (for example, 200 to 300 ° C.).
  • the polymerization reaction of the wholly aromatic liquid crystal polyester of the embodiment of the present invention proceeds even without a catalyst, but a metal compound such as stannous acetate, tetrabutyl titanate, potassium acetate and sodium acetate, antimony trioxide, and magnesium metal is used as a catalyst. It can also be used.
  • a metal compound such as stannous acetate, tetrabutyl titanate, potassium acetate and sodium acetate, antimony trioxide, and magnesium metal is used as a catalyst. It can also be used.
  • the resin composition can be obtained by blending the wholly aromatic liquid crystal polyester of the embodiment of the present invention with a filler within a range not impairing the effects of the present invention.
  • a filler include fillers such as a fiber, a plate, a powder, and a granule.
  • whisker-like filler mica, talc, kaolin, silica, glass beads, glass flakes, clay, molybdenum disulfide, wollastonite, titanium oxide, zinc oxide, calcium polyphosphate and graphite, etc.
  • the filler used in the embodiment of the present invention has its surface treated with a known coupling agent (for example, silane coupling agent, titanate coupling agent, etc.) and other surface treatment agents. Also good.
  • glass fiber is particularly preferable, and the creep resistance can be further improved.
  • the type of glass fiber is not particularly limited as long as it is generally used for reinforcing resin, and can be selected from, for example, long fiber type or short fiber type chopped strands and milled fibers.
  • the glass fiber used in the embodiment of the present invention is preferably weakly alkaline in terms of mechanical strength. In particular, glass fibers having a silicon oxide content of 50 to 80% by weight are preferable, and glass fibers having a silicon oxide content of 65 to 77% by weight are more preferable.
  • the glass fiber is preferably treated with an epoxy-based, urethane-based, acrylic-based coating or sizing agent, and epoxy-based is particularly preferable.
  • the glass fiber may be coated or bundled with a thermoplastic resin such as an ethylene / vinyl acetate copolymer or a thermosetting resin such as an epoxy resin. Two or more kinds of the fillers may be used in combination.
  • the blending ratio of the filler is preferably 10 parts by weight or more, more preferably 20 parts by weight or more, and more preferably 30 parts by weight or more with respect to 100 parts by weight of the wholly aromatic liquid crystalline polyester. Further, it is preferably 200 parts by weight or less, more preferably 20 to 150 parts by weight or less, and more preferably 100 parts by weight or less.
  • an antioxidant for example, hindered phenol, hydroquinone, phosphites, and substitution thereof
  • a heat stabilizer for example, hindered phenol, hydroquinone, phosphites, and substitution thereof
  • UV absorbers eg, resorcinol, salicylate
  • anti-coloring agents such as phosphites and hypophosphites, lubricants, mold release agents (montanic acid and metal salts thereof, esters thereof, half esters thereof) , Stearyl alcohol, stearamide and polyethylene wax
  • colorants including dyes or pigments, carbon black as a conductive agent or colorant, crystal nucleating agent, plasticizer, flame retardant (bromine flame retardant, phosphorus flame retardant, red Phosphorus, silicone flame retardants, etc.), flame retardant aids, and conventional additives selected from antistatic agents It can be.
  • a polymer other than wholly aromatic liquid crystal polyester may be blended. By such blending, predetermined characteristics can be further imparted.
  • the method of blending fillers, additives and the like into the wholly aromatic liquid crystal polyester of the embodiment of the present invention is not particularly limited, and is a dry blend or solution blending method, added during polymerization of the wholly aromatic liquid crystal polyester, Melt kneading can be used, and melt kneading is particularly preferable.
  • a known method can be used for melt kneading.
  • a Banbury mixer, a rubber roll machine, a kneader, a single-screw or twin-screw extruder can be used, and among these, a twin-screw extruder is preferably used.
  • the melt kneading temperature is preferably not less than the melting point of the wholly aromatic liquid crystal polyester and not more than the melting point + 50 ° C.
  • the kneading method 1) a method in which a wholly aromatic liquid crystal polyester, a filler and other additives are collectively added from a feeder and kneaded (collective kneading method), and 2) a wholly aromatic liquid crystal polyester and other additions After adding the agent from the original feeder and kneading, the filler and if necessary other additives are added from the side feeder and kneading (side feed method), 3) wholly aromatic liquid crystalline polyester and other A method of producing a wholly aromatic liquid crystal polyester composition (master pellet) containing a high concentration of additives, and then kneading the master pellet with the wholly aromatic liquid crystal polyester and filler so as to have a prescribed concentration (master pellet method) Any method can be used.
  • the wholly aromatic liquid crystal polyester resin composition kneaded with the wholly aromatic liquid crystal polyester and the filler according to the embodiment of the present invention includes injection molding, injection compression molding, compression molding, extrusion molding, blow molding, press molding, spinning, etc.
  • melt molding By performing known melt molding, it is possible to process into a molded product having excellent surface appearance (color tone) and mechanical properties, heat resistance and flame retardancy.
  • Molded products here include injection-molded products, extruded products, press-molded products, sheets, pipes, various films such as unstretched, uniaxially stretched films, biaxially stretched films, unstretched yarns, stretched yarns, and superstretched yarns. And various fibers.
  • the effects of the present invention can be remarkably obtained, and mold contamination can be greatly reduced, which is preferable.
  • Molded articles made of the wholly aromatic liquid crystalline polyester or wholly aromatic liquid crystalline polyester resin composition thus obtained include, for example, various gears, various cases, sensors, LED lamps, connectors, sockets, resistors, relay cases, relays.
  • Household / office electrical product parts office computer-related parts, telephone-related parts, facsimile-related parts, copier-related parts, cleaning jigs, oilless bearings, stern bearings, submersible bearings, motor parts, lighters , Machine-related parts such as typewriters, optical instruments such as microscopes, binoculars, cameras and watches, precision machine-related parts; alternator terminals, alternator connectors, IC regulators, potentiometer bases for light dimmers, discharge Various valves such as gas valves, various pipes related to fuel, exhaust system, intake system, air intake nozzle snorkel, intake manifold, fuel pump, engine coolant joint, carburetor main body, carburetor spacer, exhaust gas sensor, coolant sensor, oil temperature Sensor, throttle position sensor, crankshaft position sensor, air flow meter, brake butt wear sensor, thermostat base for air conditioner, motor insulator for air conditioner, automotive motor insulator such as power window, heating hot air flow control valve, brush for radiator motor Holder, water pump impeller, turbine vane
  • composition analysis is not limited only to the following example.
  • Composition analysis, terminal group weight measurement, absolute number average molecular weight measurement, melting point measurement, and melt viscosity measurement of the wholly aromatic liquid crystal polyester were performed by the following methods.
  • composition analysis of wholly aromatic liquid crystal polyester was performed by 1 H-nuclear magnetic resonance spectrum ( 1 H-NMR) measurement. 50 mg of wholly aromatic liquid crystal polyester is weighed in an NMR sample tube, dissolved in 800 ⁇ L of solvent pentafluorophenol / 1,1,2,2-tetrachloroethane-d 2 (mixing ratio: 65/35 w / w%), and then UNITY Using an INOVA 500 NMR apparatus (manufactured by Varian), 1 H-NMR measurement was performed at an observation frequency of 500 MHz and a temperature of 80 ° C., and the composition was determined from the peak area ratio derived from each structural unit observed at around 7 to 9.5 ppm. analyzed.
  • 1 H-NMR 1 H-nuclear magnetic resonance spectrum
  • wholly aromatic liquid crystal polyester terminal group content measures the total aromatic end groups of the liquid crystalline polyester, the carboxy end groups and hydroxyl end groups was determined by 13 C- nuclear magnetic resonance spectrum (13 C-NMR).
  • 50 mg of wholly aromatic liquid crystal polyester is weighed in an NMR sample tube, dissolved in 800 ⁇ L of solvent pentafluorophenol / 1,1,2,2-tetrachloroethane-d 2 (mixing ratio: 65/35 w / w%), and then UNITY Using an INOVA500 NMR apparatus (manufactured by Varian), 13 C-NMR measurement was performed at an observation frequency of 126 MHz and a temperature of 80 ° C., and a peak area derived from a carboxy end group observed in the vicinity of 164 to 165 ppm and 115 to 115.5 ppm.
  • the amount of terminal groups was analyzed from the ratio of the peak area derived from the carbon adjacent to the hydroxy terminal group and the peak area derived from the polymer main chain skeleton carbon
  • acetyl end group 50 mg of wholly aromatic liquid crystalline polyester was weighed in an NMR sample tube, and the solvent pentafluorophenol / 1,1,2,2-tetrachloroethane-d 2 (mixing ratio: 65/35 w / w%). Dissolved in 800 ⁇ L, 1 H-NMR measurement was performed at an observation frequency of 500 MHz and a temperature of 80 ° C. using a UNITY INOVA500 NMR apparatus (manufactured by Varian). The amount of terminal groups was analyzed from the ratio between the peak area and the peak area derived from the polymer main chain skeleton.
  • Tm melting point
  • the wholly aromatic liquid crystal polyester 18 kinds of wholly aromatic liquid crystal polyesters (a-1) to (a-18) were produced as Production Examples 1 to 18. And about each produced liquid crystal polyester, the composition analysis mentioned above, the terminal group weight measurement, the absolute number average molecular weight measurement, melting
  • the temperature was raised while controlling the distillation amount of acetic acid produced by the reaction and the ring flow rate so that the distillation rate when reaching 250 ° C. was 71%.
  • the polymerization temperature was maintained at 350 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued, and the polymerization was completed when the torque required for stirring reached 15 kg ⁇ cm.
  • the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a wholly aromatic liquid crystal polyester (a-1) was obtained.
  • the wholly aromatic liquid crystalline polyester (a-1) had a Tm of 333 ° C., an absolute number average molecular weight of 9800, a melt viscosity of 45 Pa ⁇ s measured at a temperature of 343 ° C. and a shear rate of 1000 / s. Moreover, when the composition analysis was performed by the said method, the structural unit content derived from hydroquinone with respect to the structural unit whole quantity was 8.0 mol%.
  • structural unit (II) Total of structural units derived from 4,4′-dihydroxybiphenyl (structural unit (II)) and structural units derived from hydroquinone (structural unit (III)) and structural units derived from terephthalic acid (structural unit (IV)) and isophthalic acid
  • structural unit (V) The sum of the derived structural units (structural units (V)) was substantially equimolar.
  • the amount of hydroxy terminal groups (a) is 60 equivalent / (g * 10 ⁇ -6 >), and the amount of acetyl terminal groups (b) is 40 equivalent / (g * 10 ⁇ -6 >).
  • the carboxy terminal group amount (c) is 90 equivalents / (g ⁇ 10 ⁇ 6 ), and the ratio of the total of the hydroxy terminal group amount and the acetyl terminal group amount to the carboxy terminal group amount ([(a) + (b)] / (C)) was 1.11.
  • the temperature was raised while controlling the distillation amount of acetic acid produced by the reaction and the ring flow rate, and the distillation rate when reaching 250 ° C. was 72%. Thereafter, the polymerization temperature was maintained at 330 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour, the reaction was continued, and the polymerization was completed when the torque required for stirring reached 20 kg ⁇ cm. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A wholly aromatic liquid crystal polyester (a-2) was obtained.
  • the wholly aromatic liquid crystalline polyester (a-2) had a Tm of 315 ° C., an absolute number average molecular weight of 10500, a melt viscosity of 42 Pa ⁇ s measured at a temperature of 325 ° C. and a shear rate of 1000 / s. Moreover, when composition analysis was performed by the said method, the structural unit content derived from hydroquinone with respect to the structural unit whole quantity was 7.3 mol%.
  • the ratio of the structural unit (I) to the total of the structural unit (I), the structural unit (II), and the structural unit (III) is 68 mol%, and the structural unit (II) relative to the total of the structural unit (II) and the structural unit (III) ) was 70 mol%, and the ratio of structural unit (IV) to the total of structural unit (IV) and structural unit (V) was 63 mol%.
  • the total of the structural unit (II) and the structural unit (III) and the total of the structural unit (IV) and the structural unit (V) were substantially equimolar.
  • the amount of hydroxy terminal groups (a) is 60 equivalents / (g * 10 ⁇ -6 >), and the amount of acetyl terminal groups (b) is 50 equivalents / (g * 10 ⁇ -6 >).
  • the carboxyl end group amount (c) was 94 equivalents / (g ⁇ 10 ⁇ 6 ), and [(a) + (b)] / (c) was 1.17.
  • the temperature was raised while controlling the distillation amount of acetic acid produced by the reaction and the ring flow rate, and the distillation rate when reaching 250 ° C. was set to 68%. Thereafter, the polymerization temperature was maintained at 360 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour, the reaction was continued, and the polymerization was completed when the torque required for stirring reached 10 kg ⁇ cm. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A wholly aromatic liquid crystal polyester (a-3) was obtained.
  • the wholly aromatic liquid crystalline polyester (a-3) had a Tm of 336 ° C., an absolute number average molecular weight of 7800, a melt viscosity of 33 Pa ⁇ s measured at a temperature of 346 ° C. and a shear rate of 1000 / s. Moreover, when composition analysis was performed by the said method, the structural unit content derived from hydroquinone with respect to the structural unit whole quantity was 7.9 mol%.
  • the ratio of the structural unit (I) to the total of the structural unit (I), the structural unit (II), and the structural unit (III) is 77 mol%, and the structural unit (II) relative to the total of the structural unit (II) and the structural unit (III) ) was 58 mol%, and the ratio of structural unit (IV) to the total of structural unit (IV) and structural unit (V) was 70 mol%.
  • the total of the structural unit (II) and the structural unit (III) and the total of the structural unit (IV) and the structural unit (V) were substantially equimolar.
  • the hydroxy end group amount (a) was 77.5 equivalent / (g ⁇ 10 ⁇ 6 )
  • the acetyl end group amount (b) was 77.5 equivalent / (g ⁇ 10).
  • the amount of carboxy terminal group (c) was 131 equivalents / (g ⁇ 10 -6 )
  • [(a) + (b)] / (c) was 1.18.
  • the temperature was raised while controlling the distillation amount of acetic acid produced by the reaction and the ring flow rate, and the distillation rate when reaching 250 ° C. was 74%.
  • the polymerization temperature was maintained at 340 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued, and the polymerization was completed when the torque required for stirring reached 20 kg ⁇ cm.
  • the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a wholly aromatic liquid crystal polyester (a-4) was obtained.
  • the wholly aromatic liquid crystalline polyester (a-4) had a Tm of 327 ° C., an absolute number average molecular weight of 10,200, a melt viscosity measured at a temperature of 337 ° C. and a shear rate of 1000 / s of 42 Pa ⁇ s. Moreover, when composition analysis was performed by the said method, the structural unit content derived from hydroquinone with respect to the structural unit whole quantity was 7.6 mol%.
  • the ratio of the structural unit (I) to the total of the structural unit (I), the structural unit (II), and the structural unit (III) is 66 mol%, and the structural unit (II) relative to the total of the structural unit (II) and the structural unit (III) ) was 70 mol%, and the ratio of structural unit (IV) to the total of structural unit (IV) and structural unit (V) was 88 mol%.
  • the total of the structural unit (II) and the structural unit (III) and the total of the structural unit (IV) and the structural unit (V) were substantially equimolar.
  • hydroxy terminal group amount (a) is 50 equivalent / (g * 10 ⁇ -6 >)
  • acetyl terminal group amount (b) is 50 equivalent / (g * 10 ⁇ -6 >).
  • the carboxyl end group amount (c) was 85 equivalents / (g ⁇ 10 ⁇ 6 ), and [(a) + (b)] / (c) was 1.18.
  • the temperature was raised while controlling the distillation amount of acetic acid produced by the reaction and the ring flow rate, and the distillation rate when reaching 250 ° C. was 77%.
  • the polymerization temperature was maintained at 360 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued, and the polymerization was completed when the torque required for stirring reached 10 kg ⁇ cm.
  • the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a wholly aromatic liquid crystal polyester (a-5) was obtained.
  • the wholly aromatic liquid crystalline polyester (a-5) had a Tm of 345 ° C., an absolute number average molecular weight of 8800, a melt viscosity of 35 Pa ⁇ s measured at a temperature of 355 ° C. and a shear rate of 1000 / s. Moreover, when composition analysis was performed by the said method, the structural unit content derived from hydroquinone with respect to the structural unit whole quantity was 5.8 mol%.
  • the ratio of the structural unit (I) to the total of the structural unit (I), the structural unit (II), and the structural unit (III) is 70 mol%, and the structural unit (II) relative to the total of the structural unit (II) and the structural unit (III) ) was 75 mol%, and the ratio of structural unit (IV) to the total of structural unit (IV) and structural unit (V) was 92 mol%.
  • the total of the structural unit (II) and the structural unit (III) and the total of the structural unit (IV) and the structural unit (V) were substantially equimolar.
  • the amount of hydroxy end groups (a) was 54 equivalents / (g ⁇ 10 ⁇ 6 ), and the amount of acetyl end groups (b) was 66 equivalents / (g ⁇ 10 ⁇ 6 ).
  • the amount of carboxy terminal group (c) was 100 equivalents / (g ⁇ 10 ⁇ 6 ), and [(a) + (b)] / (c) was 1.20.
  • the temperature was raised while controlling the distillation amount of acetic acid produced by the reaction and the flow rate of the ring, so that the distillation rate when reaching 250 ° C. was 64%.
  • the polymerization temperature was maintained at 350 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued, and the polymerization was completed when the torque required for stirring reached 10 kg ⁇ cm.
  • the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a wholly aromatic liquid crystal polyester (a-6) was obtained.
  • the wholly aromatic liquid crystalline polyester (a-6) had a Tm of 325 ° C., an absolute number average molecular weight of 9,500, a melt viscosity of 38 Pa ⁇ s measured at a temperature of 335 ° C. and a shear rate of 1000 / s. Moreover, when composition analysis was performed by the said method, the structural unit content derived from hydroquinone with respect to the total amount of a structural unit was 4.0 mol%.
  • the ratio of the structural unit (I) to the total of the structural unit (I), the structural unit (II), and the structural unit (III) is 75 mol%, and the structural unit (II) relative to the total of the structural unit (II) and the structural unit (III) ) was 80 mol%, and the ratio of structural unit (IV) to the total of structural unit (IV) and structural unit (V) was 70 mol%.
  • the total of the structural unit (II) and the structural unit (III) and the total of the structural unit (IV) and the structural unit (V) were substantially equimolar.
  • hydroxy terminal group amount (a) is 50 equivalent / (g * 10 ⁇ -6 > )
  • acetyl terminal group amount (b) is 60 equivalent / (g * 10 ⁇ -6 >).
  • the carboxyl end group amount (c) was 88 equivalents / (g ⁇ 10 ⁇ 6 ), and [(a) + (b)] / (c) was 1.25.
  • the temperature was raised while controlling the distillation amount of acetic acid produced by the reaction and the ring flow rate, so that the distillation rate when reaching 250 ° C. was 65%.
  • the polymerization temperature was maintained at 365 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued, and the polymerization was completed when the torque required for stirring reached 10 kg ⁇ cm.
  • the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a wholly aromatic liquid crystal polyester (a-7) was obtained.
  • the wholly aromatic liquid crystalline polyester (a-7) had a Tm of 350 ° C., an absolute number average molecular weight of 8900, a melt viscosity of 32 Pa ⁇ s measured at a temperature of 360 ° C. and a shear rate of 1000 / s. Moreover, when composition analysis was performed by the said method, the structural unit content derived from hydroquinone with respect to the structural unit whole quantity was 5.8 mol%.
  • the ratio of the structural unit (I) to the total of the structural unit (I), the structural unit (II), and the structural unit (III) is 80 mol%, and the structural unit (II) relative to the total of the structural unit (II) and the structural unit (III) ) was 65 mol%, and the ratio of structural unit (IV) to the total of structural unit (IV) and structural unit (V) was 52 mol%.
  • the total of the structural unit (II) and the structural unit (III) and the total of the structural unit (IV) and the structural unit (V) were substantially equimolar.
  • the amount of hydroxy terminal groups (a) is 39 equivalents / (g * 10 ⁇ -6 >), and the amount of acetyl terminal groups (b) is 71 equivalents / (g * 10 ⁇ -6 >).
  • the carboxyl end group amount (c) was 91 equivalents / (g ⁇ 10 ⁇ 6 ), and [(a) + (b)] / (c) was 1.21.
  • the temperature was raised while controlling the distillation amount of acetic acid produced by the reaction and the ring flow rate, and the distillation rate when reaching 250 ° C. was 69%.
  • the polymerization temperature was maintained at 360 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued, and the polymerization was completed when the torque required for stirring reached 10 kg ⁇ cm.
  • the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a wholly aromatic liquid crystal polyester (a-8) was obtained.
  • the wholly aromatic liquid crystalline polyester (a-8) had a Tm of 337 ° C., an absolute number average molecular weight of 8,800, a melt viscosity of 30 Pa ⁇ s measured at a temperature of 347 ° C. and a shear rate of 1000 / s. Moreover, when composition analysis was performed by the said method, the structural unit content derived from hydroquinone with respect to the total amount of structural units was 6.8 mol%.
  • the ratio of the structural unit (I) to the total of the structural unit (I), the structural unit (II), and the structural unit (III) is 63 mol%, and the structural unit (II) relative to the total of the structural unit (II) and the structural unit (III) ) was 75 mol%, and the ratio of structural unit (IV) to the total of structural unit (IV) and structural unit (V) was 90 mol%.
  • the total of the structural unit (II) and the structural unit (III) and the total of the structural unit (IV) and the structural unit (V) were substantially equimolar.
  • hydroxy terminal group amount (a) is 56 equivalent / (g * 10 ⁇ -6 >), and acetyl terminal group amount (b) is 69 equivalent / (g * 10 ⁇ -6 >).
  • the carboxyl end group amount (c) was 103 equivalents / (g ⁇ 10 ⁇ 6 ), and [(a) + (b)] / (c) was 1.21.
  • the temperature was raised while controlling the distillation amount of acetic acid produced by the reaction and the ring flow rate, and the distillation rate when reaching 250 ° C. was 77%.
  • the polymerization temperature was maintained at 360 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued, and the polymerization was completed when the torque required for stirring reached 10 kg ⁇ cm.
  • the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a wholly aromatic liquid crystal polyester (a-9) was obtained.
  • the wholly aromatic liquid crystalline polyester (a-9) had a Tm of 340 ° C., an absolute number average molecular weight of 9250, a melt viscosity of 32 Pa ⁇ s measured at a temperature of 350 ° C. and a shear rate of 1000 / s. Moreover, when composition analysis was performed by the said method, the structural unit content derived from hydroquinone with respect to the total amount of structural units was 3.1 mol%.
  • the ratio of the structural unit (I) to the total of the structural unit (I), the structural unit (II), and the structural unit (III) is 82 mol%, and the structural unit (II) relative to the total of the structural unit (II) and the structural unit (III) ) was 80 mol%, and the ratio of structural unit (IV) to the total of structural unit (IV) and structural unit (V) was 45 mol%.
  • the total of the structural unit (II) and the structural unit (III) and the total of the structural unit (IV) and the structural unit (V) were substantially equimolar.
  • hydroxy terminal group amount (a) is 30 equivalent / (g * 10 ⁇ -6 >), and acetyl terminal group amount (b) is 55 equivalent / (g * 10 ⁇ -6 >).
  • the carboxyl end group amount (c) was 79 equivalents / (g ⁇ 10 ⁇ 6 ), and [(a) + (b)] / (c) was 1.08.
  • the temperature was raised while controlling the distillation amount of acetic acid produced by the reaction and the ring flow rate, and the distillation rate when reaching 250 ° C. was 63%. Thereafter, the polymerization temperature was maintained at 360 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour, the reaction was continued, and the polymerization was completed when the torque required for stirring reached 10 kg ⁇ cm. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. Totally aromatic liquid crystal polyester (a-10) was obtained.
  • the wholly aromatic liquid crystalline polyester (a-10) had a Tm of 347 ° C., an absolute number average molecular weight of 6900, a melt viscosity of 23 Pa ⁇ s measured at a temperature of 357 ° C. and a shear rate of 1000 / s. Moreover, when composition analysis was performed by the said method, the structural unit content derived from hydroquinone with respect to the structural unit whole quantity was 10.4 mol%.
  • the ratio of the structural unit (I) to the total of the structural unit (I), the structural unit (II), and the structural unit (III) is 70 mol%, and the structural unit (II) relative to the total of the structural unit (II) and the structural unit (III) ) was 55 mol%, and the ratio of structural unit (IV) to the total of structural unit (IV) and structural unit (V) was 88 mol%.
  • the total of the structural unit (II) and the structural unit (III) and the total of the structural unit (IV) and the structural unit (V) were substantially equimolar.
  • the amount of hydroxy end groups (a) was 67.5 equivalents / (g ⁇ 10 ⁇ 6 )
  • the amount of acetyl end groups (b) was 67.5 equivalents / (g ⁇ 10 ⁇ 6 )
  • the amount of carboxy terminal group (c) was 106 equivalents / (g ⁇ 10 ⁇ 6 )
  • [(a) + (b)] / (c) was 1.27.
  • the ring flow rate of acetic acid produced by the reaction was suppressed, the distillation rate was increased, and the temperature was raised so that the distillation rate when reaching 250 ° C. was 84%.
  • the polymerization temperature was maintained at 330 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued, and the polymerization was completed when the torque required for stirring reached 20 kg ⁇ cm.
  • the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. Totally aromatic liquid crystal polyester (a-11) was obtained.
  • the wholly aromatic liquid crystalline polyester (a-11) had a Tm of 314 ° C., an absolute number average molecular weight of 14,600, a melt viscosity measured at a temperature of 324 ° C. and a shear rate of 1000 / s of 48 Pa ⁇ s. Moreover, when composition analysis was performed by the said method, the structural unit content derived from hydroquinone with respect to the structural unit whole quantity was 7.3 mol%.
  • the ratio of the structural unit (I) to the total of the structural unit (I), the structural unit (II), and the structural unit (III) is 68 mol%, and the structural unit (II) relative to the total of the structural unit (II) and the structural unit (III) ) was 70 mol%, and the ratio of structural unit (IV) to the total of structural unit (IV) and structural unit (V) was 63 mol%.
  • the total of the structural unit (II) and the structural unit (III) and the total of the structural unit (IV) and the structural unit (V) were substantially equimolar.
  • hydroxy terminal group amount (a) is 24 equivalent / (g * 10 ⁇ -6 >)
  • acetyl terminal group amount (b) is 24 equivalent / (g * 10 ⁇ -6 >).
  • the carboxyl end group amount (c) was 51 equivalents / (g ⁇ 10 ⁇ 6 ), and [(a) + (b)] / (c) was 0.94.
  • the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a wholly aromatic liquid crystal polyester (a-12) was obtained.
  • the wholly aromatic liquid crystalline polyester (a-12) had a Tm of 309 ° C., an absolute number average molecular weight of 9800, a melt viscosity of 37 Pa ⁇ s measured at a temperature of 319 ° C. and a shear rate of 1000 / s. Moreover, when the composition analysis was performed by the above method, the content of the structural unit derived from hydroquinone relative to the total amount of the structural unit was 6.7 mol%, which was 0.6 mol% less than the hydroquinone composition calculated from the monomer charge, It was found that a composition shift occurred during the polymerization.
  • the ratio of the structural unit (I) to the total of the structural unit (I), the structural unit (II), and the structural unit (III) is 67 mol%, and the structural unit (II) relative to the total of the structural unit (II) and the structural unit (III) ) was 73 mol%, and the ratio of structural unit (IV) to the total of structural unit (IV) and structural unit (V) was 63 mol%.
  • the total of the structural unit (II) and the structural unit (III) and the total of the structural unit (IV) and the structural unit (V) were substantially equimolar.
  • the amount of hydroxy terminal groups (a) is 43 equivalent / (g * 10 ⁇ -6 >), and the amount of acetyl terminal groups (b) is 48 equivalent / (g * 10 ⁇ -6 >).
  • the carboxyl end group amount (c) was 93 equivalents / (g ⁇ 10 ⁇ 6 ), and [(a) + (b)] / (c) was 0.98.
  • the temperature was raised while controlling the distillation amount of acetic acid produced by the reaction and the ring flow rate, and the distillation rate when reaching 250 ° C. was 74%.
  • the polymerization temperature was maintained at 350 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued, and the polymerization was completed when the torque required for stirring reached 5 kg ⁇ cm.
  • the inside of the reaction vessel is pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer is discharged onto a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a wholly aromatic liquid crystal polyester (a-13) was obtained.
  • the wholly aromatic liquid crystalline polyester (a-13) had a Tm of 335 ° C., an absolute number average molecular weight of 4200, a melt viscosity of 9 Pa ⁇ s measured at a temperature of 345 ° C. and a shear rate of 1000 / s. Moreover, when composition analysis was performed by the said method, the structural unit content derived from hydroquinone with respect to the structural unit whole quantity was 8.0 mol%.
  • the ratio of the structural unit (I) to the total of the structural unit (I), the structural unit (II), and the structural unit (III) is 75 mol%, and the structural unit (II) relative to the total of the structural unit (II) and the structural unit (III) ) was 60 mol%, and the ratio of structural unit (IV) to the total of structural unit (IV) and structural unit (V) was 76 mol%.
  • the total of the structural unit (II) and the structural unit (III) and the total of the structural unit (IV) and the structural unit (V) were substantially equimolar.
  • hydroxy terminal group amount (a) is 103 equivalent / (g * 10 ⁇ -6 >), and acetyl terminal group amount (b) is 307 equivalent / (g * 10 ⁇ -6 >).
  • the carboxyl end group amount (c) was 290 equivalents / (g ⁇ 10 ⁇ 6 ), and [(a) + (b)] / (c) was 1.41.
  • the temperature was raised while controlling the distillation amount and flow rate of acetic acid produced by the reaction, and the distillation rate when reaching 250 ° C. was 75%. Thereafter, the polymerization temperature was maintained at 320 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour, the reaction was continued, and the polymerization was completed when the torque required for stirring reached 25 kg ⁇ cm. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A wholly aromatic liquid crystal polyester (a-14) was obtained.
  • the wholly aromatic liquid crystalline polyester (a-14) had a Tm of 311 ° C., an absolute number average molecular weight of 8900, a melt viscosity of 38 Pa ⁇ s measured at a temperature of 321 ° C. and a shear rate of 1000 / s. Moreover, when composition analysis was performed by the said method, the structural unit content derived from hydroquinone with respect to the structural unit whole quantity was 15.6 mol%.
  • the ratio of the structural unit (I) to the total of the structural unit (I), the structural unit (II), and the structural unit (III) is 65 mol%, and the structural unit (II) relative to the total of the structural unit (II) and the structural unit (III) ) was 40 mol%, and the ratio of structural unit (IV) to the total of structural unit (IV) and structural unit (V) was 80 mol%.
  • the total of the structural unit (II) and the structural unit (III) and the total of the structural unit (IV) and the structural unit (V) were substantially equimolar.
  • hydroxy terminal group amount (a) is 38 equivalent / (g * 10 ⁇ -6 >), and acetyl terminal group amount (b) is 47 equivalent / (g * 10 ⁇ -6 >).
  • the carboxyl end group amount (c) was 65 equivalents / (g ⁇ 10 ⁇ 6 ), and [(a) + (b)] / (c) was 1.31.
  • the temperature was raised while controlling the distillation amount of acetic acid produced by the reaction and the ring flow rate, and the distillation rate when reaching 250 ° C. was 78%. Thereafter, the polymerization temperature was maintained at 360 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour, the reaction was continued, and the polymerization was completed when the torque required for stirring reached 20 kg ⁇ cm. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. Totally aromatic liquid crystalline polyester (a-15) was obtained.
  • the wholly aromatic liquid crystalline polyester (a-15) had a Tm of 344 ° C., an absolute number average molecular weight of 9400, a melt viscosity measured at a temperature of 354 ° C. and a shear rate of 1000 / s of 42 Pa ⁇ s. Moreover, when composition analysis was performed by the said method, the structural unit content derived from hydroquinone with respect to the structural unit whole quantity was 1.7 mol%.
  • the ratio of the structural unit (I) to the total of the structural unit (I), the structural unit (II), and the structural unit (III) is 80 mol%, and the structural unit (II) relative to the total of the structural unit (II) and the structural unit (III) ) was 90 mol%, and the ratio of structural unit (IV) to the total of structural unit (IV) and structural unit (V) was 55 mol%.
  • the total of the structural unit (II) and the structural unit (III) and the total of the structural unit (IV) and the structural unit (V) were substantially equimolar.
  • the amount of hydroxy terminal groups (a) is 51 equivalents / (g * 10 ⁇ -6 >), and the amount of acetyl terminal groups (b) is 34 equivalents / (g * 10 ⁇ -6 >).
  • the carboxyl end group amount (c) was 78 equivalents / (g ⁇ 10 ⁇ 6 ), and [(a) + (b)] / (c) was 1.09.
  • the temperature was raised while controlling the distillation amount of acetic acid produced by the reaction and the ring flow rate, and the distillation rate when reaching 250 ° C. was 70%. Thereafter, the polymerization temperature was maintained at 350 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour, the reaction was continued, and the polymerization was completed when the torque required for stirring reached 20 kg ⁇ cm. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. Totally aromatic liquid crystalline polyester (a-16) was obtained.
  • the wholly aromatic liquid crystalline polyester (a-16) had a Tm of 328 ° C., an absolute number average molecular weight of 11,200, a melt viscosity of 30 Pa ⁇ s measured at a temperature of 338 ° C. and a shear rate of 1000 / s. Moreover, when composition analysis was performed by the said method, the structural unit content derived from hydroquinone with respect to the total amount of structural units was 8.7 mol%.
  • the ratio of the structural unit (I) to the total of the structural unit (I), the structural unit (II), and the structural unit (III) is 73 mol%, and the structural unit (II) relative to the total of the structural unit (II) and the structural unit (III) ) was 59 mol%, and the proportion of structural unit (IV) relative to the sum of structural unit (IV) and structural unit (V) was 77 mol%.
  • the total of the structural unit (II) and the structural unit (III) and the total of the structural unit (IV) and the structural unit (V) were substantially equimolar.
  • the amount of hydroxy end groups (a) was 162 equivalents / (g ⁇ 10 ⁇ 6 ), and the amount of acetyl end groups (b) was 18 equivalents / (g ⁇ 10 ⁇ 6 ).
  • the carboxyl end group amount (c) was 133 equivalents / (g ⁇ 10 ⁇ 6 ), and [(a) + (b)] / (c) was 1.35.
  • the temperature was raised while controlling the distillation amount of acetic acid produced by the reaction and the ring flow rate, and the distillation rate when reaching 250 ° C. was 69%.
  • the polymerization temperature was maintained at 330 ° C.
  • the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour
  • the reaction was continued, and the polymerization was completed when the torque required for stirring reached 20 kg ⁇ cm.
  • the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter.
  • a wholly aromatic liquid crystal polyester (a-17) was obtained.
  • the wholly aromatic liquid crystal polyester (a-17) had a Tm of 310 ° C., an absolute number average molecular weight of 12300, a melt viscosity of 33 Pa ⁇ s measured at a temperature of 320 ° C. and a shear rate of 1000 / s. Moreover, when the composition analysis was performed by the said method, the structural unit content derived from hydroquinone with respect to the structural unit whole quantity was 7.7 mol%.
  • the ratio of the structural unit (I) to the total of the structural unit (I), the structural unit (II), and the structural unit (III) is 70 mol%, and the structural unit (II) relative to the total of the structural unit (II) and the structural unit (III) ) was 67 mol%, and the ratio of structural unit (IV) to the total of structural unit (IV) and structural unit (V) was 65 mol%.
  • the total of the structural unit (II) and the structural unit (III) and the total of the structural unit (IV) and the structural unit (V) were substantially equimolar.
  • hydroxy terminal group amount (a) is 140 equivalent / (g * 10 ⁇ -6 >), and acetyl terminal group amount (b) is 20 equivalent / (g * 10 ⁇ -6 >).
  • the carboxyl end group amount (c) was 103 equivalents / (g ⁇ 10 ⁇ 6 ), and [(a) + (b)] / (c) was 1.55.
  • the temperature was raised while controlling the distillation amount of acetic acid produced by the reaction and the ring flow rate, and the distillation rate when reaching 250 ° C. was 70%. Thereafter, the polymerization temperature was maintained at 360 ° C., the pressure was reduced to 1.0 mmHg (133 Pa) in 1.0 hour, the reaction was continued, and the polymerization was completed when the torque required for stirring reached 20 kg ⁇ cm. Next, the inside of the reaction vessel was pressurized to 1.0 kg / cm 2 (0.1 MPa), the polymer was discharged to a strand through a die having a circular discharge port having a diameter of 10 mm, and pelletized by a cutter. A wholly aromatic liquid crystal polyester (a-18) was obtained.
  • the wholly aromatic liquid crystalline polyester (a-18) had a Tm of 345 ° C., an absolute number average molecular weight of 9800, a melt viscosity of 28 Pa ⁇ s measured at a temperature of 355 ° C. and a shear rate of 1000 / s. Moreover, when the composition analysis was performed by the said method, the structural unit content derived from hydroquinone with respect to the total amount of structural units was 10.0 mol%.
  • the ratio of the structural unit (I) to the total of the structural unit (I), the structural unit (II), and the structural unit (III) is 70 mol%, and the structural unit (II) relative to the total of the structural unit (II) and the structural unit (III) ) was 57 mol%, and the ratio of structural unit (IV) to the total of structural unit (IV) and structural unit (V) was 87 mol%.
  • the total of the structural unit (II) and the structural unit (III) and the total of the structural unit (IV) and the structural unit (V) were substantially equimolar.
  • hydroxy terminal group amount (a) is 170 equivalent / (g * 10 ⁇ -6 >)
  • acetyl terminal group amount (b) is 10 equivalent / (g * 10 ⁇ -6 >).
  • the carboxyl end group amount (c) was 110 equivalents / (g ⁇ 10 ⁇ 6 ), and [(a) + (b)] / (c) was 1.64.
  • composition analysis result, the terminal group amount measurement result, the absolute number average molecular weight measurement result, and the polymerization reaction temperature for production of each wholly aromatic liquid crystal polyester obtained in each production example were 250.
  • Table 1 shows the distillation rate when the temperature reached ° C.
  • Examples 1 to 13, Comparative Examples 1 to 5 The pellets of wholly aromatic liquid crystal polyester obtained in the above production example were dried at 150 ° C. for 3 hours using a hot air dryer. Liquid crystal polyesters (a-1) to (a-10) and (a-16) to (a-18) after hot-air drying were used as the liquid crystal polyesters of Examples 1 to 13, respectively. The liquid crystal polyesters (a-11) to (a-15) after hot air drying were used as the liquid crystal polyesters of Comparative Examples 1 to 5, respectively. The following (1) to (5) were evaluated for the liquid crystal polyesters of Examples 1 to 6 and Comparative Examples 1 to 5.
  • liquid crystal polyester resin compositions of Examples 14 to 33 and liquid crystal polyester resin compositions of Comparative Examples 6 to 15 were produced. did.
  • the filler used in each example and comparative example is shown below.
  • Examples 14 to 33, Comparative Examples 6 to 15 In Toshiba Machine's TEM35B twin screw extruder (meshing type same direction), install a side feeder at C3 part of cylinder C1 (original feeder side heater) to C6 (die side heater) and a vacuum vent at C5 part. installed. Using a screw arrangement incorporating kneading blocks in parts C2 and C4, fully aromatic liquid crystalline polyesters (a-1 to a-18) are added from the hopper in the blending amounts shown in Tables 3 to 5, and optionally filled. (B-1 to b-4) were added from the side feeder in the blending amounts shown in Tables 3 to 5 with respect to 100 parts by weight of the wholly aromatic liquid crystal polyester.
  • the cylinder temperature is set to the melting point of the wholly aromatic liquid crystalline polyester + 20 ° C. and melt-kneaded.
  • the wholly aromatic liquid crystalline polyester resin composition discharged in a strand form from the die is cooled by a water-cooled bath and then pelletized with a strand cutter. Into pellets. The obtained pellets were dried at 150 ° C. for 3 hours using a hot air dryer, and then evaluated as (1) to (5) below.
  • the haze value (cloudiness) of this slide glass was measured with a direct reading haze meter (manufactured by Toyo Seiki Co., Ltd.). The smaller the haze value, the less fogging and the better the fogging property, and the higher the haze value, the more the glass becomes cloudy and the fogging property is inferior.
  • the metal terminal 1 is embedded in the resin 2 at a depth of 5 mm.
  • a test piece for measuring the terminal pulling strength was prepared. Using a tensile tester Tensilon UTA-2.5T (manufactured by Orientec), the metal terminal portion and the resin portion were fixed with a chuck, and the metal terminal punching strength was measured at a strain rate of 2 mm / min. The higher the metal terminal pullout strength, the better the metal adhesion, and the lower the metal terminal pullout strength, the poorer the metal adhesion.
  • the tensile creep strain described in the examples is a value after 150 hours have elapsed from the start of the test, and an average value measured five times is used. It was. It can be said that the smaller this value is, the better the creep resistance is, and the molded product is less likely to be thermally deformed.
  • Mold deposit A mold release agent (Licowax E, manufactured by Clariant) was added to 100 parts by weight of the wholly aromatic liquid crystal polyester or the wholly aromatic liquid crystal polyester resin composition of Examples 1 to 33 and Comparative Examples 1 to 15. After addition of 05 parts by weight, using a FANUC ⁇ 30C injection molding machine (manufactured by FANUC), the cylinder temperature was set to the melting point of the wholly aromatic liquid crystalline polyester + 20 ° C., the mold temperature was 90 ° C., and the molding cycle was 12 seconds. A square plate-like molded product having a thickness of ⁇ 50 mm ⁇ 1 mm was continuously molded up to 1000 shots until the mold deposit adhered.
  • a mold release agent Liowax E, manufactured by Clariant
  • the state of adhesion of the mold deposit was confirmed every 100 shots, and the number of shots confirmed to be deposited in the mold cavity was evaluated in units of 100 shots to obtain mold depositability. It can be said that the smaller the number of shots confirmed to adhere to the mold cavity, the better the mold depositability.
  • the wholly aromatic liquid crystal polyesters of the examples of the present invention are excellent in fogging properties and metal adhesion properties.
  • the wholly aromatic liquid crystal polyester resin compositions of the examples of the present invention have excellent fogging properties and metal adhesion properties, high creep resistance, and molds during injection molding. It is clear that there is little dirt and it is excellent in mass productivity.
  • the fully aromatic liquid crystal polyester and the completely aromatic liquid crystal polyester resin composition having [(a) + (b)] / (c) of 1.30 to 2.00 are fogging, It is clear that the metal adhesion and creep resistance properties are excellent and the retention stability at the time of melting is excellent.
  • the wholly aromatic liquid crystal polyester of the present invention and the resin composition and molded product obtained therefrom are excellent in fogging property, metal adhesion and creep resistance, and are particularly useful in the electric / electronic field.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

構造単位全量に対してハイドロキノン由来の構造単位を2.0~15.0モル%含有する全芳香族液晶ポリエステルであり、ヒドロキシ末端基量(a)とアセチル末端基量(b)の合計が50~350当量/(g・10-6)であり、ヒドロキシ末端基量(a)とアセチル末端基量(b)の合計と、カルボキシ末端基量(c)との比[(a)+(b)]/(c)が1.05~2.00であることを特徴とする全芳香族液晶ポリエステル。

Description

全芳香族液晶ポリエステルおよびその製造方法
 本発明はフォギング性、金属接着性、耐クリープ特性に優れる全芳香族液晶ポリエステルおよびその製造方法、それから得られる樹脂組成物、成形品に関するものである。
 近年、液晶ポリエステルは、その耐熱性、流動性、電気特性などを活かし、特に電気・電子分野で用いられ、その需要が拡大している。また、近年、その熱安定性や高熱寸法精度に着目して、発熱部品の支持基材として、OA機器や携帯電話の液晶ディスプレイ支持基材やランプの構造部品などに用いる検討がなされている。これらの分野では金属端子をインサート成形する部品も多く、金属との接着性が要求される。また、これらの用途では発熱する端子などの金属部品と接触して用いる場合が多いために、ポリマーから発生するガスによる曇り発生等の不具合が起こる場合が多く、このような不具合を改良するために、加熱時の酢酸ガス、フェノールガスおよび炭酸ガスを低減した液晶性樹脂が提案されている(例えば、特許文献1参照)。しかしながら、フォギング性などの実用特性はなお充分とはいえず、また、金属接着性に関しても更なる改良が求められている。
 一方、液晶ポリエステルの末端構造制御についての検討が行われており(例えば、特許文献2~4参照)、反応基による後加工時の熱硬化、耐加水分解性、成形安定性などの効果を発現している。しかしながら、これら検討で製造された液晶ポリエステルにおいても、金属密着性やフォギング性、耐クリープ特性などの特性が充分とはいえず、近年の電気・電子分野で要求される特性を満たしてはいなかった。
特開2006-89714号公報 特開平1-98618号公報 特開平5-271394号公報 特開平11-263829号公報
 本発明は、フォギング性、金属接着性、耐クリープ特性に優れる全芳香族液晶ポリエステル、それから得られる樹脂組成物および成形品を提供することを目的とするものである。
 本発明者らは上記課題を解決すべく鋭意検討した結果、特定末端基を有する全芳香族液晶ポリエステルが、特異的にフォギング性、金属接着性、耐クリープ特性に優れることを見出した。さらに本発明の全芳香族液晶ポリエステルを射出成形した場合には金型汚れが特異的に低減できることを見出し、本発明に到達した。
 即ち、本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、本発明の実施形態は、以下に挙げる構成の少なくとも一部を含み得る。
(1)構造単位全量に対してハイドロキノン由来の構造単位を2.0~15.0モル%含有する全芳香族液晶ポリエステルである。この全芳香族液晶ポリエステルは、ヒドロキシ末端基量(a)とアセチル末端基量(b)の合計が50~350当量/(g・10-6)である。この全芳香族液晶ポリエステルは、ヒドロキシ末端基量(a)とアセチル末端基量(b)の合計と、カルボキシ末端基量(c)との比[(a)+(b)]/(c)が1.05~2.00である。
 なお、構造単位全量に対して、ハイドロキノン由来の構造単位の含有量は、2.0モル%よりも多いことが好ましい。また、構造単位全量に対して、ハイドロキノン由来の構造単位の含有量は、15.0モル%未満であることが好ましい。
 ヒドロキシ末端基量(a)とアセチル末端基量(b)の合計は、50当量/(g・10-6)よりも多いことが好ましい。また、ヒドロキシ末端基量(a)とアセチル末端基量(b)の合計は、350当量/(g・10-6)未満であることが好ましい。
上記比[(a)+(b)]/(c)は、1.05よりも大きいことが好ましい。また、上記比[(a)+(b)]/(c)は、2.00未満であることが好ましい。
(2)ヒドロキシ末端基量(a)と、ヒドロキシ末端基量(a)とアセチル末端基量(b)の合計との比(a)/[(a)+(b)]が0.30~1.00である前記(1)に記載の全芳香族液晶ポリエステル。
なお、上記比(a)/[(a)+(b)]は、0.30より大きいことが好ましい。また、上記比(a)/[(a)+(b)]は、1.00未満であることが好ましい。
ただし、上記(1)記載の全芳香族液晶ポリエステルにおいて、上記比(a)/[(a)+(b)]は、0.30未満としても良い。また、上記(1)記載の全芳香族液晶ポリエステルにおいて、上記比(a)/[(a)+(b)]は、1.00を超えることとしても良い。
(3)ゲル浸透クロマトグラフ/光散乱法により測定した絶対数平均分子量が5000~25000であることを特徴とする前記(1)または(2)に記載の全芳香族液晶ポリエステル。
 なお、上記絶対数平均分子量は、5000よりも大きいことが好ましい。また、上記絶対数平均分子量は、25000未満であることが好ましい。
 ただし、上記(1)または(2)記載の全芳香族液晶ポリエステルにおいて、上記絶対数平均分子量は、5000未満としても良い。また、上記(1)または(2)記載の全芳香族液晶ポリエステルにおいて、上記絶対数平均分子量は、25000を超えることとしても良い。
(4)下記構造単位(I)、(II)、(III)、(IV)および(V)から構成される前記(1)~(3)のいずれかに記載の全芳香族液晶ポリエステルである。この全芳香族液晶ポリエステルにおいて、構造単位(I)は構造単位(I)、(II)および(III)の合計に対して65~80モル%である。この全芳香族液晶ポリエステルにおいて、構造単位(II)は構造単位(II)および(III)の合計に対して55~85モル%である。この全芳香族液晶ポリエステルにおいて、構造単位(IV)は構造単位(IV)および(V)の合計に対して50~95モル%である。この全芳香族液晶ポリエステルにおいて、構造単位(II)および(III)の合計と(IV)および(V)の合計とは、実質的に等モルである。
Figure JPOXMLDOC01-appb-C000001
 なお、構造単位(I)は、構造単位(I)、(II)および(III)の合計に対して65モル%よりも多いことが好ましい。また、構造単位(I)は、構造単位(I)、(II)および(III)の合計に対して80モル%未満であることが好ましい。
構造単位(II)は、構造単位(II)および(III)の合計に対して55モル%よりも多いことが好ましい。また、構造単位(II)は、構造単位(II)および(III)の合計に対して85モル%未満であることが好ましい。
構造単位(IV)は、構造単位(IV)および(V)の合計に対して50モル%よりも多いことが望ましい。また、構造単位(IV)は、構造単位(IV)および(V)の合計に対して95モル%未満であることが好ましい。
 ただし、上記(1)~(3)のいずれかに記載の全芳香族液晶ポリエステルにおいて、構造単位(I)は、構造単位(I)、(II)および(III)の合計に対して65モル%未満としても良い。また、構造単位(I)は、構造単位(I)、(II)および(III)の合計に対して80モル%を超えることとしても良い。
上記(1)~(3)のいずれかに記載の全芳香族液晶ポリエステルにおいて、構造単位(II)は、構造単位(II)および(III)の合計に対して55モル%未満としても良い。また、構造単位(II)は、構造単位(II)および(III)の合計に対して85モル%を超えることとしても良い。
上記(1)~(3)のいずれかに記載の全芳香族液晶ポリエステルにおいて、構造単位(IV)は、構造単位(IV)および(V)の合計に対して50モル%未満としても良い。また、構造単位(IV)は、構造単位(IV)および(V)の合計に対して95モル%を超えることとしても良い。
また、本発明の実施形態において、実質的に等モルとは、末端を除くポリマー主鎖を構成する構造単位が等モルであることを示す。
また、上記(1)~(3)のいずれかに記載の全芳香族液晶ポリエステルは、上記構造単位(I)、(II)、(III)、(IV)および(V)の少なくとも一部を含まなくてもよい。
(5)全芳香族液晶ポリエステルの原料モノマーのヒドロキシ基を無水酢酸を用いてアセチル化した後、酢酸を留出させながら全芳香族液晶ポリエステルの溶融温度以上に昇温し、脱酢酸重合することにより、前記(1)~(4)のいずれかに記載の全芳香族液晶ポリエステルを製造する方法である。この全芳香族液晶ポリエステルの製造方法では、重合反応液温度が250℃に到達したときの下式[1]で求められる留出率を50~80%とする。
 留出率(%)=留出液量(g)/[(無水酢酸仕込みモル数(mol)-原料モノマー中のヒドロキシ基モル数(mol))×無水酢酸分子量(g/mol)+(原料モノマー中のヒドロキシ基モル数(mol)×2×酢酸分子量(g/mol))]×100 [1]
 なお、上記留出率は、50%より大きいことが好ましい。また、上記留出率は、80%未満であることが好ましい。
 ただし、上記(1)~(4)のいずれかに記載の全芳香族液晶ポリエステルの製造方法において、上記留出率は、50%未満としても良い。また、上記(1)~(4)のいずれかに記載の全芳香族液晶ポリエステルの製造方法において、上記留出率は、80%を超えることとしても良い。
(6)前記(1)~(4)のいずれかに記載の全芳香族液晶ポリエステル100重量部に対して、充填材10~200重量部を配合してなる全芳香族液晶ポリエステル樹脂組成物。
 なお、上記全芳香族液晶ポリエステル100重量部に対する充填材の配合量は、10重量部より多いことが好ましい。また、上記全芳香族液晶ポリエステル100重量部に対する充填材の配合量は、200重量部未満であることが好ましい。
 ただし、上記(1)~(4)のいずれかに記載の全芳香族液晶ポリエステル樹脂組成物において、上記全芳香族液晶ポリエステル100重量部に対する充填材の配合量は、10重量部未満としても良い。また、上記(1)~(4)のいずれかに記載の全芳香族液晶ポリエステル樹脂組成物において、上記全芳香族液晶ポリエステル100重量部に対する充填材の配合量は、200重量部を超えることとしても良い。
(7)前記(1)~(4)のいずれかに記載の全芳香族液晶ポリエステルまたは前記(6)に記載の全芳香族液晶ポリエステル樹脂組成物を溶融成形してなる成形品。
ただし、(1)~(4)のいずれかに記載の全芳香族液晶ポリエステルまたは(6)に記載の液晶性ポリエステル樹脂組成物を用いて、溶融成形とは異なる方法により作製した成形品としても良い。
 本発明の実施形態によって、フォギング性、金属接着性、耐クリープ特性に優れる全芳香族液晶ポリエステルが得られる。また、本発明の実施形態の全芳香族液晶ポリエステルまたは全芳香族液晶ポリエステル樹脂組成物を射出成形した場合には、金型汚れが少なく、フォギング性、金属接着性、耐クリープ特性に優れた成形品が提供できる。
実施例および比較例において作製した金属端子をインサート成形した金属端子抜き強度測定用試験片の概略図である。
 以下、本発明を詳細に説明する。
 本発明の実施形態としての全芳香族液晶ポリエステルは、溶融時に光学的異方性を示すサーモトロピック液晶ポリマーと呼ばれるポリエステルであり、構造単位全量に対して、ハイドロキノン由来の構造単位を2.0~15.0モル%含有する。ハイドロキノン由来の構造単位含有量が2.0モル%よりも少ない場合には、フォギング性の低下を引き起こす傾向がある。フォギング性をより向上させる観点から、ハイドロキノン由来の構造単位を4.0モル%以上含有することが好ましい。一方、ハイドロキノン由来の構造単位含有量が15.0モル%を超える場合には、金属接着性が低下する傾向がある。金属接着性をより向上させる観点から、ハイドロキノン由来の構造単位を10.0モル%以下含有することが好ましい。
 本発明の実施形態の全芳香族液晶ポリエステルは、下式に示す構造単位(I)、(II)、(III)、(IV)、(V)からなることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 上記構造単位(I)はp-ヒドロキシ安息香酸由来の構造単位を、構造単位(II)は4,4’-ジヒドロキシビフェニル由来の構造単位を、構造単位(III)はハイドロキノン由来の構造単位を、構造単位(IV)はテレフタル酸由来の構造単位を、構造単位(V)はイソフタル酸由来の構造単位を各々示す。
 構造単位(I)の含有量は、構造単位(I)、(II)および(III)の合計含有量に対して65モル%以上が好ましく、68モル%以上がより好ましい。一方、80モル%以下が好ましく、78モル%以下がより好ましい。
 また、構造単位(II)の含有量は、構造単位(II)および(III)の合計含有量に対して55モル%以上が好ましく、58モル%以上がより好ましい。一方、85モル%以下が好ましく、78モル%以下がより好ましく、73モル%以下がより好ましい。
 また、構造単位(IV)の含有量は、構造単位(IV)および(V)の合計含有量に対して50モル%以上が好ましく、55モル%以上がより好ましく、60モル%以上がより好ましい。一方、95モル%以下が好ましく、90モル%以下がより好ましく、85モル%以下がより好ましい。
 また構造単位(II)および(III)の合計含有量と(IV)および(V)の合計含有量は、実質的に等モルであることが好ましい。ここでいう「実質的に等モル」とは、末端を除くポリマー主鎖を構成する構造単位が等モルであることを示す。このため、末端を構成する構造単位まで含めた場合には、必ずしも等モルとはならない態様も、「実質的に等モル」の要件を満たしうる。
 上記構造単位(I)~(V)の含有量を上記範囲とすることにより、全芳香族液晶ポリエステルのフォギング性および金属との接着性をより向上させることができる。また、充填材を配合してなる樹脂組成物において充填材との親和性が向上するため、耐クリープ特性をより向上させることができる。また、射出成形時に生じる金型汚れを低減することができる。
 なお、本発明の実施形態において、各構造単位の含有量は、全芳香族液晶ポリエステルをNMR試料管に量りとり、全芳香族液晶ポリエステルが可溶な溶媒(例えば、ペンタフルオロフェノール/1,1,2,2-テトラクロロエタン-d2混合溶媒)に溶解して、1H-NMR測定を行うことにより、各構造単位由来のピーク面積比から算出することができる。
 本発明の実施形態の全芳香族液晶ポリエステルの末端基は、ヒドロキシ末端基、アセチル末端基、カルボキシ末端基が挙げられる。そのうちヒドロキシ末端基量(a)〔単位:当量/(g・10-6)〕とアセチル末端基量(b)〔単位:当量/(g・10-6)〕の合計が50~350当量/(g・10-6)である。ただし、アセチル末端基量(b)は0であってもよい。(a)+(b)の合計が50当量/(g・10-6)よりも少ない場合には、金属接着性の低下、耐クリープ特性の低下を引き起こす傾向がある。金属接着性、耐クリープ特性をより向上させる観点から、(a)+(b)の合計を75当量/(g・10-6)以上とすることが好ましい。一方、(a)+(b)の合計が350当量/(g・10-6)よりも多い場合には、フォギング性が低下する傾向がある。フォギング性をより向上させる観点から、(a)+(b)の合計を200当量/(g・10-6)以下とすることが好ましい。
 全芳香族液晶ポリエステルの末端基量は、全芳香族液晶ポリエステルをNMR試料管に量りとり、全芳香族液晶ポリエステルが可溶な溶媒(例えば、ペンタフルオロフェノール/1,1,2,2-テトラクロロエタン-d2混合溶媒)に溶解して、ヒドロキシ末端基およびカルボキシ末端基については13C-NMR測定、アセチル末端基については1H-NMR測定を行うことにより、各末端由来のピークとポリマー主鎖骨格由来のピークとの面積比から算出することができる。
 本発明の実施形態の全芳香族液晶ポリエステルは、ヒドロキシ末端基量(a)〔単位:当量/(g・10-6)〕とアセチル末端基量(b)〔単位:当量/(g・10-6)〕の合計と、カルボキシ末端基量(c)〔単位:当量/(g・10-6)〕との比[(a)+(b)]/(c)が1.05~2.00である。従来公知のハイドロキノン由来の構造単位を含有する液晶ポリエステルは、モノマーであるハイドロキノンの昇華性が高いことから、[(a)+(b)]/(c)は1以下となり、カルボキシ末端基の分解により炭酸ガスを発生する。これに対して、本発明の実施形態の全芳香族液晶ポリエステルは、末端基を制御して[(a)+(b)]/(c)を1.05以上とすることにより、カルボキシ末端基由来の炭酸ガスを低減し、フォギング性および金属接着性を向上させることができる。好ましくは1.10以上であり、1.30以上がさらに好ましく、フォギング性、金属密着性をより向上させることができる。また、全芳香族液晶ポリエステルの溶融滞留時の溶融粘度変化を低減することができる。溶融滞留時の溶融粘度変化が小さい、すなわち滞留安定性の良好な全芳香族液晶ポリエステルは、溶融加工時に粘度変化を生じにくいため、精密成形等を行いやすく好適である。一方、[(a)+(b)]/(c)が2.00を超える場合には、全芳香族液晶ポリエステルの重合度を上げることが困難となり、金属接着性が著しく低下する。金属接着性をより向上させる観点から、[(a)+(b)]/(c)は1.60以下がより好ましい。
 本発明の実施形態の全芳香族液晶ポリエステルは、ヒドロキシ末端基量(a)〔単位:当量/(g・10-6)〕と、ヒドロキシ末端基量(a)〔単位:当量/(g・10-6)〕とアセチル末端基量(b)〔単位:当量/(g・10-6)〕の合計との比(a)/[(a)+(b)]が0.30~1.00であることが好ましい。ヒドロキシ末端基量を上記の範囲とすることで、アセチル末端基由来の発生ガスを低減し、フォギング性をより向上させることができる。フォギング性をより向上させる観点から、(a)/[(a)+(b)]は0.40以上がより好ましく、0.55以上がさらに好ましく、0.60以上が特に好ましい。
 本発明の実施形態の全芳香族液晶ポリエステルの絶対数平均分子量は、金属接着性をより向上させる観点から5000以上が好ましく、7000以上がより好ましく、8000以上がより好ましい。一方、全芳香族液晶ポリエステルの末端基を制御してフォギング性を向上させる観点から25000以下が好ましく、20000以下がより好ましく、18000以下がより好ましい。
 なお、絶対数平均分子量は、全芳香族液晶ポリエステルが可溶な溶媒を溶離液として使用してGPC/光散乱法(ゲル浸透クロマトグラフ/光散乱法)により測定することが可能である。全芳香族液晶ポリエステルが可溶な溶媒としては、例えば、ハロゲン化フェノール類、ハロゲン化フェノールと一般有機溶媒との混合溶媒が挙げられる。好ましくはペンタフルオロフェノール、およびペンタフルオロフェノールとクロロホルムの混合溶媒であり、なかでもハンドリング性の観点からペンタフルオロフェノール/クロロホルム混合溶媒が特に好ましい。
 また、本発明の実施形態の全芳香族液晶ポリエステルの溶融粘度は、1~200Pa・sが好ましく、10~100Pa・sがより好ましく、20~50Pa・sがより好ましい。なお、溶融粘度は、全芳香族液晶ポリエステルの融点+10℃の温度条件で、せん断速度1000/秒の条件下で高化式フローテスターによって測定した値である。
 ここで、融点とは、示差走査熱量測定において、重合を完了した全芳香族液晶ポリエステルを室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で室温まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm2)を指す。本発明の実施形態の全芳香族液晶ポリエステルの融点は220~350℃が好ましく、より好ましくは250~345℃であり、さらには270~340℃が特に好ましい。
 本発明の実施形態の全芳香族液晶ポリエステルの製造方法は、本発明の実施形態の特徴である特定末端基を有する全芳香族液晶ポリエステルが得られる限りは特に制限がなく、公知のポリエステルの重合法に準じて製造できる。公知のポリエステルの重合法としては、例えば、次の製造方法が挙げられる。
(1)p-アセトキシ安息香酸および4,4’-ジアセトキシビフェニル、ジアセトキシベンゼン(ハイドロキノンのジアセチル化物)とテレフタル酸、イソフタル酸から脱酢酸重合反応によって全芳香族液晶ポリエステルを製造する方法。
(2)p-ヒドロキシ安息香酸および4,4’-ジヒドロキシビフェニル、ハイドロキノンとテレフタル酸、イソフタル酸に無水酢酸を反応させて、フェノール性ヒドロキシ基をアセチル化した後、脱酢酸重合反応によって全芳香族液晶ポリエステルを製造する方法。
(3)p-ヒドロキシ安息香酸フェニルおよび4,4’-ジヒドロキシビフェニル、ハイドロキノンとテレフタル酸ジフェニル、イソフタル酸ジフェニルから脱フェノール重合反応により全芳香族液晶ポリエステルを製造する方法。
(4)p-ヒドロキシ安息香酸およびテレフタル酸、イソフタル酸などの芳香族ジカルボン酸に所定量のジフェニルカーボネートを反応させて、それぞれフェニルエステルとした後、4,4’-ジヒドロキシビフェニル、ハイドロキノンなどの芳香族ジヒドロキシ化合物を加え、脱フェノール重合反応により全芳香族液晶ポリエステルを製造する方法。
 なかでも(2)p-ヒドロキシ安息香酸および4,4’-ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸、イソフタル酸に無水酢酸を反応させて、フェノール性ヒドロキシ基をアセチル化した後、脱酢酸重合反応によって全芳香族液晶ポリエステルを製造する方法が重合反応制御の点から好ましく用いられる。
 本発明の実施形態の末端が特定の範囲である全芳香族液晶ポリエステルを安定的に得る好ましい方法としては、重合反応で生成して重合系外に排出される留出液量を特定の範囲となるように制御する方法が挙げられる。なかでも重合反応時に重合系外に排出される酢酸留出量を特定の範囲となるように制御して脱酢酸重合を行う方法がより好ましい。具体的には、全芳香族液晶ポリエステルの原料モノマーのヒドロキシ基を無水酢酸を用いてアセチル化した後、酢酸を留出させながら全芳香族液晶ポリエステルの溶融温度以上に昇温し、脱酢酸重合することにより全芳香族液晶ポリエステルを製造する方法であって、重合反応液温度が250℃に到達したときの下式[1]で求められる留出率を50~80%とすることが好ましい。
 留出率(%)=留出液量(g)/[(無水酢酸仕込みモル数(mol)-原料モノマー中のヒドロキシ基モル数(mol))×無水酢酸分子量(g/mol)+(原料モノマー中のヒドロキシ基モル数(mol)×2×酢酸分子量(g/mol))]×100 [1]
 アセチル化する工程においては、具体的には、所定量のp-ヒドロキシ安息香酸、4,4’-ジヒドロキシビフェニル、ハイドロキノン、テレフタル酸、イソフタル酸および無水酢酸を、反応容器中に仕込み、窒素ガス雰囲気下で撹拌しながら加熱してヒドロキシ基をアセチル化することが好ましい。上記反応容器は、撹拌翼を備えることとしても良く、また、留出管を備えることとしても良く、また、下部に吐出口を備えることとしても良い。アセチル化する条件は、通常130~150℃の範囲で1~3時間である。本発明の実施形態の特徴である(a)+(b)、[(a)+(b)]/(c)、(a)/[(a)+(b)]を前述の範囲に容易に制御するためには、アセチル化反応率向上の観点から143℃以上の温度が好ましい。より好ましくは147℃以上である。
 本発明の実施形態の特徴である(a)+(b)、[(a)+(b)]/(c)、(a)/[(a)+(b)]を前述の範囲に容易に制御する観点から、無水酢酸の使用量は、p-ヒドロキシ安息香酸、4,4’-ジヒドロキシビフェニルおよびハイドロキノンのフェノール性ヒドロキシ基の合計の1.00~1.15モル当量であることが好ましく、1.03~1.12モル当量がより好ましく、1.05~1.10モル当量がさらに好ましい。無水酢酸の使用量をヒドロキシ基の合計に対して1.00モル当量以上とすることにより、ヒドロキシ基のアセチル化が定量的に進行し、重合反応が速やかにおこるため好ましい。一方、無水酢酸の使用量をヒドロキシ基の合計に対して1.15モル当量以下とすることにより、本発明の実施形態の特徴である全芳香族液晶ポリエステルの末端基を前述の範囲により容易に制御することができるため好ましい。
 また、従来はテレフタル酸とイソフタル酸の合計モル数と4,4’-ジヒドロキシビフェニルとハイドロキノンの合計モル数は等モルとなるようにモノマー仕込みを行うことが一般的であったが、得られる全芳香族液晶ポリエステルにおけるヒドロキシ末端基量とアセチル末端基量の合計を所望の範囲に容易に制御する観点から、昇華性の高いハイドロキノンを、等モルの仕込みモノマー量に対して2~15%の範囲で過剰に添加してもよい。
 アセチル化後、酢酸を留去させながら反応を進行させるために全芳香族液晶ポリエステルの溶融温度以上に昇温し、減圧により脱酢酸重合することが好ましい。ここで、昇温工程において、重合反応液温度が250℃に到達した時に前記留出率が50~80%となるように重合することが好ましい。留出率を50%以上とすることにより、重合反応を反応率よく進行させることができ、組成ずれの少ないポリマーが得られるため好ましく、65%以上がより好ましい。一方、留出率を80%以下とすることにより、留出酢酸とともに重合系外に留出するハイドロキノン量を低減し、全芳香族液晶ポリエステルの末端基を前述の範囲により容易に制御することができるため好ましく、75モル%以下がより好ましい。特に好ましくは73モル%以下である。アセチル化工程の温度を前述の範囲に制御してアセチル化反応率を向上させながら、かつ重合反応液温度が250℃に到達した時の留出率を65~73モル%に制御して重合反応を行うことにより、[(a)+(b)]/(c)が1.30~2.00である全芳香族液晶ポリエステルを容易に得ることができる。なお、重合反応液温度が250℃以上であれば留出状態が安定することから、留出率の代表的な指標として、250℃における留出率に着目した。
 また、脱酢酸重合する工程としては、全芳香族液晶ポリエステルが溶融する温度で減圧下反応させ、重合反応を完了させる溶融重合法が好ましい。溶融重合法は均一なポリマーを製造するために有利な方法であり、ガス発生量がより少ない優れたポリマーを得ることができ好ましい。
 重合させる温度は、全芳香族液晶ポリエステルの一般的な溶融温度、例えば、250~365℃の範囲であり、好ましくは全芳香族液晶ポリエステルの融点+10℃以上の温度である。重合させるときの減圧度は、通常0.1mmHg(13.3Pa)~20mmHg(2660Pa)であり、好ましくは10mmHg(1330Pa)以下、より好ましくは5mmHg(665Pa)以下である。重合撹拌速度は50rpm以下が好ましく、減圧度が665Pa以下になった後、所定トルクが検出されて重合を終了するまでの重合時間は0.5~1時間が好ましい。なお、アセチル化と重合は同一の反応容器で連続して行ってもよいし、異なる反応容器で行ってもよい。
 重合終了後、得られたポリマーを反応容器から取り出す方法としては、ポリマーが溶融する温度で反応容器内を加圧し、反応容器に設けられた吐出口よりポリマーを吐出させ、吐出されたポリマーを冷却水中で冷却する方法を挙げることができる。上記反応容器内の加圧は、例えば、0.02~0.5MPaとすれば良い。上記吐出口は、反応容器下部に設ければ良い。また、ポリマーは、吐出口からストランド状に吐出させれば良い。冷却液中で冷却したポリマーをペレット状に切断することで、樹脂ペレットを得ることができる。
 本発明の実施形態の全芳香族液晶ポリエステルを製造する際に、固相重合法により重合反応を完了させることも可能である。例えば、本発明の実施形態の全芳香族液晶ポリエステルのポリマーまたはオリゴマーを粉砕機で粉砕し、窒素気流下、または、減圧下、加熱し、所望の重合度まで重合し、反応を完了させる方法が挙げられる。上記加熱は、全芳香族液晶ポリエステルの融点-5℃~融点-50℃(例えば、200~300℃)の範囲で1~50時間行なうこととすれば良い。
 本発明の実施形態の全芳香族液晶ポリエステルの重合反応は無触媒でも進行するが、酢酸第一錫、テトラブチルチタネート、酢酸カリウムおよび酢酸ナトリウム、三酸化アンチモン、金属マグネシウムなどの金属化合物を触媒として使用することもできる。
 本発明の実施形態の全芳香族液晶ポリエステルに、本発明の効果を損なわない範囲で充填材を配合して樹脂組成物を得ることができる。充填材としては、例えば、繊維状、板状、粉末状、粒状などの充填材を挙げることができる。具体的には、ガラス繊維、PAN系やピッチ系の炭素繊維、ステンレス繊維、アルミニウム繊維や黄銅繊維などの金属繊維、芳香族ポリアミド繊維や液晶性ポリエステル繊維などの有機繊維、石膏繊維、セラミック繊維、アスベスト繊維、ジルコニア繊維、アルミナ繊維、シリカ繊維、酸化チタン繊維、炭化ケイ素繊維、ロックウール、チタン酸カリウムウィスカー、チタン酸バリウムウィスカー、ホウ酸アルミニウムウィスカー、窒化ケイ素ウィスカー、針状酸化チタンなどの繊維状またはウィスカー状充填材、マイカ、タルク、カオリン、シリカ、ガラスビーズ、ガラスフレーク、クレー、二硫化モリブデン、ワラステナイト、酸化チタン、酸化亜鉛、ポリリン酸カルシウムおよび黒鉛などの粉状、粒状あるいは板状の充填材が挙げられる。本発明の実施形態に使用される上記の充填材は、その表面を公知のカップリング剤(例えば、シラン系カップリング剤、チタネート系カップリング剤など)、その他の表面処理剤で処理されていてもよい。
 これら充填材のなかで、特にガラス繊維が好ましく、耐クリープ特性をより向上させることができる。ガラス繊維の種類は、一般に樹脂の強化用に用いるものならば特に限定はなく、例えば、長繊維タイプや短繊維タイプのチョップドストランドおよびミルドファイバーなどから選択して用いることができる。本発明の実施形態で使用されるガラス繊維としては、弱アルカリ性のものが機械的強度の点で好ましい。特に酸化ケイ素含有量が50~80重量%のガラス繊維が好ましく、より好ましくは酸化ケイ素含有量が65~77重量%のガラス繊維である。また、ガラス繊維はエポキシ系、ウレタン系、アクリル系などの被覆あるいは収束剤で処理されていることが好ましく、エポキシ系が特に好ましい。また、シラン系、チタネート系などのカップリング剤、その他表面処理剤で処理されていることが好ましく、エポキシシラン、アミノシラン系のカップリング剤が特に好ましい。なお、ガラス繊維は、エチレン/酢酸ビニル共重合体などの熱可塑性樹脂や、エポキシ樹脂などの熱硬化性樹脂で被覆あるいは集束されていてもよい。また、上記充填材は2種以上を併用してもよい。
 充填材の配合割合は、全芳香族液晶ポリエステル100重量部に対して、10重量部以上が好ましく、20重量部以上がより好ましく、30重量部以上がより好ましい。また、200重量部以下が好ましく、20~150重量部以下がより好ましく、100重量部以下がより好ましい。
 本発明の実施形態の全芳香族液晶ポリエステル樹脂組成物には、本発明の効果を損なわない範囲で更に酸化防止剤、熱安定剤(例えば、ヒンダードフェノール、ヒドロキノン、ホスファイト類およびこれらの置換体など)、紫外線吸収剤(例えば、レゾルシノール、サリシレート)、亜リン酸塩、次亜リン酸塩などの着色防止剤、滑剤、離型剤(モンタン酸およびその金属塩、そのエステル、そのハーフエステル、ステアリルアルコール、ステアラミドおよびポリエチレンワックスなど)、染料または顔料を含む着色剤、導電剤あるいは着色剤としてのカーボンブラック、結晶核剤、可塑剤、難燃剤(臭素系難燃剤、燐系難燃剤、赤燐、シリコーン系難燃剤など)、難燃助剤、および帯電防止剤から選択される通常の添加剤を配合することができる。あるいは、全芳香族液晶ポリエステル以外の重合体を配合しても良い。このような配合により、所定の特性をさらに付与することができる。
 本発明の実施形態の全芳香族液晶ポリエステルに充填材、添加剤等を配合する方法としては、特に限定されるものではなく、ドライブレンドや溶液配合法、全芳香族液晶ポリエステルの重合時添加、溶融混練などが用いることができ、なかでも溶融混練が好ましい。溶融混練には公知の方法を用いることができる。例えば、バンバリーミキサー、ゴムロール機、ニーダー、単軸もしくは二軸押出機などを用いることができ、なかでも二軸押出機を用いることが好ましい。溶融混練の温度は、全芳香族液晶ポリエステルの融点以上であって、融点+50℃以下とすることが望ましい。
 混練方法としては、1)全芳香族液晶ポリエステル、充填材やその他の添加剤を元込めフィーダーから一括で投入して混練する方法(一括混練法)、2)全芳香族液晶ポリエステルとその他の添加剤を元込めフィーダーから投入して混練した後、充填材および必要であればその他の添加剤をサイドフィーダーから添加して混練する方法(サイドフィード法)、3)全芳香族液晶ポリエステルとその他の添加剤を高濃度に含む全芳香族液晶ポリエステル組成物(マスターペレット)を作製し、次いで規定の濃度になるようにマスターペレットを全芳香族液晶ポリエステル、充填材と混練する方法(マスターペレット法)など、どの方法を用いてもかまわない。
 本発明の実施形態の全芳香族液晶ポリエステルおよび充填材等を混練した全芳香族液晶ポリエステル樹脂組成物は、射出成形、射出圧縮成形、圧縮成形、押出成形、ブロー成形、プレス成形、紡糸などの公知の溶融成形を行うことによって、優れた表面外観(色調)および機械的性質、耐熱性、難燃性を有する成形品に加工することが可能である。ここでいう成形品としては、射出成形品、押出成形品、プレス成形品、シート、パイプ、未延伸、一軸延伸フィルム、二軸延伸フィルムなどの各種フィルム、未延伸糸、延伸糸、超延伸糸などの各種繊維などが挙げられる。特に射出成形品とした場合に本発明の効果が顕著に得られ、さらに金型汚れを大幅に低減できるため好ましい。
 このようにして得られる全芳香族液晶ポリエステルまたは全芳香族液晶ポリエステル樹脂組成物からなる成形品は、例えば、各種ギヤー、各種ケース、センサー、LEDランプ、コネクター、ソケット、抵抗器、リレーケース、リレーベース、リレー用スプール、スイッチ、コイルボビン、コンデンサー、バリコンケース、光ピックアップ、発振子、各種端子板、変成器、プラグ、プリント配線板、チューナー、スピーカー、マイクロフォン、ヘッドフォン、小型モーター、磁気ヘッドベース、パワーモジュール、ハウジング、半導体、液晶ディスプレイ部品、FDDキャリッジ、FDDシャーシ、HDD部品、モーターブラッシュホルダー、パラボラアンテナ、コンピューター関連部品などに代表される電気・電子部品;VTR部品、テレビ部品、アイロン、ヘアードライヤー、炊飯器部品、電子レンジ部品、音響部品、オーディオ・レーザーディスク・コンパクトディスクなどの音声機器部品、照明部品、冷蔵庫部品、エアコン部品、タイプライター部品、ワードプロセッサー部品などに代表される家庭・事務電気製品部品、オフィスコンピューター関連部品、電話機関連部品、ファクシミリ関連部品、複写機関連部品、洗浄用治具、オイルレス軸受、船尾軸受、水中軸受などの各種軸受、モーター部品、ライター、タイプライターなどに代表される機械関連部品、顕微鏡、双眼鏡、カメラ、時計などに代表される光学機器、精密機械関連部品;オルタネーターターミナル、オルタネーターコネクター、ICレギュレーター、ライトディマー用ポテンショメーターベース、排気ガスバルブなどの各種バルブ、燃料関係・排気系・吸気系各種パイプ、エアーインテークノズルスノーケル、インテークマニホールド、燃料ポンプ、エンジン冷却水ジョイント、キャブレターメインボディー、キャブレタースペーサー、排気ガスセンサー、冷却水センサー、油温センサー、スロットルポジションセンサー、クランクシャフトポジションセンサー、エアーフローメーター、ブレーキバット磨耗センサー、エアコン用サーモスタットベース、エアコン用モーターインシュレーター、パワーウインド等の車載用モーターインシュレーター、暖房温風フローコントロールバルブ、ラジエーターモーター用ブラッシュホルダー、ウォーターポンプインペラー、タービンべイン、ワイパーモーター関係部品、デュストリビュター、スタータースィッチ、スターターリレー、トランスミッション用ワイヤーハーネス、ウィンドウオッシャーノズル、エアコンパネルスィッチ基板、燃料関係電磁弁用コイル、ヒューズ用コネクター、ホーンターミナル、電装部品絶縁板、ステップモーターローター、ランプベゼル、ランプソケット、ランプリフレクター、ランプハウジング、ブレーキピストン、ソレノイドボビン、エンジンオイルフィルター、点火装置ケースなどの自動車・車両関連部品などに用いることができ、特にプリント配線板などに有用である。
 以下、実施例により本発明をさらに詳述するが、本発明の骨子は以下の実施例のみに限定されるものではない。
 全芳香族液晶ポリエステルの組成分析、末端基量測定、絶対数平均分子量測定、融点測定、溶融粘度測定は以下の方法により行った。
 (1)全芳香族液晶ポリエステルの組成分析
 全芳香族液晶ポリエステルの組成分析は、1H-核磁気共鳴スペクトル(1H-NMR)測定により実施した。全芳香族液晶ポリエステルをNMR試料管に50mg秤量し、溶媒ペンタフルオロフェノール/1,1,2,2-テトラクロロエタン-d2(混合比率:65/35w/w%)800μLに溶解して、UNITY INOVA500型NMR装置(バリアン社製)を用いて観測周波数500MHz、温度80℃で1H-NMR測定を実施し、7~9.5ppm付近に観測される各構造単位由来のピーク面積比から組成を分析した。
 (2)全芳香族液晶ポリエステル末端基量測定
 全芳香族液晶ポリエステルの末端基について、カルボキシ末端基およびヒドロキシ末端基については13C-核磁気共鳴スペクトル(13C-NMR)により測定した。全芳香族液晶ポリエステルをNMR試料管に50mg秤量し、溶媒ペンタフルオロフェノール/1,1,2,2-テトラクロロエタン-d2(混合比率:65/35w/w%)800μLに溶解して、UNITY INOVA500型NMR装置(バリアン社製)を用いて、観測周波数126MHz、温度80℃で13C-NMR測定を実施し、164~165ppm付近に観測されるカルボキシ末端基由来ピーク面積および115~115.5ppm付近に観測されるヒドロキシ末端基隣接の炭素由来ピーク面積とポリマー主鎖骨格炭素由来のピーク面積との比から末端基量を分析した。
 また、アセチル末端基は、全芳香族液晶ポリエステルをNMR試料管に50mg秤量し、溶媒ペンタフルオロフェノール/1,1,2,2-テトラクロロエタン-d2(混合比率:65/35w/w%)800μLに溶解して、UNITY INOVA500型NMR装置(バリアン社製)を用いて、観測周波数500MHz、温度80℃で1H-NMR測定を実施し、2.5ppm付近に観測されるアセチル末端基由来のピーク面積とポリマー主鎖骨格由来のピーク面積との比から末端基量を分析した。
 (3)全芳香族液晶ポリエステルの絶対数平均分子量測定
 全芳香族液晶ポリエステルの絶対数平均分子量測定は、下記条件に示したゲル浸透クロマトグラフ(GPC)/LALLS法により測定した。
(GPC)
GPC装置:Waters製 
検出器:示差屈折率検出器RI2410(Waters製)
カラム:Shodex K-806M(2本)、K-802(1本)(昭和電工製)
溶離液:ペンタフルオロフェノール/クロロホルム(35/65w/w%)
測定温度:23℃ 
流速:0.8mL/min
試料注入量:200μL (濃度:0.1%)
(LALLS)
装置:低角度レーザー光散乱光度計KMX-6(Chromatix製)
検出器波長:633nm(He-Ne)
検出器温度:23℃
 (4)全芳香族液晶ポリエステルのTm(融点)の測定
 示差走査熱量計DSC-7(パーキンエルマー製)により、室温から20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm1)の観測後、Tm1+20℃の温度で5分間保持した後、20℃/分の降温条件で室温まで一旦冷却し、再度20℃/分の昇温条件で測定した際に観測される吸熱ピーク温度(Tm2)を融点とした。以下の製造例においては、融点をTmと記載する。
 (5)全芳香族液晶ポリエステルの溶融粘度測定
 高化式フローテスターCFT-500D(オリフィス0.5φ×10mm)(島津製作所製)を用いて、各製造例に記載の温度においてせん断速度1000/sで測定した。
全芳香族液晶ポリエステルとして、(a-1)~(a-18)の18種類の全芳香族液晶ポリエステルを、製造例1~18として作製した。そして、作製した各液晶ポリエステルについて、既述した組成分析、末端基量測定、絶対数平均分子量測定、融点(Tm)と溶融粘度の測定を行なった。以下に、各々の全芳香族液晶ポリエステルの製造方法、および、各々の全芳香族液晶ポリエステルに係る測定結果について説明する。
[製造例1]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸932重量部、4,4’-ジヒドロキシビフェニル251重量部、ハイドロキノン99重量部、テレフタル酸284重量部、イソフタル酸90重量部、さらにハイドロキノンの過剰添加分として更にハイドロキノン5重量部および無水酢酸1262重量部(フェノール性ヒドロキシ基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、350℃まで4時間で昇温した。このとき反応により生成する酢酸の留出量と環流量を制御しながら昇温を行い、250℃到達時の留出率は71%となるようにした。その後、重合温度を350℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが15kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして全芳香族液晶ポリエステル(a-1)を得た。
 この全芳香族液晶ポリエステル(a-1)のTmは333℃、絶対数平均分子量は9800であり、温度343℃、せん断速度1000/sで測定した溶融粘度は45Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は8.0モル%であった。p-ヒドロキシ安息香酸由来の構造単位(構造単位(I))と4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))とハイドロキノン由来の構造単位(構造単位(III))の合計に対するp-ヒドロキシ安息香酸由来の構造単位(構造単位(I))の割合は75モル%、4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))とハイドロキノン由来の構造単位(構造単位(III))の合計に対する4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))の割合は60モル%、テレフタル酸由来の構造単位(構造単位(IV))とイソフタル酸由来の構造単位(構造単位(V))の合計に対するテレフタル酸由来の構造単位(構造単位(IV))の割合は76モル%であった。4,4’-ジヒドロキシビフェニル由来の構造単位(構造単位(II))およびハイドロキノン由来の構造単位(構造単位(III))の合計とテレフタル酸由来の構造単位(構造単位(IV))およびイソフタル酸由来の構造単位(構造単位(V))の合計は実質的に等モルであった。
また、前記方法により末端基量を測定した結果、ヒドロキシ末端基量(a)は60当量/(g・10-6)、アセチル末端基量(b)は40当量/(g・10-6)、カルボキシ末端基量(c)は90当量/(g・10-6)であり、ヒドロキシ末端基量とアセチル末端基量の合計とカルボキシ末端基量の比([(a)+(b)]/(c))は1.11であった。
[製造例2]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸845重量部、4,4’-ジヒドロキシビフェニル375重量部、ハイドロキノン95重量部、テレフタル酸301重量部、イソフタル酸177重量部、ハイドロキノンの過剰添加分として更にハイドロキノン5重量部および無水酢酸1332重量部(フェノール性ヒドロキシ基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、330℃まで4時間で昇温した。このとき反応により生成する酢酸の留出量と環流量を制御しながら昇温を行い、250℃到達時の留出率は72%となるようにした。その後、重合温度を330℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが20kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、全芳香族液晶ポリエステル(a-2)を得た。
 この全芳香族液晶ポリエステル(a-2)のTmは315℃、絶対数平均分子量は10500であり、温度325℃、せん断速度1000/sで測定した溶融粘度は42Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は7.3モル%であった。構造単位(I)と構造単位(II)と構造単位(III)の合計に対する構造単位(I)の割合は68モル%、構造単位(II)と構造単位(III)の合計に対する構造単位(II)の割合は70モル%、構造単位(IV)と構造単位(V)の合計に対する構造単位(IV)の割合は63モル%であった。構造単位(II)および構造単位(III)の合計と構造単位(IV)および構造単位(V)の合計は実質的に等モルであった。
 また、前記方法により末端基量を測定した結果、ヒドロキシ末端基量(a)は60当量/(g・10-6)、アセチル末端基量(b)は50当量/(g・10-6)、カルボキシ末端基量(c)は94当量/(g・10-6)であり、[(a)+(b)]/(c)は1.17であった。
[製造例3]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸957重量部、4,4’-ジヒドロキシビフェニル224重量部、ハイドロキノン96重量部、テレフタル酸241重量部、イソフタル酸103重量部および無水酢酸1232重量部(フェノール性ヒドロキシ基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、360℃まで4時間で昇温した。このとき反応により生成する酢酸の留出量と環流量を制御しながら昇温を行い、250℃到達時の留出率は68%となるようにした。その後、重合温度を360℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、全芳香族液晶ポリエステル(a-3)を得た。
 この全芳香族液晶ポリエステル(a-3)のTmは336℃、絶対数平均分子量は7800であり、温度346℃、せん断速度1000/sで測定した溶融粘度は33Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は7.9モル%であった。構造単位(I)と構造単位(II)と構造単位(III)の合計に対する構造単位(I)の割合は77モル%、構造単位(II)と構造単位(III)の合計に対する構造単位(II)の割合は58モル%、構造単位(IV)と構造単位(V)の合計に対する構造単位(IV)の割合は70モル%であった。構造単位(II)および構造単位(III)の合計と構造単位(IV)および構造単位(V)の合計は実質的に等モルであった。
 また、前記方法末端基量を測定した結果、ヒドロキシ末端基量(a)は77.5当量/(g・10-6)、アセチル末端基量(b)は77.5当量/(g・10-6)、カルボキシ末端基量(c)は131当量/(g・10-6)であり、[(a)+(b)]/(c)は1.18であった。
[製造例4]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸820重量部、4,4’-ジヒドロキシビフェニル399重量部、ハイドロキノン101重量部、テレフタル酸447重量部、イソフタル酸61重量部および無水酢酸1342重量部(フェノール性ヒドロキシ基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、340℃まで4時間で昇温した。このとき反応により生成する酢酸の留出量と環流量を制御しながら昇温を行い、250℃到達時の留出率は74%となるようにした。その後、重合温度を340℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが20kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、全芳香族液晶ポリエステル(a-4)を得た。
 この全芳香族液晶ポリエステル(a-4)のTmは327℃、絶対数平均分子量は10200であり、温度337℃、せん断速度1000/sで測定した溶融粘度は42Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は7.6モル%であった。構造単位(I)と構造単位(II)と構造単位(III)の合計に対する構造単位(I)の割合は66モル%、構造単位(II)と構造単位(III)の合計に対する構造単位(II)の割合は70モル%、構造単位(IV)と構造単位(V)の合計に対する構造単位(IV)の割合は88モル%であった。構造単位(II)および構造単位(III)の合計と構造単位(IV)および構造単位(V)の合計は実質的に等モルであった。
 また、前記方法により末端基量を測定した結果、ヒドロキシ末端基量(a)は50当量/(g・10-6)、アセチル末端基量(b)は50当量/(g・10-6)、カルボキシ末端基量(c)は85当量/(g・10-6)であり、[(a)+(b)]/(c)は1.18であった。
[製造例5]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸870重量部、4,4’-ジヒドロキシビフェニル377重量部、ハイドロキノン74重量部、テレフタル酸413重量部、イソフタル酸36重量部および無水酢酸1302重量部(フェノール性ヒドロキシ基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、360℃まで4時間で昇温した。このとき反応により生成する酢酸の留出量と環流量を制御しながら昇温を行い、250℃到達時の留出率は77%となるようにした。その後、重合温度を360℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、全芳香族液晶ポリエステル(a-5)を得た。
 この全芳香族液晶ポリエステル(a-5)のTmは345℃、絶対数平均分子量は8800であり、温度355℃、せん断速度1000/sで測定した溶融粘度は35Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は5.8モル%であった。構造単位(I)と構造単位(II)と構造単位(III)の合計に対する構造単位(I)の割合は70モル%、構造単位(II)と構造単位(III)の合計に対する構造単位(II)の割合は75モル%、構造単位(IV)と構造単位(V)の合計に対する構造単位(IV)の割合は92モル%であった。構造単位(II)および構造単位(III)の合計と構造単位(IV)および構造単位(V)の合計は実質的に等モルであった。
 また、前記方法より末端基量を測定した結果、ヒドロキシ末端基量(a)は54当量/(g・10-6)、アセチル末端基量(b)は66当量/(g・10-6)、カルボキシ末端基量(c)は100当量/(g・10-6)であり、[(a)+(b)]/(c)は1.20であった。
[製造例6]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸932重量部、4,4’-ジヒドロキシビフェニル335重量部、ハイドロキノン50重量部、テレフタル酸262重量部、イソフタル酸112重量部および無水酢酸1252重量部(フェノール性ヒドロキシ基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、350℃まで4時間で昇温した。このとき反応により生成する酢酸の留出量と環流量を制御しながら昇温を行い、250℃到達時の留出率は64%となるようにした。その後、重合温度を350℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、全芳香族液晶ポリエステル(a-6)を得た。
 この全芳香族液晶ポリエステル(a-6)のTmは325℃、絶対数平均分子量は9500であり、温度335℃、せん断速度1000/sで測定した溶融粘度は38Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は4.0モル%であった。構造単位(I)と構造単位(II)と構造単位(III)の合計に対する構造単位(I)の割合は75モル%、構造単位(II)と構造単位(III)の合計に対する構造単位(II)の割合は80モル%、構造単位(IV)と構造単位(V)の合計に対する構造単位(IV)の割合は70モル%であった。構造単位(II)および構造単位(III)の合計と構造単位(IV)および構造単位(V)の合計は実質的に等モルであった。
 また、前記方法により末端基量を測定した結果、ヒドロキシ末端基量(a)は50当量/(g・10-6)、アセチル末端基量(b)は60当量/(g・10-6)、カルボキシ末端基量(c)は88当量/(g・10-6)であり、[(a)+(b)]/(c)は1.25であった。
[製造例7]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸994重量部、4,4’-ジヒドロキシビフェニル218重量部、ハイドロキノン69重量部、テレフタル酸156重量部、イソフタル酸144重量部および無水酢酸1202重量部(フェノール性ヒドロキシ基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、365℃まで4時間で昇温した。このとき反応により生成する酢酸の留出量と環流量を制御しながら昇温を行い、250℃到達時の留出率は65%となるようにした。その後、重合温度を365℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、全芳香族液晶ポリエステル(a-7)を得た。
 この全芳香族液晶ポリエステル(a-7)のTmは350℃、絶対数平均分子量は8900であり、温度360℃、せん断速度1000/sで測定した溶融粘度は32Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は5.8モル%であった。構造単位(I)と構造単位(II)と構造単位(III)の合計に対する構造単位(I)の割合は80モル%、構造単位(II)と構造単位(III)の合計に対する構造単位(II)の割合は65モル%、構造単位(IV)と構造単位(V)の合計に対する構造単位(IV)の割合は52モル%であった。構造単位(II)および構造単位(III)の合計と構造単位(IV)および構造単位(V)の合計は実質的に等モルであった。
 また、前記方法により末端基量を測定した結果、ヒドロキシ末端基量(a)は39当量/(g・10-6)、アセチル末端基量(b)は71当量/(g・10-6)、カルボキシ末端基量(c)は91当量/(g・10-6)であり、[(a)+(b)]/(c)は1.21であった。
[製造例8]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸783重量部、4,4’-ジヒドロキシビフェニル465重量部、ハイドロキノン92重量部、テレフタル酸498重量部、イソフタル酸55重量部および無水酢酸1372重量部(フェノール性ヒドロキシ基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、360℃まで4時間で昇温した。このとき反応により生成する酢酸の留出量と環流量を制御しながら昇温を行い、250℃到達時の留出率は69%となるようにした。その後、重合温度を360℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、全芳香族液晶ポリエステル(a-8)を得た。
 この全芳香族液晶ポリエステル(a-8)のTmは337℃、絶対数平均分子量は8800であり、温度347℃、せん断速度1000/sで測定した溶融粘度は30Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は6.8モル%であった。構造単位(I)と構造単位(II)と構造単位(III)の合計に対する構造単位(I)の割合は63モル%、構造単位(II)と構造単位(III)の合計に対する構造単位(II)の割合は75モル%、構造単位(IV)と構造単位(V)の合計に対する構造単位(IV)の割合は90モル%であった。構造単位(II)および構造単位(III)の合計と構造単位(IV)および構造単位(V)の合計は実質的に等モルであった。
 また、前記方法により末端基量を測定した結果、ヒドロキシ末端基量(a)は56当量/(g・10-6)、アセチル末端基量(b)は69当量/(g・10-6)、カルボキシ末端基量(c)は103当量/(g・10-6)であり、[(a)+(b)]/(c)は1.21であった。
[製造例9]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸1019重量部、4,4’-ジヒドロキシビフェニル241重量部、ハイドロキノン36重量部、テレフタル酸121重量部、イソフタル酸148重量部および無水酢酸1182重量部(フェノール性ヒドロキシ基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、360℃まで4時間で昇温した。このとき反応により生成する酢酸の留出量と環流量を制御しながら昇温を行い、250℃到達時の留出率は77%となるようにした。その後、重合温度を360℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、全芳香族液晶ポリエステル(a-9)を得た。
 この全芳香族液晶ポリエステル(a-9)のTmは340℃、絶対数平均分子量は9250であり、温度350℃、せん断速度1000/sで測定した溶融粘度は32Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は3.1モル%であった。構造単位(I)と構造単位(II)と構造単位(III)の合計に対する構造単位(I)の割合は82モル%、構造単位(II)と構造単位(III)の合計に対する構造単位(II)の割合は80モル%、構造単位(IV)と構造単位(V)の合計に対する構造単位(IV)の割合は45モル%であった。構造単位(II)および構造単位(III)の合計と構造単位(IV)および構造単位(V)の合計は実質的に等モルであった。
 また、前記方法により末端基量を測定した結果、ヒドロキシ末端基量(a)は30当量/(g・10-6)、アセチル末端基量(b)は55当量/(g・10-6)、カルボキシ末端基量(c)は79当量/(g・10-6)であり、[(a)+(b)]/(c)は1.08であった。
[製造例10]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸870重量部、4,4’-ジヒドロキシビフェニル277重量部、ハイドロキノン134重量部、テレフタル酸395重量部、イソフタル酸54重量部および無水酢酸1302重量部(フェノール性ヒドロキシ基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、360℃まで4時間で昇温した。このとき反応により生成する酢酸の留出量と環流量を制御しながら昇温を行い、250℃到達時の留出率は63%となるようにした。その後、重合温度を360℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが10kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、全芳香族液晶ポリエステル(a-10)を得た。
 この全芳香族液晶ポリエステル(a-10)のTmは347℃、絶対数平均分子量は6900であり、温度357℃、せん断速度1000/sで測定した溶融粘度は23Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は10.4モル%であった。構造単位(I)と構造単位(II)と構造単位(III)の合計に対する構造単位(I)の割合は70モル%、構造単位(II)と構造単位(III)の合計に対する構造単位(II)の割合は55モル%、構造単位(IV)と構造単位(V)の合計に対する構造単位(IV)の割合は88モル%であった。構造単位(II)および構造単位(III)の合計と構造単位(IV)および構造単位(V)の合計は実質的に等モルであった。
 また、前記方法により末端基量を測定した結果、ヒドロキシ末端基量(a)は67.5当量/(g・10-6)、アセチル末端基量(b)は67.5当量/(g・10-6)、カルボキシ末端基量(c)は106当量/(g・10-6)であり、[(a)+(b)]/(c)は1.27であった。
[製造例11]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸845重量部、4,4’-ジヒドロキシビフェニル375重量部、ハイドロキノン95重量部、テレフタル酸301重量部、イソフタル酸177重量部、ハイドロキノンの過剰添加分として更にハイドロキノン5重量部および無水酢酸1332重量部(フェノール性ヒドロキシ基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、330℃まで4時間で昇温した。このとき反応促進のため反応により生成する酢酸の環流量を抑制し、留出速度を速めて250℃到達時の留出率が84%となるように昇温を行った。その後、重合温度を330℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが20kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、全芳香族液晶ポリエステル(a-11)を得た。
 この全芳香族液晶ポリエステル(a-11)のTmは314℃、絶対数平均分子量は14600であり、温度324℃、せん断速度1000/sで測定した溶融粘度は48Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は7.3モル%であった。構造単位(I)と構造単位(II)と構造単位(III)の合計に対する構造単位(I)の割合は68モル%、構造単位(II)と構造単位(III)の合計に対する構造単位(II)の割合は70モル%、構造単位(IV)と構造単位(V)の合計に対する構造単位(IV)の割合は63モル%であった。構造単位(II)および構造単位(III)の合計と構造単位(IV)および構造単位(V)の合計は実質的に等モルであった。
 また、前記方法により末端基量を測定した結果、ヒドロキシ末端基量(a)は24当量/(g・10-6)、アセチル末端基量(b)は24当量/(g・10-6)、カルボキシ末端基量(c)は51当量/(g・10-6)であり、[(a)+(b)]/(c)は0.94であった。
[製造例12]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸845重量部、4,4’-ジヒドロキシビフェニル375重量部、ハイドロキノン95重量部、テレフタル酸301重量部、イソフタル酸177重量部、ハイドロキノンの過剰添加分として更にハイドロキノン5重量部および無水酢酸1332重量部(フェノール性ヒドロキシ基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、330℃まで4時間の昇温プログラムで、精留塔の冷却を強化することにより反応により生成する酢酸の環流量を増加、酢酸留出を抑制して250℃到達時の留出率を48%となるように昇温を行ったところ、酢酸の環流量を増加により重合温度の上昇が遅れ、330℃まで5時間の昇温時間がかかった。その後、重合温度を330℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが20kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、全芳香族液晶ポリエステル(a-12)を得た。
 この全芳香族液晶ポリエステル(a-12)のTmは309℃、絶対数平均分子量は9800であり、温度319℃、せん断速度1000/sで測定した溶融粘度は37Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は6.7モル%であり、モノマー仕込量から計算されるハイドロキノン組成よりも0.6モル%少なく、重合時に組成ずれを起こしていることがわかった。構造単位(I)と構造単位(II)と構造単位(III)の合計に対する構造単位(I)の割合は67モル%、構造単位(II)と構造単位(III)の合計に対する構造単位(II)の割合は73モル%、構造単位(IV)と構造単位(V)の合計に対する構造単位(IV)の割合は63モル%であった。構造単位(II)および構造単位(III)の合計と構造単位(IV)および構造単位(V)の合計は実質的に等モルであった。
 また、前記方法により末端基量を測定した結果、ヒドロキシ末端基量(a)は43当量/(g・10-6)、アセチル末端基量(b)は48当量/(g・10-6)、カルボキシ末端基量(c)は93当量/(g・10-6)であり、[(a)+(b)]/(c)は0.98であった。
[製造例13]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸932重量部、4,4’-ジヒドロキシビフェニル251重量部、ハイドロキノン99重量部、テレフタル酸284重量部、イソフタル酸90重量部および無水酢酸1252重量部(フェノール性ヒドロキシ基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、350℃まで4時間で昇温した。このとき反応により生成する酢酸の留出量と環流量を制御しながら昇温を行い、250℃到達時の留出率は74%となるようにした。その後、重合温度を350℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが5kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズして全芳香族液晶ポリエステル(a-13)を得た。
 この全芳香族液晶ポリエステル(a-13)のTmは335℃、絶対数平均分子量は4200であり、温度345℃、せん断速度1000/sで測定した溶融粘度は9Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は8.0モル%であった。構造単位(I)と構造単位(II)と構造単位(III)の合計に対する構造単位(I)の割合は75モル%、構造単位(II)と構造単位(III)の合計に対する構造単位(II)の割合は60モル%、構造単位(IV)と構造単位(V)の合計に対する構造単位(IV)の割合は76モル%であった。構造単位(II)および構造単位(III)の合計と構造単位(IV)および構造単位(V)の合計は実質的に等モルであった。
 また、前記方法により末端基量を測定した結果、ヒドロキシ末端基量(a)は103当量/(g・10-6)、アセチル末端基量(b)は307当量/(g・10-6)、カルボキシ末端基量(c)は290当量/(g・10-6)であり、[(a)+(b)]/(c)は1.41であった。
[製造例14]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸808重量部、4,4’-ジヒドロキシビフェニル235重量部、ハイドロキノン208重量部、テレフタル酸419重量部、イソフタル酸105重量部および無水酢酸1352重量部(フェノール性ヒドロキシ基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、320℃まで4時間で昇温した。このとき反応により生成する酢酸の留出量と環流量を制御しながら昇温を行い、250℃到達時の留出率は75%となるようにした。その後、重合温度を320℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが25kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、全芳香族液晶ポリエステル(a-14)を得た。
 この全芳香族液晶ポリエステル(a-14)のTmは311℃、絶対数平均分子量は8900であり、温度321℃、せん断速度1000/sで測定した溶融粘度は38Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は15.6モル%であった。構造単位(I)と構造単位(II)と構造単位(III)の合計に対する構造単位(I)の割合は65モル%、構造単位(II)と構造単位(III)の合計に対する構造単位(II)の割合は40モル%、構造単位(IV)と構造単位(V)の合計に対する構造単位(IV)の割合は80モル%であった。構造単位(II)および構造単位(III)の合計と構造単位(IV)および構造単位(V)の合計は実質的に等モルであった。
 また、前記方法により末端基量を測定した結果、ヒドロキシ末端基量(a)は38当量/(g・10-6)、アセチル末端基量(b)は47当量/(g・10-6)、カルボキシ末端基量(c)は65当量/(g・10-6)であり、[(a)+(b)]/(c)は1.31であった。
[製造例15]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸994重量部、4,4’-ジヒドロキシビフェニル302重量部、ハイドロキノン20重量部、テレフタル酸164重量部、イソフタル酸135重量部および無水酢酸1202重量部(フェノール性ヒドロキシ基合計の1.09当量)を仕込み、窒素ガス雰囲気下で撹拌しながら145℃で1時間反応させた後、360℃まで4時間で昇温した。このとき反応により生成する酢酸の留出量と環流量を制御しながら昇温を行い、250℃到達時の留出率は78%となるようにした。その後、重合温度を360℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが20kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、全芳香族液晶ポリエステル(a-15)を得た。
 この全芳香族液晶ポリエステル(a-15)のTmは344℃、絶対数平均分子量は9400であり、温度354℃、せん断速度1000/sで測定した溶融粘度は42Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は1.7モル%であった。構造単位(I)と構造単位(II)と構造単位(III)の合計に対する構造単位(I)の割合は80モル%、構造単位(II)と構造単位(III)の合計に対する構造単位(II)の割合は90モル%、構造単位(IV)と構造単位(V)の合計に対する構造単位(IV)の割合は55モル%であった。構造単位(II)および構造単位(III)の合計と構造単位(IV)および構造単位(V)の合計は実質的に等モルであった。
 また、前記方法により末端基量を測定した結果、ヒドロキシ末端基量(a)は51当量/(g・10-6)、アセチル末端基量(b)は34当量/(g・10-6)、カルボキシ末端基量(c)は78当量/(g・10-6)であり、[(a)+(b)]/(c)は1.09であった。
[製造例16]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸920重量部、4,4’-ジヒドロキシビフェニル268重量部、ハイドロキノン109重量部、テレフタル酸299重量部、イソフタル酸90重量部、ハイドロキノンの過剰添加分として更にハイドロキノン5重量部および無水酢酸1304重量部(フェノール性ヒドロキシ基合計の1.10当量)を仕込み、窒素ガス雰囲気下で撹拌しながら147℃で1時間反応させた後、350℃まで4時間で昇温した。このとき反応により生成する酢酸の留出量と環流量を制御しながら昇温を行い、250℃到達時の留出率は70%となるようにした。その後、重合温度を350℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが20kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、全芳香族液晶ポリエステル(a-16)を得た。
 この全芳香族液晶ポリエステル(a-16)のTmは328℃、絶対数平均分子量は11200であり、温度338℃、せん断速度1000/sで測定した溶融粘度は30Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は8.7モル%であった。構造単位(I)と構造単位(II)と構造単位(III)の合計に対する構造単位(I)の割合は73モル%、構造単位(II)と構造単位(III)の合計に対する構造単位(II)の割合は59モル%、構造単位(IV)と構造単位(V)の合計に対する構造単位(IV)の割合は77モル%であった。構造単位(II)および構造単位(III)の合計と構造単位(IV)および構造単位(V)の合計は実質的に等モルであった。
 また、前記方法により末端基量を測定した結果、ヒドロキシ末端基量(a)は162当量/(g・10-6)、アセチル末端基量(b)は18当量/(g・10-6)、カルボキシ末端基量(c)は133当量/(g・10-6)であり、[(a)+(b)]/(c)は1.35であった。
[製造例17]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸870重量部、4,4’-ジヒドロキシビフェニル335重量部、ハイドロキノン99重量部、テレフタル酸292重量部、イソフタル酸157重量部、ハイドロキノンの過剰添加分として更にハイドロキノン5重量部および無水酢酸1324重量部(フェノール性ヒドロキシ基合計の1.10当量)を仕込み、窒素ガス雰囲気下で撹拌しながら147℃で1時間反応させた後、330℃まで4時間で昇温した。このとき反応により生成する酢酸の留出量と環流量を制御しながら昇温を行い、250℃到達時の留出率は69%となるようにした。その後、重合温度を330℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが20kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、全芳香族液晶ポリエステル(a-17)を得た。
 この全芳香族液晶ポリエステル(a-17)のTmは310℃、絶対数平均分子量は12300であり、温度320℃、せん断速度1000/sで測定した溶融粘度は33Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は7.7モル%であった。構造単位(I)と構造単位(II)と構造単位(III)の合計に対する構造単位(I)の割合は70モル%、構造単位(II)と構造単位(III)の合計に対する構造単位(II)の割合は67モル%、構造単位(IV)と構造単位(V)の合計に対する構造単位(IV)の割合は65モル%であった。構造単位(II)および構造単位(III)の合計と構造単位(IV)および構造単位(V)の合計は実質的に等モルであった。
 また、前記方法により末端基量を測定した結果、ヒドロキシ末端基量(a)は140当量/(g・10-6)、アセチル末端基量(b)は20当量/(g・10-6)、カルボキシ末端基量(c)は103当量/(g・10-6)であり、[(a)+(b)]/(c)は1.55であった。
[製造例18]
 撹拌翼、留出管を備えた5Lの反応容器にp-ヒドロキシ安息香酸870重量部、4,4’-ジヒドロキシビフェニル285重量部、ハイドロキノン129重量部、テレフタル酸388重量部、イソフタル酸60重量部、ハイドロキノンの過剰添加分として更にハイドロキノン5重量部および無水酢酸1324重量部(フェノール性ヒドロキシ基合計の1.10当量)を仕込み、窒素ガス雰囲気下で撹拌しながら147℃で1時間反応させた後、360℃まで4時間で昇温した。このとき反応により生成する酢酸の留出量と環流量を制御しながら昇温を行い、250℃到達時の留出率は70%となるようにした。その後、重合温度を360℃に保持し、1.0時間で1.0mmHg(133Pa)に減圧し、更に反応を続け、撹拌に要するトルクが20kg・cmに到達したところで重合を完了させた。次に反応容器内を1.0kg/cm2(0.1MPa)に加圧し、直径10mmの円形吐出口を1ケ持つ口金を経由してポリマーをストランド状物に吐出し、カッターによりペレタイズし、全芳香族液晶ポリエステル(a-18)を得た。
 この全芳香族液晶ポリエステル(a-18)のTmは345℃、絶対数平均分子量は9800であり、温度355℃、せん断速度1000/sで測定した溶融粘度は28Pa・sであった。また、前記方法により組成分析を行ったところ、構造単位全量に対するハイドロキノン由来の構造単位含有量は10.0モル%であった。構造単位(I)と構造単位(II)と構造単位(III)の合計に対する構造単位(I)の割合は70モル%、構造単位(II)と構造単位(III)の合計に対する構造単位(II)の割合は57モル%、構造単位(IV)と構造単位(V)の合計に対する構造単位(IV)の割合は87モル%であった。構造単位(II)および構造単位(III)の合計と構造単位(IV)および構造単位(V)の合計は実質的に等モルであった。
 また、前記方法により末端基量を測定した結果、ヒドロキシ末端基量(a)は170当量/(g・10-6)、アセチル末端基量(b)は10当量/(g・10-6)、カルボキシ末端基量(c)は110当量/(g・10-6)であり、[(a)+(b)]/(c)は1.64であった。
 各製造例で得られた全芳香族液晶ポリエステルについての組成分析結果と、末端基量測定結果と、絶対数平均分子量測定結果と、各全芳香族液晶ポリエステルの製造のための重合反応温度が250℃に到達したときの留出率とを、表1に示す。
Figure JPOXMLDOC01-appb-T000001
[実施例1~13、比較例1~5]
 前記製造例で得られた全芳香族液晶ポリエステルのペレットを、熱風乾燥機を用いて、150℃で3時間乾燥した。熱風乾燥後の液晶ポリエステル(a-1)~(a-10)、(a-16)~(a-18)を、それぞれ、実施例1~13の液晶ポリエステルとした。また、熱風乾燥後の液晶ポリエステル(a-11)~(a-15)を、それぞれ、比較例1~5の液晶ポリエステルとした。実施例1~6および比較例1~5の液晶ポリエステルについて、以下に示す(1)~(5)の評価を行った。
各製造例で得られた全芳香族液晶ポリエステルに対して、さらに充填材を加えて、実施例14~33の液晶ポリエステル樹脂組成物、および、比較例6~15の液晶ポリエステル樹脂組成物を作製した。各実施例および比較例において用いた充填材を次に示す。
充填材(B)
 (b-1) 日本電気硝子製 ガラスチョップドストランド(ECS03T747H)
 (b-2) 日本電気硝子製 ミルドファイバー(EPG70M-01N)
 (b-3) 山口雲母工業製 マイカ(“ミカレット”(登録商標)41PU5)
 (b-4) 富士タルク工業製 タルク(NK64)
[実施例14~33、比較例6~15]
 東芝機械製TEM35B型2軸押出機(噛み合い型同方向)において、シリンダーC1(元込めフィーダー側ヒーター)~C6(ダイ側ヒーター)の、C3部にサイドフィーダーを設置し、C5部に真空ベントを設置した。ニーディングブロックをC2部、C4部に組み込んだスクリューアレンジを用い、全芳香族液晶ポリエステル(a-1~a-18)を表3~5に示す配合量でホッパーから投入し、場合によって充填材(b-1~b-4)を全芳香族液晶ポリエステル100重量部に対して表3~5に示す配合量でサイドフィーダーから投入した。そして、シリンダー温度を全芳香族液晶ポリエステルの融点+20℃に設定して溶融混練し、ダイからストランド状に吐出した全芳香族液晶ポリエステル樹脂組成物を水冷バスにより冷却した後、ストランドカッターでペレタイズしてペレットとした。得られたペレットは熱風乾燥機を用いて、150℃で3時間乾燥した後、以下に示す(1)~(5)の評価を行った。
 (1)フォギング性
 実施例1~33および比較例1~15の全芳香族液晶ポリエステルあるいは全芳香族液晶ポリエステル樹脂組成物を、熱風乾燥機を用いて130℃で3時間予備乾燥した後、試験管(外径18.0mm×高さ75mm)に5g秤量して測定サンプルとした。穴径φ18.5mm×6個、深さ71mmのアルミブロックが2個入ったドライブロックバス(サイニクス社製)にサンプル試験管を挿入し、試験管開口上にスライドガラスを載せ、230℃で10時間加熱処理し、この際に発生したガスをスライドガラス上に付着させた。その後、このスライドガラスを直読ヘイズメーター(東洋精機社製)にてヘイズ値(曇り)を測定した。ヘイズ値は小さいほど曇りが少なくフォギング性に優れており、ヘイズ値が大きいほどガラスが曇り、フォギング性に劣る。
 (2)金属接着性
 実施例1~33および比較例1~15の全芳香族液晶ポリエステルあるいは全芳香族液晶ポリエステル樹脂組成物を用いて、ファナックα30C射出成形機(ファナック製)において、シリンダー温度を全芳香族液晶ポリエステルの融点+20℃の温度に設定し、金型温度90℃、射出速度120mm/s、保圧30MPa、保圧時間2秒の条件で黄銅製の端子(7mm×20mm×2mm)を短冊状試験片金型(10mm×50mm×3.2mm)内に挿入した後、射出成形を行って、図1に示すように金属端子1が5mmの深さで樹脂2に埋め込まれた金属端子抜き強度測定用試験片を作製した。引張試験機テンシロンUTA-2.5T(オリエンテック製)を用いて、金属端子部分と樹脂部分をチャックで固定して2mm/分の歪み速度で金属端子抜き強度を測定した。金属端子抜き強度が大きいほど金属接着性に優れ、金属端子抜き強度が小さいほど金属接着性に劣る。
 (3)耐クリープ特性
 実施例14~33および比較例6~15の全芳香族液晶ポリエステル樹脂組成物を用いて、SG75H-MIV(住友重機社製)において射出成形したASTM1号ダンベル試験片を、支点間距離114mm、雰囲気温度120℃、引張応力15MPa条件下で、ASTM-D2990に準拠して引張クリープ試験を行い、引張クリープ歪みを測定した。尚、引張クリープ歪みは、変位量を支点間距離で割った値であり、実施例記載の引張クリープ歪みは、試験開始から150時間経過後の値を示し、各5回測定した平均値を用いた。この値が小さいほど、耐クリープ性に優れており、成形品が熱変形しにくいといえる。
 (4)モールドデポジット
 実施例1~33および比較例1~15の全芳香族液晶ポリエステルあるいは全芳香族液晶ポリエステル樹脂組成物100重量部に対して、離型剤(LicowaxE、クラリアント製)を0.05重量部添加した後、ファナックα30C射出成形機(ファナック製)を用いて、シリンダー温度を全芳香族液晶ポリエステルの融点+20℃に設定し、金型温度90℃、成形サイクル12秒にて、50mm×50mm×1mm厚の角板状成形品をモールドデポジットが付着するまで最大1000ショット連続成形した。100ショット毎にモールドデポジットの付着状況を確認し、金型キャビティ内への付着が確認されたショット数を100ショット単位で評価しモールドデポジット性とした。金型キャビティ内への付着が確認されたショット数が少ないほど、モールドデポジット性が優れているといえる。
 (5)滞留安定性
 実施例14~15、29~33および比較例6、11、12の全芳香族液晶ポリエステル樹脂組成物を用いて、高化式フローテスターCFT-500D(オリフィス0.5φ×10mm)(島津製作所製)において、全芳香族液晶ポリエステルの融点+20℃の温度、装置内で10分間および60分間溶融滞留した後、溶融粘度をせん断速度1000/sで測定し、溶融粘度の変化として(60分間滞留時の溶融粘度)-(10分間滞留時の溶融粘度)を算出した。滞留時間による溶融粘度の差が近いほど滞留安定性に優れることを示す。
 実施例1~33および比較例1~15の評価結果を表2~5に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 表2から、本発明の実施例の全芳香族液晶ポリエステルが、フォギング性、金属接着性に優れることが明らかである。また、表3~4から、本発明の実施例の全芳香族液晶ポリエステル樹脂組成物が、フォギング性、金属接着性に優れ、高い耐クリープ特性を有しているとともに、射出成形時の金型汚れが少なく、量産性に秀でていることが明らかである。
 さらに表2、および5からは、[(a)+(b)]/(c)が1.30~2.00の全芳香族液晶ポリエステルおよび全芳香族液晶ポリエステル樹脂組成物は、フォギング性、金属接着性、耐クリープ特性に優れるとともに溶融時の滞留安定性が秀でていることが明らかである。
 本発明の全芳香族液晶ポリエステルおよびそれから得られる樹脂組成物、成形品はフォギング性、金属接着性、耐クリープ特性に優れ、特に電気・電子分野で有用である。
1.金属端子
2.樹脂

Claims (7)

  1. 構造単位全量に対してハイドロキノン由来の構造単位を2.0~15.0モル%含有する全芳香族液晶ポリエステルであり、ヒドロキシ末端基量(a)とアセチル末端基量(b)の合計が50~350当量/(g・10-6)であり、ヒドロキシ末端基量(a)とアセチル末端基量(b)の合計と、カルボキシ末端基量(c)との比[(a)+(b)]/(c)が1.05~2.00であることを特徴とする全芳香族液晶ポリエステル。
  2. ヒドロキシ末端基量(a)と、ヒドロキシ末端基量(a)とアセチル末端基量(b)の合計との比(a)/[(a)+(b)]が0.30~1.00であることを特徴とする請求項1に記載の全芳香族液晶ポリエステル。
  3. ゲル浸透クロマトグラフ/光散乱法により測定した絶対数平均分子量が5000~25000であることを特徴とする請求項1または2に記載の全芳香族液晶ポリエステル。
  4. 下記構造単位(I)、(II)、(III)、(IV)および(V)から構成され、構造単位(I)は構造単位(I)、(II)および(III)の合計に対して65~80モル%であり、構造単位(II)は構造単位(II)および(III)の合計に対して55~85モル%であり、構造単位(IV)は構造単位(IV)および(V)の合計に対して50~95モル%であり、構造単位(II)および(III)の合計と(IV)および(V)の合計が実質的に等モルであることを特徴とする請求項1~3のいずれかに記載の全芳香族液晶ポリエステル。
    Figure JPOXMLDOC01-appb-C000003
  5. 全芳香族液晶ポリエステルの原料モノマーのヒドロキシ基を無水酢酸を用いてアセチル化した後、酢酸を留出させながら全芳香族液晶ポリエステルの溶融温度以上に昇温し、脱酢酸重合することにより全芳香族液晶ポリエステルを製造する方法であって、重合反応液温度が250℃に到達したときの下式[1]で求められる留出率を50~80%とすることを特徴とする請求項1~4のいずれかに記載の全芳香族液晶ポリエステルの製造方法。
     留出率(%)=留出液量(g)/[(無水酢酸仕込みモル数(mol)-原料モノマー中のヒドロキシ基モル数(mol))×無水酢酸分子量(g/mol)+(原料モノマー中のヒドロキシ基モル数(mol)×2×酢酸分子量(g/mol))]×100 [1]
  6. 請求項1~4のいずれかに記載の全芳香族液晶ポリエステル100重量部に対して、充填材10~200重量部を配合してなる全芳香族液晶ポリエステル樹脂組成物。
  7. 請求項1~4のいずれかに記載の全芳香族液晶ポリエステルまたは請求項6に記載の全芳香族液晶ポリエステル樹脂組成物を溶融成形してなる成形品。
PCT/JP2011/006971 2010-12-27 2011-12-14 全芳香族液晶ポリエステルおよびその製造方法 WO2012090407A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012506029A JP5062381B2 (ja) 2010-12-27 2011-12-14 全芳香族液晶ポリエステルおよびその製造方法
CN201180017640.8A CN102822232B (zh) 2010-12-27 2011-12-14 全芳香族液晶聚酯及其制造方法
EP11853497.3A EP2546277B1 (en) 2010-12-27 2011-12-14 Wholly aromatic liquid crystal polyester and method for manufacturing same
KR1020127023017A KR101228705B1 (ko) 2010-12-27 2011-12-14 전방향족 액정 폴리에스테르 및 그 제조 방법
US13/617,677 US8440780B2 (en) 2010-12-27 2012-09-14 Wholly aromatic liquid crystalline polyester and method of producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010289705 2010-12-27
JP2010-289705 2010-12-27
JP2011-140053 2011-06-24
JP2011140053 2011-06-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/617,677 Continuation US8440780B2 (en) 2010-12-27 2012-09-14 Wholly aromatic liquid crystalline polyester and method of producing the same

Publications (1)

Publication Number Publication Date
WO2012090407A1 true WO2012090407A1 (ja) 2012-07-05

Family

ID=46382549

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006971 WO2012090407A1 (ja) 2010-12-27 2011-12-14 全芳香族液晶ポリエステルおよびその製造方法

Country Status (7)

Country Link
US (1) US8440780B2 (ja)
EP (1) EP2546277B1 (ja)
JP (1) JP5062381B2 (ja)
KR (1) KR101228705B1 (ja)
CN (1) CN102822232B (ja)
TW (1) TWI403536B (ja)
WO (1) WO2012090407A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128887A1 (ja) * 2012-02-29 2013-09-06 東レ株式会社 液晶ポリエステル樹脂組成物
WO2017073549A1 (ja) * 2015-10-30 2017-05-04 ユニチカ株式会社 ポリアリレート樹脂およびその製造方法ならびにポリアリレート樹脂組成物
WO2017175716A1 (ja) * 2016-04-05 2017-10-12 ユニチカ株式会社 ポリアリレート樹脂およびその樹脂組成物
JP2018044094A (ja) * 2016-09-16 2018-03-22 ユニチカ株式会社 樹脂組成物、それを用いた塗膜および積層体
WO2018199038A1 (ja) * 2017-04-25 2018-11-01 ユニチカ株式会社 ポリアリレート樹脂およびポリアリレート樹脂組成物

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9109159B2 (en) * 2010-12-27 2015-08-18 Toray Industries, Inc. Liquid crystalline polyester and production method of the same
JP6185922B2 (ja) 2011-11-15 2017-08-23 ティコナ・エルエルシー ファインピッチ電気コネクター及びそれにおいて用いる熱可塑性組成物
WO2014062536A1 (en) 2012-10-16 2014-04-24 Ticona Llc Antistatic liquid crystalline polymer composition
US9355753B2 (en) 2012-12-05 2016-05-31 Ticona Llc Conductive liquid crystalline polymer composition
KR102465221B1 (ko) 2013-03-13 2022-11-09 티코나 엘엘씨 컴팩트 카메라 모듈
JP6625050B2 (ja) 2013-06-07 2019-12-25 ティコナ・エルエルシー 高強度サーモトロピック液晶ポリマー
CN106164172B (zh) 2014-04-09 2019-07-26 提克纳有限责任公司 摄像模组
KR102305241B1 (ko) 2014-04-09 2021-09-24 티코나 엘엘씨 대전방지 중합체 조성물
US20160060196A1 (en) * 2014-08-26 2016-03-03 Eastman Chemical Company Crystallized hydroquinone and methods of making
CN106674928A (zh) * 2016-12-29 2017-05-17 江苏沃特特种材料制造有限公司 液晶聚酯复合物及其制备方法和应用
US10260685B2 (en) * 2017-02-08 2019-04-16 Cree, Inc. LED lamp with aromatic structure
KR102627886B1 (ko) 2017-12-05 2024-01-19 티코나 엘엘씨 카메라 모듈에 사용하기 위한 방향족 중합체 조성물
JP6850320B2 (ja) * 2019-06-27 2021-03-31 デンカ株式会社 Lcptダイ押出未延伸フィルム、並びにこれを用いたフレキシブル積層体及びその製造方法
CN115151414A (zh) 2020-02-26 2022-10-04 提克纳有限责任公司 用于电子器件的聚合物组合物
EP4111834A4 (en) 2020-02-26 2024-06-05 Ticona LLC CIRCUIT STRUCTURE
CN115151607A (zh) 2020-02-26 2022-10-04 提克纳有限责任公司 电子器件
US11728065B2 (en) 2020-07-28 2023-08-15 Ticona Llc Molded interconnect device
JP7220827B1 (ja) * 2022-03-16 2023-02-10 住友化学株式会社 液晶ポリエステル、液晶ポリエステルの製造方法、液晶ポリエステル組成物、フィルム、フィルムの製造方法、及び、回路基板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198618A (ja) 1987-10-12 1989-04-17 Nippon Paint Co Ltd 熱硬化性ポリエステル樹脂組成物
JPH05271394A (ja) 1992-03-13 1993-10-19 Mitsubishi Kasei Corp 液晶性ポリエステルおよびその製造方法
JPH107780A (ja) * 1996-06-25 1998-01-13 Toray Ind Inc 液晶ポリエステルの製造方法
JPH11263829A (ja) 1997-12-26 1999-09-28 Toray Ind Inc 液晶性樹脂および熱可塑性樹脂組成物
JP2966457B2 (ja) * 1988-10-11 1999-10-25 アモコ・コーポレーシヨン p‐ヒドロキシ安息香酸の残基を含むヒドロキノンポリ(イソ‐テレフタレート)の高強度ポリマー及びブレンド
JP2006089714A (ja) 2004-06-22 2006-04-06 Toray Ind Inc 液晶性樹脂、その製造方法、液晶性樹脂組成物および成形品
JP2007169379A (ja) * 2005-12-20 2007-07-05 Toray Ind Inc 全芳香族液晶性ポリエステルおよびその組成物

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306806A (en) 1987-10-12 1994-04-26 Nippon Paint Co., Ltd. Thermosetting polyester resin and powder coating resinous composition containing the same
US5216091A (en) 1988-10-11 1993-06-01 Amoco Corporation High strength polymers and blends of hydroquinone poly(iso-terephthalates) containing residues of p-hydroxybenzoic acid
US5296542A (en) 1988-10-11 1994-03-22 Amoco Corporation Heat resistant polymers and blends of hydroquinone poly (isoterephthalates) containing residues of p-hydroxybenzoic acid
US5079289A (en) 1988-10-11 1992-01-07 Amoco Corporation High modulus, high strength melt-processible polyester of hydroquinone poly (iso-terephthalates) containing residues of a p-hydroxybenzoic acid
US5097001A (en) 1988-10-11 1992-03-17 Richard Layton Hydroquinone poly(iso-terephthalates) containing residues of p-hydroxybenzoic acid
US5147967A (en) 1988-10-11 1992-09-15 Amoco Corporation High strength polymer of hydroquinone poly(iso-terephthalate) containing residues of p-hydroxybenzoic acid
JPH03501748A (ja) 1988-10-11 1991-04-18 アモコ・コーポレーシヨン ヒドロキノンポリ(イソ‐テレフタレート)p‐ヒドロキシ安息香酸ポリマーの液晶ポリマー、並びにオキシビスベンゼン及びナフタレン誘導体を含むもう一つのLCPのブレンド
US5204417A (en) 1988-10-11 1993-04-20 Amoco Corporation High strength polymers and blends of hydroquinone poly(iso-terephthalates) containing residues of p-hydroxybenzoic acid
US5089594A (en) 1988-10-11 1992-02-18 Amoco Corporation Wholly aromatic polyester of isophthalic acid, terephthalic acid, p-hydroxybenzoic acid, hydroquinone and an arylene diol
US5066767A (en) 1989-03-01 1991-11-19 Amoco Corporation Wholly aromatic polyesters comprising isophthalic acid, terephthalic acid, p-hydroxybenzoic acid, hydroquinone and an arylene diol
US5492946A (en) 1990-06-04 1996-02-20 Amoco Corporation Liquid crystalline polymer blends and molded articles therefrom
JP3365448B2 (ja) 1994-06-10 2003-01-14 三菱化学株式会社 液晶性ポリエステル(アミド)及びそれを用いた電気・電子部品並びに自動車用電装部品
JP3411683B2 (ja) * 1994-08-01 2003-06-03 新日本石油化学株式会社 全芳香族ポリエステルおよびその組成物
JP4018781B2 (ja) 1996-07-29 2007-12-05 新日本石油株式会社 低温で成形でき、しかも半田付け加工に耐えうる耐熱性を保持した電気電子部品用封止材料
US6046300A (en) 1997-12-26 2000-04-04 Toray Industries, Inc. Liquid-crystalline resin and thermoplastic resin composition
JP2003313403A (ja) 2002-04-24 2003-11-06 Nippon Petrochemicals Co Ltd 全芳香族液晶ポリエステル樹脂組成物および光ピックアップ部品
JP4558374B2 (ja) 2004-05-11 2010-10-06 上野製薬株式会社 液晶ポリエステル樹脂組成物の接合方法および液晶ポリエステル樹脂組成物接合体
WO2005123804A1 (ja) * 2004-06-22 2005-12-29 Toray Industries, Inc. 液晶性樹脂、その製造方法、液晶性樹脂組成物および成形品
JP4736548B2 (ja) * 2005-06-09 2011-07-27 東レ株式会社 液晶性樹脂繊維からなる不織布
JP2008231368A (ja) 2007-03-23 2008-10-02 Nippon Oil Corp 光線反射率および強度に優れた液晶ポリエステル樹脂組成物
TW201030087A (en) 2008-10-30 2010-08-16 Solvay Advanced Polymers Llc Power LED device with a reflector made of aromatic polyester and/or wholly aromatic polyester
JP2010174114A (ja) 2009-01-29 2010-08-12 Toray Ind Inc 液晶性樹脂組成物
JP2010202785A (ja) 2009-03-04 2010-09-16 Toray Ind Inc 液晶性ポリエステル樹脂組成物
US9011743B2 (en) 2009-03-11 2015-04-21 Toray Industries, Inc. Liquid crystal polyester fibers and method for producing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198618A (ja) 1987-10-12 1989-04-17 Nippon Paint Co Ltd 熱硬化性ポリエステル樹脂組成物
JP2966457B2 (ja) * 1988-10-11 1999-10-25 アモコ・コーポレーシヨン p‐ヒドロキシ安息香酸の残基を含むヒドロキノンポリ(イソ‐テレフタレート)の高強度ポリマー及びブレンド
JPH05271394A (ja) 1992-03-13 1993-10-19 Mitsubishi Kasei Corp 液晶性ポリエステルおよびその製造方法
JPH107780A (ja) * 1996-06-25 1998-01-13 Toray Ind Inc 液晶ポリエステルの製造方法
JPH11263829A (ja) 1997-12-26 1999-09-28 Toray Ind Inc 液晶性樹脂および熱可塑性樹脂組成物
JP2006089714A (ja) 2004-06-22 2006-04-06 Toray Ind Inc 液晶性樹脂、その製造方法、液晶性樹脂組成物および成形品
JP2007169379A (ja) * 2005-12-20 2007-07-05 Toray Ind Inc 全芳香族液晶性ポリエステルおよびその組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2546277A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013128887A1 (ja) * 2012-02-29 2013-09-06 東レ株式会社 液晶ポリエステル樹脂組成物
JP5500314B2 (ja) * 2012-02-29 2014-05-21 東レ株式会社 液晶ポリエステル樹脂組成物
WO2017073549A1 (ja) * 2015-10-30 2017-05-04 ユニチカ株式会社 ポリアリレート樹脂およびその製造方法ならびにポリアリレート樹脂組成物
JP6152235B1 (ja) * 2015-10-30 2017-06-21 ユニチカ株式会社 ポリアリレート樹脂およびその製造方法ならびにポリアリレート樹脂組成物
KR20180077165A (ko) * 2015-10-30 2018-07-06 유니티카 가부시끼가이샤 폴리아릴레이트 수지 및 그의 제조 방법, 및 폴리아릴레이트 수지 조성물
KR102567077B1 (ko) 2015-10-30 2023-08-14 유니티카 가부시끼가이샤 폴리아릴레이트 수지 및 그의 제조 방법, 및 폴리아릴레이트 수지 조성물
WO2017175716A1 (ja) * 2016-04-05 2017-10-12 ユニチカ株式会社 ポリアリレート樹脂およびその樹脂組成物
JP2018044094A (ja) * 2016-09-16 2018-03-22 ユニチカ株式会社 樹脂組成物、それを用いた塗膜および積層体
WO2018199038A1 (ja) * 2017-04-25 2018-11-01 ユニチカ株式会社 ポリアリレート樹脂およびポリアリレート樹脂組成物
JPWO2018199038A1 (ja) * 2017-04-25 2020-02-27 ユニチカ株式会社 ポリアリレート樹脂およびポリアリレート樹脂組成物
JP7217472B2 (ja) 2017-04-25 2023-02-03 ユニチカ株式会社 ポリアリレート樹脂およびポリアリレート樹脂組成物

Also Published As

Publication number Publication date
TW201231496A (en) 2012-08-01
TWI403536B (zh) 2013-08-01
US8440780B2 (en) 2013-05-14
KR101228705B1 (ko) 2013-02-01
EP2546277A1 (en) 2013-01-16
KR20120117920A (ko) 2012-10-24
US20130012680A1 (en) 2013-01-10
CN102822232B (zh) 2014-05-14
CN102822232A (zh) 2012-12-12
EP2546277A4 (en) 2013-03-13
EP2546277B1 (en) 2014-05-21
JPWO2012090407A1 (ja) 2014-06-05
JP5062381B2 (ja) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5062381B2 (ja) 全芳香族液晶ポリエステルおよびその製造方法
JP5560714B2 (ja) 液晶性ポリエステルおよびその製造方法
JP5241956B2 (ja) 液晶性ポリエステル樹脂組成物及びその製造方法とそれからなる成形品
JP5098168B2 (ja) 全芳香族液晶性ポリエステルおよびその組成物
JP5126453B2 (ja) 液晶性ポリエステルおよびその製造方法
JP2015021063A (ja) 液晶ポリエステル樹脂組成物
JP2015063641A (ja) 液晶性ポリエステル樹脂組成物およびそれからなる成形品
JP6206174B2 (ja) 液晶性ポリエステル樹脂組成物およびその成形品
WO2019198665A1 (ja) 液晶ポリエステル樹脂、その製造方法およびそれからなる成形品
JP5182240B2 (ja) 液晶性ポリエステルおよびその製造方法、組成物、成形品
JP5504978B2 (ja) 液晶性ポリエステルおよび液晶性ポリエステル組成物
JP2016088985A (ja) 液晶性ポリエステル樹脂組成物およびその成形品
JP5742567B2 (ja) 液晶性ポリエステル組成物およびそれからなる成形品
JP6507783B2 (ja) 液晶性ポリエステル樹脂組成物およびその成形品
JP6131638B2 (ja) 液晶ポリエステルおよびその製造方法
JP2016089154A (ja) 液晶性ポリエステル樹脂組成物およびそれを用いた成形品
JP2017066353A (ja) 液晶ポリエステル樹脂組成物およびそれからなる成形品
JP2015048408A (ja) 液晶性ポリエステル樹脂組成物およびその成形品
JP2011132282A (ja) 液晶性ポリエステル組成物
JP2005248052A (ja) 液晶性ポリエステル組成物
JPH11130853A (ja) 液晶性樹脂

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180017640.8

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2012506029

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853497

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127023017

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011853497

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE