WO2012087065A2 - 그래핀을 이용한 압력 및 위치 동시감지 터치센서 - Google Patents

그래핀을 이용한 압력 및 위치 동시감지 터치센서 Download PDF

Info

Publication number
WO2012087065A2
WO2012087065A2 PCT/KR2011/010038 KR2011010038W WO2012087065A2 WO 2012087065 A2 WO2012087065 A2 WO 2012087065A2 KR 2011010038 W KR2011010038 W KR 2011010038W WO 2012087065 A2 WO2012087065 A2 WO 2012087065A2
Authority
WO
WIPO (PCT)
Prior art keywords
graphene
pressure
substrate
touch sensor
pattern
Prior art date
Application number
PCT/KR2011/010038
Other languages
English (en)
French (fr)
Other versions
WO2012087065A3 (ko
Inventor
안종현
홍병희
이영빈
배수강
김형근
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to EP20153642.2A priority Critical patent/EP3686719A1/en
Priority to EP11852000.6A priority patent/EP2657812A4/en
Priority to CN201180062319.1A priority patent/CN104220964A/zh
Priority to US13/997,566 priority patent/US9297831B2/en
Publication of WO2012087065A2 publication Critical patent/WO2012087065A2/ko
Publication of WO2012087065A3 publication Critical patent/WO2012087065A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0447Position sensing using the local deformation of sensor cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0414Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using force sensing means to determine a position
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/045Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means using resistive elements, e.g. a single continuous surface or two parallel surfaces put in contact
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04106Multi-sensing digitiser, i.e. digitiser using at least two different sensing technologies simultaneously or alternatively, e.g. for detecting pen and finger, for saving power or for improving position detection

Definitions

  • the present application relates to a touch sensor capable of simultaneously measuring pressure and position by resistance change by using graphene.
  • a touch sensor such as a touch screen or a touch pad is a method of inputting a finger or a pen by touching a screen without using an input device such as a keyboard or a mouse.
  • Touch screens need to be improved in accuracy, input speed, text input, etc., but they have been widely used in public sectors such as ATMs and kiosks due to the advantages that anyone can easily enter.
  • touch screens have recently become more diverse and complex multimedia devices such as audio, video, wireless internet web browsers, etc. It is expanding its function as a means. Along with the development of such multimedia functions, a larger display screen is required within a limited size of an electronic information terminal, and accordingly, a display method using a touch panel is receiving more attention.
  • a touch display in which a touch panel is stacked on a liquid crystal display has an advantage of saving space compared to a conventional key input method by integrating a screen and coordinate input means. Therefore, the electronic information terminal to which the touch display is applied can further increase screen size and user convenience, and thus the use of the above method is increasing.
  • a resistive type for detecting a change in a current or voltage value of a position pressed by pressure in a state in which a DC voltage is applied, and a capacitance coupling in a state where an AC voltage is applied
  • a capacitive type using a) and an electromagnetic magnetic type for detecting a change in voltage at a selected position in a state where a magnetic field is applied.
  • the resistive type is combined with a liquid crystal display device, and is widely used in personal digital assistants, navigation, PMPs, electronic notebooks, PDAs, etc.
  • the resistive touch panel is an analog type according to a method of detecting a touch point.
  • Korean Patent Publication No. 2008-0108277 discloses a method of manufacturing a resistive touch sensor using ultrasonic welding.
  • the present application uses a touch sensor that can specify the touch position and / or touch pressure intensity using graphene as an electrode and / or strain gauge, in particular pressure and position by resistance change by using graphene. To provide a touch sensor that can be detected at the same time.
  • a pressure and position simultaneous sensing touch sensor may be provided, including a control unit configured to sense a resistance change of a resistor to determine (X, Y) coordinates of an external touch position and to sense an intensity of pressure applied by the external touch. .
  • a second aspect of the present disclosure the display panel; And a pressure and position co-sensing touch sensor display panel according to the first aspect of the present application attached to the front surface of the display panel.
  • a third aspect of the present disclosure includes a first substrate including a first graphene pattern formed on a first insulating substrate and including a plurality of graphene electrodes formed in parallel with each other; A second substrate formed on a second insulating substrate, the second substrate including a second graphene pattern including a plurality of graphene electrodes perpendicularly crossing the first graphene pattern and formed in parallel with each other; And applying a voltage to the first graphene pattern and the second graphene pattern facing each other so as to be in contact with each other, and applying the voltage by an external touch on the first insulating substrate or the second insulating substrate.
  • Determining a resistance change generated in at least one graphene electrode of the first graphene pattern and at least one graphene electrode of the second graphene pattern to determine the (X, Y) coordinates of the external touch position and to determine the external touch. It may provide a pressure and position simultaneous sensing touch sensor, including a control unit for sensing the strength of the pressure applied by the.
  • a fourth aspect of the present application the display panel; And a pressure and position simultaneous sensing touch sensor according to the third aspect of the present application attached to the front surface of the display panel.
  • a first graphene electrode pattern comprising a plurality of graphene line electrodes formed in parallel with each other, formed on an insulating substrate, and formed on the first graphene electrode pattern, the first graph A second graphene electrode pattern including a plurality of graphene line electrodes perpendicularly crossing each of the plurality of graphene line electrodes of the pin electrode pattern and formed in parallel with each other;
  • a plurality of graphene strain gauges connected to intersections of the plurality of graphene line electrodes of the first graphene electrode pattern and the plurality of graphene line electrodes of the second graphene electrode pattern; And applying a voltage to each graphene line electrode of the first graphene electrode pattern and the second graphene electrode pattern, and at a position of the external touch by a pressure applied by an external touch on the insulating substrate.
  • a controller configured to detect a change in resistance generated in the corresponding graphene strain gauge to determine the (X, Y) coordinates of the external touch position and to sense the strength of the pressure applied by the external touch.
  • a simultaneous sensing touch sensor can be provided.
  • a sixth aspect of the present disclosure the display panel; And a pressure and position simultaneous sensing touch sensor according to the fifth aspect of the present application attached to the front of the display panel.
  • a lower substrate on which a transparent conductive film, an electrode, and a dot spacer are formed An upper substrate on which a transparent conductive film and an electrode are formed; A graphene electrode having a strain sensing capability formed on the electrode included in the upper substrate and / or the electrode included in the lower substrate; And an adhesive member for attaching the lower substrate and the upper substrate to face each other at a predetermined interval, the pressure including a wiring structure for inputting and outputting signals from the electrodes of the upper substrate and the electrodes of the lower substrate to the outside.
  • Position simultaneous detection touch sensor can be provided.
  • an upper substrate formed with a transparent conductive film A lower substrate on which a transparent conductive film is formed; A graphene electrode formed between the upper substrate and the transparent conductive film; An electrode formed on a side of the graphene electrode; And an insulating coating part for insulating a lower portion of the transparent conductive film of the lower substrate.
  • the X-axis, Y-axis graphene electrode patterned on the substrate to the touch sensor, it is possible to implement a multi-touch function.
  • problems due to misalignment can be prevented or minimized, and uniformity and reproducibility of a product can be easily obtained.
  • the graphene since the graphene has excellent transparency and mechanical properties, it may be used as a touch sensor that is transparent and has flexibility, stretchability, and the like. Therefore, the sensor can be applied as a flexible 3D sensor.
  • FIG. 1 is an exploded perspective view schematically showing a pressure and position simultaneous detection touch sensor according to an embodiment of the present application.
  • Figure 2 is an exploded perspective view schematically showing a pressure and position simultaneous detection touch sensor according to another embodiment of the present application.
  • FIG. 3 is a perspective view illustrating a manufacturing process of a pressure and position simultaneous sensing touch sensor according to an exemplary embodiment of the present application.
  • Figure 4 is a photograph of the experimental procedure measuring the resistance according to the applied pressure of the pressure and position simultaneous detection touch sensor according to an embodiment of the present application.
  • FIG. 5 is a graph illustrating a change in resistance according to a change in pressure intensity according to a change in pressure time, measured by the measuring method of FIG.
  • FIG. 6 is a resistance graph according to the pressure repeatedly applied to the pressure and position simultaneous detection touch sensor according to an embodiment of the present application.
  • FIG. 7 is an exploded perspective view schematically illustrating a pressure and position simultaneous detection touch sensor according to another embodiment of the present disclosure.
  • FIG. 8 is a photograph of a pressure and position simultaneous sensing touch sensor manufactured by including a graphene strain gauge according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic cross-sectional view of a pressure and position simultaneous detection touch sensor according to an embodiment of the present application.
  • FIG. 10 is a schematic cross-sectional view of a pressure and position simultaneous sensing touch sensor according to another embodiment of the present application.
  • a pressure and position simultaneous sensing touch sensor may be provided, including a control unit configured to sense a resistance change of a resistor to determine (X, Y) coordinates of an external touch position and to sense an intensity of pressure applied by the external touch. .
  • At least one of the first substrate and the second substrate may be flexible or stretchable, but is not limited thereto.
  • at least one of the first substrate and the second substrate may be formed using a flexible and stretchable material, thereby making the touch sensor flexible and stretchable. have.
  • At least one of the first substrate and the second substrate may be formed using plastic or rubber, but is not limited thereto.
  • the first substrate and the second substrate may include a transparent organic insulator, but are not limited thereto.
  • the transparent organic insulator is, for example, polyimide (PI), polyacryl (polyacryl), or polyphenol (polyester), polyester (polyester), silicone (sillicone), polyurethane (polyurethane)
  • Thermosetting resins such as), thermoplastic resins such as polycarbonate, polyethylene, polystyrene, benzocyclobutene (BCB), F-added polyimide (PI), perfluorocyclo Butane (perfluorocyclobutane (PFCB), fluoropolyarylether (FPAE), siloxane-based polymer, SOG and combinations thereof may be selected from the group consisting of.
  • the pressure sensitive resistor layer may be formed by including a transparent conductive film, but is not limited thereto. Since the transparent conductive film not only has excellent electrical conductivity and transparency, but also has excellent bending characteristics, when the first pressure sensitive resistor layer and the second pressure sensitive resistor layer are each used as a transparent conductive film, the transparent conductive film is used as a transparent electrode and a touch screen material of a flat panel display. It is possible to provide a film with improved possible conductivity.
  • each of the first and second pressure reducing resistor layers may be formed using a piezoelectric material, but is not limited thereto. The piezoelectric material may be any one known in the art without particular limitation.
  • the decompression resistor layer may be formed to include one or more decompression resistor layers, but is not limited thereto.
  • control unit alternately applies a voltage only to the graphene electrode of the first graphene electrode pattern and the graphene electrode of the second graphene electrode pattern at the position where the external touch is applied to the external.
  • the (X, Y) coordinates of the touch position may be determined, and at the same time, the strength of the pressure applied by the external touch may be determined, but is not limited thereto.
  • FIG. 1 is an exploded perspective view schematically showing the configuration of a pressure and position simultaneous detection touch sensor according to an embodiment of the present application.
  • a pressure and position simultaneous sensing touch sensor 100 may include a first substrate 110, a force sensing resistor (FSR) 120, and a second substrate 130. And a first graphene electrode pattern X1, X2,..., Xn formed on the first substrate 110 and patterned on the second substrate 130.
  • the second graphene electrode patterns Y1, Y2,..., And Yn may be further included.
  • the pressure and position simultaneous sensing touch sensor 100 may be configured to include a first base 110 and a second base 130 installed to face the first base 110.
  • the first substrate 110 is a member to which an external pressure F is applied by a pointing object (for example, a finger or a stylus pen). The deformation is caused by the external pressure F.
  • the touch panel 100 may be formed using a material that is transparent to the first substrate 110 to provide a display screen to a user.
  • the transparent material may include glass, quartz, an acrylic plate, a transparent film, a plastic substrate, and the like, and the material of the upper substrate may be restored to its original state after the external pressure F of the pointing object is applied. Can also be used.
  • the second substrate 130 is a member provided to be spaced apart from the first substrate 110 by a predetermined distance, and may be made of a transparent material similar to the first substrate 110.
  • the interval between the first substrate 110 and the second substrate 130 may be, for example, about 0.01 ⁇ m to about 100 ⁇ m.
  • the thickness is less than about 0.01 ⁇ m, it is difficult to sufficiently accommodate the change in spacing due to the deformation of the first substrate 110, and when the thickness is larger than about 100 ⁇ m, it may be an obstacle to downsizing. Due to the distance between the first substrate 110 and the second substrate 130, durability of the touch screen may be improved, stable to external shock, and a clean screen may be provided to the user.
  • First graphene electrode patterns (X1, X2, ..., Xn) including a plurality of graphene electrodes formed on the first substrate 110 in parallel to each other along the X-axis direction on the first substrate 110 ) Is coated on the second substrate 130 and perpendicularly crosses the X-axis direction of the first graphene patterns X1, X2,..., Xn, and Y of the second substrate 140.
  • the second graphene electrode patterns Y1, Y2,..., Yn including a plurality of graphene electrodes formed in parallel with each other along the axial direction are coated.
  • the pressure and position simultaneous sensing touch sensor 100 may be formed on the first graphene electrode patterns X1, X2,..., Xn and the second substrate 130 formed on the first substrate 110.
  • the second graphene electrode pattern (Y1, Y2, ..., Yn) may be formed to include a pressure-sensitive resistor layer 120 for detecting a pressure change from between.
  • the decompression resistor layer 120 serves as a pressure sensing layer.
  • the decompression resistor layer 120 has a resistance that decreases as it increases the force on the sensor surface, which may be ideal for pressure sensing.
  • the resistance of the first substrate 110 and the second substrate 130 is changed by an externally applied pressure.
  • the sensing circuit (not shown) measures the pressure by evaluating the magnitude of the applied pressure through the degree of the current drop caused by the resistance change of the graphene due to the externally applied pressure.
  • the function can be changed according to the pressure. For example, when the user presses a small force to zoom out and zooms in when a large force is applied, the above driving principle is applied. Can be implemented.
  • the function can be added using the resistance generated when maintaining the applied pressure.
  • the position can be sensed through the distribution of the magnitude change of the resistance generated in each graphene electrode line.
  • a lead wire and a load resistor RL may be connected to an end portion of each of the second graphene electrode patterns Y1, Y2,..., And Yn of the second substrate 130.
  • the first substrate 110 has a plurality of first graphene electrode patterns (X1, X2, ..., Xn) divided into a plurality of patterns by patterning to be parallel to each other, so that the first graphene electrode patterns (X1, X2, Xn and the second graphene electrode patterns Y1, Y2,..., Yn may be vertically intersected with each other.
  • a voltage is applied to the first graphene electrode patterns X1, X2, ..., Xn and the second graphene electrode patterns Y1, Y2, ..., Yn to turn on each patterned electrode.
  • the remaining switches are turned off to sequentially apply a signal for position detection and measure voltage.
  • the controller touches the decompression resistor layer 120. It is possible to detect and detect the (X, Y) coordinates of the external touch position by detecting a change in resistance generated by generating a high signal at the manipulated point.
  • the first graphene electrode pattern (X1, X2, ..., Xn) and the second graphene electrode patterns (Y1, Y2, ..., Yn) cross each other,
  • the first graphene electrode pattern (X1, X2, ..., Xn) and the second graphene electrode pattern (Y1, Y2, ..., Yn) line distribution can be obtained using software to detect the touch point. It will be done.
  • each of the first graphene electrode pattern (X1, X2, ..., Xn) and the second graphene electrode pattern (Y1, Y2, ..., Yn) has a predetermined interval and is patterned to form a multi-touch function because each electrode is divided so that even if a touch operation occurs at the two points at the same time does not electrically affect each other This has a possible advantage.
  • a second aspect of the present application the display panel; And a pressure and position simultaneous sensing touch sensor display panel including a pressure and position simultaneous sensing touch sensor according to the first aspect of the present application attached to a front surface of the display panel.
  • the display panel may be a liquid crystal display panel, but is not limited thereto.
  • a third aspect of the present disclosure includes a first substrate including a first graphene pattern formed on a first insulating substrate and including a plurality of graphene electrodes formed in parallel with each other; A second substrate formed on a second insulating substrate, the second substrate including a second graphene pattern including a plurality of graphene electrodes perpendicularly crossing the first graphene pattern and formed in parallel with each other; And applying a voltage to the first graphene pattern and the second graphene pattern facing each other so as to be in contact with each other, and applying the voltage by an external touch on the first insulating substrate or the second insulating substrate.
  • Determining a resistance change generated in at least one graphene electrode of the first graphene pattern and at least one graphene electrode of the second graphene pattern to determine the (X, Y) coordinates of the external touch position and to determine the external touch. It may provide a pressure and position simultaneous sensing touch sensor, including a control unit for sensing the strength of the pressure applied by the.
  • each of the plurality of graphene electrodes of the first graphene pattern and the second graphene pattern may act as a strain gauge, and may be formed by a pressure applied by the external touch.
  • the change in resistance caused by the at least one graphene electrode of the first graphene pattern and the at least one graphene electrode of the second graphene pattern may be in proportion to the strength of the pressure applied by the external touch.
  • the present invention is not limited thereto.
  • the first insulating substrate and the second insulating substrate may each include a transparent organic insulator, but are not limited thereto.
  • At least one of the first insulating substrate and the second insulating substrate may be flexible or stretchable, but is not limited thereto.
  • the graphene electrode is flexible and stretchable
  • at least one of the first insulating substrate and the second insulating substrate is formed using a flexible and stretchable material, thereby making the touch sensor flexible and stretchable. can do.
  • At least one of the first substrate and the second substrate may be formed using plastic or rubber, but is not limited thereto.
  • the pressure and position simultaneous sensing touch sensor can be manufactured in the form of a glove, and the glove can be used for various medical purposes, experiments, and the like. It can be used as pressure and position simultaneous sensing touch sensor in the field.
  • control unit alternately applies a voltage only to the graphene electrode of the first graphene pattern and the graphene electrode of the second graphene pattern at the position where the external touch is applied to the external touch position. It may be to determine the (X, Y) coordinates of, but is not limited thereto.
  • Figure 2 is an exploded perspective view schematically showing a pressure and position simultaneous detection touch sensor according to an embodiment of the present application.
  • the pressure and position simultaneous sensing touch sensor 200 may include a first insulating substrate 210, a transparent organic insulator 220, and a second insulating substrate 230.
  • a first substrate and the first substrate formed on the first insulating substrate 210 and including a first graphene pattern (X1, X2, ..., Xn) including a plurality of graphene electrodes formed in parallel to each other Second graphene patterns Y1, Y2,..., Yn formed on the insulating substrate 230 and including a plurality of graphene electrodes perpendicularly intersecting with the first graphene pattern and formed in parallel with each other.
  • It may further include a second substrate comprising a).
  • the first insulating substrate 210 and the second insulating substrate 230 are members to which an external pressure F is applied by a pointing object (for example, a finger or a stylus pen), and are deformed by the external pressure F. This happens.
  • the simultaneous pressure and position sensing touch sensor 200 according to the present application may be made of a transparent material of the first insulating substrate 210 and the second insulating substrate 230 to provide a display screen to the user.
  • the transparent material may include, for example, rubber, glass, quartz, an acrylic plate, a transparent film, a plastic substrate, and the like, and the material of the upper substrate is restored to its original state after the external pressure F of the pointing object is applied.
  • Possible stretchable substrates or elastomer substrates may be used.
  • the stretchable substrate or elastomeric substrate may be, for example, a thermoplastic elastomer, a styrenic material, an olefin material, a polyolefin, a polyurethane thermoplastic elastomer.
  • polyurethane thermoplastic elastomers polyamides, synthetic rubbers, polydimethylsiloxane (PDMS), polybutadiene, polyisobutene, polyisobutylene, poly (styrene-butadiene-styrene) [poly (styrene-butadiene-styrene)], polyurethane (polyurethanes), polychloroprene (polychloroprene), silicone and combinations thereof may be selected from the group consisting of, but is not limited thereto.
  • PDMS polydimethylsiloxane
  • PDMS polybutadiene
  • polyisobutene polyisobutylene
  • polychloroprene polychloroprene
  • the first insulating substrate 210 and the second insulating substrate 230 may include a transparent organic insulator 220.
  • the transparent organic insulator 220 may be, for example, polyimide (PI).
  • PI polyimide
  • Thermosetting resins such as polyacryl, polyphenol, polyester, silicone, silicone, polyurethane, polycarbonate, polyethylene, polystyrene and Thermoplastic resins such as benzocyclobutene (BCB), F-added polyimide (PI), perfluorocyclobutane (PFCB), fluoropolyarylether (FPAE), siloxane It may include one selected from the group consisting of a series polymer, SOG and combinations thereof.
  • BCB benzocyclobutene
  • PI F-added polyimide
  • PFCB perfluorocyclobutane
  • FPAE fluoropolyarylether
  • siloxane It may include one selected from the group consisting of a series polymer
  • Each of the plurality of graphene electrodes of the first graphene pattern (X1, X2, ..., Xn) and the second graphene pattern (Y1, Y2, ..., Yn) is a strain gauge This is a member that measures the strain in the contact surface direction of the first insulating substrate 210 and the second insulating substrate 230 which is deformed according to the application of the external pressure (F).
  • One surface of the first insulating substrate 210 having the first graphene patterns X1, X2,..., Xn may be selected to face a surface facing the second insulating substrate 230, and the second graphene One surface of the second insulating base 230 provided with the patterns Y1, Y2,..., And Yn may be selected to face the first insulating base 210. This is to protect the first graphene pattern (X1, X2, ..., Xn) and the second graphene pattern (Y1, Y2, ..., Yn) from the external environment of the touch screen.
  • Wiring for signal detection of the first graphene pattern (X1, X2, ..., Xn) and the second graphene pattern (Y1, Y2, ..., Yn) is obvious to those skilled in the art and will be described below. Detailed description will be omitted.
  • the first insulating substrate 210 When the external pressure F is applied from the pressure and position simultaneous sensing touch sensor 200, the first insulating substrate 210 is deformed. As the first insulating substrate 210 is deformed, the resistance values of the first substrates X1, X2,..., Xn formed on the first insulating substrate 210 are changed, and the external resistance is changed from the resistance change. It is possible to detect the strength and the acting position of the pressure F. The resistance change generated by each other is proportional to the strength of the pressure applied by the external touch. At this time, the role of the graphene strain gauge is to accurately measure the magnitude of the resistance applied to a specific region from the outside, and it is possible to measure the pressure more precisely than in the case of the resistive multi-touch screen of the first aspect of the present application.
  • the present application may implement a 3D touch sensor by listing the first graphene patterns (X1, X2, ..., Xn) and the second graphene patterns (Y1, Y2, ..., Yn).
  • Ni layer as a catalyst layer on the SiO 2 / Si substrate to form a Ni / SiO 2 / Si substrate.
  • graphene was grown on a Ni / SiO 2 / Si substrate to form graphene X electrode patterns (X1, X2, ..., Xn) on the substrate.
  • FIG. 5A is a resistance graph according to the applied pressure measured by the measuring method of FIG. 6 is a resistance graph according to a pressure repeatedly applied to a pressure and position simultaneous sensing touch sensor according to an exemplary embodiment of the present application. 3 to 6, the resistance according to the applied pressure measured as shown can be seen that the change in resistance varies depending on the magnitude of the applied pressure (FIG. 5A).
  • the resistance is maintained in a state in which the resistance is increased, and if the pressure is not applied, the resistance is returned to its original state (FIG. 6). Therefore, various functions can be added according to the magnitude of the pressure to be applied.
  • Various functions may include, for example, a function of adjusting the thickness of a letter according to the amount of pressure applied, a function of adjusting a volume of the volume according to the amount of pressure applied.
  • a fourth aspect of the present application the display panel; And a pressure and position simultaneous sensing touch sensor according to the third aspect of the present application attached to the front surface of the display panel.
  • the display panel may be a liquid crystal display panel, but is not limited thereto.
  • a first graphene electrode pattern comprising a plurality of graphene line electrodes formed in parallel with each other, formed on an insulating substrate, and formed on the first graphene electrode pattern, the first graph
  • a second graphene electrode pattern including a plurality of graphene line electrodes perpendicularly crossing each of the plurality of graphene line electrodes of the pin electrode pattern and formed in parallel with each other;
  • a plurality of graphene strain gauges connected to intersections of the plurality of graphene line electrodes of the first graphene electrode pattern and the plurality of graphene line electrodes of the second graphene electrode pattern; And applying a voltage to each graphene line electrode of the first graphene electrode pattern and the second graphene electrode pattern, and at a position of the external touch by a pressure applied by an external touch on the insulating substrate.
  • a controller configured to detect a change in resistance generated in the corresponding graphene strain gauge to determine the (X, Y) coordinates of the external touch position and to
  • the graphene strain gauge may further include a plurality of thin film transistors connected to each other.
  • the plurality of thin film transistors may be connected to a controller to control the controller to turn on the transistor when the controller generates a voltage, and to adjust the sensitivity of the pressure sensor and the position sensor. Can be improved.
  • the plurality of thin film transistors may be transparent, but is not limited thereto.
  • the plurality of thin film transistors may be formed, for example, selected from the group consisting of carbon nanotubes, graphene, organic thin films, oxide thin films, silicon thin films, and combinations thereof, but is not limited thereto. .
  • the insulating substrate may be flexible or stretchable, but is not limited thereto.
  • a protective layer may be further included on the second graphene electrode pattern and the graphene strain gauge, but is not limited thereto.
  • the pressure and position simultaneous sensing touch sensor 300 may include first graphene electrode patterns X1, X2,..., Xn formed on the insulating substrate 310. ), A second graphene electrode pattern Y1, Y2,..., Yn, a graphene strain gauge 320, and a controller (not shown).
  • a protective layer on the first graphene electrode pattern (X1, X2, ..., Xn), the second graphene electrode pattern (Y1, Y2, ..., Yn), graphene strain gauge 320 may be further included.
  • the strain gauge 320 detects the strain gauge 320 having a serpentine shape more sensitive to external pressure because the electrical resistance changes in proportion to the change in the length of the strain gauge 320. can do.
  • the resistance value is changed according to the strength of the force applied to the pressure and position simultaneous sensing touch sensor 300, thereby measuring the strength of the force applied to the external touch position. have.
  • FIG. 8 is a photograph of a pressure and position simultaneous sensing touch sensor including a graphene strain gauge according to an embodiment of the present disclosure.
  • the pressure and position simultaneous sensing touch sensor formed by including a graphene electrode and a graphene strain gauge may have a single layer structure formed by patterning a single sheet of graphene.
  • the graphene sheet may be prepared by growing graphene in a metal catalyst layer.
  • the metal catalyst layer is used to facilitate the growth of graphene, and the material of the metal catalyst layer may be used without particular limitation.
  • the metal catalyst layer is, for example, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, Ge, Ru , Ir, brass, bronze, bronze, copper, stainless steel, and combinations thereof may be selected from the group consisting of, but is not limited thereto.
  • the method for growing the graphene may be used without particular limitation in the art for graphene growth in the art, for example, chemical vapor deposition (CVD) method may be used but not limited thereto. It doesn't happen.
  • the chemical vapor deposition method may include rapid thermal chemical vapor deposition (RTCVD), inductively coupled plasma-chemical vapor deposition (ICP-CVD), low pressure chemical vapor deposition; LPCVD), atmospheric pressure chemical vapor deposition (APCVD), metal organic chemical vapor deposition (MOCVD), and plasma-enhanced chemical vapor deposition (PECVD) methods. It may include, but is not limited to now.
  • the graphene may grow graphene by adding a gaseous carbon source and heat treating the metal catalyst layer.
  • a metal catalyst layer is placed in a chamber and a carbon source such as carbon monoxide, ethane, ethylene, ethanol, acetylene, propane, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene, toluene, etc.
  • a carbon source such as carbon monoxide, ethane, ethylene, ethanol, acetylene, propane, butane, butadiene, pentane, pentene, cyclopentadiene, hexane, cyclohexane, benzene, toluene, etc.
  • heat treatment is performed at a temperature of about 300 ° C. to about 2000 ° C.
  • graphene is generated while the carbon components present in the carbon source combine to form a hexagon
  • the method of forming the graphene on the metal catalyst layer is not limited to the chemical vapor deposition method, and in the exemplary embodiment of the present application, any method of forming the graphene on the metal catalyst layer may be used, and the present application may be performed on the metal catalyst layer. It will be appreciated that it is not limited to any particular method of forming graphene in.
  • the target substrate is a flexible and flexible substrate such as PDMS or PET.
  • X graphene electrode patterns (X1, X2, ..., Xn)
  • Y graphene electrode patterns (Y1, Y2, ..., Yn) through an oxygen plasma process using photolithography or a shadow mask on a substrate, And simultaneous patterning of strain gauges is possible.
  • targets for graphene having X graphene electrode patterns (X1, X2, ..., Xn), Y graphene electrode patterns (Y1, Y2, ..., Yn), and strain gauges patterned in advance Through a process of transferring to a substrate, a pressure and position simultaneous sensing touch sensor can also be manufactured.
  • a plurality of thin film transistors included in the graphene strain gauge 300 may be further included.
  • the plurality of thin film transistors may be connected to a controller (not shown) to control the transistor to turn on when the controller generates a voltage.
  • the plurality of thin film transistors may be formed to be transparent, and may include, for example, carbon nanotubes, graphene, organic thin films, oxide thin films, silicon thin films, and combinations thereof.
  • the present invention is not limited thereto.
  • a sixth aspect of the present disclosure the display panel; And a pressure and position simultaneous sensing touch sensor according to the fifth aspect of the present application attached to the front of the display panel.
  • the display panel may be a liquid crystal display panel, but is not limited thereto.
  • the seventh aspect of the present disclosure includes a lower substrate 410 on which a transparent conductive film 420, an electrode, and a dot spacer 470 are formed, and an upper substrate on which the transparent conductive film 440 and an electrode are formed.
  • 460 a graphene electrode having strain sensing capability formed on the electrode included in the upper substrate 460 and / or the electrode included in the lower substrate 410;
  • an adhesive member 430 for attaching the lower substrate 410 and the upper substrate 460 to face each other at a predetermined interval, thereby providing a pressure and position simultaneous touch sensor 400.
  • the transparent conductive films 420 and 440 are formed of a transparent material, for example, indium tin oxide (ITO), indium zinc oxide (IZO), tin antinomy oxide (TAO), tin oxide (TO), or zinc oxide (Zinc). Oxide), carbon nanotube, or graphene, or the like, and may be formed of a material containing a transparent conductive oxide (TCO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • TAO tin antinomy oxide
  • TO tin oxide
  • Zinc zinc oxide
  • Oxide carbon nanotube, or graphene, or the like
  • TCO transparent conductive oxide
  • the touch sensor 400 applies an external pressure on the upper substrate 460, the touch sensor 400 makes mechanical contact between the transparent conductive layers 420 and 440 of the upper substrate 460 and the lower substrate 410.
  • the position may be recognized by the potential value.
  • the structure of the resistive touch sensor may be variously changed within a range of those skilled in the art
  • an eighth aspect of the present disclosure includes an upper substrate 570 on which a transparent conductive film 540 is formed, a lower substrate 530 on which a transparent conductive film 520 is formed, the upper substrate 570, and An insulating coating part 510 for insulating the graphene electrode 550 formed between the transparent conductive film 540, the electrode 560 formed on the side of the graphene electrode 550, and the lower portion of the transparent conductive film 540.
  • the touch position is sensed by the electrode formed on the side according to the variation of the capacitance and the strain (strain) of the graphene electrode itself by the touch by the touch
  • a pressure and position simultaneous detection touch sensor 500 for sensing the strength of pressure may be provided.
  • the upper substrate 570 may be formed of glass or plastic, and the lower substrate 530 may use a polymer film substrate.
  • the transparent conductive films 520 and 540 formed on the upper substrate 570 and the lower substrate 530 are formed of a transparent material, for example, indium tin oxide (ITO), indium zinc oxide (IZO), It may be formed of a material containing a transparent conductive oxide (TCO) such as TAO (Tin Antinomy Oxide), TO (Tin Oxide), ZnO (Zinc Oxide), carbon nanotubes, graphene.
  • TAO Tin Antinomy Oxide
  • TO Tin Oxide
  • ZnO Zinc Oxide
  • the touch sensor 500 is a voltage drop when a conductor such as an external human finger or a conductive stylus pen touches the upper portion of the transparent conductive film so that a voltage drop is generated and each electrode provided at the side senses the electrostatic power to sense the touch position.
  • a conductor such as an external human finger or a conductive stylus pen touches the upper portion of the transparent conductive film so that a voltage drop is generated and each electrode provided at the side senses the electrostatic power to sense the touch position.
  • the capacitive touch sensor the structure of the resistive touch sensor may be variously changed in the range of those skilled in the art.
  • the graphene strain sensors 450 and 550 formed on the transparent conductive film in the touch sensors of the resistive film method 400 and the capacitive method 500 have a current drop caused by a change in resistance of the graphene due to an externally applied pressure.
  • the pressure can also be measured by evaluating the magnitude of the applied pressure through the degree of. Therefore, it is possible to provide a touch sensor capable of simultaneously measuring pressure and position.

Abstract

그래핀을 전극 및/또는 스트레인 게이지(strain gauge)로서 이용하여 터치 위치 및/또는 터치 압력 세기를 특정할 수 있는 터치센서, 특히, 그래핀을 이용함으로써 저항변화에 의하여 압력 및 위치를 동시에 감지할 수 있는 터치센서가 제공된다.

Description

그래핀을 이용한 압력 및 위치 동시감지 터치센서
본원은 그래핀을 이용함으로써 저항변화에 의하여 압력 및 위치 동시 측정이 가능한 터치센서에 관한 것이다.
터치스크린, 터치패드 등과 같은 터치 센서는 키보드나 마우스와 같은 입력장치를 사용하지 않고, 스크린에 손가락, 펜 등을 접촉하여 입력하는 방식이다. 터치스크린은 정확성, 입력속도, 문자입력 등에서는 개선이 필요하나, 누구나 쉽게 입력할 수 있는 장점으로 인해 기존에는 현금인출기, 키오스크(Kiosk) 등 공공분야에서 주로 많이 사용되어 왔다. 하지만 최근에 터치스크린은 이동 통신 기술의 발달과 더불어 핸드폰, PDA, 네비게이션과 같은 전자 정보 단말기는 단순한 문자 정보의 표시 수단에서 더 나아가 오디오, 동영상, 무선 인터넷 웹 브라우저 등과 같은 더욱 다양하고 복잡한 멀티 미디어 제공 수단으로 그 기능을 확대해 나가고 있다. 이러한 멀티 미디어 기능의 발달과 더불어 제한된 전자 정보 단말기의 크기 내에서 더욱 큰 디스플레이 화면 구현이 요구되고 있고 이에 따라 터치패널을 적용한 디스플레이 방식이 더욱 각광받고 있다.
액정 디스플레이 상에 터치패널을 적층 배치한 터치 디스플레이는 스크린(screen)과 좌표 입력 수단을 통합함으로써 종래 키입력 방식에 비하여 공간을 절약할 수 있는 이점이 있다. 따라서 터치 디스플레이가 적용된 전자정보 단말기는 스크린 사이즈(size) 및 사용자의 편의성을 더욱 증대시킬 수 있어 상기 방식의 사용이 증가되고 있는 추세이다.
검출 방식에 따라 간단히 살펴보면, 직류 전압을 인가한 상태에서 압력에 의해 눌려진 위치를 전류 또는 전압값에 변화를 감지하는 저항식(resistive type)과, 교류 전압을 인가한 상태에서 캐패시턴스 커플링(capacitance coupling)을 이용하는 정전 용량 방식(capacitive type)과, 자계를 인가한 상태에서 선택된 위치를 전압의 변화를 감지하는 전자 유도 방식(electro magnetic type) 등이 있다.
그 중 저항식은 액정 표시 장치(Liquid Crystal Display Device)와의 조합으로 개인 휴대 단말기, 네비게이션, PMP, 전자 수첩, PDA 등에 많이 채용되고 있으며, 저항식의 터치 패널은 터치 지점을 검출하는 방식에 따라 아날로그 방식과 디지털 방식으로 구분되며, 대한민국 공개특허 제 2008-0108277 호에는 초음파 융착을 이용한 저항식 터치센서의 제조방법을 개시하고 있다.
이와 같은 여러 방식의 터치스크린이 다양한 장치들에 널리 장착되고 있지만 가격 저하를 위해 그리고 성능 향상을 위해 해결해야 할 부분들이 존재하고 있다. 즉, 보다 단순화된 구조와 보다 향상된 동작 성능을 갖는 터치 스크린 장치가 요구된다. 또한 기존의 터치스크린 장치들은 대면적화가 용이하지 않는 문제점이 있다.
본원은, 그래핀을 전극 및/또는 스트레인 게이지(strain gauge)로서 이용하여 터치 위치 및/또는 터치 압력 세기를 특정할 수 있는 터치센서, 특히, 그래핀을 이용함으로써 저항변화에 의하여 압력 및 위치를 동시에 감지할 수 있는 터치센서를 제공하고자 한다.
그러나, 본원이 해결하고자 하는 과제는 이상에서 언급한 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본원의 제 1 측면은, 제 1 기재 상에 형성되며 서로 평행하게 형성된 복수개의 그래핀 전극을 포함하는 제 1 그래핀 전극 패턴; 상기 제 1 그래핀 전극 패턴 상에 형성된 감압 레지스터 (force sensing resistor; FSR) 층; 제 2 기재 상에 형성되며, 상기 제 1 그래핀 전극 패턴과 수직으로 교차하며 서로 평행하게 형성된 복수개의 그래핀 전극을 포함하는 제 2 그래핀 전극 패턴; 및, 상기 제 1 그래핀 전극 패턴 및 상기 제 2 그래핀 전극 패턴에 전압을 인가하고, 상기 제 1 기재 또는 상기 제 2 기재 상에 외부 터치에 의하여 가해지는 압력에 의하여 상기 외부 터치 위치에서 상기 감압 레지스터의 저항 변화를 감지하여 외부 터치 위치의 (X,Y) 좌표를 판단하고 상기 외부 터치에 의하여 가해지는 압력의 세기를 감지하는 제어부를 포함하는, 압력 및 위치 동시감지 터치센서를 제공할 수 있다.
본원의 제 2 측면은, 디스플레이 패널; 및, 상기 디스플레이 패널 전면에 부착되는 상기 본원의 제 1 측면에 따른 압력 및 위치 동시감지 터치센서를 포함하는, 압력 및 위치 동시감지 터치센서 디스플레이 패널을 제공할 수 있다.
본원의 제 3 측면은, 제 1 절연성 기재 상에 형성되며 서로 평행하게 형성된 복수개의 그래핀 전극을 포함하는 제 1 그래핀 패턴을 포함하는 제 1 기판; 제 2 절연성 기재 상에 형성되며, 상기 제 1 그래핀 패턴과는 수직으로 교차하며 서로 평행하게 형성된 복수개의 그래핀 전극을 포함하는 제 2 그래핀 패턴을 포함하는 제 2 기판; 및, 서로 접촉하도록 대향된 상기 제 1 그래핀 패턴 및 상기 제 2 그래핀 패턴에 전압을 인가하고, 상기 제 1 절연성 기재 또는 상기 제 2 절연성 기재 상에 외부 터치에 의하여 가해지는 압력에 의하여 상기 제 1 그래핀 패턴의 적어도 하나의 그래핀 전극과 상기 제 2 그래핀 패턴의 적어도 하나의 그래핀 전극에 발생되는 저항 변화를 감지하여 외부 터치 위치의 (X,Y) 좌표를 판단하고 상기 외부 터치에 의하여 가해지는 압력의 세기를 감지하는 제어부를 포함하는, 압력 및 위치 동시감지 터치센서를 제공할 수 있다.
본원의 제 4 측면은, 디스플레이 패널; 및, 상기 디스플레이 패널 전면에 부착되는 상기 본원의 제 3 측면에 따른 압력 및 위치 동시감지 터치센서를 포함하는, 압력 및 위치 동시감지 터치센서 디스플레이 패널을 제공할 수 있다.
본원의 제 5 측면은, 절연성 기재 상에 형성된, 서로 평행하게 형성된 복수개의 그래핀 라인전극을 포함하는 제 1 그래핀 전극 패턴, 및 상기 제 1 그래핀 전극 패턴 상에 형성되며, 상기 제 1 그래핀 전극 패턴의 복수개의 그래핀 라인전극 각각에 수직으로 교차하며 서로 평행하게 형성된 복수개의 그래핀 라인전극을 포함하는 제 2 그래핀 전극 패턴;
상기 제 1 그래핀 전극 패턴의 복수개의 그래핀 라인전극 및 상기 제 2 그래핀 전극 패턴의 복수개의 그래핀 라인전극 각각의 교차점에 연결되어 형성된 복수개의 그래핀 스트레인 게이지; 및, 상기 제 1 그래핀 전극 패턴 및 상기 제 2 그래핀 전극 패턴의 각각의 그래핀 라인전극에 전압을 인가하고, 상기 절연성 기재 상에 외부 터치에 의하여 가해지는 압력에 의하여 상기 외부 터치의 위치에 대응하는 상기 그래핀 스트레인 게이지에 발생되는 저항 변화를 감지하여 상기 외부 터치 위치의 (X,Y) 좌표를 판단하고 상기 외부 터치에 의하여 가해지는 압력의 세기를 감지하는 제어부를 포함하는, 압력 및 위치 동시감지 터치센서를 제공할 수 있다.
본원의 제 6 측면은, 디스플레이 패널; 및, 상기 디스플레이 패널 전면에 부착되는 상기 본원의 제 5 측면에 따른 압력 및 위치 동시감지 터치센서를 포함하는, 압력 및 위치 동시감지 터치센서 디스플레이 패널을 제공할 수 있다.
본원의 제 7 측면은, 투명 전도막과 전극 및 도트 스페이서가 형성된 하부기판; 투명 전도막과 전극이 형성된 상부기판; 상기 상부기판에 포함된 전극 및/또는 상기 하부기판에 포함된 상기 전극 상에 형성되는 스트레인(strain) 감지능을 가지는 그래핀 전극; 및, 상기 하부기판 및 상기 상부기판을 일정간격으로 대향시켜 부착시키기 위한 접착부재를 포함하며, 상기 상부기판의 전극 및 상기 하부기판의 전극으로부터 외부로 신호의 입출력을 위한 배선 구조물을 구비하는 압력 및 위치 동시감지 터치센서를 제공할 수 있다.
본원의 제 8 측면은, 투명 전도막이 형성된 상부기판; 투명 전도막이 형성된 하부기판; 상기 상부기판 및, 상기 투명 전도막 사이에 형성된 그래핀 전극; 상기 그래핀 전극 측면에 형성된 전극; 및 상기 하부기판의 투명 전도막의 하부를 절연하는 절연코팅부를 포함하며, 상기 투명 전도막의 상면을 터치하게 되면 정전용량의 변동에 따라 측면에 형성된 전극에 의해 터치 위치를 감지하고 상기 그래핀 전극 자체의 스트레인(strain) 감지능을 이용하여 상기 터치에 의한 압력의 세기를 감지하는 압력 및 위치 동시감지 터치센서를 제공할 수 있다.
본원에 의하여, 기재 상에 패터닝되어 형성되는 X축, Y축 그래핀 전극을 터치센서에 적용함으로써, 멀티-터치 기능을 구현할 수 있다. 그래핀을 이용해서 전극을 제조하는 경우, 잘못된 정렬에 따른 문제를 방지 또는 최소화할 수 있고, 제품의 균일성(uniformity) 및 재현성(reproducibility)을 용이하게 확보할 수 있다. 또한, 그래핀의 투명도와 기계적 특성이 우수하기 때문에 투명하면서 유연성(flexible), 신축성(stretchable) 등을 가지는 터치센서로 사용될 수 있다. 따라서, 본 센서는 신축성 있는 3D 센서로서도 응용될 수 있다.
도 1은 본원의 일 구현예에 따른 압력 및 위치 동시감지 터치센서를 개략적으로 나타낸 분해 사시도이다.
도 2는 본원의 다른 구현예에 따른 압력 및 위치 동시감지 터치센서를 개략적으로 나타낸 분해 사시도이다.
도 3은 본원의 일 실시예에 따른 압력 및 위치 동시감지 터치센서의 제조 과정을 나타내는 사시도이다.
도 4는 본원의 일 실시예에 따른 압력 및 위치 동시감지 터치센서의 인가된 압력에 따른 저항을 측정한 실험과정 사진이다.
도 5는 도 4의 측정 방식으로 측정된, 가압 시간 변화에 따른 압력 세기 변화에 따른 저항 변화를 나타내는 그래프이다.
도 6은 본원의 일 실시예에 따른 압력 및 위치 동시감지 터치센서에 반복 인가된 압력에 따른 저항 그래프이다.
도 7은 본원의 다른 구현예에 따른 압력 및 위치 동시감지 터치센서를 개략적으로 나타낸 분해 사시도이다.
도 8은 본원의 일 실시예에 따라 그래핀 스트레인 게이지를 포함하여 제조된 압력 및 위치 동시감지 터치센서 사진이다.
도 9는 본원의 일 구현예에 따른 압력 및 위치 동시감지 터치센서를 개략적으로 나타낸 단면도이다.
도 10은 본원의 다른 구현예에 따른 압력 및 위치 동시감지 터치센서를 개략적으로 나타낸 단면도이다.
이하, 첨부한 도면을 참조하여 본원이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본원의 구현예 및 실시예를 상세히 설명한다.
그러나 본원은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 구현예 및 실시예에 한정되지 않는다. 그리고 도면에서 본원을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
본원 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 본원 명세서 전체에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본원의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 본원 명세서 전체에서 사용되는 정도의 용어 "~(하는) 단계" 또는 "~의 단계"는 "~ 를 위한 단계"를 의미하지 않는다.
본원의 제 1 측면은, 제 1 기재 상에 형성되며 서로 평행하게 형성된 복수개의 그래핀 전극을 포함하는 제 1 그래핀 전극 패턴; 상기 제 1 그래핀 전극 패턴 상에 형성된 감압 레지스터 (force sensing resistor; FSR) 층; 제 2 기재 상에 형성되며, 상기 제 1 그래핀 전극 패턴과 수직으로 교차하며 서로 평행하게 형성된 복수개의 그래핀 전극을 포함하는 제 2 그래핀 전극 패턴; 및, 상기 제 1 그래핀 전극 패턴 및 상기 제 2 그래핀 전극 패턴에 전압을 인가하고, 상기 제 1 기재 또는 상기 제 2 기재 상에 외부 터치에 의하여 가해지는 압력에 의하여 상기 외부 터치 위치에서 상기 감압 레지스터의 저항 변화를 감지하여 외부 터치 위치의 (X,Y) 좌표를 판단하고 상기 외부 터치에 의하여 가해지는 압력의 세기를 감지하는 제어부를 포함하는, 압력 및 위치 동시감지 터치센서를 제공할 수 있다.
예시적 구현예에 있어서, 상기 제 1 기재 및 상기 제 2 기재 중 적어도 하나는 플렉서블(flexible) 또는 신축가능한(stretchable)것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 그래핀 전극이 플렉서블하고 신축가능하므로, 상기 제 1 기재 및 상기 제 2 기재 중 적어도 하나를 플렉서블하고 신축가능한 재료를 이용하여 형성함으로써 상기 터치센서를 플렉서블하고 신축가능하게 제조할 수 있다. 상기 제 1 기재 및 상기 제 2 기재 중 적어도 하나는 플라스틱 또는 고무를 이용하여 형성될 수 있으나, 이에 제한되는 것은 아니다.
예시적 구현예에 있어서, 상기 제 1 기재 및 상기 제 2 기재는 투명 유기 절연체를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 투명 유기 절연체는, 예를 들어, 폴리이미드(polyimide; PI), 폴리아크릴(polyacryl), 또는 폴리페놀(polyphenol), 폴리에스테르(polyester), 실리콘(sillicone), 폴리우레탄(polyurethane)과 같은 열경화성 수지, 폴리카보네이트(polycarbonate), 폴리에틸렌(polyethylene), 폴리스틸렌(polystyrene)과 같은 열가소성 수지, 벤조싸이클로부텐(benzocyclobutene; BCB), F-첨가 폴리이미드(polyimide; PI), 퍼플로오로싸이클로부탄(perfluorocyclobutane; PFCB), 플로오르폴리아릴에테르(fluoropolyarylether; FPAE), 실록산(siloxane) 계열 폴리머, SOG 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함할 수 있다.
예시적 구현예에 있어서, 상기 감압 레지스터 층은 투명 전도성 필름을 포함하여 형성된 것일 수 있으나, 이에 제한되는 것은 아니다. 투명전도성 필름은 전기전도도와 투명도가 우수할 뿐만 아니라 구부림 특성이 우수하므로 상기 제 1 감압 레지스터 층과 상기 제 2 감압 레지스터 층 각각을 투명 전도성 필름으로 이용할 경우 평판 디스플레이의 투명전극 및 터치스크린 소재로 응용이 가능한 전도성이 개선된 필름을 제공할 수 있다. 일 구현예에 있어서, 상기 제 1 감압 레지스터 층과 상기 제 2 감압 레지스터 층 각각은 압전 물질을 이용하여 형성될 수 있으나, 이에 제한되는 것은 아니다. 상기 압전 물질은 당업계에 공지된 것을 특별히 제한 없이 사용할 수 있다.
예시적 구현예에 있어서, 상기 감압 레지스터 층은 하나 이상의 감압 레지스터 층을 포함하여 형성될 수 있으나, 이에 제한되는 것은 아니다.
예시적 구현예에 있어서, 상기 제어부는, 상기 외부 터치가 가해진 위치의 상기 제 1 그래핀 전극 패턴의 그래핀 전극과 상기 제 2 그래핀 전극 패턴의 그래핀 전극에만 전압을 교대로 인가하여 상기 외부 터치 위치의 (X,Y) 좌표를 판단하고 동시에 상기 외부 터치에 의하여 가해진 압력의 세기를 판단하는 것일 수 있으나, 이에 제한되는 것은 아니다.
도 1은 본원의 일 구현예에 따른 압력 및 위치 동시감지 터치센서의 구성을 개략적으로 나타낸 분해 사시도이다.
도 1을 참조하면, 본원의 일 구현예에 따른 압력 및 위치 동시감지 터치센서(100)는, 제 1 기재(110), 감압 레지스터 층(force sensing resistor; FSR, 120) 및 제 2 기재(130)를 포함할 수 있으며, 상기 제 1 기재(110) 상에 패터닝되어 형성되는 제 1 그래핀 전극 패턴(X1, X2, ..., Xn) 및 상기 제 2 기재(130) 상에 패터닝되어 형성되는 제 2 그래핀 전극 패턴(Y1, Y2, ..., Yn)을 더 포함할 수 있다.
압력 및 위치 동시감지 터치센서(100)는, 제 1 기재(110)와 이에 대향되게 설치되는 제 2 기재(130)를 구비하도록 구성될 수 있다. 상기 제 1 기재(110)는 포인팅 오브젝트(예를 들어, 손가락, 스타일러스 펜 등)에 의한 외부 압력(F)이 인가되는 부재로, 외부 압력(F)에 의하여 변형이 일어난다. 본원에 따른 터치 패널(100)은 사용자에게 디스플레이 화면을 제공할 수 있도록 제 1 기재(110)가 투명한 재료를 이용하여 형성될 수 있다. 상기 투명한 재료로서 예를 들어, 유리, 석영, 아크릴판, 투명한 필름, 플라스틱 기재 등이 포함될 수 있으며, 상부 기재의 재질은 포인팅 오브젝트의 외부 압력(F)이 인가된 후에 다시 원 상태로 복원 가능한 것을 사용할 수도 있다.
상기 제 2 기재(130)는 상기 제 1 기재(110)와 소정의 거리만큼 이격되어 구비되는 부재로, 상기 제 1 기재(110)와 마찬가지로 투명한 재질로 구성될 수 있다. 제 1 기재(110) 및 제 2 기재(130)의 간격은, 예를 들어, 약 0.01 ㎛ 내지 약 100 ㎛ 일 수 있다. 약 0.01 ㎛ 미만인 경우, 제 1 기재(110)의 변형에 따른 간격변화를 충분히 수용하기가 어렵고, 약 100 ㎛를 초과하는 경우, 크기를 소형화하는데 장애가 될 수 있다. 제 1 기재(110) 및 제 2 기재(130)의 간격으로 인하여 터치 스크린의 내구성이 향상되고, 외부의 충격에도 안정적이며, 사용자에게 깨끗한 화면을 제공할 수 있다.
상기 제 1 기재(110)에는 상기 제 1 기재(110) 상에 X축 방향을 따라 서로 평행하게 형성된 복수개의 그래핀 전극을 포함하는 제 1 그래핀 전극 패턴(X1, X2, ..., Xn)이 코팅되어 있으며, 상기 제 2 기재(130) 상에는 상기 제 1 그래핀 패턴(X1, X2, ..., Xn)의 상기 X축 방향과 수직으로 교차하고, 제 2 기재(140)의 Y축 방향을 따라 서로 평행하게 형성된 복수개의 그래핀 전극을 포함하는 제 2 그래핀 전극 패턴(Y1, Y2, ..., Yn)이 코팅되어 있다.
또한, 압력 및 위치 동시감지 터치센서(100)는, 상기 제 1 기재(110)에 형성된 상기 제 1 그래핀 전극 패턴(X1, X2, ..., Xn) 및 상기 제 2 기재(130)에 형성된 상기 제 2 그래핀 전극 패턴(Y1, Y2, ..., Yn) 사이로부터의 압력 변화를 감지 하는 감압 레지스터 층(120)을 포함하여 형성될 수 있다. 상기 감압 레지스터 층(120)은 압력을 감지하는 층으로서 역할을 한다. 상기 감압 레지스터 층(120) 은 센서 표면에 힘을 증가시킬 때 감소하는 저항이 발생하며, 이는 압력 감지에 이상적일 수 있다.
압력 및 위치 동시감지 터치센서(100)의 표면에서 터치가 일어날 때, 상기 제 1 기재(110) 및 상기 제 2 기재(130)는 외부 인가 압력에 의해 저항이 변화하게 된다. 감지회로(미도시)는 외부 인가 압력에 의한 그래핀의 저항변화로 인해 생기는 전류강하의 정도를 통해 인가된 압력의 크기를 평가하여 압력을 측정한다. 이때 압력의 크기에 따른 기능을 다르게 할 수 있는데 예를 들어, 작은 힘을 크기를 가해 누른 경우 줌아웃(zoom out)을 하고 큰 힘을 가했을 때는 줌인(zoom in)을 하는 기능을 위와 같은 구동원리를 이용해서 구현할 수 있다. 또한 인가한 압력을 유지할 때 발생되는 저항치를 이용해서 기능을 추가할 수 있다.
또한, 각각의 그래핀 전극 라인에 생기는 저항의 크기변화 분포를 통해 위치를 감지할 수 있다. 제 2 기재(130)의 각 제 2 그래핀 전극 패턴(Y1, Y2, ..., Yn)의 단부에는 리드선과 부하저항(RL)이 연결될 수 있다. 제 1 기재(110)는 패터닝을 통해 다수 개로 분할된 제 1 그래핀 전극 패턴(X1, X2, ..., Xn)이 상호 간에 평행하게 형성되어 상기 제 1 그래핀 전극 패턴(X1, X2, ..., Xn) 및 상기 제 2 그래핀 전극 패턴(Y1, Y2, ..., Yn)은 상호 간에 수직하게 교차되도록 구성될 수 있다. 제 1 그래핀 전극 패턴(X1, X2, ..., Xn) 및 제 2 그래핀 전극 패턴(Y1, Y2, ..., Yn)으로 전압을 인가하여 각각의 패터닝된 전극을 온(ON)시키고 나머지 스위치는 오프(OFF)하는 방식으로 순차적으로 위치 검출용 신호를 인가하며 전압을 측정하게 된다. 이때 상기 제 1 기재(110) 또는 상기 제 2 기재(130) 상에 외부 터치에 의하여 가해지는 압력에 의하여 특정 지점에서 터치가 이루어지면, 제어부(미도시)에서는 상기 감압 레지스터 층(120)의 터치조작된 지점에서 하이(high) 신호가 발생하여 발생되는 저항 변화를 감지하여 상기 외부 터치 위치의 (X,Y) 좌표를 판단하여 검출할 수 있게 된다. 즉, 제 1 그래핀 전극 패턴(X1, X2, ..., Xn) 및 제 2 그래핀 전극 패턴(Y1, Y2, ..., Yn)이 상호 간에 교차하는 지점에서 저항 변화가 큰 각각의 제 1 그래핀 전극 패턴(X1, X2, ..., Xn) 및 제 2 그래핀 전극 패턴(Y1, Y2, ..., Yn) 라인 분포를 소프트웨어를 이용하여 얻어내 터치지점의 검출이 가능하게 되는 것이다.
이와 같이, 본원의 일 구현예에 따른, 상기 압력 및 위치 동시감지 터치센서(100)는, 각각의 제 1 그래핀 전극 패턴(X1, X2, ..., Xn) 및 제 2 그래핀 전극 패턴(Y1, Y2, ..., Yn)이 소정 간격을 가지며 패터닝 형성되어 각 전극이 분할되어 있어 두 개의 지점에서 터치 동작이 동시에 발생하더라도 상호 간에 전기적으로 영향을 주지 않기 때문에 멀티-터치 기능의 구현이 가능한 장점이 있다.
또한, 전극으로서 그래핀을 기재 상에 직접 형성하여 사용할 수 있다는 장점이 있다. 즉, 터치 스크린용 기재 상에 판상의 그래핀을 형성한 후, 그것을 원하는 모양으로 패터닝하여 사용할 수 있다. 그래핀은 산소 플라즈마(O2 plasma)로 쉽게 식각되므로, 일반적인 포토리소그래피(photolithography)나 전자빔 리소그라피(E-beam lithography)와 같은 탑-다운(top-down) 공정을 이용하여 원하는 모양을 갖는 미세한 그래핀 패턴을 얻을 수 있다. 그러므로 그래핀을 이용해서 전극을 제조하는 경우, 오정렬(mis-align)에 따른 문제를 방지 또는 최소화할 수 있고, 제품의 균일성(uniformity) 및 재현성(reproductivity)을 용이하게 확보할 수 있다. 또한, 그래핀의 투명도와 기계적 특성이 우수하기 때문에 투명하면서 신축성(stretchable)있는 터치센서로 사용될 수 있다. 본 센서는 신축성 있는 3D센서로서도 응용될 수 있다.
본원의 제 2 측면은, 디스플레이 패널; 및, 상기 디스플레이 패널 전면에 부착되는 상기 본원의 제 1 측면에 따른 압력 및 위치 동시감지 터치센서를 포함하는 압력 및 위치 동시감지 터치센서 디스플레이 패널을 제공할 수 있다.
예시적 구현예에 있어서, 상기 디스플레이 패널은 액정 표시 패널일 수 있으나, 이에 제한되는 것은 아니다.
본원의 제 3 측면은, 제 1 절연성 기재 상에 형성되며 서로 평행하게 형성된 복수개의 그래핀 전극을 포함하는 제 1 그래핀 패턴을 포함하는 제 1 기판; 제 2 절연성 기재 상에 형성되며, 상기 제 1 그래핀 패턴과는 수직으로 교차하며 서로 평행하게 형성된 복수개의 그래핀 전극을 포함하는 제 2 그래핀 패턴을 포함하는 제 2 기판; 및, 서로 접촉하도록 대향된 상기 제 1 그래핀 패턴 및 상기 제 2 그래핀 패턴에 전압을 인가하고, 상기 제 1 절연성 기재 또는 상기 제 2 절연성 기재 상에 외부 터치에 의하여 가해지는 압력에 의하여 상기 제 1 그래핀 패턴의 적어도 하나의 그래핀 전극과 상기 제 2 그래핀 패턴의 적어도 하나의 그래핀 전극에 발생되는 저항 변화를 감지하여 외부 터치 위치의 (X,Y) 좌표를 판단하고 상기 외부 터치에 의하여 가해지는 압력의 세기를 감지하는 제어부를 포함하는, 압력 및 위치 동시감지 터치센서를 제공할 수 있다.
예시적 구현예에 있어서, 상기 제 1 그래핀 패턴 및 상기 제 2 그래핀 패턴의 복수개의 그래핀 전극 각각은 스트레인 게이지(strain gauge)로서 작용하여, 상기 외부 터치에 의하여 가해지는 압력에 의하여 상기 제 1 그래핀 패턴의 적어도 하나의 그래핀 전극과 상기 제 2 그래핀 패턴의 적어도 하나의 그래핀 전극이 서로 접촉하여 발생되는 저항 변화가 상기 외부 터치에 의하여 가해지는 압력의 세기에 비례하는 것일 수 있으나, 이에 제한되는 것은 아니다.
예시적 구현예에 있어서, 상기 제 1 절연성 기재 및 상기 제 2 절연성 기재는 각각 투명 유기 절연체를 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
예시적 구현예에 있어서, 상기 제 1 절연성 기재 및 상기 제 2 절연성 기재 중 적어도 하나는 플렉서블(flexible) 또는 신축가능한(stretchable)것일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 그래핀 전극이 플렉서블하고 신축가능하므로, 상기 제 1 절연성 기재 및 상기 제 2 절연성 기재 중 적어도 하나를 플렉서블하고 신축가능한 재료를 이용하여 형성함으로써 상기 터치센서를 플렉서블하고 신축가능하게 제조할 수 있다. 상기 제 1 기재 및 상기 제 2 기재 중 적어도 하나는 플라스틱 또는 고무를 이용하여 형성될 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 상기 제 1 절연성 기재 및 상기 제 2 절연성 기재 중 적어도 하나를 고무를 이용하여 형성함으로써 상기 압력 및 위치 동시감지 터치센서를 장갑 형태로 제조할 수 있으며, 이러한 장갑은 의료용, 실험용 등 다양한 분야에서 압력 및 위치 동시감지 터치센서로서 이용할 수 있다.
예시적 구현예에 있어서, 상기 제어부는, 상기 외부 터치가 가해진 위치의 상기 제 1 그래핀 패턴의 그래핀 전극과 상기 제 2 그래핀 패턴의 그래핀 전극에만 전압을 교대로 인가하여 상기 외부 터치 위치의 (X,Y) 좌표를 판단하는 것일 수 있으나, 이에 제한되는 것은 아니다.
도 2는 본원의 일 구현예에 따른 압력 및 위치 동시감지 터치센서를 개략적으로 나타낸 분해 사시도이다.
도 2를 참조하면, 본원의 일 구현예에 따른 압력 및 위치 동시감지 터치센서(200)는, 제 1 절연성 기재(210), 투명 유기 절연체(220), 제 2 절연성 기재(230)를 포함할 수 있다. 상기 제 1 절연성 기재(210)상에 형성되며, 서로 평행하게 형성된 복수개의 그래핀 전극을 포함하는 제 1 그래핀 패턴(X1, X2, ..., Xn)을 포함하는 제 1 기판 및 상기 제 2 절연성 기재(230) 상에 형성되며, 상기 제 1 그래핀 패턴과는 수직으로 교차하며 서로 평행하게 형성된 복수개의 그래핀 전극을 포함하는 제 2 그래핀 패턴(Y1, Y2, ..., Yn)을 포함하는 제 2 기판을 더 포함할 수 있다.
상기 제 1 절연성 기재(210) 및 제 2 절연성 기재(230)는 포인팅 오브젝트(예를 들어, 손가락, 스타일러스 펜)에 의한 외부 압력(F)이 인가되는 부재로, 외부 압력(F)에 의하여 변형이 일어난다. 본원에 따른 압력 및 위치 동시감지 터치센서(200)는 사용자에게 디스플레이 화면을 제공할 수 있도록 제 1 절연성 기재(210) 및 제 2 절연성 기재(230)가 투명한 재질로 구성될 수 있다. 투명한 재질로는 예를 들어, 고무, 유리, 석영, 아크릴판, 투명한 필름, 플라스틱 기재 등이 포함될 수 있으며, 상부 기재의 재질은 포인팅 오브젝트의 외부 압력(F)이 인가된 후에 다시 원 상태로 복원 가능한 연신가능한(stretchable) 기판 또는 탄성체 기판을 사용할 수도 있다. 상기 연신가능한(stretchable) 기판 또는 탄성체 기판은, 예를 들어, 열가소성 탄성 중합체(thermoplastic elastomer), 스티렌계 물질(styrenic materials), 올레핀계 물질(olefenic materials), 폴리올레핀(polyolefin), 폴리우레탄 열가소성 탄성 중합체(polyurethane thermoplastic elastomers), 폴리아미드(polyamides), 합성고무(synthetic rubbers), 폴리디메틸실록산(polydimethylsiloxane; PDMS), 폴리부타디엔(polybutadiene), 폴리이소부티렌(polyisobutylene), 폴리(스티렌-부타디엔-스티렌)[poly(styrene-butadiene-styrene)], 폴리우레탄(polyurethanes), 폴리클로로프렌(polychloroprene), 실리콘 및 이들의 조합들로 이루어진 군에서 선택되는 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 제 1 절연성 기재(210) 및 상기 제 2 절연성 기재(230)는 투명 유기 절연체(220)를 포함하는 것일 수 있는데 상기 투명 유기 절연체(220)는, 예를 들어, 폴리이미드(polyimide; PI), 폴리아크릴(polyacryl), 폴리페놀(polyphenol), 폴리에스테르(polyester), 실리콘(sillicone), 폴리우레탄(polyurethane)과 같은 열경화성 수지, 폴리카보네이트(polycarbonate), 폴리에틸렌(polyethylene), 폴리스틸렌(polystyrene)과 같은 열가소성 수지, 벤조싸이클로부텐(benzocyclobutene; BCB), F-첨가 폴리이미드(polyimide; PI), 퍼플로오로싸이클로부탄(perfluorocyclobutane; PFCB), 플로오르폴리아릴에테르(fluoropolyarylether; FPAE), 실록산(siloxane) 계열 폴리머, SOG 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함할 수 있다.
상기 제 1 그래핀 패턴(X1, X2, ..., Xn) 및 상기 제 2 그래핀 패턴(Y1, Y2, ..., Yn)의 복수개의 그래핀 전극 각각은 스트레인 게이지(strain gauge)로서 작용하는데, 이는 외부 압력(F) 인가에 따라 변형되는 제 1 절연성 기재(210) 및 제 2 절연성 기재(230)의 접촉면 방향의 변형률을 측정하는 부재이다. 제 1 그래핀 패턴(X1, X2, ..., Xn)이 구비되는 제 1 절연성 기재(210)의 일면은 제 2 절연성 기재(230)와 마주보는 면을 선택하는 것이 좋고, 제 2 그래핀 패턴(Y1, Y2, ..., Yn)이 구비되는 제 2 절연성 기재(230)의 일면은 제 1 절연성 기재(210)와 마주보는 면을 선택하는 것이 좋다. 이는 터치 스크린의 외부 환경으로부터 제 1 그래핀 패턴(X1, X2, ..., Xn) 및 제 2 그래핀 패턴(Y1, Y2, ..., Yn)을 보호하기 위함이다. 제 1 그래핀 패턴(X1, X2, ..., Xn) 및 제 2 그래핀 패턴(Y1, Y2, ..., Yn)의 신호검출을 위한 배선은 당업자의 범위에서 자명한 사항으로 이하에서 자세한 설명은 생략한다.
압력 및 위치 동시감지 터치센서(200)에서 외부 압력(F)이 인가된 경우, 제 1 절연성 기재(210)는 변형된다. 제 1 절연성 기재(210)가 변형됨에 따라, 제 1 절연성 기재(210) 상에 형성된 제 1 기판(X1, X2, ..., Xn)의 저항값은 변화하게 되고, 이러한 저항값 변화로부터 외부 압력(F)의 세기 및 작용위치를 검출할 수 있게 된다. 서로 발생되는 저항 변화는 상기 외부 터치에 의하여 가해지는 압력의 세기에 비례하게 된다. 이 때 그래핀 스트레인 게이지의 역할은 외부에서 특정 영역에 인가된 저항의 크기를 아주 정밀하게 측정하는 것으로 본원의 제 1 측면의 저항 방식 멀티-터치 스크린의 경우보다 더욱 정밀하게 압력측정이 가능하다. 또한 이 경우 외부에서 인가된 압력뿐만 아니라 압력이 변화한 분포를 소프트웨어 상에 플롯함으로써 정확한 위치감지가 가능하게 된다. 본원은 제 1 그래핀 패턴(X1, X2, ..., Xn) 및 제 2 그래핀 패턴(Y1, Y2, ..., Yn)을 나열함으로써 3D 터치센서를 구현할 수 있다.
일 실시예에 있어서(도 3 참조), SiO2/Si 기판 상에 촉매층으로서 Ni층을 형성하여 Ni/SiO2/Si 기판을 형성하였다. 이어서, Ni/SiO2/Si 기판 상에 그래핀을 성장시켜 기판 상에 그래핀 X 전극 패턴(X1, X2, ..., Xn)을 형성하였다. 계속해서, 그래핀 X 전극 패턴(X1, X2, ..., Xn) 상에 투명 유기 절연체층으로서 Su-8을 50 nm 코팅한 후, 그래핀 X 전극 패턴(X1, X2, ..., Xn)에 수직 방향으로 그래핀 Y 전극 패턴(Y1, Y2, ..., Yn)을 패터닝하여 건식 전사(dry transfer) 하였다. 여기서, Su-8은 보호층으로서의 역할뿐만 아니라, 에폭시 계열이기 때문에 그래핀 패턴의 전사에 매우 용이하다. 이어서, PDMS 고무기판 상에 컨택 전극으로 금(Au)을 패터닝한 후, 전체 기판을 물에 넣어 소자를 띄운 후에 Ni을 제거하여 센서를 제작하였다. 도 4는 본원의 일 실시예에 따른 압력 및 위치 동시감지 터치센서의 인가된 압력에 따른 저항을 측정한 실험과정 이미지이고, 도 5는 도 4의 측정 방식으로 측정된 인가된 압력에 따른 저항 그래프이고, 도 6은 본원의 일 실시예에 따른 압력 및 위치 동시감지 터치센서를 반복 인가된 압력에 따른 저항 그래프이다. 도 3 내지 도 6을 참조하면, 도시된 바와 같이 측정한 인가된 압력에 따른 저항은 인가된 압력의 크기에 따라 저항의 변화가 차이가 나는 것을 볼 수 있다(도 5a). 또한, 순간적으로 얻어지는 저항의 변화는 미분값(저항의 상대적 변화)으로 변환하면 더욱 확연히 드러난다(도 5b). 그리고, 터치 센서에 압력을 가하고 있으면 인가된 압력의 크기에 따라서 저항이 늘어난 상태로 유지되고, 압력을 가하지 않으면 순간적으로 저항이 원상 복귀되는 것을 알 수 있다(도 6). 따라서, 인가되는 압력의 크기에 따라 여러 가지 기능을 추가할 수 있다. 다양한 기능은 예를 들어, 인가되는 압력의 크기에 따라 글자의 두께를 조절하는 기능, 인가되는 압력의 크기에 따라 음량의 크기를 조절하는 기능 등을 포함할 수 있다.
본원의 제 4 측면은, 디스플레이 패널; 및, 상기 디스플레이 패널 전면에 부착되는 상기 본원의 제 3 측면에 따른 압력 및 위치 동시감지 터치센서를 포함하는, 압력 및 위치 동시감지 터치센서 디스플레이 패널을 제공할 수 있다.
예시적 구현예에 있어서, 상기 디스플레이 패널은 액정 표시 패널일 수 있으나, 이에 제한되는 것은 아니다.
본원의 제 5 측면은, 절연성 기재 상에 형성된, 서로 평행하게 형성된 복수개의 그래핀 라인전극을 포함하는 제 1 그래핀 전극 패턴, 및 상기 제 1 그래핀 전극 패턴 상에 형성되며, 상기 제 1 그래핀 전극 패턴의 복수개의 그래핀 라인전극 각각에 수직으로 교차하며 서로 평행하게 형성된 복수개의 그래핀 라인전극을 포함하는 제 2 그래핀 전극 패턴; 상기 제 1 그래핀 전극 패턴의 복수개의 그래핀 라인전극 및 상기 제 2 그래핀 전극 패턴의 복수개의 그래핀 라인전극 각각의 교차점에 연결되어 형성된 복수개의 그래핀 스트레인 게이지; 및, 상기 제 1 그래핀 전극 패턴 및 상기 제 2 그래핀 전극 패턴의 각각의 그래핀 라인전극에 전압을 인가하고, 상기 절연성 기재 상에 외부 터치에 의하여 가해지는 압력에 의하여 상기 외부 터치의 위치에 대응하는 상기 그래핀 스트레인 게이지에 발생되는 저항 변화를 감지하여 상기 외부 터치 위치의 (X,Y) 좌표를 판단하고 상기 외부 터치에 의하여 가해지는 압력의 세기를 감지하는 제어부를 포함하는, 압력 및 위치 동시감지 터치센서를 제공할 수 있다.
예시적 구현예에 있어서, 상기 그래핀 스트레인 게이지 각각에 연결된 복수의 박막트랜지스터를 추가 포함할 수 있다. 예를 들어, 상기 복수의 박막트랜지스터는 컨트롤러와 연결되어, 상기 컨트롤러가 전압을 발생시킬 때 상기 트랜지스터를 턴온(turn-on)시키도록 제어할 수 있으며, 상기 압력 및 위치 동시감지 터치센서의 감도를 향상시킬 수 있다.
예시적 구현예에 있어서, 상기 복수의 박막트랜지스터는 투명한 것일 수 있으나, 이에 제한되는 것은 아니다. 상기 복수의 박막트랜지스터는 예를 들어, 탄소나노튜브, 그래핀, 유기물 박막, 산화물 박막, 실리콘 박막, 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하여 형성된 것일 수 있으나, 이에 제한되는 것은 아니다.
예시적 구현예에 있어서, 상기 절연성 기재는 플렉서블(flexible) 또는 신축가능한(stretchable)것일 수 있으나, 이에 제한되는 것은 아니다.
예시적 구현예에 있어서, 상기 제 2 그래핀 전극 패턴 및 상기 그래핀 스트레인 게이지 상에 보호층을 추가 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
도 7은 본원의 일 구현예에 따른 저항변화를 이용한 압력 및 위치 동시감지 터치센서를 개략적으로 나타낸 분해 사시도이다. 도 7을 참조하면, 본원의 일 구현예에 따른 압력 및 위치 동시감지 터치센서(300)는, 절연성 기재(310) 상에 형성되는 제 1 그래핀 전극 패턴(X1, X2, ..., Xn), 제 2 그래핀 전극 패턴(Y1, Y2, ..., Yn), 그래핀 스트레인 게이지(320), 및 제어부(미도시)를 포함할 수 있다. 또한, 상기 제 1 그래핀 전극 패턴(X1, X2, ..., Xn), 제 2 그래핀 전극 패턴(Y1, Y2, ..., Yn), 그래핀 스트레인 게이지(320) 상에 보호층(미도시)을 추가 포함할 수 있다.
제 1 그래핀 전극 패턴(X1, X2, ..., Xn) 및 상기 제 2 그래핀 전극 패턴(Y1, Y2, ..., Yn)에 전압을 인가하면 제 1 그래핀 전극 패턴(X1, X2, ..., Xn) 및 상기 제 2 그래핀 전극 패턴(Y1, Y2, ..., Yn)에 전계가 형성되고, 상기 제 1 그래핀 전극 패턴(X1, X2, ..., Xn) 및 상기 제 2 그래핀 전극 패턴(Y1, Y2, ..., Yn)들 사이의 교차지점에 연결되는 상기 스트레인 게이지(320)에 의하여 외부 압력 인가에 따라 변형되는 절연성 기재의 접촉면 방향의 변형률을 측정할 수 있다. 상기 스트레인 게이지(320)는 확대도에 도시된 바와 같이, 전기저항이 스트레인 게이지(320)의 길이 변화에 비례하여 변하기 때문에 구불구불한 형태로 형성된 스트레인 게이지(320)가 외부 압력에 더 민감하게 감지할 수 있다. 상기 스트레인 게이지(320)를 그래핀으로 형성함으로써, 압력 및 위치 동시감지 터치센서(300)에 인가되는 힘의 세기에 따라 저항값이 변화하게 되어 상기 외부 터치 위치에 가해진 힘의 세기를 측정할 수 있다.
도 8은 본원의 일 실시예에 따른 그래핀 스트레인 게이지를 포함하여 형성된 압력 및 위치 동시감지 터치센서 사진이다. 본원의 일 실시예에 있어서, 그래핀 전극 및 그래핀 스트레인 게이지를 포함하여 형성된 압력 및 위치 동시감지 터치센서는 한 장의 그래핀 시트를 패터닝하여 형성되는 단층구조를 가질 수 있다. 예를 들어, 상기 그래핀 시트는 금속 촉매층에서 그래핀을 성장시켜 제조될 수 있다. 상기 금속 촉매층은 그래핀의 성장을 용이하게 하기 위하여 사용되며, 상기 금속 촉매층의 재료는 특별한 제한 없이 사용될 수 있다. 상기 금속 촉매층은, 예를 들어, Ni, Co, Fe, Pt, Au, Al, Cr, Cu, Mg, Mn, Mo, Rh, Si, Ta, Ti, W, U, V, Zr, Ge, Ru, Ir, 황동(brass), 청동(bronze), 백동, 스테인레스 스틸(stainless steel) 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것일 수 있으나, 이에 제한되는 것은 아니다.
상기 그래핀을 성장하는 방법은 당업계에서 그래핀 성장을 위해 통상적으로 사용하는 방법을 특별히 제한 없이 사용할 수 있으며, 예를 들어, 화학기상증착(chemical vapour deposition; CVD) 방법을 이용할 수 있으나 이에 제한되는 것은 아니다. 상기 화학기상증착법은 고온 화학기상증착(Rapid thermal chemical vapour deposition; RTCVD), 유도결합플라즈마 화학기상증착(inductively coupled plasma-chemical vapor deposition; ICP-CVD), 저압 화학기상증착(low pressure chemical vapor deposition; LPCVD), 상압 화학기상증착(atmospheric pressure chemical vapor deposition; APCVD), 금속 유기화학기상증착(metal organic chemical vapor deposition; MOCVD), 및 플라즈마 강화 화학기상증착(plasma-enhanced chemical vapor deposition; PECVD) 방법을 포함할 수 있으나, 이제 제한되는 것은 아니다.
상기 그래핀은 금속 촉매층을 기상 탄소 공급원을 투입하고 열처리함으로써 그래핀을 성장시킬 수 있다. 일 구현예에 있어서, 금속 촉매층을 챔버에 넣고 일산화탄소, 에탄, 에틸렌, 에탄올, 아세틸렌, 프로판, 부탄, 부타디엔, 펜탄, 펜텐, 사이클로펜타디엔, 헥산, 사이클로헥산, 벤젠, 톨루엔 등과 같은 탄소 공급원을 기상으로 투입하면서, 예를 들어, 약 300℃ 내지 약 2000℃의 온도로 열처리하면 상기 탄소 공급원에 존재하는 탄소 성분들이 결합하여 6각형의 판상 구조를 형성하면서 그래핀이 생성된다. 이를 냉각하면 균일한 배열 상태를 가지는 그래핀이 얻어지게 된다. 그러나, 금속 촉매층 상에서 그래핀을 형성시키는 방법이 화학기상증착 방법에 국한되지 않으며, 본원의 예시적인 구현예에 있어서는 금속 촉매층 상에 그래핀을 형성하는 모든 방법을 이용할 수 있으며, 본원이 금속 촉매층 상에 그래핀을 형성하는 특정 방법에 제한되지 않는다는 것이 이해될 것이다.
금속 촉매층에서 그래핀을 성장한 후 그래핀을 원하는 타겟 기판으로 전사할 수 있다. 상기 타겟 기판은 PDMS 또는 PET 등의 플렉시블하고 신축성있는 기판이다. 기판 상에 포토리소그래피 또는 쉐도우 마스크 등을 이용한 산소 플라즈마 공정을 거쳐 X 그래핀 전극 패턴(X1, X2, ..., Xn), Y 그래핀 전극 패턴(Y1, Y2, ..., Yn), 및 스트레인 게이지의 동시 패터닝이 가능하다. 상기 금속 촉매층에서 미리 X 그래핀 전극 패턴(X1, X2, ..., Xn), Y 그래핀 전극 패턴(Y1, Y2, ..., Yn), 및 스트레인 게이지가 패터닝된 그래핀을 원하는 타겟 기판으로 전사하는 공정을 통해서도 압력 및 위치 동시감지 터치센서를 제조할 수 있다.
또한, 상기 그래핀 스트레인 게이지(300)에 포함되는 복수의 박막트랜지스터(미도시)를 추가 포함할 수 있다. 상기 복수의 박막트랜지스터는 컨트롤러(미도시)와 연결되어, 상기 컨트롤러가 전압을 발생시킬 때 상기 트랜지스터를 턴온시키도록 제어할 수 있다.
상기 복수의 박막트랜지스터는 투명하게 형성될 수 있으며, 예를 들어, 탄소나노튜브, 그래핀, 유기물 박막, 산화물 박막, 실리콘 박막 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하여 형성될 수 있으나, 이에 제한되는 것은 아니다.
본원의 제 6 측면은, 디스플레이 패널; 및, 상기 디스플레이 패널 전면에 부착되는 상기 본원의 제 5 측면에 따른 압력 및 위치 동시감지 터치센서를 포함하는, 압력 및 위치 동시감지 터치센서 디스플레이 패널을 제공할 수 있다.
예시적 구현예에 있어서, 상기 디스플레이 패널은 액정 표시 패널일 수 있으나, 이에 제한되는 것은 아니다.
본원의 제 7 측면은, 도 9에 도시된 바와 같이, 투명 전도막(420)과 전극 및 도트 스페이서(470)가 형성된 하부기판(410), 투명 전도막(440)과 전극이 형성된 상부기판(460), 상기 상부기판(460)에 포함된 전극 및/또는 상기 하부기판(410)에 포함된 상기 전극 상에 형성되는 스트레인(strain) 감지능을 가지는 그래핀 전극(450); 및, 상기 하부기판(410) 및 상기 상부기판(460)을 일정간격으로 대향시켜 부착시키기 위한 접착부재(430)를 포함하는, 압력 및 위치 동시감지 터치센서(400)를 제공할 수 있다.
상기 투명 전도막(420, 440)은 투명한 재료로 형성되며, 예를 들어, ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), TAO(Tin Antinomy Oxide), TO(Tin Oxide), ZnO(Zinc Oxide), 탄소나노튜브, 또는 그래핀 등의 투명 도전성 산화물(Transparent Conductive Oxide; TCO)를 포함하는 재질로 형성될 수 있다. 상기 터치센서(400)는 상부기판(460) 상에 외부 압력을 인가하면, 상부기판(460) 및 하부기판(410)의 투명 전도막(420, 440)의 기계적인 접촉을 하게 되어 이때 각각 상대 기판의 접촉 점에 형성된 X축, Y축 전위를 인식하여 전위 값에 의해 위치를 인식할 수 있게 되는 저항막 방식으로서, 저항막 방식 터치 센서의 구조는 당업자의 범위에서 다양하게 변경될 수 있다.
본원의 제 8 측면은, 도 10에 도시된 바와 같이, 투명 전도막(540)이 형성된 상부기판(570), 투명 전도막(520)이 형성된 하부기판(530), 상기 상부기판(570) 및 상기 투명 전도막(540) 사이에 형성된 그래핀 전극(550), 상기 그래핀 전극(550) 측면에 형성된 전극(560), 및 상기 투명 전도막(540)의 하부를 절연하는 절연코팅부(510)를 포함하며, 상기 투명 전도막의 상면을 터치하게 되면 정전용량의 변동에 따라 측면에 형성된 전극에 의해 터치 위치를 감지하고 상기 그래핀 전극 자체의 스트레인(strain) 감지능을 이용하여 상기 터치에 의한 압력의 세기를 감지하는 압력 및 위치 동시감지 터치센서(500)를 제공할 수 있다.
상기 상부기판(570)은 유리, 플라스틱으로 형성될 수 있고, 하부기판(530)은 폴리머 필름 기판을 사용할 수 있다. 상기 상부기판(570) 및 상기 하부기판(530)에 형성되는 상기 투명 전도막(520, 540)은 투명한 재료로 형성되며, 예를 들어, ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), TAO(Tin Antinomy Oxide), TO(Tin Oxide), ZnO(Zinc Oxide), 탄소나노튜브, 그래핀 등의 투명 도전성 산화물(Transparent Conductive Oxide; TCO)를 포함하는 재질로 형성될 수 있다.
상기 터치센서(500)는 외부의 사람의 손가락 또는 도전성 스타일러스 펜과 같은 도전체가 투명 전도막 상부를 터치하게 될 경우 전압드롭이 발생하여 측면에 구비된 각 전극이 이를 감지함으로써 터치 위치를 감지하는 정전용량 방식 터치센서로서, 당업자의 범위에서 저항막 방식 터치 센서의 구조는 다양하게 변경될 수 있다.
상기 저항막 방식(400) 및 정전용량 방식(500)의 터치센서에서 상기 투명 전도막 상에 형성되는 그래핀 스트레인 센서(450, 550)는 외부 인가 압력에 의한 그래핀의 저항변화로 생기는 전류강하의 정도를 통해 인가된 압력의 크기를 평가하여 압력 또한 측정할 수 있다. 따라서, 압력 및 위치 동시 측정이 가능한 터치센서를 제공할 수 있다.
이상, 구현예 및 실시예를 들어 본원을 상세하게 설명하였으나, 본원은 상기 구현예 및 실시예들에 한정되지 않으며, 여러 가지 다양한 형태로 변형될 수 있으며, 본원의 기술적 사상 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 많은 변형이 가능함이 명백하다.

Claims (27)

  1. 제 1 기재 상에 형성되며 서로 평행하게 형성된 복수개의 그래핀 전극을 포함하는 제 1 그래핀 전극 패턴;
    상기 제 1 그래핀 전극 패턴 상에 형성된 감압 레지스터 (force sensing resistor; FSR) 층;
    제 2 기재 상에 형성되며, 상기 제 1 그래핀 전극 패턴과 수직으로 교차하며 서로 평행하게 형성된 복수개의 그래핀 전극을 포함하는 제 2 그래핀 전극 패턴; 및,
    상기 제 1 그래핀 전극 패턴 및 상기 제 2 그래핀 전극 패턴에 전압을 인가하고, 상기 제 1 기재 또는 상기 제 2 기재 상에 외부 터치에 의하여 가해지는 압력에 의하여 상기 감압 레지스터의 저항 변화를 감지하여 외부 터치 위치의 (X,Y) 좌표를 판단하고 상기 외부 터치에 의하여 가해지는 압력의 세기를 감지하는 제어부
    를 포함하는, 압력 및 위치 동시감지 터치센서.
  2. 제 1 항에 있어서,
    상기 제 1 기재 및 상기 제 2 기재 중 적어도 하나는 플렉서블(flexible) 또는 신축가능한(stretchable)것인, 압력 및 위치 동시감지 터치센서.
  3. 제 1 항에 있어서,
    상기 제 1 기재 및 상기 제 2 기재 중 적어도 하나는 투명 유기 절연체를 포함하는 것인, 압력 및 위치 동시감지 터치센서.
  4. 제 1 항에 있어서,
    상기 감압 레지스터 층은 투명 전도성 필름 포함하여 형성된 것인, 압력 및 위치 동시감지 터치센서.
  5. 제 1 항에 있어서,
    상기 제어부는, 상기 외부 터치가 가해진 위치의 상기 제 1 그래핀 전극 패턴의 그래핀 전극과 상기 제 2 그래핀 전극 패턴의 그래핀 전극에만 전압을 교대로 인가하여 상기 외부 터치 위치의 (X,Y) 좌표 및 상기 외부 터치에 의하여 가해지는 압력의 세기를 판단하는 것인, 압력 및 위치 동시감지 터치센서.
  6. 디스플레이 패널; 및
    상기 디스플레이 패널 전면에 부착되는 제 1 항 내지 제 5 항 중 어느 한 항에 따른 압력 및 위치 동시감지 터치센서
    를 포함하는, 압력 및 위치 동시감지 터치센서 디스플레이 패널.
  7. 제 6 항에 있어서,
    상기 디스플레이 패널은 액정 표시 패널인, 압력 및 위치 동시감지 터치센서 디스플레이 패널.
  8. 제 1 절연성 기재 상에 형성되며 서로 평행하게 형성된 복수개의 그래핀 전극을 포함하는 제 1 그래핀 패턴을 포함하는 제 1 기판;
    제 2 절연성 기재 상에 형성되며, 상기 제 1 그래핀 패턴과는 수직으로 교차하며 서로 평행하게 형성된 복수개의 그래핀 전극을 포함하는 제 2 그래핀 패턴을 포함하는 제 2 기판; 및,
    서로 접촉하도록 대향된 상기 제 1 그래핀 패턴 및 상기 제 2 그래핀 패턴에 전압을 인가하고, 상기 제 1 절연성 기재 또는 상기 제 2 절연성 기재 상에 외부 터치에 의하여 가해지는 압력에 의하여 상기 제 1 그래핀 패턴의 적어도 하나의 그래핀 전극과 상기 제 2 그래핀 패턴의 적어도 하나의 그래핀 전극에 발생되는 저항 변화를 감지하여 외부 터치 위치의 (X,Y) 좌표를 판단하고 상기 외부 터치에 의하여 가해지는 압력의 세기를 감지하는 제어부
    를 포함하는, 압력 및 위치 동시감지 터치센서.
  9. 제 8 항에 있어서,
    상기 제 1 그래핀 패턴 및 상기 제 2 그래핀 패턴의 복수개의 그래핀 전극 각각은 스트레인 게이지(strain gauge)로서 작용하여, 상기 외부 터치에 의하여 가해지는 압력에 의하여 상기 제 1 그래핀 패턴의 적어도 하나의 그래핀 전극과 상기 제 2 그래핀 패턴의 적어도 하나의 그래핀 전극이 서로 접촉하여 발생되는 저항 변화가 상기 외부 터치에 의하여 가해지는 압력의 세기에 비례하는 것인, 압력 및 위치 동시감지 터치센서.
  10. 제 8 항에 있어서,
    상기 제 1 절연성 기재 및 상기 제 2 절연성 기재 중 적어도 하나는 플렉서블(flexible) 또는 신축가능한(stretchable)것인, 압력 및 위치 동시감지 터치센서.
  11. 제 8 항에 있어서,
    상기 제 1 절연성 기재 및 상기 제 2 절연성 기재는 각각 투명 유기 절연체를 포함하는 것인, 압력 및 위치 동시감지 터치센서.
  12. 제 8 항에 있어서,
    상기 제어부는, 상기 외부 터치가 가해진 위치의 상기 제 1 그래핀 패턴의 그래핀 전극과 상기 제 2 그래핀 패턴의 그래핀 전극에만 전압을 교대로 인가하여 상기 외부 터치 위치의 (X,Y) 좌표를 판단하는 것인, 압력 및 위치 동시감지 터치센서.
  13. 디스플레이 패널; 및
    상기 디스플레이 패널 전면에 부착되는 제 8 항 내지 제 12 항 중 어느 한 항에 따른 압력 및 위치 동시감지 터치센서
    를 포함하는, 압력 및 위치 동시감지 터치센서 디스플레이 패널.
  14. 제 13 항에 있어서,
    상기 디스플레이 패널은 액정 표시 패널인, 압력 및 위치 동시감지 터치센서 디스플레이 패널.
  15. 절연성 기재 상에 형성된, 서로 평행하게 형성된 복수개의 그래핀 라인전극을 포함하는 제 1 그래핀 전극 패턴, 및 상기 제 1 그래핀 전극 패턴 상에 형성되며, 상기 제 1 그래핀 전극 패턴의 복수개의 그래핀 라인전극 각각에 수직으로 교차하며 서로 평행하게 형성된 복수개의 그래핀 라인전극을 포함하는 제 2 그래핀 전극 패턴;
    상기 제 1 그래핀 전극 패턴의 복수개의 그래핀 라인전극 및 상기 제 2 그래핀 전극 패턴의 복수개의 그래핀 라인전극 각각의 교차점에 연결되어 형성된 복수개의 그래핀 스트레인 게이지; 및,
    상기 제 1 그래핀 전극 패턴 및 상기 제 2 그래핀 전극 패턴의 각각의 그래핀 라인전극에 전압을 인가하고, 상기 절연성 기재 상에 외부 터치에 의하여 가해지는 압력에 의하여 상기 외부 터치의 위치에 대응하는 상기 그래핀 스트레인 게이지에 발생되는 저항 변화를 감지하여 상기 외부 터치 위치의 (X,Y) 좌표를 판단하고 상기 외부 터치에 의하여 가해지는 압력의 세기를 감지하는 제어부
    를 포함하는, 압력 및 위치 동시감지 터치센서.
  16. 제 15 항에 있어서,
    상기 복수의 그래핀 스트레인 게이지 각각에 연결된 복수의 박막트랜지스터(TFT)를 추가 포함하는, 압력 및 위치 동시감지 터치센서.
  17. 제 16 항에 있어서,
    상기 복수의 박막트랜지스터는 컨트롤러와 연결되어, 상기 컨트롤러가 전압을 인가할 때 상기 박막트랜지스터를 턴온(turn-on)시키도록 제어하는 것인, 압력 및 위치 동시감지 터치센서.
  18. 제 16 항에 있어서,
    상기 복수의 박막트랜지스터는 투명한 것인, 압력 및 위치 동시감지 터치센서.
  19. 제 16 항에 있어서,
    상기 복수의 박막트랜지스터는 탄소나노튜브, 그래핀, 유기물 박막, 산화물 박막, 실리콘 박막, 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하여 형성된 것인, 압력 및 위치 동시감지 터치센서.
  20. 제 15 항에 있어서,
    상기 절연성 기재는 플렉서블(flexible) 또는 신축가능한(stretchable)것인, 압력 및 위치 동시감지 터치센서.
  21. 제 15 항에 있어서,
    상기 제 2 그래핀 전극 패턴 및 상기 그래핀 스트레인 게이지 상에 보호층을 추가 포함하는 것인, 압력 및 위치 동시감지 터치센서.
  22. 디스플레이 패널; 및
    상기 디스플레이 패널 전면에 부착되는 제 15 항 내지 제 21 항 중 어느 한 항에 따른 압력 및 위치 동시감지 터치센서
    를 포함하는, 압력 및 위치 동시감지 터치센서 디스플레이 패널.
  23. 제 22 항에 있어서,
    상기 디스플레이 패널은 액정 표시 패널인, 압력 및 위치 동시감지 터치센서 디스플레이 패널.
  24. 투명 전도막과 전극 및 도트 스페이서가 형성된 하부기판;
    투명 전도막과 전극이 형성된 상부기판;
    상기 상부기판에 포함된 전극 및/또는 상기 하부기판에 포함된 상기 전극 상에 형성되는 스트레인(strain) 감지능을 가지는 그래핀 전극; 및,
    상기 하부기판 및 상기 상부기판을 일정 간격으로 대향시켜 부착시키기 위한 접착부재
    를 포함하며,
    상기 상부기판의 전극 및 상기 하부기판의 전극으로부터 외부로 신호의 입출력을 위한 배선 구조물을 구비하는 것인,
    압력 및 위치 동시감지 터치센서 디스플레이 패널.
  25. 제 24 항에 있어서,
    상기 투명 전도막은 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), TAO(Tin Antinomy Oxide), TO(Tin Oxide), ZnO(Zinc Oxide), 탄소나노튜브, 그래핀 및 이들의 조합들로 이루어진 군에서 선택되는 것을 포함하는 것인, 압력 및 위치 동시감지 터치센서 디스플레이 패널.
  26. 투명 전도막이 형성된 상부기판;
    투명 전도막이 형성된 하부기판;
    상기 상부기판 및 상기 투명 전도막 사이에 형성된 그래핀 전극;
    상기 그래핀 전극 측면에 형성된 전극; 및,
    상기 하부기판의 투명 전도막의 하부를 절연하는 절연코팅부
    를 포함하며,
    상기 투명 전도막의 상면을 터치하게 되면 정전용량의 변동에 따라 측면에 형성된 전극에 의해 터치 위치를 감지하고 상기 그래핀 전극 자체의 스트레인(strain) 감지능을 이용하여 상기 터치에 의한 압력의 세기를 감지하는 것인, 압력 및 위치 동시감지 터치센서 디스플레이 패널.
  27. 제 26 항에 있어서,
    상기 투명 전도막은 ITO(Indium Tin Oxide), IZO(Indium Zinc Oxide), TAO(Tin Antinomy Oxide), TO(Tin Oxide), ZnO(Zinc Oxide), 탄소나노튜브, 그래핀 및 이들의 조합들로 이루어진 군에서 선택되는 것인, 압력 및 위치 동시감지 터치센서 디스플레이 패널.
PCT/KR2011/010038 2010-12-24 2011-12-23 그래핀을 이용한 압력 및 위치 동시감지 터치센서 WO2012087065A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20153642.2A EP3686719A1 (en) 2010-12-24 2011-12-23 Touch sensor using graphene for simultaneously detecting a pressure and a position
EP11852000.6A EP2657812A4 (en) 2010-12-24 2011-12-23 TOUCH SENSOR USING GRAPHENE TO SIMULTANEOUSLY DETECT PRESSURE AND POSITION
CN201180062319.1A CN104220964A (zh) 2010-12-24 2011-12-23 用于同时检测压力和位置的使用石墨烯的触摸传感器
US13/997,566 US9297831B2 (en) 2010-12-24 2011-12-23 Touch sensor using graphene for simultaneously detecting a pressure and a position

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0134801 2010-12-24
KR20100134801 2010-12-24

Publications (2)

Publication Number Publication Date
WO2012087065A2 true WO2012087065A2 (ko) 2012-06-28
WO2012087065A3 WO2012087065A3 (ko) 2012-10-04

Family

ID=46314665

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010038 WO2012087065A2 (ko) 2010-12-24 2011-12-23 그래핀을 이용한 압력 및 위치 동시감지 터치센서

Country Status (5)

Country Link
US (1) US9297831B2 (ko)
EP (2) EP3686719A1 (ko)
KR (1) KR101459307B1 (ko)
CN (2) CN110377189A (ko)
WO (1) WO2012087065A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072767A (ja) * 2013-10-02 2015-04-16 尾池工業株式会社 転写フィルムおよびその製造方法、並びに透明導電性積層体の製造方法
CN106371670A (zh) * 2016-09-29 2017-02-01 中国科学院重庆绿色智能技术研究院 一种多点触压力成像的石墨烯电容式触摸屏及智能终端
US10054496B2 (en) 2015-03-23 2018-08-21 Samsung Display Co., Ltd. Temperature sensing device, temperature sensor using the same, and wearable device having the same
US10439128B2 (en) 2015-03-23 2019-10-08 Samsung Display Co., Ltd. Piezoelectric device, piezoelectric sensor using the same, and wearable device having the same

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6005422B2 (ja) * 2012-07-06 2016-10-12 現代自動車株式会社Hyundai Motor Company 電子デバイス
JP5607697B2 (ja) 2012-10-16 2014-10-15 日本写真印刷株式会社 タッチセンサ及び電子機器
KR102028157B1 (ko) * 2012-11-20 2019-10-07 삼성디스플레이 주식회사 플렉서블 터치 스크린 패널 이를 구비한 플렉서블 표시장치
KR101398187B1 (ko) * 2012-11-29 2014-05-23 한국생산기술연구원 터치 센서 및 그 제조 방법
KR102058699B1 (ko) 2013-01-24 2019-12-26 삼성디스플레이 주식회사 터치 및 휨 감지 기능을 가지는 플렉서블 표시장치
KR101877108B1 (ko) * 2013-01-29 2018-07-10 중국 과학원, 쑤저우 나노기술 및 나노바이오닉스 연구소 전자 피부 및 그 제조 방법과 용도
KR101956105B1 (ko) * 2013-03-18 2019-03-13 삼성전자주식회사 촉각 측정 장치 및 방법과 촉각 측정 장치 제조 방법
EP2827436B1 (en) * 2013-07-17 2017-05-31 Sony Corporation Electronic device and methods therein
CN104423743B (zh) * 2013-09-02 2017-12-29 深圳市中深光电有限公司 触摸屏的制备方法
US10282014B2 (en) 2013-09-30 2019-05-07 Apple Inc. Operating multiple functions in a display of an electronic device
US20150122531A1 (en) 2013-11-01 2015-05-07 Carestream Health, Inc. Strain gauge
US9726922B1 (en) 2013-12-20 2017-08-08 Apple Inc. Reducing display noise in an electronic device
US10082830B2 (en) * 2014-01-05 2018-09-25 Vorbeck Materials Corp. Wearable electronic devices
KR101676525B1 (ko) * 2014-05-20 2016-11-16 한양대학교 산학협력단 접촉된 그래핀 패턴들을 갖는 그래핀 터치 센서 및 그 제조 방법
KR101615812B1 (ko) * 2014-05-20 2016-04-27 한양대학교 산학협력단 이격된 그래핀 패턴을 갖는 그래핀 터치 센서 및 그 제조 방법
CN106462281B (zh) * 2014-05-20 2019-11-05 工业大学合作基础汉阳大学 石墨烯触摸传感器、其运行方法及其制造方法
US11121334B2 (en) * 2014-06-26 2021-09-14 Trustees Of Tufts College 3D graphene transistor
JP6712597B2 (ja) 2014-12-23 2020-06-24 ケンブリッジ タッチ テクノロジーズ リミテッドCambridge Touch Technologies Limited 感圧式タッチパネル
GB2533667B (en) 2014-12-23 2017-07-19 Cambridge Touch Tech Ltd Pressure-sensitive touch panel
KR102319466B1 (ko) 2015-02-25 2021-10-29 삼성디스플레이 주식회사 표시장치 및 이를 이용한 표시장치의 구동방법
KR102380157B1 (ko) 2015-03-04 2022-03-29 삼성디스플레이 주식회사 터치 패널 및 이를 포함하는 표시 장치
KR101707002B1 (ko) * 2015-03-04 2017-02-15 숭실대학교산학협력단 복합 감지형 센서 및 제조방법
US10296123B2 (en) * 2015-03-06 2019-05-21 Apple Inc. Reducing noise in a force signal in an electronic device
US10185397B2 (en) 2015-03-08 2019-01-22 Apple Inc. Gap sensor for haptic feedback assembly
FR3033554B1 (fr) * 2015-03-09 2020-01-31 Centre National De La Recherche Scientifique Procede de formation d'un dispositif en graphene
EP3067073A1 (en) 2015-03-09 2016-09-14 Centre National De La Recherche Scientifique Method of forming a medical device comprising graphene
JP2016171245A (ja) * 2015-03-13 2016-09-23 株式会社東芝 半導体装置およびその製造方法
US9909939B2 (en) * 2015-06-08 2018-03-06 Adonit Co., Ltd. Force sensing resistor with external conductive layer
CN106293285A (zh) * 2015-06-09 2017-01-04 南昌欧菲光科技有限公司 触摸屏及显示装置
WO2016200164A1 (ko) * 2015-06-09 2016-12-15 한양대학교 산학협력단 촉각 인지 시스템, 및 그 데이터베이스 구축 방법
CN106325579B (zh) * 2015-07-10 2023-04-07 宸鸿科技(厦门)有限公司 一种压力感测输入装置
CN105094425A (zh) * 2015-07-17 2015-11-25 苏州诺菲纳米科技有限公司 触控传感器及其制备方法及具有触控传感器的显示器件
US10296047B2 (en) 2015-08-04 2019-05-21 Apple Inc. Input mechanism with deformable touch-sensitive material
CN105115633B (zh) * 2015-08-17 2017-12-12 宸鸿科技(厦门)有限公司 一种压力感测装置
KR102408828B1 (ko) 2015-09-03 2022-06-15 삼성디스플레이 주식회사 전자장치 및 그 구동방법
CN105068695A (zh) * 2015-09-11 2015-11-18 京东方科技集团股份有限公司 具有压力检测功能的触控显示面板、显示装置及驱动方法
CN106527784A (zh) * 2015-09-15 2017-03-22 常州二维碳素科技股份有限公司 三维度感应触摸屏
US10416811B2 (en) 2015-09-24 2019-09-17 Apple Inc. Automatic field calibration of force input sensors
KR102476610B1 (ko) 2015-10-02 2022-12-12 삼성전자주식회사 터치 패드, 이를 이용한 터치 스크린 및 전자 장치, 및 터치 패드의 제조 방법
US10635222B2 (en) 2015-10-02 2020-04-28 Samsung Electronics Co., Ltd. Touch pad and electronic apparatus using the same, and method of producing touch pad
CN105404420B (zh) * 2015-11-04 2018-03-09 宸鸿科技(厦门)有限公司 压力感测信号处理方法及其***
GB201519620D0 (en) 2015-11-06 2015-12-23 Univ Manchester Device and method of fabricating such a device
CN105300574B (zh) * 2015-11-13 2018-04-17 常州二维碳素科技股份有限公司 石墨烯压力传感器及其制备方法和用途
CN105389055A (zh) * 2015-11-19 2016-03-09 业成光电(深圳)有限公司 应用于压力触控感测器之变阻式结构
CN105373256A (zh) * 2015-11-25 2016-03-02 重庆墨希科技有限公司 一种柔性电子墨水触控显示屏及制备方法
JP6198804B2 (ja) * 2015-12-01 2017-09-20 日本写真印刷株式会社 多点計測用のひずみセンサとその製造方法
US10203786B1 (en) * 2015-12-09 2019-02-12 Amazon Technologies, Inc. Touch enabled user device with unpowered display
GB2544353B (en) 2015-12-23 2018-02-21 Cambridge Touch Tech Ltd Pressure-sensitive touch panel
US10282046B2 (en) 2015-12-23 2019-05-07 Cambridge Touch Technologies Ltd. Pressure-sensitive touch panel
CN105511702B (zh) * 2015-12-28 2019-02-15 中国科学院重庆绿色智能技术研究院 一种具有压力感应的石墨烯电容式触摸屏
KR102412366B1 (ko) * 2015-12-30 2022-06-24 엘지디스플레이 주식회사 포스 센서 구조를 갖는 디스플레이 장치
KR102456154B1 (ko) 2016-01-29 2022-10-19 삼성디스플레이 주식회사 센서, 터치 센서 및 표시 장치
CN105487721A (zh) * 2016-02-04 2016-04-13 重庆墨希科技有限公司 石墨烯自感式压力传感触摸屏及其制作方法
US20190095024A1 (en) * 2016-02-04 2019-03-28 Shenzhen New Degree Technology Co., Ltd. Pressure sensing device and electronic apparatus having same
CN107045400B (zh) * 2016-02-06 2021-07-23 宸鸿科技(厦门)有限公司 多点压力触控侦测方法及多点压力触控模组
CN105786255B (zh) 2016-03-03 2018-11-06 京东方科技集团股份有限公司 压力感测触摸***和方法以及显示***
CN105824469B (zh) 2016-03-15 2018-10-30 京东方科技集团股份有限公司 一种显示基板、内嵌式触摸屏及显示装置
KR102562627B1 (ko) 2016-03-21 2023-08-03 삼성디스플레이 주식회사 디스플레이 장치
US10088947B2 (en) 2016-03-25 2018-10-02 Sensel Inc. System and method for detecting and characterizing force inputs on a surface
US10444913B2 (en) * 2016-04-15 2019-10-15 Lg Display Co., Ltd. Driving circuit, touch display apparatus, and method for driving touch display apparatus
US10209840B2 (en) 2016-04-20 2019-02-19 Lg Innotek Co., Ltd. Touch window and touch device
KR101639175B1 (ko) * 2016-06-10 2016-07-25 한양대학교 산학협력단 그래핀 터치 센서, 그 동작 방법, 및 그 제조 방법
KR102555596B1 (ko) 2016-06-21 2023-07-17 삼성디스플레이 주식회사 전자 장치
US20180004320A1 (en) * 2016-06-30 2018-01-04 Synaptics Incorporated Combined force and touch sensor
JP6764957B2 (ja) * 2016-06-30 2020-10-07 華為技術有限公司Huawei Technologies Co.,Ltd. エレクトロニクス装置及び端末
CN105910737B (zh) * 2016-07-01 2018-10-19 北京科技大学 一种应力定位传感器及其制作方法、应力定位方法
KR102520103B1 (ko) * 2016-07-11 2023-04-10 삼성디스플레이 주식회사 표시 장치
KR20180007255A (ko) * 2016-07-12 2018-01-22 삼성전자주식회사 전자 장치 및 전자 장치의 동작 방법
KR102562612B1 (ko) * 2016-08-05 2023-08-03 삼성전자주식회사 압력 센서를 구비한 디스플레이를 포함하는 전자 장치
WO2018038367A1 (ko) 2016-08-26 2018-03-01 주식회사 하이딥 스트레인 게이지가 형성된 디스플레이 패널을 포함하는 터치 입력 장치 및 스트레인 게이지가 형성된 디스플레이 패널 제조 방법
DE102016216577A1 (de) 2016-09-01 2018-03-01 Volkswagen Aktiengesellschaft Verfahren zur Interaktion mit Bildinhalten, die auf einer Anzeigevorrichtung in einem Fahrzeug dargestellt werden
KR102554095B1 (ko) * 2016-09-30 2023-07-10 엘지디스플레이 주식회사 인셀 터치형 액정표시장치 및 그 제조방법
KR102615232B1 (ko) * 2016-09-30 2023-12-15 엘지디스플레이 주식회사 인셀 터치형 액정표시장치 및 그 제조방법
CN106546362A (zh) * 2016-10-27 2017-03-29 中国科学院重庆绿色智能技术研究院 一种基于石墨烯的电容式压力传感器
CN106775168B (zh) * 2017-01-18 2018-04-17 深圳唯一科技股份有限公司 一种高灵敏度石墨烯电容式触摸屏
TWI645173B (zh) * 2017-01-23 2018-12-21 華邦電子股份有限公司 壓力感測器及其製造方法
CN108344532A (zh) 2017-01-23 2018-07-31 华邦电子股份有限公司 压力传感器及其制造方法
KR101898981B1 (ko) * 2017-01-25 2018-09-14 문영실 그래핀을 이용한 터치스크린
CN108362199A (zh) * 2017-01-26 2018-08-03 华邦电子股份有限公司 应变感测装置及其制造方法
CN107782474A (zh) * 2017-02-17 2018-03-09 全普光电科技(上海)有限公司 一种基于石墨烯薄膜的压力探测设备
TWI653438B (zh) 2017-02-23 2019-03-11 華邦電子股份有限公司 壓力感測器及其製造方法
CN107153483B (zh) * 2017-05-09 2019-12-03 京东方科技集团股份有限公司 一种触控显示模组、显示装置及其驱动方法
KR101935810B1 (ko) * 2017-05-17 2019-01-08 주식회사 하이딥 스트레인 게이지가 형성된 디스플레이 패널을 포함하는 터치 입력 장치
US10324141B2 (en) * 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
KR102486523B1 (ko) 2017-06-07 2023-01-11 삼성디스플레이 주식회사 캐패시터 구조체, 캐패시터 구조체를 구비한 표시 장치 및 캐패시터 구조체 제조 방법
CN109085957B (zh) * 2017-06-14 2022-11-15 江西欧迈斯微电子有限公司 触控终端及其触摸检测装置和检测方法
CN107340914B (zh) * 2017-06-30 2020-05-12 上海天马微电子有限公司 一种显示基板、显示面板及显示装置
US11093088B2 (en) 2017-08-08 2021-08-17 Cambridge Touch Technologies Ltd. Device for processing signals from a pressure-sensing touch panel
GB2565305A (en) 2017-08-08 2019-02-13 Cambridge Touch Tech Ltd Device for processing signals from a pressure-sensing touch panel
KR102489964B1 (ko) * 2017-09-05 2023-01-18 엘지디스플레이 주식회사 터치센서를 구비하는 표시장치 및 터치센서 구동방법
CN107561761B (zh) * 2017-09-20 2020-09-01 厦门天马微电子有限公司 一种显示面板及其驱动方法、显示装置
CN107703695B (zh) * 2017-09-29 2019-07-26 哈尔滨学院 一种基于石墨烯的群延时可调控制器
CN108196715B (zh) * 2018-01-03 2021-04-27 京东方科技集团股份有限公司 一种柔性显示装置和触控压力的检测方法
CN108272167B (zh) * 2018-04-19 2024-02-09 席蕙卿 石墨烯压力传感器、智能鞋底及智能鞋
CN208140284U (zh) 2018-05-25 2018-11-23 北京京东方技术开发有限公司 一种压力感应器件
KR102540613B1 (ko) 2018-07-10 2023-06-07 삼성전자 주식회사 기판에 형성된 압력 센서 장치 및 이를 포함하는 전자 장치
CN110857894B (zh) * 2018-08-24 2021-06-04 中山大学 基于有序石墨烯的可检测应力方向的柔性力学传感器及其制备方法
CN109323784B (zh) * 2018-09-21 2020-07-10 浙江大学 一种具有双层卡扣型微凸台的压阻式柔性触觉传感器
KR102645186B1 (ko) 2018-11-14 2024-03-08 삼성디스플레이 주식회사 입력감지회로 및 이를 포함하는 표시모듈
CN109656428B (zh) * 2018-12-14 2020-08-04 武汉华星光电半导体显示技术有限公司 触控面板
KR102087840B1 (ko) 2019-02-07 2020-03-11 고려대학교 산학협력단 스트레인 센서 및 이의 제조 방법
KR20200116561A (ko) * 2019-04-01 2020-10-13 삼성디스플레이 주식회사 압력 센서를 갖는 터치 감지 유닛과 그를 포함하는 표시 장치
KR102606035B1 (ko) * 2019-08-28 2023-11-24 부산대학교 산학협력단 레이저를 이용한 센서제조방법 및 이 방법에 의하여 제조된 센서
US20210181841A1 (en) * 2019-12-16 2021-06-17 Trechrein LLC Integrative hand-wearable apparatus and systems
US11812561B2 (en) * 2020-04-08 2023-11-07 Schlumberger Technology Corporation Thermally induced graphene sensing circuitry on intelligent valves, actuators, and pressure sealing applications
CN114442205B (zh) * 2021-12-28 2023-11-28 天津中德应用技术大学 基于应力调控技术的石墨烯等离激元信号调制器装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080108277A (ko) 2006-03-08 2008-12-12 사이언티픽 오프틱스 인코포레이티드 시력 개선 방법 및 시력 개선용 렌즈

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5915285A (en) * 1993-01-21 1999-06-22 Optical Coating Laboratory, Inc. Transparent strain sensitive devices and method
JP3079983B2 (ja) * 1995-12-26 2000-08-21 株式会社日立製作所 半導体型燃焼圧センサ
JP4677654B2 (ja) * 2000-04-19 2011-04-27 日本電気株式会社 透過型液晶表示装置及びその製造方法
WO2002035461A1 (en) * 2000-10-27 2002-05-02 Elo Touchsystems, Inc. Dual sensor touchscreen utilizing projective-capacitive and force touch sensors
US8044472B2 (en) * 2003-03-25 2011-10-25 Kulite Semiconductor Products, Inc. Nanotube and graphene semiconductor structures with varying electrical properties
US7324095B2 (en) * 2004-11-01 2008-01-29 Hewlett-Packard Development Company, L.P. Pressure-sensitive input device for data processing systems
US20080048996A1 (en) 2006-08-11 2008-02-28 Unidym, Inc. Touch screen devices employing nanostructure networks
KR20080070419A (ko) * 2007-01-26 2008-07-30 삼성전자주식회사 반투과형 액정 표시 장치 및 그 제조 방법
KR100856206B1 (ko) * 2007-01-31 2008-09-03 삼성전자주식회사 키 패드 및 키 패드 어셈블리
KR100933710B1 (ko) * 2008-02-12 2009-12-24 한국표준과학연구원 촉각센서를 장착한 디스플레이 일체형 플렉시블 터치스크린 및 이의 인식 알고리즘 구현 방법
KR20090098351A (ko) 2008-03-14 2009-09-17 오재욱 발전 가열식 보온 컵
US20090237374A1 (en) * 2008-03-20 2009-09-24 Motorola, Inc. Transparent pressure sensor and method for using
KR100943989B1 (ko) * 2008-04-02 2010-02-26 (주)엠아이디티 정전용량식 터치스크린
TWI397850B (zh) * 2008-05-14 2013-06-01 Ind Tech Res Inst 感測裝置及其掃描驅動方法
KR101400287B1 (ko) * 2008-06-17 2014-05-30 삼성전자주식회사 나노 와이어를 이용한 터치 패널
KR101440542B1 (ko) * 2008-06-26 2014-09-16 한국과학기술원 전도성 그라핀을 이용한 바이오센서 및 그 제조방법
US8390580B2 (en) * 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
KR100997107B1 (ko) * 2008-08-11 2010-11-29 한국표준과학연구원 누름힘의 세기 및 작용위치 검출용 터치입력구조, 이를 이용한 터치입력장치 및 누름힘의 세기 및 작용위치 검출방법
KR20100022747A (ko) * 2008-08-20 2010-03-03 주식회사 센플러스 압전저항층을 포함하는 터치센서와 이를 포함하는 입력장치및 입력감지방법
KR101014263B1 (ko) * 2008-09-04 2011-02-16 삼성전기주식회사 촉각 센서
US8624845B2 (en) * 2008-09-26 2014-01-07 Cypress Semiconductor Corporation Capacitance touch screen
KR20100035380A (ko) * 2008-09-26 2010-04-05 삼성전자주식회사 박막형 센싱부재를 이용한 화학 센서
JP2010205012A (ja) * 2009-03-04 2010-09-16 Brother Ind Ltd 制御装置、制御方法及び制御処理プログラム
JP5493739B2 (ja) 2009-03-19 2014-05-14 ソニー株式会社 センサ装置及び情報処理装置
US8836648B2 (en) * 2009-05-27 2014-09-16 Microsoft Corporation Touch pull-in gesture
JP5380161B2 (ja) * 2009-06-02 2014-01-08 株式会社日立製作所 透明導電性膜およびそれを用いた電子デバイス
WO2011004755A1 (en) * 2009-07-10 2011-01-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US20110163298A1 (en) * 2010-01-04 2011-07-07 Chien-Min Sung Graphene and Hexagonal Boron Nitride Devices
WO2011096700A2 (en) * 2010-02-02 2011-08-11 Samsung Techwin Co., Ltd. Touch panel and method of manufacturing the same
CN101793856B (zh) * 2010-04-09 2012-08-22 上海交通大学 基于石墨烯复合物的湿度传感器的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080108277A (ko) 2006-03-08 2008-12-12 사이언티픽 오프틱스 인코포레이티드 시력 개선 방법 및 시력 개선용 렌즈

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2657812A4

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015072767A (ja) * 2013-10-02 2015-04-16 尾池工業株式会社 転写フィルムおよびその製造方法、並びに透明導電性積層体の製造方法
US10054496B2 (en) 2015-03-23 2018-08-21 Samsung Display Co., Ltd. Temperature sensing device, temperature sensor using the same, and wearable device having the same
US10439128B2 (en) 2015-03-23 2019-10-08 Samsung Display Co., Ltd. Piezoelectric device, piezoelectric sensor using the same, and wearable device having the same
CN106371670A (zh) * 2016-09-29 2017-02-01 中国科学院重庆绿色智能技术研究院 一种多点触压力成像的石墨烯电容式触摸屏及智能终端

Also Published As

Publication number Publication date
EP3686719A1 (en) 2020-07-29
CN104220964A (zh) 2014-12-17
US9297831B2 (en) 2016-03-29
KR101459307B1 (ko) 2014-11-07
EP2657812A4 (en) 2015-06-17
CN110377189A (zh) 2019-10-25
WO2012087065A3 (ko) 2012-10-04
EP2657812A2 (en) 2013-10-30
KR20120073140A (ko) 2012-07-04
US20130285970A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
WO2012087065A2 (ko) 그래핀을 이용한 압력 및 위치 동시감지 터치센서
EP1660981B1 (en) Touch-input active matrix display device
JP6066731B2 (ja) 接触検知膜及び接触検知装置
US7348966B2 (en) Digital resistive-type touch panel
TWI557605B (zh) 具有力度量測之位置觸碰感測器
KR100933710B1 (ko) 촉각센서를 장착한 디스플레이 일체형 플렉시블 터치스크린 및 이의 인식 알고리즘 구현 방법
TWI386834B (zh) 無偏壓駐極體三維多點之觸控裝置
WO2015035546A1 (zh) 一种压力感应式触摸屏和触摸显示屏及电子设备
CN104503654B (zh) 触控感应单元、触控基板及其制作方法以及触控显示面板
KR101805773B1 (ko) 감압 터치센서 및 이를 이용한 감압 터치스크린 패널 및 감압 터치센서의 제조방법
TWI424347B (zh) 電容式位置偵測器及其中之感應電容偵測器
WO2013032302A2 (en) Touch panel and liquid crystal display comprising the same
US20070242054A1 (en) Light transmission touch panel and manufacturing method thereof
TWI703475B (zh) 觸控感測器
Walia et al. Patterned Cu-mesh-based transparent and wearable touch panel for tactile, proximity, pressure, and temperature sensing
JP2007264852A (ja) 変位検出センサ、変位検出装置及び端末装置
CN101436111A (zh) 力成像输入设备和***
KR20180031887A (ko) 표시장치
CN104516595A (zh) 触控装置
JP2011048541A (ja) タッチパネル付き表示装置
WO2011025294A2 (ko) 멀티 터치 패널
KR20080054187A (ko) 정전용량 방식 촉각 센서 및 그 제조 방법
WO2011115403A2 (ko) 터치센서 조립체 및 그 제조방법
WO2014042194A1 (ja) タッチペン、タッチパネルシステムおよびタッチパネル付き表示装置
CN104281350A (zh) 一种显示面板及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852000

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13997566

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011852000

Country of ref document: EP