WO2012086072A1 - ストレージ装置,制御装置および制御方法 - Google Patents

ストレージ装置,制御装置および制御方法 Download PDF

Info

Publication number
WO2012086072A1
WO2012086072A1 PCT/JP2010/073406 JP2010073406W WO2012086072A1 WO 2012086072 A1 WO2012086072 A1 WO 2012086072A1 JP 2010073406 W JP2010073406 W JP 2010073406W WO 2012086072 A1 WO2012086072 A1 WO 2012086072A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
power supply
power
supply unit
target voltage
Prior art date
Application number
PCT/JP2010/073406
Other languages
English (en)
French (fr)
Inventor
進之介 松田
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to JP2012549557A priority Critical patent/JP5633580B2/ja
Priority to PCT/JP2010/073406 priority patent/WO2012086072A1/ja
Publication of WO2012086072A1 publication Critical patent/WO2012086072A1/ja
Priority to US13/925,137 priority patent/US9110649B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/263Arrangements for using multiple switchable power supplies, e.g. battery and AC

Definitions

  • This case relates to a storage device, a control device, and a control method.
  • a capacitor such as an electric double layer capacitor has a capacity that decreases with time and a direct current resistance increases, so that the power that can be supplied by the electric double layer capacitor decreases with time.
  • an SCU System Capacitor Unit
  • a volatile memory such as a cache memory at the end of its product life several years after manufacture (for example, five years later). It is designed to hold the power required to evacuate.
  • the SCU in the initial stage after manufacture holds power that assumes a decrease in power that can be supplied by the electric double layer capacitor over time, so it is necessary to save the data recorded in the cache memory to the nonvolatile memory. Surplus power that exceeds power is held.
  • the object of the present invention was devised in view of such a problem, and aims to shorten the startup time of the storage apparatus.
  • the present invention is not limited to the above-described object, and is a function and effect derived from each configuration shown in the embodiment for carrying out the present invention, which is another object of the present invention. Can be positioned as one.
  • This storage apparatus is a storage apparatus having a storage unit for storing data and a control unit for performing data storage control on the storage unit, when an external power supply to the storage apparatus is stopped (hereinafter referred to as a power failure).
  • a power supply unit that supplies power to the control unit; a cache memory that stores data stored in the storage unit; a nonvolatile memory that stores data stored in the cache memory in the event of a power failure; and the power
  • a surplus power determining unit that determines surplus power that is power supplied by the supplying unit and that exceeds the power required to save data in the nonvolatile memory; and surplus power determined by the surplus power determining unit
  • a target voltage determination unit that determines a first target voltage that is a target during the charging process for the power supply unit, and Until the voltage charged in the power supply unit reaches the first target voltage, the power supply unit is charged with a first current value, and the voltage charged in the power supply unit is Until the second target voltage that is larger than the first target voltage is reached from the target voltage, the
  • the control device is a control device that performs data storage control on a storage unit that stores data, and supplies power to the control unit when an external power supply to the storage device is stopped (hereinafter referred to as a power failure).
  • the surplus power determination unit that determines surplus power that is the amount of power exceeding the power required to save data in the nonvolatile memory, and the power based on the surplus power determined by the surplus power determination unit
  • a target voltage determination unit that determines a first target voltage that is a target during the charging process for the supply unit, and a voltage charged in the power supply unit is the first voltage Until the target voltage is reached, the power supply unit is charged with a first current value, and the voltage charged in the power supply unit is greater than the first target voltage from the first target voltage.
  • a charging processing unit that perform
  • the control method includes a storage unit that stores data, a control unit that performs data storage control on the storage unit, and power that supplies power to the control unit when an external power supply is stopped (hereinafter referred to as a power failure).
  • a storage device control method comprising: a supply unit; a cache memory that stores data stored in the storage unit; and a nonvolatile memory that stores data stored in the cache memory in the event of a power failure.
  • the power supply unit Determining the surplus power that is the power supplied by the power supply unit and exceeding the power required for saving data to the nonvolatile memory, and based on the determined surplus power, the power supply unit A first target voltage that is a target at the time of charging processing is determined, and the voltage charged in the power supply unit reaches the first target voltage until the first target voltage is reached. The first power supply unit is charged until the voltage charged in the power supply unit reaches a second target voltage higher than the first target voltage from the first target voltage. The power supply unit is charged with a second current value smaller than the current value.
  • control device it is possible to shorten the startup time of the storage device while ensuring the necessary power during a power failure.
  • FIG. 1 is a diagram schematically illustrating a configuration of a storage apparatus as an example of an embodiment. It is a figure which shows typically the charge path
  • 3 is a flowchart for explaining the operation of a storage apparatus as an example of an embodiment; It is a figure which shows the example at the time of charging, without changing an electric current.
  • 4 is a flowchart for explaining the operation of the storage apparatus during a power failure as an example of an embodiment. It is a figure which shows typically the circuit for calculating
  • FIG. 1 is a diagram illustrating a configuration of a storage apparatus as an example of an embodiment.
  • FIG. 2 is a diagram schematically illustrating a charging path of the SCU as an example of the embodiment.
  • FIG. 3 is a diagram schematically illustrating a functional configuration of a controller module as an example of the embodiment.
  • the storage apparatus 1 as an example of this embodiment includes controller modules 10-1 and 10-2, a PSU (Power Supply Unit) 20, a midplane 30 and an HDD (Hard Disk Drive) 40. ing.
  • the storage device 1 is connected to a host 50 via a communication line such as a LAN (Local Area Network) or an FC (Fibre Channel).
  • the controller modules 10-1 and 10-2, the PSU 20 and the HDD 40 are connected to each other via the midplane 30.
  • reference numerals 10-1 and 10-2 are used when one of the plurality of controller modules needs to be specified, but reference numeral 10 is used when referring to any controller module.
  • the PSU 20 converts AC (Alternative Current) power supplied from the outside of the storage device 1 into DC (Direct Current) power, and supplies power to the controller module 10 and the HDD 40 via the midplane 30. .
  • the midplane 30 is, for example, a board that interconnects the controller module 10, the PSU 20, and the HDD 40, and supplies power input from the PSU 20 to the controller module 10.
  • the HDD 40 stores various data in response to a request from the host 50. That is, the HDD 40 is an example of a storage unit that stores data.
  • the host 50 is, for example, a host device that requests the storage device 1 to write and read data.
  • the controller module 10 controls writing and reading of data with respect to the HDD 40 in response to a request from the host 50. That is, the controller module 10 is an example of a control unit that performs data storage control on the storage unit.
  • the controller module 10 includes, for example, an SCU 21, an OR circuit 22, and a data processing unit 23.
  • the SCU 21 supplies power to the controller module 10 during a power failure.
  • the SCU 21 supplies power to each component of the data processing unit 23 via the OR circuit 22. That is, the SCU 21 is an example of a power supply unit that supplies power to the control unit when power supply from the outside to the storage device is stopped.
  • the SCU 21 includes, for example, a power supply unit 211, a nonvolatile memory 212, and a processing unit 213. Further, for example, when the power supply unit 211 is charged in the first mode or the second mode, which will be described later, the SCU 21 stores the data from the cache memory 26 to the flash memory 28 and then stores the data in the midplane 30. Supply power. That is, the SCU 21 supplies power to the midplane 30, thereby supplying power to the controller module 10 connected to the midplane 30 via the midplane 30.
  • the power supply unit 211 is, for example, an electric double layer capacitor (capacitor), and supplies power to the controller module 10. Further, the power supply unit 211 is charged with, for example, a current output from the PSU 20. For example, as illustrated in FIG. 2, the SCU 21 (power supply unit 211) has a second current smaller than the first current (for example, a current of 15 A) and the first current from the PSU 20 through the midplane 30. One of the currents (for example, a current of 3 A) is input. In addition, the power supply unit 211 is charged with the current value of either the first current value or the second current value by a charge control unit 245 described later switching these currents with a switch or the like.
  • a charge control unit 245 described later switching these currents with a switch or the like.
  • the non-volatile memory 212 includes, for example, manufacturing time information indicating when the SCU 21 is manufactured, and the capacitance and DC resistance of an electric double layer capacitor which is a power supply unit 211 determined by an FPGA (Field (Programmable Gate Array) 24 described later. Holds the value.
  • the production time information is information including the production date and time (for example, year / month / day / hour / minute / second) when the SCU 21 was produced. That is, the nonvolatile memory 212 is an example of a holding unit that holds the capacitance and resistance of the capacitor and the date and time of manufacture of the power supply unit.
  • the processing unit 213 is a processing device that implements various functions. For example, as illustrated in FIG. 3, the processing unit 213 functions as a charging stop unit 214 and a voltage difference determination unit 215. For example, after the power supply unit 211 is charged to the final voltage, the charge stop unit 214 stops charging the power supply unit 211. For example, the charging stop unit 214 stops charging by blocking a charging path to the power supply unit 211.
  • the voltage difference determination unit 215 determines a voltage drop (V dcr in FIG. 4 to be described later) caused by the DC resistance of the power supply unit 211 after stopping charging. That is, the voltage difference determination unit 215 monitors, for example, the voltage of the power supply unit 211 before stopping charging and the voltage of the power supply unit 211 after stopping charging, so that the voltage of the power supply unit 211 before stopping charging The voltage difference from the voltage of the power supply unit 211 after the charging is stopped is determined.
  • OR circuit 22 is, for example, (in FIG. 1, V bp) output from the midplane 30 and the output from the SCU 21 (in FIG. 1, V bat) is input, V in a high voltage output of these output As a circuit to be supplied to the data processing unit 23.
  • the data processing unit 23 controls writing and reading of data with respect to the HDD 40, for example.
  • the data processing unit 23 includes, for example, an FPGA 24, a CPU (Central Processing Unit) 25, a cache memory 26, a real time clock 27, and a flash memory 28.
  • the FPGA 24 is communicably connected to the SCU 21, CPU 25, real time clock 27 and flash memory 28, and the CPU 25 is communicably connected to the cache memory 26.
  • the cache memory 26 holds data stored in the HDD 40, for example. That is, the cache memory 26 is an example of a cache memory that holds data stored in the storage unit.
  • the real time clock 27 is a circuit that generates and outputs information indicating the current date and time, for example.
  • the information generated by the real-time clock 27 includes, for example, the current year / month / day / hour / minute / second.
  • the flash memory 28 is, for example, a nonvolatile memory in which data held in the cache memory 26 is saved when power supply from the PSU 20 is stopped. That is, the flash memory 28 is an example of a nonvolatile memory in which data held in the cache memory is saved in the event of a power failure.
  • the FPGA 24 is a processing device that realizes various functions according to a program. The FPGA 24 is connected to the SCU 21 via an I2C (Inter Integrated Circuit) or the like, and the FPGA 24 can monitor the voltage inside the SCU 21 via the I2C.
  • I2C Inter Integrated Circuit
  • the FPGA 24 includes a capacitance / resistance determination unit 241, a surplus power determination unit 242, an aging determination unit 243, a charge mode determination unit 244, a charge control unit 245, a supply power control unit 246, and an evacuation control unit. It functions as 247.
  • the capacitance / resistance determination unit 241 determines the capacitance and DC resistance of the electric double layer capacitor that is the power supply unit 211. That is, the capacitance / resistance determination unit 241 is an example of a determination unit that determines the capacitance and resistance of the capacitor.
  • FIG. 4 is a diagram for describing test discharge for determining the capacity and resistance of the power supply unit 211.
  • the capacitance / resistance determination unit 241 starts discharging by a constant current It to a diagnostic circuit (not shown) provided in the SCU 21.
  • the capacity / resistance determination unit 241 acquires, for example, the voltage (V3 in FIG.
  • the capacity / resistance determination unit 241 records the determined capacity and DC resistance of the power supply unit 211 in the nonvolatile memory 212. Further, the above-described processing of the capacity / resistance determination unit 241 is performed after the storage apparatus 1 is started, for example, after the power supply unit 211 becomes a final voltage and the voltage difference determination unit 215 determines the voltage difference Vdcr . Implemented at the timing. For example, the surplus power determination unit 242 determines the dischargeable time based on the capacity and the direct current resistance value of the power supply unit 211 held in the nonvolatile memory 212, and generates the surplus power based on the determined dischargeable time. decide.
  • the surplus power is, for example, the dischargeable time exceeding the dischargeable time of the SCU 21 at the product lifetime expressed as a percentage with respect to the dischargeable time of the SCU21 at the product lifetime. That is, the surplus power is, for example, the dischargeable time of the SCU 21 at the product lifetime and the dischargeable time of the SCU 21 determined based on the capacity and DC resistance value of the power supply unit 211 held in the nonvolatile memory 212. The difference is expressed as a percentage of the dischargeable time of the SCU 21 at the product lifetime.
  • the surplus power determination unit 242 determines, for example, the dischargeable time when the connection load of the power supply unit 211 that is an electric double layer capacitor is a constant power load.
  • FIG. 5 is a diagram equivalently showing the data processing unit 23 and the power supply unit 211.
  • the constant power load W is the power load of the data processing unit 23
  • the DC resistance R and the capacity C are the DC resistance and capacity of the power supply unit 211, respectively.
  • V C (0) V S applied to the capacity C at the start of discharge
  • V (T) V E applied to the capacity C and the DC resistance R at the end of discharge T.
  • the voltage supplied from the SCU 21 is appropriately supplied to each component of the data processing unit 23 by a DC / DC converter (not shown) provided between the SCU 21 and the data processing unit 23. This is when the voltage drops so that it cannot be converted to voltage.
  • the voltage V (0) applied to the capacitance C and the DC resistance R at the start of discharge is expressed by the following formula (1), for example.
  • the surplus power determination unit 242 substitutes the voltage V (0) determined by the equation (1) and the capacitance and resistance values determined by the capacitance / resistance determination unit 241 into the following equation (2), for example.
  • the dischargeable time T of the SCU 21 is determined.
  • W and V E are design values.
  • the surplus power determining unit 242 calculates the ratio of the dischargeable time T min of the SCU 21 at the product life several years after the manufacture of the SCU 21 (for example, 5 years) and the dischargeable time T determined by the equation (2). Calculate surplus power.
  • the dischargeable time T min of the SCU 21 several years after the manufacture of the SCU 21 is, for example, a value where the capacity of the power supply unit 211 is 70% of that at the time of manufacture. It is determined on the basis of the above formulas (1) and (2) on the assumption that the direct current resistance is 130% compared to that at the time of manufacture. For example, several years after the manufacture of SCU21 (e.g.
  • the surplus power determination unit 242 is an example of a surplus power determination unit that determines the surplus power that is the power supplied by the power supply unit and that exceeds the power required to save data in the nonvolatile memory. .
  • the power required to save data in the nonvolatile memory is determined in advance at the design stage based on the configuration of the controller module 10 such as the capacity of the nonvolatile memory. Further, the power required to save data to the nonvolatile memory can be obtained based on the capacity of the power supply unit 211 at the time of product life, the DC resistance, and the like.
  • the aging determination unit 243 determines an elapsed time after the manufacture of the SCU 21, for example. Specifically, the aging determination unit 243 determines the post-production progress of the SCU 21 based on the difference between the information indicating the current date and time obtained from the real-time clock 27 and the production time information of the SCU 21 held in the nonvolatile memory 212. Determine the time. For example, the charging mode determination unit 244 determines the charging mode of the power supply unit 211 based on the surplus power determined by the surplus power determination unit 242 and the post-manufacturing elapsed time of the SCU 21 determined by the aging determination unit 243. More specifically, the charging mode determination unit 244 determines the charging mode, for example, according to the conditions shown in FIG.
  • the charging mode determination unit 244 determines the charging mode as the first mode (Very Fast). Further, the charging mode determination unit 244 determines that the charging mode is the second mode (Fast) when the elapsed time after manufacture is less than the product life (for example, 60 months) and the surplus power is 20% or more and less than 30%. decide. Further, the charging mode determination unit 244 determines that the elapsed time after manufacture is longer than 60 months and the surplus power is 10% or more, and that the elapsed time after manufacture is 60 months or less and the surplus power is 20%. If it is less, the charging mode is determined as the third mode (Normal).
  • the third mode Normal
  • the charging mode determination unit 244 determines the charging mode as the fourth mode (Slow) when the post-manufacture elapsed time is longer than 60 months and the surplus power is less than 10%.
  • each numerical value used for the conditions which determine charging mode is not limited to numerical values, such as said 60 months, It can be set as various values.
  • each charge mode is demonstrated using FIG.
  • the power supply unit 211 in the first mode, for example, the power supply unit 211 is charged with the current of the first current value (for example, 15 A) up to the target voltage V vf in the first mode, and when the target voltage V vf is reached, the final voltage
  • the power supply unit 211 is charged with a second current value (for example, a current of 3 A) up to V fin .
  • the power supply unit 211 is charged with a first current value (for example, a current of 15 A) up to the target voltage V f in the second mode, and when the target voltage is reached, the final voltage V fin is reached.
  • the power supply unit 211 is charged with the second current value (for example, a current of 3 A). Further, in the third mode, for example, the power supply unit 211 is charged with the first current value (for example, 15 A current) up to the target voltage V n in the third mode, and when the target voltage V n is reached, the final voltage In this mode, the power supply unit 211 is charged with a second current value (for example, a current of 3 A) up to V fin .
  • the first current value for example, 15 A current
  • a second current value for example, a current of 3 A
  • the fourth mode for example, when the power supply unit 211 is charged with the current of the first current value (for example, 15 A) up to the target voltage V s in the fourth mode and reaches the target voltage V s , the final voltage V In this mode, the power supply unit 211 is charged with a second current value (for example, a current of 3 A) up to fin .
  • the target voltage in each mode is an example of a first target voltage that is targeted during the charging process for the power supply unit.
  • the final voltage V fin is an example of a second target voltage.
  • the target voltage in each charging mode is, for example, a voltage at which the power supply unit 211 can supply power for saving data from the cache memory 26 to the flash memory 28.
  • the charging control unit 245 controls charging to the power supply unit 211 according to the charging mode determined by the charging mode determination unit 244. Specifically, for example, the charging control unit 245 charges the power supply unit 211 using a current of 15 A until the target voltage corresponding to the charging mode determined by the charging mode determination unit 244 is reached. Furthermore, when the target voltage is exceeded, the charging control unit 245 charges the power supply unit 211 up to the final voltage using a current of 3A.
  • the charging control unit 245 performs switching control from charging at 15A to charging at 3A. That is, the charging control unit 245 performs the charging process on the power supply unit 211 with the first current value until the voltage charged in the power supply unit 211 reaches the first target voltage, and charges the power supply unit 211.
  • the switching from 15A charging to 3A charging is realized, for example, by the charging control unit 245 selectively switching the 15A current and the 3A current input to the SCU 21 with a switch or the like.
  • the supplied power control unit 246 controls the power supplied by the SCU 21, for example. Specifically, when the saving of data from the cache memory 26 to the flash memory 28 is completed, the supply power control unit 246 stops power supply to the OR circuit 22 and supplies power to the midplane 30 (in FIG. 1, Voltage V sub ) is started.
  • the voltage V sub output from each of the controller modules 10-1 and 10-2 is applied to the data processing unit 23 as the voltage V bp via the midplane 30.
  • the power supply control unit 246 stops the power supply to the CPU 25, the real time clock 27 and the flash memory 28.
  • the supply power control unit 246 performs backup by continuing power supply to the cache memory 26 via the midplane 30. That is, the voltage V sub is applied to the cache memory 26 as the voltage V bp via the midplane 30.
  • the save control unit 247 saves data from the cache memory 26 to the flash memory 28.
  • the save control unit 247 is realized by a DMA (Direct Memory Access) circuit provided in the FPGA 24.
  • the CPU 25 is a processing device that performs various calculations and controls by executing various application programs stored in a storage unit (not shown), thereby realizing various functions. For example, the CPU 25 writes and reads data to and from the HDD 40.
  • the CPU 25 functions as a start instruction unit 251, a data reception permission unit 252, and a data control unit 253 as illustrated in FIG. 3 by executing an application program.
  • the start instruction unit 251 causes the HDD 40 to spin up when the power supply unit 211 is charged to the target voltage.
  • activation instruction unit 251 is an example of an activation processing unit that performs activation processing on the storage unit when the power supply unit is charged to the first target voltage.
  • the data reception permission unit 252 notifies the host 50 that data reception is permitted. That is, the data reception permission unit 252 is an example of a data reception permission unit that permits data reception from a host device connected to the storage device when the storage unit is activated.
  • the data control unit 253 performs data control such as writing and reading of data with respect to the HDD 40, for example. More specifically, when power supply from the PSU 20 resumes during backup of the cache memory 26 by the supply power control unit 246 after data is saved to the flash memory 28 by the save control unit 247 after a power failure, data control is performed. The unit 253 performs data control using data held in the cache memory 26.
  • the aging determination unit 243 acquires information indicating the current date and time from the real-time clock 27 (step A2), and the aging determination unit 243 further includes the nonvolatile memory 212.
  • the manufacturing time information of the SCU 21 held in (1) is acquired (step A3).
  • the aging determination part 243 determines the elapsed time after manufacture of SCU21 based on the information acquired in step A2 and step A3.
  • the charging mode determination unit 244 determines whether or not the elapsed time after manufacture is, for example, 60 months or less (step A4). If the elapsed time after manufacture is 60 months or less (see the Yes route in step A4), the surplus power determination unit 242 acquires the capacity and the resistance value from the nonvolatile memory 212 (step A5). For example, the above equation (1) ) And formula (2) are used to determine surplus power (step A6).
  • the charging mode determination unit 244 determines whether or not the determined surplus power is 30% or more (step A7). If the surplus power is 30% or more (see the Yes route in Step A7), the charging mode determination unit 244 determines the charging mode as the first mode (Step A8). On the other hand, if the surplus power is less than 30% (see No route in Step A7), the charging mode determination unit 244 next determines whether the surplus power is 20% or more (Step A9). If the surplus power is 20% or more (see the Yes route in step A9), the charging mode determination unit 244 determines the charging mode as the second mode (step A10). On the other hand, if the surplus power is less than 20% (see No route in step A9), the charging mode determination unit 244 determines the charging mode as the third mode (step A11).
  • the surplus power determination unit 242 acquires the capacitance and the resistance value from the nonvolatile memory 212 as in step A5 and step A6 (Ste A12), for example, surplus power is determined using the above formulas (1) and (2) (step A13). Then, the charging mode determination unit 244 determines whether the determined surplus power is 10% or more (step A14). If the surplus power is 10% or more (see the Yes route in step A14), the charging mode determination unit 244 determines the charging mode as the third mode (step A11). On the other hand, if the surplus power is less than 10% (see No route in step A14), the charging mode determination unit 244 determines the charging mode as the fourth mode (step A15).
  • the charging control unit 245 When DC is turned on in the state where the charging mode is determined (step A16), the charging control unit 245 charges the power supply unit 211 using the 15 A current supplied from the PSU 20 (step A17). The charge control unit 245 determines whether or not the battery is charged to the target voltage corresponding to the charge mode determined by the charge mode determination unit 244 (step A18). If the target voltage is not charged (see No route in step A18), the operation in step A18 is repeated. On the other hand, when the battery is charged up to the target voltage (see the Yes route in step A18), the charge control unit 245 charges the power supply unit 211 using the 3A current supplied from the PSU 20. That is, the charging control unit 245 performs switching from 15A to 3A charging (step A19).
  • the activation instructing unit 251 instructs the HDD 40 to perform spin-up, thereby causing the HDD 40 to perform spin-up (step A20).
  • the startup of the storage device 1 is completed (step A21).
  • the startup time of the storage apparatus 1 in an example of this embodiment will be described below with reference to FIG.
  • the rated current of the PSU 20 is 30 A
  • the current required for spin-up of one HDD 40 is 3 A
  • 15 seconds are required for completion of the spin-up
  • the storage device 1 has 24 HDDs 40.
  • the power supply unit 211 which is an electric double layer capacitor provided in the controller modules 10-1 and 10-2, is charged with a current of 15 A up to the target voltage V vf . That is, a total current of 30 A is used for charging the two power supply units 211.
  • the power supply unit 211 is charged up to the target voltage V vf
  • the power supply unit 211 that is an electric double layer capacitor provided in the controller modules 10-1 and 10-2 is charged with a current of 3A.
  • the spin-up of the HDD 40 is divided into three times by 8 pieces. That is, a total current of 6 A is used for charging the two power supply units 211, and the remaining 24 A is used for spinning up the eight HDDs 40.
  • the power supply unit 211 which is an electric double layer capacitor provided in the controller modules 10-1 and 10-2, is charged with a current of 15A up to the target voltage Vf . That is, a total current of 30 A is used for charging the two power supply units 211.
  • the power supply unit 211 When the power supply unit 211 is charged to the target voltage V f , the power supply unit 211 that is an electric double layer capacitor provided in the controller modules 10-1 and 10-2 is charged with a current of 3A. Furthermore, the spin-up of the HDD 40 is divided into three times by 8 pieces. That is, a total current of 6 A is used for charging the two power supply units 211, and the remaining 24 A is used for spinning up the eight HDDs 40.
  • the power supply unit 211 is an electric double layer capacitor controller module 10-1 and 10-2 equipped is to the target voltage V n, is charged with 15A current. That is, a total current of 30 A is used for charging the two power supply units 211.
  • the spin-up of the HDD 40 is divided into three times by 8 pieces. That is, a total current of 6 A is used for charging the two power supply units 211, and the remaining 24 A is used for spinning up the eight HDDs 40.
  • the start of charging of the power supply unit 211 (DC ON), the target voltage V n to the spin-up completion of the 24 HDD after reaching, i.e., as shown in FIG. 7 to startup of the storage system 1 Takes 105 seconds.
  • the power supply unit 211 is an electric double layer capacitor controller module 10-1 and 10-2 equipped is to the target voltage V n, is charged with 15A current. That is, a total current of 30 A is used for charging the two power supply units 211.
  • the spin-up of the HDD 40 is divided into three times by 8 pieces. That is, a total current of 6 A is used for charging the two power supply units 211, and the remaining 24 A is used for spinning up the eight HDDs 40.
  • the start of charging of the power supply unit 211 (DC ON), the target voltage V s 24 amino until spinup completion of HDD after reaching, i.e., as shown in FIG. 7 to startup of the storage system 1 Takes 125 seconds.
  • the power supply unit 211 is charged to the final voltage with 15 A without changing the current value as in the example of the present embodiment. Then, consider the case where the HDD 40 is spun up thereafter. In this case, as shown in FIG.
  • the power supply unit 211 which is an electric double layer capacitor provided in the controller modules 10-1 and 10-2, is charged with a current of 15A up to the final voltage, the spin of the HDD 40 I can't do it. Therefore, after the power supply unit 211 is charged to the final voltage, the HDD 40 is spun up in three steps.
  • the storage apparatus 1 it takes 145 seconds until the spin-up of 24 HDDs is completed and the storage apparatus 1 is started. That is, according to the example of this embodiment, even when the charging mode is set to the fourth mode, the storage is performed 20 seconds earlier than the case where charging is performed without changing the current value as in the example of this embodiment.
  • the device 1 can be activated. Furthermore, when the charging mode is the first mode, the storage apparatus 1 can be activated 80 seconds earlier than when charging is performed without changing the current value as in the example of the present embodiment. it can.
  • FIG. 10 is a flowchart for explaining the operation of the storage apparatus during a power failure as an example of the embodiment.
  • the save control unit 247 saves data from the cache memory 26 to the flash memory 28 (step B1).
  • the supply power control unit 246 stops the power supply (voltage V bat in FIG. 1) to the OR circuit 22 by the SCU 21, and supplies power to the midplane 30 ( In FIG. 1, the voltage V sub is started (step B2).
  • the power supply control unit 246 stops the power supply to the CPU 25, the real time clock 27, and the flash memory 28 by the SCU 21 (step B3).
  • the supply power control unit 246 supplies the voltage V sub output from the PSU 21 to the cache memory 26 as V bp via the midplane 30. That is, power supply to the cache memory 26 is continued (step B4).
  • the storage device is activated by selecting an optimum charging method in consideration of the capacity of the SCU 21 and the deterioration of the direct current resistance, that is, in consideration of the usage state of the SCU 21. Time can be shortened.
  • backup of the cache memory 26 is performed using surplus power of the SCU 21. Can be improved. Further, according to an example of the present embodiment, when the power failure is restored during the backup of the cache memory 26 using the surplus power of the SCU 21, the write back from the flash memory 28 to the cache memory 26 becomes unnecessary. Therefore, according to the example of the present embodiment, it is possible to immediately recover the state before the power failure.
  • the power consumption efficiency of the SCU 21 can be improved as compared with the case where the power held by the SCU 21 is used only for saving data to the flash memory 28.
  • the FPGA 24 controls the SCU 21, the SCU 21 is controlled without waiting for the activation of the firmware as compared with the case where the CPU 25 is used to control the SCU 21. be able to. Furthermore, according to an example of the present embodiment, since the real time clock 27 is monitored by the FPGA 24, the real time clock is not waited for waiting for the activation of the firmware as compared with the case where the CPU 25 is used to monitor the real time clock 27. The clock 27 can be monitored.
  • the disclosed technology is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present embodiment.
  • the SCU 21 is charged with currents of 15 A and 3 A, but is not limited to this, and charging may be performed using other current values.
  • the SCU 21 includes the charge stop unit 214 and the voltage difference determination unit 215, but is not limited thereto.
  • the FPGA 24 may have the functions of the charging stop unit 214 and the voltage difference determination unit 215.
  • the dischargeable time T min of the SCU 21 at the product lifetime is 70% of the capacity of the power supply unit 211 compared to that during manufacture, and the DC resistance is 130% compared to that during manufacture.
  • the present invention is not limited to this.
  • the dischargeable time T min of the SCU 21 at the time of product life is a value other than 70% when the capacity of the power supply unit 211 is compared with that during manufacture, and the DC resistance is a value other than 130% when compared with that during manufacture. May be determined as being.
  • the charging mode is divided into four modes, but is not limited to this. For example, finer conditions may be set, and the charging mode may be divided into five or more modes, or more general conditions may be set, and the charging mode may be divided into three or less modes.
  • the charging mode is determined based on the elapsed time after manufacture and the surplus power, but the present invention is not limited to this. For example, the charging mode may be determined based only on surplus power, or the surplus power may be determined only based on the elapsed time after manufacture.
  • the surplus power determination unit 242 determines, for example, that the dischargeable time is determined when the connection load of the power supply unit 211 is a constant power load. ), The dischargeable time is determined, but is not limited to this.
  • the surplus power determination unit 242 may determine the dischargeable time when the connection load of the power supply unit 211 is a constant current load.
  • FIG. 11 is a diagram equivalently showing the data processing unit 23 and the power supply unit 211.
  • the constant current source I is a current consumed by the data processing unit 23, and the DC resistance R and the capacity C are the DC resistance and capacity of the power supply unit 211, respectively.
  • the surplus power determination unit 242 may determine the dischargeable time T using Equation (3). Further, according to the above-described disclosure, this embodiment can be implemented and manufactured by those skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Power Sources (AREA)

Abstract

 データを記憶する記憶部(40)と記憶部(40)に対するデータ記憶制御を行なう制御部(10-1,10-2)とをそなえたストレージ装置(1)において、ストレージ装置(1)に対する外部からの電力供給停止時に制御部(10-1,10-2)に電力を供給する電力供給部(21)と、電力供給部(21)が供給する電力であって、不揮発メモリ(28)へのデータの退避にかかる電力を超える分の電力である余剰電力を決定する余剰電力決定部(242)と、余剰電力に基づいて、第1の目標電圧を決定する目標電圧決定部(244)と、第1の目標電圧までは、第1の電流値で電力供給部(21)に対する充電処理を行ない、第1の目標電圧から第1の目標電圧よりも大きい第2の目標電圧までは、第1の電流値よりも小さい第2の電流値で電力供給部(21)に対する充電処理を行なう充電処理部(245)と、をそなえる。

Description

ストレージ装置,制御装置および制御方法
 本件は、ストレージ装置,制御装置および制御方法に関する。
 RAID(Redundant Array of Inexpensive Disks)装置などのストレージ装置において、ストレージ装置への電力供給停止時(停電時)に、コンデンサから供給される電力を用いて揮発メモリに記録されたデータを不揮発メモリに退避させることが知られている。
 また、電気二重層コンデンサ等のコンデンサは、経年によって容量は減少し直流抵抗は増加するため、経年によって電気二重層コンデンサが供給可能な電力が低下することが知られている。
国際公開第2009/098776号 特開2005-39873号公報
 ここで、一般的に、電気二重層コンデンサをそなえるSCU(System Capacitor Unit)は、製造から数年後(例えば5年後)の製品寿命時にキャッシュメモリ等の揮発メモリに記録されたデータを不揮発メモリに退避するのに必要な電力を保持するように設計されている。すなわち、製造後初期におけるSCUは、経年による電気二重層コンデンサが供給可能な電力の低下を想定した電力を保持しているため、キャッシュメモリに記録されたデータを不揮発メモリに退避させるのに必要な電力を超える、余剰な電力を保持している。
 したがって、ストレージ装置の起動時にSCUがそなえる電気二重層コンデンサを充電する際に、余剰電力に対しても充電時間がかかるため、結果としてストレージ装置の起動に時間がかかる。
 本件の目的は、このような課題に鑑み創案されたもので、ストレージ装置の起動時間を短縮することを目的とする。
 なお、前記目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも本件の他の目的の1つとして位置付けることができる。
 本ストレージ装置は、データを記憶する記憶部と前記記憶部に対するデータ記憶制御を行なう制御部とをそなえたストレージ装置において、前記ストレージ装置に対する外部からの電力供給停止時(以下、停電時という)に前記制御部に電力を供給する電力供給部と、前記記憶部に記憶されるデータを保持するキャッシュメモリと、停電時に、前記キャッシュメモリに保持されているデータが退避される不揮発メモリと、前記電力供給部が供給する電力であって、前記不揮発メモリへのデータの退避にかかる電力を超える分の電力である余剰電力を決定する余剰電力決定部と、前記余剰電力決定部によって決定された余剰電力に基づいて、前記電力供給部に対する充電処理時に目標とする第1の目標電圧を決定する目標電圧決定部と、前記電力供給部に充電された電圧が前記第1の目標電圧に達するまでは、第1の電流値で前記電力供給部に対する充電処理を行ない、前記電力供給部に充電された電圧が、前記第1の目標電圧から前記第1の目標電圧よりも大きい第2の目標電圧に達するまでは、前記第1の電流値よりも小さい第2の電流値で前記電力供給部に対する充電処理を行なう充電処理部と、をそなえる。
 また、本制御装置は、データを記憶する記憶部に対するデータ記憶制御を行なう制御装置であって、前記ストレージ装置に対する外部からの電力供給停止時(以下、停電時という)に前記制御部に電力を供給する電力供給部と、前記記憶部に記憶されるデータを保持するキャッシュメモリと、停電時に、前記キャッシュメモリに保持されているデータが退避される不揮発メモリと、前記電力供給部が供給する電力であって、前記不揮発メモリへのデータの退避にかかる電力を超える分の電力である余剰電力を決定する余剰電力決定部と、前記余剰電力決定部によって決定された余剰電力に基づいて、前記電力供給部に対する充電処理時に目標とする第1の目標電圧を決定する目標電圧決定部と、前記電力供給部に充電された電圧が前記第1の目標電圧に達するまでは、第1の電流値で前記電力供給部に対する充電処理を行ない、前記電力供給部に充電された電圧が、前記第1の目標電圧から前記第1の目標電圧よりも大きい第2の目標電圧に達するまでは、前記第1の電流値よりも小さい第2の電流値で前記電力供給部に対する充電処理を行なう充電処理部と、をそなえる。
 本制御方法は、データを記憶する記憶部と、前記記憶部に対するデータ記憶制御を行なう制御部と、外部からの電力供給停止時(以下、停電時という)に前記制御部に電力を供給する電力供給部と、前記記憶部に記憶されるデータを保持するキャッシュメモリと、停電時に、前記キャッシュメモリに保持されているデータが退避される不揮発メモリと、をそなえたストレージ装置の制御方法であって、前記電力供給部が供給する電力であって、前記不揮発メモリへのデータの退避にかかる電力を超える分の電力である余剰電力を決定し、決定された余剰電力に基づいて、前記電力供給部に対する充電処理時に目標とする第1の目標電圧を決定し、前記電力供給部に充電された電圧が前記第1の目標電圧に達するまでは、第1の電流値で前記電力供給部に対する充電処理を行ない、前記電力供給部に充電された電圧が、前記第1の目標電圧から前記第1の目標電圧よりも大きい第2の目標電圧に達するまでは、前記第1の電流値よりも小さい第2の電流値で前記電力供給部に対する充電処理を行なう。
 開示のストレージ装置,制御装置および制御方法によれば、停電時に必要な電力を確保した上でストレージ装置の起動時間を短縮することができる。
実施形態の一例としてのストレージ装置の構成を模式的に示す図である。 実施形態の一例としてのSCUの充電経路を模式的に示す図である。 実施形態の一例としてのコントローラモジュールの機能構成を模式的に示す図である。 実施形態の一例としてのテスト放電時の電圧および電流の変化を模式的に示す図である。 実施形態の一例としての放電可能時間を求めるための回路を模式的に示す図である。 実施形態の一例としての充電モードを示す図である。 実施形態の一例としての各充電モードにおける電圧の変化を示す図である。 実施形態の一例としてのストレージ装置の動作を説明するためのフローチャートである。 電流を変化させずに充電を行なった場合の例を示す図である。 実施形態の一例としての停電時のストレージ装置の動作を説明するためのフローチャートである。 実施形態の一例としての放電可能時間を求めるための回路を模式的に示す図である。
 以下、図面を参照して本ストレージ装置,制御装置および制御方法に係る実施形態の一例を説明する。
 図1は、実施形態の一例としてのストレージ装置の構成を示す図である。図2は、実施形態の一例としてのSCUの充電経路を模式的に示す図である。また、図3は、実施形態の一例としてのコントローラモジュールの機能構成を模式的に示す図である。
 本実施形態の一例としてのストレージ装置1は、図1に示すように、コントローラモジュール10-1,10-2,PSU(Power Supply Unit)20,ミッドプレーン30およびHDD(Hard Disk Drive)40をそなえている。このストレージ装置1は、LAN(Local Area Network)やFC(Fibre Channele)等の通信回線を介してホスト50に接続されている。コントローラモジュール10-1,10-2,PSU20およびHDD40は、ミッドプレーン30を介して相互に接続されている。
 以下、コントローラモジュールを示す符号としては、複数のコントローラモジュールのうち1つを特定する必要があるときには符号10-1,10-2を用いるが、任意のコントローラモジュールを指すときには符号10を用いる。
 PSU20は、例えば、ストレージ装置1の外部から供給されるAC(Alternative Current)電力をDC(Direct Current)電力に変換し、ミッドプレーン30を介して、コントローラモジュール10およびHDD40に対して電力を供給する。
 ミッドプレーン30は、例えば、コントローラモジュール10,PSU20およびHDD40を相互に接続する基板であり、PSU20から入力された電力をコントローラモジュール10に供給する。
 HDD40は、例えば、ホスト50からの要求に応じて各種のデータを記憶する。すなわち、HDD40は、データを記憶する記憶部の一例である。
 ホスト50は、例えば、ストレージ装置1に対して、データの書き込みおよび読み出しを要求する上位装置である。
 コントローラモジュール10は、例えば、ホスト50からの要求に応じて、HDD40に対するデータの書き込みおよび読み出しを制御する。すなわち、コントローラモジュール10は、記憶部に対するデータ記憶制御を行なう制御部の一例である。
 コントローラモジュール10は、例えば、SCU21,オア回路22,データ処理部23をそなえる。
 SCU21は、例えば、停電時に、コントローラモジュール10に対して電力を供給する。具体的には、例えば、停電時に、SCU21は、オア回路22を介してデータ処理部23の各構成要素に電力を供給する。すなわち、SCU21は、ストレージ装置に対する外部からの電力供給停止時に制御部に電力を供給する電力供給部の一例である。
 より具体的には、SCU21は、例えば、電力供給部211,不揮発メモリ212および処理部213をそなえる。
 また、例えば、電力供給部211に対する充電が後述する第1モードまたは第2モードによって行なわれた場合には、SCU21は、キャッシュメモリ26からフラッシュメモリ28へのデータの退避後、ミッドプレーン30に対して電力を供給する。すなわち、SCU21は、ミッドプレーン30に対して電力を供給することで、ミッドプレーン30を介して、このミッドプレーン30に接続されたコントローラモジュール10に対して電力を供給する。
 電力供給部211は、例えば、電気二重層コンデンサ(キャパシタ)であって、コントローラモジュール10に対して電力を供給する。また、電力供給部211は、例えば、PSU20から出力される電流によって充電される。例えば、図2に示すように、SCU21(電力供給部211)には、PSU20からミッドプレーン30を介して、第1の電流(例えば、15Aの電流)および第1の電流よりも小さい第2の電流(例えば、3Aの電流)のいずれかが入力される。また、後述する充電制御部245が、これらの電流をスイッチ等により切り替えることにより、第1の電流値および第2の電流値のいずれかの電流値によって電力供給部211が充電される。
 不揮発メモリ212は、例えば、SCU21が製造された時を示す製造時情報と、後述するFPGA(Field Programmable Gate Array)24によって決定された、電力供給部211である電気二重層コンデンサの容量および直流抵抗値とを保持する。ここで、例えば、製造時情報は、SCU21が製造された製造日時(例えば、年月日時分秒)を含む情報である。すなわち、不揮発メモリ212は、キャパシタの容量,抵抗および、電力供給部の製造日時を保持する保持部の一例である。
 処理部213は、種々の機能を実現する処理装置であって、例えば、図3に示すように、充電停止部214および電圧差決定部215として機能する。
 充電停止部214は、例えば、電力供給部211が最終電圧まで充電された後、電力供給部211への充電を停止する。例えば、充電停止部214は、電力供給部211への充電経路を遮断することで充電を停止する。
 電圧差決定部215は、充電停止後の電力供給部211の直流抵抗に起因する電圧降下(後述する図4中、Vdcr)を決定する。すなわち、電圧差決定部215は、例えば、充電停止前の電力供給部211の電圧と充電停止後の電力供給部211の電圧とを監視することで、充電停止前の電力供給部211の電圧と充電停止後の電力供給部211の電圧との電圧差を決定する。
 オア回路22は、例えば、ミッドプレーン30からの出力(図1中、Vbp)およびSCU21からの出力(図1中、Vbat)が入力され、これらの出力のうち電圧の高い出力をVinとしてデータ処理部23に供給する回路である。
 データ処理部23は、例えば、HDD40に対するデータの書き込みおよび読み出しを制御する。データ処理部23は、例えば、FPGA24,CPU(Central Processing Unit)25,キャッシュメモリ26,リアルタイムクロック27およびフラッシュメモリ28をそなえる。FPGA24は、SCU21,CPU25,リアルタイムクロック27およびフラッシュメモリ28と通信可能に接続され、CPU25はキャッシュメモリ26と通信可能に接続されている。
 キャッシュメモリ26は、例えば、HDD40に記憶されるデータを保持する。すなわち、キャッシュメモリ26は、記憶部に記憶されるデータを保持するキャッシュメモリの一例である。
 リアルタイムクロック27は、例えば、現在の日時等を示す情報を生成し出力する回路である。リアルタイムクロック27が生成する情報には、例えば、現在の年月日時分秒が含まれる。
 フラッシュメモリ28は、例えば、PSU20からの電力供給が停止した場合に、キャッシュメモリ26に保持されていたデータが退避される不揮発メモリである。すなわち、フラッシュメモリ28は、停電時に、キャッシュメモリに保持されているデータが退避される不揮発メモリの一例である。
 FPGA24は、プログラムに応じて種々機能を実現する処理装置である。また、FPGA24は、SCU21とI2C(Inter Integrated Circuit)等によって接続されており、FPGA24は、このI2Cを介してSCU21内部の電圧等を監視することができる。
 FPGA24は、例えば、図3に示すように、容量・抵抗決定部241,余剰電力決定部242,経年決定部243,充電モード決定部244,充電制御部245,供給電力制御部246および退避制御部247として機能する。
 容量・抵抗決定部241は、電力供給部211である電気二重層コンデンサの容量および直流抵抗を決定する。すなわち、容量・抵抗決定部241は、キャパシタの容量および抵抗を決定する決定部の一例である。
 図4は、電力供給部211の容量および抵抗を決定するためのテスト放電を説明するための図である。図4に示すように、充電停止部214による充電停止とともに、容量・抵抗決定部241は、SCU21がそなえる図示しない診断回路への定電流Itによる放電を開始させる。ここで、容量・抵抗決定部241は、電圧差決定部215によって決定された電圧差Vdcr(=V1-V2)および定電流Itに基づいて、電力供給部211の直流抵抗を決定する。そして、容量・抵抗決定部241は、例えば、所定の診断時間T1経過後の電力供給部211の電圧(図4中、V3)を取得してFPGA24がそなえる図示しない内部メモリに記憶する。そして、充電停止後の電力供給部211の電圧V2と所定の診断時間T1経過後の電力供給部211の電圧V3との差(図4中、Vcap)および定電流Itに基づいて電力供給部211の容量を決定する。
 なお、容量・抵抗決定部241は、決定された電力供給部211の容量および直流抵抗を不揮発メモリ212に記録する。また、容量・抵抗決定部241の上述の如き処理は、ストレージ装置1の起動後、例えば、電力供給部211が最終電圧となり電圧差決定部215によって電圧差Vdcrが決定された後に、所定のタイミングで実施される。
 余剰電力決定部242は、例えば、不揮発性メモリ212に保持された電力供給部211の容量および直流抵抗値に基づいて、放電可能時間を決定し、決定した放電可能時間に基づいて、余剰電力を決定する。ここで、余剰電力とは、例えば、製品寿命時におけるSCU21の放電可能時間を超える放電可能時間を、製品寿命時におけるSCU21の放電可能時間に対する百分率で表したものである。すなわち、余剰電力とは、例えば、製品寿命時におけるSCU21の放電可能時間と不揮発性メモリ212に保持された電力供給部211の容量および直流抵抗値に基づいて決定されたSCU21の放電可能時間との差を、製品寿命時におけるSCU21の放電可能時間に対する百分率で表したものである。
 余剰電力決定部242は、例えば、電気二重層コンデンサである電力供給部211の接続負荷が、定電力負荷の場合における放電可能時間を決定する。図5は、データ処理部23と電力供給部211とを等価的に示す図である。図5中、定電力負荷Wは、データ処理部23の電力負荷であり、直流抵抗Rおよび容量Cは、それぞれ電力供給部211の直流抵抗および容量である。ここで放電開始時の容量Cにかかる電圧VC(0)=VSとし、放電終了時Tの容量Cおよび直流抵抗Rにかかる電圧V(T)=VEとする。ここで、放電終了時Tは、SCU21から供給される電圧が、SCU21とデータ処理部23との間に設けられた図示しないDC/DCコンバータによってデータ処理部23の各構成要素に供給する適切な電圧に変換できなくなるほど低下した時である。
 放電開始時の容量Cおよび直流抵抗Rにかかる電圧V(0)は、例えば、下記式(1)によって表される。
Figure JPOXMLDOC01-appb-M000001
 余剰電力決定部242は、式(1)により決定された電圧V(0)と容量・抵抗決定部241により決定された容量および抵抗の値とを、例えば、下記式(2)に代入することで、SCU21の放電可能時間Tを決定する。なお、WおよびVEは設計値である。
Figure JPOXMLDOC01-appb-M000002
 余剰電力決定部242は、SCU21の製造から数年後(例えば5年後)の製品寿命時におけるSCU21の放電可能時間Tminと、式(2)により決定された放電可能時間Tとの比から、余剰電力を算出する。ここで、SCU21の製造から数年後(例えば5年後)におけるSCU21の放電可能時間Tminは、例えば、電力供給部211の容量が製造時と比較して70%の値、電力供給部211の直流抵抗が製造時と比較して130%の値となっているものと想定し上記式(1)および式(2)に基づいて決定される。例えば、SCU21の製造から数年後(例えば5年後)におけるSCU21の放電可能時間Tminが30秒、式(2)により決定された放電可能時間Tが60秒であれば、余剰電力は100%となる。また、例えば、後述する各モードにおける目標電圧(第1の目標電圧)までSCU21(電力供給部211)が充電されている場合には、SCU21の放電可能時間は、製品寿命時におけるSCU21の放電可能時間と同様または略同様となるため、余剰電力は0%となる。すなわち、余剰電力決定部242は、電力供給部が供給する電力であって、不揮発メモリへのデータの退避にかかる電力を超える分の電力である余剰電力を決定する余剰電力決定部の一例である。なお、不揮発メモリへのデータの退避にかかる電力は、例えば、不揮発メモリの容量等コントローラモジュール10の構成に基づいて設計段階で予め決定される。また、不揮発メモリへのデータの退避にかかる電力は、製品寿命時の電力供給部211の容量および直流抵抗等に基づいて求めることができる。
 経年決定部243は、例えば、SCU21の製造後経過時間を決定する。具体的には、経年決定部243は、リアルタイムクロック27から得た現在の日時等を示す情報と、不揮発メモリ212に保持されたSCU21の製造時情報との差に基づいて、SCU21の製造後経過時間を決定する。
 充電モード決定部244は、例えば、余剰電力決定部242によって決定された余剰電力および経年決定部243によって決定されたSCU21の製造後経過時間に基づいて、電力供給部211の充電モードを決定する。より具体的には、充電モード決定部244は、例えば、図6に示す条件に従って、充電モードを決定する。充電モード決定部244は、例えば、製造後経過時間が60ヶ月以下であり、かつ、余剰電力が30%以上の場合、充電モードを第1モード(Very Fast)と決定する。また、充電モード決定部244は、製造後経過時間が製品寿命(例えば、60ヶ月)以下であり、かつ、余剰電力が20%以上30%未満の場合、充電モードを第2モード(Fast)と決定する。さらに、充電モード決定部244は、製造後経過時間が60ヶ月より長く、かつ、余剰電力が10%以上の場合、および、製造後経過時間が60ヶ月以下であり、かつ、余剰電力が20%未満の場合、充電モードを第3モード(Normal)と決定する。また、充電モード決定部244は、製造後経過時間が60ヶ月より長く、かつ、余剰電力が10%未満の場合、充電モードを第4モード(Slow)と決定する。なお、充電モードを決定する条件に用いられる各数値は、上記の60ヶ月等の数値に限定されるものではなく、種々の値とすることができる。
 ここで、各充電モードを、図7を用いて説明する。
 まず、第1モードは、例えば、第1モードにおける目標電圧Vvfまで第1の電流値(例えば、15A)の電流により電力供給部211の充電を行ない、目標電圧Vvfに到達すると、最終電圧Vfinまで第2の電流値(例えば、3Aの電流)により電力供給部211の充電を行なうモードである。また、第2モードは、例えば、第2モードにおける目標電圧Vまで第1の電流値(例えば、15Aの電流)により電力供給部211の充電を行ない、目標電圧に到達すると、最終電圧Vfinまで第2の電流値(例えば、3Aの電流)により電力供給部211の充電を行なうモードである。さらに、第3モードは、例えば、第3モードにおける目標電圧Vまで第1の電流値(例えば、15Aの電流)により電力供給部211の充電を行ない、目標電圧Vに到達すると、最終電圧Vfinまで第2の電流値(例えば、3Aの電流)により電力供給部211の充電を行なうモードである。また、第4モードは、例えば、第4モードにおける目標電圧Vまで第1の電流値(例えば、15A)の電流により電力供給部211の充電を行ない目標電圧Vに到達すると、最終電圧Vfinまで第2の電流値(例えば、3Aの電流)により電力供給部211の充電を行なうモードである。すなわち、各モードにおける目標電圧は、電力供給部に対する充電処理時に目標とする第1の目標電圧の一例である。また、最終電圧Vfinは、第2の目標電圧の一例である。
 なお、Vvf<V<V<V<Vfinである。また、ここで、各充電モードにおける目標電圧とは、例えば、キャッシュメモリ26からフラッシュメモリ28へのデータの退避にかかる電力を電力供給部211が供給可能となる電圧である。
 充電制御部245は、例えば、充電モード決定部244によって決定された充電モードに応じて、電力供給部211への充電を制御する。具体的には、例えば、充電制御部245は、充電モード決定部244によって決定された充電モードに応じた目標電圧までは、15Aの電流を用いて電力供給部211への充電を行ない。さらに、充電制御部245は、目標電圧を越した場合には、3Aの電流を用いて最終電圧まで電力供給部211への充電を行なう。つまり、充電制御部245は、15Aでの充電から3Aでの充電へ切り替え制御を行なう。すなわち、充電制御部245は、電力供給部211に充電された電圧が第1の目標電圧に達するまでは、第1の電流値で電力供給部211に対する充電処理を行ない、電力供給部211に充電された電圧が、第1の目標電圧から第1の目標電圧よりも大きい第2の目標電圧に達するまでは、第1の電流値よりも小さい第2の電流値で電力供給部211に対する充電処理を行なう充電処理部の一例である。
 15Aの充電から3Aの充電への切り替えは、例えば、充電制御部245が、SCU21に入力される15Aの電流と3Aの電流とをスイッチ等により選択的に切り替えることにより実現される。
 供給電力制御部246は、例えば、SCU21が供給する電力を制御する。具体的には、供給電力制御部246は、キャッシュメモリ26からフラッシュメモリ28へのデータの退避が完了すると、オア回路22に対する電力供給を停止するとともに、ミッドプレーン30に対する電力供給(図1中、電圧Vsub)を開始させる。この、コントローラモジュール10-1,10-2のそれぞれから出力された電圧Vsubは、ミッドプレーン30を介して、電圧Vbpとしてデータ処理部23に印加される。ここで、供給電力制御部246は、CPU25,リアルタイムクロック27およびフラッシュメモリ28への電力供給を停止させる。一方、供給電力制御部246は、キャッシュメモリ26に対し、ミッドプレーン30を介した電力供給を継続することでバックアップを行なう。すなわち、電圧Vsubは、ミッドプレーン30を介して、電圧Vbpとしてキャッシュメモリ26に印加される。
 退避制御部247は、キャッシュメモリ26からフラッシュメモリ28へのデータの退避を行なう。なお、例えば、退避制御部247は、FPGA24がそなえるDMA(Direct Memory Access)回路によって実現される。
 CPU25は、例えば、図示しない記憶部に記憶された各種アプリケーションプログラムを実行することにより種々の演算や制御を行ない、これにより、各種機能を実現する処理装置である。例えば、CPU25は、HDD40に対するデータの書き込みおよび読み出しを行なう。
 例えば、CPU25は、アプリケーションプログラムを実行することにより、図3に示すように、起動指示部251,データ受信許可部252およびデータ制御部253として機能する。
 起動指示部251は、電力供給部211が目標電圧まで充電されると、HDD40に対してスピンアップを行なわせる。すなわち、起動指示部251は、電力供給部が第1の目標電圧まで充電されると、記憶部に対して起動処理を行なう起動処理部の一例である。
 データ受信許可部252は、例えば、HDD40のスピンアップが完了すると、ホスト50に対してデータ受信を許可する旨の通知を行なう。すなわち、データ受信許可部252は、記憶部が起動すると、ストレージ装置に接続された上位装置からのデータ受信を許可するデータ受信許可部の一例である。
 データ制御部253は、例えば、HDD40に対するデータの書き込みおよび読み出し等のデータ制御を行なう。より具体的には、停電後、退避制御部247によるフラッシュメモリ28へのデータの退避後、供給電力制御部246によるキャッシュメモリ26のバックアップ中に、PSU20からの電力供給が再開した場合、データ制御部253は、キャッシュメモリ26に保持されているデータを用いてデータ制御を行なう。
 また、停電後、かつ、キャッシュメモリ26に対する電力供給終了後に、PSU20からの電力供給が再開した場合、不揮発メモリ28に保持されたデータを用いてデータ制御を行なう。
 上述の如く構成された、実施形態の一例としてのストレージ装置1の動作を、図8に示すフローチャート(ステップA1-A21)を参照しながら説明する。
 まず、AC電源が投入されると(ステップA1)、経年決定部243は、リアルタイムクロック27から現在の日時等を示す情報を取得し(ステップA2)、さらに、経年決定部243は、不揮発メモリ212に保持されたSCU21の製造時情報を取得する(ステップA3)。そして、経年決定部243は、ステップA2およびステップA3にて取得した情報に基づいて、SCU21の製造後経過時間を決定する。
 そして、充電モード決定部244は、製造後経過時間が、例えば60ヶ月以下か否かを判定する(ステップA4)。製造後経過時間が、60ヶ月以下であれば(ステップA4のYesルート参照)、余剰電力決定部242は、不揮発メモリ212から容量及び抵抗値を取得し(ステップA5)、例えば、上記式(1)および式(2)を用いて余剰電力を決定する(ステップA6)。
 余剰電力が決定されると、充電モード決定部244は、決定された余剰電力が30%以上か否かを判定する(ステップA7)。余剰電力が30%以上であれば(ステップA7のYesルート参照)、充電モード決定部244は、充電モードを第1モードに決定する(ステップA8)。一方、余剰電力が30%未満であれば(ステップA7のNoルート参照)、充電モード決定部244は、次に、余剰電力が20%以上か否かを判定する(ステップA9)。余剰電力が20%以上であれば(ステップA9のYesルート参照)、充電モード決定部244は、充電モードを第2モードに決定する(ステップA10)。一方、余剰電力が20%未満であれば(ステップA9のNoルート参照)、充電モード決定部244は、充電モードを第3モードに決定する(ステップA11)。
 なお、製造後経過時間が、60ヶ月より長い場合(ステップA4のNoルート参照)、ステップA5およびステップA6と同様に、余剰電力決定部242は、不揮発メモリ212から容量及び抵抗値を取得し(ステップA12)、例えば、上記式(1)および式(2)を用いて余剰電力を決定する(ステップA13)。そして、充電モード決定部244は、決定された余剰電力が10%以上か否かを判定する(ステップA14)。余剰電力が10%以上であれば(ステップA14のYesルート参照)、充電モード決定部244は、充電モードを第3モードに決定する(ステップA11)。一方、余剰電力が10%未満であれば(ステップA14のNoルート参照)、充電モード決定部244は、充電モードを第4モードに決定する(ステップA15)。
 充電モードが決定された状態で、DCオンすると(ステップA16)、充電制御部245は、PSU20から供給される15Aの電流を用いて電力供給部211への充電を行なう(ステップA17)。充電制御部245は、充電モード決定部244によって決定された充電モードに応じた目標電圧まで、充電されているか否かを判断する(ステップA18)。目標電圧まで充電されていない場合(ステップA18のNoルート参照)、ステップA18の動作が繰り返される。一方、目標電圧まで充電されている場合(ステップA18のYesルート参照)、充電制御部245は、PSU20から供給される3Aの電流を用いて電力供給部211への充電を行なう。すなわち、充電制御部245は、15Aから3Aによる充電への切り替えを行なう(ステップA19)。充電制御部245による15Aから3Aによる充電への切り替えとともに、起動指示部251は、HDD40に対してスピンアップを行なうよう指示することで、HDD40にスピンアップを行なわせる(ステップA20)。そして、スピンアップが完了すると、ストレージ装置1の起動が完了する(ステップA21)。
 次に、本実施形態の一例におけるストレージ装置1の起動時間について以下に図7を参照しながら説明する。
 例えば、PSU20の定格電流が30A、1個のHDD40のスピンアップに必要な電流が3Aであり、スピンアップ完了まで15秒要し、かつ、ストレージ装置1は24個のHDD40をそなえる場合を考える。
 まず、充電モードが第1モードである場合、コントローラモジュール10-1および10-2がそなえる電気二重層コンデンサである電力供給部211が、目標電圧Vvfまで、15Aの電流で充電される。すなわち、合計30Aの電流が2つの電力供給部211の充電に用いられる。そして、電力供給部211が、目標電圧Vvfまで充電されると、コントローラモジュール10-1および10-2がそなえる電気二重層コンデンサである電力供給部211が、3Aの電流で充電される。さらに、8個ずつHDD40のスピンアップを3回に分けて行なう。すなわち、合計6Aの電流が2つの電力供給部211の充電に用いられ、残りの24Aは、8個のHDD40のスピンアップに用いられる。
 従って、第1モードの場合、電力供給部211の充電開始(DCオン)から、目標電圧Vvf到達後24個のHDDのスピンアップ完了まで、すなわち、ストレージ装置1の起動まで図7に示すように65秒を要する。
 次に、充電モードが第2モードである場合、コントローラモジュール10-1および10-2がそなえる電気二重層コンデンサである電力供給部211が、目標電圧Vfまで、15Aの電流で充電される。すなわち、合計30Aの電流が2つの電力供給部211の充電に用いられる。そして、電力供給部211が、目標電圧Vfまで充電されると、コントローラモジュール10-1および10-2がそなえる電気二重層コンデンサである電力供給部211が、3Aの電流で充電される。さらに、8個ずつHDD40のスピンアップを3回に分けて行なう。すなわち、合計6Aの電流が2つの電力供給部211の充電に用いられ、残りの24Aは、8個のHDD40のスピンアップに用いられる。
 従って、第2モードの場合、電力供給部211の充電開始(DCオン)から、目標電圧Vf到達後24個のHDDのスピンアップ完了まで、すなわち、ストレージ装置1の起動まで図7に示すように85秒を要する。
 また、充電モードが第3モードである場合、コントローラモジュール10-1および10-2がそなえる電気二重層コンデンサである電力供給部211が、目標電圧Vまで、15Aの電流で充電される。すなわち、合計30Aの電流が2つの電力供給部211の充電に用いられる。そして、電力供給部211が、目標電圧Vまで充電されると、コントローラモジュール10-1および10-2がそなえる電気二重層コンデンサである電力供給部211が、3Aの電流で充電される。さらに、8個ずつHDD40のスピンアップを3回に分けて行なう。すなわち、合計6Aの電流が2つの電力供給部211の充電に用いられ、残りの24Aは、8個のHDD40のスピンアップに用いられる。
 従って、第3モードの場合、電力供給部211の充電開始(DCオン)から、目標電圧V到達後24個のHDDのスピンアップ完了まで、すなわち、ストレージ装置1の起動まで図7に示すように105秒を要する。
 さらに、充電モードが第4モードである場合、コントローラモジュール10-1および10-2がそなえる電気二重層コンデンサである電力供給部211が、目標電圧Vまで、15Aの電流で充電される。すなわち、合計30Aの電流が2つの電力供給部211の充電に用いられる。そして、電力供給部211が、目標電圧Vまで充電されると、コントローラモジュール10-1および10-2がそなえる電気二重層コンデンサである電力供給部211が、3Aの電流で充電される。さらに、8個ずつHDD40のスピンアップを3回に分けて行なう。すなわち、合計6Aの電流が2つの電力供給部211の充電に用いられ、残りの24Aは、8個のHDD40のスピンアップに用いられる。
 従って、第4モードの場合、電力供給部211の充電開始(DCオン)から、目標電圧V到達後24個のHDDのスピンアップ完了まで、すなわち、ストレージ装置1の起動まで図7に示すように125秒を要する。
 ここで、本実施形態の一例におけるストレージ装置1の起動時間と対比するために、本実施形態の一例のように電流値を変化させずに15Aのまま最終電圧まで電力供給部211の充電を行ない、その後HDD40のスピンアップを行なう場合を考える。この場合、図9に示すように、コントローラモジュール10-1および10-2がそなえる電気二重層コンデンサである電力供給部211が、最終電圧まで15Aの電流を用いて充電されるため、HDD40のスピンアップを行なうことができない。従って、電力供給部211が最終電圧まで充電された後に、HDD40のスピンアップが3回に分けて行なわれる。
 従って、この場合、24個のHDDのスピンアップが完了し、ストレージ装置1が起動するまで図9に示すように145秒を要する。
 すなわち、本実施形態の一例によれば、充電モードを第4モードとした場合でも、本実施形態の一例のように電流値を変化させずに充電を行なった場合と比較して20秒早くストレージ装置1を起動することができる。さらには、充電モードを第1モードとした場合には、本実施形態の一例のように電流値を変化させずに充電を行なった場合と比較して80秒早くストレージ装置1を起動することができる。
 次に、例えば、第1モードあるいは第2モードでストレージ装置1が起動した後に停電が起こった場合のストレージ装置1の処理について図10を用いて説明する。図10は、実施形態の一例としての停電時のストレージ装置の動作を説明するためのフローチャートである。
 まず、停電が起こると、退避制御部247は、キャッシュメモリ26からフラッシュメモリ28へのデータの退避を行なう(ステップB1)。キャッシュメモリ26からフラッシュメモリ28へのデータの退避完了後、供給電力制御部246は、SCU21によるオア回路22に対する電力供給(図1中、電圧Vbat)を停止し、ミッドプレーン30に対する電力供給(図1中、電圧Vsub)を開始させる(ステップB2)。さらに、供給電力制御部246は、SCU21による、CPU25,リアルタイムクロック27およびフラッシュメモリ28への電力供給を停止する(ステップB3)。一方、供給電力制御部246は、PSU21から出力された電圧Vsubがミッドプレーン30を介してVbpとしてキャッシュメモリ26に供給される。すなわち、キャッシュメモリ26には、電力供給が継続される(ステップB4)。
 このように、本実施形態の一例によれば、停電時に必要な電力を確保した上で、ストレージ装置の起動時間を短縮することができる。
 また、本実施形態の一例によれば、SCU21の経年による容量や直流抵抗の劣化を考慮して、すなわちSCU21の使用状況を考慮して、最適な充電方法を選択することで、ストレージ装置の起動時間を短縮することができる。
 さらに、本実施形態の一例によれば、停電時に、キャッシュメモリ26からフラッシュメモリ28へのデータの退避に加え、SCU21の余剰電力を用いてキャッシュメモリ26のバックアップを行なうため、ストレージ装置1の信頼性を向上させることができる。
 また、本実施形態の一例によれば、SCU21の余剰電力を用いたキャッシュメモリ26のバックアップ中に、停電が復旧した場合には、フラッシュメモリ28からキャッシュメモリ26への書き戻しは不要となる。したがって、本実施形態の一例によれば、停電以前の状態に即時に回復することができる。
 さらに、本実施形態の一例では、第1モードまたは第2モードで充電することが決定された場合、すなわち、SCU21が保持する電力に余裕がある場合、フラッシュメモリ28へのデータの退避だけではなく、キャッシュメモリ26のバックアップを行なう。したがって、本実施形態の一例によれば、SCU21が保持する電力をフラッシュメモリ28へのデータの退避のみに用いる場合に比べ、SCU21が保持する電力の消費効率を向上させることができる。
 また、本実施形態の一例によれば、SCU21の制御をFPGA24が行なっているため、CPU25を用いてSCU21の制御を行なう場合と比較した場合、ファームウェアの起動を待つことなく、SCU21の制御を行なうことができる。
 さらに、本実施形態の一例によれば、リアルタイムクロック27の監視をFPGA24が行なっているため、CPU25を用いてリアルタイムクロック27の監視を行なう場合と比較した場合、ファームウェアの起動を待つことなく、リアルタイムクロック27の監視を行なうことができる。 なお、開示の技術は上述した実施形態に限定されるものではなく、本実施形態の趣旨を逸脱しない範囲で種々変形して実施することができる。
 例えば、本実施形態の一例では、SCU21に対して15Aおよび3Aの電流で充電を行なっているが、これに限定されるものではなく、他の電流値を用いて充電を行なってもよい。
 また、本実施形態の一例では、SCU21は、充電停止部214および電圧差決定部215をそなえているが、これに限定されるものではない。例えば、充電停止部214および電圧差決定部215の機能をFPGA24がそなえることとしてもよい。
 さらに、本実施形態の一例では、製品寿命時におけるSCU21の放電可能時間Tminを電力供給部211の容量が製造時と比較して70%の値、直流抵抗が製造時と比較して130%の値となっているものとして決定したが、これに限定されるものではない。例えば、製品寿命時におけるSCU21の放電可能時間Tminを、電力供給部211の容量が製造時と比較して70%以外の値、直流抵抗が製造時と比較して130%以外の値となっているものとして決定してもよい。
 また、本実施形態の一例では、充電モードを4つのモードに分けているが、これに限定されるものではない。例えば、より細かい条件を設定し、充電モードを5以上のモードに分けてもよいし、より大まかな条件を設定し、充電モードを3以下のモードに分けてもよい。
 さらに、本実施形態の一例では、製造後経過時間および余剰電力に基づいて、充電モードを決定しているがこれに限定されるものではない。例えば、余剰電力のみに基づいて充電モードを決定してもよいし、製造後経過時間のみに基づいて余剰電力を決定してもよい。
 また、本実施形態の一例では、余剰電力決定部242は、例えば、電力供給部211の接続負荷が、定電力負荷の場合における放電可能時間を決定するものとして、式(1)および式(2)に基づいて、放電可能時間を決定したが、これに限定されるものではない。例えば、余剰電力決定部242は、電力供給部211の接続負荷が、定電流負荷の場合における放電可能時間を決定することとしてもよい。図11は、データ処理部23と電力供給部211とを等価的に示す図である。図11中、定停電流源Iは、データ処理部23消費する電流であり、直流抵抗Rおよび容量Cは、それぞれ電力供給部211の直流抵抗および容量である。ここで放電開始時の容量Cにかかる電圧VC(0)=VSとし、放電終了時Tの容量Cおよび直流抵抗Rにかかる電圧V(T)=VEとする。放電可能時間Tは、下記式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 余剰電力決定部242は、式(3)を用いて、放電可能時間Tを決定することとしてもよい。
 また、上述した開示により本実施形態を当業者によって実施・製造することが可能である。
 1  ストレージ装置
 10-1,10-2  コントローラモジュール
 20  PSU
 21  SCU
 22  オア回路
 23  データ処理部
 24  FPGA
 25  CPU
 26  キャッシュメモリ
 27  リアルタイムクロック
 28  フラッシュメモリ
 30  ミッドプレーン
 40  HDD
 50  ホスト
 211  電力供給部
 212  不揮発メモリ
 213  処理部
 214  充電停止部
 215  電圧差決定部
 241  容量・抵抗決定部
 242  余剰電力決定部
 243  経年決定部
 244  充電モード決定部
 245  充電制御部
 246  供給電力制御部
 247  退避制御部
 251  起動指示部
 252  データ受信許可部
 253  データ制御部

Claims (20)

  1.  データを記憶する記憶部と前記記憶部に対するデータ記憶制御を行なう制御部とをそなえたストレージ装置において、
     前記ストレージ装置に対する外部からの電力供給停止時(以下、停電時という)に前記制御部に電力を供給する電力供給部と、
     前記記憶部に記憶されるデータを保持するキャッシュメモリと、
     停電時に、前記キャッシュメモリに保持されているデータが退避される不揮発メモリと、
     前記電力供給部が供給する電力であって、前記不揮発メモリへのデータの退避にかかる電力を超える分の電力である余剰電力を決定する余剰電力決定部と、
     前記余剰電力決定部によって決定された余剰電力に基づいて、前記電力供給部に対する充電処理時に目標とする第1の目標電圧を決定する目標電圧決定部と、
     前記電力供給部に充電された電圧が前記第1の目標電圧に達するまでは、第1の電流値で前記電力供給部に対する充電処理を行ない、前記電力供給部に充電された電圧が、前記第1の目標電圧から前記第1の目標電圧よりも大きい第2の目標電圧に達するまでは、前記第1の電流値よりも小さい第2の電流値で前記電力供給部に対する充電処理を行なう充電処理部と、をそなえた
    ことを特徴とするストレージ装置。
  2.  前記第1の目標電圧は、前記電力供給部が前記不揮発メモリへのデータの退避にかかる電力を供給可能となる電圧である
    ことを特徴とする請求項1に記載のストレージ装置。
  3.  前記電力供給部が前記第1の目標電圧まで充電されると、前記記憶部に対して起動処理を行なう起動処理部を更にそなえた
    ことを特徴とする請求項1又は請求項2に記載のストレージ装置。
  4.  前記目標電圧決定部は、前記余剰電力と前記電力供給部の製造後経過時間とに基づいて、前記第1の目標電圧を決定する
    ことを特徴とする請求項1~3のいずれか1項に記載のストレージ装置。
  5.  前記電力供給部は、前記充電処理部によって充電されるキャパシタをそなえ、
     前記ストレージ装置は、
     前記キャパシタの容量および抵抗を決定する決定部と、
     前記決定部によって決定された前記キャパシタの容量,抵抗および、前記電力供給部の製造日時を保持する保持部と、を更にそなえ、
     前記余剰電力決定部は、前記保持部に保持された前記キャパシタの容量および抵抗に基づいて、前記余剰電力を決定し、
     前記目標電圧決定部は、前記保持部に保持された前記製造日時に基づいて、前記電力供給部の製造後経過時間を決定する
    ことを特徴とする請求項1~4のいずれか1項に記載のストレージ装置。
  6.  前記記憶部が起動すると、前記ストレージ装置に接続された上位装置からのデータ受信を許可するデータ受信許可部を更にそなえた
    ことを特徴とする請求項3に記載のストレージ装置。
  7.  停電時に、前記キャッシュメモリに保持されているデータを、前記不揮発メモリに退避させる退避制御部、を更にそなえ、
     前記退避制御部による退避が完了した後も、前記電力供給部は前記キャッシュメモリに対して電力を供給する
    ことを特徴とする請求項1~6のいずれか1項に記載のストレージ装置。
  8.  データを記憶する記憶部に対するデータ記憶制御を行なう制御装置であって、
     前記ストレージ装置に対する外部からの電力供給停止時(以下、停電時という)に前記制御部に電力を供給する電力供給部と、
     前記記憶部に記憶されるデータを保持するキャッシュメモリと、
     停電時に、前記キャッシュメモリに保持されているデータが退避される不揮発メモリと、
     前記電力供給部が供給する電力であって、前記不揮発メモリへのデータの退避にかかる電力を超える分の電力である余剰電力を決定する余剰電力決定部と、
     前記余剰電力決定部によって決定された余剰電力に基づいて、前記電力供給部に対する充電処理時に目標とする第1の目標電圧を決定する目標電圧決定部と、
     前記電力供給部に充電された電圧が前記第1の目標電圧に達するまでは、第1の電流値で前記電力供給部に対する充電処理を行ない、前記電力供給部に充電された電圧が、前記第1の目標電圧から前記第1の目標電圧よりも大きい第2の目標電圧に達するまでは、前記第1の電流値よりも小さい第2の電流値で前記電力供給部に対する充電処理を行なう充電処理部と、をそなえた
    ことを特徴とする制御装置。
  9.  前記第1の目標電圧は、前記電力供給部が前記不揮発メモリへのデータの退避にかかる電力を供給可能となる電圧である
    ことを特徴とする請求項8に記載の制御装置。
  10.  前記電力供給部が前記第1の目標電圧まで充電されると、前記記憶部に対して起動処理を行なう起動処理部を更にそなえた
    ことを特徴とする請求項8又は請求項9に記載の制御装置。
  11.  前記目標電圧決定部は、前記余剰電力と前記電力供給部の製造後経過時間とに基づいて、前記第1の目標電圧を決定する
    ことを特徴とする請求項8~10のいずれか1項に記載の制御装置。
  12.  前記電力供給部は、前記充電処理部によって充電されるキャパシタをそなえ、
     前記制御装置は、
     前記キャパシタの容量および抵抗を決定する決定部と、
     前記決定部によって決定された前記キャパシタの容量,抵抗および、前記電力供給部の製造日時を保持する保持部と、を更にそなえ、
     前記余剰電力決定部は、前記保持部に保持された前記キャパシタの容量および抵抗に基づいて、前記余剰電力を決定し、
     前記目標電圧決定部は、前記保持部に保持された前記製造日時に基づいて、前記電力供給部の製造後経過時間を決定する
    ことを特徴とする請求項8~11のいずれか1項に記載の制御装置。
  13.  前記記憶部が起動すると、前記ストレージ装置に接続された上位装置からのデータ受信を許可するデータ受信許可部を更にそなえた
    ことを特徴とする請求項10に記載の制御装置。
  14.  停電時に、前記キャッシュメモリに保持されているデータを、前記不揮発メモリに退避させる退避制御部、を更にそなえ、
     前記退避制御部による退避が完了した後も、前記電力供給部は前記キャッシュメモリに対して電力を供給する
    ことを特徴とする請求項8~13のいずれか1項に記載の制御装置。
  15.  データを記憶する記憶部と、
     前記記憶部に対するデータ記憶制御を行なう制御部と、
     外部からの電力供給停止時(以下、停電時という)に前記制御部に電力を供給する電力供給部と、
     前記記憶部に記憶されるデータを保持するキャッシュメモリと、
     停電時に、前記キャッシュメモリに保持されているデータが退避される不揮発メモリと、をそなえたストレージ装置の制御方法であって、
     前記電力供給部が供給する電力であって、前記不揮発メモリへのデータの退避にかかる電力を超える分の電力である余剰電力を決定し、
     決定された余剰電力に基づいて、前記電力供給部に対する充電処理時に目標とする第1の目標電圧を決定し、
     前記電力供給部に充電された電圧が前記第1の目標電圧に達するまでは、第1の電流値で前記電力供給部に対する充電処理を行ない、前記電力供給部に充電された電圧が、前記第1の目標電圧から前記第1の目標電圧よりも大きい第2の目標電圧に達するまでは、前記第1の電流値よりも小さい第2の電流値で前記電力供給部に対する充電処理を行なう
    ことを特徴とする制御方法。
  16.  前記第1の目標電圧は、前記電力供給部が前記不揮発メモリへのデータの退避にかかる電力を供給可能となる電圧である
    ことを特徴とする請求項15に記載の制御方法。
  17.  前記電力供給部が前記第1の目標電圧まで充電されると、前記記憶部に対して起動処理を行なう
    ことを特徴とする請求項15又は請求項16に記載の制御方法。
  18.  前記余剰電力と前記電力供給部の製造後経過時間とに基づいて、前記第1の目標電圧を決定する
    ことを特徴とする請求項15~17のいずれか1項に記載の制御方法。
  19.  前記電力供給部は、前記充電処理によって充電されるキャパシタをそなえるとともに、
     前記ストレージ装置は、前記キャパシタの容量,抵抗および前記電力供給部の製造日時を保持する保持部を更にそなえ、
     前記保持部に保持された前記キャパシタの容量および抵抗に基づいて、前記余剰電力を決定し、
     前記保持部に保持された前記製造日時に基づいて、前記電力供給部の製造後経過時間を決定する
    ことを特徴とする請求項15~18のいずれか1項に記載の制御方法。
  20.  停電時に、前記キャッシュメモリに保持されているデータを、前記不揮発メモリに退避し、
     前記退避が完了した後も、前記電力供給部は前記キャッシュメモリに対して電力を供給する
    ことを特徴とする請求項15~19のいずれか1項に記載の制御方法。
PCT/JP2010/073406 2010-12-24 2010-12-24 ストレージ装置,制御装置および制御方法 WO2012086072A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012549557A JP5633580B2 (ja) 2010-12-24 2010-12-24 ストレージ装置,制御装置および制御方法
PCT/JP2010/073406 WO2012086072A1 (ja) 2010-12-24 2010-12-24 ストレージ装置,制御装置および制御方法
US13/925,137 US9110649B2 (en) 2010-12-24 2013-06-24 Storage apparatus, control apparatus and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/073406 WO2012086072A1 (ja) 2010-12-24 2010-12-24 ストレージ装置,制御装置および制御方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/925,137 Continuation US9110649B2 (en) 2010-12-24 2013-06-24 Storage apparatus, control apparatus and control method

Publications (1)

Publication Number Publication Date
WO2012086072A1 true WO2012086072A1 (ja) 2012-06-28

Family

ID=46313369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/073406 WO2012086072A1 (ja) 2010-12-24 2010-12-24 ストレージ装置,制御装置および制御方法

Country Status (3)

Country Link
US (1) US9110649B2 (ja)
JP (1) JP5633580B2 (ja)
WO (1) WO2012086072A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8885393B2 (en) * 2012-12-18 2014-11-11 Apple Inc. Memory array voltage source controller for retention and write assist

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8575993B2 (en) 2011-08-17 2013-11-05 Broadcom Corporation Integrated circuit with pre-heating for reduced subthreshold leakage
US20130262912A1 (en) * 2012-04-02 2013-10-03 International Business Machines Corporation Managing hardware configuration of a computer node
CN104460921B (zh) * 2014-10-29 2017-11-07 英业达科技有限公司 服务器***
US10467100B2 (en) 2016-08-15 2019-11-05 Western Digital Technologies, Inc. High availability state machine and recovery
KR102244921B1 (ko) 2017-09-07 2021-04-27 삼성전자주식회사 저장 장치 및 그 리프레쉬 방법
JP2022049155A (ja) * 2020-09-16 2022-03-29 キオクシア株式会社 メモリシステムおよび容量値の測定方法
CN116430976A (zh) * 2022-01-12 2023-07-14 Aa电源有限公司 预测数据中心内电源的故障

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314192A (ja) * 2005-05-02 2006-11-16 Robert Bosch Gmbh 充電装置
JP2008257650A (ja) * 2007-04-09 2008-10-23 Canon Inc 情報処理装置及びその電力制御方法
WO2009098776A1 (ja) * 2008-02-08 2009-08-13 Fujitsu Limited バックアップ方法、ディスクアレイ装置及びコントローラ
JP2009186908A (ja) * 2008-02-08 2009-08-20 Fujifilm Corp 放射線変換器及び放射線変換器処理装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001337789A (ja) * 2000-05-29 2001-12-07 Toshiba Corp ディスクサブシステム
JP2005039873A (ja) 2003-07-15 2005-02-10 Ricoh Co Ltd キャパシタ充電装置、加熱装置、定着装置及び画像形成装置
JP4323272B2 (ja) 2003-09-16 2009-09-02 株式会社リコー 画像形成装置
JP2007282461A (ja) 2006-04-12 2007-10-25 Power System:Kk キャパシタ蓄電装置およびその制御方法
JP5050742B2 (ja) 2007-09-05 2012-10-17 株式会社明電舎 瞬時低下電圧補償装置の直流待機電圧補償方法
US9842628B2 (en) * 2008-07-10 2017-12-12 Agiga Tech Inc. Capacitor enablement voltage level adjustment method and apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006314192A (ja) * 2005-05-02 2006-11-16 Robert Bosch Gmbh 充電装置
JP2008257650A (ja) * 2007-04-09 2008-10-23 Canon Inc 情報処理装置及びその電力制御方法
WO2009098776A1 (ja) * 2008-02-08 2009-08-13 Fujitsu Limited バックアップ方法、ディスクアレイ装置及びコントローラ
JP2009186908A (ja) * 2008-02-08 2009-08-20 Fujifilm Corp 放射線変換器及び放射線変換器処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8885393B2 (en) * 2012-12-18 2014-11-11 Apple Inc. Memory array voltage source controller for retention and write assist

Also Published As

Publication number Publication date
JP5633580B2 (ja) 2014-12-03
JPWO2012086072A1 (ja) 2014-05-22
US20130283069A1 (en) 2013-10-24
US9110649B2 (en) 2015-08-18

Similar Documents

Publication Publication Date Title
JP5633580B2 (ja) ストレージ装置,制御装置および制御方法
TWI677694B (zh) 智慧型備用電容器管理
US8667331B2 (en) Storage system and control method for storing write data requested by a host computer
US9250676B2 (en) Power failure architecture and verification
JP2014010610A (ja) 制御装置、電力供給装置及び電力制御方法
TWI431835B (zh) 電池充放電管理系統及方法
KR101070601B1 (ko) 비휘발성 메모리를 위한 향상된 기록 중단 메커니즘
US20110320796A1 (en) Redundant power supply configuration for a data center
WO2014147700A1 (ja) 情報処理装置、情報処理装置の停止方法、及び情報処理装置の停止プログラム
US20090195212A1 (en) Method and system for utilizing a memory control circuit for controlling data transfer to and from a memory system
WO2013151821A2 (en) Managing cycle life and runtime in batteries for portable electronic devices
WO2015081129A2 (en) Hard power fail architecture
JP2012099058A (ja) 情報処理装置および方法、およびプログラム
KR20210014620A (ko) 스로틀링 없이 배터리 용량을 초과하는 최대 전력 스파이크들을 지원하기
US10063083B2 (en) System and method for limiting battery charging during storage and shipping states
US10872020B2 (en) Storage apparatus and recording medium storing backup program
TWI591931B (zh) Power control device and information processing device
TWI492037B (zh) 使用電腦系統控制從轉接器汲取的電流
JP2010122857A (ja) バックアップ装置
US10393822B1 (en) Apparatus, systems, and methods for charging partial use batteries
JP5419805B2 (ja) ストレージ装置及び充電制御方法
US8527792B2 (en) Power saving method and apparatus thereof
JP2015115051A (ja) 制御装置、制御方法、及び制御プログラム
JP2015038643A (ja) 補助電源制御回路、記憶装置、および補助電源制御方法
US10491025B1 (en) Apparatus, systems, and methods for pulse charging rechargeable batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012549557

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10861125

Country of ref document: EP

Kind code of ref document: A1