WO2012077201A1 - 換気空調装置 - Google Patents

換気空調装置 Download PDF

Info

Publication number
WO2012077201A1
WO2012077201A1 PCT/JP2010/072038 JP2010072038W WO2012077201A1 WO 2012077201 A1 WO2012077201 A1 WO 2012077201A1 JP 2010072038 W JP2010072038 W JP 2010072038W WO 2012077201 A1 WO2012077201 A1 WO 2012077201A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
temperature
humidity
indoor
conditioning coil
Prior art date
Application number
PCT/JP2010/072038
Other languages
English (en)
French (fr)
Inventor
真海 安田
秀元 荒井
雅洋 長谷川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201090001633XU priority Critical patent/CN203323307U/zh
Priority to EP10860541.1A priority patent/EP2650617B1/en
Priority to PCT/JP2010/072038 priority patent/WO2012077201A1/ja
Priority to JP2012547632A priority patent/JP5535336B2/ja
Publication of WO2012077201A1 publication Critical patent/WO2012077201A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F12/00Use of energy recovery systems in air conditioning, ventilation or screening
    • F24F12/001Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air
    • F24F12/006Use of energy recovery systems in air conditioning, ventilation or screening with heat-exchange between supplied and exhausted air using an air-to-air heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/0008Control or safety arrangements for air-humidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/147Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification with both heat and humidity transfer between supplied and exhausted air
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/56Heat recovery units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to a ventilating air conditioner that adjusts the humidity in a room and performs ventilation while controlling the temperature of air blown from a product.
  • the operation mode is determined from the outside air temperature and humidity, and in the mode where the humidification request is high, the supply air that does not pass through the heat exchange element and the exhaust air discharged through the heat pump air conditioner, the watering device and the exhaust grill are used. There are some which satisfy the target indoor temperature and humidity (for example, see Patent Document 2).
  • Patent Document 1 since the conventional technique described in Patent Document 1 performs a humidifying operation based only on the measurement result of the outside air temperature, the capacity value of the air conditioning coil cannot be changed even when the outside air humidity increases. For this reason, there has been a problem that the room is excessively humidified because the room is humidified more than necessary during the heating and humidifying operation. Also, if the heating and humidification operation is performed with both the outside air temperature and humidity being high, the supply air temperature that is blown into the room also rises, so the room temperature also rises and the humidity control ventilator is in the heating operation. Regardless, there is a problem that the air conditioners operated together in the indoor space perform useless cooling operation.
  • the heated and humidified room air is exhausted directly from the exhaust grille without heat recovery, resulting in energy loss.
  • the fresh outside air was heated to a temperature at which a sufficient amount of humidification could be secured with only the condenser, and an energy load was generated.
  • the heat exchange element mounted in the mounted housing is not used during heating and humidification operation, and there is a problem that a very high energy load is applied during winter operation.
  • the present invention has been made in view of the above, and is capable of recovering heat from the exhaust air to the supply air.
  • the heating amount and humidification of the supply air in the room according to the temperature and humidity of the supply external air It aims at obtaining the ventilation air conditioner which can adjust quantity.
  • the present invention includes an air supply air passage that sucks outdoor air and supplies the indoor air as supply air, and an exhaust air passage that sucks indoor air and exhausts it outside the room. Between the outdoor air sucked into the supply air passage and the indoor air sucked into the exhaust air passage between the supply air passage and the exhaust air passage. Measurement results of a total heat exchanger that performs heat exchange, a temperature sensor that measures the temperature of outdoor air, a humidity sensor that measures the humidity of outdoor air, an air conditioning coil that heats supply air, and a temperature sensor and a humidity sensor And a control means for controlling the air conditioning coil so that the absolute humidity of the supply air becomes a predetermined value.
  • the ventilation air conditioner according to the present invention controls the heating amount of the air conditioning coil according to the temperature / humidity of the outside air, and adjusts the humidification amount with respect to the air supplied to the room to prevent insufficient humidification or overhumidification, By performing heat recovery from the air to the supply air, it is possible to perform energy-saving and comfortable ventilation.
  • FIG. 1 is a top perspective view showing the configuration of the first embodiment of the ventilation air conditioner according to the present invention.
  • FIG. 2 is a side sectional view showing the configuration of the first embodiment of the ventilation air conditioner according to the present invention.
  • FIG. 3 is a diagram showing an example of a map in which the capacity values of the air conditioning coils of the ventilation air conditioner controlled according to the measured values of the outside air temperature sensor and the outside air humidity sensor are divided into zones according to the outside air temperature and the outside air humidity.
  • FIG. 4 is a flowchart showing a flow of control of the air-conditioning coil during operation in the heating mode.
  • FIG. 5 is a top perspective view showing the configuration of the second embodiment of the ventilation air conditioner according to the present invention.
  • FIG. 6 is a flowchart showing a flow of control of forced stop and release of the air conditioning coil and the humidifier.
  • FIG. 1 and 2 are diagrams showing a configuration of a first embodiment of a ventilation air conditioner according to the present invention.
  • 1 is a top perspective view
  • FIG. 2 is a cross-sectional view taken along the line II-II in FIG.
  • the ventilation air conditioner includes a main body casing 1, an exhaust fan 2, an air supply fan 3, a total heat exchanger 4, an air conditioning coil 5, a humidifier 6, an exhaust air outlet 7, an air supply air outlet 8, and an air intake port. 9, an exhaust suction port 10, an outside air temperature sensor 11, an outside air humidity sensor 12, a control unit 14, and a remote controller 15.
  • the ventilation air conditioner is provided with a pair of air outlets and air inlets on the indoor side and on the outdoor side (air supply air outlet 8, exhaust air inlet 10 and exhaust air outlet 7, air supply air inlet 9), and the outdoor side.
  • the air supply air passage that connects the air supply inlet 9 and the indoor air supply outlet 8 and the exhaust air passage that connects the indoor air intake 10 and the outdoor air outlet 7 are formed.
  • the box structure is covered with the main casing 1.
  • the supply air blower 3 is incorporated in the supply air passage to form a supply air flow.
  • the exhaust blower 2 is incorporated in the exhaust air passage and forms an exhaust flow.
  • the total heat exchanger 4 is disposed between the supply air passage and the exhaust air passage, and continuously exchanges total heat between the supply air flow (outdoor air) and the exhaust air flow (indoor air). Supply air is used, and indoor air is used as exhaust air.
  • a humidifier 6 is provided in front of the supply air outlet 8 in the supply air passage, and the air-conditioning coil 5 is used between the supply fan 3 and the humidifier 6 to heat the supply air and secure a humidification amount. Is provided.
  • positioned is divided
  • the humidified air passage upper part 21 is formed of a foamed resin so as to cover the air conditioning coil 5 and the humidifier 6.
  • the lower part of the humidified air passage 22 is provided with a drain pan made of foamed resin, and is formed as a structure in which a plastic material is simultaneously formed on the water receiving surface of the drain pan to prevent water from entering the foamed resin.
  • the humidified air path upper part 21 and the humidified air path lower part 22 have a fitting structure in the vertical direction, and integrally form the humidified air path part 20.
  • the ventilation air conditioner includes a control unit 14 that controls the ventilation operation and a remote controller 15 that receives an operation mode switching operation and the like.
  • the control unit 14 includes a device (NVRAM or the like) that stores a map (to be described later) in a nonvolatile manner in addition to the CPU and RAM.
  • an outside air temperature sensor 11 and an outside air humidity sensor 12 for measuring the temperature and humidity of the outside air are provided.
  • the control unit 14 determines the heating capacity of the air conditioning coil 5 based on the measurement results (temperature information and humidity information) of the outside air temperature sensor 11 and the outside air humidity sensor 12.
  • the air that has passed through the total heat exchanger 4 is heated by the air conditioning coil 5.
  • the air heated by the air conditioning coil 5 passes through the humidifier 6, becomes humidified air, and is supplied into the room from the air supply outlet 8. At that time, the humidification amount and the blowing temperature are adjusted by the heating amount in the air conditioning coil 5.
  • the supply air blown into the room from the ventilation air conditioner is mixed with the room air and then sucked into the separately installed air conditioner, and the room temperature is adjusted by the air conditioner. That is, the ventilation air conditioner shares the role with the indoor air conditioner so that the ventilation air conditioner is mainly responsible for ventilation and humidification, and the air conditioner is mainly responsible for temperature adjustment. Accordingly, the humidification amount of air supply air in the ventilation air conditioning system, the moisture content as relative humidity is the reference value (e.g. 40%) when the reference value t Standrad room temperature the set temperature of the air conditioner (e.g., 22 ° C.) It is necessary to adjust to contain.
  • the reference value e.g. 40%
  • FIG. 3 is a diagram showing an example of a map in which the capability values of the air conditioning coil 5 of the ventilation air conditioner controlled according to the measured values of the outside air temperature sensor 11 and the outside air humidity sensor 12 are divided into zones according to the outside air temperature and the outside air humidity. .
  • This map shows the air conditioning coil 5 so that the amount of water contained in the air supplied to the room becomes a reference value (for example, an absolute humidity of 0.0066 kg / kg (DA) corresponding to a relative humidity of 40% at 22 ° C.).
  • DA absolute humidity of 0.0066 kg / kg
  • the capacity of the air conditioning coil 5 is controlled so as not to exceed 30 ° C. by giving priority to temperature adjustment over humidification. It is configured.
  • the map shown in FIG. 3 is a total heat exchanger obtained by measuring in advance based on a preset reference value (for example, 22 ° C., 40%) of indoor temperature and humidity.
  • a preset reference value for example, 22 ° C., 40%
  • the temperature and humidity of the outdoor air after total heat exchange in the total heat exchanger 4 is calculated for each outdoor temperature and outdoor humidity. Comparing the humidity with the reference value of indoor temperature / indoor humidity (for example, 22 ° C., 40% absolute humidity 0.0066 kg / kg (DA)), the air supplied to the room through the air supply outlet 8 It is created by determining and plotting the capacity value of the air conditioning coil 5 so that the absolute humidity of the air approaches a reference value (for example, 0.0066 kg / kg (DA)).
  • t1 and t2 are set based on the reference value t Standrad upper t max and the indoor temperature of the charge air.
  • the upper limit t max of the temperature of the supply air is 30 ° C. and the reference value of the indoor temperature is 22 ° C.
  • the blowing temperature does not exceed t max even if the outside air humidity is high.
  • t2 21 ° C. when the blow-out temperature approaches the reference value t standard (for example, 22 ° C.) of the room temperature by exchanging the temperature with the total heat exchanger 4.
  • the boundary b1 is a set of plots in which the capacity value of the air conditioning coil 5 is 50% and the absolute humidity of the supplied air is a reference value.
  • the boundary b2 is a set of plots in which the capacity value of the air conditioning coil 5 is 25% and the absolute humidity of the supply air is a reference value.
  • the boundary b3 is a set of plots in which the capacity value of the air conditioning coil 5 is 0% and the absolute humidity of the supply air is a reference value.
  • the room is not completely sealed, so the amount of safety factor (e.g., 1.2 times) is taken into account as the required humidification amount so as not to be below the reference humidity in consideration of the escape of indoor air. .
  • the temperature of the supply air into the room may increase excessively depending on the temperature and humidity conditions of the outside air. Is provided with an upper limit t max (for example, 30 ° C.), and when the temperature of the supply air exceeds the upper limit t max , temperature is prioritized over humidity.
  • t max for example, 30 ° C.
  • a temperature range in which the ability of the air conditioning coil 5 is changed in stages according to the outside air humidity a temperature range in which priority is given to prevention of lowering the blowing temperature over excessive humidification amount because the outside air temperature t is low
  • the temperature is divided into a temperature range in which priority is given to prevention of excessive supply temperature over humidification.
  • the temperature range in which the capacity of the air conditioning coil 5 is changed stepwise according to the outside air humidity is divided into four regions according to the capacity value of the air conditioning coil 5. That is, the map is divided so that a combination of a certain outside air temperature and outside air humidity is included in any one of zones (1) to (6).
  • Region (1) is a temperature range where priority is given to prevention of lowering of the blowing temperature over excessive humidification because the outside air temperature t is low, and is a region where t ⁇ t1.
  • the region (2) is a temperature range where priority is given to prevention of excessive supply temperature over the humidification amount because the outside air temperature t is high, and is a region where t2 ⁇ t.
  • Region (3) to region (6) are a temperature range in which the capacity of the air conditioning coil 5 is changed stepwise in accordance with the outside air humidity.
  • the region (3) is a region on the lower humidity side than t1 ⁇ t ⁇ t2 and the boundary b1.
  • the region (4) is a region surrounded by the boundaries b1 and b2 and t1 ⁇ t ⁇ t2.
  • the region (5) is a region surrounded by the boundaries b2 and b3 and t1 ⁇ t ⁇ t2.
  • the region (6) is a region on the higher humidity side than the boundary b3 with
  • Area (1) assumes a winter season when the outside air temperature is low, to prevent a decrease in comfort due to a drop in the air temperature after humidification, and to secure the necessary amount of humidification indoors with a small absolute amount of moisture in the outside air Therefore, humidification is performed by 100% operation without saving the capacity of the air conditioning coil 5 regardless of the relative humidity value.
  • the region (2) assumes an intermediate period in which the outside air temperature is high and the absolute amount of moisture held by the outside air is high, and in order to prevent the air temperature from being excessively increased by heating the air conditioning coil 5, Regardless of the value, the air-conditioning coil 5 is thermo-OFF to perform humidification.
  • the air conditioning coil 5 may be humidified with the capacity value set to 0% while the thermostat is ON.
  • the region (4) is an outside temperature / outside humidity region in which the blowing temperature does not exceed tmax and the required humidification amount can be satisfied even when the ability of the air conditioning coil 5 is 50%. Humidify as a percentage.
  • the region (5) is a region of the outside air temperature and outside air humidity in which the blowing temperature does not exceed tmax even if the ability of the air conditioning coil 5 is 25% and the required humidification amount can be satisfied, the ability of the air conditioning coil 5 is high. Is humidified at 25%.
  • the area (6) has a high outside air humidity and can satisfy the required humidification amount without operating the air conditioning coil 5, humidification is performed with the capacity of the air conditioning coil 5 set to 0%.
  • the control unit 14 stores the above map in a non-volatile storage device, and controls the air conditioning coil 5 based on this map during operation in the heating mode.
  • FIG. 4 is a flowchart showing a flow of control of the air conditioning coil 5 during operation in the heating mode.
  • the control unit 14 starts the operation of the ventilation air conditioner in the heating mode in step S1.
  • the control unit 14 performs initial determination of the region, and the air conditioning coil with a capability value (for example, 50% in the case of region (4)) corresponding to the region corresponding to the outside air temperature and outside air humidity at the time of executing step S1.
  • the air conditioning coil 5 is thermo-OFF.
  • step S3 step S2 to T A time (e.g.
  • step S3 / No the outside air temperature -Even if the area in which the outside air humidity exists changes, the capacity value is not changed, and the air conditioning coil 5 is not thermo-ON / OFF. And after a lapse T A time (step S3 / Yes), the transition from the initial state to the steady state.
  • step S4 the control unit 14.
  • the control unit 14 determines whether or not the outside air temperature and the outside air humidity have changed and changed from the current region to another region (whether or not the map boundary has been exceeded). When the change is detected, the process proceeds to step S6. When there is no change in the area, the control unit 14 holds the current area and the ability value.
  • step S6 the control unit 14 activates a timer for measuring the T B time (e.g. 30 minutes), the process proceeds to step S7.
  • step S7 the control unit 14 determines the elapsed time, after the lapse T B Time proceeds to (step S7 / Yes) step S8, if not elapsed T B Time to (step S7 / No) step S7 Return.
  • step S8 the control unit 14 changes to the ability value corresponding to the area immediately after the completion of the timer, clears the timer, and then returns to the control in step S4 for storing the area and the ability value corresponding thereto.
  • the capacity of the air conditioning coil is controlled in accordance with the outside air temperature and the outside air humidity, the amount of humidification is adjusted, and the amount of moisture in the air supplied to the room can be made substantially constant. Therefore, the amount of moisture in the supply air can be set to the target relative humidity when the room air reaches a predetermined temperature by a separately installed air conditioner or the like, and insufficient humidification or excessive humidification can be prevented. .
  • an upper limit temperature of the supply air to the room so as to be equal to or lower than the upper limit temperature, it is possible to prevent a separately installed indoor air conditioner from performing unnecessary cooling operation in winter, for example. .
  • the capacity value of the air conditioning coil is determined based on the outside air temperature and the outside air humidity, and humidification is performed while suppressing the heating capacity.
  • the operation is continued so that the supply air temperature blown into the room does not exceed a certain value, and the air conditioner operated indoors together with the ventilation air conditioner is also used in winter. Regardless, it is possible to prevent the cooling operation and to save energy.
  • the ventilation air conditioner operates the air conditioning coil and the humidifier while exchanging the total heat between the air sucked from the outside and supplied to the room and the air exhausted from the room to the outside with the total heat exchanger. It is possible to keep the heat and moisture supplied in the room without escaping to the outside, and to reduce the load on the air conditioning coil and the humidifier.
  • FIG. FIG. 5 is a top perspective view showing the configuration of the second embodiment of the ventilation air conditioner according to the present invention.
  • the present embodiment is different from the first embodiment in that an indoor humidity sensor 16 for measuring indoor humidity is provided between the exhaust inlet 10 from the indoor side and the total heat exchanger 4.
  • the ventilation air-conditioning apparatus forcibly stops and cancels the air-conditioning coil 5 and the humidifier 6 according to the indoor humidity by the indoor humidity sensor 16 in addition to the operation similar to the first embodiment.
  • FIG. 6 is a flowchart showing a flow of control of forced stop and release of the air conditioning coil 5 and the humidifier 6.
  • the ventilation air conditioner performs the control of FIG. 6 in parallel with the processing of steps S2 to S8 of the flowchart shown in FIG. For example, the control of FIG. 6 is performed between the steps S2 to S8 of FIG.
  • step S9 the control unit 14 determines whether or not the air-conditioning coil 5 and the humidifier 6 are forcibly stopped. If not forcibly stopped (No in step S9), the control unit 14 proceeds to step S10 and has been forcibly stopped. If (Yes at Step S9), the process proceeds to Step S12.
  • step S10 the control unit 14 compares the indoor humidity R measured by the indoor humidity sensor 16 with a preset set humidity RA (first threshold, for example, 45%). If the indoor humidity R is higher than the set humidity RA (step S10 / Yes), the process proceeds to step S11. If the indoor humidity R is equal to or lower than the set humidity RA (step S10 / No), the process is terminated.
  • a preset set humidity RA first threshold, for example, 45%
  • step S11 the control unit 14 determines that the humidification supply to the room is sufficient and forcibly stops the operation of the humidifier 6. At that time, the control unit 14 also forcibly stops the air conditioning coil 5 to turn off the thermo.
  • step S12 the control unit 14 compares the indoor humidity R measured by the indoor humidity sensor 16 with a preset set humidity R B (second threshold, for example, 35%). If the room humidity R is lower than the set humidity R B proceeds to (step S12 / Yes) Step S13, when the indoor humidity R is equal to or higher than the set humidity R B is terminated (step S12 / No) process.
  • a preset set humidity R B second threshold, for example, 35%
  • step S13 since the room temperature is low and humidification is required, the forced stop of the air conditioning coil 5 and the humidifier 6 is canceled, and the air conditioning coil 5 is operated to humidify and secure the humidification amount together with the operation of the humidifier 6. Drive at the same time.
  • the control unit 14 performs the control in FIG. 6 with priority over the control in FIG. For example, even if the measurement results of the outside air temperature sensor 11 and the outside air humidity sensor 12 correspond to any of the areas (1) and (3) to (5) on the map, the indoor humidity R measured by the indoor humidity sensor 16 is When it exceeds the set humidity RA , the operation is performed with the air conditioning coil 5 turned off. Conversely, if the indoor humidity R measured by the indoor humidity sensor 16 is less than the set humidity R B, pursuant to the region on the map by the measurement result of the outside air temperature sensor 11 and the outdoor air humidity sensor 12, and the air-conditioning coil 5 thermo ON Perform the operation.
  • a ventilation air conditioner can be used when the indoor air becomes excessively humidified, for example, by providing a humidifier separately in the room and humidifying it. Humidification of the supplied air at the air can be stopped, and the room humidity can be controlled appropriately. Further, by stopping the air conditioning coil when the humidifier is stopped, useless heating of the supplied air can be suppressed and an excessive increase in the room temperature can be prevented. In addition, by installing a total heat exchanger in the ventilation air conditioner, even when the humidifier or air conditioning coil is stopped, heat is exchanged between the outside air and room air, and air is blown out to the outside. Ventilation is possible without causing the discomfort resulting from.
  • the chamber is a heat exchange
  • the supply air temperature to be blown out that is, the temperature of the outdoor air that has passed through the total heat exchanger 4
  • the capacity is set to a predetermined level (for example, 25%) instead of forcibly stopping the air conditioning coil 5. ) May be prevented from lowering the temperature of the supply air blown into the room.
  • the indoor humidity sensor 16 is installed between the exhaust inlet 10 from the indoor side and the total heat exchanger 4, it may be installed in the indoor space actually used.
  • the ventilation air-conditioning apparatus is useful in that it can save the capacity of the air-conditioning coil and perform humidifying operation with energy saving when heating by the air-conditioning coil is unnecessary. It is suitable for configuring an air conditioning system by installing a separate air conditioner or humidifier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)
  • Central Air Conditioning (AREA)

Abstract

 排気空気から給気空気への熱回収が可能で、給気外気の温度・湿度に応じて室内への給気空気に対する加熱量及び加湿量を調整できる換気空調装置を得ること。 室外空気を吸い込んで給気空気として室内に給気する給気風路と、室内空気を吸い込んで室外へ排気する排気風路とを備えた本体ケーシング(1)と、給気風路と排気風路との間に配設されて本体ケーシング(1)に収容され、給気風路に吸い込まれた室外空気と排気風路に吸い込まれた室内空気との間で全熱交換を行う全熱交換器(4)と、室外空気の温度を測定する外気温度センサ(11)と、室外空気の湿度を測定する外気湿度センサ(12)と、給気空気を加熱する空調コイル(5)と、外気温度センサ(11)及び外気湿度センサ(12)の測定結果に基づいて、給気空気の絶対湿度が予め定められた値となるように空調コイル(5)を制御する制御部(14)とを有する。

Description

換気空調装置
 本発明は、室内の調湿をし、製品から吹出す空気温度を制御しながら換気を行う換気空調装置に関する。
 従来、外気温度センサで測定した温度に基づいて、運転モード(暖房と加湿とを組み合わせた運転、加湿のみの運転、除湿運転)を切り換える制御を行う調湿換気装置がある(例えば、特許文献1参照。)。
 また、外気温度と湿度とから運転モードを決定し、加湿要求が高いモードでは熱交換素子を通さない給気空気と、ヒートポンプ空調機、散水装置及び排気グリルを通じて排出される排気空気とを用いて、目標とする室内温度・湿度を満足させるものがある(例えば、特許文献2参照。)。
特開2000-97478号公報 国際公開第2009/011362号
 しかしながら、特許文献1に記載の従来の技術は、外気温度の測定結果のみに基づいて加湿運転するため、外気湿度が上昇した場合でも空調コイルの能力値を変更することができない。このため、暖房加湿運転時に室内へ必要以上の加湿を行ってしまい、室内が過剰に加湿されてしまうという問題があった。また、外気温度・湿度がともに高い状態で暖房加湿運転すると、室内へ吹出す給気温度も上昇してしまうため、室内温度も上昇してしまい、調湿換気装置が暖房運転しているにも関わらず、室内空間で共に運転される空調機が無駄な冷房運転をしてしまうという問題があった。
 また、特許文献2に記載された従来の技術は、加温・加湿された室内空気は熱回収されず排気グリルから直接排気されており、エネルギーロスが生じていた。また、低外気温時は、凝縮器のみで加湿量を十分確保できる温度まで生外気を加温しており、エネルギー負荷が生じていた。また、搭載している躯体内に搭載している熱交換素子は、暖房、加湿運転時には使用しておらず、冬季運転には非常にエネルギー負荷がかかるという問題があった。
 本発明は、上記に鑑みてなされたものであって、排気空気から給気空気への熱回収が可能で、給気外気の温度・湿度に応じて室内への給気空気に対する加熱量及び加湿量を調整できる換気空調装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するために、本発明は、室外空気を吸い込んで給気空気として室内に給気する給気風路と、室内空気を吸い込んで室外へ排気する排気風路とを備えたケーシングと、給気風路と排気風路との間に配設されてケーシングに収容され、給気風路に吸い込まれた室外空気と排気風路に吸い込まれた室内空気との間で全熱交換を行う全熱交換器と、室外空気の温度を測定する温度センサと、室外空気の湿度を測定する湿度センサと、給気空気を加熱する空調コイルと、温度センサ及び湿度センサの測定結果に基づいて、給気空気の絶対湿度が予め定められた値となるように空調コイルを制御する制御手段とを有することを特徴とする。
 本発明にかかる換気空調装置は、外気の温度・湿度に応じて空調コイルの加熱量を制御し、室内への給気空気に対する加湿量を調整することで加湿不足や過加湿を防止し、排気空気から給気空気への熱回収も行うことにより、省エネルギーで快適な換気を行うことができるという効果を奏する。
図1は、本発明にかかる換気空調装置の実施の形態1の構成を示す上面透視図である。 図2は、本発明にかかる換気空調装置の実施の形態1の構成を示す側断面図である。 図3は、外気温度センサ及び外気湿度センサの測定値に応じて制御される換気空調装置の空調コイルの能力値を外気温度・外気湿度でゾーン分けしたマップの一例を示す図である。 図4は、暖房モードでの運転時の空調コイルの制御の流れを示すフローチャートである。 図5は、本発明にかかる換気空調装置の実施の形態2の構成を示す上面透視図である。 図6は、空調コイル及び加湿器の強制停止及び解除の制御の流れを示すフローチャートである。
 以下に、本発明にかかる換気空調装置の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。
実施の形態1.
 図1、2は、本発明にかかる換気空調装置の実施の形態1の構成を示す図である。図1は上面透視図であり、図2は図1におけるII-II断面の断面図である。この換気空調装置は、本体ケーシング1、排気用送風機2、給気用送風機3、全熱交換器4、空調コイル5、加湿器6、排気吹出口7、給気吹出口8、給気吸込口9、排気吸込口10、外気温度センサ11、外気湿度センサ12、制御部14及びリモコン15を有する。
 換気空調装置は、室内側と室外側とにそれぞれ吹出口と吸込口とを一組ずつ(給気吹出口8、排気吸込口10と排気吹出口7、給気吸込口9)設け、室外側の給気吸込口9と室内側の給気吹出口8とを連通させる給気風路と、室内側の排気吸込口10と室外側の排気吹出口7とを連通させる排気風路とを形成し、本体ケーシング1で覆っている箱体構造である。
 給気用送風機3は、給気風路に組み込まれており給気流を形成する。排気用送風機2は、排気風路に組み込まれており排気流を形成する。全熱交換器4は、給気風路と排気風路との間に配設され給気流(室外空気)と排気流(室内空気)との間で連続的に全熱交換を行い、室外空気を給気空気とし、室内空気を排気空気とする。給気風路内の給気吹出口8手前には加湿器6が設けられ、給気用送風機3と加湿器6との間には給気空気を加熱し加湿量確保を目的とした空調コイル5が設けられている。
 また、空調コイル5及び加湿器6が配置された加湿風路部20は、箱体内部の給気用送風機3の上下方向に分割して配置された加湿風路上部21と加湿風路下部22とで構成されている。加湿風路上部21は発泡樹脂で空調コイル5及び加湿器6を覆う形に形成されている。加湿風路下部22は発泡樹脂製のドレン皿を備え、ドレン皿の水受け表面にプラスチック材を同時成形させ、発泡樹脂への浸水を防いだ構造体として形成されている。加湿風路上部21と加湿風路下部22とは、上下方向で嵌め合い構造となっており、一体となって加湿風路部20を形成する。
 全熱交換器4においては、排気流を通す一次側風路と給気流を通す二次側風路とは内部において垂直に交差している。これにより、給気流と排気流との間で全熱が交換され、熱交換換気を行うことができる。
 また、換気空調装置は、換気動作を制御する制御部14と、動作モードの切り替え操作などを受け付けるリモコン15とを備えている。制御部14は、CPUやRAMなどに加え、後述するマップを不揮発に記憶する装置(NVRAMなど)を備えている。
 室外側の給気吸込口9と全熱交換器4との間には、外気の温度・湿度を計測する外気温度センサ11及び外気湿度センサ12が設けられている。制御部14は、外気温度センサ11及び外気湿度センサ12の測定結果(温度情報及び湿度情報)に基づいて空調コイル5の加熱能力を決定する。全熱交換器4を通過した空気は、空調コイル5によって加熱される。空調コイル5にて加熱された空気は加湿器6を通過し、加湿された空気となって給気吹出口8から室内へ供給される。その際、空調コイル5での加熱量によって加湿量及び吹出し温度が調整される。
 換気空調装置から室内へ吹出された給気空気は、室内空気と混合された後、別途設置されている空調機へ吸い込まれ、空調機によって室内の温度調節が行われる。すなわち、換気空調装置は、室内の空調機との間で、換気空調装置が換気及び加湿を主に担い、空調機は主に温度調整を担うように役割を分担している。したがって、換気空調装置での給気空気の加湿量は、空調機の室温設定温度の基準値tstandrad(例えば22℃)の時に相対湿度が基準値(例えば40%)となるような水分量を含有するように調節することが必要である。
 図3は、外気温度センサ11及び外気湿度センサ12の測定値に応じて制御される換気空調装置の空調コイル5の能力値を外気温度・外気湿度でゾーン分けしたマップの一例を示す図である。このマップは室内への給気空気に含まれる水分量が基準値(例えば、22℃での相対湿度40%に相当する絶対湿度0.0066kg/kg(DA))になるように空調コイル5の能力を制御して加湿するとともに、給気空気の温度が30℃以上になってしまう場合には加湿よりも温度調節を優先して30℃を超えないように空調コイル5の能力を制御するように構成されている。
 さらに詳細を説明すると、図3に示すマップは、予め設定されている室内温度・室内湿度の基準値(例えば22℃、40%)を基にして、予め測定して求めてある全熱交換器4の全熱交換効率を用いて、全熱交換器4で全熱交換された後の室外空気の温度・湿度を外気温度・外気湿度ごとに計算し、全熱交換後の室外空気の温度・湿度と室内温度・室内湿度の基準値(例えば、22℃、40%の絶対湿度0.0066kg/kg(DA))とを比較して、給気吹出口8から室内に給気される給気空気の絶対湿度が基準値(例えば、0.0066kg/kg(DA))に近づくように空調コイル5の能力値を求めてプロットすることにより作成されている。
 なお、t1及びt2は、給気空気の温度の上限tmaxと室内温度の基準値tstandradとに基づいて設定される。給気空気の温度の上限tmaxが30℃、かつ室内温度の基準値が22℃である場合には、外気湿度が高くても吹出し温度がtmaxを超えないt1=5℃程度、また空調コイル5が運転していない状態でも全熱交換器4による温度交換で吹出し温度が室内温度の基準値tstandard(例えば22℃)に近づくt2=21℃程度が最も良い。
 図3において、境界b1は、空調コイル5の能力値が50%で給気空気の絶対湿度が基準値となるプロットの集合である。境界b2は、空調コイル5の能力値が25%で給気空気の絶対湿度が基準値となるプロットの集合である。境界b3は、空調コイル5の能力値が0%で給気空気の絶対湿度が基準値となるプロットの集合である。このとき室内が完全に密閉されているわけではないことから室内空気の逃げ分を考慮して基準湿度以下にならないよう、安全係数(例えば1.2倍)を加味した量を必要加湿量としている。また、加湿量を得るために空調コイル5の能力を制御すると、外気の温度・湿度の条件によっては室内への給気空気の温度が上昇し過ぎてしまう場合があるため、給気空気の温度に上限tmax(例えば30℃)を設けて、給気空気の温度が上限tmaxを超える場合には湿度よりも温度を優先させるようにしてある。
 マップの具体的なゾーンとしては、外気湿度に応じて空調コイル5の能力を段階的に変化させる温度範囲、外気温度tが低いために加湿量過多よりも吹出し温度低下防止を優先する温度範囲、及び外気温度tが高いために加湿量よりも供給温度過昇防止を優先する温度範囲に分けられている。さらに、外気湿度に応じて空調コイル5の能力を段階的に変化させる温度範囲は、空調コイル5の能力値によって四つの領域に分けられている。すなわち、マップは、ある外気温度及び外気湿度の組み合わせが領域(1)~領域(6)のいずれかのゾーンに含まれるように分けられている。
 領域(1)は、外気温度tが低いために加湿量過多よりも吹出し温度低下防止を優先する温度範囲であり、t<t1の領域である。領域(2)は、外気温度tが高いために加湿量よりも供給温度過昇防止を優先する温度範囲であり、t2≦tの領域である。領域(3)~領域(6)は、外気湿度に応じて空調コイル5の能力を段階的に変化させる温度範囲である。領域(3)は、t1≦t<t2、かつ、境界b1よりも低湿度側の領域である。領域(4)は、t1≦t<t2、かつ、境界b1及びb2で囲まれる領域である。領域(5)は、t1≦t<t2、かつ、境界b2及びb3で囲まれる領域である。領域(6)は、t1≦t<t2、かつ、境界b3よりも高湿度側の領域である。
 領域(1)は、外気温度が低い冬季を想定しており、加湿後の吹出し温度低下による快適感低下を防ぐため、また外気が保有する水分の絶対量が少なく室内への必要加湿量を確保する必要があるため、相対湿度の値に関わらず空調コイル5の能力にセーブをかけず100%運転による加湿を行う。
 領域(2)は、外気温度が高く外気が保有する水分の絶対量が多い中間期を想定しており、空調コイル5の加熱によって吹出し温度が過昇してしまうことを防ぐため、相対湿度の値に関わらず空調コイル5をサーモOFFして加湿を行う。なお、空調コイル5はサーモONのまま能力値を0%として加湿を行っても良い。
 領域(3)においては外気が保有している水分量が低いため、空調コイル5の能力を100%運転で空気を加熱した後に加湿運転を行う。
 外気温度・湿度が高くなるにつれ外気が保有している水分量が多くなるため、空調コイル5の運転能力が高くなくても必要加湿量を満足する運転が可能となる。領域(4)は、空調コイル5の能力が50%においても吹出し温度がtmaxを超えず、かつ必要加湿量を満足できる外気温度・外気湿度の領域であるため、空調コイル5の能力を50%として加湿を行う。同様に、領域(5)は、空調コイル5の能力が25%でも吹出し温度がtmaxを超えず、かつ必要加湿量を満足できる外気温度、外気湿度の領域であるため、空調コイル5の能力を25%として加湿を行う。また、領域(6)は、外気湿度が高く、空調コイル5を運転しなくても必要加湿量を満足できる領域であるため、空調コイル5の能力を0%として加湿を行う。
 制御部14は、上記のマップを不揮発記憶装置に記憶しており、暖房モードでの運転時にはこのマップに基づいて空調コイル5の制御を行う。
 図4は、暖房モードでの運転時の空調コイル5の制御の流れを示すフローチャートである。リモコン15を介した操作により動作モードとして暖房モードが選択されると、ステップS1で制御部14は暖房モードでの換気空調装置の運転を開始する。そしてステップS2では制御部14は領域の初期判定を行い、ステップS1を実行時の外気温度・外気湿度に該当する領域に対応する能力値(例えば、領域(4)ならば50%)で空調コイル5を運転する。ただし、領域(2)に該当する場合は空調コイル5をサーモOFFさせる。ここで、初期運転時の立ち上がりにおける挙動不安定を無視するため、ステップS3ではステップS2の制御を行ってからT時間(例えば30分)が経過するまでは(ステップS3/No)、外気温度・外気湿度が存在する領域が変化しても能力値を変更したり、空調コイル5のサーモON/OFFは行わない。そしてT時間経過した後(ステップS3/Yes)、初期状態から定常状態へ移行する。
 定常状態へ移行した後、ステップS4でT時間経過した時点での領域を制御部14に記憶させる。領域(2)以外に該当する場合は、対応する能力値も制御部14に記憶させ、その能力値で制御を行う。ステップS5では、制御部14は、外気温度・外気湿度が変化して現在の領域から別の領域に変化したか否か(マップ境界を越えたか否か)を判断する。変化を検知したときは、ステップS6へ進み、領域に変化が無い場合は制御部14は現在の領域及び能力値を保持する。ステップS6では、制御部14はT時間(例えば30分)を計測するタイマを発動し、ステップS7へと進む。領域が変化した直後、外気温度・外気湿度は領域の境界付近に存在するため、領域のチャタリングを防止する目的で、制御部14はタイマ発動中はステップS4で記憶させたタイマ発動前の能力値にて空調コイル5を運転する。そして、ステップS7では制御部14は時間経過を判定し、T時間経過したら(ステップS7/Yes)ステップS8へ進み、T時間経過していない場合は(ステップS7/No)ステップS7へと戻る。ステップS8では制御部14は、タイマ完了直後の領域に対応する能力値に変更し、タイマをクリアさせた後、領域とそれに対応する能力値とを記憶させるステップS4の制御へと戻る。
 以上の制御を行うことで、外気温度・外気湿度に応じて空調コイルの能力を制御し、加湿量を調整し室内への給気空気中の水分量を概ね一定にできる。したがって、給気空気中の水分量を、別途設置されている空調機などにより室内空気が所定の温度になったときに目標とする相対湿度にすることができ、加湿不足や過加湿を防止できる。
 また、室内への給気空気の上限温度を設け、上限温度以下になるようにすることで、別途設置されている室内の空調機が例えば冬季に無駄に冷房運転をしてしまうことを防止できる。
 このように、本実施の形態によれば、外気温度・外気湿度に基づいて空調コイルの能力値を決定し、加熱能力を抑えながら加湿を行う。これにより、室内への供給加湿量を確保しつつ、室内へ吹出す給気温度が一定値を超えないように運転を継続させるとともに、換気空調装置と共に室内で運転される空調機が冬季にも関わらず冷房運転してしまうことを防止でき、省エネルギーを実現できる。
 また、室外から吸い込まれ室内へ給気される空気と、室内から室外へ排気される空気とを全熱交換器にて全熱交換しながら空調コイル及び加湿器の運転を行うため、換気空調装置で供給した熱及び水分を室外へ逃がすことなく室内に留めることができ、空調コイル及び加湿器の負荷を軽減できる。
実施の形態2.
 図5は、本発明にかかる換気空調装置の実施の形態2の構成を示す上面透視図である。本実施の形態においては、室内側からの排気吸込口10と全熱交換器4との間に室内湿度を測定するための室内湿度センサ16を備える点で実施の形態1と相違する。
 本実施の形態にかかる換気空調装置は、実施の形態1と同様の動作に加え、室内湿度センサ16による室内の湿度によって空調コイル5及び加湿器6の強制停止及び解除を行う。
 図6は、空調コイル5及び加湿器6の強制停止及び解除の制御の流れを示すフローチャートである。換気空調装置は暖房モードでの運転が開始されると、図4に示したフローチャートのステップS2~S8の処理と並行して図6の制御を行う。例えば、図4のステップS2~S8の各ステップ間に図6の制御を行う。
 ステップS9において、制御部14は、空調コイル5及び加湿器6が強制停止されているか否かを判断し、強制停止されていなければ(ステップS9/No)ステップS10へ進み、強制停止されていれば(ステップS9/Yes)ステップS12へ進む。ステップS10では、制御部14は、室内湿度センサ16で測定された室内湿度Rと予め設定されている設定湿度R(第1の閾値、例えば45%)とを比較する。室内湿度Rが設定湿度Rよりも高い場合は(ステップS10/Yes)ステップS11へ進み、室内湿度Rが設定湿度R以下の場合は(ステップS10/No)処理を終了する。ステップS11では、制御部14は室内への加湿供給が十分であると判断し、加湿器6の運転を強制停止させる。その際、制御部14は、空調コイル5も強制停止させてサーモOFFさせる。ステップS12では、制御部14は、室内湿度センサ16で測定された室内湿度Rと予め設定されている設定湿度R(第2の閾値、例えば35%)とを比較する。室内湿度Rが設定湿度Rよりも低い場合は(ステップS12/Yes)ステップS13へ進み、室内湿度Rが設定湿度R以上の場合は(ステップS12/No)処理を終了する。ステップS13では、室温が低く加湿が要求される状態であるため、空調コイル5及び加湿器6の強制停止を解除し、加湿器6の運転とともに、加湿し加湿量を確保するために空調コイル5も同時に運転する。
 制御部14は、図6の制御を図4の制御に優先して行う。例えば、外気温度センサ11及び外気湿度センサ12の測定結果がマップ上で領域(1)、(3)~(5)のいずれかに該当するとしても、室内湿度センサ16で測定した室内湿度Rが設定湿度Rを超える場合は、空調コイル5をOFFとした運転を行う。逆に、室内湿度センサ16で測定した室内湿度Rが設定湿度R未満の場合は、外気温度センサ11及び外気湿度センサ12の測定結果によるマップ上の領域に則り、空調コイル5をサーモONとした運転を行う。
 以上の制御を行うことで、実施の形態1と同様の効果が得られるとともに、例えば室内に別途加湿器が設けられて加湿されるなどして室内空気が過加湿になった場合に換気空調装置での給気空気への加湿を停止することができ、室内湿度を適切に制御できる。また、加湿器停止時に空調コイルも停止させることで給気空気の無駄な加熱を抑え、室内温度の過昇を防ぐことができる。また、換気空調装置の中に全熱交換器を搭載することで、加湿器や空調コイルの停止時も外気と室内空気とで熱交換させて室外に空気が吹出されるため、生外気による冷風から生じる不快感を発生させずに換気が可能となる。
 なお、外気温度と室内温度とから全熱交換器4通過後の温度tを算出し、室内湿度がRに達し空調コイル5及び加湿器6が停止する条件時、熱交換されて室内へ吹出す給気温度(即ち全熱交換器4を通過した室外空気の温度)が低い場合(例えばt=10℃)は空調コイル5を強制停止させる代わりに能力を所定のレベル(例えば25%)に低下させることで室内へ吹出す給気空気の温度の低下を防止しても良い。
 ここでは室内湿度センサ16は、室内側からの排気吸込口10と全熱交換器4との間に設置されたが、実際に使用する室内空間に設置しても良い。
 また、換気空調装置から吹出される給気空気を室内に別途設置した空調機に直接吸い込ませる場合、冬季暖房期に給気空気の温度が高いと、室内の空調機がサーモOFFしたり、自動的に冷房運転に切り替わって換気空調装置で加湿した空気を除湿してしまう恐れがあるが、空調コイル5を停止させることで給気空気の温度が低いままとなるため、空調機は暖房運転を安定して継続できる。
 以上のように、本発明にかかる換気空調装置は、空調コイルによる加熱が不要な場合に積極的に空調コイルの能力をセーブして省エネルギーで加湿運転を行える点で有用であり、特に、室内に別途空調機や加湿器を設置して空調システムを構成するのに適している。
 1 本体ケーシング
 2 排気用送風機
 3 給気用送風機
 4 全熱交換器
 5 空調コイル
 6 加湿器
 7 排気吹出口
 8 給気吹出口
 9 給気吸込口
 10 排気吸込口
 11 外気温度センサ
 12 外気湿度センサ
 14 制御部
 15 リモコン
 16 室内湿度センサ

Claims (6)

  1.  室外空気を吸い込んで給気空気として室内に給気する給気風路と、室内空気を吸い込んで室外へ排気する排気風路とを備えたケーシングと、
     前記給気風路と前記排気風路との間に配設されて前記ケーシングに収容され、前記給気風路に吸い込まれた前記室外空気と前記排気風路に吸い込まれた前記室内空気との間で全熱交換を行う全熱交換器と、
     前記室外空気の温度を測定する温度センサと、
     前記室外空気の湿度を測定する湿度センサと、
     前記給気空気を加熱する空調コイルと、
     前記温度センサ及び前記湿度センサの測定結果に基づいて、前記給気空気の絶対湿度が予め定められた値となるように前記空調コイルを制御する制御手段とを有することを特徴とする換気空調装置。
  2.  前記室外空気の温度及び湿度の組み合わせと、前記空調コイルの能力値とが関連付けられた参照データを格納する手段を有し、
     前記制御手段は、前記温度センサ及び前記湿度センサの測定結果に対応する前記空調コイルの能力値を前記参照データに基づいて取得し、取得した能力値に応じた能力で前記空調コイルを駆動することを特徴とする請求項1記載の換気空調装置。
  3.  前記参照データは、
     前記室外空気の温度が第1の温度未満の場合には前記室外空気の湿度に関わらず前記能力値として100%が関連付けられ、
     前記室外空気の温度が前記第1の温度よりも高温の第2の温度以上の場合には前記室外空気の湿度に関わらず前記能力値として0%が関連付けられ、
     前記室外空気の温度が前記第1の温度以上前記第2の温度未満の場合には、0~100%の間で予め段階的に設定されている複数の能力値のいずれかが、前記室外空気の湿度が高いほど値が低い能力値と対応するように関連付けられていることを特徴とする請求項2記載の換気空調装置。
  4.  前記室内空気の湿度を測定する室内湿度センサを有し、
     前記制御手段は、前記室内湿度センサの測定値が予め定められた第1の閾値を超えた場合には、前記空調コイルを強制停止させ、前記室内湿度センサの測定値が前記第1の閾値よりも小さい第2の閾値を下回った場合は、前記空調コイルの強制停止を解除することを特徴とする請求項3記載の換気空調装置。
  5.  前記室内空気の湿度を測定する室内湿度センサを有し、
     前記制御手段は、前記室内湿度センサの測定値が予め定められた第1の閾値を超えた場合には、前記空調コイルの能力値を低下させ、前記室内湿度センサの測定値が前記第1の閾値よりも小さい第2の閾値を下回った場合は、前記空調コイルの能力値の低下を解除することを特徴とする請求項3記載の換気空調装置。
  6.  前記給気空気を加湿する加湿器を有し、
     前記制御手段は、前記室内湿度センサの測定値が前記第1の閾値を超えた場合には、前記加湿器を強制停止させ、前記室内湿度センサの測定値が前記第2の閾値を下回った場合は、前記加湿器の強制停止を解除することを特徴とする請求項4又は5記載の換気空調装置。
PCT/JP2010/072038 2010-12-08 2010-12-08 換気空調装置 WO2012077201A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201090001633XU CN203323307U (zh) 2010-12-08 2010-12-08 换气空调装置
EP10860541.1A EP2650617B1 (en) 2010-12-08 2010-12-08 Ventilation and air-conditioning device
PCT/JP2010/072038 WO2012077201A1 (ja) 2010-12-08 2010-12-08 換気空調装置
JP2012547632A JP5535336B2 (ja) 2010-12-08 2010-12-08 換気空調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/072038 WO2012077201A1 (ja) 2010-12-08 2010-12-08 換気空調装置

Publications (1)

Publication Number Publication Date
WO2012077201A1 true WO2012077201A1 (ja) 2012-06-14

Family

ID=46206720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072038 WO2012077201A1 (ja) 2010-12-08 2010-12-08 換気空調装置

Country Status (4)

Country Link
EP (1) EP2650617B1 (ja)
JP (1) JP5535336B2 (ja)
CN (1) CN203323307U (ja)
WO (1) WO2012077201A1 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968464A (zh) * 2014-05-14 2014-08-06 金洪文 空调型新风换气机
JP2015143595A (ja) * 2014-01-31 2015-08-06 ダイキン工業株式会社 換気装置および空気調和機
JP2015172472A (ja) * 2014-03-12 2015-10-01 三菱電機株式会社 空調用換気装置
WO2016002073A1 (ja) * 2014-07-04 2016-01-07 三菱電機株式会社 換気装置
WO2016002071A1 (ja) * 2014-07-04 2016-01-07 三菱電機株式会社 空調換気装置
WO2016002072A1 (ja) * 2014-07-04 2016-01-07 三菱電機株式会社 換気装置
WO2016046982A1 (ja) * 2014-09-26 2016-03-31 三菱電機株式会社 除湿装置
CN106051924A (zh) * 2016-07-20 2016-10-26 苏州新区枫桥净化设备有限公司 一种室内空气净化装置
CN106091122A (zh) * 2016-07-20 2016-11-09 苏州新区枫桥净化设备有限公司 一种智能型室内净化***
KR20170079960A (ko) * 2015-12-31 2017-07-10 엘지전자 주식회사 공기조화기 및 그 제어방법
WO2017212562A1 (ja) * 2016-06-08 2017-12-14 三菱電機株式会社 空気調和システム
JP2019163901A (ja) * 2018-03-20 2019-09-26 パナソニックIpマネジメント株式会社 換気装置
JP2020143875A (ja) * 2019-03-08 2020-09-10 三菱電機株式会社 熱交換換気システム
JP2020159595A (ja) * 2019-03-26 2020-10-01 パナソニックIpマネジメント株式会社 調湿機能付き熱交換形換気装置
WO2021028964A1 (ja) * 2019-08-09 2021-02-18 三菱電機株式会社 熱交換型換気装置
WO2021192657A1 (ja) * 2020-03-27 2021-09-30 パナソニックIpマネジメント株式会社 加湿機能付き熱交換形換気装置
JPWO2021229687A1 (ja) * 2020-05-12 2021-11-18
CN114396661A (zh) * 2021-12-09 2022-04-26 徐州新风空调设备有限公司 一体化全新风空调
CN114935168A (zh) * 2022-05-23 2022-08-23 浙江国特空调设备有限公司 一种茶艺专用发酵空调机组

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107228465B (zh) * 2016-03-23 2021-08-27 广东松下环境***有限公司 全热交换装置和全热交换装置的控制方法
US10928093B2 (en) 2016-12-13 2021-02-23 Mitsubishi Electric Corporation Heat exchange ventilator
WO2019024460A1 (zh) * 2017-08-04 2019-02-07 广东美的制冷设备有限公司 用于空调器的空气处理装置及空调室内机、室外机
WO2019024452A1 (zh) * 2017-08-04 2019-02-07 广东美的制冷设备有限公司 用于空调器的空气处理装置、空调室内机及空调室外机
CN111201405B (zh) * 2017-10-19 2021-08-03 三菱电机株式会社 热交换换气装置
US10767878B2 (en) * 2017-11-21 2020-09-08 Emerson Climate Technologies, Inc. Humidifier control systems and methods
CN108534291A (zh) * 2018-04-24 2018-09-14 深圳市缔诺科技有限公司 一种自动调节的风机和方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097478A (ja) 1998-09-18 2000-04-04 Daikin Ind Ltd 調湿換気装置
JP2002317990A (ja) * 2001-04-18 2002-10-31 Daikin Ind Ltd 調湿換気装置
JP2004069222A (ja) * 2002-08-08 2004-03-04 Matsushita Ecology Systems Co Ltd 換気調湿装置
JP2008309381A (ja) * 2007-06-13 2008-12-25 Mitsubishi Electric Corp 熱交換換気装置
JP2009287861A (ja) * 2008-05-30 2009-12-10 Panasonic Corp 加湿換気装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003166731A (ja) * 2001-11-30 2003-06-13 Seibu Giken Co Ltd 除湿空調装置
JP2004245552A (ja) * 2003-02-17 2004-09-02 Sumitomo Electric Ind Ltd 空調制御方法及び空調制御装置
JP2006105423A (ja) * 2004-09-30 2006-04-20 Max Co Ltd 換気装置及び建物
JP2007232331A (ja) * 2006-03-03 2007-09-13 Sumitomo Electric Ind Ltd 空調制御方法及び空調制御装置
JP4948070B2 (ja) * 2006-07-28 2012-06-06 三機工業株式会社 空調制御方法および空気調和機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000097478A (ja) 1998-09-18 2000-04-04 Daikin Ind Ltd 調湿換気装置
JP2002317990A (ja) * 2001-04-18 2002-10-31 Daikin Ind Ltd 調湿換気装置
JP2004069222A (ja) * 2002-08-08 2004-03-04 Matsushita Ecology Systems Co Ltd 換気調湿装置
JP2008309381A (ja) * 2007-06-13 2008-12-25 Mitsubishi Electric Corp 熱交換換気装置
JP2009287861A (ja) * 2008-05-30 2009-12-10 Panasonic Corp 加湿換気装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2650617A4

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015143595A (ja) * 2014-01-31 2015-08-06 ダイキン工業株式会社 換気装置および空気調和機
JP2015172472A (ja) * 2014-03-12 2015-10-01 三菱電機株式会社 空調用換気装置
CN103968464A (zh) * 2014-05-14 2014-08-06 金洪文 空调型新风换气机
US10203122B2 (en) 2014-07-04 2019-02-12 Mitsubishi Electric Corporation Air-conditioning and ventilation apparatus
JPWO2016002072A1 (ja) * 2014-07-04 2017-04-27 三菱電機株式会社 換気装置
WO2016002071A1 (ja) * 2014-07-04 2016-01-07 三菱電機株式会社 空調換気装置
WO2016002072A1 (ja) * 2014-07-04 2016-01-07 三菱電機株式会社 換気装置
WO2016002073A1 (ja) * 2014-07-04 2016-01-07 三菱電機株式会社 換気装置
US20170159964A1 (en) * 2014-07-04 2017-06-08 Mitsubishi Electric Corporation Ventilation device
US20170097165A1 (en) * 2014-07-04 2017-04-06 Mitsubishi Electric Corporation Ventilation device
JPWO2016002073A1 (ja) * 2014-07-04 2017-04-27 三菱電機株式会社 換気装置
JPWO2016002071A1 (ja) * 2014-07-04 2017-04-27 三菱電機株式会社 空調換気装置
WO2016046982A1 (ja) * 2014-09-26 2016-03-31 三菱電機株式会社 除湿装置
US10393393B2 (en) 2014-09-26 2019-08-27 Mitsubishi Electric Corporation Dehumidifier
GB2545114A (en) * 2014-09-26 2017-06-07 Mitsubishi Electric Corp Dehumidifying device
GB2545114B (en) * 2014-09-26 2020-06-17 Mitsubishi Electric Corp Dehumidifier
KR20170079960A (ko) * 2015-12-31 2017-07-10 엘지전자 주식회사 공기조화기 및 그 제어방법
KR102396681B1 (ko) 2015-12-31 2022-05-12 엘지전자 주식회사 공기조화기 및 그 제어방법
WO2017212562A1 (ja) * 2016-06-08 2017-12-14 三菱電機株式会社 空気調和システム
JPWO2017212562A1 (ja) * 2016-06-08 2019-01-24 三菱電機株式会社 空気調和システム
CN106051924A (zh) * 2016-07-20 2016-10-26 苏州新区枫桥净化设备有限公司 一种室内空气净化装置
CN106091122A (zh) * 2016-07-20 2016-11-09 苏州新区枫桥净化设备有限公司 一种智能型室内净化***
JP2019163901A (ja) * 2018-03-20 2019-09-26 パナソニックIpマネジメント株式会社 換気装置
WO2019181146A1 (ja) * 2018-03-20 2019-09-26 パナソニックIpマネジメント株式会社 換気装置
JP2020143875A (ja) * 2019-03-08 2020-09-10 三菱電機株式会社 熱交換換気システム
JP7170562B2 (ja) 2019-03-08 2022-11-14 三菱電機株式会社 熱交換換気システム
JP2020159595A (ja) * 2019-03-26 2020-10-01 パナソニックIpマネジメント株式会社 調湿機能付き熱交換形換気装置
JP7429835B2 (ja) 2019-03-26 2024-02-09 パナソニックIpマネジメント株式会社 調湿機能付き熱交換形換気装置
WO2021028964A1 (ja) * 2019-08-09 2021-02-18 三菱電機株式会社 熱交換型換気装置
JPWO2021028964A1 (ja) * 2019-08-09 2021-11-25 三菱電機株式会社 熱交換型換気装置
CN114174728A (zh) * 2019-08-09 2022-03-11 三菱电机株式会社 热交换型换气装置
JP7146099B2 (ja) 2019-08-09 2022-10-03 三菱電機株式会社 熱交換型換気装置
WO2021192657A1 (ja) * 2020-03-27 2021-09-30 パナソニックIpマネジメント株式会社 加湿機能付き熱交換形換気装置
WO2021229687A1 (ja) * 2020-05-12 2021-11-18 三菱電機株式会社 加熱制御装置及び加熱制御プログラム
JPWO2021229687A1 (ja) * 2020-05-12 2021-11-18
JP7305043B2 (ja) 2020-05-12 2023-07-07 三菱電機株式会社 加熱制御装置及び加熱制御プログラム
CN114396661A (zh) * 2021-12-09 2022-04-26 徐州新风空调设备有限公司 一体化全新风空调
CN114935168A (zh) * 2022-05-23 2022-08-23 浙江国特空调设备有限公司 一种茶艺专用发酵空调机组
CN114935168B (zh) * 2022-05-23 2023-07-11 浙江国特空调设备有限公司 一种茶艺专用发酵空调机组

Also Published As

Publication number Publication date
CN203323307U (zh) 2013-12-04
EP2650617B1 (en) 2018-08-15
JP5535336B2 (ja) 2014-07-02
JPWO2012077201A1 (ja) 2014-05-19
EP2650617A4 (en) 2014-08-06
EP2650617A1 (en) 2013-10-16

Similar Documents

Publication Publication Date Title
JP5535336B2 (ja) 換気空調装置
US10422546B2 (en) Air conditioner
JP6300921B2 (ja) 空調換気装置
EP2581675B1 (en) Ventilation and air-conditioning apparatus and method for controlling same
JP6884799B2 (ja) 熱交換型換気装置
JP6234574B2 (ja) 換気装置
US20170159964A1 (en) Ventilation device
EP2309196B1 (en) Ventilation device
JP6253459B2 (ja) 空調用換気装置
GB2516336A (en) Air-conditioning apparatus
JP2013047603A (ja) 空調システム
JP2007187334A (ja) 空気調和機
JP5217701B2 (ja) 空調システム
KR102448714B1 (ko) 공기조화기 및 공기조화기의 제어방법
US20220333805A1 (en) Heat exchange ventilator
JP4675075B2 (ja) 空気調和装置及び空気調和装置の制御方法
JPWO2020065929A1 (ja) 熱交換換気装置
JP7292245B2 (ja) 熱交換型換気装置
JP2005282949A (ja) 空気調和装置
CN115335643A (zh) 换气空气调节***
WO2019181146A1 (ja) 換気装置
JPH0914689A (ja) 下部吹出空調機の改良と空調設計・運転の方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201090001633.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10860541

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012547632

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010860541

Country of ref document: EP