WO2012073584A1 - 不飽和カルボン酸製造用触媒および該触媒を用いる不飽和カルボン酸の製造方法 - Google Patents

不飽和カルボン酸製造用触媒および該触媒を用いる不飽和カルボン酸の製造方法 Download PDF

Info

Publication number
WO2012073584A1
WO2012073584A1 PCT/JP2011/071804 JP2011071804W WO2012073584A1 WO 2012073584 A1 WO2012073584 A1 WO 2012073584A1 JP 2011071804 W JP2011071804 W JP 2011071804W WO 2012073584 A1 WO2012073584 A1 WO 2012073584A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
active component
average fiber
unsaturated carboxylic
catalytically active
Prior art date
Application number
PCT/JP2011/071804
Other languages
English (en)
French (fr)
Inventor
俊哉 西口
Original Assignee
株式会社日本触媒
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日本触媒 filed Critical 株式会社日本触媒
Priority to CN201180058222.3A priority Critical patent/CN103228356B/zh
Priority to US13/990,513 priority patent/US8940658B2/en
Priority to JP2012546725A priority patent/JP5628936B2/ja
Priority to EP11844503.0A priority patent/EP2647429B1/en
Publication of WO2012073584A1 publication Critical patent/WO2012073584A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/20Carbon compounds
    • B01J27/22Carbides
    • B01J27/224Silicon carbide
    • B01J27/228Silicon carbide with phosphorus, arsenic, antimony or bismuth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/28Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/88Molybdenum
    • B01J23/887Molybdenum containing in addition other metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/8877Vanadium, tantalum, niobium or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/85Chromium, molybdenum or tungsten
    • B01J23/888Tungsten
    • B01J23/8885Tungsten containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/23Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups
    • C07C51/235Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of oxygen-containing groups to carboxyl groups of —CHO groups or primary alcohol groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/25Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring
    • C07C51/252Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of unsaturated compounds containing no six-membered aromatic ring of propene, butenes, acrolein or methacrolein
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present invention relates to an unsaturated carboxylic acid production catalyst, and more particularly to a suitable catalyst for producing an unsaturated carboxylic acid by catalytic gas phase oxidation of an unsaturated aldehyde or saturated hydrocarbon in the presence of molecular oxygen.
  • the present invention also relates to a method for producing an unsaturated carboxylic acid using this catalyst.
  • Unsaturated carboxylic acids such as acrylic acid and methacrylic acid are industrially important as raw materials for various synthetic resins, paints, plasticizers and the like.
  • acrylic acid has become increasingly important as a raw material for water-absorbing resins in recent years.
  • a method for producing an unsaturated carboxylic acid such as acrylic acid and methacrylic acid for example, in the case of acrylic acid production, first, acrolein is produced by catalytic gas phase oxidation of propylene, and then the contact gas of the obtained acrolein is used. The most common is a two-stage oxidation process consisting of making acrylic acid by phase oxidation.
  • methacrolein is first produced by catalytic gas phase oxidation reaction from at least one raw material selected from isobutylene, t-butanol and methyl-t-butyl ether, and then the obtained methacrolein is obtained.
  • a two-stage oxidation process is known which consists of further catalytic vapor phase oxidation of lane to produce methacrylic acid.
  • Unsaturated aldehydes such as acrolein and methacrolein, or saturated hydrocarbons such as propane are catalytically vapor-oxidized in the presence of molecular oxygen to give the corresponding unsaturated acids such as acrylic acid and methacrylic acid.
  • a catalyst used in the method for producing a saturated carboxylic acid a catalyst containing molybdenum and vanadium is widely known.
  • the improvement of the mechanical strength required for industrial use as well as the improvement of the yield of the target product is a problem, and the machine can be used without impairing the yield of the target product.
  • Many proposals have been made for the purpose of improving the mechanical strength.
  • the weight loss rate of the dried product is 5 to 40% by mass (see Japanese Patent Application Laid-Open No. 2004-243213), 0.
  • Extruded catalyst containing 5 to 5% by weight of graphite see JP-A-60-150834
  • carbon fiber having an average diameter of 1 to 20 ⁇ m, an average length of 10 to 3000 ⁇ m, and a carbon content of 93% or more
  • a catalyst containing 0.05 to 10% by weight see JP-A-7-251075), a catalyst obtained by mixing an oxide precursor and an oxide and calcining (see JP-A-2004-351297), etc. Proposed.
  • a catalyst for obtaining unsaturated carboxylic acid by gas phase catalytic oxidation of unsaturated aldehyde or saturated hydrocarbon As a catalyst for obtaining unsaturated carboxylic acid by gas phase catalytic oxidation of unsaturated aldehyde or saturated hydrocarbon, a molded catalyst or catalytically active component formed by molding only the catalytically active component into a certain shape is used as an inert carrier.
  • a supported catalyst is generally supported. From the viewpoint of reducing the thickness of the catalyst layer and thereby suppressing side reactions due to sequential oxidation of the target product, a supported catalyst is preferred.
  • the supported catalyst since the supported catalyst has a form in which the catalytically active component is supported on the inert carrier, the catalytically active component is inactivated by, for example, impact upon dropping the catalyst into the reactor and filling it.
  • the mechanical strength of the catalyst is low.
  • problems such as an increase in pressure loss due to a catalyst active component peeled off when the catalyst is filled in the reaction tube and a blockage of the reaction tube occur. For this reason, it is desired that the supported catalyst has a higher mechanical strength.
  • the catalyst surface is scraped and pulverized by contact between the catalysts generated during canning, transportation, filling, etc. in the catalyst production process or by friction between the catalyst and the wall surface (hereinafter referred to as the catalyst strength).
  • the catalyst strength it is also desirable to suppress the “powdering degree”. Suppressing the degree of pulverization is an economic problem that the catalyst powder causes an increase in pressure loss and loss of catalyst components, and a health aspect that the filling worker is exposed to the catalyst powder scattered during the catalyst filling. This is very important in consideration of the above-mentioned problems and environmental problems such as release of such catalyst powder to the atmosphere.
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and a supported catalyst suitable for producing an unsaturated carboxylic acid by catalytic gas phase oxidation of an unsaturated aldehyde or saturated hydrocarbon in the presence of molecular oxygen, Specifically, an object of the present invention is to provide a supported catalyst that is excellent in the mechanical strength and degree of pulverization of the catalyst and that can produce the target product in a high yield.
  • the inventors of the present invention have described the mechanical strength of a molybdenum-vanadium-based supported catalyst for producing an unsaturated carboxylic acid by catalytic gas phase oxidation of an unsaturated aldehyde or saturated hydrocarbon in the presence of molecular oxygen.
  • both mechanical strength and degree of powdering can be improved by including at least two kinds of inorganic fibers having different average fiber diameters together with the catalytically active component. It has been found that a catalyst capable of producing the product in high yield is obtained.
  • the present inventors provide a catalyst comprising a catalytically active component containing molybdenum and vanadium as essential components and an inorganic fiber supported on an inert carrier, wherein the inorganic fiber has an average fiber diameter.
  • a catalyst containing at least an inorganic fiber having an average fiber diameter of 1.5 to 7 ⁇ m and an inorganic fiber having an average fiber diameter of less than 1.0 ⁇ m is excellent in both mechanical strength and degree of pulverization, and yields a desired product in a high yield. It was found that it can be manufactured by
  • the present inventors have further found that the adverse effect on the catalyst performance of the inorganic fiber can be suppressed by setting the total content of the inorganic fiber to 0.5 to 30% by mass with respect to the catalytic active component. .
  • a catalyst for producing an unsaturated carboxylic acid by catalytic gas phase oxidation of an unsaturated aldehyde or saturated hydrocarbon in the presence of molecular oxygen which has mechanical strength and powder.
  • a supported catalyst which has an excellent degree of conversion and can produce a target product in a high yield.
  • the unsaturated carboxylic acid production catalyst of the present invention is a catalyst comprising a catalytically active component containing molybdenum and vanadium as essential components and an inorganic fiber supported on an inert carrier, and the inorganic fiber has an average fiber diameter. It is important to contain at least inorganic fibers having a diameter of less than 1.0 ⁇ m and inorganic fibers having an average fiber diameter of 1.5 to 7 ⁇ m.
  • the following general formula (1) Mo 12 V a A b B c C d D e O x (1) (Where Mo is molybdenum, V is vanadium, A is at least one element selected from the group consisting of tungsten and niobium, B is at least selected from chromium, manganese, iron, cobalt, nickel, copper, zinc and bismuth) One element, C is at least one element selected from antimony, tin, tellurium and phosphorus, D is at least one element selected from silicon, aluminum, titanium, cerium and zirconium, and O is oxygen; a, b, c, d, e and x represent atomic ratios of V, A, B, C, D and O, respectively, 0 ⁇ a ⁇ 14, 0 ⁇ b ⁇ 12, 0 ⁇ c ⁇ 6, 0 ⁇ d ⁇ 6 and 0 ⁇ e ⁇ 50, and x is a numerical value determined by the oxidation
  • the inorganic fibers having an average fiber diameter of less than 1.0 ⁇ m are particularly preferably those having an average fiber diameter of less than 0.7 ⁇ m, and the inorganic fibers having an average fiber diameter of 1.5 to 7 ⁇ m are preferred. In particular, those having an average fiber diameter of 2 to 5 ⁇ m are preferred.
  • An inorganic fiber having an average fiber diameter of less than 1.0 ⁇ m, preferably less than 0.7 ⁇ m, is effective for improving the degree of pulverization mainly by tapping the powder on the catalyst surface from the fineness of the fiber.
  • the relatively thick inorganic fibers having an average fiber diameter of 1.5 to 7 ⁇ m, preferably 2 to 5 ⁇ m mainly have mechanical strength such as to keep the support surface and the catalytically active component connected. It is thought that it works effectively for improvement.
  • it is important to contain at least two kinds of inorganic fibers having different average fiber diameters. It is difficult to improve both the mechanical strength and the degree of pulverization at the same time with only one of the fibers, and as a result, the mechanical strength or the degree of pulverization that is not improved adversely affects the catalyst performance and the like. .
  • the material of the inorganic fiber is not particularly limited, and for example, various whiskers, ceramic fibers, glass fibers, carbon fibers, mineral fibers, metal fibers, and the like can be used.
  • the crystal structure may be polycrystalline, monocrystalline or amorphous.
  • the two or more kinds of inorganic fibers used may be the same material or different materials, and may be appropriately selected and used as long as the average fiber diameter of the inorganic fibers used satisfies the above-mentioned provisions. be able to.
  • the average fiber length of the inorganic fibers is not particularly limited, but considering the dispersibility in the catalyst, it is preferably 1 to 1000 ⁇ m, more preferably 10 to 500 ⁇ m. However, even inorganic fibers having an average fiber length exceeding 1000 ⁇ m can be suitably used by vigorously stirring with a homomixer or the like and cutting so that the average fiber length falls within the above range.
  • the content of each of the two or more inorganic fibers is 0.5 to 20 mass with respect to the amount of the catalytically active component in terms of the improvement effect of mechanical strength and / or the degree of pulverization and the catalyst performance, particularly the catalyst life. % Range is preferred.
  • the total content of inorganic fibers is preferably in the range of 0.5 to 30% by mass with respect to the amount of the catalytically active component. If the content of the inorganic fiber is less than the above range, the mechanical strength and / or powdering degree is not sufficiently improved, and if it is more than the above range, the amount of the catalytically active component contained in the catalyst is relatively small. Therefore, the catalyst life is shortened.
  • the content ratio of the inorganic fiber having an average fiber diameter of less than 1.0 ⁇ m and the inorganic fiber having an average fiber diameter of 1.5 to 7 ⁇ m cannot sufficiently obtain the effect of the other when one of them is extremely large. Then, it is preferably 1: 0.2 to 1: 5 on a mass basis.
  • the catalyst of the present invention is supported on an inert carrier except that it must contain at least inorganic fibers having an average fiber diameter of less than 1.0 ⁇ m and inorganic fibers having an average fiber diameter of 1.5 to 7 ⁇ m.
  • an inert carrier except that it must contain at least inorganic fibers having an average fiber diameter of less than 1.0 ⁇ m and inorganic fibers having an average fiber diameter of 1.5 to 7 ⁇ m.
  • oxides, hydroxides, ammonium salts, nitrates, carbonates, sulfates, organic acid salts, etc. of each component element, or their aqueous solutions, sols, or compounds containing a plurality of elements, etc. For example, by mixing with water, an aqueous solution or aqueous slurry (hereinafter sometimes referred to as “starting raw material mixture”) as a raw material of the catalytically active component represented by the general formula (1) is produced.
  • the obtained starting raw material mixture is dried by various methods such as heating and decompression as necessary to produce a catalyst precursor.
  • a drying method by heating for example, a method of obtaining a powdery dried product using a spray dryer, a drum dryer or the like, an inert gas such as air or nitrogen using a box-type dryer, a tunnel-type dryer or the like.
  • a method in which the solid is further heat-treated as described above.
  • a drying method by reduced pressure for example, a method using a vacuum dryer can be employed, and thereby a block or powdery catalyst precursor can be obtained.
  • the obtained dried product is sent to the subsequent supporting step through a pulverization step and a classification step for obtaining a powder having an appropriate particle size as necessary.
  • the obtained dried product may be once fired and then sent to the supporting step.
  • the particle size of the catalyst precursor powder is not particularly limited, but is preferably 500 ⁇ m or less from the viewpoint of excellent supportability.
  • the method for adding the inorganic fiber is not particularly limited, and any method can be used as long as the inorganic fiber can be uniformly dispersed in the catalytically active component.
  • a method of adding inorganic fibers to the starting raw material mixture of the catalytically active component represented by the general formula (1), or a catalyst precursor obtained after drying or further calcination of the starting raw material mixture of the catalytically active component or The method of adding an inorganic fiber to a baked product can be taken.
  • the method of adding and mixing to the starting raw material mixture is preferable from the viewpoint of the dispersibility of the inorganic fibers.
  • the inorganic fibers may be added all at once, or may be added separately. For example, a part of the inorganic fibers may be added to the starting material mixture, and the rest may be added to the catalyst precursor obtained by drying or further firing. Also good.
  • the supporting method is not particularly limited.
  • the starting raw material mixture is evaporated to dryness while heating and stirring on an inert carrier having a fixed shape.
  • a method of adhering the catalyst precursor in powder form on an inert carrier as described in JP-A-64-85139, JP-A-8-299797 or JP-A-2004-136267 , Etc. can be employed.
  • the inert carrier examples include alumina, silica, silica-alumina, titania, magnesia, steatite, cordierite, silica-magnesia, silicon carbide, silicon nitride, zeolite, and the like.
  • alumina silica, silica-alumina, titania, magnesia, steatite, cordierite, silica-magnesia, silicon carbide, silicon nitride, zeolite, and the like.
  • the thing of well-known shapes, such as spherical shape, cylindrical shape, and ring shape, can be used.
  • a spherical shape it does not need to be a true sphere and may be substantially spherical, and the cross-sectional shape does not have to be a perfect circle in the same way for a cylindrical shape and a ring shape, and may be substantially a circular shape.
  • the diameter D and length L are not limited, but both can be set to 1 to 20 mm, preferably 2 to 14 mm, more preferably 2 ⁇ 9 mm.
  • the length L is particularly preferably 0.5 to 2.0 times the diameter D, more preferably 0.7 to 1.5 times.
  • the amount of the catalytically active component supported on the inert carrier is not particularly limited, but is preferably in the range of 10 to 300% by mass, more preferably in the range of 20 to 200% by mass.
  • a molding aid or binder for improving the supporting property, a pore forming agent for forming appropriate pores in the catalyst, and the like can be used.
  • Specific examples include organic compounds such as ethylene glycol, glycerin, propionic acid, maleic acid, benzyl alcohol, propyl alcohol, butyl alcohol, phenols, and inorganic compounds such as water, nitric acid, ammonium nitrate, and ammonium carbonate. It is done. These may be used alone or in combination of two or more.
  • the carrier obtained in the above-described supporting step is sent to the subsequent drying step and / or firing step.
  • the carrier is dried using a generally used box dryer, tunnel dryer, etc., in an inert gas such as air or nitrogen, or a nitrogen oxide or the like.
  • the drying temperature is 80 to 300 ° C., preferably 100 to 250 ° C., and the drying time is preferably 1 to 20 hours.
  • the firing furnace used in the firing step is not particularly limited, and a generally used box-type firing furnace or tunnel-type firing furnace may be used.
  • the firing temperature is 250 to 600 ° C., preferably 300 to 550 ° C., more preferably 350 to 450 ° C., and the firing time is preferably 1 to 20 hours.
  • the firing step can be appropriately performed in an air atmosphere, in an air stream, or in an inert gas atmosphere.
  • the firing step is usually performed after the drying step, but may be performed without going through the drying step.
  • a support prepared using a pre-fired catalytically active component as a catalyst precursor it does not necessarily require a firing step, as long as the molding auxiliary material and binder used in the molding step can be removed, Only the drying step is sufficient.
  • the diameter D and length L are not limited, but both are preferably 3 to 15 mm, more preferably. 3 to 10 mm.
  • the length L of the pellet catalyst is preferably 0.5 to 2.0 times the diameter D, more preferably 0.7 to 1.5 times.
  • the reactor used in the method of the present invention for producing unsaturated carboxylic acid by catalytic gas phase oxidation of unsaturated aldehyde or saturated hydrocarbon-containing gas in the presence of molecular oxygen is not limited as long as it is a fixed bed reactor. However, a fixed bed multi-tubular reactor is particularly preferable.
  • the inner diameter of the reaction tube is usually 15 to 50 mm, more preferably 20 to 40 mm, and still more preferably 22 to 38 mm.
  • Each reaction tube of the fixed bed multitubular reactor does not necessarily need to be filled with a single catalyst, and can be filled with a plurality of types of catalysts.
  • a method of filling a plurality of types of catalysts having different activities so as to form a layer (hereinafter referred to as “reaction zone”) (see JP-A-9-241209 and JP-A-2003-171340), or A method of diluting a part of the catalyst with an inert carrier or the like (see Japanese Patent Application Publication No. 2008-528883) or a method of combining them can be suitably employed.
  • the number of reaction zones is appropriately determined depending on the reaction conditions and the scale of the reactor. However, if the number of reaction zones is too large, problems such as complicated packing of the catalyst may occur. 2 to 6 is desirable.
  • the reaction conditions in the present invention are not particularly limited, and any conditions generally used for this type of reaction can be used.
  • an inert gas for example, nitrogen gas
  • the grade of the reaction raw material gas is not particularly limited.
  • it contains acrolein-containing gas obtained by dehydration reaction of glycerin or catalytic oxidation reaction of propane and / or propylene, and methacrolein obtained by catalytic oxidation reaction of isobutylene or tertiary butanol. Gas or the like can also be used.
  • the extracted catalyst is passed through a sieve whose opening is in the range of 50 to 90%, which is the shorter of the standard value of the catalyst particle size or particle length, and the mass (g) of the catalyst remaining on the sieve is measured.
  • an SiC whisker having an average fiber diameter of 0.8 ⁇ m and an average fiber length of 40 ⁇ m in an amount of 15% by mass with respect to the catalytically active component, and an silica-alumina fiber having an average fiber diameter of 2 ⁇ m and an average fiber length of 100 ⁇ m Were added in amounts such that the amount was 15% by mass with respect to the catalytically active component.
  • the obtained slurry was dried with a spray dryer and then pulverized to 500 ⁇ m to obtain a dried product.
  • Catalyst 1 Mo 12 V 6.0 W 1.8 Cu 3.0 Sb 0.25 Ti 12
  • the loading rate was determined by the following formula.
  • Support rate (mass%) mass of supported catalyst powder (g) / mass of support used (g) ⁇ 100
  • the mechanical strength of the catalyst 1 was measured using a sieve having an opening of 5 mm, and the degree of pulverization was measured using a sieve having an opening of 2 mm. Table 1 shows the mechanical strength and the degree of dusting of the catalyst 1.
  • a steel reaction tube having a total length of 3000 mm and an inner diameter of 25 mm and a reactor comprising a shell for covering the same and flowing a heat medium were prepared in the vertical direction.
  • the catalyst 1 was dropped from the upper part of the reaction tube and filled so that the layer length was 2800 mm.
  • Example 1 A catalyst 2 was obtained in the same manner as in Example 1 except that silica-alumina fibers having an average fiber diameter of 2 ⁇ m and an average fiber length of 100 ⁇ m were not added. The supporting rate of the catalyst 2 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1. Table 1 shows the mechanical strength and degree of pulverization of the catalyst 2. Catalyst 2 was charged into the reactor in the same manner as in Example 1, and an acrolein oxidation reaction was performed under the same conditions. The results are shown in Table 2.
  • Example 2 A catalyst 3 was obtained in the same manner as in Example 1 except that no SiC whisker having an average fiber diameter of 0.8 ⁇ m and an average fiber length of 40 ⁇ m was added.
  • the supporting rate of the catalyst 3 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1.
  • Table 1 shows the mechanical strength and the degree of dusting of the catalyst 3.
  • Catalyst 3 was charged into the reactor in the same manner as in Example 1, and acrolein oxidation reaction was performed under the same conditions. The results are shown in Table 2.
  • Example 2 In Example 1, instead of using 15% by mass of SiC whisker having an average fiber diameter of 0.8 ⁇ m and an average fiber length of 40 ⁇ m with respect to the catalytically active component, SiC whisker having an average fiber diameter of 0.6 ⁇ m and an average fiber length of 30 ⁇ m is catalytically active.
  • Example 2 Silica having an average fiber diameter of 3 ⁇ m and an average fiber length of 150 ⁇ m instead of using 10% by weight of the component and 15% by mass of silica-alumina fiber having an average fiber diameter of 2 ⁇ m and an average fiber length of 100 ⁇ m with respect to the catalytically active component
  • a catalyst 4 was obtained in the same manner as in Example 1 except that 10% by mass of alumina fiber was used based on the catalytically active component.
  • the supporting rate of the catalyst 4 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 1.
  • the mechanical strength of the catalyst 4 was measured using a sieve having an opening of 5 mm, and the degree of pulverization was measured using a sieve having an opening of 2 mm.
  • Table 1 shows the mechanical strength and the degree of dusting of the catalyst 4.
  • Catalyst 4 was charged into the reactor in the same manner as in Example 1, and an acrolein oxidation reaction was performed under the same conditions. The results are
  • Example 3 [Catalyst preparation] While heating and stirring 10,000 parts of pure water, 1000 parts of ammonium molybdate, 221 parts of ammonium metavanadate, and 191 parts of ammonium paratungstate were dissolved. Separately, while heating and stirring 1000 parts of pure water, 285 parts of copper nitrate and 69 parts of cobalt nitrate were dissolved. The obtained two aqueous solutions were mixed, and 69 parts of antimony trioxide was added to obtain a starting material mixture. The obtained starting material mixture was dried with a spray dryer and then pulverized to 500 ⁇ m to obtain a dried product.
  • SiC whisker having an average fiber diameter of 0.8 ⁇ m and an average fiber length of 40 ⁇ m is added in an amount so as to be 5% by mass with respect to the catalytically active component, and an alumina fiber having an average fiber diameter of 5 ⁇ m and an average fiber length of 200 ⁇ m.
  • an alumina fiber having an average fiber diameter of 5 ⁇ m and an average fiber length of 200 ⁇ m was added in an amount of 5% by mass based on the catalytically active component, and mixed with powder to obtain a supporting powder.
  • Catalyst 5 Mo 12 V 4.0 W 1.5 Cu 2.5 Co 0.5 Sb 1.0
  • the mechanical strength of the catalyst 5 was measured using a sieve having an opening of 5 mm, and the degree of powdering was measured using a sieve having an opening of 2 mm.
  • Table 1 shows the mechanical strength and the degree of dusting of the catalyst 5.
  • Catalyst 5 was charged into the reactor in the same manner as in Example 1, and an acrolein oxidation reaction was performed under the same conditions. The results are shown in Table 2.
  • Example 4 In Example 3, instead of using 5% by mass of the silica-alumina fiber having an average fiber diameter of 5 ⁇ m and an average fiber length of 200 ⁇ m based on the catalytically active component, a silica-alumina fiber having an average fiber diameter of 6 ⁇ m and an average fiber length of 250 ⁇ m is catalytically active.
  • a catalyst 6 was obtained in the same manner as in Example 3 except that 5% by mass was used based on the components.
  • the supporting rate of the catalyst 6 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 5.
  • Table 1 shows the mechanical strength and the degree of dusting of the catalyst 6.
  • Catalyst 6 was charged into the reactor in the same manner as in Example 1, and an acrolein oxidation reaction was performed under the same conditions. The results are shown in Table 2.
  • Example 3 instead of using 5% by mass of an alumina fiber having an average fiber diameter of 5 ⁇ m and an average fiber length of 200 ⁇ m based on the catalytically active component, a glass fiber having an average fiber diameter of 10 ⁇ m and an average fiber length of 300 ⁇ m is used based on the catalytically active component.
  • a catalyst 7 was obtained in the same manner as in Example 3 except that 5% by mass was used. The supporting rate of the catalyst 7 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 5.
  • Table 1 shows the mechanical strength and the degree of dusting of the catalyst 7.
  • Catalyst 7 was charged into the reactor in the same manner as in Example 1, and acrolein oxidation reaction was performed under the same conditions. The results are shown in Table 2.
  • Example 3 instead of using 5% by mass of an alumina fiber having an average fiber diameter of 5 ⁇ m and an average fiber length of 200 ⁇ m based on the catalytically active component, a glass fiber having an average fiber diameter of 20 ⁇ m and an average fiber length of 500 ⁇ m is used based on the catalytically active component.
  • a catalyst 8 was obtained in the same manner as in Example 3 except that 5% by mass was used. The supporting rate of the catalyst 8 and the metal element composition of the catalytically active component excluding oxygen were the same as those of the catalyst 5.
  • Table 1 shows the mechanical strength and the degree of dusting of the catalyst 8.
  • Catalyst 8 was charged into the reactor in the same manner as in Example 1, and acrolein oxidation reaction was performed under the same conditions. The results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 不飽和カルボン酸を製造するための機械的強度及び粉化度に優れ、かつ、目的生成物を高収率で製造可能である触媒が提供される。この触媒は、モリブデンおよびバナジウムを必須成分として含有する触媒活性成分並びに無機質繊維を不活性担体に担持してなり、前記無機質繊維として、平均繊維径が1.0μm未満である無機質繊維と平均繊維径が1.5~7μmである無機質繊維とを少なくとも含有していることを特徴とする。

Description

不飽和カルボン酸製造用触媒および該触媒を用いる不飽和カルボン酸の製造方法
 本発明は、不飽和カルボン酸製造用触媒、詳しくは不飽和アルデヒドまたは飽和炭化水素を分子状酸素の存在下に接触気相酸化して不飽和カルボン酸を製造するための好適な触媒に関する。本発明は、また、この触媒を用いて不飽和カルボン酸を製造する方法に関する。
 アクリル酸及びメタクリル酸などのような不飽和カルボン酸は、各種合成樹脂、塗料、可塑剤などの原料として工業的に重要である。特に、アクリル酸は、近年、吸水性樹脂の原料として、その重要性が高まっている。アクリル酸及びメタクリル酸などのような不飽和カルボン酸の製法としては、例えば、アクリル酸製造の場合には、先ず、プロピレンの接触気相酸化によってアクロレインをつくり、次いで、得られたアクロレインの接触気相酸化によってアクリル酸をつくることから成る二段酸化方法が最も一般的である。一方、プロパンがプロピレンよりも低価格であるため、プロパンを一段で酸化してアクリル酸をつくる方法についても、近年、開発が進み、種々の提案がなされている。また、メタクリル酸の工業的な製法についても、イソブチレン、t-ブタノールおよびメチル-t-ブチルエーテルから選ばれる少なくとも一つの原料から、接触気相酸化反応によってメタクロレインを先ずつくり、次いで、得られたメタクロレインをさらに接触気相酸化してメタクリル酸をつくることから成る二段酸化方法が知られている。
 アクロレイン及びメタクロレインなどのような不飽和アルデヒド、あるいは、プロパンなどのような飽和炭化水素を、分子状酸素の存在下に接触気相酸化して、対応するアクリル酸及びメタクリル酸などのような不飽和カルボン酸を製造する方法において使用される触媒としては、モリブデンおよびバナジウムを含有する触媒が広く知られている。そして、これらの触媒については、目的生成物の収率の向上はもちろん工業的な使用に際して必要とされる機械的強度の向上が課題とされており、目的生成物の収率を損なうことなく機械的強度を向上させることを目的とした提案が数多くなされている。
 例えば、出発原料混合液から得られる乾燥物を成形し焼成して得られる触媒において、前記乾燥物の減量率が5~40質量%である触媒(特開2004-243213号公報参照)、0.5~5重量%のグラファイトを含有させて押出成型した触媒(特開昭60-150834号公報参照)、平均直径1~20μm、平均長さ10~3000μm、炭素含有率93%以上の炭素繊維を0.05~10重量%含有する触媒(特開平7-251075号公報参照)、酸化物の前駆体と酸化物を混合し、焼成して成る触媒(特開2004-351297号公報参照)などが提案されている。
 不飽和アルデヒド又は飽和炭化水素を気相接触酸化して不飽和カルボン酸を得るための触媒としては、触媒活性成分のみを一定の形状に成形してなる成形触媒や触媒活性成分を不活性担体に担持してなる担持型触媒が一般的である。触媒層の厚みをより薄くでき、それによって目的生成物の逐次酸化による副反応を抑制することができるという観点からすれば、担持型触媒が好ましい。
 しかし一方で、担持型触媒は触媒活性成分が不活性担体上に担持された形態であるため、例えば、触媒を反応器内に落下させて充填する際の衝撃などにより触媒活性成分が不活性担体上から剥離しやすい、すなわち、触媒の機械的強度が低い、という欠点がある。触媒の機械的強度が低いと、触媒を反応管に充填した際に剥離した触媒活性成分などによる圧力損失の増大や反応管の閉塞などの問題が発生する。このため、担持型触媒については、その機械的強度をより高くすることが望まれる。
 また、前記した機械的強度とは別に、触媒の製造工程における缶詰、輸送、充填などの際に生じる触媒同士の接触あるいは触媒と壁面等との摩擦によって触媒表面が削れて粉化すること(以下、「粉化度」と記することがある)を抑制することも望まれる。この粉化度を抑制することは、触媒粉が圧力損失の増大や触媒成分のロスをもたらすといった経済面での問題、充填作業員が触媒充填時に飛散した触媒粉に暴露されるといった健康面での問題、そのような触媒粉が大気へ放出されるといった環境面での問題、などを考慮すると、非常に重要である。
 前述した従来提案されている触媒では、いずれも機械的強度及び粉化度はある程度改善されるものの、その効果がまだ十分ではないため、目的生成物が高収率で得られ、かつ、機械的強度および粉化度がより優れた触媒が望まれている。
 本発明の目的は、上記従来技術の課題を解決し、不飽和アルデヒド又は飽和炭化水素を分子状酸素の存在下に接触気相酸化して不飽和カルボン酸を製造するに好適な担持型触媒、具体的には、触媒の機械的強度及び粉化度に優れ、かつ目的生成物を高収率で製造可能である担持型触媒、を提供することにある。
 本発明者らは、不飽和アルデヒド又は飽和炭化水素を分子状酸素の存在下に接触気相酸化して不飽和カルボン酸を製造するためのモリブデン-バナジウム系担持型触媒について、その機械的強度の向上及び粉化度の抑制を目的として鋭意研究した結果、平均繊維径が異なる少なくとも2種の無機質繊維を触媒活性成分と共に含有させることによって機械的強度及び粉化度の両方を改善でき、かつ目的生成物を高収率で製造可能な触媒が得られることを見出した。
 より具体的にいえば、本発明者らは、モリブデンおよびバナジウムを必須成分として含有する触媒活性成分並びに無機質繊維を不活性担体に担持してなる触媒であって、前記無機質繊維として、平均繊維径が1.0μm未満である無機質繊維と平均繊維径が1.5~7μmである無機質繊維とを少なくとも含有する触媒が、機械的強度および粉化度の両方において優れ、目的生成物を高収率で製造できるものであることを見出した。
 本発明者らは、さらに、無機質繊維の全含有量を触媒活性成分に対し、0.5~30質量%と設定することで、前記した無機質繊維の触媒性能への悪影響を抑制できることも見出した。
 斯くして、本発明によれば、不飽和アルデヒド又は飽和炭化水素を分子状酸素の存在下に接触気相酸化して不飽和カルボン酸を製造するための触媒であって、機械的強度及び粉化度に優れ、かつ、目的生成物を高収率で製造することが可能な担持型触媒が提供される。
 以下、本発明にかかる不飽和カルボン酸製造用触媒および該触媒を用いる不飽和カルボン酸の製造方法について詳しく説明するが、本発明の範囲はこれらの説明に拘束されることはなく、以下に例示する特定の態様も本発明の趣旨を損なわない範囲で、適宜変更することができる。
 本発明の不飽和カルボン酸製造用触媒は、モリブデンおよびバナジウムを必須成分として含有する触媒活性成分並びに無機質繊維を不活性担体に担持してなる触媒であって、前記無機質繊維として、平均繊維径が1.0μm未満である無機質繊維と平均繊維径が1.5~7μmである無機質繊維とを少なくとも含有することが重要である。その触媒活性成分としては、下記一般式(1)
Mo12 (1)
(ここで、Moはモリブデン、Vはバナジウム、Aはタングステンおよびニオブからなる群から選ばれる少なくとも1種の元素、Bはクロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛およびビスマスから選ばれる少なくとも1種の元素、Cはアンチモン、スズ、テルルおよびリンから選ばれる少なくとも1種の元素、Dはシリコン、アルミニウム、チタン、セリウムおよびジルコニウムから選ばれる少なくとも1種の元素、そしてOは酸素であり、a、b、c、d、eおよびxはそれぞれV、A、B、C、DおよびOの原子比を表し、0<a≦14、0≦b≦12、0≦c≦6、0≦d≦6および0≦e≦50であり、xは各元素の酸化状態によって定まる数値である。)で表される触媒活性成分が好適である。
 本発明において、平均繊維径が1.0μm未満の無機質繊維としては、特に、0.7μm未満の平均繊維径を有するものが好ましく、また、平均繊維径が1.5~7μmの無機質繊維としては、特に、2~5μmの平均繊維径を有するものが好ましい。
 平均繊維径が1.0μm未満、好ましくは0.7μm未満である無機質繊維は、その繊維の細さから、主に触媒表面の粉を繋ぎ留めるというような粉化度の改善のために有効に働き、一方、平均繊維径が1.5~7μm、好ましくは2~5μmの相対的に太い無機質繊維は、担体表面と触媒活性成分との間を繋ぎ留めるというような、主に機械的強度の改善のために有効に働くものと考えられる。本発明では、これら平均繊維径の異なる少なくとも2種の無機質繊維を含有することが重要である。いずれか1種の繊維のみでは機械的強度および粉化度の両面を同時に改善することが困難であり、その結果、改善されない機械的強度もしくは粉化度が触媒性能等に悪影響を及ぼすことになる。
 機械的強度および粉化度の両面を同時に改善するためには、上記のように、平均繊維径の異なる少なくとも2種の無機質繊維を存在させることが重要であるが、さらにこの効果を充分に発揮するためには、これら2種の無機質繊維の平均繊維径にある程度の差、例えば、0.5~6.5μm、好ましくは1.0~4.5μmの差、があることが好ましい。なお、前記無機質繊維は、その材質には特に限定されず、例えば、各種ウィスカ、セラミック繊維、ガラス繊維、炭素繊維、鉱物繊維、金属繊維などを使用することができる。その結晶構造は多結晶質でも単結晶質でも非晶質でも良い。用いられる2種以上の無機質繊維は、それぞれが同じ材質であっても異なる材質であってもよく、使用する無機質繊維の平均繊維径が前記規定を満たすものである限り、適宜選択して使用することができる。
 本発明において、無機質繊維の平均繊維長は、特に限定はないが、触媒中への分散性を考慮すると、好ましくは1~1000μm、より好ましくは10~500μmのものを用いるのが良い。しかしながら、1000μmを超える平均繊維長を有する無機質繊維であっても、ホモミキサー等で強く撹拌して平均繊維長が上記範囲に入るように切断することによって好適に使用することができる。
 2種以上の無機質繊維それぞれの含有量は、機械的強度および/または粉化度の改善効果及び触媒性能、特に触媒寿命、の面からみて、触媒活性成分量に対して0.5~20質量%の範囲が好適である。無機質繊維の全含有量は、触媒活性成分量に対して0.5~30質量%の範囲が好ましい。無機質繊維の含有量が前記範囲より少ないと、機械的強度および/または粉化度の改善が十分されず、また前記範囲より多いと、触媒中に含有される触媒活性成分量が相対的に少なくなるため、触媒寿命が短くなる。また、平均繊維径が1.0μm未満の無機質繊維と平均繊維径が1.5~7μmの無機質繊維との含有比率は、一方が極端に多くなると他方の効果が十分に得られなくなることを考慮すると、質量基準で1:0.2~1:5であることが好ましい。
 本発明の触媒は、平均繊維径が1.0μm未満である無機質繊維と平均繊維径が1.5~7μmである無機質繊維とを少なくとも含有させなければならない点を除けば、不活性担体に担持してなる公知の不飽和カルボン酸製造用触媒の調製に一般に用いられている方法に準じて、例えば下記する手順に従って、製造することができる。
 先ず、各成分元素の酸化物、水酸化物、アンモニウム塩、硝酸塩、炭酸塩、硫酸塩、有機酸塩などを、あるいは、それらの水溶液、ゾルなどを、あるいは、複数の元素を含む化合物などを、例えば、水に混合することによって、一般式(1)で表される触媒活性成分の原料としての水溶液あるいは水性スラリー(以下、「出発原料混合液」と記することがある)を製造する。
 次に、得られた出発原料混合液を、必要に応じて加熱や減圧などの各種方法により、乾燥させて、触媒前駆体をつくる。加熱による乾燥方法としては、例えばスプレードライヤー、ドラムドライヤー等を用いて粉末状の乾燥物を得る方法や、箱型乾燥機、トンネル型乾燥機等を用いて空気、窒素などのような不活性ガス中で、あるいは窒素酸化物などのようなその他の気流中で加熱してブロック状またはフレーク状の乾燥物を得る方法や、出発原料混合液を一旦濃縮し蒸発乾固してケーキ状の固形物をつくり、この固形物をさらに上記のように加熱処理する方法、などが採用できる。減圧による乾燥方法としては、例えば真空乾燥機を用いる方法を採ることができ、これによってブロック状または粉末状の触媒前駆体を得ることができる。
 得られた乾燥物は、必要に応じて適当な粒度の粉体を得るための粉砕工程や分級工程を経て、続く担持工程に送られる。場合によっては、得られた乾燥物を一旦焼成した後に担持工程に送ってもよい。なお、これら触媒前駆体の粉体の粒度は、特に限定されないが、担持性に優れる点で500μm以下が好ましい。
 無機質繊維の添加方法については特に制限はなく、触媒活性成分中に無機質繊維を均一に分散させ得る限り、いずれの方法も用いることができる。例えば、一般式(1)で表される触媒活性成分の出発原料混合液に無機質繊維を添加する方法、あるいは、触媒活性成分の出発原料混合液を乾燥あるいは更に焼成した後に得られる触媒前駆体あるいは焼成物に無機質繊維を添加する方法、を採ることができる。中でも、出発原料混合液に添加混合する方法が、無機質繊維の分散性の面からみて好ましい。なお、無機質繊維は一括して添加しても、分割して添加してもよく、例えばその一部を出発原料混合液に、残りを乾燥あるいはさらに焼成して得られる触媒前駆体に添加しても良い。
 担持方法としては、特に限定はないが、例えば、特公昭49-11371号公報に記載のような、一定の形状を有する不活性担体に出発原料混合液を加熱攪拌しながら蒸発乾固して担体に付着させる方法、特開昭64-85139号公報、特開平8-299797号公報あるいは特開2004-136267号公報に記載のような不活性担体に前記触媒前駆体を粉体状で担持させる方法、などを採用することができる。
 不活性担体としては、アルミナ、シリカ、シリカ-アルミナ、チタニア、マグネシア、ステアタイト、コージェライト、シリカ-マグネシア、炭化ケイ素、窒化ケイ素、ゼオライト等が挙げられる。その形状については特に制限はなく、球状、円柱状、リング状など公知の形状のものが使用できる。もちろん球状の場合、真球である必要はなく実質的に球状であればよく、円柱状およびリング状についても同様に断面形状は真円である必要は無く、実質的に円形であればよい。上記球状、円柱状、リング状などの担体においては、その直径Dおよび長さLは、限定はされないが、いずれも1~20mmに設定でき、2~14mmであることが好ましく、より好ましくは2~9mmである。円柱状、リング状の担体においては、特にその長さLは、その直径Dの0.5~2.0倍であることが好ましく、より好ましくは0.7~1.5倍である。リング形状の場合は、縦軸方向に外径の0.1~0.7倍の内径からなる貫通孔を有するものが好ましい。不活性担体に対する触媒活性成分の担持量については、特に限定されないが、10~300質量%の範囲が好ましく、20~200質量%の範囲がより好ましい。
 担持工程においては、担持性を向上させるための成形補助剤又はバインダー、触媒に適度な細孔を形成させるための気孔形成剤、などを用いることができる。具体例としては、エチレングリコール、グリセリン、プロピオン酸、マレイン酸、ベンジルアルコール、プロピルアルコール、ブチルアルコール、フェノール類などのような有機化合物および水、硝酸、硝酸アンモニウム、炭酸アンモニウムなどのような無機化合物が挙げられる。また、これらは1種のみで用いても、2種以上を併用して用いてもよい。
 上記担持工程で得られた担持体は、続く乾燥工程および/または焼成工程に送られる。乾燥工程において、担持体の乾燥は、一般的に使用される箱型乾燥機、トンネル型乾燥機等を用いて、空気、窒素などのような不活性ガス中で、あるいは、窒素酸化物などのようなその他の気流中で、加熱することによって行なわれ、乾燥温度は80~300℃、好ましくは100~250℃であり、乾燥時間は好ましくは1~20時間である。
 焼成工程において用いる焼成炉についても、また、特に制限はなく、一般的に使用される箱型焼成炉あるいはトンネル型焼成炉等を用いればよい。焼成温度は250~600℃、好ましくは300~550℃、更に好ましくは350~450℃であり、焼成時間は好ましくは1~20時間である。焼成工程は、適宜に、空気雰囲気下で、空気流通下で、あるいは、不活性ガス雰囲気下で行なうことができる。
 焼成工程は、通常、前記乾燥工程後に行なわれるが、前記乾燥工程を経ずに行ってもよい。また、予め焼成した触媒活性成分を触媒前駆体として用いて作成された担持体の場合は、必ずしも焼成工程を必要とせず、成型工程で使用した成形補助材やバインダー等が除去できさえすれば、前記乾燥工程のみで十分である。
 上記のようにして得られた球状触媒またはペレット(円柱またはリング)状触媒においては、その直径Dおよび長さLは、限定はされないが、いずれも3~15mmであることが好ましく、より好ましくは3~10mmである。ペレット触媒においては、特にその長さLは、その直径Dの0.5~2.0倍であることが好ましく、より好ましくは0.7~1.5倍である。リング形状の場合は、縦軸方向に外径の0.1~0.7倍の内径からなる貫通孔を有するものが好ましい。
 不飽和アルデヒドまたは飽和炭化水素含有ガスを分子状酸素の存在下に接触気相酸化して不飽和カルボン酸を製造する本発明の方法において用いられる反応器については、固定床反応器である限り特段の制限はないが、特に固定床多管式反応器が好ましい。その反応管の内径は通常15~50mm、より好ましくは20~40mm、さらに好ましくは22~38mmである。
 固定床多管式反応器の各反応管には、必ずしも単一な触媒を充填する必要はなく、複数種の触媒を充填することも可能である。例えば、活性の異なる複数種の触媒をそれぞれが層(以下、「反応帯」という)を成すように充填する方法(特開平9-241209号公報及び特開2003-171340号公報参照)、または、触媒の一部を不活性な担体などで希釈する方法(特表2008-528683号公報参照)、または、これらを組み合わせる方法等を好適に採用することができる。この時、反応帯の数は、反応条件や反応器の規模により適宜決定されるが、反応帯の数が多すぎると触媒の充填作業が煩雑になるなどの問題が発生するため工業的には2~6程度までが望ましい。
 本発明における反応条件には特に制限は無く、この種の反応に一般に用いられている条件であればいずれも実施することが可能である。例えば、1~15容量%、好ましくは4~12容量%の不飽和アルデヒド;0.5~25容量%、好ましくは2~20容量%の分子状酸素;0~30容量%、好ましくは0~25容量%の水蒸気;及び残部容量%の不活性ガス(例えば、窒素ガス)の混合物である原料ガスを200~400℃の温度範囲、0.1~1.0MPaの圧力下及び300~5,000h-1(STP)の空間速度で、触媒に接触させることによって、反応は遂行される。
 反応原料ガスのグレードについては特に制限はなく、例えば、グリセリンの脱水反応又はプロパンおよび/またはプロピレンの接触酸化反応によって得られるアクロレイン含有ガス、イソブチレン又はターシャリーブタノールの接触酸化反応によって得られるメタクロレイン含有ガス、などを用いることもできる。
 以下に、実施例を挙げて本発明を具体的に説明するが、本発明はこれにより何ら限定されるものではない。なお、以下では便宜上、「質量部」を「部」と記すことがある。実施例および比較例における転化率および収率は、次式によって求めた。
転化率[モル%]
=(反応した出発原料のモル数)/(供給した出発原料のモル数)×100
収率[モル%]
=(生成した不飽和カルボン酸のモル数)/(供給した出発原料のモル数)×100
[触媒の機械的強度測定方法]
 内径25mm、長さ5000mmのステンレス製反応管を鉛直方向に設置し、該反応管の下端を厚さ1mmのステンレス製受け板で塞ぐ。約50gの触媒を秤量し、該反応管の上端から反応管内に落下させた後、反応管下端のステンレス製受け板を外し、反応管から触媒を静かに抜き出す。抜き出した触媒を、目開きが触媒の粒径あるいは粒長の規格値のうち短いほうの50~90%の範囲である篩にかけ、篩上に残った触媒の質量(g)を計量する。
機械的強度(質量%)=(篩上に残った触媒の質量(g)/反応管上端から落下させた触媒の質量(g))×100
 [触媒の粉化度測定方法]
 鉛直方向の断面が直径150mmの円であり、水平方向の幅が150mmである円筒ドラム状のステンレス製密閉容器内に触媒を約200gを秤量し入れる。該容器をその水平方向中心軸を中心として150rpmで30分間回転させた後、該容器から触媒を取り出し、目開きが触媒の粒径あるいは粒長の規格値のうち短いほうの10~50%の範囲である篩にかけ、篩状に残った触媒の重量(g)を計量する。
粉化度(質量%)=〔(容器内に入れた触媒の質量(g)-篩上に残った触媒の質量(g))/容器内に入れた触媒の質量(g)〕×100
 <実施例1>
[触媒調製]
 純水10000部を加熱攪拌しながら、モリブデン酸アンモニウム1000部、メタバナジン酸アンモニウム331部及びパラタングステン酸アンモニウム229部をこれに溶解させた。別に純水1000部を加熱攪拌しながら、硝酸銅342部をこれに溶解させた。得られた2つの水溶液を混合し、三酸化アンチモン17部及び酸化チタン452部を添加することによって、出発原料混合液を得た。これに、平均繊維径0.8μm、平均繊維長40μmのSiCウィスカを触媒活性成分に対して15質量%となるような量で、また、平均繊維径2μm、平均繊維長100μmのシリカ-アルミナ繊維を触媒活性成分に対して15質量%となるような量で、それぞれ添加することによってスラリーを得た。得られたスラリーをスプレードライヤーで乾燥した後、これを500μmに粉砕して乾燥物を得た。皿型転動造粒機の回転皿に平均直径が5.0mmのシリカ-アルミナ担体5000部を投入し、次いで回転皿を回転させた状態で、バインダーとしての10質量%のエチレングリコール水溶液と共に上記乾燥物を徐々に投入することによって担体に担持させた。次いで、得られた担持物を空気雰囲気下に400℃で6時間焼成して触媒1を得た。この触媒1の担持率は約30質量%であり、酸素を除く触媒活性成分の金属元素組成は次の通りであった。
 触媒1: Mo126.01.8Cu3.0Sb0.25Ti12
なお、担持率は下記式により求めた。
担持率(質量%)=担持された触媒粉体の質量(g)/用いた担体の質量(g)×100
この触媒1の機械的強度は目開きが5mmの篩いを用い、粉化度は目開きが2mmの篩いを用いて測定した。この触媒1の機械的強度および粉化度を表1に示す。
 [反応器]
 全長3000mm、内径25mmの鋼鉄製反応管およびこれを覆う、熱媒体を流すための、シェルからなる反応器を鉛直方向に用意した。触媒1を反応管上部から落下させて、層長が2800mmとなるように充填した。
 [酸化反応]
 上記触媒1を充填した反応管の下部より、アクロレイン4容量%、酸素4容量%、水蒸気20容量%、及び残部容量%の窒素の混合物である原料ガスを、空間速度2000hr-1(標準状態)で導入することにより、アクロレイン酸化反応を行った。その際、アクロレイン転化率が約98モル%となるように熱媒体温度(反応温度)を調節した。その結果を表2に示す。
 <比較例1>
 実施例1において、平均繊維径2μm、平均繊維長100μmのシリカ-アルミナ繊維を添加しなかったこと以外は、実施例1と同様に調製し、触媒2を得た。この触媒2の担持率、および、酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒2の機械的強度および粉化度を表1に示す。触媒2を実施例1と同様に反応器に充填し、同条件でアクロレイン酸化反応を行った。その結果を表2に示す。
 <比較例2>
 実施例1において、平均繊維径0.8μm、平均繊維長40μmのSiCウィスカを添加しなかったこと以外は、実施例1と同様に調製し、触媒3を得た。この触媒3の担持率、および、酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒3の機械的強度および粉化度を表1に示す。触媒3を実施例1と同様に反応器に充填し、同条件でアクロレイン酸化反応を行った。その結果を表2に示す。
 <実施例2>
 実施例1において、平均繊維径0.8μm、平均繊維長40μmのSiCウィスカを触媒活性成分に対して15質量%用いる代わりに、平均繊維径0.6μm、平均繊維長30μmのSiCウィスカを触媒活性成分に対して10質量%用い、かつ、平均繊維径2μm、平均繊維長100μmのシリカ-アルミナ繊維を触媒活性成分に対して15質量%用いる代わりに、平均繊維径3μm、平均繊維長150μmのシリカ-アルミナ繊維を触媒活性成分に対して10質量%用いたこと以外は、実施例1と同様に調製し、触媒4を得た。この触媒4の担持率、および、酸素を除く触媒活性成分の金属元素組成は触媒1と同じであった。触媒4の機械的強度は目開きが5mmの篩いを用い、粉化度は目開きが2mmの篩いを用いて測定した。この触媒4の機械的強度および粉化度を表1に示す。触媒4を実施例1と同様に反応器に充填し、同条件でアクロレイン酸化反応を行った。その結果を表2に示す。
 <実施例3>
[触媒調製]
 純水10000部を加熱攪拌しながら、モリブデン酸アンモニウム1000部、メタバナジン酸アンモニウム221部及びパラタングステン酸アンモニウム191部を溶解させた。別に純水1000部を加熱攪拌しながら、硝酸銅285部及び硝酸コバルト69部を溶解させた。得られた2つの水溶液を混合し、三酸化アンチモン69部を添加することによって、出発原料混合液を得た。得られた出発原料混合液をスプレードライヤーで乾燥した後、これを500μmに粉砕して乾燥物を得た。この乾燥物に平均繊維径0.8μm、平均繊維長40μmのSiCウィスカを触媒活性成分に対して5質量%となるような量で、また、平均繊維径5μm、平均繊維長200μmのアルミナ繊維を触媒活性成分に対して5質量%となるような量で、それぞれ添加し、粉体混合して担持用粉体を得た。皿型転動造粒機の回転皿に平均直径が5.0mmのシリカ-アルミナ担体3500部を投入し、次いで回転皿を回転させた状態で、バインダーとしての10質量%のエチレングリコール水溶液と共に上記担持用粉体を徐々に投入することによって、担体に担持させた。次いで、得られた担持物を空気雰囲気下に400℃で6時間焼成して触媒5を得た。この触媒5の担持率は約30質量%であり、酸素を除く触媒活性成分の金属元素組成は次の通りであった。
触媒5: Mo124.01.5Cu2.5Co0.5Sb1.0
この触媒5の機械的強度は目開きが5mmの篩いを用い、粉化度は目開きが2mmの篩いを用いて測定した。この触媒5の機械的強度および粉化度を表1に示す。触媒5を実施例1と同様に反応器に充填し、同条件でアクロレイン酸化反応を行った。その結果を表2に示す
 <実施例4>
 実施例3において、平均繊維径5μm、平均繊維長200μmのシリカ-アルミナ繊維を触媒活性成分に対して5質量%用いる代わりに、平均繊維径6μm、平均繊維長250μmのシリカ-アルミナ繊維を触媒活性成分に対して5質量%用いたこと以外は、実施例3と同様に調製し、触媒6を得た。この触媒6の担持率、および、酸素を除く触媒活性成分の金属元素組成は触媒5と同じであった。触媒6の機械的強度および粉化度を表1に示す。触媒6を実施例1と同様に反応器に充填し、同条件でアクロレイン酸化反応を行った。その結果を表2に示す。
 <比較例3>
 実施例3において、平均繊維径5μm、平均繊維長200μmのアルミナ繊維を触媒活性成分に対して5質量%用いる代わりに、平均繊維径10μm、平均繊維長300μmのガラス繊維を触媒活性成分に対して5質量%用いたこと以外は、実施例3と同様に調製し、触媒7を得た。この触媒7の担持率、および、酸素を除く触媒活性成分の金属元素組成は触媒5と同じであった。触媒7の機械的強度および粉化度を表1に示す。触媒7を実施例1と同様に反応器に充填し、同条件でアクロレイン酸化反応を行った。その結果を表2に示す。
 <比較例4>
 実施例3において、平均繊維径5μm、平均繊維長200μmのアルミナ繊維を触媒活性成分に対して5質量%用いる代わりに、平均繊維径20μm、平均繊維長500μmのガラス繊維を触媒活性成分に対して5質量%用いたこと以外は、実施例3と同様に調製し、触媒8を得た。この触媒8の担持率、および、酸素を除く触媒活性成分の金属元素組成は触媒5と同じであった。触媒8の機械的強度および粉化度を表1に示す。触媒8を実施例1と同様に反応器に充填し、同条件でアクロレイン酸化反応を行った。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

Claims (4)

  1.  モリブデンおよびバナジウムを必須成分として含有する触媒活性成分並びに無機質繊維を不活性担体に担持してなる不飽和カルボン酸製造用触媒であって、前記無機質繊維として、平均繊維径が1.0μm未満である無機質繊維と平均繊維径が1.5~7μmである無機質繊維とを少なくとも含有することを特徴とする触媒。
  2.  前記無機質繊維の全含有量が、前記触媒活性成分に対して0.5~30質量%である請求項1に記載の触媒。
  3.  前記触媒活性成分が、下記一般式(1)
    Mo12 (1)
    (ここで、Moはモリブデン、Vはバナジウム、Aはタングステンおよびニオブからなる群から選ばれる少なくとも1種の元素、Bはクロム、マンガン、鉄、コバルト、ニッケル、銅、亜鉛およびビスマスから選ばれる少なくとも1種の元素、Cはアンチモン、スズ、テルルおよびリンから選ばれる少なくとも1種の元素、Dはシリコン、アルミニウム、チタン、セリウムおよびジルコニウムから選ばれる少なくとも1種の元素、そしてOは酸素であり、a、b、c、d、eおよびxはそれぞれV、A、B、C、DおよびOの原子比を表し、0<a≦14、0≦b≦12、0≦c≦6、0≦d≦6および0≦e≦50であり、xは各元素の酸化状態によって定まる数値である。)
    で表される複合酸化物である請求項1または2に記載の触媒。
  4.  不飽和アルデヒドまたは飽和炭化水素を分子状酸素の存在下で接触気相酸化して不飽和カルボン酸を製造するにあたり、請求項1~3のいずれか1項に記載の触媒を用いることからなる方法。
PCT/JP2011/071804 2010-12-03 2011-09-26 不飽和カルボン酸製造用触媒および該触媒を用いる不飽和カルボン酸の製造方法 WO2012073584A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180058222.3A CN103228356B (zh) 2010-12-03 2011-09-26 不饱和羧酸制备用催化剂及使用该催化剂的不饱和羧酸的制备方法
US13/990,513 US8940658B2 (en) 2010-12-03 2011-09-26 Catalyst for producing unsaturated carboxylic acid and a process for producing unsaturated carboxylic acid using the catalyst
JP2012546725A JP5628936B2 (ja) 2010-12-03 2011-09-26 不飽和カルボン酸製造用触媒および該触媒を用いる不飽和カルボン酸の製造方法
EP11844503.0A EP2647429B1 (en) 2010-12-03 2011-09-26 Catalyst for producing unsaturated carboxylic acids and unsaturated carboxylic acid production method using said catalyst

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-270069 2010-12-03
JP2010270069 2010-12-03

Publications (1)

Publication Number Publication Date
WO2012073584A1 true WO2012073584A1 (ja) 2012-06-07

Family

ID=46171539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071804 WO2012073584A1 (ja) 2010-12-03 2011-09-26 不飽和カルボン酸製造用触媒および該触媒を用いる不飽和カルボン酸の製造方法

Country Status (5)

Country Link
US (1) US8940658B2 (ja)
EP (1) EP2647429B1 (ja)
JP (1) JP5628936B2 (ja)
CN (1) CN103228356B (ja)
WO (1) WO2012073584A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505377A (ja) * 2013-05-24 2016-02-25 エルジー・ケム・リミテッド アクロレインおよびアクリル酸製造用触媒とその製造方法
JP2018153777A (ja) * 2017-03-21 2018-10-04 株式会社日本触媒 アクリル酸製造用触媒ならびに該触媒を用いたアクリル酸の製造方法
WO2023063349A1 (ja) 2021-10-14 2023-04-20 日本化薬株式会社 不飽和カルボン酸製造用触媒およびその製造方法、並びに不飽和カルボン酸の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101609984B1 (ko) * 2014-07-09 2016-04-06 주식회사 엘지화학 고성능 폴리옥소메탈레이트 촉매 및 이의 제조 방법

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911371B1 (ja) 1970-10-23 1974-03-16 Nippon Catalytic Chem Ind
JPS60150834A (ja) 1984-01-17 1985-08-08 Nippon Shokubai Kagaku Kogyo Co Ltd メタクリル酸合成用触媒の製造法
JPS6485139A (en) 1987-06-05 1989-03-30 Nippon Catalytic Chem Ind Catalyst for oxidation of acrolein and manufacture thereof of excellent reproducibility
JPH07251075A (ja) 1994-03-15 1995-10-03 Mitsubishi Rayon Co Ltd 不飽和カルボン酸合成用触媒及びそれを用いた不飽和カルボン酸の製造方法
JPH08299797A (ja) 1995-03-03 1996-11-19 Nippon Kayaku Co Ltd 触媒及びその製造方法
JPH0952053A (ja) * 1995-08-17 1997-02-25 Sumitomo Chem Co Ltd 不飽和アルデヒド及び不飽和カルボン酸合成用触媒成形体の製造方法
JPH09241209A (ja) 1996-03-06 1997-09-16 Nippon Shokubai Co Ltd アクリル酸の製造方法
JP2003171340A (ja) 2001-12-06 2003-06-20 Mitsubishi Chemicals Corp アクリル酸の製造方法
JP2004136267A (ja) 2002-08-20 2004-05-13 Nippon Shokubai Co Ltd 触媒の製造方法
JP2004243213A (ja) 2003-02-13 2004-09-02 Nippon Shokubai Co Ltd アクリル酸製造用触媒およびアクリル酸の製造方法
JP2004351297A (ja) 2003-05-28 2004-12-16 Nippon Shokubai Co Ltd メタクリル酸製造用触媒、その製造方法およびメタクリル酸の製造方法
JP2008528683A (ja) 2005-02-01 2008-07-31 エルジー・ケム・リミテッド 不飽和脂肪酸の製造法
JP2010201401A (ja) * 2009-03-06 2010-09-16 Sumitomo Chemical Co Ltd 押出触媒成形体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3892244B2 (ja) * 2001-03-21 2007-03-14 株式会社日本触媒 不飽和アルデヒドおよび不飽和カルボン酸製造用触媒の製造方法
FR2833015B1 (fr) 2001-11-30 2005-01-14 Rhodia Eng Plastics Srl Compositions thermoplastiques a proprietes mecaniques ameliorees
JP3908118B2 (ja) * 2002-08-08 2007-04-25 株式会社日本触媒 アクリル酸の製造方法
EP1852406A3 (en) * 2006-05-01 2008-08-06 Ibiden Co., Ltd. honeycomb structured body, method for manufacturing honeycomb structured body, honeycomb filter and method for manufacturing honeycomb filter
WO2008129670A1 (ja) 2007-04-17 2008-10-30 Ibiden Co., Ltd. 触媒担持ハニカムおよびその製造方法
US20090263303A1 (en) * 2007-10-16 2009-10-22 Aspen Products Group, Inc. Purification Device and Method for Purifying a Fluid Stream

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4911371B1 (ja) 1970-10-23 1974-03-16 Nippon Catalytic Chem Ind
JPS60150834A (ja) 1984-01-17 1985-08-08 Nippon Shokubai Kagaku Kogyo Co Ltd メタクリル酸合成用触媒の製造法
JPS6485139A (en) 1987-06-05 1989-03-30 Nippon Catalytic Chem Ind Catalyst for oxidation of acrolein and manufacture thereof of excellent reproducibility
JPH07251075A (ja) 1994-03-15 1995-10-03 Mitsubishi Rayon Co Ltd 不飽和カルボン酸合成用触媒及びそれを用いた不飽和カルボン酸の製造方法
JPH08299797A (ja) 1995-03-03 1996-11-19 Nippon Kayaku Co Ltd 触媒及びその製造方法
JPH0952053A (ja) * 1995-08-17 1997-02-25 Sumitomo Chem Co Ltd 不飽和アルデヒド及び不飽和カルボン酸合成用触媒成形体の製造方法
JPH09241209A (ja) 1996-03-06 1997-09-16 Nippon Shokubai Co Ltd アクリル酸の製造方法
JP2003171340A (ja) 2001-12-06 2003-06-20 Mitsubishi Chemicals Corp アクリル酸の製造方法
JP2004136267A (ja) 2002-08-20 2004-05-13 Nippon Shokubai Co Ltd 触媒の製造方法
JP2004243213A (ja) 2003-02-13 2004-09-02 Nippon Shokubai Co Ltd アクリル酸製造用触媒およびアクリル酸の製造方法
JP2004351297A (ja) 2003-05-28 2004-12-16 Nippon Shokubai Co Ltd メタクリル酸製造用触媒、その製造方法およびメタクリル酸の製造方法
JP2008528683A (ja) 2005-02-01 2008-07-31 エルジー・ケム・リミテッド 不飽和脂肪酸の製造法
JP2010201401A (ja) * 2009-03-06 2010-09-16 Sumitomo Chemical Co Ltd 押出触媒成形体の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016505377A (ja) * 2013-05-24 2016-02-25 エルジー・ケム・リミテッド アクロレインおよびアクリル酸製造用触媒とその製造方法
US10857525B2 (en) 2013-05-24 2020-12-08 Lg Chem, Ltd. Catalyst for preparing acrolein and acrylic acid, and preparation method thereof
JP2018153777A (ja) * 2017-03-21 2018-10-04 株式会社日本触媒 アクリル酸製造用触媒ならびに該触媒を用いたアクリル酸の製造方法
WO2023063349A1 (ja) 2021-10-14 2023-04-20 日本化薬株式会社 不飽和カルボン酸製造用触媒およびその製造方法、並びに不飽和カルボン酸の製造方法

Also Published As

Publication number Publication date
EP2647429B1 (en) 2023-09-06
CN103228356B (zh) 2015-09-23
US8940658B2 (en) 2015-01-27
CN103228356A (zh) 2013-07-31
JPWO2012073584A1 (ja) 2014-05-19
EP2647429A4 (en) 2014-08-13
EP2647429A1 (en) 2013-10-09
JP5628936B2 (ja) 2014-11-19
US20130253223A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
JP5628930B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒および該触媒を用いる不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP5845337B2 (ja) 固定床多管式反応器を用いてのアクリル酸の製造方法
US9079840B2 (en) Process for producing geometric shaped catalyst bodies
JP4242597B2 (ja) 不飽和アルデヒド合成用触媒とその製造方法、およびその触媒を用いた不飽和アルデヒドの製造方法
JP5388897B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒および該触媒を用いた不飽和アルデヒドおよび/または不飽和カルボン酸の製造方法
JP5628936B2 (ja) 不飽和カルボン酸製造用触媒および該触媒を用いる不飽和カルボン酸の製造方法
JP5586382B2 (ja) 不飽和アルデヒドおよび/または不飽和カルボン酸製造用触媒の製造方法およびその触媒、ならびに該触媒を用いたアクロレインおよび/またはアクリル酸の製造方法
JP5420556B2 (ja) アクロレインおよび/またはアクリル酸製造用の触媒および該触媒を用いたアクロレインおよび/またはアクリル酸の製造方法
EP1350784A1 (en) Process for production of unsaturated aldehyde or acid using Mo-Bi-Fe catalyst
JP5548132B2 (ja) アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法
JP6504774B2 (ja) アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法
JP2004002209A (ja) 不飽和アルデヒドの製造方法
JP5448331B2 (ja) アクリル酸製造用触媒および該触媒を用いたアクリル酸の製造方法
JP7480671B2 (ja) 不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造方法
JP5582709B2 (ja) アクリル酸製造用の触媒および該触媒を用いたアクリル酸の製造方法
WO2022050110A1 (ja) アクリル酸製造用触媒とその製造方法およびアクリル酸の製造方法
JP2011102247A (ja) アクロレインおよび/またはアクリル酸の製造方法
JP2022067415A (ja) 不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造方法
JP2022067427A (ja) 不飽和アルデヒド及び不飽和カルボン酸合成用触媒の製造方法
JP2018153777A (ja) アクリル酸製造用触媒ならびに該触媒を用いたアクリル酸の製造方法
JP2011102248A (ja) アクリル酸の製造方法
JP2011102249A (ja) アクリル酸の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11844503

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011844503

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012546725

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13990513

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE