WO2012067138A1 - 新規なシチジン系代謝拮抗剤の高分子誘導体 - Google Patents

新規なシチジン系代謝拮抗剤の高分子誘導体 Download PDF

Info

Publication number
WO2012067138A1
WO2012067138A1 PCT/JP2011/076373 JP2011076373W WO2012067138A1 WO 2012067138 A1 WO2012067138 A1 WO 2012067138A1 JP 2011076373 W JP2011076373 W JP 2011076373W WO 2012067138 A1 WO2012067138 A1 WO 2012067138A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
cytidine
polymer
polymer derivative
Prior art date
Application number
PCT/JP2011/076373
Other languages
English (en)
French (fr)
Inventor
啓一朗 山本
麻奈実 岡崎
大 川村
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to US13/884,413 priority Critical patent/US9018323B2/en
Priority to CN2011800556021A priority patent/CN103221054A/zh
Priority to JP2012544274A priority patent/JP5856069B2/ja
Priority to EP11841714.6A priority patent/EP2641605B1/en
Priority to KR1020137011461A priority patent/KR20140024833A/ko
Priority to CA2816997A priority patent/CA2816997A1/en
Publication of WO2012067138A1 publication Critical patent/WO2012067138A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7052Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides
    • A61K31/706Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom
    • A61K31/7064Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines
    • A61K31/7068Compounds having saccharide radicals and heterocyclic rings having nitrogen as a ring hetero atom, e.g. nucleosides, nucleotides containing six-membered rings with nitrogen as a ring hetero atom containing condensed or non-condensed pyrimidines having oxo groups directly attached to the pyrimidine ring, e.g. cytidine, cytidylic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/765Polymers containing oxygen
    • A61K31/77Polymers containing oxygen of oxiranes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/785Polymers containing nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/40Polyamides containing oxygen in the form of ether groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment

Definitions

  • the present invention relates to a novel cytidine antimetabolite polymer derivative, particularly a cytidine in a side chain carboxy group in a block copolymer of a polyethylene glycol structural moiety and a polymer having 10 or more carboxy groups via a specific linker.
  • the present invention relates to a polymer derivative of a cytidine antimetabolite having a 4-position amino group of the antimetabolite and a use thereof.
  • Cytarabine, gemcitabine and the like as anticancer agents, and zarcitabine (antiviral agent) as sarcitabine (cytarabine) Zalcitabine), lamivudine, etc. are used clinically.
  • gemcitabine has cytostatic activity comparable to drugs such as paclitaxel and doxorubicin, which are also anticancer agents in vitro, but clinically requires a dose of 1000 mg / m 2 per body surface area. is there. This is thought to be because the 4-position amino group of the cytosine base is metabolized by cytidine deaminase, which is a 2′-deoxycytidine metabolizing enzyme, and the in vivo utilization rate as gemcitabine is reduced (non-native).
  • cytostatic activity comparable to drugs such as paclitaxel and doxorubicin, which are also anticancer agents in vitro, but clinically requires a dose of 1000 mg / m 2 per body surface area. is there. This is thought to be because the 4-position amino group of the cytosine base is metabolized by cytidine deaminase, which is a 2′-deoxycytidine metabolizing enzyme, and the in vivo utilization rate as
  • Non-Patent Document 2 describes a polymer derivative in which a polyglutamic acid having an average molecular weight of about 30,000 and cytarabine are bound.
  • high molecular derivatives of drugs may show hypersensitivity reactions due to immune reactions, and in such cases, they cannot be repeatedly administered as drugs.
  • Patent Document 1 has a polymer derivative in which cytidine derivatives are bonded to polyethylene glycols, and Non-Patent Document 3 has branched aspartic acid at both ends of polyethylene glycols, and cytarabine is bonded thereto.
  • Polymer derivatives are disclosed. However, these can bind only about 1 to 8 molecules of drug per molecule of polyethylene glycol, and the total amount of polymer becomes large in order to administer an effective amount.
  • drug release from these polymer derivatives has a part that depends on the hydrolysis reaction by enzymes in the living body, and the clinical therapeutic effect may be greatly influenced by individual differences among patients.
  • Patent Document 2 describes that a molecule obtained by binding a drug to a block copolymer obtained by condensing polyethylene glycols and polyaspartic acid forms a micelle to become a medicine.
  • Patent Document 3 describes a polymer carrier that is a polymer carrier in which a hydrophobic substance is bound to a side chain carboxy group of a block copolymer of polyethylene glycols and a polyacidic amino acid.
  • Patent Document 4 describes a polymer derivative in which an anticancer substance is bonded to a glutamic acid side chain carboxy group of a block copolymer obtained by condensing polyethylene glycols and polyglutamic acid.
  • these Patent Documents 2 to 4 do not describe a cytidine antimetabolite as a binding agent.
  • Patent Document 5 describes a polymer derivative in which a side chain carboxy group of a block copolymer of polyethylene glycols and polyglutamic acid and an amino group of a cytidine antimetabolite are amide-bonded.
  • Patent Document 6 describes a polymer derivative in which a side chain carboxy group of a block copolymer of polyethylene glycols and polyglutamic acid and a hydroxyl group of a nucleoside derivative that is a nucleic acid antimetabolite are ester-bonded.
  • a cytidine antimetabolite is bonded directly to the carboxy group of a copolymer of polyethylene glycol and polycarboxylic acid, and the cytidine antimetabolite is not bonded through any linker.
  • Patent Document 7 describes a polymer derivative in which a nucleoside derivative that is a nucleic acid antimetabolite is bound to a side chain carboxy group of a block copolymer of polyethylene glycols and polyglutamic acid via a highly hydrophobic linker.
  • this linker does not have a succinic monoamide structure, and is not a system that forms an imide and releases the drug.
  • An object of the present invention is to provide a novel anticancer agent or antiviral agent having a higher medicinal effect than before by converting a cytidine antimetabolite into a polymer derivative.
  • the polymer derivative of a cytidine antimetabolite was found in which the 4-position amino group of a cytidine antimetabolite was bound to the side chain carboxy group via a specific linker having a succinic monoamide structure.
  • the polymer derivative of the present invention has a high medicinal effect because the release rate of the bound cytidine antimetabolite can be freely adjusted by appropriately selecting an amine component that is a component of the linker. It is characterized by what it can do.
  • a side chain carboxy group of a block copolymer of a polyethylene glycol structural moiety and a polymer having 10 or more carboxy groups is represented by the general formula (I) or (II) [Wherein, R 7 and R 8 each independently represent a hydrogen atom or a (C1 to C6) alkyl group, and R 6 represents a hydrogen atom or an optionally substituted (C1 to C40) alkyl group, An optionally substituted (C1-C40) aralkyl group, an optionally substituted aromatic group, a carboxy-protected amino acid residue or an optionally substituted sugar And CX-CY represents CH—CH or C ⁇ C (double bond), and A represents a residue excluding the 4-position amino group of the cytidine antimetabolite]. Polymer derivative of bound cytidine antimetabolite.
  • a polymer derivative of a cytidine antimetabolite is represented by the general formula (III) [Wherein R 1 represents a hydrogen atom or a (C1 to C6) alkyl group, R 3 represents a bonding group, R 4 represents a hydrogen atom or a (C1 to C6) acyl group, and R 5 represents a general formula ( I) or general formula (II) [Wherein R 6 , R 7 , R 8 , CX-CY and A have the same meaning as described above] B represents an integer of 5 to 11500, p and q each independently represents an integer of 1 to 3, i represents an integer of 5 to 200, and n represents an integer of 0 to 200 And i + n represents an integer of 10 to 300]
  • a polymer derivative of a cytidine antimetabolite according to any one of the above (1) to (3) which is a compound represented by the formula:
  • R 1 is a (C1 to C3) alkyl group
  • R 3 is the formula (IV), (V) or (VI)
  • r represents an integer of 1 to 6
  • R 4 is a (C1 to C3) acyl group
  • b is an integer of 100 to 300
  • p and q are each 1 or 2 depending on R 3
  • i is 5 to 90
  • R 1 is a methyl group
  • R 3 is a trimethylene group
  • R 4 is an acetyl group
  • R 7 and R 8 in R 5 are both hydrogen atoms
  • CX—CY is CH—CH.
  • An anticancer agent comprising the high molecular weight derivative of a cytidine antimetabolite according to any one of (1) to (7) as a medicinal ingredient.
  • An antiviral agent comprising the high molecular weight derivative of a cytidine antimetabolite according to any one of (1) to (7) as a medicinal ingredient.
  • the polymer derivative of the cytidine antimetabolite of the present invention in particular, the side chain carboxy group in the block copolymer of polyethylene glycol and polyglutamic acid has a 4-position amino group of the cytidine antimetabolite via a specific linker.
  • the bonded polymer derivative is a high molecular compound that is homogeneous and easy to control because it has only one binding mode of cytidine antimetabolite, and is expected to exhibit high efficacy.
  • the polymer derivative of the present invention can release cytidine antimetabolite under physiological conditions without depending on the hydrolase in the living body, it has an effective drug effect without being influenced by individual differences. Is shown.
  • the release rate of the bound cytidine antimetabolite can be adjusted according to the intended use of the drug.
  • Example Compound 5 Compound 10, and Comparative Compound (PEG-Glu-ECyd, PEG-Glu- (ECyd, PheOBzl)) at 37 ° C. in PBS solution (phosphate buffered saline, pH 7.4)
  • PBS solution phosphate buffered saline, pH 7.4
  • the ratio of the released amount of 3′-ethynylcytidine (ECyd) to the total bound amount is shown.
  • the ratio of the released amount of 3'-ethynylcytidine (ECyd) at 37 ° C in PBS solution (phosphate buffered saline, pH 7.4) with respect to the total bound amount is shown for compound 15 and compound 21 of the examples.
  • Release of 3′-ethynylcytidine (ECyd) at 37 ° C. in PBS solution (phosphate buffered saline, pH 7.4) for example compound 15, compound 22 and comparative compound (PEG-Glu-ECyd) The ratio
  • the polymer derivative of the cytidine antimetabolite of the present invention has a general formula (I) or a general formula (II) on the side chain carboxy group of a block copolymer of a polyethylene glycol structural moiety and a polymer having 10 or more carboxy groups.
  • R 7 and R 8 each independently represents a hydrogen atom or a (C1 to C6) alkyl group, and R 6 represents a hydrogen atom or an optionally substituted (C1 to C40) alkyl group
  • CX-CY represents CH—CH or C ⁇ C (double bond)
  • A represents a residue other than the 4-position amino group of a cytidine antimetabolite].
  • the polymer having 10 or more carboxy groups in the block copolymer of the polyethylene glycol structural moiety and the polymer having 10 or more carboxy groups in the polymer derivative of the cytidine antimetabolite of the present invention has a carboxy group in the side chain.
  • Examples thereof include a polymer formed by polymerizing a low molecular weight monomer or a polymer obtained by introducing a carboxy group into a polymer of a low molecular weight monomer having a functional group other than a carboxy group such as a hydroxyl group using halogenoacetic acid or the like.
  • polymers having the carboxy group or the polymer which can be used for the production of the polymer having the carboxy group include polyglutamic acid, polyaspartic acid, polyserine, polycysteine, polytyrosine, polylysine, polymalic acid, dextran or a portion thereof.
  • An oxidant, polyuronic acid, etc. are mentioned.
  • the polymer having a carboxy group is preferably a polyamino acid or a derivative thereof, and polyglutamic acid which is a polyacidic amino acid is particularly preferable.
  • the polyethylene glycol structure portion in the block copolymer of the polyethylene glycol structure portion and the polymer having 10 or more carboxy groups in the polymer derivative of the cytidine antimetabolite of the present invention has about 1 to 15000 ethylene glycol structure portions. If it does, it will not specifically limit. Preferably, it is a structural part including a linking group of linear polyethylene glycol and a polymer having 10 or more carboxy groups.
  • the block copolymer of the polyethylene glycol structural moiety and the polymer having 10 or more carboxy groups in the polymer derivative of the cytidine antimetabolite of the present invention is preferably a block copolymer of a polyethylene glycol structural moiety and polyglutamic acid.
  • R 7 and R 8 are each independently Are a hydrogen atom or a (C1-C6) alkyl group.
  • (C1 to C6) alkyl group means, for example, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, s-butyl group, t-butyl group, n-pentyl group, n-hexyl group , Cyclopropyl group, cyclopentyl group, cyclohexyl group and the like.
  • R 7 and R 8 in the substituent are both preferably hydrogen atoms.
  • R 6 has a hydrogen atom, an optionally substituted (C1 to C40) alkyl group, an optionally substituted (C1 to C40) aralkyl group, and a substituted group.
  • the (C1 to C40) alkyl group in the (C1 to C40) alkyl group which may have a substituent may be linear or branched.
  • a methyl group, an ethyl group, an n-propyl group examples include isopropyl group, n-butyl group, s-butyl group, isobutyl group, n-pentyl group, n-hexyl group, n-stearyl group, etc.
  • substituent examples include phenyl group, naphthyl group, methoxy Group, ethoxy group, dimethylamino group, adamantyl group and the like.
  • the substitution position is not particularly limited as long as substitution is possible.
  • the (C1 to C40) aralkyl group in the (C1 to C40) aralkyl group which may have a substituent is not particularly limited as long as it is an alkyl group to which an aromatic hydrocarbon group is bonded.
  • a naphthylmethyl group, a phenethyl group, a 4-phenylbutyl group, and the like can be mentioned.
  • the substituent of the aromatic hydrocarbon group include a methyl group, an ethyl group, a nitro group, a chlorine atom, a bromine atom, and a dimethylamino group. Is mentioned.
  • the substitution position and the number of substituents are not particularly limited as long as substitution is possible.
  • the aromatic group which may have a substituent is, for example, a substituent derived from benzene, naphthalene, fluorene, aniline, nitroaniline, chloroaniline, aminofluorobenzonitrile, aminonaphthalene, aminoflavone, aminofluorene and the like. Is mentioned.
  • the bonding position of the substituent derived from the aromatic compound and the substituent of general formula (I) or general formula (II) is not particularly limited as long as substitution is possible.
  • amino acid of the amino acid residue in which the carboxy group is protected examples include amino acids in which the carboxy group used in normal peptide synthesis is protected, and a compound in which the carboxy group of the amino acid is protected by an ester or an amide is preferable.
  • the sugar of the sugar residue which may have a substituent is not particularly limited as long as it is an amino sugar, and examples thereof include glucosamine, galactosamine, mannosamine and the like, and examples of the substituent include acetyl group, pivaloyl group, benzyl Group, methyl group and the like.
  • the sugar may be D-form, L-form, or a mixture thereof. Further, the position and number of substituents are not limited as long as they are possible.
  • CX-CY may be any one in which the linker portion can form a cyclic imide intermediate. —CH or C ⁇ C (double bond), and examples thereof include succinic acid monoamide derivatives and maleic acid monoamide derivatives.
  • CX-CY is particularly preferably CH-CH.
  • Examples of the cytidine antimetabolite (A-NH 2 ) in the polymer derivative of the cytidine antimetabolite of the present invention in which an amide bond is formed at the 4-position amino group of the cytosine base to the linker include, for example, gemcitabine, 5′-deoxy Examples include -5-fluorocytidine, cytarabine, or 3'-ethynylcytidine.
  • the structural formulas of gemcitabine, 5′-deoxy-5-fluorocytidine, cytarabine, and 3′-ethynylcytidine are shown below.
  • the polymer derivative of the cytidine antimetabolite of the present invention includes the above general formula (III) [wherein R 1 represents a hydrogen atom or a (C1-C6) alkyl group, R 3 represents a linking group, 4 represents a hydrogen atom or a (C1 to C6) acyl group, R 5 represents the general formula (I) or the general formula (II) [wherein R 6 , R 7 , R 8 , CX-CY and A are B represents an integer of 5 to 11,500, p and q each independently represents an integer of 1 to 3, i represents an integer of 5 to 200, and n represents A compound represented by an integer of 0 to 200 and i + n represents an integer of 10 to 300] is preferable.
  • Examples of the (C1 to C6) alkyl group in R 1 include a linear or branched alkyl group of (C1 to C6), preferably a (C1 to C4) alkyl group, such as a methyl group, an ethyl group, Group, n-propyl group, n-butyl group and the like.
  • a methyl group is particularly preferred.
  • the (C1 to C6) acyl group in R 4 is not particularly limited, and preferably a (C1 to C3) acyl group, such as a formyl group, an acetyl group, and a propionyl group.
  • R 4 in formula (III) is particularly preferably an acetyl group.
  • R 5 is a substituent represented by general formula (I) or general formula (II), and the substituent is as described above, and preferred groups are also the same.
  • the linking group of R 3 constitutes the terminal portion on the binding side of the polyethylene glycol structural moiety and the polymer having 10 or more carboxy groups in the block copolymer of the polymer having 10 or more carboxy groups.
  • a linear or branched (C1-C20) alkylene group which is a structural part and may have a heteroatom.
  • the hetero atom include an oxygen atom, a nitrogen atom, and a sulfur atom.
  • the linking group include groups represented by the above formula (IV), formula (V), and formula (VI).
  • the methylene number r is an integer of 1 to 6, preferably 2 to 4, and particularly preferably 3.
  • P and q in the general formula (III) are each independently an integer of 1 to 3, but are defined by the bonding group of R 3 .
  • the linking group is a group represented by formula (IV)
  • the linking group is a group represented by formula (V)
  • b is an integer of about 5 to 11,500, preferably an integer of about 8 to 2300, and more preferably an integer of about 100 to 300.
  • the molecular weight of the polyethylene glycol structure is about 300 to 500,000, preferably about 500 to 100,000, and more preferably about 1,000 to 50,000.
  • the molecular weight in the present invention is a weight average molecular weight measured by GPC method.
  • i is an integer of 5 to 200, preferably 5 to 90
  • n is an integer of 0 to 200, preferably 0 to 90
  • the total glutamic acid number (i + n) is 10 to 300. It is an integer, preferably about 10 to 100, particularly preferably about 10 to 60.
  • the ratio of the glutamic acid number (i) bound to the cytidine antimetabolite to the total glutamic acid number (i + n) is 10 to 100%, preferably 20 to 100%, more preferably 40 to 100%.
  • the constituent parts of the polyglutamic acid in the general formula (III) are not limited in the binding order, and may be block type or random type.
  • the molecular weight of the polymer derivative of the cytidine antimetabolite of the present invention is about 1,000 to 600,000, preferably about 1100 to 110,000, more preferably about 1500 to 80,000.
  • the substituent of the general formula (I) or the general formula (II) in the polymer derivative of the cytidine antimetabolite of the present invention may be mixed in one molecule or only one, and R The groups 6 , R 7 and R 8 may be the same or different in one molecule.
  • the polymer derivative of a cytidine antimetabolite of the present invention is a micelle having a polyethylene glycol structure as an outer shell in water and a hydrophobic polymer to which a cytidine antimetabolite is bonded via a linker as an inner shell. May be formed.
  • a cytidine antimetabolite derivative with a linker moiety represented by the general formula (I) or general formula (II) is prepared. That is, a succinic acid monoamide derivative having a protected amino group and a carboxy group, or a maleic acid monoamide derivative having a protected amino group and a carboxy group, and a cytidine antimetabolite in an organic solvent using a dehydration condensing agent and a cytidine series.
  • a succinic acid monoamide derivative having an amino group and a cytidine-based antimetabolite bound to an amino group having an amide bond with the 4-position amino group of the antimetabolite and deprotecting the amino group, or a cytidine-type antimetabolite having an amino group A bound maleic monoamide derivative is obtained.
  • a method in which a side chain carboxy group of a block copolymer of a polyethylene glycol structural part and a polyglutamic acid obtained in the literature or obtained by applying the amide bond is bonded to the derivative in an organic solvent using a dehydrating condensing agent. is there.
  • an organic solvent in which both a succinic acid monoamide derivative protected with an amino group with a tert-butoxycarbonyl group (Boc) and 3′-ethynylcytidine are dissolved preferably N, N-dimethylformamide (DMF), 1,3- It is dissolved in an aprotic polar solvent such as dimethyl-2-imidazolidinone (DMI), N-methylpyrrolidone (NMP), and dicyclohexylcarbodiimide (DCC), diisopropylcarbodiimide (DCC) at 0 to 180 ° C., preferably 5 to 50 ° C.
  • DIPCI 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (WSC) hydrochloride, 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinolinone (EEDQ), 4- (4,6- Dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholine Nium chloride (DMT-MM), O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate (HBTU), O- (7-azabenzotriazole -1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate (HATU), (1-cyano-2-ethoxy-2-oxoethylideneaminooxy) dimethylamino-2- A condensate is obtained by subjecting to a reaction using a dehydrating condensing agent
  • an amide conjugate with the 4-position amino group of cytosine base may be obtained from the reaction product through a separation and purification step.
  • diisopropylcarbodiimide (DIPCI) or 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide (WSC) hydrochloride as a dehydrating condensing agent, 1-hydroxy-1H-benzotriazole (HOBt) or 1- Use of hydroxy-7-azabenzotriazole (HOAt), or 1-ethoxycarbonyl-2-ethoxy-1,2-dihydroxyquinolinone (EEDQ), 4- (4,6-dimethoxy-1,3,5- Triazin-2-yl) -4-methylmorpholinium chloride (DMT-MM), (1-cyano-2-ethoxy-2-oxoethylideneaminooxy) dimethylamino-2-morpholino-carbenium hexafluorophosphate ( The purpose is to use only COM
  • the cytidine antimetabolite may be protected by protecting other functional groups that react with the carboxy group and subjected to a condensation reaction, followed by deprotection at an appropriate stage after the reaction.
  • a methoxypolyethyleneglycol-polyglutamic acid block copolymer prepared by the method described in WO 2006/120914 after deprotecting Boc, and the same dehydrating condensing agent in the same solvent as described above If necessary, an amide bond is formed using a reaction aid to obtain a polymer derivative of the cytidine antimetabolite of the present invention.
  • the polymer derivative of a cytidine antimetabolite of the present invention can be used as a medicine for treating a disease corresponding to the medicinal effect of a bound cytidine antimetabolite.
  • anticancer agents and antiviral agents are also included in the present invention.
  • the polymer derivative can be used in commonly used dosage forms such as injections, tablets and powders.
  • Pharmaceutically acceptable carriers commonly used for formulation such as binders, lubricants, disintegrants, solvents, excipients, solubilizers, dispersants, stabilizers, suspending agents, Preservatives, soothing agents, pigments, fragrances and the like may be used.
  • the polymer derivative of the cytidine antimetabolite of the present invention is preferably used as an injection.
  • water, physiological saline, 5% glucose or mannitol solution, water-soluble organic solvent (for example, glycerol, ethanol, dimethyl) Sulphoxide, N-methylpyrrolidone, polyethylene glycol, cremophor and the like, and a mixture thereof) and a mixture of water and the water-soluble organic solvent are used.
  • the dose of the polymer derivative of the cytidine antimetabolite of the present invention can be naturally changed depending on the characteristics of the cytidine antimetabolite, the sex, age, physiological state, indication, disease state, etc. of the patient. Therefore, usually 0.01 to 500 mg / m 2 , preferably 0.1 to 250 mg / m 2 is administered as an active ingredient per day for an adult. Administration by injection is performed in veins, arteries, affected areas (tumor areas), and the like.
  • two or more compounds contained in the polymer derivative of the cytidine antimetabolite of the present invention may be mixed and used.
  • the present invention will be further described below with reference to examples. However, the present invention is not limited to these examples.
  • the size (particle size) of the particles is determined by the Gaussian distribution analysis by the dynamic light scattering method or the RMS by the static light scattering method. shown in radius, the former by ZetaPotential / Particlesizer NICOMP TM 380ZLS (Particle Sizing Systems , Inc.), the latter measured and calculated by DAWN EOS TM (Wyatt Technology Corp.).
  • Synthesis Example 2 Synthesis of N- (tert-butoxycarbonyl) aspartic acid-1-phenylbutyramide (Compound 2) 3.50 g of Compound 1 obtained in Synthesis Example 1 was dissolved in 15 mL of ethyl acetate, and 5% palladium carbon After adding 0.656 g (water content 50%), the inside of the system was replaced with hydrogen, and stirred at room temperature overnight to hydrocrack. 5% Palladium carbon was filtered and washed with 80 mL of ethyl acetate. The organic layers were combined, and the ethyl acetate was distilled off under reduced pressure, followed by vacuum drying to obtain 2.58 g of Compound 2. MS: m / z 387 (M + Na) +: Calculated as C 19 H 28 N 2 O 5 (M + Na) + 387
  • the mixture was stirred at room temperature for 1 hour, and the precipitate was collected by filtration and washed with ethanol / diisopropyl ether (1/8 (v / v), 20 mL).
  • the precipitate was dissolved in 12 mL of acetonitrile, slowly added dropwise to a mixed solution of 15 mL of ethanol and 90 mL of diisopropyl ether, stirred at room temperature for 1 hour, the precipitate was collected by filtration, and ethanol / diisopropyl ether (1/8 (v / v ), 20 mL).
  • the content of 3′-ethynyl cytidine bound to compound 5 was determined by adding 1N-sodium hydroxide aqueous solution to compound 5 and stirring at 37 ° C. for 1 hour, and then separating the released 3′-ethynyl cytidine by HPLC (high performance liquid chromatography). Analyzed and calculated using a calibration curve previously obtained with 3′-ethynylcytidine. As a result, the content of bound 3'-ethynylcytidine was 19.4% (w / w).
  • Synthesis Example 6 Synthesis of N- (tert-butoxycarbonyl) aspartic acid-1-butyramide (Compound 7) 5.09 g of Compound 6 obtained in Synthesis Example 5 was dissolved in 15 mL of ethyl acetate, and 5% palladium carbon (water content) After adding 0.656 g (content 50%), the system was replaced with hydrogen, and stirred at room temperature overnight to hydrocrack. 5% Palladium on carbon was filtered, washed with ethyl acetate, the organic layers were combined, and ethyl acetate was distilled off under reduced pressure, followed by vacuum drying to obtain 4.05 g of compound 7.
  • Synthesis Example 7 Synthesis of N- (tert-butoxycarbonyl) aspartic acid-1-butyramide-4- (3′-ethynylcytidine) amide (Compound 8) 596 mg of the compound obtained in Synthesis Example 6 7,500 mg of 3 ′ -Ethynylcytidine and 275 mg of HOBt were dissolved in 4 mL of DMF, the inside of the system was purged with argon, 353 mg of WSC hydrochloride was added, and the mixture was stirred at 20 ° C for 9 hours. Next, 298 mg of compound 7 and 177 mg of WSC hydrochloride were added, and the mixture was added at 20 ° C. for 3 hours.
  • the mixture was stirred at room temperature for 1 hour, and the precipitate was collected by filtration and washed with ethanol / diisopropyl ether (1/8 (v / v), 18 mL).
  • the precipitate is dissolved in a mixed solvent of 1 ml of DMF and 7 mL of acetonitrile, slowly added dropwise to a mixed solution of 8 mL of ethanol and 64 mL of diisopropyl ether, and stirred at room temperature for 1 hour. Washed with diisopropyl ether (1/8 (v / v), 18 mL).
  • the content of 3'-ethynylcytidine bound to compound 10 was analyzed using HPLC (high performance liquid chromatography) after hydrolysis in the same manner as in Example 1.
  • the content of bound 3'-ethynylcytidine was 20.9% (w / w).
  • Synthesis Example 10 Synthesis of N- (tert-butoxycarbonyl) aspartic acid-1-adamantane methylamide (Compound 12) 15.0 g of Compound 11 obtained in Synthesis Example 9 was dissolved in 75 mL of ethyl acetate and 10% palladium carbon After adding 1.5 g (water content 50%), the inside of the system was replaced with hydrogen and stirred at room temperature for 2 days for hydrogenolysis. 10% Palladium carbon was filtered and washed with 20 mL of ethyl acetate. The organic layers were combined, and the ethyl acetate was distilled off under reduced pressure, followed by vacuum drying to obtain 9.22 g of Compound 12.
  • Synthesis Example 11 Synthesis of N- (tert-butoxycarbonyl) aspartic acid-1-adamantanemethylamide-4- (3′-ethynylcytidine) amide (Compound 13) 1.88 g of Compound 12 obtained in Synthesis Example 10 1.10 g of 3′-ethynylcytidine and 658 mg of HOBt were dissolved in 20 mL of DMF, followed by freeze degassing. 914 mg of WSC hydrochloride was added and stirred at 20 ° C. for 9 hours. Next, 313 mg of Compound 12 and 141 mg of WSC hydrochloride were added and stirred at 20 ° C. for 2 hours.
  • Synthesis Example 12 Synthesis of Aspartic acid-1-adamantanemethylamide-4- (3′-ethynylcytidine) amide (Compound 14) 1.47 g of Compound 13 obtained in Synthesis Example 11 was dissolved in 6 mL of ethyl acetate and then 6 mL. 4N-HCl / AcOEt was added and stirred at room temperature for 1 hour. After completion of the reaction, ethyl acetate was distilled off under reduced pressure, followed by vacuum drying to obtain 1.20 g of compound 14.
  • Example 3 Amide of a block copolymer composed of a methoxypolyethylene glycol structural moiety having a molecular weight of 12000 and a polyglutamic acid moiety having a polymerization number of 21, and aspartic acid-1-adamantanemethylamide-4- (3′-ethynylcytidine) amide
  • R 1 methyl group
  • R 3 trimethylene group
  • R 4 acetyl group
  • R 7 and R 8 hydrogen atom of general formula (III)
  • R 6 1-adamantylmethyl group
  • Compound 15 489 mg of methoxypolyethylene glycol-polyglutamic acid block copolymer prepared by the method described in International Publication No.
  • the mixture was stirred at room temperature for 1 hour, and the precipitate was collected by filtration and washed with ethanol / diisopropyl ether (1/9 (v / v), 10 mL).
  • the precipitate was dissolved in 8 mL of DMF, slowly added dropwise to a mixed solution of 10 mL of ethanol and 90 mL of diisopropyl ether, stirred at room temperature for 1 hour, the precipitate was collected by filtration, and ethanol / diisopropyl ether (1/9 (v / V), 4 mL).
  • the content of 3'-ethynylcytidine bound to compound 15 was analyzed and calculated using HPLC (high performance liquid chromatography) after hydrolysis in the same manner as in Example 1.
  • the content of bound 3'-ethynylcytidine was 19.5% (w / w).
  • Synthesis Example 15 Synthesis of N- (tert-butoxycarbonyl) aspartic acid-1-phenylalanine- (4-phenylbutyl ester) amide (Compound 18) 1.18 g of Compound 17 obtained in Synthesis Example 14 was added to 5 mL of ethyl acetate. After dissolution, 0.118 g of 10% palladium carbon (water content 50%) was added, and the system was replaced with hydrogen, followed by stirring at room temperature overnight. 10% Palladium carbon was filtered and washed with 20 mL of ethyl acetate. The organic layers were combined, and the ethyl acetate was distilled off under reduced pressure, followed by vacuum drying to obtain 1.18 g of compound 18.
  • Synthesis Example 16 Synthesis of N- (tert-butoxycarbonyl) aspartic acid-1-phenylalanine- (4-phenylbutyl ester) -4- (3′-ethynylcytidine) amide (Compound 19) 200 mg obtained in Synthesis Example 15
  • the compound 18, 87.0 mg of 3′-ethynylcytidine and 55.0 mg of HOBt were dissolved in 2 mL of DMF, followed by freeze degassing. Next, 70.6 mg of WSC hydrochloride was added and stirred at 20 ° C. for 6 hours. Subsequently, 35.3 mg of WSC hydrochloride was added and stirred at 20 ° C. for 2 hours.
  • Synthesis Example 17 Synthesis of Aspartic acid-1-phenylalanine- (4-phenylbutyl ester) -4- (3′-ethynylcytidine) amide (Compound 20) 155 mg of Compound 19 obtained in Synthesis Example 16 was added to 1 mL of ethyl acetate. After dissolution, 510 ⁇ L of 4N HCl / AcOEt was added and stirred at room temperature for 1 hour. After completion of the reaction, ethyl acetate was distilled off under reduced pressure, followed by vacuum drying to obtain 105 mg of compound 20.
  • the precipitate was dissolved in a small amount of DMF, slowly added dropwise to a mixed solution of 4 mL of ethyl acetate and 24 mL of diisopropyl ether, and stirred at room temperature for 3 hours.
  • the precipitate was collected by filtration and collected with ethyl acetate / diisopropyl ether (1/6 ( v / v), 4 mL).
  • an ion exchange resin (Dow Chemical Dowex 50 (H + ), 0.5 mL) was added and stirred, and the resin was collected by filtration to give acetonitrile / water. Washed with (1/1 (v / v), 3 mL). Acetonitrile was distilled off from the resulting solution under reduced pressure, and then freeze-dried to obtain 36.5 mg of compound 21.
  • the content of 3'-ethynylcytidine bound to compound 21 was analyzed and calculated using HPLC (high performance liquid chromatography) after hydrolysis in the same manner as in Example 1.
  • the content of bound 3'-ethynylcytidine was 22.5% (w / w).
  • the precipitate was dissolved in 8 mL of DMF, slowly dropped into a mixed solution of 10 mL of ethanol and 90 mL of diisopropyl ether, stirred at room temperature for 0.5 hour, the precipitate was collected by filtration, and ethanol / diisopropyl ether (1/9 (V / v), 4 mL).
  • the precipitate was dissolved in 35 mL of acetonitrile and 17.5 mL of water, ion exchange resin (Dow Chemical Dowex 50 (H + ), 5 mL) was added and stirred, the resin was collected by filtration, and acetonitrile / water (1/1 (V / v), 10 mL ⁇ 2). Acetonitrile was distilled off from the obtained solution under reduced pressure, followed by lyophilization to obtain 685 mg of Compound 22.
  • the content of 3'-ethynylcytidine bound to compound 22 was analyzed and calculated using HPLC (high performance liquid chromatography) after hydrolysis in the same manner as in Example 1.
  • the content of bound 3'-ethynylcytidine was 20.2% (w / w).
  • Test Example 1 Drug Release in the Absence of Enzyme of 3′-Ethynylcytidine Polymer Derivative Compound 5, Compound 10, Compound 15, Compound 21, and Compound 22 and Methods described in International Publication No. 2006/120914 as Comparative Compounds 3′-ethynylcytidine and phenylalanine benzyl ester are added to the polyethylene glycol-polyglutamic acid block copolymer prepared in step PEG-Glu-ECyd, polyethylene glycol-polyglutamic acid block copolymer having 3′-ethynylcytidine derivative bonded thereto.
  • Bound PEG-Glu- (ECyd, PheOBzl) was dissolved in PBS solution (phosphate buffered saline; pH 7.4) at a concentration of 1 mg / mL and incubated at 37 ° C. 3′-ethynylcytidine released from each polymer derivative was quantified using HPLC. The ratio between the quantitative value and the total drug amount in the polymer derivative determined from the drug content of the polymer derivative is shown in FIGS.
  • the polymer derivatives of the present invention are 3′-ethynyl even in the absence of hydrolase. Cytidine was released, and the release rate could be greatly changed by the substituent of R 6 bonded to aspartic acid, and the release rate was comparable or better than that of the comparative compound.
  • Compound 5 and Compound 10 were able to release 3′-ethynylcytidine much faster than PEG-Glu-ECyd.
  • the comparative compound does not have a succinic monoamide structure portion in the block copolymer, the release rate cannot be increased.
  • Test Example 2 Antitumor Activity Test of 3′-Ethynylcytidine Derivative Human lung cancer LC-11-JCK passaged subcutaneously in a rat was made into a block of about 2 mm square, and the dorsal part of F344 nude rat was used with a trocar Transplanted subcutaneously.
  • the polymer derivatives of the present invention (Compound 5 and Compound 10) were administered once intravenously at the doses shown in Table 1.
  • the control drug (3′-ethynylcytidine; ECyd) was administered infusion subcutaneously over 24 hours using Alzet pump. Each compound was dissolved in a 5% glucose solution and used. The dose was administered from that dose, with the maximum dose being up to a maximum decrease rate of about 10% in body weight fluctuation.
  • the tumor volume on the first day of administration and 23 days after the start of administration, the major axis (Lmm) and the minor axis (Wmm) of the tumor were measured with calipers, and the tumor volume was calculated by (LxW 2 ) / 2, and the untreated group ( It was shown in Table 1 as a relative tumor volume ratio with respect to the tumor volume of control.
  • the compound 5 and compound 10 which are the polymer derivatives of the present invention are stronger in antitumor at a maximum dose with a maximum weight loss rate of about 10% or less than the control drug 3'-ethynylcytidine.
  • the effect was shown, and half of the effect was equivalent to the maximum dose of the control drug.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Virology (AREA)
  • Communicable Diseases (AREA)
  • Dispersion Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)

Abstract

【課題】生体の酵素に依存することなく薬剤放出が可能であり,且つ高い治療効果が期待されるシチジン系代謝拮抗剤の新規な高分子誘導体の提供。 【解決手段】ポリエチレングリコール構造部分と10以上のカルボキシ基を有するポリマーとのブロック共重合体の側鎖カルボキシ基に,一般式(I)あるいは一般式(II)[式中,R,Rはそれぞれ独立して水素原子又は置換基を有していてもよい(C1~C6)アルキル基を示し,Rは水素原子,置換基を有していてもよい(C1~C40)アルキル基,置換基を有していてもよい(C1~C40)アラルキル基,置換基を有していてもよい芳香族基,カルボキシ基が保護されたアミノ酸残基又は置換基を有していてもよい糖残基を示し,CX-CYはCH-CH又はC=C(二重結合)を示し,Aはシチジン系代謝拮抗剤の4位アミノ基を除いた残基を示す]で表わされる置換基が結合しているシチジン系代謝拮抗剤の高分子誘導体。

Description

新規なシチジン系代謝拮抗剤の高分子誘導体
 本発明は,新規なシチジン系代謝拮抗剤の高分子誘導体,特にポリエチレングリコール構造部分と10以上のカルボキシ基を有するポリマーとのブロック共重合体における側鎖カルボキシ基に,特定のリンカーを介してシチジン系代謝拮抗剤の4位アミノ基が結合しているシチジン系代謝拮抗剤の高分子誘導体,及びその用途に関する。
 悪性腫瘍あるいはウイルス性疾患の治療を目的として,種々のシチジン系代謝拮抗剤の開発が行なわれ,抗がん剤としてはシタラビン(cytarabine),ゲムシタビン(gemcitabine)等が,抗ウイルス剤としてはザルシタビン(zalcitabine),ラミブジン(lamivudine)等が臨床で使用されている。
 しかし,これらシチジン系代謝拮抗剤は,強いin vitro活性を有するにも拘わらず生体内では代謝・***を受けやすいために十分な薬効を発揮出来なかったり,あるいは高投与量を必要とするものが多い。例えば,ゲムシタビンは,in vitroでは同じく抗がん剤であるパクリタキセルやドキソルビシン等の薬剤に匹敵する細胞増殖抑制活性を有する一方で,臨床では体表面積あたり1回1000mg/mの投与量が必要である。これは,2’-デオキシシチジンの代謝酵素であるシチジン脱アミノ化酵素によってシトシン塩基の4位アミノ基が代謝されてしまい,ゲムシタビンとしてのin vivo利用率が低くなるためと考えられている(非特許文献1参照)。
 非特許文献2には,平均分子量約30000のポリグルタミン酸類とシタラビンとを結合させた高分子誘導体が記載されている。しかしながら,薬剤の高分子誘導体には免疫反応により過敏反応を示す場合があり,その様な場合には薬剤として繰返し投与が出来ない。
 特許文献1にはポリエチレングリコール類にシチジン系誘導体を結合させた高分子誘導体が,非特許文献3にはポリエチレングリコール類の両末端にアスパラギン酸を分枝状に置換させ,それにシタラビンを結合させた高分子誘導体が開示されている。しかし,これらはポリエチレングリコール類1分子あたり薬剤を1~8分子程度しか結合出来ず,有効量を投与するためにはポリマー総量が大量になってしまう。更に,これらの高分子誘導体からの薬剤放出は生体内の酵素による加水分解反応に依存している部分があり,臨床上における治療効果が患者の個体差に大きく影響される恐れがある。
 特許文献2にはポリエチレングリコール類とポリアスパラギン酸が縮合したブロック共重合体に薬剤を結合した分子がミセルを形成し医薬となることが記載されている。又,特許文献3にはポリエチレングリコール類とポリ酸性アミノ酸とのブロック共重合体の側鎖カルボキシ基に疎水性物質を結合した高分子運搬体となる高分子担体が記載されている。更に,特許文献4にはポリエチレングリコール類とポリグルタミン酸が縮合したブロック共重合体のグルタミン酸側鎖カルボキシ基に抗がん性物質を結合させた高分子誘導体が記載されている。しかしながら,これらの特許文献2~4には,結合する薬剤としてシチジン系代謝拮抗剤に関する記載はない。
 特許文献5には,ポリエチレングリコール類とポリグルタミン酸とのブロック共重合体の側鎖カルボキシ基とシチジン系代謝拮抗剤のアミノ基とがアミド結合した高分子誘導体が記載されている。又,特許文献6には,ポリエチレングリコール類とポリグルタミン酸とのブロック共重合体の側鎖カルボキシ基と核酸系代謝拮抗剤であるヌクレオシド誘導体の水酸基がエステル結合した高分子誘導体が記載されている。しかしながら,これらの文献はポリエチレングリコールとポリカルボン酸との共重合体のカルボキシ基に直接シチジン系代謝拮抗剤を結合させており,何らかのリンカーを介してシチジン系代謝拮抗剤を結合させてはいない。
 特許文献7にはポリエチレングリコール類とポリグルタミン酸とのブロック共重合体の側鎖カルボキシ基に疎水性の高いリンカーを介して核酸系代謝拮抗剤であるヌクレオシド誘導体が結合している高分子誘導体が記載されている。しかしながら,このリンカーにはコハク酸モノアミド構造部分がなく,イミドを形成するとともに薬剤が放出されるシステムではない。
特表2003-524028号公報 特許第2694923号公報 特許第3268913号公報 特開平5-955号公報 国際公開第2006/120914号パンフレット 国際公開第2008/056596号パンフレット 国際公開第2008/056654号パンフレット
「キャンサー・サイエンス」,日本癌学会発行,2004年,第95巻,105-111頁 「キャンサー・リサーチ」(米国),米国癌学会発行,1984年,第44巻,25-30頁 「ジャーナル オブ コントロールド リリース」(英国),エルゼヴィア発行,2002年,第79巻,55-70頁
 本発明の目的は,シチジン系代謝拮抗剤を高分子誘導体化することにより従来以上の高い薬効を有する新規な抗がん剤又は抗ウイルス剤を提供することにある。
 本発明者等は前記課題を解決するために鋭意研究を行なった結果,ポリエチレングリコール構造部分と10以上のカルボキシ基を有するポリマーとのブロック共重合体,特に,ポリエチレングリコール-ポリグルタミン酸ブロック共重合体の側鎖カルボキシ基に,コハク酸モノアミド構造を有する特定のリンカーを介してシチジン系代謝拮抗剤の4位アミノ基を結合させたシチジン系代謝拮抗剤の高分子誘導体を見出した。本発明の高分子誘導体は,リンカーの構成要素であるアミン成分を適宜選択することによって,結合しているシチジン系代謝拮抗剤の放出速度を自在に調節することが出来,高い薬効を有することを可能することを特徴としている。
 即ち,本発明は以下の(1)~(10)に関する。
(1)ポリエチレングリコール構造部分と10以上のカルボキシ基を有するポリマーとのブロック共重合体の側鎖カルボキシ基に,一般式(I)あるいは一般式(II)
Figure JPOXMLDOC01-appb-C000005
[式中,R,Rはそれぞれ独立して水素原子又は(C1~C6)アルキル基を示し,Rは水素原子,置換基を有していてもよい(C1~C40)アルキル基,置換基を有していてもよい(C1~C40)アラルキル基,置換基を有していてもよい芳香族基,カルボキシ基が保護されたアミノ酸残基又は置換基を有していてもよい糖残基を示し,CX-CYはCH-CH又はC=C(二重結合)を示し,Aはシチジン系代謝拮抗剤の4位アミノ基を除いた残基を示す]で表わされる置換基が結合しているシチジン系代謝拮抗剤の高分子誘導体。
(2)10以上のカルボキシ基を有するポリマーがポリアミノ酸又はその誘導体である前記(1)に記載のシチジン系代謝拮抗剤の高分子誘導体。
(3)ポリアミノ酸がポリグルタミン酸である前記(2)に記載のシチジン系代謝拮抗剤の高分子誘導体。
(4)シチジン系代謝拮抗剤の高分子誘導体が一般式(III)
Figure JPOXMLDOC01-appb-C000006
[式中,Rは水素原子又は(C1~C6)アルキル基を示し,Rは結合基を示し,Rは水素原子又は(C1~C6)アシル基を示し,Rは一般式(I)あるいは一般式(II)
Figure JPOXMLDOC01-appb-C000007
[式中,R,R,R,CX-CY及びAは前記と同じ意味を示す]
で表わされる置換基を示し,bは5~11500の整数を示し,p及びqはそれぞれ独立に1~3の整数を示し,iは5~200の整数を示し,nは0~200の整数を示し,且つi+nは10~300の整数を示す]
で表される化合物である前記(1)~(3)のいずれか1つに記載のシチジン系代謝拮抗剤の高分子誘導体。
(5)Rが(C1~C3)アルキル基,Rが式(IV),(V)又は(VI)
Figure JPOXMLDOC01-appb-C000008
[式中,rは1~6の整数を示す]
で表される結合基,Rが(C1~C3)アシル基であり,bが100~300の整数であり,Rによりp及びqはそれぞれ1又は2であり,iが5~90の整数,nが0~90の整数で,且つi+nが10~100の整数である前記(4)に記載のシチジン系代謝拮抗剤の高分子誘導体。
(6)Rがメチル基,Rがトリメチレン基,Rがアセチル基,RにおけるR,Rが共に水素原子であり,CX-CYがCH-CHである前記(5)に記載のシチジン系代謝拮抗剤の高分子誘導体。
(7)シチジン系代謝拮抗剤がゲムシタビン,5’-デオキシ-5-フルオロシチジン,シタラビン又は3’-エチニルシチジンである前記(1)~(6)のいずれか1つに記載のシチジン系代謝拮抗剤の高分子誘導体。
(8)前記(1)~(7)のいずれか1つに記載のシチジン系代謝拮抗剤の高分子誘導体を薬効成分とする抗がん剤。
(9)前記(1)~(7)のいずれか1つに記載のシチジン系代謝拮抗剤の高分子誘導体を薬効成分とする抗ウイルス剤。
(10)水中でミセルを形成することを特徴とする前記(1)~(9)のいずれか1つに記載のシチジン系代謝拮抗剤の高分子誘導体。
 本発明のシチジン系代謝拮抗剤の高分子誘導体,特に,ポリエチレングリコールとポリグルタミン酸とのブロック共重合体における側鎖カルボキシ基に,特定のリンカーを介してシチジン系代謝拮抗剤の4位アミノ基が結合した高分子誘導体は,シチジン系代謝拮抗剤の結合様式が1種類であることから均質で製造制御が容易な高分子化合物であり,高い薬効を発揮することが期待される。又,本発明の高分子誘導体は生理的条件下,生体の加水分解酵素に依存することなくシチジン系代謝拮抗剤を放出することが可能であるため,個体差に影響されることなく有効な薬効を示すものである。更に,該リンカーの構成要素であるアミン成分を適宜選択することによって,結合しているシチジン系代謝拮抗剤の放出速度をその薬剤の使用目的に合わせて調節することが出来る。
実施例の化合物5,化合物10及び比較化合物(PEG-Glu-ECyd,PEG-Glu-(ECyd,PheOBzl))について,PBS溶液(リン酸緩衝生理食塩水,pH7.4)中,37℃での3’-エチニルシチジン(ECyd)の放出量の全結合量に対する割合を示す。 実施例の化合物15及び化合物21について,PBS溶液(リン酸緩衝生理食塩水,pH7.4)中,37℃での3’-エチニルシチジン(ECyd)の放出量の全結合量に対する割合を示す。 実施例の化合物15,化合物22及び比較化合物(PEG-Glu-ECyd)について,PBS溶液(リン酸緩衝生理食塩水,pH7.4)中,37℃での3’-エチニルシチジン(ECyd)の放出量の全結合量に対する割合を示す。
 本発明のシチジン系代謝拮抗剤の高分子誘導体は,ポリエチレングリコール構造部分と10以上のカルボキシ基を有するポリマーとのブロック共重合体の側鎖カルボキシ基に,一般式(I)あるいは一般式(II)[式中,R,Rはそれぞれ独立して水素原子又は(C1~C6)アルキル基を示し,Rは水素原子,置換基を有していてもよい(C1~C40)アルキル基,置換基を有していてもよい(C1~C40)アラルキル基,置換基を有していてもよい芳香族基,カルボキシ基が保護されたアミノ酸残基又は置換基を有していてもよい糖残基を示し,CX-CYはCH-CH又はC=C(二重結合)を示し,Aはシチジン系代謝拮抗剤の4位アミノ基を除いた残基を示す]で表わされる置換基が結合している。
 本発明のシチジン系代謝拮抗剤の高分子誘導体におけるポリエチレングリコール構造部分と10以上のカルボキシ基を有するポリマーとのブロック共重合体における10以上のカルボキシ基を有するポリマーとしては,側鎖にカルボキシ基を有する低分子モノマーが重合して構成されたポリマーあるいは水酸基等カルボキシ基以外の官能基を有する低分子モノマーの重合体に,例えば,ハロゲノ酢酸等を用いてカルボキシ基を導入したポリマーが挙げられる。
 該カルボキシ基を有するポリマーあるいは該カルボキシ基を有するポリマーの製造に使用し得る重合体としては,例えば,ポリグルタミン酸,ポリアスパラギン酸,ポリセリン,ポリシステイン,ポリチロシン,ポリリジン,ポリリンゴ酸,デキストラン又はその部分酸化体,ポリウロン酸等が挙げられる。
 該カルボキシ基を有するポリマーとして好ましくは,ポリアミノ酸又はその誘導体が挙げられ,ポリ酸性アミノ酸であるポリグルタミン酸が特に好ましい。
 本発明のシチジン系代謝拮抗剤の高分子誘導体におけるポリエチレングリコール構造部分と10以上のカルボキシ基を有するポリマーとのブロック共重合体におけるポリエチレングリコール構造部分としては,エチレングリコール構造部分を1~15000程度有していれば特に限定されない。好ましくは直鎖状のポリエチレングリコールと,10以上のカルボキシ基を有するポリマーとの結合基を含めた構造部分である。
 本発明のシチジン系代謝拮抗剤の高分子誘導体におけるポリエチレングリコール構造部分と10以上のカルボキシ基を有するポリマーとのブロック共重合体としては,ポリエチレングリコール構造部分とポリグルタミン酸のブロック共重合体が好ましい。
 本発明のシチジン系代謝拮抗剤の高分子誘導体の10以上のカルボキシ基を有するポリマーに結合している一般式(I)あるいは一般式(II)の置換基において,R,Rはそれぞれ独立に水素原子又は(C1~C6)アルキル基である。(C1~C6)アルキル基とは,例えば,メチル基,エチル基,n-プロピル基,イソプロピル基,n-ブチル基,s-ブチル基,t-ブチル基,n-ペンチル基,n-ヘキシル基,シクロプロピル基,シクロペンチル基,シクロヘキシル基等が挙げられる。
 該置換基におけるR,Rとしては両者共に水素原子が特に好ましい。
 該置換基において,Rは水素原子,置換基を有していてもよい(C1~C40)アルキル基,置換基を有していてもよい(C1~C40)アラルキル基,置換基を有していてもよい芳香族基,カルボキシ基が保護されたアミノ酸残基又は置換基を有していてもよい糖残基である。
 置換基を有していてもよい(C1~C40)アルキル基における(C1~C40)アルキル基としては直鎖状でも分岐していてもよく,例えば,メチル基,エチル基,n-プロピル基,イソプロピル基,n-ブチル基,s-ブチル基,イソブチル基,n-ペンチル基,n-ヘキシル基,n-ステアリル基等が挙げられ,該置換基としては,例えば,フェニル基,ナフチル基,メトキシ基,エトキシ基,ジメチルアミノ基,アダマンチル基等が挙げられる。置換位置は置換可能であれば特に限定されない。
 置換基を有していてもよい(C1~C40)アラルキル基における(C1~C40)アラルキル基としては,芳香族炭化水素基が結合したアルキル基であれば特に限定されず,例えば,ベンジル基,ナフチルメチル基,フェネチル基,4-フェニルブチル基等が挙げられ,芳香族炭化水素基部分の置換基としては,例えば,メチル基,エチル基,ニトロ基,塩素原子,臭素原子,ジメチルアミノ基等が挙げられる。置換位置,置換基数は置換可能であれば特に限定されない。
 置換基を有していてもよい芳香族基としては,例えば,ベンゼン,ナフタレン,フルオレン,アニリン,ニトロアニリン,クロロアニリン,アミノフルオロベンゾニトリル,アミノナフタレン,アミノフラボン,アミノフルオレン等から導かれる置換基が挙げられる。該芳香族化合物から導かれる置換基と,一般式(I)あるいは一般式(II)の置換基との結合位置は置換可能であれば特に限定されない。
 カルボキシ基が保護されたアミノ酸残基のアミノ酸としては,通常のペプチド合成で用いられるカルボキシ基が保護されたアミノ酸が挙げられ,該アミノ酸のカルボキシ基がエステルあるいはアミドにより保護されている化合物が好ましく,例えば,アラニンの(C1~C12)アルキルエステル,アスパラギン酸のα若しくはβ(C1~C12)アルキルエステル,グルタミン酸のα若しくはγ(C1~C12)アルキルエステル,フェニルアラニンの(C1~C12)アルキルエステル,システインの(C1~C12)アルキルエステル,グリシンの(C1~C12)アルキルエステル,ロイシンの(C1~C12)アルキルエステル,イソロイシンの(C1~C12)アルキルエステル,ヒスチジンの(C1~C12)アルキルエステル,プロリンの(C1~C12)アルキルエステル,セリンの(C1~C12)アルキルエステル,スレオニンの(C1~C12)アルキルエステル,バリンの(C1~C12)アルキルエステル,トリプトファンの(C1~C12)アルキルエステル,チロシンの(C1~C12)アルキルエステル等又はそれらのフェニル基等の置換体が挙げられ,特に,フェニルアラニンメチルエステル,グリシンメチルエステル,グリシン(4-フェニル-1-ブタノール)エステル,ロイシンメチルエステル,フェニルアラニンベンジルエステル,フェニルアラニン(4-フェニル-1-ブタノール)エステル等が好ましい。該アミノ酸はD体でもL体でもそれらの混合物であってもよい。
 置換基を有していてもよい糖残基の糖としてはアミノ糖であれば特に限定されず,例えば,グルコサミン,ガラクトサミン,マンノサミン等が挙げられ,該置換基としてはアセチル基,ピバロイル基,ベンジル基,メチル基等が挙げられる。該糖としてはD体でもL体でもそれらの混合物であってもよい。又,置換基の置換位置及び置換基数は可能であれば位置や数は限定されない。
 本発明のシチジン系代謝拮抗剤の高分子誘導体においてリンカーとなる一般式(I)あるいは一般式(II)の置換基においてCX-CYは,リンカー部分が環状イミド中間体を形成出来ればよく,CH-CH若しくはC=C(二重結合)であり,例えば,コハク酸モノアミド誘導体やマレイン酸モノアミド誘導体等が挙げられる。CX-CYはCH-CHが特に好ましい。
 本発明のシチジン系代謝拮抗剤の高分子誘導体においてリンカーにシトシン塩基の4位アミノ基でアミド結合しているシチジン系代謝拮抗剤(A-NH)としては,例えば,ゲムシタビン,5’-デオキシ-5-フルオロシチジン,シタラビン又は3’-エチニルシチジン等が挙げられる。
 以下に,ゲムシタビン,5’-デオキシ-5-フルオロシチジン,シタラビン,3’-エチニルシチジンについて構造式を示す。
 ゲムシタビン
Figure JPOXMLDOC01-appb-C000009
 5’-デオキシ-5-フルオロシチジン
Figure JPOXMLDOC01-appb-C000010
 シタラビン
Figure JPOXMLDOC01-appb-C000011
 3’-エチニルシチジン
Figure JPOXMLDOC01-appb-C000012
 本発明のシチジン系代謝拮抗剤の高分子誘導体としては,前記一般式(III)[式中,Rは水素原子又は(C1~C6)アルキル基を示し,Rは結合基を示し,Rは水素原子又は(C1~C6)アシル基を示し,Rは一般式(I)あるいは一般式(II)[式中,R,R,R,CX-CY及びAは前記と同じ意味を示す]で表わされる置換基を示し,bは5~11500の整数を示し,p及びqはそれぞれ独立に1~3の整数を示し,iは5~200の整数を示し,nは0~200の整数を示し,且つi+nは10~300の整数を示す]で表される化合物が好ましい。
 Rにおける(C1~C6)アルキル基としては,(C1~C6)の直鎖又は分岐鎖のアルキル基が挙げられ,好ましくは(C1~C4)アルキル基が挙げられ,例えば,メチル基,エチル基,n-プロピル基,n-ブチル基等が挙げられる。
 式(III)におけるRとしてはメチル基が特に好ましい。
 Rにおける(C1~C6)アシル基としては特に限定されず,好ましくは(C1~C3)アシル基が挙げられ,例えば,ホルミル基,アセチル基,プロピオニル基等が挙げられる。
 式(III)におけるRとしてはアセチル基が特に好ましい。
 Rは一般式(I)あるいは一般式(II)で表わされる置換基であり,該置換基は前記した通りであり,好ましい基も同様である。
 Rの結合基は,ポリエチレングリコール構造部分と10以上のカルボキシ基を有するポリマーとのブロック共重合体においてポリエチレングリコール構造部分の10以上のカルボキシ基を有するポリマーとの結合側の末端部を構成する構造部分であり,ヘテロ原子を介していてもよい直鎖又は分岐鎖の(C1~C20)アルキレン基である。該ヘテロ原子としては酸素原子,窒素原子,硫黄原子等が挙げられる。
 該結合基としては,例えば,前記の式(IV),式(V),式(VI)で表される基が挙げられる。ここでメチレン数rは1~6の整数であり,2~4が好ましく,3が特に好ましい。
 Rの結合基としては式(IV)[r=3]で表されるトリメチレン基が殊更好ましい。
 一般式(III)におけるp及びqはそれぞれ独立に1~3の整数であるが,Rの結合基によって規定される。例えば,結合基が式(IV)で表される基の場合,p=q=1であり,結合基が式(V)で表される基の場合,p=2,q=1であり,結合基が式(VI)で表される基の場合,p=2,q=2である。
 一般式(III)におけるbは5~11500程度の整数であり,好ましくは8~2300程度の整数であり,更に好ましくは100~300程度の整数である。ポリエチレングリコール構造部分の分子量としては300~500000程度であり,好ましくは500~100000程度であり,更に好ましくは1000~50000程度である。なお,本発明における分子量とはGPC法で測定した重量平均分子量である。
 一般式(III)におけるiは5~200の整数,好ましくは5~90であり,nは0~200の整数,好ましくは0~90であり,且つ全グルタミン酸数(i+n)は10~300の整数、好ましくは10~100程度,特に好ましくは10~60程度である。全グルタミン酸数(i+n)に対するシチジン系代謝拮抗剤の結合したグルタミン酸数(i)の割合は10~100%であり,好ましくは20~100%であり,更に好ましくは40~100%である。
 一般式(III)におけるポリグルタミン酸の各構成部分は,その結合順は限定されず,ブロック型でもランダム型でもよい。
 本発明のシチジン系代謝拮抗剤の高分子誘導体の分子量は1000~600000程度,好ましくは1100~110000程度,更に好ましくは1500~80000程度である。
 本発明のシチジン系代謝拮抗剤の高分子誘導体中の一般式(I)あるいは一般式(II)の置換基は,1分子中にそれぞれが混在していても一方のみであってもよく,R,R,Rの基も1分子中で同一であっても異なっていてもよい。
 本発明のシチジン系代謝拮抗剤の高分子誘導体は,水中でポリエチレングリコール構造部分を外殻とし,シチジン系代謝拮抗剤がリンカーを介して結合している疎水性であるポリマーを内殻とするミセルを形成してもよい。
 本発明のシチジン系代謝拮抗剤の高分子誘導体の製造について以下に例示するが,製造法がこれらに限定されるわけではない。
 まず,前記一般式(I)あるいは一般式(II)で表されるリンカー部分の付いたシチジン系代謝拮抗剤誘導体を製造する。即ち,保護したアミノ基とカルボキシ基を有するコハク酸モノアミド誘導体又は保護したアミノ基とカルボキシ基を有するマレイン酸モノアミド誘導体と,シチジン系代謝拮抗剤とを有機溶媒中,脱水縮合剤を用いてシチジン系代謝拮抗剤の4位アミノ基とアミド結合させ,保護基を脱保護して,アミノ基を有しシチジン系代謝拮抗剤が結合したコハク酸モノアミド誘導体又はアミノ基を有しシチジン系代謝拮抗剤が結合したマレイン酸モノアミド誘導体を得る。
 次いで,文献に記載又はそれを応用して得られるポリエチレングリコール構造部分とポリグルタミン酸とのブロック共重合体の側鎖カルボキシ基と該誘導体を有機溶媒中,脱水縮合剤を用いてアミド結合させる方法である。
 より詳細に説明する。例えば,tert-ブトキシカルボニル基(Boc)でアミノ基を保護したコハク酸モノアミド誘導体と3’-エチニルシチジンを両者が溶解する有機溶媒,好ましくはN,N-ジメチルホルムアミド(DMF),1,3-ジメチル-2-イミダゾリジノン(DMI),N-メチルピロリドン(NMP)等の非プロトン性極性溶媒に溶解し,0~180℃,好ましくは5~50℃でジシクロヘキシルカルボジイミド(DCC),ジイソプロピルカルボジイミド(DIPCI),1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(WSC)塩酸塩,1-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキシキノリノン(EEDQ),4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM),O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム ヘキサフルオロリン酸塩(HBTU),O-(7-アザベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム ヘキサフルオロリン酸塩(HATU),(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-2-モルホリノ-カルベニウム ヘキサフルオロリン酸塩(COMU)等の脱水縮合剤を用いた反応に付して,縮合体を得る。反応物から必要により分離精製工程を経てシトシン塩基の4位アミノ基とのアミド結合体を得てもよい。又,脱水縮合剤としてジイソプロピルカルボジイミド(DIPCI)若しくは1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(WSC)塩酸塩,反応補助剤として1-ヒドロキシ-1H-ベンゾトリアゾール(HOBt)若しくは1-ヒドロキシ-7-アザベンゾトリアゾール(HOAt)の使用,あるいは,1-エトキシカルボニル-2-エトキシ-1,2-ジヒドロキシキノリノン(EEDQ),4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM),(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-2-モルホリノ-カルベニウム ヘキサフルオロリン酸塩(COMU)の脱水縮合剤のみの使用により目的とするシトシン塩基の4位アミノ基とのアミド結合体を優先的に製造することが出来,その製造方法が実用上好ましい。更に,シチジン系代謝拮抗剤がカルボキシ基と反応する他の官能基を保護して縮合反応に付し,反応後に適当な段階で脱保護してもよい。
 次いで,Bocを脱保護し国際公開2006/120914号パンフレットに記載の方法によって調製されるメトキシポリエチレングリコール-ポリグルタミン酸ブロック共重合体と,前記と同様な溶媒中,前記と同様な脱水縮合剤を用い,必要に応じて反応補助剤を使用してアミド結合させ,本発明のシチジン系代謝拮抗剤の高分子誘導体とする。
 本発明のシチジン系代謝拮抗剤の高分子誘導体は,結合しているシチジン系代謝拮抗剤の薬効に相当する疾患を適応症とする医薬として使用出来る。例えば,抗がん剤,抗ウイルス剤等である。このような用途も本発明に含まれる。該高分子誘導体は,注射剤,錠剤,散剤等の通常使用されている剤型にて使用され得る。製剤化に当たり通常使用されている薬学的に許容される担体,例えば,結合剤,滑沢剤,崩壊剤,溶剤,賦形剤,可溶化剤,分散剤,安定化剤,懸濁化剤,保存剤,無痛化剤,色素,香料等を使用してもよい。
 本発明のシチジン系代謝拮抗剤の高分子誘導体は注射剤としての使用が好ましく,通常,例えば,水,生理食塩水,5%ブドウ糖又はマンニトール液,水溶性有機溶媒(例えば,グリセロール,エタノール,ジメチルスルホキシド,N-メチルピロリドン,ポリエチレングリコール,クレモホール等及びそれらの混合液)並びに水と該水溶性有機溶媒の混合液等に溶解して使用される。
 本発明のシチジン系代謝拮抗剤の高分子誘導体の投与量は,そのシチジン系代謝拮抗剤の特性,患者の性別,年齢,生理的状態,適応症,病態等により当然変更され得るが,非経口的に,通常,成人1日当たり,活性成分として0.01~500mg/m,好ましくは0.1~250mg/mを投与する。注射による投与は,静脈,動脈,患部(腫瘍部)等に行われる。
 本発明のシチジン系代謝拮抗剤の高分子誘導体の使用に際し,本発明のシチジン系代謝拮抗剤の高分子誘導体に含まれる2以上の化合物を混ぜて使用してもよい。
 以下,本発明を実施例により更に説明する。ただし,本発明がこれらの実施例に限定されるものではない。なお,実施例中で本発明の化合物が水溶液中でミセル等の粒子を形成する場合,該粒子の大きさ(粒径)は動的光散乱法によるガウス分布分析又は静的光散乱法によるRMS半径で示し,前者はZetaPotential/Particlesizer NICOMPTM 380ZLS(Particle Sizing Systems社製)により,後者はDAWN EOSTM(Wyatt Technology社製)により測定し算出した。
合成例1 N-(tert-ブトキシカルボニル)アスパラギン酸-1-フェニルブチルアミド-4-ベンジルエステル(化合物1)の合成
 4.27gのN-(tert-ブトキシカルボニル)アスパラギン酸-4-ベンジルエステル((株)ペプチド研究所製)と2.1mLの1-フェニルブチルアミンを40mLのDMFに溶解後,2.70gのWSC塩酸塩と1.93gのHOBtを加え,室温にて6時間攪拌した。反応液に水を加え,酢酸エチルにて抽出し,有機層を飽和炭酸水素ナトリウム水溶液で洗浄し,硫酸マグネシウムで乾燥後,減圧下で酢酸エチルを留去し,次いで真空乾燥して化合物1を3.94g得た。
MS:m/z 477(M+Na):C2634(M+Na)としての計算値 477
合成例2 N-(tert-ブトキシカルボニル)アスパラギン酸-1-フェニルブチルアミド(化合物2)の合成
 合成例1で得られた3.50gの化合物1を酢酸エチル15mLに溶解し,5%パラジウム炭素(水分含量50%)0.656gを加えた後,系内を水素置換し,室温にて一夜攪拌し水素化分解した。5%パラジウム炭素を濾過し,酢酸エチル80mLで洗浄後,有機層を併せ,減圧下で酢酸エチルを留去し,次いで真空乾燥して化合物2を2.58g得た。
MS:m/z 387(M+Na)+:1928(M+Na)としての計算値 387
合成例3 N-(tert-ブトキシカルボニル)アスパラギン酸-1-フェニルブチルアミド-4-(3’-エチニルシチジン)アミド(化合物3)の合成
 合成例2で得られた754mgの化合物2,500mgの3’-エチニルシチジン及び275mgのHOBtを4mLのDMFに溶解後,系内をアルゴン置換し,353mgのWSC塩酸塩を加えて20℃にて10時間攪拌した。次いで,377mgの化合物2と177mgのWSC塩酸塩を加えて20℃にて3時間,続いて177mgのWSC塩酸塩を加えて20℃にて2時間,更に,189mgの化合物2と177mgのWSC塩酸塩を加えて20℃にて2時間攪拌した。反応液に水を加え酢酸エチルにて抽出し,有機層を飽和塩化アンモニウム水溶液,飽和炭酸水素ナトリウム水溶液,飽和塩化ナトリウム水溶液で順次洗浄した。硫酸マグネシウムで乾燥後,減圧下で酢酸エチルを留去し,得られた油状物をシリカゲルカラムクロマトグラフィー(CHCl/MeOH)にて精製し,化合物3を716mg得た。
H-NMR(400MHz,DMSO-d,ppm):1.35(s,9H),1.3-1.6(m,4H),2.55(m,2H),2.6-2.7(m,2H),3.06(m,2H),3.16(s,1H),3.54(s,1H),3.6-3.7(m,2H),3.96(m,1H),4.14(d,1H),4.3(br,1H),5.0(br,1H),5.87(d,1H),5.93(br,1H),7.01(d,1H),7.1-7.2(m,5H),7.80(br,1H),8.31(d,1H),10.87(s,1H)
MS:m/z 614(M+H):C2937(M+H)としての計算値 614
合成例4 アスパラギン酸-1-フェニルブチルアミド-4-(3’-エチニルシチジン)アミド(化合物4)の合成
 合成例3で得られた860mgの化合物3を酢酸エチル3.5mLに溶解後,3.5mLの4N-HCl/AcOEtを加えて室温にて1時間攪拌した。反応終了後,減圧下で酢酸エチルを留去して化合物4を710mg得た。
MS:m/z 514(M+H):C2531(M+H)としての計算値 514
実施例1 分子量12000のメトキシポリエチレングリコール構造部分と重合数が21のポリグルタミン酸部分からなるブロック共重合体と,アスパラギン酸-1-フェニルブチルアミド-4-(3’-エチニルシチジン)アミドとのアミド結合体:一般式(III)のR=メチル基,R=トリメチレン基,R=アセチル基,R及びR=水素原子,R=1-フェニルブチル基,p=q=1,i+n=21,b=273(化合物5)の合成
 国際公開2006/120914号パンフレットに記載された方法によって調製した503mgのメトキシポリエチレングリコール-ポリグルタミン酸ブロック共重合体を9mLのDMFに溶解した。合成例4で得られた600mgの化合物4,197μLのトリエチルアミン,227μLのDIPCI及び96mgのHOBtを加えて,20℃にて24時間攪拌した。更に,55μLのトリエチルアミンと114μLのDIPCIを加えて3時間攪拌後,反応液をエタノール9mL及びジイソプロピルエーテル72mLの混合溶液にゆっくり滴下した。室温にて1時間攪拌し,沈析物を濾取してエタノール/ジイソプロピルエーテル(1/8(v/v),20mL)で洗浄した。沈析物をアセトニトリル12mLに溶かし,エタノール15mL及びジイソプロピルエーテル90mLの混合溶液にゆっくり滴下し室温にて1時間攪拌し,沈析物を濾取してエタノール/ジイソプロピルエーテル(1/8(v/v),20mL)で洗浄した。沈析物をアセトニトリル10mL及び水10mLに溶解し,イオン交換樹脂(ダウケミカル製ダウエックス50(H),2mL)を加え攪拌し,樹脂を濾取してアセトニトリル/水(1/1(v/v),30mL)にて洗浄した。得られた溶液からアセトニトリルを減圧下留去し,次いで凍結乾燥して化合物5を580mg得た。
 化合物5に結合した3’-エチニルシチジンの含量は,化合物5に1N-水酸化ナトリウム水溶液を加えて37℃で1時間攪拌後,遊離した3’-エチニルシチジンをHPLC(高速液体クロマトグラフィー)で分析し,予め3’-エチニルシチジンにより得られた検量線を用いて計算し求めた。その結果,結合した3’-エチニルシチジンの含量は19.4%(w/w)だった。
 化合物5の水溶液(1mg/mL)を用いてガウス分布分析及び静的光散乱法によるRMS半径の算出を行ったところ,それぞれ18nm(volume weighting),11nmだった。このことから化合物5は水中でミセルを形成していると考えられる。
合成例5 N-(tert-ブトキシカルボニル)アスパラギン酸-1-ブチルアミド-4-ベンジルエステル(化合物6)の合成
 4.27gのN-(tert-ブトキシカルボニル)アスパラギン酸-4-ベンジルエステルと1.31mLのn-ブチルアミンを25mLのDMFに溶解後,2.93gのWSC塩酸塩と1.93gのHOBtを加え,室温にて一夜攪拌した。反応液に水を加え,酢酸エチルにて抽出し,有機層を飽和塩化アンモニウム水溶液,飽和炭酸水素ナトリウム水溶液で洗浄し,硫酸マグネシウムで乾燥後,減圧下で酢酸エチルを留去し,次いで真空乾燥して化合物6を5.12g得た。
合成例6 N-(tert-ブトキシカルボニル)アスパラギン酸-1-ブチルアミド(化合物7)の合成
 合成例5で得られた5.09gの化合物6を酢酸エチル15mLに溶解し,5%パラジウム炭素(水分含量50%)0.656gを加えた後,系内を水素置換し,室温にて一夜攪拌し水素化分解した。5%パラジウム炭素を濾過し,酢酸エチルで洗浄後,有機層を併せ,減圧下で酢酸エチルを留去し,次いで真空乾燥して化合物7を4.05g得た。
合成例7 N-(tert-ブトキシカルボニル)アスパラギン酸-1-ブチルアミド-4-(3’-エチニルシチジン)アミド(化合物8)の合成
 合成例6で得られた596mgの化合物7,500mgの3’-エチニルシチジン及び275mgのHOBtを4mLのDMFに溶解後,系内をアルゴン置換し,353mgのWSC塩酸塩を加えて20℃にて9時間攪拌した。次いで,298mgの化合物7と177mgのWSC塩酸塩を加えて20℃にて3時間,更に,298mgの化合物7と177mgのWSC塩酸塩を加えて20℃にて3時間攪拌した。反応液に水を加え酢酸エチルにて抽出し,有機層を飽和塩化アンモニウム水溶液,飽和炭酸水素ナトリウム水溶液,飽和塩化ナトリウム水溶液で順次洗浄し,硫酸マグネシウムで乾燥後,減圧下で酢酸エチルを留去し,得られた油状物をシリカゲルカラムクロマトグラフィー(CHCl/MeOH)にて精製し,化合物8を590mg得た。
H-NMR(400MHz,DMSO-d,ppm):0.85(t,3H),1.2-1.3(m,4H),1.36(s,9H),2.5-2.7(m,2H),3.03(m,2H),3.53(s,1H),3.6-3.7(m,2H),3.96(m,1H),4.14(m,1H),4.28(m,1H),5.08(m,1H),5.87(d,1H),5.92(m,2H),7.00(d,1H),7.20(d,1H),7.75(m,1H),8.32(d,1H),10.86(s,1H)
MS:m/z 538(M+H):C2333(M+H)としての計算値 538
合成例8 アスパラギン酸-1-ブチルアミド-4-(3’-エチニルシチジン)アミド(化合物9)の合成
 合成例7で得られた590mgの化合物8を酢酸エチル3mLに溶解後,2.7mLの4N-HCl/AcOEtを加え室温にて1時間攪拌した。反応終了後,減圧下で酢酸エチルを留去して化合物9を500mg得た。
MS:m/z 438(M+H):C1927(M+H)としての計算値 438
実施例2 分子量12000のメトキシポリエチレングリコール構造部分と重合数が21のポリグルタミン酸部分からなるブロック共重合体と,アスパラギン酸-1-ブチルアミド-4-(3’-エチニルシチジン)アミドとのアミド結合体:一般式(III)のR=メチル基,R=トリメチレン基,R=アセチル基,R及びR=水素原子,R=1-ブチル基,p=q=1,i+n=21,b=273(化合物10)の合成
 国際公開2006/120914号パンフレットに記載された方法によって調製した438mgのメトキシポリエチレングリコール-ポリグルタミン酸ブロック共重合体を8mLのDMFに溶解し,35℃にて15分攪拌後,20℃にて1時間攪拌した。合成例8で得られた450mgの化合物9,172μLのトリエチルアミン,198μLのDIPCI及び84mgのHOBtを加えて,20℃にて24時間攪拌した。更に,48μLのトリエチルアミンと99μLのDIPCIを加えて3時間攪拌後,反応液をエタノール8mL及びジイソプロピルエーテル64mLの混合溶液にゆっくり滴下した。室温にて1時間攪拌し,沈析物を濾取してエタノール/ジイソプロピルエーテル(1/8(v/v),18mL)で洗浄した。沈析物を1mlのDMF及び7mLのアセトニトリルの混合溶媒に溶解し,エタノール8mL及びジイソプロピルエーテル64mLの混合溶液にゆっくり滴下し,室温にて1時間攪拌し,沈析物を濾取してエタノール/ジイソプロピルエーテル(1/8(v/v),18mL)で洗浄した。沈析物をアセトニトリル13.5mL及び水4.5mLに溶解後,イオン交換樹脂(ダウケミカル製ダウエックス50(H),5mL)を加え攪拌し,樹脂を濾取してアセトニトリル/水(1/1(v/v),25mL)にて洗浄した。得られた溶液からアセトニトリルを減圧下留去し,次いで凍結乾燥して化合物10を560mg得た。
 化合物10に結合した3’-エチニルシチジンの含量は,実施例1と同様に加水分解後にHPLC(高速液体クロマトグラフィー)を用いて分析した。結合した3’-エチニルシチジンの含量は20.9%(w/w)だった。
 化合物10の水溶液(1mg/mL)を用いてガウス分布分析を行ったところ,散乱強度が弱く,この濃度で化合物10は水中でミセルを形成していないと考えられた。
合成例9 N-(tert-ブトキシカルボニル)アスパラギン酸-1-アダマンタンメチルアミド-4-ベンジルエステル(化合物11)の合成
 10.3gのN-(tert-ブトキシカルボニル)アスパラギン酸-4-ベンジルエステルと5.17gの1-アダマンタンメチルアミンを100mLのDMFに溶解後,7.15gmのWSC塩酸塩と4.72gのHOBtを加え,室温にて一夜攪拌した。反応液に水を加え,酢酸エチルにて抽出し,有機層を飽和炭酸水素ナトリウム水溶液で洗浄し,硫酸マグネシウムで乾燥後,減圧下で酢酸エチルを留去し,次いで真空乾燥して化合物11を15.0g得た。
H-NMR(400MHz,CDCl,ppm):1.42(s,6H),1.46(s,9H),1.61(d,3H),1.70(d,3H),1.97(s,3H),2.71-2.76(m,1H),2.91-2.96(m,2H),3.03(dd,1H),4.50(br,1H),5.11(d,1H),5.16(d,1H),5.74(br,1H),6.56(br,1H),7.38-7.31(m,5H)
MS:m/z 493(M+Na):C2738(M+Na)としての計算値 493
合成例10 N-(tert-ブトキシカルボニル)アスパラギン酸-1-アダマンタンメチルアミド(化合物12)の合成
 合成例9で得られた15.0gの化合物11を酢酸エチル75mLに溶解し,10%パラジウム炭素(水分含量50%)1.5gを加えた後,系内を水素置換し,室温にて2日間攪拌し水素化分解した。10%パラジウム炭素を濾過し,酢酸エチル20mLで洗浄後,有機層を併せ,減圧下で酢酸エチルを留去し,次いで真空乾燥して化合物12を9.22g得た。
H-NMR(400MHz,CDCl,ppm):1.46(s,15H),1.61(d,3H),1.70(d,3H),1.96(s,3H),2.71-2.77(m,1H),2.89-3.06(m,3H)4.49(br,1H),5.76(br,1H),6.77(br,1H)
MS:m/z 403(M+Na):C2032(M+Na)としての計算値 403
合成例11 N-(tert-ブトキシカルボニル)アスパラギン酸-1-アダマンタンメチルアミド-4-(3’-エチニルシチジン)アミド(化合物13)の合成
 合成例10で得られた1.88gの化合物12,1.10gの3’-エチニルシチジン及び658mgのHOBtを20mLのDMFに溶解後,凍結脱気を行った。914mgのWSC塩酸塩を加えて20℃にて9時間攪拌した。次いで,313mgの化合物12と141mgのWSC塩酸塩を加えて20℃にて2時間攪拌した。反応液に水を加え,酢酸エチルにて抽出し,有機層を飽和塩化アンモニウム水溶液,飽和炭酸水素ナトリウム水溶液で洗浄し,硫酸マグネシウムで乾燥後,減圧下で酢酸エチルを留去し,得られた油状物をシリカゲルカラムクロマトグラフィー(CHCl/n-Hexane)にて精製し,化合物13を1.47g得た。
H-NMR(400MHz,CDCl,ppm):1.41(s,9H),1.45(s,6H),1.58(d,3H),1.67(d,3H),1.93(s,3H),2.64(br,2H),2.92-3.22(m,5H),4.00(br,1H),4.30(br,1H),4.49(br,1H),4.68(br,1H),5.18(br,1H),5.85(br,1H),5.26(br,1H),7.01(br,1H),7.45(br,1H),7.71(br,1H),8.22(br,1H),10.5(br,1H)
MS:m/z 630(M+H):C3143(M+H)としての計算値 630
合成例12 アスパラギン酸-1-アダマンタンメチルアミド-4-(3’-エチニルシチジン)アミド(化合物14)の合成
 合成例11で得られた1.47gの化合物13を酢酸エチル6mLに溶解後,6mLの4N-HCl/AcOEtを加えて室温にて1時間攪拌した。反応終了後,減圧下で酢酸エチルを留去し,次いで真空乾燥して化合物14を1.20g得た。
H-NMR(400MHz,CDOD,ppm):1.57(s,6H),1.70(br,3H),1.79(br,3H),2.00(s,3H),2.82(br,2H),3.15-3.20(m,5H),4.05(br,1H),4.22(br,1H),4.36(br,1H),6.04(br,1H),7.37(br,1H),8.60(br,1H)
MS:m/z 530(M+H):C2635(M+H)としての計算値 530
実施例3 分子量12000のメトキシポリエチレングリコール構造部分と重合数が21のポリグルタミン酸部分からなるブロック共重合体と,アスパラギン酸-1-アダマンタンメチルアミド-4-(3’-エチニルシチジン)アミドとのアミド結合体:一般式(III)のR=メチル基,R=トリメチレン基,R=アセチル基,R及びR=水素原子,R=1-アダマンチルメチル基,p=q=1,i+n=21,b=273(化合物15)の合成
 国際公開2006/120914号パンフレットに記載された方法によって調製した489mgのメトキシポリエチレングリコール-ポリグルタミン酸ブロック共重合体を10mLのDMFに溶解した。合成例12で得られた600mgの化合物14,192μLのトリエチルアミン,221μLのDIPCI及び94.0mgのHOBtを加えて,20℃にて19時間攪拌した。更に,53μLのトリエチルアミンと55μLのDIPCIを加えて4時間攪拌後,反応液をエタノール10mL及びジイソプロピルエーテル90mLの混合溶液にゆっくり滴下した。室温にて1時間攪拌し,沈析物を濾取してエタノール/ジイソプロピルエーテル(1/9(v/v),10mL)で洗浄した。沈析物を8mLのDMFに溶かし,エタノール10mL及びジイソプロピルエーテル90mLの混合溶液にゆっくり滴下し,室温にて1時間攪拌し,沈析物を濾取してエタノール/ジイソプロピルエーテル(1/9(v/v),4mL)で洗浄した。沈析物をアセトニトリル10mL及び水10mLに溶解後,イオン交換樹脂(ダウケミカル製ダウエックス50(H),1mL)を加え攪拌し,樹脂を濾取してアセトニトリル/水(1/1(v/v),10mL)にて洗浄した。得られた溶液からアセトニトリルを減圧下留去し,次いで凍結乾燥することにより化合物15を775mg得た。
 化合物15に結合した3’-エチニルシチジンの含量は,実施例1と同様に加水分解後にHPLC(高速液体クロマトグラフィー)を用いて分析し計算した。結合した3’-エチニルシチジンの含量は19.5%(w/w)だった。
 化合物15の水溶液(1mg/mL)を用いてガウス分布分析及び静的光散乱法によるRMS半径の算出を行ったところ,それぞれ20nm(volume weighting),13nmだった。よって,化合物15は水中でミセルを形成しているものと考えられた。
合成例13 フェニルアラニンフェニルブチルエステル(化合物16)の合成
 5.03gのフェニルアラニンと22.8gの4-フェニル-1-ブタノールを1,4-ジオキサン17mL中に加え,17mLの4N-HCl/1,4-dioxaneを加えて室温にて4日間攪拌した。濾過をして濾液にジエチルエーテル450mLを加えて室温にて1.5時間攪拌した。沈析物を濾取し,ジエチルエーテル50mLで洗浄後,真空乾燥して化合物16を5.90g得た。
H-NMR(400MHz,CDCl,ppm):1.44-1.55(m,4H),2.53(t,2H),3.31(dd,2H),3.44(dd,2H),4.05(t,2H),4.44(dd,1H),7.11-7.29(m,10H),8.74(br,2H)
MS:m/z 298(M+H):C1923NO(M+H)としての計算値 298
合成例14 N-(tert-ブトキシカルボニル)アスパラギン酸-1-フェニルアラニン-(4-フェニルブチルエステル)アミド-4-ベンジルエステル(化合物17)の合成
 2.08gのN-(tert-ブトキシカルボニル)アスパラギン酸-4-ベンジルエステルと合成例13で得られた2.18gの化合物16を20mLのDMFに溶解後,1.43gのWSC塩酸塩と0.943gのHOBtを加えて,室温にて一夜攪拌した。反応液に水を加え,酢酸エチルにて抽出し,有機層を飽和炭酸水素ナトリウム水溶液で洗浄し,硫酸マグネシウムで乾燥後,減圧下で酢酸エチルを留去し、次いで真空乾燥して化合物17を1.18g得た。
H-NMR(400MHz,CDCl,ppm):1.42(s,6H),1.57-1.61(m,4H),2.60(t,2H),2.69(dd,1H),3.02-3.08(m,3H),4.04-4.13(m,2H),4.52(br,1H),4.78(dd,1H),5.11(d,1H),5.14(d,1H),5.62(br,1H),6.95(br,1H),7.12-7.38(m,15H)
MS:m/z 625(M+Na):C3542(M+Na)としての計算値 625
合成例15 N-(tert-ブトキシカルボニル)アスパラギン酸-1-フェニルアラニン-(4-フェニルブチルエステル)アミド(化合物18)の合成
 合成例14で得られた1.18gの化合物17を酢酸エチル5mLに溶解し,10%パラジウム炭素(水分含量50%)0.118gを加えた後,系内を水素置換し,室温にて一夜攪拌した。10%パラジウム炭素を濾過し,酢酸エチル20mLで洗浄後,有機層を併せ,減圧下で酢酸エチルを留去し,次いで真空乾燥して化合物18を1.18g得た。
H-NMR(400MHz,CDCl,ppm):1.42(s,19H),1.58(m,4H),2.60(t,2H),2.70(dd,1H),2.98-3.09(m,3H),4.03-4.12(m,2H),4.52(br,1H),4.79(dd,1H),5.61(d,1H),7.06-7.38(m,11H)
MS:m/z 535(M+Na):C2836(M+Na)としての計算値 535
合成例16 N-(tert-ブトキシカルボニル)アスパラギン酸-1-フェニルアラニン-(4-フェニルブチルエステル)-4-(3’-エチニルシチジン)アミド(化合物19)の合成
 合成例15で得られた200mgの化合物18,87.0mgの3’-エチニルシチジン及び55.0mgのHOBtを2mLのDMFに溶解後,凍結脱気を行った。次いで,70.6mgのWSC塩酸塩を加えて20℃にて6時間攪拌した。続いて,35.3mgのWSC塩酸塩を加え,20℃にて2時間攪拌した。反応液に水を加え,酢酸エチルにて抽出し,有機層を飽和塩化アンモニウム水溶液,飽和炭酸水素ナトリウム水溶液で洗浄し,硫酸マグネシウムで乾燥後,減圧下で酢酸エチルを留去し,得られた油状物をシリカゲルカラムクロマトグラフィー(CHCl/n-Hexane)にて精製し,化合物19を155mg得た。
MS:m/z 784(M+Na):C394711(M+Na)としての計算値 784
合成例17 アスパラギン酸-1-フェニルアラニン-(4-フェニルブチルエステル)-4-(3’-エチニルシチジン)アミド(化合物20)の合成
 合成例16で得られた155mgの化合物19を酢酸エチル1mLに溶解後,510μLの4N-HCl/AcOEtを加えて室温にて1時間攪拌した。反応終了後,減圧下で酢酸エチルを留去し,次いで真空乾燥して化合物20を105mg得た。
H-NMR(400MHz,DMSO-d,ppm):1.51(s,4H),2.22-2.24(m,3H),2.78-3.07(m,4H),3.31-4.18(m,6H),4.50(s,1H),5.83(d,1H),5.89(d,1H),6.28(br,1H),7.19-7.26(m,11H),8.34(br,2H),8.94(s,1H),9.09(br,2H),10.1(br,1H),11.3(br,1H)
MS:m/z 684(M+Na):C3439(M+Na)としての計算値 684
実施例4 分子量12000のメトキシポリエチレングリコール構造部分と重合数が21のポリグルタミン酸部分からなるブロック共重合体と,アスパラギン酸-1-フェニルアラニン-(4-フェニルブチルエステル)-4-(3’-エチニルシチジン)アミドとのアミド結合体:一般式(III)のR=メチル基,R=トリメチレン基,R=アセチル基,R及びR=水素原子,R=1-フェニルアラニン-4-フェニルブチルエステル基,p=q=1,i+n=21,b=273(化合物21)の合成
 国際公開2006/120914号パンフレットに記載された方法によって調製した66mgのメトキシポリエチレングリコール-ポリグルタミン酸ブロック共重合体を2mLのDMFに溶解した。合成例17で得られた100mgの化合物20,23μLのトリエチルアミン,39μLのDIPCI及び13mgのHOBtを加えて20℃にて4時間攪拌した。更に,19μLのトリエチルアミンと20μLのDIPCIを加えて16時間攪拌後,反応液をエタノール4mL及びジイソプロピルエーテル36mLの混合溶液にゆっくり滴下した。室温にて0.5時間攪拌し,沈析物を濾取してエタノール/ジイソプロピルエーテル(1/9(v/v),4mL)で洗浄した。沈析物を少量のDMFに溶かし,酢酸エチル4mL及びジイソプロピルエーテル24mLの混合溶液にゆっくり滴下し室温にて3時間攪拌し,沈析物を濾取して酢酸エチル/ジイソプロピルエーテル(1/6(v/v),4mL)で洗浄した。沈析物をアセトニトリル2.5mL及び水2.5mLに溶解後,イオン交換樹脂(ダウケミカル製ダウエックス50(H),0.5mL)を加え攪拌し,樹脂を濾取してアセトニトリル/水(1/1(v/v),3mL)にて洗浄した。得られた溶液からアセトニトリルを減圧下留去し,次いで凍結乾燥して化合物21を36.5mg得た。
 化合物21に結合した3’-エチニルシチジンの含量は,実施例1と同様に加水分解後にHPLC(高速液体クロマトグラフィー)を用いて分析し計算した。結合した3’-エチニルシチジンの含量は22.5%(w/w)だった。
 化合物21の水溶液(1mg/mL)を用いてガウス分布分析及び静的光散乱法によるRMS半径の算出を行ったところ,それぞれ41nm(volume weighting),40nmだった。よって,化合物21は水中でミセルを形成しているものと考えられた。
実施例5 分子量5000の二本のメトキシポリエチレングリコール部分と重合数が21のポリグルタミン酸部分からなるブロック共重合体と,アスパラギン酸-1-アダマンタンメチルアミド-4-(3’-エチニルシチジン)アミドとのアミド結合体:一般式(III)のR=メチル基,R=式(V)の結合基,r=3,R=アセチル基,R及びR=水素原子,R=1-アダマンチルメチル基,i+n=21,b=114(化合物22)の合成
 国際公開2006/120914号パンフレットに記載された方法を応用して(メトキシポリエチレングリコール)アミン(SUNBRIGHT GL2-100PA;日油(株)製)から調製した413mgの(メトキシポリエチレングリコール)-ポリグルタミン酸ブロック共重合体を8.3mLのDMFに溶解した。次いで,合成例12で得られた570mgの化合物14,183μLのトリエチルアミン,210μLのDIPCI及び89mgのHOBtを加えて,20℃にて17時間攪拌した。更に,51μLのトリエチルアミンと105μLのDIPCIを加えて3時間攪拌後,反応液をエタノール10mL及びジイソプロピルエーテル90mLの混合溶液にゆっくり滴下した。室温にて0.5時間攪拌し,沈析物を濾取してエタノール/ジイソプロピルエーテル(1/9(v/v),10mL)で洗浄した。沈析物を8mLのDMFに溶かし,エタノール10mL及びジイソプロピルエーテル90mLの混合溶液にゆっくり滴下し,室温にて0.5時間攪拌し,沈析物を濾取してエタノール/ジイソプロピルエーテル(1/9(v/v),4mL)で洗浄した。沈析物をアセトニトリル35mL及び水17.5mLに溶解し,イオン交換樹脂(ダウケミカル製ダウエックス50(H),5mL)を加え攪拌し,樹脂を濾取してアセトニトリル/水(1/1(v/v),10mL×2)にて洗浄した。得られた溶液からアセトニトリルを減圧下留去し,次いで凍結乾燥することにより化合物22を685mg得た。
 化合物22に結合した3’-エチニルシチジンの含量は,実施例1と同様に加水分解後,HPLC(高速液体クロマトグラフィー)を用いて分析し計算した。結合した3’-エチニルシチジンの含量は20.2%(w/w)だった。
 化合物22の水溶液(1mg/mL)を用いてガウス分布分析及び静的光散乱法によるRMS半径の算出を行ったところ,それぞれ14nm(volume weighting),8nmだった。よって,化合物22は水中でミセルを形成しているものと考えられた。
試験例1 3’-エチニルシチジン高分子誘導体の酵素非存在下での薬剤放出
 化合物5,化合物10,化合物15,化合物21及び化合物22と,比較化合物として国際公開第2006/120914号パンフレット記載の方法で作成したポリエチレングリコール-ポリグルタミン酸ブロック共重合体に3’-エチニルシチジン誘導体が結合しているPEG-Glu-ECyd,ポリエチレングリコール-ポリグルタミン酸ブロック共重合体に3’-エチニルシチジンとフェニルアラニンベンジルエステルが結合しているPEG-Glu-(ECyd,PheOBzl)をそれぞれPBS溶液(リン酸緩衝生理食塩水;pH7.4)に1mg/mLの濃度で溶解し,37℃にてインキュベートした。各高分子誘導体から放出された3’-エチニルシチジンを,HPLCを用いて定量した。定量値と高分子誘導体の薬剤含有量から求めた高分子誘導体中の全薬剤量との比を図1~図3に示した。
 図1,図2及び図3から明らかなように,本発明の高分子誘導体(化合物5,化合物10,化合物15,化合物21及び化合物22)は加水分解酵素が存在しなくても3’-エチニルシチジンを放出し,アスパラギン酸に結合しているRの置換基によって放出速度を大きく変化させることが出来,比較化合物に比べて放出速度は同等以上であった。特に化合物5及び化合物10は,PEG-Glu-ECydよりも十分速く3’-エチニルシチジンを放出することが出来た。一方,比較化合物は,ブロック共重合体にコハク酸モノアミド構造部分を持たないことから放出速度を速くすることが出来ない。これらの結果は,本発明の高分子結合体が薬剤放出速度の調整能に優れていることを示している。
試験例2 3’-エチニルシチジン誘導体の抗腫瘍活性試験
 ラット皮下で継代しているヒト肺癌LC-11-JCKを約2mm角のブロックにし,套管針を用いてF344ヌードラットの背側部皮下に移植した。腫瘍移植後13日目から本発明の高分子誘導体(化合物5,化合物10)を表1に示す投与量で静脈内に単回投与した。又,対照薬(3’-エチニルシチジン;ECyd)は,Alzet pumpを用い24時間かけて皮下にinfusion投与した。なお,各化合物は5%ブドウ糖溶液で溶解して使用した。投与量は,体重変動が最大減少率10%程度までを最大投与量として,その投与量より投与を行った。
 投与開始日及び投与開始後23日目の腫瘍体積を,腫瘍の長径(Lmm)及び短径(Wmm)をノギスで計測し,腫瘍体積を(LxW)/2により計算して無処置群(コントロール)の腫瘍体積に対する相対腫瘍体積比として表1に示した。
Figure JPOXMLDOC01-appb-T000013
 この結果,本発明の高分子誘導体である化合物5,化合物10は,対照薬である3’-エチニルシチジンと比較して,体重変動が最大減少率10%程度以下の最大投与量において強い抗腫瘍効果を示し,且つその半量で対照薬の最大投与量と同等の効果を有することを示した。

Claims (10)

  1.  ポリエチレングリコール構造部分と10以上のカルボキシ基を有するポリマーとのブロック共重合体の側鎖カルボキシ基に,一般式(I)あるいは一般式(II)
    Figure JPOXMLDOC01-appb-C000001
    [式中,R,Rはそれぞれ独立して水素原子又は置換基を有していてもよい(C1~C6)アルキル基を示し,Rは水素原子,置換基を有していてもよい(C1~C40)アルキル基,置換基を有していてもよい(C1~C40)アラルキル基,置換基を有していてもよい芳香族基,カルボキシ基が保護されたアミノ酸残基又は置換基を有していてもよい糖残基を示し,CX-CYはCH-CH又はC=C(二重結合)を示し,Aはシチジン系代謝拮抗剤の4位アミノ基を除いた残基を示す]で表わされる置換基が結合しているシチジン系代謝拮抗剤の高分子誘導体。
  2.  10以上のカルボキシ基を有するポリマーがポリアミノ酸又はその誘導体である請求項1に記載のシチジン系代謝拮抗剤の高分子誘導体。
  3.  ポリアミノ酸がポリグルタミン酸である請求項2に記載のシチジン系代謝拮抗剤の高分子誘導体。
  4.  シチジン系代謝拮抗剤の高分子誘導体が一般式(III)
    Figure JPOXMLDOC01-appb-C000002
    [式中,Rは水素原子又は(C1~C6)アルキル基を示し,Rは結合基を示し,Rは水素原子又は(C1~C6)アシル基を示し,Rは一般式(I)あるいは一般式(II)
    Figure JPOXMLDOC01-appb-C000003
    [式中,R,R,R,CX-CY及びAは前記と同じ意味を示す]
    で表わされる置換基を示し,bは5~11500の整数を示し,p及びqはそれぞれ独立に1~3の整数を示し,iは5~200の整数を示し,nは0~200の整数を示し,且つi+nは10~300の整数を示す]
    で表される化合物である請求項1~3のいずれか一項に記載のシチジン系代謝拮抗剤の高分子誘導体。
  5.  Rが(C1~C3)アルキル基,Rが式(IV),(V)又は(VI)
    Figure JPOXMLDOC01-appb-C000004
    [式中,rは1~6の整数を示す]
    で表される結合基,Rが(C1~C3)アシル基であり,bが100~300の整数であり,Rによりp及びqはそれぞれ1又は2であり,iが5~90の整数,nが0~90の整数で,且つi+nが10~100の整数である請求項4に記載のシチジン系代謝拮抗剤の高分子誘導体。
  6.  Rがメチル基,Rがトリメチレン基,Rがアセチル基,RにおけるR,Rが共に水素原子であり,CX-CYがCH-CHである請求項5に記載のシチジン系代謝拮抗剤の高分子誘導体。
  7.  シチジン系代謝拮抗剤がゲムシタビン,5’-デオキシ-5-フルオロシチジン,シタラビン又は3’-エチニルシチジンである請求項1~6のいずれか一項に記載のシチジン系代謝拮抗剤の高分子誘導体。
  8.  請求項1~7のいずれか一項に記載のシチジン系代謝拮抗剤の高分子誘導体を薬効成分とする抗がん剤。
  9.  請求項1~7のいずれか一項に記載のシチジン系代謝拮抗剤の高分子誘導体を薬効成分とする抗ウイルス剤。
  10.  水中でミセルを形成することを特徴とする請求項1~9のいずれか一項に記載のシチジン系代謝拮抗剤の高分子誘導体。
PCT/JP2011/076373 2010-11-17 2011-11-16 新規なシチジン系代謝拮抗剤の高分子誘導体 WO2012067138A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/884,413 US9018323B2 (en) 2010-11-17 2011-11-16 Polymer derivative of cytidine metabolic antagonist
CN2011800556021A CN103221054A (zh) 2010-11-17 2011-11-16 新的胞苷类代谢拮抗剂的高分子衍生物
JP2012544274A JP5856069B2 (ja) 2010-11-17 2011-11-16 新規なシチジン系代謝拮抗剤の高分子誘導体
EP11841714.6A EP2641605B1 (en) 2010-11-17 2011-11-16 Polymer derivative of cytidine metabolism antagonist
KR1020137011461A KR20140024833A (ko) 2010-11-17 2011-11-16 신규한 시티딘계 대사길항제의 고분자 유도체
CA2816997A CA2816997A1 (en) 2010-11-17 2011-11-16 Novel polymer derivative of cytidine metabolic antagonist

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-257013 2010-11-17
JP2010257013 2010-11-17

Publications (1)

Publication Number Publication Date
WO2012067138A1 true WO2012067138A1 (ja) 2012-05-24

Family

ID=46084061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/076373 WO2012067138A1 (ja) 2010-11-17 2011-11-16 新規なシチジン系代謝拮抗剤の高分子誘導体

Country Status (8)

Country Link
US (1) US9018323B2 (ja)
EP (1) EP2641605B1 (ja)
JP (1) JP5856069B2 (ja)
KR (1) KR20140024833A (ja)
CN (1) CN103221054A (ja)
CA (1) CA2816997A1 (ja)
TW (1) TW201304805A (ja)
WO (1) WO2012067138A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073447A1 (ja) * 2012-11-08 2014-05-15 日本化薬株式会社 カンプトテシン類と抗癌効果増強剤の結合した高分子化合物及びその用途
WO2016021407A1 (ja) * 2014-08-04 2016-02-11 日本化薬株式会社 核酸代謝拮抗剤が結合したポリアミノ酸誘導体
WO2016093352A1 (ja) * 2014-12-12 2016-06-16 日本化薬株式会社 核酸代謝拮抗剤が結合した多分岐化合物
WO2016136641A1 (ja) * 2015-02-23 2016-09-01 日本化薬株式会社 生理活性物質結合ブロック共重合体

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0515573A (pt) * 2004-09-22 2008-07-29 Nippon Kayaku Kk copolìmero por blocos, preparação de micela e agente anticáncer contendo a mesma como o ingrediente ativo
EP2019122A4 (en) * 2006-05-18 2009-07-01 Nippon Kayaku Kk POLYMER CONJUGATE OF PODOPHYL LOTOXIN
EP2206502B1 (en) 2007-09-28 2018-09-12 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of steroid
US8920788B2 (en) * 2008-03-18 2014-12-30 Nippon Kayaku Kabushiki Kaisha High-molecular weight conjugate of physiologically active substances
US9149540B2 (en) 2008-05-08 2015-10-06 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of folic acid or folic acid derivative
WO2010131675A1 (ja) 2009-05-15 2010-11-18 日本化薬株式会社 水酸基を有する生理活性物質の高分子結合体
JP5711378B2 (ja) 2011-09-11 2015-04-30 日本化薬株式会社 ブロック共重合体の製造方法
CN106117561B (zh) * 2016-06-27 2020-03-13 中国科学院长春应用化学研究所 一种吉西他滨衍生物及其制备方法
EP3338806A1 (en) * 2016-12-21 2018-06-27 Université de Namur Method for functionalising nanoparticles

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05955A (ja) 1990-11-07 1993-01-08 Yasuhisa Sakurai 水溶性高分子抗癌剤及び薬物担持用担体
JP2694923B2 (ja) 1995-08-21 1997-12-24 科学技術振興事業団 水溶性高分子化医薬製剤
US20020009426A1 (en) * 1998-04-17 2002-01-24 Greenwald Richard B. Biodegradable high molecular weight polymeric linkers and their conjugates
JP3268913B2 (ja) 1992-10-27 2002-03-25 日本化薬株式会社 高分子担体
JP2003524028A (ja) 1999-09-23 2003-08-12 エンゾン,インコーポレーテッド ara−C及びara−C誘導体のポリマーコンジュゲート
WO2006033296A1 (ja) * 2004-09-22 2006-03-30 Nippon Kayaku Kabushiki Kaisha 新規ブロック共重合体、ミセル調製物及びそれを有効成分とする抗癌剤
WO2006120914A1 (ja) 2005-05-11 2006-11-16 Nippon Kayaku Kabushiki Kaisha シチジン系代謝拮抗剤の高分子誘導体
WO2008056596A1 (en) 2006-11-06 2008-05-15 Nippon Kayaku Kabushiki Kaisha Polymeric derivative of nucleic acid metabolic antagonist
WO2008056654A1 (en) 2006-11-08 2008-05-15 Nippon Kayaku Kabushiki Kaisha Polymeric derivative of nucleic acid metabolic antagonist
WO2009041570A1 (ja) * 2007-09-28 2009-04-02 Nippon Kayaku Kabushiki Kaisha ステロイド類の高分子結合体
WO2009116509A1 (ja) * 2008-03-18 2009-09-24 日本化薬株式会社 生理活性物質の高分子結合体
WO2010131675A1 (ja) * 2009-05-15 2010-11-18 日本化薬株式会社 水酸基を有する生理活性物質の高分子結合体

Family Cites Families (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1467587A (en) 1974-07-11 1977-03-16 Nestle Sa Preparation of an asparagine or a glutamine
GB8500209D0 (en) 1985-01-04 1985-02-13 Ceskoslovenska Akademie Ved Synthetic polymeric drugs
JPS6296088A (ja) 1985-10-22 1987-05-02 Kanebo Ltd 抗腫瘍性物質の製法
US4734512A (en) 1985-12-05 1988-03-29 Bristol-Myers Company Intermediates for the production of podophyllotoxin and related compounds and processes for the preparation and use thereof
CH667874A5 (fr) 1985-12-19 1988-11-15 Battelle Memorial Institute Polypeptide synthetique biodegradable et son utilisation pour la preparation de medicaments.
JPS6310789A (ja) 1986-07-01 1988-01-18 Nippon Kayaku Co Ltd 新規ポドフイロトキシン誘導体
JPS6323884A (ja) 1986-07-17 1988-02-01 Nippon Kayaku Co Ltd 新規ポドフイロトキシン誘導体
JPS6461422A (en) 1987-09-02 1989-03-08 Nippon Kayaku Kk Water-soluble polymeric carcinostatic agent
JPS6461423A (en) 1987-09-02 1989-03-08 Nippon Kayaku Kk Water-soluble polymeric carcinostatic agent
US5182203A (en) 1989-03-29 1993-01-26 E. I. Du Pont De Nemours And Company Bifunctional compounds useful in catalyzed reporter deposition
JP2517760B2 (ja) 1989-05-11 1996-07-24 新技術事業団 水溶性高分子化医薬製剤
US5543390A (en) 1990-11-01 1996-08-06 State Of Oregon, Acting By And Through The Oregon State Board Of Higher Education, Acting For And On Behalf Of The Oregon Health Sciences University Covalent microparticle-drug conjugates for biological targeting
JPH05117385A (ja) 1991-10-31 1993-05-14 Res Dev Corp Of Japan ブロツク共重合体の製造法、ブロツク共重合体及び水溶性高分子抗癌剤
AU4406793A (en) 1992-06-04 1993-12-30 Clover Consolidated, Limited Water-soluble polymeric carriers for drug delivery
KR940003548U (ko) 1992-08-14 1994-02-21 김형술 세탁물 건조기
US5614549A (en) 1992-08-21 1997-03-25 Enzon, Inc. High molecular weight polymer-based prodrugs
JP3270592B2 (ja) 1992-10-26 2002-04-02 日本化薬株式会社 ブロック共重合体−抗癌剤複合体医薬製剤
JPH06206830A (ja) 1992-10-27 1994-07-26 Nippon Kayaku Co Ltd ブロック共重合体−薬剤複合体及び高分子ブロック共重合体
FR2698543B1 (fr) 1992-12-02 1994-12-30 Rhone Poulenc Rorer Sa Nouvelles compositions à base de taxoides.
US5985548A (en) 1993-02-04 1999-11-16 E. I. Du Pont De Nemours And Company Amplification of assay reporters by nucleic acid replication
DE4307114A1 (de) 1993-03-06 1994-09-08 Basf Ag Verfahren zur Herstellung von Umsetzungsprodukten aus Polyasparaginsäureamid und Aminosäuren und ihre Verwendung
JP2894923B2 (ja) 1993-05-27 1999-05-24 日立造船株式会社 ウォータージェット式双胴船のジェット水吸込口部構造
US5880131A (en) 1993-10-20 1999-03-09 Enzon, Inc. High molecular weight polymer-based prodrugs
US5840900A (en) 1993-10-20 1998-11-24 Enzon, Inc. High molecular weight polymer-based prodrugs
US5571889A (en) 1994-05-30 1996-11-05 Mitsui Toatsu Chemicals, Inc. Polymer containing monomer units of chemically modified polyaspartic acids or their salts and process for preparing the same
JPH0848766A (ja) 1994-05-30 1996-02-20 Mitsui Toatsu Chem Inc 重合体及びその製造方法
US5552517A (en) 1995-03-03 1996-09-03 Monsanto Company Production of polysuccinimide in an organic medium
SG50747A1 (en) 1995-08-02 1998-07-20 Tanabe Seiyaku Co Comptothecin derivatives
EP1683520B1 (en) 1996-03-12 2013-11-20 PG-TXL Company, L.P. Water-soluble prodrugs
ATE310538T1 (de) 1996-04-15 2005-12-15 Asahi Chemical Ind Arzneimittelkomplexe enthaltend taxan- verbindungen oder steroiden
US5877205A (en) 1996-06-28 1999-03-02 Board Of Regents, The University Of Texas System Parenteral paclitaxel in a stable non-toxic formulation
AU710156B2 (en) 1996-07-15 1999-09-16 Kabushiki Kaisha Yakult Honsha Taxane derivatives and drugs containing the same
PT941066E (pt) 1996-08-26 2004-03-31 Transgene Sa Complexos de lipido cationico - acido nucleico
GB9625895D0 (en) 1996-12-13 1997-01-29 Riley Patrick A Novel compound useful as therapeutic agents and assay reagents
ATE236657T1 (de) 1997-05-09 2003-04-15 Deutsches Krebsforsch Konjugat, umfassend einen folsäureantagonisten und einen träger
JP4465109B2 (ja) 1997-12-17 2010-05-19 エンゾン ファーマシューティカルズ,インコーポレーテッド アミノ及びヒドロキシル含有生物活性剤のポリマープロドラッグ
US6153655A (en) 1998-04-17 2000-11-28 Enzon, Inc. Terminally-branched polymeric linkers and polymeric conjugates containing the same
JPH11335267A (ja) 1998-05-27 1999-12-07 Nano Career Kk 水難溶性薬物を含有するポリマーミセル系
IN191203B (ja) 1999-02-17 2003-10-04 Amarnath Prof Maitra
US6207832B1 (en) 1999-04-09 2001-03-27 University Of Pittsburgh Camptothecin analogs and methods of preparation thereof
US20010041189A1 (en) 1999-04-13 2001-11-15 Jingya Xu Poly(dipeptide) as a drug carrier
US6713454B1 (en) 1999-09-13 2004-03-30 Nobex Corporation Prodrugs of etoposide and etoposide analogs
US6380405B1 (en) 1999-09-13 2002-04-30 Nobex Corporation Taxane prodrugs
JP4723143B2 (ja) 1999-09-14 2011-07-13 テファ, インコーポレイテッド γ−ヒドロキシブチレートを含むポリマーおよびオリゴマーの治療的用途
EP1225917A2 (en) 1999-10-12 2002-07-31 Cell Therapeutics, Inc. Manufacture of polyglutamate-therapeutic agent conjugates
US20030054977A1 (en) 1999-10-12 2003-03-20 Cell Therapeutics, Inc. Manufacture of polyglutamate-therapeutic agent conjugates
JP3523821B2 (ja) 2000-02-09 2004-04-26 ナノキャリア株式会社 薬物が封入されたポリマーミセルの製造方法および該ポリマーミセル組成物
CA2397256A1 (en) 2000-02-29 2001-09-07 Mary Ellen Margaret Rybak Farnesyl protein transferase inhibitor combinations with anti-tumor podophyllotoxin derivatives
KR20020082888A (ko) 2000-03-17 2002-10-31 쎌세러퓨틱스,인코포레이티드 폴리글루탐산-캄프토테신 컨주게이트 및 제조 방법
US20020161062A1 (en) 2001-11-06 2002-10-31 Biermann Paul J. Structure including a plurality of cells of cured resinous material, method of forming the structure and apparatus for forming the structure
JP2003535066A (ja) 2000-06-02 2003-11-25 エイドジェノシスク テクニスク ホクシューレ チューリッヒ 薬学的活性化合物の制御された送達のための共役付加反応
JP2002069184A (ja) 2000-06-12 2002-03-08 Mitsui Chemicals Inc 重合体及びその製造方法
WO2002006279A1 (en) 2000-07-17 2002-01-24 Oxigene Inc Efficient method of synthesizing combretastatin a-4 prodrugs
US20020099013A1 (en) 2000-11-14 2002-07-25 Thomas Piccariello Active agent delivery systems and methods for protecting and administering active agents
WO2002065986A2 (en) 2001-02-16 2002-08-29 Cellgate, Inc. Transporters comprising spaced arginine moieties
US20020161052A1 (en) 2001-02-20 2002-10-31 Choe Yun Hwang Terminally-branched polymeric linkers and polymeric conjugates containing the same
WO2002065988A2 (en) 2001-02-20 2002-08-29 Enzon, Inc. Terminally-branched polymeric linkers and polymeric conjugates containing the same
EP1408066B1 (en) 2001-06-20 2010-03-31 Nippon Kayaku Kabushiki Kaisha Block copolymer reduced in impurity content; polymeric carrier; pharmaceutical preparations in polymeric form and process for the preparation of the same
CA2463902A1 (en) 2001-10-26 2003-05-01 Oxigene, Inc. Functionalized stilbene derivatives as improved vascular targeting agents
DE60222804T2 (de) 2001-12-21 2008-07-03 Vernalis (Cambridge) Ltd., Abington 3-(2,4)dihydroxyphenyl-4-phenylpyrazole und deren medizinische verwendung
KR101003622B1 (ko) 2002-03-01 2010-12-24 더 어드미니스트레이터 오브 더 튜레인 에듀케이셔널 펀드 치료제 또는 세포독성제와 생물학적 활성 펩티드의컨쥬게이트
CN100475269C (zh) 2002-03-05 2009-04-08 北京键凯科技有限公司 亲水性聚合物-谷氨酸寡肽与药物分子的结合物、包含该结合物的组合物及用途
EA008302B1 (ru) 2002-03-26 2007-04-27 Баниу Фармасьютикал Ко., Лтд. Комбинированное применение противоопухолевого производного индолопирролокарбазола и другого противоопухолевого агента
US6596757B1 (en) 2002-05-14 2003-07-22 Immunogen Inc. Cytotoxic agents comprising polyethylene glycol-containing taxanes and their therapeutic use
JP2003342168A (ja) 2002-05-24 2003-12-03 Nano Career Kk 注射用薬物含有ポリマーミセル製剤の製造方法
JP2003342167A (ja) 2002-05-24 2003-12-03 Nano Career Kk カンプトテシン誘導体の製剤およびその調製方法
JP4270485B2 (ja) 2002-05-28 2009-06-03 第一三共株式会社 タキサン類の還元方法
JP2004010479A (ja) 2002-06-03 2004-01-15 Japan Science & Technology Corp ブロック共重合体とアンスラサイクリン系抗癌剤を含む新規固型製剤及びその製造法
CA2502870C (en) 2002-10-31 2011-07-26 Nippon Kayaku Kabushiki Kaisha High-molecular weight derivatives of camptothecins
GB0228417D0 (en) 2002-12-05 2003-01-08 Cancer Rec Tech Ltd Pyrazole compounds
GB0229618D0 (en) 2002-12-19 2003-01-22 Cancer Rec Tech Ltd Pyrazole compounds
US7169892B2 (en) 2003-01-10 2007-01-30 Astellas Pharma Inc. Lipid-peptide-polymer conjugates for long blood circulation and tumor specific drug delivery systems
PT1611112E (pt) 2003-02-11 2012-11-02 Cancer Rec Tech Ltd Compostos de isoxazole como inibidores de proteínas de choque térmico
JP4757633B2 (ja) 2003-03-20 2011-08-24 日本化薬株式会社 難水溶性抗癌剤と新規ブロック共重合体を含むミセル調製物
EP1594482A1 (en) 2003-03-26 2005-11-16 LTT Bio-Pharma Co., Ltd. Intravenous nanoparticles for targeting drug delivery and sustained drug release
GB0309637D0 (en) 2003-04-28 2003-06-04 Cancer Rec Tech Ltd Pyrazole compounds
GB0315111D0 (en) 2003-06-27 2003-07-30 Cancer Rec Tech Ltd Substituted 5-membered ring compounds and their use
US20070004674A1 (en) 2003-08-22 2007-01-04 Kyowa Hakko Kogyo Co. Ltd. Remedy for diseases associated with immunoglobulin gene translocation
WO2005041865A2 (en) 2003-10-21 2005-05-12 Igf Oncology, Llc Compounds and method for treating cancer
FR2862536B1 (fr) 2003-11-21 2007-11-23 Flamel Tech Sa Formulations pharmaceutiques pour la liberation prolongee de principe(s) actif(s), ainsi que leurs applications notamment therapeutiques
US7176185B2 (en) 2003-11-25 2007-02-13 Tsrl, Inc. Short peptide carrier system for cellular delivery of agent
CA2555759C (en) 2004-01-07 2012-04-17 Seikagaku Corporation Hyaluronic acid derivative and drug containing the same
JP2008520413A (ja) 2004-11-16 2008-06-19 ハイピリオン カタリシス インターナショナル インコーポレイテッド 金属担持カーボンナノチューブからの担持触媒調製方法
WO2006055760A1 (en) 2004-11-18 2006-05-26 Synta Pharmaceuticals Corp. Triazole compounds that modulate hsp90 activity
US8399464B2 (en) 2005-03-09 2013-03-19 Nippon Kayaku Kabushiki Kaisha HSP90 inhibitor
EP1857489A4 (en) 2005-03-09 2010-06-23 Toray Industries MICROPARTICLE AND PHARMACEUTICAL COMPOSITION
JP5044730B2 (ja) 2005-03-09 2012-10-10 日本化薬株式会社 新規なhsp90阻害剤
JP2008137894A (ja) 2005-03-22 2008-06-19 Nippon Kayaku Co Ltd 新規なアセチレン誘導体
JPWO2006115293A1 (ja) 2005-04-22 2008-12-18 国立大学法人 東京大学 pH応答性高分子ミセルの調製に用いる新規ブロック共重合体及びその製造法
EP1880721A4 (en) 2005-05-12 2009-05-27 Nipro Corp MEANS FOR IMPROVING CIRCULAR DISORDER
US20080280937A1 (en) 2005-08-19 2008-11-13 Christopher Paul Leamon Ligand Conjugates of Vinca Alkaloids, Analogs, and Derivatives
CN1800238A (zh) 2005-12-05 2006-07-12 中国科学院长春应用化学研究所 有生物功能的脂肪族聚酯—聚氨基酸共聚物及合成方法
JP2007182407A (ja) 2006-01-10 2007-07-19 Medgel Corp 徐放性ハイドロゲル製剤
JP2007191643A (ja) 2006-01-20 2007-08-02 Mitsui Chemicals Inc 生体への定着性が付与されたポリアミノ酸誘導体
JP5249016B2 (ja) 2006-03-28 2013-07-31 日本化薬株式会社 タキサン類の高分子結合体
EP2019122A4 (en) 2006-05-18 2009-07-01 Nippon Kayaku Kk POLYMER CONJUGATE OF PODOPHYL LOTOXIN
CA2658100A1 (en) 2006-07-19 2008-01-24 Nippon Kayaku Kabushiki Kaisha High-molecular weight conjugate of combretastatins
ES2584840T3 (es) 2006-10-03 2016-09-29 Nippon Kayaku Kabushiki Kaisha Compuesto de un derivado de resorcinol con un polímero
US9149540B2 (en) 2008-05-08 2015-10-06 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of folic acid or folic acid derivative
WO2009142326A1 (ja) 2008-05-23 2009-11-26 ナノキャリア株式会社 ドセタキセル高分子誘導体、並びにその製造方法及びその用途
JP5711378B2 (ja) 2011-09-11 2015-04-30 日本化薬株式会社 ブロック共重合体の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05955A (ja) 1990-11-07 1993-01-08 Yasuhisa Sakurai 水溶性高分子抗癌剤及び薬物担持用担体
JP3268913B2 (ja) 1992-10-27 2002-03-25 日本化薬株式会社 高分子担体
JP2694923B2 (ja) 1995-08-21 1997-12-24 科学技術振興事業団 水溶性高分子化医薬製剤
US20020009426A1 (en) * 1998-04-17 2002-01-24 Greenwald Richard B. Biodegradable high molecular weight polymeric linkers and their conjugates
JP2003524028A (ja) 1999-09-23 2003-08-12 エンゾン,インコーポレーテッド ara−C及びara−C誘導体のポリマーコンジュゲート
WO2006033296A1 (ja) * 2004-09-22 2006-03-30 Nippon Kayaku Kabushiki Kaisha 新規ブロック共重合体、ミセル調製物及びそれを有効成分とする抗癌剤
WO2006120914A1 (ja) 2005-05-11 2006-11-16 Nippon Kayaku Kabushiki Kaisha シチジン系代謝拮抗剤の高分子誘導体
WO2008056596A1 (en) 2006-11-06 2008-05-15 Nippon Kayaku Kabushiki Kaisha Polymeric derivative of nucleic acid metabolic antagonist
WO2008056654A1 (en) 2006-11-08 2008-05-15 Nippon Kayaku Kabushiki Kaisha Polymeric derivative of nucleic acid metabolic antagonist
WO2009041570A1 (ja) * 2007-09-28 2009-04-02 Nippon Kayaku Kabushiki Kaisha ステロイド類の高分子結合体
WO2009116509A1 (ja) * 2008-03-18 2009-09-24 日本化薬株式会社 生理活性物質の高分子結合体
WO2010131675A1 (ja) * 2009-05-15 2010-11-18 日本化薬株式会社 水酸基を有する生理活性物質の高分子結合体

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Cancer Research (USA", vol. 44, 1984, US CANCER ASSOCIATION, pages: 25 - 30
"Cancer Science", vol. 95, 2004, JAPANESE CANCER ASSOCIATION, pages: 105 - 111
"Journal of Controlled Release (UK", vol. 79, 2002, ELSEVIER, pages: 55 - 70
See also references of EP2641605A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073447A1 (ja) * 2012-11-08 2014-05-15 日本化薬株式会社 カンプトテシン類と抗癌効果増強剤の結合した高分子化合物及びその用途
JPWO2014073447A1 (ja) * 2012-11-08 2016-09-08 日本化薬株式会社 カンプトテシン類と抗癌効果増強剤の結合した高分子化合物及びその用途
US9855261B2 (en) 2012-11-08 2018-01-02 Nippon Kayaku Kabushiki Kaisha Polymeric compound having camptothecin compound and anti-cancer effect enhancer bound thereto, and use of same
WO2016021407A1 (ja) * 2014-08-04 2016-02-11 日本化薬株式会社 核酸代謝拮抗剤が結合したポリアミノ酸誘導体
WO2016093352A1 (ja) * 2014-12-12 2016-06-16 日本化薬株式会社 核酸代謝拮抗剤が結合した多分岐化合物
WO2016136641A1 (ja) * 2015-02-23 2016-09-01 日本化薬株式会社 生理活性物質結合ブロック共重合体
US10357573B2 (en) 2015-02-23 2019-07-23 Nippon Kayaku Kabushiki Kaisha Block copolymer conjugate of physiologically active substance

Also Published As

Publication number Publication date
CN103221054A (zh) 2013-07-24
CA2816997A1 (en) 2012-05-24
EP2641605A1 (en) 2013-09-25
EP2641605B1 (en) 2018-03-07
JP5856069B2 (ja) 2016-02-09
EP2641605A4 (en) 2015-04-22
TW201304805A (zh) 2013-02-01
KR20140024833A (ko) 2014-03-03
US9018323B2 (en) 2015-04-28
US20130331517A1 (en) 2013-12-12
JPWO2012067138A1 (ja) 2014-05-12

Similar Documents

Publication Publication Date Title
JP5856069B2 (ja) 新規なシチジン系代謝拮抗剤の高分子誘導体
JP5544357B2 (ja) 水酸基を有する生理活性物質の高分子結合体
JP5249016B2 (ja) タキサン類の高分子結合体
JP4745664B2 (ja) カンプトテシン類の高分子誘導体
JP5181347B2 (ja) ポドフィロトキシン類の高分子結合体
JP5548365B2 (ja) 核酸系代謝拮抗剤の高分子誘導体
JP5687899B2 (ja) 生理活性物質の高分子結合体
EP2042195A1 (en) Polymer conjugate of combretastatin
JP5503872B2 (ja) 核酸系代謝拮抗剤の高分子誘導体
JPWO2009041570A1 (ja) ステロイド類の高分子結合体
JP6851977B2 (ja) マクロライド系免疫抑制剤の高分子誘導体
WO2016093352A1 (ja) 核酸代謝拮抗剤が結合した多分岐化合物
JP6924191B2 (ja) 新規な高分子誘導体、及びそれらを用いた新規な高分子誘導体イメージングプローブ
WO2017119272A1 (ja) マクロライド系免疫抑制剤の高分子誘導体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841714

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012544274

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2011841714

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137011461

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2816997

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13884413

Country of ref document: US