WO2012062165A1 - 新型结构发动机及其工作方法 - Google Patents

新型结构发动机及其工作方法 Download PDF

Info

Publication number
WO2012062165A1
WO2012062165A1 PCT/CN2011/081318 CN2011081318W WO2012062165A1 WO 2012062165 A1 WO2012062165 A1 WO 2012062165A1 CN 2011081318 W CN2011081318 W CN 2011081318W WO 2012062165 A1 WO2012062165 A1 WO 2012062165A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
engine
intake
camshaft
fuel
Prior art date
Application number
PCT/CN2011/081318
Other languages
English (en)
French (fr)
Inventor
夏细顺
Original Assignee
Xia Xishun
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xia Xishun filed Critical Xia Xishun
Publication of WO2012062165A1 publication Critical patent/WO2012062165A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/06Cutting-out cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D17/00Controlling engines by cutting out individual cylinders; Rendering engines inoperative or idling
    • F02D17/02Cutting-out
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • This invention relates to the field of engines, and more particularly to a novel structural engine and method of operation thereof.
  • the present invention provides a novel structure engine with low emissions and fuel economy and a method of operating the same.
  • the novel structure engine of the present invention including the engine, further includes an external working force for each cylinder of the engine in the first four strokes, and only intake and exhaust for the last four strokes and no external work.
  • a control mechanism of the working cycle the control mechanism includes an intake and exhaust valve replenishing and exhausting control device, and the injector of the engine injects oil to the external work process in the first four strokes of each cylinder, and the latter four strokes are not
  • a fuel timing control system that does not inject fuel during external work.
  • the intake and exhaust valve supplemental exhaust control device is composed of a secondary camshaft and a secondary camshaft timing gear with an intake valve supplemental cam and an exhaust valve exhaust cam, the secondary camshaft timing The gear meshes with a timing gear of a camshaft of the engine; or the intake and exhaust valve exhaust control device is an electronic control device.
  • the ratio of the speed of the secondary camshaft timing gear to the timing gear of the camshaft of the engine is 1:2.
  • the fuel timing control system is an electronic fuel control system or a mechanical fuel a control system; wherein the mechanical fuel control system is composed of a fuel timing camshaft and a fuel timing gear, and a ratio of a speed of the fuel timing gear to a timing gear of a camshaft of the engine is 1:2.
  • flywheel quality of the engine is increased by 20% to 30%.
  • the novel structure engine working method of the invention comprises the following steps:
  • the first inspiratory stroke of the last four strokes in step (2) is: during the process of the piston from top dead center to bottom dead center, the intake valve is in the camshaft of the engine and/or the intake and exhaust
  • the door exhaust control device is controlled to be closed to open, and the exhaust valve is opened to closed under the control of the engine camshaft and/or the intake and exhaust valve exhaust control device;
  • the second of the four strokes is: during the process of the piston from bottom dead center to top dead center, the intake valve is controlled by the camshaft of the engine and/or the exhaust and exhaust control of the intake and exhaust valves. From open to closed, the exhaust valve is closed to open under the control of the camshaft and/or the intake and exhaust valve exhaust control device;
  • the third of the four strokes is: the piston is again from the top dead center to the bottom dead center, and the intake valve is under the control of the camshaft and/or the intake and exhaust valve exhaust control From closing to opening, the exhaust valve is opened to closed under the control of the camshaft and/or the intake and exhaust valve exhaust control device;
  • the fourth exhaust stroke of the four strokes is: during the piston again from bottom dead center to top dead center, the intake valve is under the control of the camshaft and/or the intake and exhaust valve exhaust control device From opening to closing, the exhaust valve is closed by the camshaft and/or the intake and exhaust valve exhaust control. To open.
  • the intake and exhaust valve supplemental exhaust control device is composed of a secondary camshaft and a secondary camshaft timing gear with an intake valve supplemental cam and an exhaust valve exhaust cam, the secondary camshaft timing
  • the gear valve compensation and exhaust control device is an electric control device.
  • the fuel timing control system is an electronic fuel control system or a mechanical fuel control system; wherein the mechanical fuel control system is composed of a fuel timing camshaft and a fuel timing gear
  • the original four-stroke reciprocating engine is turned into a normal inhalation, compression, explosion and exhaust working state for the first four strokes, and the last four strokes are dependent on the starting flywheel.
  • the inertia drives the piston to complete the suction, exhaust, suction and exhaust (ie, the last four strokes are idling), and the injector does not inject oil into the cylinder, that is, the latter four strokes do not work externally.
  • the present invention increases the flywheel of the engine by 20% to 30%.
  • the new structural engine of the present invention significantly reduces the number of injections in the entire working cycle compared to the existing engine injections, and truly achieves energy saving and emission reduction of the engine, and can ensure the normal power output of the engine.
  • FIG. 1 is a schematic structural view of an intake and exhaust valve compensating and exhausting control device for a camshaft of a new structure of the present invention
  • FIG. 2 is a schematic structural view showing an embodiment of a timing gear box when a camshaft of a new structure of the present invention is placed under the present invention
  • FIG. 3 is a schematic structural view of the intake and exhaust control device for the intake and exhaust valves of the camshaft of the novel structure of the present invention
  • FIG. 4 is a schematic structural view of an embodiment of a timing brake gearbox of a new structure engine camshaft according to the present invention
  • FIG. 5 is a working state of a certain structure of the engine of the present invention in an intake stroke.
  • FIG. 6 is a working state of a certain structure of the engine of the present invention in a compression stroke.
  • FIG. 8 is a working state diagram of a certain cylinder of the engine of the present invention in an exhaust stroke of the present invention.
  • FIG. 9 is a working state diagram of a first intake stroke of a cylinder of the new structure of the present invention in the last four strokes. ;
  • Figure 10 is a view showing the operation state of a second exhaust stroke of a cylinder of the new structure of the present invention in the last four strokes;
  • Figure 11 is a view showing the working state of a third suction stroke of a cylinder of the new structure of the present invention in the last four strokes;
  • Figure 12 is a diagram showing the operation of a fourth exhaust stroke of a cylinder of the new structure of the present invention in the last four strokes.
  • the novel structure transmitter of the present invention includes an engine, and further includes a work cycle in which each cylinder of the engine is in the first four strokes, and the last four strokes only intake and exhaust and do not work externally.
  • a control mechanism comprising an intake and exhaust valve replenishing and exhausting control device, and an injector of the engine injecting oil to the external work process in the first four strokes of each cylinder, and the second four strokes do not perform external work
  • Fuel injection timing control system that does not spray oil.
  • FIG. 1 is a schematic view showing the structure of an intake and exhaust valve intake and exhaust control device for a camshaft under the structure of the novel structure of the present invention.
  • the intake and exhaust valve make-up and exhaust control device is composed of a secondary camshaft with an intake valve supplemental cam 131 and an exhaust valve exhaust cam 132 and a secondary camshaft timing gear 6, the ratio of 1: 2;
  • the intake and exhaust valve exhaust control device is an electronic control device.
  • the intake valve supplemental air cam 131 and the exhaust valve exhaust cam 132 are in contact with the rocker arm 11 via the jack 12 to control the opening and closing of the intake valve 1 and the exhaust valve 2.
  • the intake valve supplemental cam 131 and the exhaust valve exhaust cam 132 are in direct contact with the rocker arm (as shown in FIG. 3).
  • the operation process of the intake and exhaust valve exhaust control device is: the intake valve 1 and the exhaust valve 2 are in a first intake stroke of the last four strokes, the intake valve 1 and the exhaust
  • the door 2 is controlled by the camshaft of the engine, the intake valve 1 is opened, and the exhaust valve 2 is closed.
  • the intake cam 141 and the exhaust cam 142 on the camshaft of the engine are both at the small end, and the intake valve 1 and the exhaust valve 2 are in a closed state, and the secondary cam can be set at this time.
  • the shaft controls the exhaust valve to open, the intake valve is in a closed state, that is, the piston is from the bottom dead center to the top dead center process, and the piston discharges the air sucked in the cylinder again.
  • the fuel timing control system is an electronically controlled fuel system or a mechanically controlled fuel system; wherein the electronically controlled fuel system may be an electronically controlled inline pump fuel system, an electronically controlled pump fuel system or an electronically controlled high pressure common rail fuel system.
  • the first two fuel systems add a set of electronic devices that precisely control engine fuel injection and injection time based on the traditional mechanical fuel system, which greatly reduces engine emissions and improves fuel economy.
  • the third fuel system detects the actual operating state of the engine through various sensors. Through computer calculation and processing, the engine's fuel injection amount, fuel injection time, fuel injection pressure and fuel injection rate can be optimally controlled.
  • the mechanically controlled fuel system is comprised of a fuel timing camshaft and a fuel timing gear 8.
  • FIG. 2 and FIG. 4 are respectively a structural schematic view of an embodiment of a timing gearbox when the camshaft of the novel structure of the present invention is lowered, and a timing gearbox of the engine camshaft.
  • the engine crankshaft power output gear 3 meshes with a camshaft timing gear 4 of the engine, and a gear 5 is disposed on a cam shaft of the engine, and the gear 5 is aligned with the secondary camshaft
  • the gear 6 is meshed, and the secondary camshaft timing gear 6 transmits power to the fuel timing gear 8 via the transition gear 7.
  • FIG. 2 and FIG. 4 are respectively a structural schematic view of an embodiment of a timing gearbox when the camshaft of the novel structure of the present invention is lowered, and a timing gearbox of the engine camshaft.
  • the engine crankshaft power output gear 3 outputs power to the camshaft timing gear 4 of the engine via a toothed belt 9, and a gear 5 is disposed on a cam shaft of the engine, and the gear 5 is
  • the secondary camshaft timing gear 6 is engaged, and the secondary camshaft timing gear 6 transmits power to the fuel timing gear 8 via the toothed belt 9.
  • An expansion wheel 102 for amplifying action is provided between the engine crankshaft power output gear 3 and the camshaft timing gear 4 of the engine, the secondary camshaft timing gear 6 and the fuel timing
  • An expansion wheel 101 for augmentation is provided between the gears 8.
  • the ratio of the rotational speed of the secondary camshaft timing gear 6 to the timing gear 4 of the camshaft of the engine is 1:2.
  • the ratio of the rotational speed of the fuel timing gear 8 to the timing gear 4 of the camshaft of the engine is 1:2.
  • the timing gears of the engine can also be driven by a chain.
  • the invention ensures that the engine of the new structure is operated more smoothly, and the weight of the flywheel of the engine is increased by 20% to 30%.
  • FIG. 5 to 12 are working flow charts of the novel structure engine of the present invention, and the detailed description thereof is as follows: (1) The first four strokes of the cylinders of the engine complete the suction, compression, explosion and exhaust (Fig. 5, Fig. 6, Figure 7 and Figure 8), and after the compression stroke, the injector is injected into the cylinder under the control of the fuel timing control system;
  • the first one of the four strokes in the step (2) is: During the process of the piston from the top dead center to the bottom dead center, the intake valve 1 is replenished at the camshaft of the engine and the intake and exhaust valves.
  • the control device is controlled to be closed to open, and the exhaust valve 2 is opened to closed under the control of the camshaft of the engine and the intake and exhaust valve exhaust control device (as shown in FIG.
  • the second exhaust stroke of the four strokes is: during the process of the piston from bottom dead center to top dead center, the intake valve 1 is in the camshaft of the engine and/or the exhaust and exhaust valve of the intake and exhaust valves Under control, from open to closed, the exhaust valve 2 is closed to open under the control of the camshaft and/or the intake and exhaust valve exhaust control device (as shown in Figure 10);
  • the third inspiratory stroke of the four strokes is: during the process of the piston again from top dead center to bottom dead center, the intake valve 1 is controlled by the camshaft and/or the intake and exhaust valve exhaust control device. From closed to open, the exhaust valve 2 is opened to closed under the control of the camshaft and/or the intake and exhaust valve exhaust control device (as shown in Figure 11);
  • the fourth exhaust stroke of the four strokes is: the control of the intake valve 1 in the camshaft and/or the intake and exhaust valve replenishing control device during the process from the bottom dead center to the top dead center again.
  • the exhaust valve 2 is closed to open (as shown in Figure 12) under the control of the camshaft and/or the intake and exhaust exhaust control.
  • the engine of the novel structure of the present invention emits less oil in the entire working cycle than the existing engine, and realizes the energy saving and emission reduction of the engine, and can ensure the normal power output of the engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Valve Device For Special Equipments (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)

Abstract

一种发动机,包括使发动机各气缸均处于前四个冲程对外做功、后四个冲程只进气和排气且不对外作功的工作循环的控制机构。该控制机构包括进排气门补排气控制装置,以及所述发动机的喷油器在各气缸前四个冲程对外做功过程喷油一次,后四个冲程不对外作功过程不喷油的燃油正时控制***。该发动机在正常动力输出的情况下,明显减少喷油次数,实现了发动机的节能减排。

Description

说 明 书
新型结构发动机及其工作方法 技术领域
本发明涉及发动机领域, 尤其涉及一种新型结构发动机及其工作方 法。
背景技术
目前大多数的柴油发动机或汽油发动机,其工作过程都是四冲程循环 往复, 即吸气, 压缩, ***和排气。 曲轴每转两圈喷油器就要向燃烧室内 喷油一次来实现发动机的连续运转。那么如何在能够保证发动机输出功率 不变的情况下, 又能节油同时又能减少尾气的排放?
发明内容
针对上述问题,本发明提供一种排放低,且节油的新型结构发动机及 其工作方法。
为达到上述目的, 本发明所述新型结构发动机, 包括发动机,还包括 一使所述发动机各气缸均处于前四个冲程对外作功,后四个冲程只进气和 排气且不对外作功的工作循环的控制机构,所述控制机构包括进排气门补 排气控制装置,以及所述发动机的喷油器在各气缸前四个冲程对外作功过 程喷油一次, 后四个冲程不对外作功过程不喷油的燃油正时控制***。
进一步地,所述进排气门补排气控制装置由带有进气门补气凸轮和排 气门排气凸轮的次凸轮轴和次凸轮轴正时齿轮构成,所述次凸轮轴正时齿 轮与所述发动机的凸轮轴的正时齿轮相啮合;或所述进排气门补排气控制 装置为电控装置。
特别地,所述次凸轮轴正时齿轮与所述发动机的凸轮轴的正时齿轮的 转速比为 1 : 2。
进一步地,所述燃油正时控制***为电子燃油控制***或机械式燃油 控制***;其中,所述机械式燃油控制***由燃油正时凸轮轴和燃油正时 齿轮构成,所述燃油正时齿轮与所述发动机的凸轮轴的正时齿轮的转速比 为 1 : 2。
进一步地, 所述发动机的飞轮质量增重 20 % ~30 %。
本发明新型结构发动机工作方法, 包括以下步骤:
( 1 )发动机的各气缸前四个冲程完成吸气, 压缩, ***和排气, 且 在压缩冲程后喷油器在燃油正时控制***的控制下向气缸内喷油一次;
( 2 )发动机的各气缸后四个冲程完成吸气, 排气, 吸气和排气, 且 整个过程所述喷油器在燃油正时控制***的控制下不向气缸内喷油;
( 3 )所述发动机一次工作循环结束, 下一循环重复步骤( 1 )和步骤
( 2 1
其中, 步骤(2 ) 中所述后四个冲程中的第一个吸气冲程为: 活塞从 上止点到下止点的过程中, 进气门在发动机的凸轮轴和 /或进排气门补排 气控制装置的控制下由关闭到开启, 排气门在发动机的凸轮轴和 /或进排 气门补排气控制装置的控制下由开启到关闭;
所述四个冲程中的第二个排气冲程为:活塞从下止点到上止点的过程 中 , 进气门在发动机的凸轮轴和 /或进排气门补排气控制装置的控制下由 开启到关闭, 排气门在凸轮轴和 /或进排气门补排气控制装置的控制下由 关闭到开启;
所述四个冲程中的第三个进气冲程为:活塞再次从上止点到下止点的 过程中 , 进气门在凸轮轴和 /或进排气门补排气控制装置的控制下由关闭 到开启, 排气门在凸轮轴和 /或进排气门补排气控制装置的控制下由开启 到关闭;
所述四个冲程中的第四个排气冲程为:活塞再次从下止点到上止点的 过程中, 进气门在凸轮轴和 /或进排气门补排气控制装置的控制下由开启 到关闭, 排气门在凸轮轴和 /或进排气门补排气控制装置的控制下由关闭 到开启。
其中,所述的进排气门补排气控制装置由带有进气门补气凸轮和排气 门排气凸轮的次凸轮轴和次凸轮轴正时齿轮构成,所述次凸轮轴正时齿轮 气门补排气控制装置为电控装置。
所述的燃油正时控制***为电子燃油控制***或机械式燃油控制系 统;其中,所述机械式燃油控制***由燃油正时凸轮轴和燃油正时齿轮构
2。
本发明通过设置所述控制机构,将原本四冲程往复工作的发动机变成 了前四个冲程处于正常的吸气、压缩、***和排气工作状态,后四个冲程 依靠所述发动的飞轮的惯性带动所述活塞完成吸气、排气、吸气和排气(即 后四个冲程空转), 且喷油器不向缸内喷油, 即后四个冲程不对外作功。 此外,本发明为了使发动机运转的更平稳可靠,将所述发动机的飞轮增重 20 % -30 %。 本发明所述新型结构发动机在整个工作循环中喷油的次数明 显比现有的发动机喷油次数少,真正实现了发动机的节能减排,且能够保 证发动机的正常动力输出。
附图说明
图 1 为本发明新型结构发动机凸轮轴下置时进排气门补排气控制装 置的结构示意图;
图 2 为本发明新型结构发动机凸轮轴下置时正时齿轮箱的一实施例 的结构示意图;
图 3 为本发明新型结构发动机凸轮轴上置时进排气门补排气控制装 置的结构示意图;
图 4 为本发明新型结构发动机凸轮轴上置时正时齿轮箱的一实施例 的结构示意图; 图 5为本发明新型结构发动机某一缸处于吸气冲程的工作状态图 图 6为本发明新型结构发动机某一缸处于压缩冲程的工作状态图 图 7为本发明新型结构发动机某一缸处于***冲程的工作状态图 图 8为本发明新型结构发动机某一缸处于排气冲程的工作状态图 图 9 为本发明新型结构发动机某一缸处于后四个冲程的第一吸气冲 程的工作状态图;
图 10为本发明新型结构发动机某一缸处于后四个冲程的第二排气冲 程的工作状态图;
图 11为本发明新型结构发动机某一缸处于后四个冲程的第三吸气冲 程的工作状态图;
图 12为本发明新型结构发动机某一缸处于后四个冲程的第四排气冲 程的工作状态图。
具体实施方式
下面结合说明书附图对本发明的具体实施方式做详细描述。
本发明所述新型结构发送机, 包括发动机,还包括一使所述发动机各 气缸均处于前四个冲程对外作功,后四个冲程只进气和排气且不对外作功 的工作循环的控制机构,所述控制机构包括进排气门补排气控制装置,以 及所述发动机的喷油器在各气缸前四个冲程对外作功过程喷油一次,后四 个冲程不对外作功过程不喷油的燃油正时控制***。
如图 1 所示本发明新型结构发动机凸轮轴下置时进排气门补排气控 制装置的结构示意图。所述进排气门补排气控制装置由带有进气门补气凸 轮 131和排气门排气凸轮 132的次凸轮轴和次凸轮轴正时齿轮 6构成,所 比为 1 : 2; 或所述进排气门补排气控制装置为电控装置。 所述进气门补 气凸轮 131和排气门排气凸轮 132经顶杆 12与摇臂 11接触,来实现控制 进气门 1和排气门 2开启和关闭的动作。 当发动机的凸轮轴是上置时,所 述进气门补气凸轮 131和排气门排气凸轮 132直接与摇臂接触 (如图 3 所示 )。
所述进排气门补排气控制装置工作过程为: 所述进气门 1和排气门 2 在后四个冲程的第一吸气冲程时,所述进气门 1和所述排气门 2均由所述 发动机的凸轮轴控制, 进气门 1开启, 排气门 2关闭。 第二排气冲程时, 所述发动机的凸轮轴上的进气凸轮 141和排气凸轮 142均处于小端,进气 门 1和排气门 2处于关闭状态,此时可通过设置的次凸轮轴控制所述排气 门打开, 进气门处于关闭状态, 即活塞由下止点到上止点过程, 活塞将气 缸中吸入的空气再排出,此时应注意当所述活塞到达上止点时避免碰到排 气门, 可通过排气凸轮的轮廓设计来实现。 第三进气冲程时, 所述发动机 的凸轮轴上的进气凸轮 141和排气凸轮 142均处于小端,进气门 1和排气 门 2处于关闭状态,此时通过设置的次凸轮轴控制所述进气门打开,排气 门处于关闭状态, 即活塞由上止点到下止点过程, 吸入空气。在后四个冲 程的第四排气冲程时,所述进气门 1和所述排气门 2均由所述发动机的凸 轮轴控制。 在整个工作过程中, 所述次凸轮轴上的进气门补气凸轮 131 和排气门排气凸轮 132的轮廓应配合所述发动机凸轮轴正时关系设计。
所述燃油正时控制***为电子控制燃油***或机械式控制燃油***; 其中, 电子控制燃油***可以为电控直列泵燃油***、电控分配泵燃油系 统或电控高压共轨燃油***。前两种燃油***是在传统的机械式燃油*** 的基础上增加了一套精确控制发动机喷油量和喷油时间的电子装置,从而 大大降低了发动机排放污染并提高了燃油经济性。第三种燃油***是通过 各种传感器检测出发动机的实际运行状态,通过计算机的计算和处理,可 以对发动机的喷油量、喷油时间、 喷油压力和喷油率进行最佳控制。 所述 机械式控制燃油***由燃油正时凸轮轴和燃油正时齿轮 8构成。
如图 2和图 4所示,分别为本发明新型结构发动机凸轮轴下置时正时 齿轮箱的一实施例的结构示意图和发动机凸轮轴上置时正时齿轮箱的一 实施例的结构示意图。 图 2中,所述发动机曲轴动力输出齿轮 3与所述发 动机的凸轮轴正时齿轮 4相啮合,所述发动机的凸轮轴上设置了一齿轮 5 , 该齿轮 5与所述次凸轮轴正时齿轮 6相啮合, 所述次凸轮轴正时齿轮 6 经过渡齿轮 7将动力传输给所述燃油正时齿轮 8。 图 4中, 所述发动机曲 轴动力输出齿轮 3经齿形带 9将动力输出给所述发动机的凸轮轴正时齿轮 4, 所述发动机的凸轮轴上设置了一齿轮 5 , 该齿轮 5与所述次凸轮轴正 时齿轮 6相啮合,所述次凸轮轴正时齿轮 6经齿形带 9将动力传输给所述 燃油正时齿轮 8。在所述发动机曲轴动力输出齿轮 3和所述发动机的凸轮 轴正时齿轮 4之间设有用于起胀紧作用的胀紧轮 102 ,所述次凸轮轴正时 齿轮 6和所述燃油正时齿轮 8之间设有用于起胀紧作用的胀紧轮 101。所 述次凸轮轴正时齿轮 6与所述发动机的凸轮轴的正时齿轮 4的转速比为 1 : 2。所述燃油正时齿轮 8与所述发动机的凸轮轴的正时齿轮 4的转速比 为 1 : 2。 另外, 除使用齿形带传动外, 所述发动机各正时齿轮还可以釆 用链传动。
本发明为保证所述新型结构发动机运转更平稳 ,将所述发动机的飞轮 质量增重 20 % ~30 %。
图 5〜图 12为本发明新型结构发动机的工作流程图,其详细描述如下: ( 1 )发动机的各气缸前四个冲程完成吸气, 压缩, ***和排气(如 图 5 , 图 6, 图 7和图 8所示), 且在压缩冲程后喷油器在燃油正时控制系 统的控制下向气缸内喷油一次;
( 2 )发动机的各气缸后四个冲程完成吸气, 排气, 吸气和排气, 且 整个过程所述喷油器在燃油正时控制***的控制下不向气缸内喷油; 其中, 步骤(2 ) 中所述四个冲程中的第一个吸气冲程为: 活塞从上 止点到下止点的过程中,进气门 1在发动机的凸轮轴和进排气门补排气控 制装置的控制下由关闭到开启,排气门 2在发动机的凸轮轴和进排气门补 排气控制装置的控制下由开启到关闭 (如图 9所示); 所述四个冲程中的第二个排气冲程为:活塞从下止点到上止点的过程 中, 进气门 1在发动机的凸轮轴和 /或进排气门补排气控制装置的控制下 由开启到关闭, 排气门 2在凸轮轴和 /或进排气门补排气控制装置的控制 下由关闭到开启 (如图 10所示);
所述四个冲程中的第三个吸气冲程为:活塞再次从上止点到下止点的 过程中, 进气门 1在凸轮轴和 /或进排气门补排气控制装置的控制下由关 闭到开启, 排气门 2在凸轮轴和 /或进排气门补排气控制装置的控制下由 开启到关闭 (如图 11所示);
所述四个冲程中的第四个排气冲程为:活塞再次从下止点到上止点的 过程中, 进气门 1在凸轮轴和 /或进排气门补排气控制装置的控制下由开 启到关闭, 排气门 2在凸轮轴和 /或进排气门补排气控制装置的控制下由 关闭到开启 (如图 12所示)。
( 3 )所述发动机一次工作循环结束, 下一循环重复步骤( 1 )和步骤
( 2 1
釆用上述结构,本发明所述新型结构发动机在整个工作循环中喷油的 次数明显比现有的发动机喷油次数少,真正实现了发动机的节能减排,且 能够保证发动机的正常动力输出。
以上,仅为本发明的较佳实施例,但本发明的保护范围并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到 的变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护 范围应该以权利要求所界定的保护范围为准。

Claims

权 利 要 求 书
1、 一种新型结构发动机, 包括发动机, 其特征在于, 还包括一使所 述发动机各气缸均处于前四个冲程对外作功,后四个冲程只进气和排气且 不对外作功的工作循环的控制机构,所述控制机构包括进排气门补排气控 制装置,以及所述发动机的喷油器在各气缸前四个冲程对外作功过程喷油 一次, 后四个冲程不对外作功过程不喷油的燃油正时控制***。
2、 根据权利要求 1所述新型结构发动机, 其特征在于, 所述进排气 门补排气控制装置由带有进气门补气凸轮和排气门排气凸轮的次凸轮轴 和次凸轮轴正时齿轮构成,所述次凸轮轴正时齿轮与所述发动机的凸轮轴 的正时齿轮相啮合; 或所述进排气门补排气控制装置为电控装置。
3、 根据权利要求 2所述新型结构发动机, 其特征在于, 所述次凸轮 轴正时齿轮与所述发动机的凸轮轴的正时齿轮的转速比为 1 : 2。
4、 根据权利要求 1所述新型结构发动机, 其特征在于, 所述燃油正 时控制***为电子燃油控制***或机械式燃油控制***;其中,所述机械 式燃油控制***由燃油正时凸轮轴和燃油正时齿轮构成,所述燃油正时齿 轮与所述发动机的凸轮轴的正时齿轮的转速比为 1 : 2。
5、 根据权利要求 1所述新型结构发动机, 其特征在于, 所述发动机 的飞轮质量增重 20 % -30 %。
6、 一种新型结构发动机工作方法, 其特征在于, 包括以下步骤:
( 1 )发动机的各气缸前四个冲程完成吸气, 压缩, ***和排气, 且 在压缩冲程后喷油器在燃油正时控制***的控制下向气缸内喷油一次;
( 2 )发动机的各气缸后四个冲程完成吸气, 排气, 吸气和排气, 且 整个过程所述喷油器在燃油正时控制***的控制下不向气缸内喷油;
( 3 ) 所述发动机一次工作循环结束, 下一循环重复步骤( 1 ) 和步 骤( 2 )。
7、 根据权利要求 6所述新型结构发动机工作方法, 其特征在于, 其 中, 步骤(2 ) 中所述后四个冲程中的第一个吸气冲程为: 活塞从上止点 到下止点的过程中, 进气门在发动机的凸轮轴和 /或进排气门补排气控制 装置的控制下由关闭到开启, 排气门在发动机的凸轮轴和 /或进排气门补 排气控制装置的控制下由开启到关闭;
所述四个冲程中的第二个排气冲程为: 活塞从下止点到上止点的过 程中, 进气门在发动机的凸轮轴和 /或进排气门补排气控制装置的控制下 由开启到关闭, 排气门在凸轮轴和 /或进排气门补排气控制装置的控制下 由关闭到开启;
所述四个冲程中的第三个进气冲程为: 活塞再次从上止点到下止点 的过程中, 进气门在凸轮轴和 /或进排气门补排气控制装置的控制下由关 闭到开启, 排气门在凸轮轴和 /或进排气门补排气控制装置的控制下由开 启到关闭;
所述四个冲程中的第四个排气冲程为: 活塞再次从下止点到上止点 的过程中, 进气门在凸轮轴和 /或进排气门补排气控制装置的控制下由开 启到关闭 , 排气门在凸轮轴和 /或进排气门补排气控制装置的控制下由关 闭到开启。
8、 根据权利要求 6所述新型结构发动机工作方法, 其特征在于, 所 述进排气门补排气控制装置由带有进气门补气凸轮和排气门排气凸轮的 次凸轮轴和次凸轮轴正时齿轮构成,所述次凸轮轴正时齿轮与所述发动机 的凸轮轴的正时齿轮相啮合且转速比为 1 : 2; 或所述进排气门补排气控 制装置为电控装置。
9、 根据权利要求 6所述新型结构发动机工作方法, 其特征在于, 所 述燃油正时控制***为电子燃油控制***或机械式燃油控制***; 其中, 所述机械式燃油控制***由燃油正时凸轮轴和燃油正时齿轮构成,所述燃 油正时齿轮与所述发动机的凸轮轴的正时齿轮的转速比为 1 : 2。
PCT/CN2011/081318 2010-11-10 2011-10-26 新型结构发动机及其工作方法 WO2012062165A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2010105380117A CN102032053B (zh) 2010-11-10 2010-11-10 新型结构发动机及其工作方法
CN201010538011.7 2010-11-10

Publications (1)

Publication Number Publication Date
WO2012062165A1 true WO2012062165A1 (zh) 2012-05-18

Family

ID=43885407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/081318 WO2012062165A1 (zh) 2010-11-10 2011-10-26 新型结构发动机及其工作方法

Country Status (2)

Country Link
CN (1) CN102032053B (zh)
WO (1) WO2012062165A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102032053B (zh) * 2010-11-10 2013-04-17 夏细顺 新型结构发动机及其工作方法
EP3969733B1 (en) * 2019-05-17 2024-03-13 Eaton Intelligent Power Limited Valvetrain power transfer module with shortened leaf-spring contact

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102532A (en) * 1980-12-18 1982-06-25 Kozo Kuroki Operating method of engine in low consumption of fuel
JPH04362238A (ja) * 1991-06-07 1992-12-15 Toyota Motor Corp 作動サイクル制御エンジン
JPH0666166A (ja) * 1992-08-18 1994-03-08 Nippondenso Co Ltd 内燃機関の出力制御方法
CN102032053A (zh) * 2010-11-10 2011-04-27 夏细顺 新型结构发动机及其工作方法
CN201835927U (zh) * 2010-11-10 2011-05-18 夏细顺 新型结构发动机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4061881B2 (ja) * 2001-10-19 2008-03-19 日産自動車株式会社 エンジンの燃料噴射制御装置
EP2143917B1 (en) * 2008-07-07 2011-11-02 PSI Luxembourg S.A. Control device for retrofitting a diesel engine fuel injection system
WO2010006323A2 (en) * 2008-07-11 2010-01-14 Tula Technology, Inc. System and methods for stoichiometric compression ignition engine control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102532A (en) * 1980-12-18 1982-06-25 Kozo Kuroki Operating method of engine in low consumption of fuel
JPH04362238A (ja) * 1991-06-07 1992-12-15 Toyota Motor Corp 作動サイクル制御エンジン
JPH0666166A (ja) * 1992-08-18 1994-03-08 Nippondenso Co Ltd 内燃機関の出力制御方法
CN102032053A (zh) * 2010-11-10 2011-04-27 夏细顺 新型结构发动机及其工作方法
CN201835927U (zh) * 2010-11-10 2011-05-18 夏细顺 新型结构发动机

Also Published As

Publication number Publication date
CN102032053B (zh) 2013-04-17
CN102032053A (zh) 2011-04-27

Similar Documents

Publication Publication Date Title
US7201121B2 (en) Combustion engine including fluidically-driven engine valve actuator
US7252054B2 (en) Combustion engine including cam phase-shifting
JP5351233B2 (ja) 内燃機関の制御装置
US20070062193A1 (en) Combustion engine including fluidically-controlled engine valve actuator
US8627647B2 (en) Residual burnt gas scavenging method in a direct-injection supercharged internal-combustion multi-cylinder engine running under partial loads
CN201162550Y (zh) 柴油机电液控制可变配气装置
WO2020147678A1 (zh) 一种对置活塞三冲程内燃直线发电机组
JP2002048035A (ja) 過給機付筒内噴射エンジン
US20080245322A1 (en) Valvetrain Control Arrangement
JP2008008226A (ja) 内燃機関の制御装置
WO2012062165A1 (zh) 新型结构发动机及其工作方法
US8256390B1 (en) Six-cycle internal combustion engine
CN201461111U (zh) 一种发动机停缸节油装置
WO2013111649A1 (ja) 掃気行程を有する6サイクルエンジン
JP2012036798A (ja) エンジン
US7673596B2 (en) Six-cycle internal combustion engine
JP2012021440A (ja) 内燃機関の排気装置
CN209875304U (zh) 一种对置活塞三冲程内燃直线发电机组
CN210239871U (zh) 一种用于提升egr率的加压装置
CN201835927U (zh) 新型结构发动机
RU2751427C2 (ru) Способ усовершенствования четырехтактного двигателя внутреннего сгорания без турбонаддува
US7917280B2 (en) Method and device for operating an internal combustion engine
CN101059089A (zh) 一种改变了工作程序的柴油发动机
CN202718753U (zh) 一种发动机
TW201740016A (zh) 增壓進氣引擎

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839701

Country of ref document: EP

Kind code of ref document: A1