WO2012060398A1 - 光触媒塗装体およびそのための光触媒コーティング液 - Google Patents

光触媒塗装体およびそのための光触媒コーティング液 Download PDF

Info

Publication number
WO2012060398A1
WO2012060398A1 PCT/JP2011/075252 JP2011075252W WO2012060398A1 WO 2012060398 A1 WO2012060398 A1 WO 2012060398A1 JP 2011075252 W JP2011075252 W JP 2011075252W WO 2012060398 A1 WO2012060398 A1 WO 2012060398A1
Authority
WO
WIPO (PCT)
Prior art keywords
photocatalyst
mass
particles
less
coating liquid
Prior art date
Application number
PCT/JP2011/075252
Other languages
English (en)
French (fr)
Inventor
信 早川
寛之 藤井
洋二 高木
Original Assignee
Toto株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto株式会社 filed Critical Toto株式会社
Priority to US13/883,086 priority Critical patent/US20130267410A1/en
Priority to CN201180063774.3A priority patent/CN103313793B/zh
Priority to JP2012541890A priority patent/JP5744049B2/ja
Priority to EP11838048.4A priority patent/EP2636450A4/en
Publication of WO2012060398A1 publication Critical patent/WO2012060398A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0274Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0045Drying a slurry, e.g. spray drying
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/80Siloxanes having aromatic substituents, e.g. phenyl side groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide

Definitions

  • the present invention relates to a photocatalyst-coated body and a photocatalyst coating liquid for forming the photocatalyst-coated body.
  • photocatalysts such as titanium oxide have been used for buildings, structures, vehicles, members constituting them, and composite materials.
  • the substrate For outdoor use, by attaching a photocatalyst to the substrate surface, the substrate is given a function of decomposing harmful substances such as NOx and SOx using light energy. Further, the layer surface that has become hydrophilic upon light irradiation has a so-called self-cleaning function in which attached dirt is washed away by rain.
  • a technique of fixing the photocatalyst particles with a binder is used.
  • the binder component silicone, silica bonded by hydrolysis / condensation of alkyl silicate, fluororesin, and the like are widely used because of their resistance to the photocatalytic decomposition function (for example, JP-A-7-171408). Publication (Patent Document 1)).
  • silicone emulsion Japanese Patent Application Laid-Open No. 2001-64583 (Patent Document 2), Japanese Patent Application Laid-Open No. 2004-51644 (Patent Document 3), Japanese Patent Application Laid-Open No. 2004-149686 (Patent Document 4), JP 2008-95069 (Patent Document 5)), fluororesin emulsion (JP 2004-51644 (Patent Document 3)), alkali silicate (International Publication No. 99/06300 pamphlet (Patent Document 6)), Colloidal silica (Japanese Patent Laid-Open No. 11-169727 (Patent Document 7)) can be suitably used.
  • Patent Document Japanese Patent Laid-Open No. 2004-51644 (Patent Document). 3), JP 2010-5613 A (Patent Document 10), JP 2010-36135 A (Patent Document 11)).
  • Patent Document 3 (a) photocatalytic oxide particles, (b) hydrophobic resin emulsion, (c) water, (d) silica particles, and (e) coloring A photocatalytic coating agent containing at least a pigment, wherein the average particle size of the component (a) and the component (d) is smaller than the average particle size of the particles dispersed in the component (b),
  • the proportion of component a) in the total solid content is 1 to 5% by weight and the proportion of component (d) is 10 to 90% by weight.
  • photocatalytic oxide particles and silica particles When applied to a substrate, photocatalytic oxide particles and silica particles are A photocatalytic coating agent characterized by moving upward and forming a coating film with a thickness of 1 ⁇ m to 1 mm is disclosed.
  • whiskers and fibers are further used as extender pigments, and a device for maintaining voids is devised.
  • inorganic oxide particles (A) form a continuous phase having voids, and resin composition particles (B) and metal oxide particles (C) having photocatalytic activity. And 35 to 75% by mass of the inorganic oxide particles (A), 10 to 60% by mass of the resin composition particles (B), and the metal oxide.
  • a film-like composite containing 4 to 20% by mass of particles (C) is disclosed.
  • the resin composition particles (B) contain polymer emulsion particles (B1), and the polymer emulsion particles (B1) are hydrolyzable silicon compound (s) and vinyl simple substance in the presence of water and an emulsifier.
  • the coating liquid that can form the composite is dried at 70 ° C. for 30 minutes to obtain a composite.
  • the characteristics of the polymerization product produced can be controlled, which is preferable.
  • the composition ratio is important, the inorganic oxide particles (A) are 35 to 75% by mass, the resin composition particles (B) are 10 to 60% by mass, and the metal oxide has photocatalytic activity.
  • the particles (C) are contained in the range of 4 to 20% by mass.
  • Patent Document 11 discloses a porous photocatalytic film obtained by forming a film using a solution containing metal oxide fine particles having photocatalytic activity and a film forming agent,
  • the film-forming agent is a silicone emulsion in which silicone is dispersed in an aqueous solvent, and the silicone contains a polymer obtained by polymerizing at least a siloxane having a specific structure and an acrylic acid derivative having a specific structure.
  • a featured porous photocatalytic coating is disclosed.
  • the porous photocatalyst film is preferably a film formed by drying or heating the solution. In the example, the porous photocatalyst film is dried for 10 minutes in a 100 ° C. air circulation type constant temperature oven.
  • the aqueous solvent which is a dispersion medium of the silicone emulsion, evaporates, but with this evaporation, the intervals between the silicone particles are gradually narrowed and the fluidity is lost. When further dried, the water remaining in the gaps between the particles evaporates to form a film and become porous.
  • a photocatalytic aqueous coating solution is known, and this aqueous coating solution is applied to an existing base material on site.
  • a flow streaky appearance defect may occur on the photocatalyst layer during drying and curing of the photocatalyst layer after coating. Such a flow streak-like appearance defect impairs the appearance and design of the photocatalyst layer, and is required to be prevented.
  • high weather resistance is required for the photocatalyst-coated body.
  • high weather resistance is required for a photocatalyst-coated body used outdoors.
  • the present inventors have recently observed that the above-mentioned flow streaky appearance defect in on-site painting is so large that the organic component of the base is likely to diffuse outward in the drying / curing process after application of the photocatalyst coating liquid in the photocatalyst layer forming process. It has been found that when through-holes are present in the photocatalyst layer, they tend to occur. And it discovered that this flow-stripe-like appearance defect can be effectively prevented by combining photocatalyst particles, inorganic oxide particles, and a dried product of a specific silicone emulsion in a specific composition. The inventors have also confirmed that the use of a component having many reactive curable functional groups in the photocatalyst layer in order to fill the through void has little effect.
  • the inventors of the present invention can surprisingly significantly improve the weather resistance of the photocatalyst-coated body by combining a specific composition of photocatalyst particles, inorganic oxide particles, and a dried product of a specific silicone emulsion. I got the knowledge. The present invention is based on these findings.
  • an object of the present invention is to provide a photocatalyst coating liquid in which the above-mentioned flow streak-like appearance defects are unlikely to occur.
  • the present invention provides various characteristics, particularly harmful gas decomposability and weather resistance, while effectively preventing erosion to an organic substrate without impairing the design properties of the substrate. It is an object of the present invention to provide a photocatalyst-coated body that is excellent in performance and has a flow streak-like appearance defect, and a photocatalyst coating liquid that is used to form a photocatalyst-coated body on an existing substrate in the field.
  • the photocatalyst coating body by this invention is a photocatalyst coating body provided with the base material containing an organic component, and the transparent photocatalyst layer provided on this base material, Comprising:
  • the said photocatalyst layer is this photocatalyst layer.
  • the silicone emulsion has an average composition formula R a SiO (4-a) / 2 (wherein R is an alkyl group or a phenyl group, and 2 ⁇ a ⁇ 4). It is characterized by being made of the silicone represented.
  • the photocatalyst coating liquid according to the present invention is a photocatalyst coating liquid for applying to a base material containing an organic component and drying at a temperature of less than 60 ° C. to form a coating film on the base material.
  • the total solid content of the photocatalyst coating liquid is 100% by mass, 1% by mass or more and 20% by mass or less of photocatalyst particles, 30% by mass or more and less than 89% by mass of inorganic oxide particles, and 10% by mass
  • a photocatalyst-coated body having a photocatalyst layer formed by the coating liquid according to the present invention can be applied to a substrate, particularly an organic substrate, without impairing the design properties of the substrate. While effectively preventing the erosion of the gas, it is excellent in various characteristics, in particular, harmful gas decomposability and weather resistance, and the flow streak-like appearance defect is less likely to occur. Furthermore, according to the preferable aspect of this invention, the photocatalyst coating body excellent also in various desired film characteristics (film
  • the photocatalyst-coated body is a photocatalyst-coated body comprising a base material containing an organic component, and a transparent photocatalyst layer provided on the base material,
  • the photocatalyst layer is 100% by mass of the entire photocatalyst layer, 1% by mass or more and 20% by mass or less of photocatalyst particles, 30% by mass or more and less than 89% by mass of inorganic oxide particles, and 10% by mass And a dried product of a silicone emulsion of less than 50% by mass.
  • the silicone emulsion has an average composition formula R a SiO (4-a) / 2 (where R is an alkyl group (preferably lower (C 1-6 ) alkyl, more preferably methyl or ethyl)) or a phenyl group. Yes, 2 ⁇ a ⁇ 4). Furthermore, according to the preferable aspect of this invention, it is preferable that this silicone emulsion has a glass transition point exceeding 60 degreeC. And according to the preferable aspect of this invention, it is preferable that the photocatalyst coating body by this invention is used in the temperature atmosphere below 60 degreeC.
  • a flow streak-like appearance defect is less likely to occur while maintaining the basic performance required for the photocatalyst-coated body.
  • various properties, particularly harmful gas decomposability and weather resistance can be obtained while effectively preventing erosion of the base material, particularly the organic base material, without impairing the design properties of the base material. And the flow streaky appearance defect is less likely to occur.
  • the main components of the photocatalyst layer are 1% by mass or more and 20% by mass or less of photocatalyst particles and 30% by mass or more and less than 89% by mass of inorganic oxide particles. Therefore, voids are generated in the photocatalyst layer, and the harmful gas decomposability can be maintained or enhanced even though the photocatalyst particle ratio is relatively small. Furthermore, in the present invention, the silicone emulsion having the above average composition formula is more than 10% by mass and less than 50% by mass, preferably more than 10% by mass and 30% by mass or less.
  • This silicone emulsion maintains the particle shape in the drying / curing process after application of the photocatalyst coating solution in the photocatalyst layer formation process, and hardly melts the gap between the particles to fill the gap, and only deforms due to moisture removal. Occurs. As a result, the voids remain effectively, and the harmful gas decomposability is maintained without much deterioration as compared with the case where no emulsion is added. On the other hand, the void diameter of the photocatalyst layer is reduced by the amount of addition of the emulsion as compared with the case where no emulsion is added.
  • one cause of the flow streaky appearance defect was considered as follows. That is, first, when moisture such as rain water or condensed water flows from the edge or joint of the uppermost part of the substrate, the moisture diffuses from the surface of the photocatalyst layer toward the inside. Next, components in the colored layer or clear layer provided in the substrate or under the photocatalyst layer, especially organic components, particularly uncured components diffuse into the photocatalyst layer and ooze out to the surface of the layer. When the moisture was dried, the exuded component was fixed to the surface, and this fixation was considered to be the cause of the streaky appearance defect.
  • gap diameter of a photocatalyst layer becomes small.
  • moisture such as rain water or condensed water flows down from the edge or joints at the top of the base material, almost no components from the base are on the surface. It does not ooze out, and it is considered that appearance defects are less likely to occur.
  • the silicone emulsion is used for surface coating and atmospheric temperature of the substrate to which the photocatalytic coating solution is applied in on-site painting (temperature increases in summer but is less than about 60 ° C.). Higher glass transition point, that is, a glass transition point exceeding 60 ° C. As a result, the above advantageous effects can be further obtained.
  • the equipment used in the present invention contains an organic component.
  • the entire base material may be made of an organic material, or the surface of a material made of an inorganic material is coated with an organic material (for example, a decorative board) ).
  • an organic material for example, a decorative board
  • an inorganic pigment, an inorganic extender pigment, or the like may be added.
  • the base material in which the layer which has a photocatalyst corrosion resistance containing an organic component was formed in the surface may be sufficient.
  • the base material which has a layer which contains an organic component for example, a wear side layer, may be sufficient.
  • base materials from the viewpoint of applications include building materials, building exteriors, window frames, window glass, structural members, exteriors and coatings of vehicles, exteriors of machinery and articles, dust covers and coatings, traffic signs, and various displays Equipment, advertising towers, road noise barriers, railway noise barriers, bridges, guard rail exteriors and paintings, tunnel interiors and paintings, insulators, solar cell covers, solar water heater heat collection covers, plastic houses, vehicle lighting covers General exterior materials such as outdoor lighting fixtures, stands, and films, sheets, seals and the like for attaching to the article surface.
  • the photocatalyst layer comprises 1 to 20% by mass of photocatalyst particles and 30 to 90% by mass when the entire photocatalyst layer is 100% by mass. Less than 50% by weight of inorganic oxide particles, and more than 10% by weight and less than 50% by weight of the dried silicone emulsion having the above average composition formula. More preferably, the following five aspects are preferred.
  • the photocatalyst layer includes, for example, a partially film-like state in addition to a complete film shape if photocatalyst particles are present on the substrate surface. Moreover, it may exist discretely in the shape of islands on the substrate surface. According to a preferred embodiment of the present invention, this photocatalyst layer is obtained by applying a coating liquid.
  • the photocatalyst particles used in the present invention are not particularly limited as long as they have photocatalytic activity.
  • Preferred examples thereof include titanium oxide (TiO 2 ), ZnO, SnO 2 , SrTiO 3 , WO 3 and Bi 2 O 3.
  • metal oxide particles such as Fe 2 O 3 , more preferably titanium oxide particles, and most preferably anatase-type titanium oxide particles.
  • Titanium oxide is advantageous in that it has a high band gap energy and therefore requires ultraviolet light for photoexcitation and does not absorb visible light in the process of photoexcitation, so that no color formation due to complementary color components occurs. Titanium oxide is available in various forms such as powder, sol, and solution, but any form can be used as long as it exhibits photocatalytic activity.
  • the photocatalyst particles preferably have an average particle size of 10 nm to 100 nm, more preferably 10 nm to 60 nm.
  • the average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope.
  • the shape of the particle is preferably a true sphere, but may be substantially circular or elliptical, and the length of the particle in this case is approximately calculated as ((major axis + minor axis) / 2).
  • the inorganic oxide particles used in the present invention are not particularly limited as long as they are inorganic oxide particles capable of forming a layer together with the photocatalyst particles.
  • Preferred examples thereof include silica, alumina, zirconia, ceria, yttria, boronia, Single oxide particles such as magnesia, calcia, ferrite, amorphous titania, and hafnia; and composite oxide particles such as barium titanate and calcium silicate are exemplified, and silica particles are more preferable.
  • the inorganic oxide particles preferably have an average particle size of more than 5 nm and not more than 100 nm, more preferably not less than 10 nm and not more than 50 nm.
  • the average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope.
  • a true sphere is the best, but it may be approximately circular or elliptical, and the length of the particle in this case is approximately calculated as ((major axis + minor axis) / 2).
  • the silicone emulsion of the present invention maintains a particle shape at room temperature drying, and the emulsion is fused to form a film uniformly. Therefore, the emulsion is deformed at the time of drying, resulting in a non-uniform film formation, and the photocatalyst particles are not completely covered with the emulsion components. Therefore, performance such as gas decomposability and organic matter decomposability by the photocatalyst is not greatly lost.
  • the silicone emulsion has an average composition formula R a SiO (4-a) / 2 (where R is an alkyl group (preferably lower (C 1-6 ) alkyl, more preferably methyl or ethyl)) or a phenyl group. And 2 ⁇ a ⁇ 4).
  • R is an alkyl group (preferably lower (C 1-6 ) alkyl, more preferably methyl or ethyl)) or a phenyl group.
  • 2 ⁇ a ⁇ 4 the silicone emulsion comprising silicone represented by this formula
  • the silicone emulsion is used for surface coating and atmospheric temperature of the substrate to which the photocatalytic coating solution is applied in on-site painting (temperature increases in summer but is less than about 60 ° C.). Higher glass transition point, that is, a glass transition point exceeding 60 ° C. As a result, the above advantageous effects can be further obtained.
  • the present invention by adding at least one metal or metal compound selected from the group consisting of vanadium, iron, cobalt, nickel, palladium, zinc, ruthenium, rhodium, copper, silver, platinum and gold to the photocatalyst layer. Furthermore, higher antibacterial / antifungal performance can be expressed. However, it is desirable that the presence thereof does not affect the formation of the gaps between the above-described photocatalyst particles and inorganic oxide particles, and therefore the addition amount may be a minute amount, and the amount necessary for the expression of the action is a minute amount. It is.
  • the metal compound for example, gluconate, sulfate, malate, lactate, sulfate, nitrate, formate, acetate, chelate and the like of the above metal can be suitably used.
  • the photocatalyst layer preferably has a film thickness of 0.3 ⁇ m or more and 3 ⁇ m or less from the viewpoint of achieving both photocatalytic decomposition activity and transparency.
  • a more preferable range of the film thickness is 0.3 ⁇ m or more and 1.5 ⁇ m or less, and further preferably 0.3 ⁇ m or more and less than 1.0 ⁇ m.
  • the photocatalyst layer becomes hydrophilic by photoexcitation and may have a self-cleaning function.
  • the degree of hydrophilicity the photocatalyst-coated body was left on the photocatalyst layer surface for 8 days with the photocatalyst-coated surface facing up under BLB light adjusted to 1 mW / cm 2 (the wavelength of the emission line spectrum was 351 nm). It is preferable that the contact angle of the surface of the coated body with water is less than 20 °.
  • Photocatalyst coating liquid According to another embodiment of the present invention, the photocatalyst coating liquid is used to form the above-described photocatalyst-coated body according to the present invention on an existing base material in-situ, and is applied to the base material.
  • a photocatalyst coating liquid for forming a coating film on the substrate by drying at a temperature of less than 60 ° C., when water and the total solid content of the photocatalyst coating liquid are 100% by mass The composition comprises photocatalyst particles of not less than 20% by mass and not more than 20% by mass, inorganic oxide particles of not less than 50% by mass and less than 89% by mass, and a silicone emulsion of not less than 10% by mass and not more than 30% by mass.
  • the photocatalyst particles used in the present invention are not particularly limited as long as they have photocatalytic activity.
  • Preferred examples thereof include titanium oxide (TiO 2 ), ZnO, SnO 2 , SrTiO 3 , WO 3 and Bi 2 O 3.
  • metal oxide particles such as Fe 2 O 3 , more preferably titanium oxide particles, and most preferably anatase-type titanium oxide particles.
  • Titanium oxide is advantageous in that it has a high band gap energy and therefore requires ultraviolet light for photoexcitation and does not absorb visible light in the process of photoexcitation, so that no color formation due to complementary color components occurs. Titanium oxide is available in various forms such as powder, sol, and solution, but any form can be used as long as it exhibits photocatalytic activity.
  • the photocatalyst particles preferably have an average particle size of 10 nm to 100 nm, more preferably 10 nm to 60 nm.
  • the average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope.
  • the shape of the particle is preferably a true sphere, but may be substantially circular or elliptical, and the length of the particle in this case is approximately calculated as ((major axis + minor axis) / 2).
  • the inorganic oxide particles used in the present invention are not particularly limited as long as they are inorganic oxide particles capable of forming a layer together with the photocatalyst particles.
  • Preferred examples thereof include silica, alumina, zirconia, ceria, yttria, boronia, Single oxide particles such as magnesia, calcia, ferrite, amorphous titania, and hafnia; and composite oxide particles such as barium titanate and calcium silicate are exemplified, and silica particles are more preferable.
  • the inorganic oxide particles preferably have an average particle size of more than 5 nm and not more than 100 nm, more preferably not less than 10 nm and not more than 50 nm.
  • the average particle diameter is calculated as a number average value obtained by measuring the length of any 100 particles that enter a 200,000-fold field of view with a scanning electron microscope.
  • a true sphere is the best, but it may be approximately circular or elliptical, and the length of the particle in this case is approximately calculated as ((major axis + minor axis) / 2).
  • the silicone emulsion of the present invention maintains a particle shape at room temperature drying, and the emulsion is fused to form a film uniformly. Therefore, the emulsion is deformed at the time of drying, resulting in a non-uniform film formation, and the photocatalyst particles are not completely covered with the emulsion components. Therefore, performance such as gas decomposability and organic matter decomposability by the photocatalyst is not greatly lost.
  • the silicone emulsion has an average composition formula R a SiO (4-a) / 2 (where R is an alkyl group (preferably lower (C 1-6 ) alkyl, more preferably methyl or ethyl)) or a phenyl group. And 2 ⁇ a ⁇ 4).
  • R is an alkyl group (preferably lower (C 1-6 ) alkyl, more preferably methyl or ethyl)) or a phenyl group.
  • 2 ⁇ a ⁇ 4 In the emulsion comprising silicone represented by this formula, reaction hardening at the R portion hardly occurs, it is excellent in harmful gas decomposability, and there is an advantage that flow streak-like appearance defects are less likely to occur. It is done.
  • the silicone emulsion is used for surface coating and atmospheric temperature of the substrate to which the photocatalytic coating solution is applied in on-site painting (temperature increases in summer but is less than about 60 ° C.). Higher glass transition point, that is, a glass transition point exceeding 60 ° C. As a result, the above advantageous effects can be further obtained.
  • At least one metal or metal compound selected from the group consisting of vanadium, iron, cobalt, nickel, palladium, zinc, ruthenium, rhodium, copper, silver, platinum and gold is added to the photocatalyst coating liquid of the present invention.
  • the addition amount may be small, and the amount necessary for the expression of the action is Trace amount.
  • an addition amount of about 0.01 to 10% by mass, more preferably about 0.05 to 5% by mass is preferable with respect to the photocatalyst.
  • the metal compound for example, gluconates, sulfates, malates, lactates, sulfates, nitrates, formates, acetates, chelates and the like of the above metals can be suitably used.
  • the coating liquid according to the present invention is obtained by dissolving or dispersing the above components in a solvent.
  • a solvent it is preferable to use water having a small influence on the environment as a main component.
  • alcohols, leveling agents, surfactants, viscosity modifiers, and the like may be added as long as the effects of the present invention are not impaired.
  • the solid content concentration of the photocatalyst coating liquid according to the present invention is not particularly limited, but is preferably 1 to 10% by mass from the viewpoint of ease of application.
  • the components in the photocatalyst coating composition are analyzed by separating the coating solution into particle components and filtrate by ultrafiltration, and analyzing each by infrared spectroscopic analysis, gel permeation chromatography, fluorescent X-ray spectroscopic analysis, etc. It can be evaluated by analyzing the spectrum.
  • the photocatalyst-coated body of the present invention can be produced by applying the photocatalyst coating liquid of the present invention on a substrate.
  • the coating method may be any method as long as the coating liquid can be applied to an existing substrate in the field. For example, brush coating, bar coating, roll coating, spray coating, flow coating, squeegee coating, trowel coating, etc. Can be used. After the coating liquid is applied to the substrate, it is dried at a room temperature of less than 60 ° C.
  • Film thickness The thickness of the polished cross section was measured using a scanning electron microscope S-4100 manufactured by Hitachi, Ltd.
  • Water contact angle Using a Kyowa Interface Science CA-X150 contact angle meter, the contact angle after one month of outdoor exposure was measured.
  • NOx decomposition The test was carried out in accordance with the test method of JIS R1701-1 “Testing method for air purification performance of photocatalytic materials—Part 1: Removal performance of nitrogen oxides”.
  • Flow muscle test After preparing the photocatalyst-coated body, 2 ml of ion-exchanged water was allowed to flow through the one cured at room temperature for 12 hours.
  • Weather resistance test 1 The test piece was exposed to warm water of 60 ° C. for 8 hours, then dried at 100 ° C. for 1 hour, and then exposed to a 0.3 mW germicidal lamp for 15 hours, and this was performed for 3 to 8 cycles. The color difference ⁇ L of the test piece before and after the cycle test was measured with a color difference meter ZE2000 manufactured by Nippon Denshoku.
  • Weather resistance test 2 Outdoor exposure was carried out at an angle of 20 ° from the horizontal toward the south surface using an exposure stand stipulated in JIS K 5600-7-6 at Miyakojima, Okinawa Prefecture. After 5 months, the test piece was taken out, and the color difference ⁇ L before and after the cycle test was measured with a color difference meter ZE2000 manufactured by Nippon Denshoku.
  • Example 1 (Production of photocatalyst coating) Solid content containing 10 parts by mass of anatase-type titanium oxide particles (average crystallite diameter 10 nm), 70 parts by mass of silica particles, and 20 parts by mass of a silicone emulsion having a methylphenylsilyl group having a glass transition point exceeding 60 ° C. A photocatalytic aqueous coating solution having a concentration of 5.5% by mass was prepared. An epoxy primer was applied on a glass substrate with air spray, and then a colored layer composed of a silicone-modified acrylic resin and a pigment was applied. Further, the above coating liquid was applied onto the colored layer and dried at room temperature to obtain a photocatalyst-coated body having a photocatalyst layer.
  • Example 2 Solid content concentration containing 10 parts by mass of anatase-type titanium oxide particles (average crystallite diameter 10 nm), 70 parts by mass of silica particles, and 20 parts by mass of a silicone emulsion having a dimethylsilyl group having a glass transition point exceeding 60 ° C.
  • a 5.5% by weight photocatalytic aqueous coating solution was prepared.
  • An epoxy primer was applied on a glass substrate with air spray, and then a colored layer composed of a silicone-modified acrylic resin and a pigment was applied. Further, the above coating liquid was applied onto the colored layer and dried at room temperature to obtain a photocatalyst-coated body having a photocatalyst layer.
  • Example 3 (Production of photocatalyst coating) Solid content in which 10 parts by mass of anatase-type titanium oxide particles (average crystallite diameter 10 nm), 60 parts by mass of silica particles, and 30 parts by mass of a silicone emulsion having a methylphenylsilyl group having a glass transition point exceeding 60 ° C.
  • a photocatalytic aqueous coating solution having a concentration of 5.5% by mass was prepared.
  • An epoxy primer was applied on a glass substrate with air spray, and then a colored layer composed of a silicone-modified acrylic resin and a pigment was applied. Further, the above coating liquid was applied onto the colored layer and dried at room temperature to obtain a photocatalyst-coated body having a photocatalyst layer.
  • Example 4 (Production of photocatalyst coating) Solid content concentration containing 10 parts by mass of anatase-type titanium oxide particles (average crystallite diameter 10 nm), 60 parts by mass of silica particles, and 30 parts by mass of a silicone emulsion having a dimethylsilyl group with a glass transition point exceeding 60 ° C. A 5.5% by weight photocatalytic aqueous coating solution was prepared. An epoxy primer was applied on a glass substrate with air spray, and then a colored layer composed of a silicone-modified acrylic resin and a pigment was applied. Further, the above coating liquid was applied onto the colored layer and dried at room temperature to obtain a photocatalyst-coated body having a photocatalyst layer.
  • Example 5 (comparative example) (Production of photocatalyst coating) Solid content containing 10 parts by mass of 10 parts by mass of anatase-type titanium oxide particles (average crystallite diameter 10 nm), 80 parts by mass of silica particles, and a silicone emulsion having a methylphenylsilyl group having a glass transition point exceeding 60 ° C. A photocatalytic aqueous coating solution having a concentration of 5.5% by mass was prepared. An epoxy primer was applied on a glass substrate with air spray, and then a colored layer composed of a silicone-modified acrylic resin and a pigment was applied. Further, the above coating liquid was applied onto the colored layer and dried at room temperature to obtain a photocatalyst-coated body having a photocatalyst layer.
  • Example 6 (comparative example) (Production of photocatalyst coating) Solid content concentration containing 10 parts by mass of 10 parts by mass of anatase-type titanium oxide particles (average crystallite diameter 10 nm), 80 parts by mass of silica particles, and a silicone emulsion having a dimethylsilyl group with a glass transition point exceeding 60 ° C. A 5.5% by weight photocatalytic aqueous coating solution was prepared. An epoxy primer was applied on a glass substrate with air spray, and then a colored layer composed of a silicone-modified acrylic resin and a pigment was applied. Further, the above coating liquid was applied onto the colored layer and dried at room temperature to obtain a photocatalyst-coated body having a photocatalyst layer.
  • Example 7 (comparative example) (Production of photocatalyst coating) Solid content concentration of 5.5% by mass containing 10 parts by mass of anatase-type titanium oxide particles (average crystallite diameter: 10 nm), 40 parts by mass of silica particles, and 50 parts by mass of a silicone emulsion having a glass transition point exceeding 60 ° C.
  • a photocatalytic aqueous coating solution was prepared. An epoxy primer was applied on a glass substrate with air spray, and then a colored layer composed of a silicone-modified acrylic resin and a pigment was applied. Further, the above coating liquid was applied onto the colored layer and dried at room temperature to obtain a photocatalyst-coated body having a photocatalyst layer.
  • Example 8 (comparative example) (Production of photocatalyst coating) Solid content concentration of 5.5 mass with 10 mass parts of anatase-type titanium oxide particles (average crystallite diameter: 10 nm), 60 mass parts of silica particles, and 30 mass parts of acrylic emulsion whose glass transition point does not exceed 60 ° C as solid content. % Photocatalytic aqueous coating solution was prepared. An epoxy primer was applied on a glass substrate with air spray, and then a colored layer composed of a silicone-modified acrylic resin and a pigment was applied. Further, the above coating liquid was applied onto the colored layer and dried at room temperature to obtain a photocatalyst-coated body having a photocatalyst layer.
  • Example 9 (comparative example) (Production of photocatalyst coating) A photocatalytic aqueous coating solution having a solid content concentration of 5.5% by mass and containing 10 parts by mass of anatase-type titanium oxide particles (average crystallite diameter of 10 nm) and 90 parts by mass of silica particles was prepared. An epoxy primer was applied on a glass substrate with air spray, and then a colored layer composed of a silicone-modified acrylic resin and a pigment was applied. Further, the above coating liquid was applied onto the colored layer and dried at room temperature to obtain a photocatalyst-coated body having a photocatalyst layer. (Evaluation of coated photocatalyst) When the photocatalyst layer of the obtained photocatalyst-coated body was observed in cross section, the film thickness was about 1 ⁇ m.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Catalysts (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

 流れ筋状の外観不良が生じにくい光触媒塗装体の提供。同時に、基材の有する意匠性を損なうことなく、特に有機基材への浸食を有効に防止しながら、種々の特性、とりわけ有害ガス分解性と耐候性とに優れた光触媒塗装体が開示されている。この光触媒塗装体は、有機成分を含有する基材と、該基材上に設けられた透明な光触媒層とを備えてなり、前記光触媒層が、該光触媒層全体を100質量%としたときに、1質量%以上20質量%以下の光触媒粒子と、50質量%以上89質量%未満の無機酸化物粒子と、10質量%をこえ30質量%以下のシリコーンエマルションの乾燥物とを含んでなり、このシリコーンエマルションが、平均組成式RSiO(4-a)/2(但し、Rはアルキル基又はフェニル基であり、2≦a<4である)で表わされるシリコーンからなるものであることを特徴とするとするものである。

Description

光触媒塗装体およびそのための光触媒コーティング液 関連出願
 本出願は、2010年11月2日に出願された日本国特許出願2010-246169号の優先権を主張するものであり、この出願の明細書は引用することにより本願の開示の一部とされる。
 本発明は、光触媒塗装体およびその形成のための光触媒コーティング液に関する。
 酸化チタンなどの光触媒が、近年建築物、構造物、乗物およびそれらを構成する部材、複合材などに利用されている。
 屋外での利用としては、基材表面に光触媒を付着させることにより、基材に、光エネルギーを利用してのNOx、SOx等の有害物質の分解機能を付与することが行われている。また、光照射時に親水性となった層表面は、降雨により付着汚れが洗い流される、いわゆるセルフクリーニング機能を有することになる。
 建築物、構造物、乗物およびそれらを構成する部材、複合材などは、生活空間で利用されるために、意匠性を持たせたい場合が多い。そのため、これら部材の基材としては、樹脂板、壁紙、塗装板、フィルム積層板、化粧板などのように有機物の表面を含む基材が多く用いられ、それらの基材は着色されて意匠性が付与されている。そこで、このような意匠性が付与された基材の意匠を損なうことのないように、透明な光触媒膜を形成する技術が求められている。
 基材に光触媒膜を固着させるには、光触媒粒子をバインダーで固定する技術が利用される。バインダー成分としては、シリコーン、アルキルシリケートを加水分解・縮合して結着されるシリカ、フッ素樹脂等が、光触媒分解機能に対する耐性があるために広く用いられている(例えば、特開平7-171408号公報(特許文献1))。
 また、光触媒膜を形成する際に、環境負荷を考慮すると、光触媒コーティング液の溶媒として水を用いることが好適である。その場合のバインダー成分としては、シリコーンエマルション(特開2001-64583号公報(特許文献2)、特開2004-51644号公報(特許文献3)、特開2004-149686号公報(特許文献4)、特開2008-95069号公報(特許文献5))、フッ素樹脂エマルション(特開2004-51644号公報(特許文献3))、アルカリシリケート(国際公開第99/06300号パンフレット(特許文献6))、コロイダルシリカ(特開平11-169727号公報(特許文献7))が好適に利用できる。
 さらに、近年、本発明者らの一部により、バインダーとしてシリカ粒子を用い、光触媒膜を実質的に粒子状物質で形成すると、固着性と同時にNOx等の有害ガスの分解機能を発揮できるとする提案もなされている(例えば、特開2008-264747号(特許文献8)、特開2009-255571号公報(特許文献9))。
 また、バインダーとしてシリコーンエマルションを用いながら、何らかの方法により、膜中に空隙を維持し、NOx等の有害ガスの分解機能を発揮する技術も開示されている(特開2004-51644号公報(特許文献3)、特開2010-5613号公報(特許文献10)、特開2010-36135号公報(特許文献11))。
 特開2004-51644号公報(特許文献3)では、(a)光触媒性酸化物粒子と、(b)疎水性樹脂エマルションと、(c)水と、(d)シリカ粒子と、(e)着色顔料とを少なくとも含んだ光触媒性コーティング剤であって、前記(a)成分及び(d)成分の平均粒径は、前記(b)成分中に分散した粒子の平均粒径よりも小さく、前記(a)成分の全固形分中の割合が1~5重量%で且つ前記(d)成分の配合割合が10~90重量%であり、基材に塗布すると、光触媒性酸化物粒子及びシリカ粒子が上方に移動し、膜厚1μm~1mmの塗膜が形成されることを特徴とする光触媒性コーティング剤が開示されている。この特許文献では、さらに体質顔料としてウイスカーや繊維を用い、空隙を維持する工夫がなされている。
 特開2010-5613号公報(特許文献10)では、無機酸化物粒子(A)が空隙を有する連続相を形成し、樹脂組成物粒子(B)と光触媒活性を有する金属酸化物粒子(C)とが前記連続相中に分散している構造を有し、前記無機酸化物粒子(A)を35~75質量%、前記樹脂組成物粒子(B)を10~60質量%、前記金属酸化物粒子(C)を4~20質量%含有する膜状の複合体が開示されている。ここにおいて、樹脂組成物粒子(B)は重合体エマルション粒子(B1)を含有し、前記重合体エマルション粒子(B1)が、水及び乳化剤の存在下で加水分解性珪素化合物(s)とビニル単量体(m)とをそれぞれ重合させて得られた重合体エマルション粒子であり、前記ビニル単量体(m)が、2級及び/又は3級アミド基を有するビニル単量体(m1)を含むのが好適であり、上記複合体を形成可能とするコーティング液を70℃で30分間乾燥して複合体を得ている。さらに、2級及び/又は3級アミド基を有するビニル単量体(m1)の重合を、これと共重合可能な他のビニル単量体(m2)と共に行うと、生成する重合生成物の特性(例えば、ガラス転移温度、分子量、水素結合力、極性、分散安定性、耐候性、加水分解性珪素化合物(s)の重合生成物との相溶性等)を制御することが可能となり好ましいとしている。空隙率の制御については、組成比率が重要であるとし、無機酸化物粒子(A)を35~75質量%、樹脂組成物粒子(B)を10~60質量%、光触媒活性を有する金属酸化物粒子(C)を4~20質量%の範囲で含有している。
 特開2010-36135号公報(特許文献11)では、光触媒活性を有する金属酸化物微粒子と皮膜形成剤とを含有する溶液を用いて皮膜を形成して得られる多孔質光触媒皮膜であって、前記皮膜形成剤は水系溶媒にシリコーンが分散したシリコーンエマルションであり、前記シリコーンが、特定構造を含むシロキサンと、特定構造を含むアクリル酸誘導体とを少なくとも重合させて得られるポリマーを含有していることを特徴とする多孔質光触媒皮膜が開示されている。この多孔質光触媒皮膜は、前記溶液を乾燥または加熱して形成された皮膜であることが好ましいとされ、実施例では100℃の空気循環式恒温オーブンで10分間乾燥させている。乾燥または加熱を行うことにより、シリコーンエマルションの分散媒である水系溶媒が蒸発するが、この蒸発にともない、シリコーン粒子同士の間隔が徐々に狭まり、流動性を失う。さらに乾燥すると前記粒子の間隙に残された水分が蒸発して皮膜が形成され、多孔質となる。
特開平7-171408号公報 特開2001-64583号公報 特開2004-51644号公報 特開2004-149686号公報 特開2008-95069号公報 国際公開第99/06300号パンフレット 特開平11-169727号公報 特開2008-264747号公報 特開2009-255571号公報 特開2010-5613号公報 特開2010-36135号公報
 上述のとおり、光触媒の水系のコーティング液が知られており、この水系コーティング液を現場で既設の基材に塗装することが行われている。しかし、その塗装後の光触媒層の乾燥・養生中に、光触媒層上に流れ筋状の外観不良が生じることがあった。このような流れ筋状の外観不良は光触媒層の外観、意匠性を損なうものであり、防ぐことが求められた。
 また、光触媒塗装体には高い耐候性が求められる。とりわけ屋外において用いられる光触媒塗装体には高い耐候性が求められる。
 本発明者らは、今般、現場塗装における上記流れ筋状の外観不良は、光触媒層の形成工程における光触媒コーティング液塗布後の乾燥・養生工程において、下地の有機成分が外向拡散しやすい程度に大きな貫通空隙が光触媒層中に存在する場合に生じやすくなるとの知見を得た。そして、この流れ筋状の外観不良は、光触媒粒子と、無機酸化物粒子と、特定のシリコーンエマルジョンの乾燥物とを特定組成で組み合わせることで有効に防止できることを見出した。本発明者らは、その貫通空隙を埋めるために光触媒層中に反応硬化性の官能基が多く存在する成分を用いてもあまり効果がないこともまた確認している。
 さらに本発明者らは、光触媒粒子と、無機酸化物粒子と、特定のシリコーンエマルジョンの乾燥物との特定組成の組み合わが、光触媒塗装体の耐候性を意外にも顕著に向上させることができるとの知見を得た。本発明はこれら知見に基づくものである。
 したがって、本発明は、上記流れ筋状の外観不良が生じにくい光触媒コーティング液の提供をその目的としている。一つの具体的態様によれば、本発明は、基材の有する意匠性を損なうことなく、特に有機基材への浸食を有効に防止しながら、種々の特性、とりわけ有害ガス分解性と耐候性とに優れ、かつ流れ筋状の外観不良が生じにくい光触媒塗装体および既存の基材に現場で光触媒塗装体を形成するために用いられる光触媒コーティング液の提供をその目的としている。
 そして、本発明による光触媒塗装体は、有機成分を含有する基材と、該基材上に設けられた透明な光触媒層とを備えてなる光触媒塗装体であって、前記光触媒層が、該光触媒層全体を100質量%としたときに、1質量%以上20質量%以下の光触媒粒子と、30質量%以上89質量%未満の無機酸化物粒子と、10質量%をこえ50質量%未満のシリコーンエマルションの乾燥物とを含んでなり、前記シリコーンエマルションが、平均組成式RSiO(4-a)/2(但し、Rはアルキル基又はフェニル基であり、2≦a<4である)で表わされるシリコーンからなるものであることを特徴とするものである。
 また、本発明による光触媒コーティング液は、有機成分を含有する基材に塗布し、60℃未満の温度で乾燥させて前記基材上に塗膜を形成するための光触媒コーティング液であって、水と、前記光触媒コーティング液の全固形分を100質量%としたときに、1質量%以上20質量%以下の光触媒粒子と、30質量%以上89質量%未満の無機酸化物粒子と、10質量%をこえ50質量%未満のシリコーンエマルションとを含んでなり、前記シリコーンエマルションが、平均組成式RSiO(4-a)/2(但し、Rはアルキル基又はフェニル基であり、2≦a<4である)で表わされるシリコーンからなるものであることを特徴とするものである。
 本発明による光触媒コーティング液によれば、流れ筋状の外観不良が生じにくい光触媒層を形成することができる。さらに本発明の一つの具体的態様によれば、本発明によるコーティング液によって形成された光触媒層を有する光触媒塗装体は、基材の有する意匠性を損なうことなく、基材、特に有機基材への浸食を有効に防止しながら、種々の特性、とりわけ有害ガス分解性と耐候性とに優れ、かつ上記流れ筋状の外観不良が生じにくい。さらに、本発明の好ましい態様によれば、所望の各種被膜特性(膜強度等)にも優れた光触媒塗装体が提供される。またさらに、本発明の光触媒塗装体は耐候性において優れたものである。
 光触媒塗装体
 本発明の一形態によれば、光触媒塗装体は、有機成分を含有する基材と、該基材上に設けられた透明な光触媒層とを備えてなる光触媒塗装体であって、前記光触媒層が、該光触媒層全体を100質量%としたときに、1質量%以上20質量%以下の光触媒粒子と、30質量%以上89質量%未満の無機酸化物粒子と、10質量%をこえ50質量%未満のシリコーンエマルションの乾燥物とを含んでなるものである。そして、このシリコーンエマルションが、平均組成式RSiO(4-a)/2(但し、Rはアルキル基(好ましくは低級(C1-6)アルキル、より好ましくはメチルまたはエチル)又はフェニル基であり、2≦a<4である)で表わされるシリコーンからなるものである。さらに本発明の好ましい態様によれば、このシリコーンエマルションは60℃を超えるガラス転移点を有するものであることが好ましい。そして、本発明の好ましい態様によれば、本発明による光触媒塗装体は60℃未満の温度雰囲気下で用いられることが好ましい。
 上記構成にすることにより、光触媒塗装体に求められる基本性能を維持しながら、流れ筋状の外観不良が生じにくくなる。本発明の好ましい態様によれば、基材の有する意匠性を損なうことなく、基材、特に有機基材への浸食を有効に防止しながら、種々の特性、とりわけ有害ガス分解性と耐候性とに優れ、かつ上記流れ筋状の外観不良が生じにくくなる。
 本発明による光触媒塗装体において、光触媒塗装体に求められる基本性能を維持しながら、流れ筋状の外観不良が抑制される理由は定かではないが、それは以下の通りと考えられる。しかし、以下の説明はあくまで仮説であり、本発明はこれにより何ら限定されるものではない。
 本発明にあっては、光触媒層の主要成分は、1質量%以上20質量%以下の光触媒粒子と30質量%以上89質量%未満の無機酸化物粒子である。従って、光触媒層には空隙が生じ、光触媒粒子比率が比較的小さいにもかかわらず、有害ガス分解性を維持あるいはより高めることができる。さらに、本発明にあっては、上記平均組成式を有するシリコーンエマルションを10質量%をこえ50質量%未満、好ましくは10質量%をこえ30質量%以下にする。このシリコーンエマルションは、光触媒層の形成工程における光触媒コーティング液塗布後の乾燥・養生工程において、粒子形状を維持し、粒子間隙を融着して間隙を埋めることもほとんどなく、水分除去に伴う変形のみが生じる。それにより、空隙は有効に残存し、有害ガス分解性がエマルション無添加の場合と比較してもさほど低下することなく維持される。一方、エマルション無添加の場合と比較してエマルションを添加した分、光触媒層の空隙径は小さくなる。
 本発明者らの得た知見によれば、流れ筋状の外観不良の一つの原因は、次のように考えられた。すなわち、まず、基材最上部の縁部や目地部などから雨水、結露水などの水分が流下すると、この水分が光触媒層表面から内部に向かって拡散する。次に、基材中または光触媒層の下に設けられる着色層やクリア層中の成分、とりわけ有機成分、とりわけ未硬化成分が光触媒層に拡散し、当該層の表面にしみ出す。そして水分が乾燥してしまうと、このしみ出した成分が表面に固着され、この固着が筋状の外観不良の原因と考えられた。本発明にあっては、上記のようにエマルションを添加した結果、光触媒層の空隙径は小さくなる。その結果、下地からの成分が光触媒層中に拡散しにくくなり、基材最上部の縁部や目地部などから雨水、結露水などの水分が流下しても、下地からの成分が表面にほとんどしみださず、外観不良が生じにくくなると考えられる。
 また、本発明の好ましい態様によれば、シリコーンエマルジョンは、現場塗装(夏場には気温が高くなるがほぼ60℃未満である)において、光触媒コーティング液を塗布される基材の表面温度および雰囲気温度よりも高いガラス転移点、すなわち60℃を超えるガラス転移点を有する。これにより上記有利な効果がさらに得られる。
 基材
 本発明に用いる機材は、有機成分を含有している。とりわけ、未硬化成分が存在する、またはその存在が懸念される、或いは使用中に有機成分が紫外線等の影響で劣化して低分子量成分を生成するまたはそうなることが懸念される、基材に好ましく適用される。
 本発明の一つの態様によれば、基材全体が有機材料で構成されているものであってもよく、また無機材料で構成された材料の表面が有機材料で被覆されたもの(例えば化粧板)であってもよい。さらに、有機材料を含む樹脂以外に無機顔料や無機質の体質顔料等が添加されていてもよい。さらに、有機成分を含んでなる光触媒耐蝕性を有する層が表面に形成された基材であってもよい。また、有機成分を含んでなる層、例えば着側層を有する基材であってもよい。
 用途の観点からみた基材の好ましい例としては、建材、建物外装、窓枠、窓ガラス、構造部材、乗物の外装及び塗装、機械装置や物品の外装、防塵カバー及び塗装、交通標識、各種表示装置、広告塔、道路用遮音壁、鉄道用遮音壁、橋梁、ガードレ-ルの外装及び塗装、トンネル内装及び塗装、碍子、太陽電池カバー、太陽熱温水器集熱カバー、ビニールハウス、車両用照明灯のカバー、屋外用照明器具、台及び上記物品表面に貼着させるためのフィルム、シート、シール等といった外装材全般が挙げられる。
 光触媒塗装体の光触媒層
 本発明の一形態によれば、光触媒層は、該光触媒層全体を100質量%としたときに、1質量%以上20質量%以下の光触媒粒子と、30質量%以上89質量%未満、の無機酸化物粒子と、10質量%をこえ50質量%未満の上記平均組成式のシリコーンエマルションの乾燥物と、を含んでなる。
 より好ましくは、以下の5つの態様とするのが好ましい。すなわち、
(1)前記光触媒層が、該光触媒層全体を100質量%としたときに、1質量%以上20質量%以下の光触媒粒子と、40質量%以上89質量%未満の無機酸化物粒子と、10質量%をこえ40質量%以下のシリコーンエマルションの乾燥物とを含んでなるもの、
(2)前記光触媒層が、該光触媒層全体を100質量%としたときに、1質量%以上20質量%以下の光触媒粒子と、50質量%以上89質量%未満の無機酸化物粒子と、10質量%をこえ30質量%以下のシリコーンエマルションの乾燥物とを含んでなるもの、
(3)前記光触媒層が、該光触媒層全体を100質量%としたときに、1質量%以上15質量%以下の光触媒粒子と、35質量%以上89質量%未満の無機酸化物粒子と、10質量%をこえ50質量%未満のシリコーンエマルションの乾燥物とを含んでなるもの、
(4)前記光触媒層が、該光触媒層全体を100質量%としたときに、1質量%以上15質量%以下の光触媒粒子と、45質量%以上89質量%未満の無機酸化物粒子と、10質量%をこえ40質量%以下のシリコーンエマルションの乾燥物とを含んでなるもの、および
(5)前記光触媒層が、該光触媒層全体を100質量%としたときに、1質量%以上15質量%以下の光触媒粒子と、55質量%以上89質量%未満の無機酸化物粒子と、10質量%をこえ30質量%以下のシリコーンエマルションの乾燥物とを含んでなるものである。
 本発明において、光触媒層は、基材表面に光触媒粒子が存在すれば、完全な膜状に加え、例えば、部分的に膜状になっている状態も包含する。また、基材表面上に島状に離散して存在していても良い。本発明の好ましい態様によれば、この光触媒層はコーティング液を適用して得られるものである。
 本発明において用いられる光触媒粒子は、光触媒活性を有する粒子であれば特に限定されないが、その好ましい例としては、酸化チタン(TiO)、ZnO、SnO、SrTiO、WO、Bi、Feのような金属酸化物の粒子が挙げられ、より好ましくは酸化チタン粒子、最も好ましくはアナターゼ型酸化チタン粒子である。また、酸化チタンはバンドギャップエネルギーが高く、従って、光励起には紫外線を必要とし、光励起の過程で可視光を吸収しないので、補色成分による発色が起こらない点で有利である。酸化チタンは、粉末状、ゾル状、溶液状など様々な形態で入手可能であるが、光触媒活性を示すものであれば、いずれの形態でも使用可能である。
 本発明の好ましい態様によれば、光触媒粒子は10nm以上100nm以下の平均粒径を有するのが好ましく、より好ましくは10nm以上60nm以下である。なお、この平均粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。粒子の形状としては真球が好ましいが、略円形や楕円形でもよく、その場合の粒子の長さは((長径+短径)/2)として略算出される。
 本発明において用いられる無機酸化物粒子は、光触媒粒子と共に層を形成可能な無機酸化物の粒子であれば特に限定されず、その好ましい例としては、シリカ、アルミナ、ジルコニア、セリア、イットリア、ボロニア、マグネシア、カルシア、フェライト、無定型チタニア、ハフニア等の単一酸化物の粒子;およびチタン酸バリウム、ケイ酸カルシウム等の複合酸化物の粒子が挙げられ、より好ましくはシリカ粒子である。
 本発明において無機酸化物粒子は、平均粒径が5nmを超え100nm以下であることが好ましく、より好ましくは10nm以上50nm以下である。なお、この平均粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。粒子の形状としては真球が最も良いが、略円形や楕円形でも良く、その場合の粒子の長さは((長径+短径)/2)として略算出される。
 以下の説明はあくまで仮説であり、本発明はこれにより何ら限定されるものではないが、本発明のシリコーンエマルションは、常温乾燥において粒子形状を維持し、かつエマルションが融着して均一に造膜する事がないため、乾燥時にエマルションが変形して不均一に成膜した状態になっており、光触媒粒子が完全にエマルション成分によって覆われる事がない。よって、光触媒によるガス分解性や有機物分解性などの性能が大きく失われることがない。
 本発明において前記シリコーンエマルションは、平均組成式RSiO(4-a)/2(但し、Rはアルキル基(好ましくは低級(C1-6)アルキル、より好ましくはメチルまたはエチル)又はフェニル基であり、2≦a<4である)で表わされるシリコーンからなる。この式で表されるシリコーンを含んでなるエマルジョンにあっては、R部分での反応硬化がほとんど生じなくなり、有害ガス分解性に優れるとともに、流れ筋状の外観不良が生じにくくなるとの利点が得られる。
シリコーンエマルジョンの好ましい例としては、上記平均組成式においてa=2のものが挙げられ、具体的には、例えば、メチルフェニルシリル基、ジメチルシリル基、ジエチルシリル基、エチルメチルシリル基の群から選ばれる1種を選択するのが好ましい。さらに好ましくはメチルフェニルシリル基またはジメチルシリル基を有するシリコーンエマルションが好適である。
 また、本発明の好ましい態様によれば、シリコーンエマルジョンは、現場塗装(夏場には気温が高くなるがほぼ60℃未満である)において、光触媒コーティング液を塗布される基材の表面温度および雰囲気温度よりも高いガラス転移点、すなわち60℃を超えるガラス転移点を有する。これにより上記有利な効果がさらに得られる。
 さらに本発明において、光触媒層に、バナジウム、鉄、コバルト、ニッケル、パラジウム、亜鉛、ルテニウム、ロジウム、銅、銀、白金および金からなる群より選ばれる少なくとも一種の金属又は金属化合物を添加することにより、さらに高い抗菌・防カビ性能を発現させることができる。ただし、その存在は上述の光触媒粒子および無機酸化物粒子による粒子間の間隙の形成に影響を与えないことが望ましく、従ってその添加量は微量でよく、またその作用の発現に必要な量は微量である。具体的には、光触媒に対して、0.01~10質量%程度の量添加することが好ましく、より好ましくは0.05~5質量%程度である。また、前記金属化合物としては、例えば、上記金属のグルコン酸塩、硫酸塩、リンゴ酸塩、乳酸塩、硫酸塩、硝酸塩、ギ酸塩、酢酸塩、キレート等が好適に利用できる。
 本発明において光触媒層は、光触媒分解活性と透明性との両立の観点から、0.3μm以上3μm以下の膜厚を有するのが好ましい。より好ましい膜厚の範囲は0.3μm以上1.5μm以下であり、さらに好ましくは0.3μm以上1.0μm未満である。
 本発明の好ましい態様によれば、光触媒層は、光励起により親水性となり、セルフクリーニング機能を有していてもよい.親水性の程度としては、光触媒塗装体の光触媒層表面に1mW/cmに調整したBLB光(輝線スペクトルの波長が351nmのものを使用)下に光触媒塗装面を上にして8日間放置した後の、前記塗装体表面の水との接触角が20°未満であることが好ましい。長期に亘り安定的に、低緯度の熱帯、亜熱帯地方などの紫外線量が多くかつ高温・多湿の気象条件下においても、優れた光触媒親水機能に基づくセルフクリーニング機能を発揮することが可能である。
光触媒コーティング液
 本発明の他の形態によれば、光触媒コーティング液は、上述の本発明による光触媒塗装体を既存の基材上に現場で形成のために使用するものであり、基材に塗布し、60℃未満の温度で乾燥させて前記基材上に塗膜を形成するための光触媒コーティング液であって、水と、前記光触媒コーティング液の全固形分を100質量%としたときに、1質量%以上20質量%以下の光触媒粒子と、50質量%以上89質量%未満の無機酸化物粒子と、10質量%をこえ30質量%以下のシリコーンエマルションとを含んでなる。
 本発明において用いられる光触媒粒子は、光触媒活性を有する粒子であれば特に限定されないが、その好ましい例としては、酸化チタン(TiO)、ZnO、SnO、SrTiO、WO、Bi、Feのような金属酸化物の粒子が挙げられ、より好ましくは酸化チタン粒子、最も好ましくはアナターゼ型酸化チタン粒子である。また、酸化チタンはバンドギャップエネルギーが高く、従って、光励起には紫外線を必要とし、光励起の過程で可視光を吸収しないので、補色成分による発色が起こらない点で有利である。酸化チタンは、粉末状、ゾル状、溶液状など様々な形態で入手可能であるが、光触媒活性を示すものであれば、いずれの形態でも使用可能である。
 本発明の好ましい態様によれば、光触媒粒子は10nm以上100nm以下の平均粒径を有するのが好ましく、より好ましくは10nm以上60nm以下である。なお、この平均粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。粒子の形状としては真球が好ましいが、略円形や楕円形でもよく、その場合の粒子の長さは((長径+短径)/2)として略算出される。
 本発明において用いられる無機酸化物粒子は、光触媒粒子と共に層を形成可能な無機酸化物の粒子であれば特に限定されず、その好ましい例としては、シリカ、アルミナ、ジルコニア、セリア、イットリア、ボロニア、マグネシア、カルシア、フェライト、無定型チタニア、ハフニア等の単一酸化物の粒子;およびチタン酸バリウム、ケイ酸カルシウム等の複合酸化物の粒子が挙げられ、より好ましくはシリカ粒子である。
 本発明において無機酸化物粒子は、平均粒径が5nmを超え100nm以下であることが好ましく、より好ましくは10nm以上50nm以下である。なお、この平均粒径は、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定した個数平均値として算出される。粒子の形状としては真球が最も良いが、略円形や楕円形でも良く、その場合の粒子の長さは((長径+短径)/2)として略算出される。
 以下の説明はあくまで仮説であり、本発明はこれにより何ら限定されるものではないが、本発明のシリコーンエマルションは、常温乾燥において粒子形状を維持し、かつエマルションが融着して均一に造膜する事がないため、乾燥時にエマルションが変形して不均一に成膜した状態になっており、光触媒粒子が完全にエマルション成分によって覆われる事がない。よって、光触媒によるガス分解性や有機物分解性などの性能が大きく失われることがない。
 本発明において前記シリコーンエマルションは、平均組成式RSiO(4-a)/2(但し、Rはアルキル基(好ましくは低級(C1-6)アルキル、より好ましくはメチルまたはエチル)又はフェニル基であり、2≦a<4である)で表わされるシリコーンからなる。この式で表されるシリコーンを含んでなるエマルションにあっては、R部分での反応硬化がほとんど生じなくなり、有害ガス分解性に優れるとともに、流れ筋状の外観不良が生じにくくなるとの利点が得られる。
 シリコーンエマルジョンの好ましい例としては、上記平均組成式においてa=2のものが挙げられ、具体的には、例えば、メチルフェニルシリル基、ジメチルシリル基、ジエチルシリル基、エチルメチルシリル基の群から選ばれる1種を選択するのが好ましい。さらに好ましくはメチルフェニルシリル基またはジメチルシリル基を有するシリコーンエマルションが好適である。
 また、本発明の好ましい態様によれば、シリコーンエマルジョンは、現場塗装(夏場には気温が高くなるがほぼ60℃未満である)において、光触媒コーティング液を塗布される基材の表面温度および雰囲気温度よりも高いガラス転移点、すなわち60℃を超えるガラス転移点を有する。これにより上記有利な効果がさらに得られる。
 さらに、本発明の光触媒コーティング液には、バナジウム、鉄、コバルト、ニッケル、パラジウム、亜鉛、ルテニウム、ロジウム、銅、銀、白金および金からなる群より選ばれる少なくとも一種の金属又は金属化合物を添加することにより、さらに高い抗菌・防カビ性能を発現させることができる。ただしその存在は、上述の光触媒粒子および無機酸化物粒子による粒子間の間隙の形成に影響を与えないことが望ましく、従って、その添加量は微量でよく、またその作用の発現に必要な量は微量である。具体的には、光触媒に対して、0.01~10質量%、より好ましくは0.05~5質量%程度の添加量が好ましい。また、金属化合物としては、例えば、上記金属のグルコン酸塩、硫酸塩、リンゴ酸塩、乳酸塩、硫酸塩、硝酸塩、ギ酸塩、酢酸塩、キレート等が好適に利用できる。
 本発明によるコーティング液は、上記成分を溶媒に溶解または分散させて得られる。溶媒としては、環境に与える影響が小さい水を主成分として用いることが好ましい。水に加えて、本発明の作用効果に支障を与えない範囲で、アルコール、レべリング剤、界面活性剤、粘性調整剤等を添加してもよい。
 また、本発明による光触媒コーティング液の固形分濃度は特に限定されないが、1~10質量%とするのが、塗布のし易さの観点から好ましい。なお、光触媒コーティング組成物中の構成成分の分析は、コーティング液を限外ろ過によって粒子成分と濾液に分離し、それぞれを赤外分光分析、ゲルパーミエーションクロマトグラフィー、蛍光X線分光分析などで分析し、スペクトルを解析することによって評価することができる。
 光触媒塗装体の製造方法
 本発明の光触媒塗装体は、本発明の光触媒コーティング液を基材上に塗布することにより製造することができる。塗装方法は、既存の基材に現場でコーティング液を塗布できればどのような方法でもよく、例えば、刷毛塗り、バーコート、ロールコート、スプレーコート、フローコート、スキージ塗り、こて塗り等一般に広く行われている方法を利用できる。コーティング液の基材への塗布後は、60℃未満の常温で乾燥させる。
 本発明を以下の例に基づいて具体的に説明するが、本発明はこれらの例に限定されるものではない。
 以下の例において、各種の物性は以下に示す方法で測定した。
 膜厚
 日立製作所製走査型電子顕微鏡S-4100を用いて、研磨断面の膜厚を測定した。
 水接触角
 協和界面科学製CA-X150型接触角計を用いて、屋外曝露1カ月後の接触角を測定した。
 NOx分解
 JIS R1701-1「光触媒材料の空気浄化性能試験方法-第1部:窒素酸化物の除去性能」の試験法に従い行った。
 流れ筋試験
 光触媒塗装体を作成後、室温で12時間養生したものに2mlのイオン交換水を流した。その後、室温で1日養生した塗膜上に流れ筋状の外観不良が生じたか否かを観察した。
 耐候性試験1
 試験片を、60℃の温水に8時時間、次いで100℃乾燥1時間、その後に0.3mWの殺菌灯に15時間曝すことを1サイクルとして、これを3~8サイクル行った。日本電色製の測色差計ZE2000にて、サイクル試験前後の試験片の色差ΔLを測定した。
 耐候性試験2
 沖縄県宮古島にてJIS K 5600-7-6に規定される暴露架台を用い南面に向けて水平より20°の角度で屋外暴露を行った。5ヶ月後に試験片を取り出し、日本電色製の測色差計ZE2000にて、サイクル試験前後の色差ΔLを測定した。
例1
(光触媒塗装体の作製)
 アナターゼ型酸化チタン粒子(平均結晶子径10nm)10質量部、シリカ粒子70質量部、およびガラス転移点が60℃を超えるメチルフェニルシリル基を有するシリコーンエマルションを固形分として20質量部配合した固形分濃度5.5質量%の光触媒水性コーティング液を調製した。ガラス基材上にエポキシプライマーをエアスプレーにて塗装後、シリコーン変性アクリル樹脂と顔料からなる着色層を塗装した。さらにこの着色層の上に、上記のコーティング液を塗装して、室温で乾燥させて、光触媒層を有する光触媒塗装体を得た。
(光触媒塗装体の評価)
 得られた光触媒塗装体の光触媒層を断面観察したところ、膜厚は約1μmであった。この光触媒塗装体のNOx分解量は0.96μmolと良好な結果を示し、流れ筋試験において、翌日に流れ筋状の外観不良は観察されなかった。
例2
(光触媒塗装体の作製)
 アナターゼ型酸化チタン粒子(平均結晶子径10nm)10質量部、シリカ粒子70質量部、およびガラス転移点が60℃を超えるジメチルシリル基を有するシリコーンエマルションを固形分として20質量部配合した固形分濃度5.5質量%の光触媒水性コーティング液を調製した。ガラス基材上にエポキシプライマーをエアスプレーにて塗装後、シリコーン変性アクリル樹脂と顔料からなる着色層を塗装した。さらにこの着色層の上に、上記のコーティング液を塗装して、室温で乾燥させて、光触媒層を有する光触媒塗装体を得た。
(光触媒塗装体の評価)
 得られた光触媒塗装体の光触媒層を断面観察したところ、膜厚は約1μmであった。この光触媒塗装体のNOx分解量は0.93μmolと良好な結果を示し、流れ筋試験において、翌日に流れ筋状の外観不良は観察されなかった。
例3
(光触媒塗装体の作製)
 アナターゼ型酸化チタン粒子(平均結晶子径10nm)10質量部、シリカ粒子60質量部、およびガラス転移点が60℃を超えるメチルフェニルシリル基を有するシリコーンエマルションを固形分として30質量部配合した固形分濃度5.5質量%の光触媒水性コーティング液を調製した。ガラス基材上にエポキシプライマーをエアスプレーにて塗装後、シリコーン変性アクリル樹脂と顔料からなる着色層を塗装した。さらにこの着色層の上に、上記のコーティング液を塗装して、室温で乾燥させて、光触媒層を有する光触媒塗装体を得た。
(光触媒塗装体の評価)
 得られた光触媒塗装体の光触媒層を断面観察したところ、膜厚は約1μmであった。この光触媒塗装体のNOx分解量は0.75μmolと良好な結果を示し、流れ筋試験において、翌日に流れ筋状の外観不良は観察されなかった。
例4
(光触媒塗装体の作製)
 アナターゼ型酸化チタン粒子(平均結晶子径10nm)10質量部、シリカ粒子60質量部、およびガラス転移点が60℃を超えるジメチルシリル基を有するシリコーンエマルションを固形分として30質量部配合した固形分濃度5.5質量%の光触媒水性コーティング液を調製した。ガラス基材上にエポキシプライマーをエアスプレーにて塗装後、シリコーン変性アクリル樹脂と顔料からなる着色層を塗装した。さらにこの着色層の上に、上記のコーティング液を塗装して、室温で乾燥させて、光触媒層を有する光触媒塗装体を得た。
(光触媒塗装体の評価)
 得られた光触媒塗装体の光触媒層を断面観察したところ、膜厚は約1μmであった。の光触媒塗装体のNOx分解量は0.79μmolと良好な結果を示し、流れ筋試験において、翌日に流れ筋状の外観不良は観察されなかった。
例5(比較例)
(光触媒塗装体の作製)
 アナターゼ型酸化チタン粒子(平均結晶子径10nm)10質量部、シリカ粒子80質量部、およびガラス転移点が60℃を超えるメチルフェニルシリル基を有するシリコーンエマルションを固形分として10質量部配合した固形分濃度5.5質量%の光触媒水性コーティング液を調製した。ガラス基材上にエポキシプライマーをエアスプレーにて塗装後、シリコーン変性アクリル樹脂と顔料からなる着色層を塗装した。さらにこの着色層の上に、上記のコーティング液を塗装して、室温で乾燥させて、光触媒層を有する光触媒塗装体を得た。
(光触媒塗装体の評価)
 得られた光触媒塗装体の光触媒層を断面観察したところ、膜厚は約1μmであった。この光触媒塗装体のNOx分解量は1.02μmolと良好な結果を示したが、流れ筋試験において、翌日に流れ筋状の汚が観察された。
例6(比較例)
(光触媒塗装体の作製)
 アナターゼ型酸化チタン粒子(平均結晶子径10nm)10質量部、シリカ粒子80質量部、およびガラス転移点が60℃を超えるジメチルシリル基を有するシリコーンエマルションを固形分として10質量部配合した固形分濃度5.5質量%の光触媒水性コーティング液を調製した。ガラス基材上にエポキシプライマーをエアスプレーにて塗装後、シリコーン変性アクリル樹脂と顔料からなる着色層を塗装した。さらにこの着色層の上に、上記のコーティング液を塗装して、室温で乾燥させて、光触媒層を有する光触媒塗装体を得た。
(光触媒塗装体の評価)
 得られた光触媒塗装体の光触媒層を断面観察したところ、膜厚は約1μmであった。この光触媒塗装体のNOx分解量は0.96μmolと良好な結果を示したが、流れ筋試験において、翌日に流れ筋状の外観不良が観察された。
例7(比較例)
(光触媒塗装体の作製)
 アナターゼ型酸化チタン粒子(平均結晶子径10nm)10質量部、シリカ粒子40質量部、およびガラス転移点が60℃を超えるシリコーンエマルションを固形分として50質量部配合した固形分濃度5.5質量%の光触媒水性コーティング液を調製した。ガラス基材上にエポキシプライマーをエアスプレーにて塗装後、シリコーン変性アクリル樹脂と顔料からなる着色層を塗装した。さらにこの着色層の上に、上記のコーティング液を塗装して、室温で乾燥させて、光触媒層を有する光触媒塗装体を得た。
(光触媒塗装体の評価)
 得られた光触媒塗装体の光触媒層を断面観察したところ、膜厚は約1μmであった。この光触媒塗装体のNOx分解量は0.42μmolにとどまった。流れ筋試験において、翌日に流れ筋状の外観不良は観察されなかった。
例8(比較例)
(光触媒塗装体の作製)
 アナターゼ型酸化チタン粒子(平均結晶子径10nm)10質量部、シリカ粒子60質量部、およびガラス転移点が60℃を超えないアクリルエマルションを固形分として30質量部配合した固形分濃度5.5質量%の光触媒水性コーティング液を調製した。ガラス基材上にエポキシプライマーをエアスプレーにて塗装後、シリコーン変性アクリル樹脂と顔料からなる着色層を塗装した。さらにこの着色層の上に、上記のコーティング液を塗装して、室温で乾燥させて、光触媒層を有する光触媒塗装体を得た。
(光触媒塗装体の評価)
 得られた光触媒塗装体の光触媒層を断面観察したところ、膜厚は約1μmであった。この光触媒塗装体のNOx分解量は0.10μmolにとどまった。流れ筋試験において、翌日に流れ筋状の外観不良が観察された。
例9(比較例)
(光触媒塗装体の作製)
 アナターゼ型酸化チタン粒子(平均結晶子径10nm)10質量部、シリカ粒子90質量部を配合した固形分濃度5.5質量%の光触媒水性コーティング液を調製した。ガラス基材上にエポキシプライマーをエアスプレーにて塗装後、シリコーン変性アクリル樹脂と顔料からなる着色層を塗装した。さらにこの着色層の上に、上記のコーティング液を塗装して、室温で乾燥させて、光触媒層を有する光触媒塗装体を得た。
(光触媒塗装体の評価)
 得られた光触媒塗装体の光触媒層を断面観察したところ、膜厚は約1μmであった。
 上記例の組成、膜厚、水との接触角、NOx分解、流れ筋試験の結果をまとめると以下の表1および2のとおりであった。また、例1および9について行った耐候性試験1および2の結果はそれぞれ表3および4に示されるとおりであった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (15)

  1.  有機成分を含有する基材と、該基材上に設けられた透明な光触媒層とを備えてなる光触媒塗装体であって、
     前記光触媒層が、該光触媒層全体を100質量%としたときに、
    1質量%以上20質量%以下の光触媒粒子と、
    30質量%以上89質量%未満の無機酸化物粒子と、
    10質量%をこえ50質量%未満のシリコーンエマルションの乾燥物とを含んでなり、
     前記シリコーンエマルションが、平均組成式RSiO(4-a)/2(但し、Rはアルキル基又はフェニル基であり、2≦a<4である)で表わされるシリコーンからなるものであることを特徴とする、光触媒塗装体。
  2.  前記シリコーンエマルションが60℃を超えるガラス転移点を有するものである、請求項1に記載の光触媒塗装体。
  3.  前記光触媒粒子が酸化チタン粒子である、請求項1または2に記載の光触媒塗装体。
  4.  前記無機酸化物粒子がシリカ粒子である、請求項1~3のいずれか一項に記載の光触媒塗装体。
  5.  前記光触媒粒子が、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、10nm以上100nm以下の個数平均粒子径を有する、請求項1~4のいずれか一項に記載の光触媒塗装体。
  6.  前記無機酸化物粒子が、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、5nmを超え100nm以下の個数平均粒径を有する、請求項1~5のいずれか一項に記載の光触媒塗装体。
  7.  外装材として用いられる、請求項1~6のいずれか一項に記載の光触媒塗装体。
  8.  有機成分を含有する基材に塗布し、60℃未満の温度で乾燥させて前記基材上に塗膜を形成するための光触媒コーティング液であって、
     水と、
    前記光触媒コーティング液の全固形分を100質量%としたときに、
     1質量%以上20質量%以下の光触媒粒子と、
     30質量%以上89質量%未満の無機酸化物粒子と、
     10質量%をこえ50質量%未満のシリコーンエマルションとを含んでなり、
     前記シリコーンエマルションが、平均組成式RSiO(4-a)/2(但し、Rはアルキル基又はフェニル基であり、2≦a<4である)で表わされるシリコーンからなるものであることを特徴とする、光触媒コーティング液。
  9.  前記シリコーンエマルションが、60℃を超えるガラス転移点を有するものである、請求項8に記載の光触媒コーティング液。
  10.  前記光触媒コーティング液中の固形分質量が1質量%以上10質量%以下である、請求項8または9に記載の光触媒コーティング液。
  11.  前記光触媒粒子が酸化チタン粒子である、請求項8~10のいずれか一項に記載の光触媒コーティング液。
  12.  前記無機酸化物粒子がシリカ粒子である、請求項8~11のいずれか一項に記載の光触媒コーティング液。
  13.  前記光触媒粒子が、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、10nm以上100nm以下の個数平均粒子径を有する、請求項8~12のいずれか一項に記載の光触媒コーティング液。
  14.  前記無機酸化物粒子が、走査型電子顕微鏡により20万倍の視野に入る任意の100個の粒子の長さを測定することにより算出される、5nmを超え100nm以下の個数平均粒径を有する、請求項8~13のいずれか一項に記載の光触媒コーティング液。
  15.  請求項1~7のいずれか一項に記載の光触媒塗装体の製造方法であって、有機成分を含有する基材に、請求項8~14のいずれか一項に記載の光触媒コーティング液を塗布し、60℃未満の温度で乾燥させることを少なくとも含んでなる、方法。
     
PCT/JP2011/075252 2010-11-02 2011-11-02 光触媒塗装体およびそのための光触媒コーティング液 WO2012060398A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/883,086 US20130267410A1 (en) 2010-11-02 2011-11-02 Photocatalyst-coated object and photocatalyst coating liquid for same
CN201180063774.3A CN103313793B (zh) 2010-11-02 2011-11-02 光催化剂涂装体及用于此的光催化剂涂覆液
JP2012541890A JP5744049B2 (ja) 2010-11-02 2011-11-02 光触媒塗装体およびそのための光触媒コーティング液
EP11838048.4A EP2636450A4 (en) 2010-11-02 2011-11-02 OBJECT COATED WITH A PHOTOCATALYST AND LIQUID COATING PHOTOCATALYST FOR THE SUBJECT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010246169 2010-11-02
JP2010-246169 2010-11-02

Publications (1)

Publication Number Publication Date
WO2012060398A1 true WO2012060398A1 (ja) 2012-05-10

Family

ID=46024511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075252 WO2012060398A1 (ja) 2010-11-02 2011-11-02 光触媒塗装体およびそのための光触媒コーティング液

Country Status (5)

Country Link
US (1) US20130267410A1 (ja)
EP (1) EP2636450A4 (ja)
JP (1) JP5744049B2 (ja)
CN (1) CN103313793B (ja)
WO (1) WO2012060398A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6487708B2 (ja) * 2014-02-24 2019-03-20 Toto株式会社 塗料組成物および塗装体
US20150266012A1 (en) * 2014-03-24 2015-09-24 Toto Ltd. Photocatalyst coating composition

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116972A (ja) 1987-10-30 1989-05-09 Mitsubishi Electric Corp 記憶装置
JPH0717140A (ja) 1993-07-06 1995-01-20 Fujicopian Co Ltd 熱転写材およびその製法
JPH1066830A (ja) * 1996-08-28 1998-03-10 Agency Of Ind Science & Technol 空気浄化装置
JPH1116972A (ja) 1997-06-25 1999-01-22 Hitachi Ltd パターン検査装置及びその制御方法
WO1999006300A1 (en) 1997-07-30 1999-02-11 Ocular Sciences Limited Container
JP2000096800A (ja) * 1998-03-18 2000-04-04 Toto Ltd 防汚建材とその製造方法
JP2001064583A (ja) 1999-08-31 2001-03-13 Toto Ltd 光触媒塗料組成物、光触媒性塗膜、該塗膜被覆物品および該塗膜形成方法
JP2003126699A (ja) * 2001-10-22 2003-05-07 Nitto Denko Corp 光触媒皮膜付設体
JP2004051644A (ja) 2001-08-30 2004-02-19 Toto Ltd 光触媒性コーティング剤及び光触媒性複合材並びにその製造方法
JP2004149686A (ja) 2002-10-31 2004-05-27 Dainippon Toryo Co Ltd 水性塗料組成物
JP2008095069A (ja) 2006-07-27 2008-04-24 Dainippon Ink & Chem Inc 光触媒含有水性硬化性塗料組成物及びその製造方法
JP2008264747A (ja) 2007-03-26 2008-11-06 Toto Ltd 光触媒塗装体およびそのための光触媒コーティング液
JP2009255571A (ja) 2008-03-28 2009-11-05 Toto Ltd 光触媒塗装体およびそのための光触媒コーティング液
JP2010005613A (ja) 2008-05-26 2010-01-14 Asahi Kasei Chemicals Corp 複合体、機能性構造体及びコーティング剤
JP2010036135A (ja) 2008-08-06 2010-02-18 Nitto Denko Corp 多孔質光触媒皮膜および多孔質光触媒皮膜の製造方法
JP2010099647A (ja) * 2008-03-28 2010-05-06 Toto Ltd 光触媒塗装体およびそのための光触媒コーティング液

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303173C (zh) * 1996-05-31 2007-03-07 东陶机器株式会社 防污性构件及防污涂层组合物
US7572486B2 (en) * 2002-05-30 2009-08-11 Toto Ltd. Photocatalytic coating material, photocatalytic composite material and method for producing the same, and self-cleaning water-based coating composition and self-cleaning member
US20080097018A1 (en) * 2006-10-18 2008-04-24 John Stratton Depolluting coating composition
US7919425B2 (en) * 2008-03-26 2011-04-05 Toto Ltd. Photocatalyst-coated body and photocatalytic coating liquid for the same
JP2013198826A (ja) * 2010-07-23 2013-10-03 Toto Ltd 光触媒層を備えてなる複合材の使用

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01116972A (ja) 1987-10-30 1989-05-09 Mitsubishi Electric Corp 記憶装置
JPH0717140A (ja) 1993-07-06 1995-01-20 Fujicopian Co Ltd 熱転写材およびその製法
JPH1066830A (ja) * 1996-08-28 1998-03-10 Agency Of Ind Science & Technol 空気浄化装置
JPH1116972A (ja) 1997-06-25 1999-01-22 Hitachi Ltd パターン検査装置及びその制御方法
WO1999006300A1 (en) 1997-07-30 1999-02-11 Ocular Sciences Limited Container
JP2000096800A (ja) * 1998-03-18 2000-04-04 Toto Ltd 防汚建材とその製造方法
JP2001064583A (ja) 1999-08-31 2001-03-13 Toto Ltd 光触媒塗料組成物、光触媒性塗膜、該塗膜被覆物品および該塗膜形成方法
JP2004051644A (ja) 2001-08-30 2004-02-19 Toto Ltd 光触媒性コーティング剤及び光触媒性複合材並びにその製造方法
JP2003126699A (ja) * 2001-10-22 2003-05-07 Nitto Denko Corp 光触媒皮膜付設体
JP2004149686A (ja) 2002-10-31 2004-05-27 Dainippon Toryo Co Ltd 水性塗料組成物
JP2008095069A (ja) 2006-07-27 2008-04-24 Dainippon Ink & Chem Inc 光触媒含有水性硬化性塗料組成物及びその製造方法
JP2008264747A (ja) 2007-03-26 2008-11-06 Toto Ltd 光触媒塗装体およびそのための光触媒コーティング液
JP2009255571A (ja) 2008-03-28 2009-11-05 Toto Ltd 光触媒塗装体およびそのための光触媒コーティング液
JP2010099647A (ja) * 2008-03-28 2010-05-06 Toto Ltd 光触媒塗装体およびそのための光触媒コーティング液
JP2010005613A (ja) 2008-05-26 2010-01-14 Asahi Kasei Chemicals Corp 複合体、機能性構造体及びコーティング剤
JP2010036135A (ja) 2008-08-06 2010-02-18 Nitto Denko Corp 多孔質光触媒皮膜および多孔質光触媒皮膜の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2636450A4

Also Published As

Publication number Publication date
JP5744049B2 (ja) 2015-07-01
EP2636450A1 (en) 2013-09-11
US20130267410A1 (en) 2013-10-10
EP2636450A4 (en) 2014-08-06
JPWO2012060398A1 (ja) 2014-05-12
CN103313793A (zh) 2013-09-18
CN103313793B (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
JP4092714B1 (ja) 光触媒塗装体およびそのための光触媒コーティング液
TWI440505B (zh) Photocatalyst coating
JP5742837B2 (ja) 光触媒塗装体および光触媒コーティング液
WO2011040405A1 (ja) 光触媒塗装体およびそのための光触媒コーティング液
WO2003102091A1 (fr) Materiau de revetement photocatalytique, materiau composite catalytique et procede de production correspondant. compositions de revetement aqueuses autonettoyantes et element autonettoyant
JP2012250134A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP4933568B2 (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2017064707A (ja) 光触媒塗装体
TW201231533A (en) Photocatalyst-coated object and photocatalyst coating solution
JP5361513B2 (ja) 光触媒塗装体
JP5744049B2 (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP5305231B2 (ja) 光触媒塗装体
JP2013198826A (ja) 光触媒層を備えてなる複合材の使用
JP5614945B2 (ja) 光触媒塗装体
JP5391902B2 (ja) 光触媒塗装体、および光触媒コーティング液
WO2011118781A1 (ja) 光触媒塗装体
JP4897781B2 (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2009255571A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2010005608A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2009262139A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2009285535A (ja) 光触媒塗装体およびそのための光触媒コーティング液
JP2010270582A (ja) 建材
WO2012147624A1 (ja) 光触媒塗装体の形成方法
JP2010029806A (ja) 光触媒塗装体およびそのための光触媒コーティング液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11838048

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012541890

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011838048

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13883086

Country of ref document: US