WO2012059615A1 - Método para determinar la producción de especies reactivas de oxígeno en una población celular - Google Patents

Método para determinar la producción de especies reactivas de oxígeno en una población celular Download PDF

Info

Publication number
WO2012059615A1
WO2012059615A1 PCT/ES2011/070756 ES2011070756W WO2012059615A1 WO 2012059615 A1 WO2012059615 A1 WO 2012059615A1 ES 2011070756 W ES2011070756 W ES 2011070756W WO 2012059615 A1 WO2012059615 A1 WO 2012059615A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
cells
oxygen species
reactive oxygen
agarose
Prior art date
Application number
PCT/ES2011/070756
Other languages
English (en)
French (fr)
Inventor
Jordi BENET CATALÁ
Agustín GARCÍA PEIRÓ
Original Assignee
Universitat Autònoma De Barcelona
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universitat Autònoma De Barcelona filed Critical Universitat Autònoma De Barcelona
Priority to ES11837612.8T priority Critical patent/ES2649668T3/es
Priority to CA2815949A priority patent/CA2815949C/en
Priority to US13/883,562 priority patent/US9618503B2/en
Priority to MX2013004984A priority patent/MX339423B/es
Priority to EP11837612.8A priority patent/EP2637019B1/en
Publication of WO2012059615A1 publication Critical patent/WO2012059615A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5091Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing the pathological state of an organism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/10Screening for compounds of potential therapeutic value involving cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/36Gynecology or obstetrics
    • G01N2800/367Infertility, e.g. sperm disorder, ovulatory dysfunction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7004Stress
    • G01N2800/7009Oxidative stress

Definitions

  • the present invention relates to a method for determining the production of reactive oxygen species in a cell population. Also, the invention relates to a method for determining the need for an antioxidant therapy of a male subject and a method for identifying a substance capable of decreasing the reactive oxygen species present in a cell population.
  • Fertility is defined as the ability of living beings to reproduce. Based on this concept, it is assumed that sterility is the loss of this capacity and it is estimated that it affects 15% of couples of reproductive age. Approximately, in half of the cases the male factor is present: in 20% it is exclusively male, 38% is predominantly female, and in another 27% it is considered mixed while in the remaining 15% there is no specific cause , these cases being classified as infertility of unknown or idiopathic origin. According to the American Society for Reproductive Medicine (The practice committee of The American Society for Reproductive Medicine, 2006) infertility is considered a pathology as long as the couple fails to conceive in a minimum period of 12 months. Despite this, between 20% - 30% manage to have offspring exceeded this time.
  • sperm DNA fragmentation For the diagnosis of male infertility, in addition to the main parameters that are determined in the seminogram (concentration, mobility and sperm morphology), a new parameter, sperm DNA fragmentation, has recently begun to be considered.
  • the analysis of sperm DNA fragmentation determines the existence of breaks in one or both strands of DNA. This has aroused some interest because the presence of these breaks compromises the ability of the individual to achieve a healthy offspring when the paternal genetic message is altered. Indeed, in recent years, there are several studies that demonstrate the presence of a high percentage of sperm with fragmented DNA in infertile individuals compared to fertile individuals (Evenson DP et al. Theriogenology 15: 979-91 (2006)).
  • Oxidative stress is considered one of the main causes of sperm DNA fragmentation.
  • oxidative stress means that in the affected organ, a metabolic imbalance is occurring, as the body is not able to quickly neutralize the reactive oxygen species that are they produce as a consequence of the constant supply of metabolic energy that you need for your activity.
  • damage to all cell components occurs, including DNA, oxidation of polyunsaturated fatty acids and oxidation of amino acids in proteins.
  • Direct methods determine the damage caused by excess reactive oxygen species against phospholipids present in the plasma membrane or in the DNA.
  • Direct methods determine a damage that is the end product of an imbalance between excessive free radical production and the antioxidant capacity of the cell.
  • HPLC high resolution chromatography
  • isoprostane 8-Iso-PGF2a or the cl-BODIPY test are quite promising but are not used routinely because of their complexity.
  • EROs include oxygen ions, free radicals and both inorganic and organic peroxides. They are generally very small highly reactive molecules that form naturally as a byproduct of normal oxygen metabolism and have an important role in cell signaling. They are generally chemiluminescence based methods using Luminol or Lucigenin (Athayde KS. Et al. J. Androl. 2007, 28: 613-20). However, lucigenin tends to oxidize causing alterations in the results, and on the other In part, the analysis requires a luminometer that is a very expensive instrument.
  • the invention relates to a method for determining the presence of cells containing reactive oxygen species in a cell population comprising:
  • a) Contacting said cell population under isotonic conditions with a thickening agent in a manner that substantially reduces the mobility of the cells of the cell population and with a compound indicating the presence of reactive oxygen species, b) maintaining the obtained mixture in step a) for sufficient time for the conversion of the indicator compound into a detectable compound in those cells containing reactive oxygen species, c) place the mixture obtained in b) with a gelling agent on a solid support under conditions suitable for that gelation of the gelling agent occurs and d) identify those cells in which the detectable compound appears in which the presence of the detectable compound in a cell is indicative of the presence in said cell of reactive oxygen species.
  • the invention relates to a method for determining the need for antioxidant therapy to a patient comprising determining the presence in a semen sample of said subject of ERO-containing cells using a method of the invention and the percentage of cells exhibiting DNA fragmentation using a method of the invention wherein if the percentage of cells comprising ROS and the percentage of cells exhibiting DNA fragmentation are greater than said percentages in a reference sample is indicative that said patient should Be treated with an antioxidant therapy.
  • the invention relates to a method for identifying a substance X capable of decreasing the reactive oxygen species present in a cell population comprising:
  • the invention relates to a composition comprising a thickening agent and a compound capable of indicating the presence of ERO.
  • the invention relates to a kit comprising a thickening agent, a compound indicating the presence of reactive oxygen species, an acid solution that denatures DNA and a lysis solution that eliminates nuclear proteins.
  • the invention relates to the use of a composition or a kit comprising a thickening agent and an indicator compound for the presence of ERO to determine the presence of reactive oxygen species in a cell population.
  • the invention relates to the use of a kit comprising a thickening agent, an indicator compound for the presence of ERO, an acid solution that denatures DNA and a lysis solution that eliminates nuclear proteins to determine the need for an antioxidant therapy of a male subject.
  • FIG. 1 Microscopic view of sperm with NBT in liquid medium. Note that sperm tend to aggregate so that positive NBT sperm (which have ERO) can affect negative NBT.
  • Figure 2. Microscopic view of NBT positive sperm. They present a precipitate of intense blue color normally located on the intermediate piece and the head.
  • Figure 3 Optical microscope view of an extension of human sperm immersed in agarose-negative NBT, which do not have ROS.
  • Figure 4. Graph of mustaches and boxes where the data obtained for the SDF variable (percentage of sperm with DNA fragmentation) are represented according to the type of agarose that has been used: normal (left), modified with NBT (right).
  • Figure 5 Graph of mustaches and boxes showing the data obtained for the variable DS (percentage of degraded sperm) according to the type of agarose that has been used: normal (left), modified with NBT (right). DETAILED DESCRIPTION
  • the authors of the present invention have developed a method for determining the presence of ERO-containing cells in a cell population in a biological sample.
  • the contact of a cell population with an agent indicating the presence of ROS and in the presence of a viscosifying agent allows detecting those cells among the population that present ROS avoiding problems associated to the state of the art resulting from the aggregation of the cells.
  • the invention relates to a method (hereinafter first method of the invention) for determining the presence of ERO-containing cells in a cell population comprising:
  • step b) maintain the mixture obtained in step a) for sufficient time for the conversion of the indicator compound into a detectable compound in those cells containing ERO, c) place the mixture obtained in b) with a gelling agent on a solid support under conditions suitable for gelling agent gelation to occur and
  • ERO means the set of reactive molecules produced in some metabolic processes in which oxygen participates. They are very reactive molecules because they have missing electrons that make them react with other organic molecules in oxide-reduction processes. Examples of ERO are oxygen ions, free radicals and peroxides among others.
  • Cell population means, in the context of the present invention, cell cultures of eukaryotic cells, in particular, human cells, as well as populations of primary cells derived from bone marrow, blood, cells used in fertilization techniques in vitro and the like.
  • the cell population is a population of sperm.
  • sperm refers to the reproductive cells of any male subject (man, ox, etc.). The population of cells can be found as part of a semen sample together with the seminal plasma or diluted in a suitable solution to preserve the integrity of the sperm.
  • the first method of the invention comprises contacting said cell population under isotonic conditions with a thickening agent so that mobility is substantially reduced as well as sedimentation and aggregation of cells of the cell population and with a compound indicator of the presence of reactive oxygen species,
  • isotonic conditions refers to the conditions in which at the same temperature two solutions have the same osmotic pressure so that, if said solutions are separated by a semipermeable membrane, there is no net flow of water through said membrane.
  • osmotic pressure is meant the pressure exerted by the solvent particles in a solution on the semipermeable membrane that separates it from another of greater concentration. Isotonic conditions are necessary to maintain the integrity of the cellular plasma membrane.
  • Typical isotonic conditions include 285-315 mOsm / kg H20, depending on the cell type.
  • the term “thickening agent” is used interchangeably with “agent that increases viscosity” or “viscosifying agent” and is understood as that compound that increases the internal resistance of a substance to flow when a constant stress is applied. As a consequence of the increase in resistance, the cells show a lower tendency to aggregate and in addition the mobile cells in a mixture with said compound have less mobility.
  • Thickening agents suitable for use in the present invention include, without limitation:
  • Carbopol 854) carbopol # 1342, Carbopol # 1382, Pemulen TR-1 and Pemulen TR-2,
  • Preferred monomers include, without limitation, acrylamide, methacrylamide, N-methacrylamide, N-methylmethacrylamide, ⁇ , ⁇ -dimethylmethacrylamide, N-isopropylacrylamide, N-isopropyl methacrylamide and ⁇ , ⁇ -dimethylacrylamide.
  • These polymers have a molecular weight generally greater than 1000000, preferably greater than 1500000 and up to 3000000.
  • Preferred polymers of this category include Sepigel 305 from Seppic Corporation (Fairfield, NJ), Hypan SR150H, SS500V, SS500W, SSSA100H, from Lipo Chemicals, Inc., (Patterson, NJ).
  • Polysaccharides such as agarose, cellulose, carboxymethyl hydroxyethylcellulose, hydroxyethylcellulose, hydroxyethyl ethylcellulose, hydroxypropylcellulose, hydroxypropyl methylcellulose, methyl hydroxyethylcellulose, microcrystalline cellulose, sodium cellulose sulfate, and mixtures thereof.
  • Celluloses substituted by alkyl groups are also useful in which the hydroxyl groups of the celluloses are hydroxyalkylated (preferably hydroxyethylated or hydroxypropylated) to form hydroxyalkylated celluloses that are subsequently modified with a linear or branched C10-C30 chain through an ether type linkages .
  • alkyl groups that are used to modify the hydroxycelluloses include stearyl, isostearyl lauryl miristiL cetiL, isocetyl, cocoyl, palmityl oleiL, linoleil, linolenyl, ricinoleiL behenyl.
  • Preferred hydroxycelluloses include cetyl hydroxyethyl cellulose (Natrosol (3) CS Plus from Aqualon Corporation).
  • gums including acacia gums, agar, alginate, algic acid, ammonium alginate, amylopectin, calcium alginate, calcium carrageenan, carnitine, carrageenan, dextrin, gelatin, gellan gum, guar gum, guar hydroxypropyltrimony chloride, hectorite, acid hyaluronic, chitosan, guar hydroxypropli, karaya gum gum, kelp, locust bean gum, natto gum, potassium alginate, propylene glycol alginate, scleroium gum, sodium carboxymethyl dextran, carrageenan sodium, tragacanth gum, xanthan gum mixtures.
  • acacia gums agar, alginate, algic acid, ammonium alginate, amylopectin, calcium alginate, calcium carrageenan, carnitine, carrageenan, dextrin, gelatin,
  • Thickening agents not included in any of the above groups such as alginates; carbomeros such as carbomeros 934, 934P, 940 and 941; cellulose gum, cetearyl alcohol, cocamide DEA, dextrin; jelly; hydroxyethyl cellulose; hydroxypropyl cellulose; hydroxypropyl methylcellulose; silicate magnesium and aluminum, myristyl alcohol; oatmeal; oleamide DEA; olieco alcohol; PEG-7M; PEG-14M; PEG-90M; DEA stearamide; stearamide MEA; Wheat starch, xanthan gum and the like.
  • carbomeros such as carbomeros 934, 934P, 940 and 941
  • cellulose gum cetearyl alcohol, cocamide DEA, dextrin
  • jelly hydroxyethyl cellulose
  • hydroxypropyl cellulose hydroxypropyl methylcellulose
  • silicate magnesium and aluminum myristyl alcohol
  • oatmeal oleamide DEA
  • Step a) of the first method of the invention is carried out in a manner that substantially reduces the mobility of the cells of the cell population, preferably during the time in which stage a) is carried out.
  • Substantial reduction in cell population cell mobility means that cells reduce their natural ability to move or move by at least 10%, 20%, 30%, 40%, 50%, one 60%, 70%, 80%, 90% or 100%, in which case the cells do not move appreciably during the time in which stage a) is carried out.
  • the cell population under study is a population of sperm
  • the person skilled in the art can determine the conditions (concentration and temperature) at which a certain thickening agent reduces cell mobility to adequate values to avoid cell aggregation using widely known methods such as:
  • Step a) further comprises contacting the cell population under study with an agent indicating the presence of ROS.
  • ERO indicator agent refers to any compound that in the presence of ERO undergoes a change in its properties so that it is detectable, either directly by some property of said compound either indirectly because said compound has the ability to modify a second molecule that is detectable.
  • Preferred ERO indicator compounds include tetrazolium salts, derivatives and the like.
  • Tetrazolium salts are compounds that have a tetrazol, tetrazolyl or tetraozolo structure.
  • the tetrazolium salt is an organic salt comprising one or two tetrazole rings and one or more substitutions with an aryl (phenyl or substituted phenyl) or naphthyl moiety in different positions, preferably in positions 1, 2, 3 and 5.
  • Tetrazolium salts comprising two tetrazole rings are coupled so that they provide a defenyl group or a naphthyl group where the tetrazol groups meet the two positions for.
  • IV BT also called 2- [4- [4- (3,5-diphenyltetrazol-2-io-2-yl blue chloride) -3-methoxyphenyl] -tetrazolium 2-methoxyphenyl] -3,5-diphenyltetrazole dichloride -2-io
  • XIX NBT p-Nitro Blue Chloride of (2,2'-di-nitrophenyl-5,5'-diphenyl-3,3'- Tetrazolium Chlorid or (3,3 ' dimethoxy-4,4'-diphenylene) ditetrazolium chloride blue nitro
  • Tetrazolium violet 2,5-diphenyl-3 - [alpha, -naphthyl] -tetrazolium, chloride
  • step b) of the first method of the invention the mixture obtained in step a) is maintained long enough for the ERO presence indicator compound to be transformed into a detectable compound in those cells containing said ERO.
  • step b) is carried out for the time necessary for said NBT to be reduced to give rise to formazan. Said process can be conveniently monitored by detecting absorbance at 630 nm.
  • the reaction is maintained for at least 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 60 minutes or at least for 2, 3, 4, 5, 6, 7, 8, 9 or 20 hours.
  • the reaction temperature is typically 37 ° C, although it can be carried out at temperatures between 20-45 ° C, preferably 25-40 ° C, even more preferably between 30-40 ° C.
  • the first method of the invention comprises an additional step (step b2) after step b) wherein the concentration of the detectable compound in the sample is determined where an increase in the concentration of said compound with respect to a reference sample is indicative of the presence of reactive oxygen species in said cell population.
  • an absorbance value is obtained which is indicative of the presence of reactive oxygen species in said cell population.
  • the detectable compound is a colored compound, whereby the concentration of said compound is measured by determining the absorbance of said compound at the appropriate wavelength.
  • concentration or optical density as used in the present invention refers to the proportion of incident light that is absorbed by a substance.
  • the absorbance of a sample can be determined, for example, by a spectrophotometer.
  • the ERO indicator compound is BT, in which case the determination of the concetration of the compound is carried out by measuring the absorbance of the sample in step b2) at 630 nm.
  • Reference sample means a cell population that lacks ERO or has been treated to eliminate ERO.
  • the cell population that is being studied is a sperm population
  • Fertile subject means a subject whose sperm are able to fertilize an oocyte.
  • the WHO criteria for considering a fertile subject is an amount of 10 million mobile sperm per milliliter of semen.
  • the method of the invention includes an additional step after step b) (step b3), which can be carried out in parallel with step b2) to determine the presence of DNA fragmentation and which comprises incubating a sample of the mixture of stage b) under suitable conditions for the denaturation of DNA to occur and determine the appearance of halos around the sperm head, where the presence of halos below a certain threshold value is indicative of that sperm have DNA fragmentation.
  • the detection of the presence of halos around the sperm head can be carried out essentially by contacting a fraction of the sample cells with an acid solution and with a lysis solution. Treatment with the acid solution denatures the DNA. It is then treated with a lysis solution that eliminates most nuclear proteins. After this treatment, sperm with fragmented DNA do not show halos, while those sperm in which the DNA is intact develop large halos around the nucleoid.
  • the term "acid solution”, as used in the present invention, refers to any solution, suspension, emulsion or other fluid containing a compound that acts as a donor of H + groups.
  • the acid solution may contain an acid selected from the group hydrochloric, acetic, nitric acid or mixtures thereof, among others.
  • the acid solution contains hydrochloric acid between 0.04 and 0.08 M.
  • lysis solution refers to any solution, suspension, emulsion or other fluid that is capable of causing lysis of the cells that have contacted said solution.
  • the lysis solution may contain at least one detergent, at least one chaotropic agent and / or at least one reducing agent.
  • Detergents suitable for use in the denaturing solution include, without limitation, ammonium detergents (e.g., sodium lauryl sulfate, ammonium lauryl sulfate), cationic detergents (cetyl trimethylammonium bromide, cetylpyridinium chloride, benzalkonium chloride, benzetonium chloride and the like ), zwitterionic detergents (for example, CHAPS, lecithins) or non-ionic (cetyl alcohol, stearyl alcohol, oleyl alcohol, decyl glycoside, lauryl glycoside, octyl glycoside, Tritium X-100).
  • the detergent that is part of the lysis solution is Triton X-100.
  • the detergent that is part of the lysis solution is sodium lauryl sulfate (SDS), preferably 1%.
  • Chaotropic agents for use in the present invention include, without limitation, urea (typically at a concentration of 6-8M), thiourea (typically at a concentration of at least 2M), guanidinium chloride (typically at a concentration of at least 6 M) and lithium perchlorate (typically at a concentration of at least 4.5 M).
  • Reducing agents suitable for use in the present invention include, without limitation, beta-mercaptoethanol, dithiothreitol and tris (2-carboxyethyl) phosphine.
  • the reducing agent is dithiothreitol, preferably at 0.8M.
  • the analytical method is carried out as described by Fernández JL. et al, (Fertile. Steril. 2005; 84: 860) and consists of submerging sperm from fresh, frozen or diluted samples in an agarose gel whose support is a pretreated slide and where the sample is treated sequentially with a denaturing acid solution (0.08 N HC1), a first neutralizing lysis solution (0.4 M Tris, 0.8 M DTT, 1% SDS, and 50 mM EDTA, pH 7.5), a second neutralizing lysis solution (0.4 M Tris, 2 M NaCl, and 1% SDS, pH 7.5).
  • a denaturing acid solution (0.08 N HC1
  • a first neutralizing lysis solution 0.4 M Tris, 0.8 M DTT, 1% SDS, and 50 mM EDTA, pH 7.5
  • a second neutralizing lysis solution 0.4 M Tris, 2 M NaCl, and 1% SDS, pH 7.5.
  • the detection of DNA halos is carried out visually after staining the sperm with a DNA probe, preferably a fluorescent probe and, even more preferably, DAPI).
  • a DNA probe preferably a fluorescent probe and, even more preferably, DAPI.
  • the sample is considered to be fertile when at least 20-30% of the sperm have a halo greater than or equal to 7.5 ⁇ .
  • Halo determination is typically carried out by direct visualization of the sperm by phase contrast microscopy.
  • Methods for determining if a solution is suitable for use in the acid treatment of the present invention comprise analyzing whether said solution is capable of denaturing the DNA. Said capacity can be analyzed using various techniques known in the state of the art, such as the increase in absorbance at 260 nm, among others.
  • Methods for determining whether a lysis solution is suitable for use in the present invention comprise analyzing the ability of said solution to remove nuclear proteins from DNA. Said capacity can be analyzed using various techniques widely known in the state of the art, including DNAase I footprint, gel mobility change assay, nitrocellulose binding assay, western blotting, among others.
  • Step c) of the first method of the invention comprises placing the mixture obtained in b) with a gelling agent on a solid support under conditions suitable for gelling agent gelation to occur.
  • gelling agent is meant that substance that allows mass coagulation of a colloidal solution by forming an extremely fine solid network that contains a liquid in its meshes.
  • the thickener compound used in step a) of the first method of the invention is both a gelling compound, so that step c) does not require the addition of a gelling compound but simply a change of conditions so that the thickening / gelling compound gels so that the cells of the cell population are immobilized.
  • Gelling agents that increase the viscosity that can be used in the present invention are selected from Table 2.
  • I Agarose polysaccharide formed by alpha and beta galactose that is mainly extracted from the algae of the Gellidium and Gracillaria genera.
  • Alginic acid product obtained from different types of algae, including Macrocystis, Fucus, Laminaria.
  • Alginate and its derivatives among which sodium, potassium, ammonium, calcium alginate, propylnenglycol.
  • Agar-agar extracted from various types of red algae, including the genus
  • V Carrageenans product obtained from various types of Gigartine algae,
  • XVI Esters of fatty acids and sorbitan among which polyoxyethylene sorbitan monolaurate, polyoxyethylene sorbitan monoleate, polyoxyethylene sorbitan monopalmitate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monostearate, polyoxyethylene sorbitan monostearate
  • agarose is used as a thickening agent in step a) and as a gelling agent in step c), it is sufficient to lower the temperature below the gelation temperature of the agarose at the concentration at That this is found.
  • Said temperature can easily be determined by the person skilled in the art from tables in which the gelation temperature of the agarose is correlated with the concentration in the sample (for example, the table available at http://www.lonzabio.com / uploads / tx_mwaxmarketingmaterial / Appendix_B_- _Agarose_Physical_Chemistry.pdf).
  • the thickening / gelling agent is a low melting point agarose.
  • Low melting agarose are commercially available such as Ultra Pure (R) agarose (Invitrogen), NuSieve (R) GTG (R) Agarose (Lopza), LM Agarosa and LM Sieve (Pronadisa), Agarosa SERVA Premium (Serva) and the like
  • step c) is carried out by bringing the temperature of the mixture to 10-30 ° C, preferably 15-25 ° C, even more preferably 20-25 ° C.
  • the gelling agent is alginate
  • gelation is induced by adding calcium ions to the medium.
  • solid support refers to a surface of glass, plastic, ceramic or metal among others, which allows the mixture of the invention containing the gelling agent to be contained. According to the method used in the Quantification of the cells will be necessary for said support to let light through.
  • the solid support is a slide.
  • step c) is carried out using agarose at a concentration of 0.5-5%, in which case gelation is carried out directly on the slide by applying the mixture obtained in the step b) to a slide and incubation at room temperature.
  • step d) of the first method of the invention comprises identifying those cells in which the detectable compound appears, so that said cells will be those containing ERO.
  • the cells comprising the detectable compound resulting from the conversion of the ERO indicator are detected by direct observation by optical microscopy.
  • the indicator compound is a tetrazolium salt, preferably BT
  • the detectable compound appears an intense blue precipitate normally located on the intermediate piece and the sperm head.
  • the identification of the different cells in the sample can be done by phase contrast microscopy, it is preferable to stain the cells with a dye. Typically, staining is carried out after the gelling step of the gelling agent. Staining solutions that can be employed for the realization of the present invention include, without limitation, gomori ticchromic, masson trichrome, methylene green, giemsa, Wright, hematoxylin-eosin, methylene blue, among others. In a preferred embodiment, the cells are stained with methylene green.
  • the authors of the present invention have developed a method for determining the need for an antioxidant therapy of a patient comprising determining the presence in a semen sample of said subject of ERO-containing cells using a method of the invention, and percentage of cells that present DNA fragmentation using a method of the invention wherein if the percentage of cells comprising ROS and the percentage of cells exhibiting DNA fragmentation is greater than said percentages in a reference sample is indicative that said patient should be treated with a antioxidant therapy
  • antioxidant therapy refers to the administration of antioxidant agents for the treatment of a disease.
  • antioxidant agent means all those elements whose function is to eliminate free radicals from the body.
  • the term "determination" refers to the determination of the probability that the patient needs to receive an antioxidant therapy. As those skilled in the art will understand, the prediction of the need for such antioxidant therapy, although it is preferred, does not need to be correct for 100% of the subjects to be diagnosed or evaluated. The person skilled in the art can easily determine if the result obtained for a subject is statistically significant using several well-known statistical evaluation tools, for example, determination of confidence intervals, determination of p-values, Student's t-test, Mann Whitney, etc. Details are found in Dowdy and Wearden, Statistics for Research, John Wiley & Sons, New York 1983. Preferred confidence intervals are at least 50%, at least 60%, at least 70%, at least 80 %, at least 90%, at least 95%. P values are preferably 0.2, 0.1 or 0.05.
  • Quantifying the proportion of cells refers to numerically expressing the cells that show the detectable compound in relation to the cells that do not show said compound. In a particular embodiment, said procedure is carried out by optical microscopy.
  • reference sample in the context of the present invention, it is understood as the biological sample of a fertile subject or previous samples of the same individual, which are used to determine the presence of ROS.
  • the second method of the invention contemplates the possibility of determining the need for an antioxidant therapy of a subject from the different results it provides to the first method of the invention.
  • an indication of the existence of the need for antioxidant therapy is the existence of a percentage of cells that show ROS above a certain threshold value. Said value can be combined with the presence of a percentage of cells that do not show halo greater than a certain threshold value.
  • the second method of the invention allows to determine the possibility that a subject needs an antioxidant therapy if:
  • a percentage of cells containing ERO greater than a threshold value appears.
  • the threshold percentage value of cells containing ERO is 20%.
  • the threshold value is 30% and / or
  • a percentage of cells containing ERO is greater than a threshold value and the percentage of cells that do not show halo is greater than a threshold value.
  • the threshold percentage value of cells containing ERO is 20%.
  • the threshold value is 30%.
  • the threshold value of the percentage of cells that do not show halo is 20%.
  • Threshold values for each of the parameters obtained by applying the different embodiments of the first method of the invention can be determined from a reference sample.
  • the terms and expressions "cell”, “cell population”, “isotonic conditions”, “thickening agent”, “compound indicating the presence of reactive oxygen species” and “gelling agent” have been defined in detail in the context of the first method of the invention and are used in the same way in the second method of the invention.
  • the invention relates to a method (hereinafter third method of the invention) comprising:
  • step b) contacting said substance X with said cell population, b) Contacting said cell population under isotonic conditions with a thickening agent so as to substantially reduce the mobility of the cells of the cell population and with an indicator compound of the presence of reactive oxygen species, c) maintain the mixture obtained in step b) for sufficient time for the conversion of the indicator compound into a detectable compound in the presence of reactive oxygen species,
  • a decrease in the proportion of cells that show a change in color with respect to the reference sample is indicative that substance X is capable of decreasing the presence of reactive oxygen species in said cells. wherein the decrease in the proportion of cells that show a change in coloration is indicative that substance X is capable of decreasing the presence of ROS in said cells.
  • the third method of the invention comprises contacting the cell population with a compound or preparation whose effect.
  • a cell By "contacting" a cell with the candidate compound, according to the present invention, any possible way of bringing the candidate compound into the cell expressing the DNA construct is included.
  • the candidate compound in case the candidate compound is a low molecular weight molecule, it is sufficient to add said molecule to the culture medium.
  • the candidate compound in case the candidate compound is a high molecular weight molecule (for example, biological polymers such as a nucleic acid or a protein), it is necessary to provide the means for that molecule to access the cellular interior.
  • the candidate molecule is a nucleic acid, conventional methods for transfection can be used, as described above for the introduction of the DNA construct.
  • the cell can contact both the protein directly and the nucleic acid that encodes it coupled to elements that allow transcription / translation once they are inside the cell.
  • any of the methods mentioned above can be used to allow entry into the cell interior.
  • the compound to be tested is not isolated but is part of a more or less complex mixture either derived from a natural source or part of a library of compounds.
  • the library may have been preselected to contain compounds that can access the cell interior more easily.
  • the compounds can be selected based on certain parameters such as size, lipophilicity, hydrophilicity, ability to form hydrogen bonds.
  • the compounds to be tested may be part of an extract obtained from a natural source.
  • the natural source can be animal, vegetable obtained from any environment, including, without limitation, extracts from terrestrial, aerial, marine and similar organisms.
  • Steps b) ae) essentially coincide with steps a) to d) of the first method of the invention and the terms used in said method are used with the same meaning in the third method of the invention.
  • the invention additionally comprises one or more stages of fractionation of said mixture and the repetition of steps (a), (b), (c) , (d) and (e) of the method of the invention a variable number of times until the compound of the mixture responsible for the decrease in the ERO level is isolated.
  • Methods for the fractionation of compounds present in a mixture include chromatography (thin layer, gas or gel molecular exclusion, affinity), crystallization, distillation, filtration, precipitation, sublimation, extraction, evaporation, centrifugation, mass spectrometry, adsorption and the like.
  • a step c2) is further included, which comprises determining the concentration of the detectable compound in the mixture of step c) and wherein a decrease in absorbance with respect to a reference sample is indicative that substance X is capable of decreasing the presence of ROS in said cell population.
  • step d2 comprising incubating a sample of the mixture of stage c with a denaturing solution, then with a lysis solution and finally staining said cells where the cells that Do not show halos larger than a certain threshold value. It is indicative that these cells have fragmented DNA.
  • compositions and kits of the invention and diagnostic uses thereof are provided.
  • the invention in another aspect, relates to a composition
  • a composition comprising a gelling agent and an indicator compound for the presence of ERO.
  • composition refers to a mixture of two or more components.
  • the compositions of the invention contain the reagents necessary to detect the need for antioxidant therapy of a subject from a semen sample of said subject.
  • the composition of the invention comprises a thickening agent (preferably agarose and even more preferably low melting point agarose) and an ERO indicator (preferably a tetrazolium salt and even more preferably BT) where both components are forming a mixture.
  • a thickening agent preferably agarose and even more preferably low melting point agarose
  • an ERO indicator preferably a tetrazolium salt and even more preferably BT
  • the compositions of the invention comprise agarose at a concentration of 2% to 5% and NBT at a concentration of up to 1 mg / ml.
  • thickener compound is also a gelling compound
  • the thickener / gelling compound is agarose
  • the agarose is low melting point agarose.
  • the indicator compound for the presence of reactive oxygen species is a tetrazolium salt and, even more preferably, is NBT.
  • the thickener compound is low melting agarose
  • the ERO indicator compound is NBT
  • the agarose is at a concentration of 2% to 5%
  • the NBT is found at a concentration of up to 1 mg / ml.
  • the invention relates to a kit comprising a gelling agent, a compound indicating the presence of reactive oxygen species, an acid solution and a lysis solution.
  • acid solution and “lysis solution” have been explained in detail in the context of the first method of the invention and apply equally to the kit of the invention.
  • the kit of the invention additionally comprises a probe for the detection of DNA, preferably a fluorescent probe (ethidium bromide, acridine orange, propidium iodide, ToPro-3, DAPI) and, even more preferably, DAPI.
  • the invention relates to the use of a composition or kit comprising a gelling agent and a compound capable of forming a detectable product in the presence of ROS to determine the presence of ROS in a cell population. In a further aspect, the invention relates to the use of a composition or a kit comprising a gelling agent and a compound capable of forming a detectable product in the presence of ROS to determine the need for antioxidant therapy of a male subject.
  • kits refers to a combination of articles that facilitate the implementation of a process, method, test, analysis or manipulation of a sample.
  • the kits of the invention contain the reagents necessary to determine the need for antioxidant therapy of a subject from a semen sample of the subject shower.
  • the kit of the invention comprises a thickening agent (preferably agarose and even more preferably low melting point agarose) and an ERO indicator (preferably a tetrazolium salt and even more preferably BT) where both components are in a same container or in separate containers. Additional components that may be part of the kit of the invention include:
  • Suitable reagents to cause denaturation of DNA (acid solutions) and reagents to remove nuclear proteins (lysis solution).
  • Suitable reagents for sperm staining preferably methylene green.
  • thickening agent thickening agent
  • gelling agent gelling agent
  • ERO compound capable of forming a detectable product in the presence of ERO
  • EXAMPLE 1 The method of the present invention for determining the presence of ROS in a cell population is an indirect method that has been correlated with other chemiluminescence-based methodologies (Esfandiari N. et al, J. Androl. 2003 Nov-Dec; 24 (6): 862-70). Its main advantages are that it is very economical and only requires an optical microscope.
  • BT is a water-soluble yellow salt that reacts in the presence of superoxide anions within cells producing a blue diformazan precipitate.
  • the amount of diformazan crystals present in the cells reflects the production by these superoxide ion cells.
  • a mixture of agarose with NBT (agarose-NBT) was first prepared.
  • 10 mg of NBT (Sigma N5514-10 tab) was dissolved in 10 ml of distilled water and the solution was maintained at 37 ° C.
  • an amount of low melting point agarose was dissolved in PBS at pH 7 between 2% and 5% and left on a 37 ° heating plate to prevent it from gelling.
  • the two solutions were then mixed in equal volumes and distributed in volumes of 100 ⁇ in eppendorff tubes. The resulting mixture is stable between 2 ° C and 22 ° C.
  • the semen sample was diluted in PBS at a concentration of between 5-10 million sperm per milliliter.
  • the agarose-NBTs were placed in a float and incubated for 5 minutes in a bath between 90-100 ° C until the agarose dissolved.
  • a microwave could be used to melt the agarose.
  • the tubes were then transferred to a 37 ° C bath and allowed to temper for 5 minutes.
  • a semen volume (with the adjusted concentration) was mixed with an equal volume of agarose and homogenized with the help of a micropipette. The mixture was incubated at 37 ° C for 45 minutes. With this time, the maximum precipitated product (diformazan) is produced.
  • the Halosperm kit Halosperm kit
  • the mixture can acquire a bluish coloration whose intensity will depend on the presence of superoxide ion, both in sperm and leukocytes present as in seminal plasma.
  • the intensity of the coloration can be determined by measuring the absorbance at 630 nm in a spectrophotometer, cytometer or in a plate reader. This change in color represents a first indication of the presence of oxidative stress or deficit in the detoxifying capacity of the sample.
  • a sperm DNA fragmentation value 2) the proportion of positive NBT sperm and 3) a change in the color of the sample representing a qualitative value (negative, mild, moderate, intense) or quantitative (after measuring its absorbance) that can be compared with that of a reference sample.
  • NBT modified agarose for the determination of the presence of ROS in semen samples should not affect the effectiveness of the Halosperm commercial kit fragmentation test.
  • the objective of this study was to determine the effect of agarose-NBT on the result of the halospem kit fragmentation test.
  • SDF Sperm DNA fragmentation
  • DS Degraded spermatozoa
  • gl degrees of freedom
  • Sig significance.
  • the BT agarose used in the method of the present invention is compatible with the halosperm kit agarose for the determination of sperm DNA and since these are two related variables, fragmentation and oxidative stress, the optimization of this method could represent a comfortable presentation which would allow simultaneous determination of sperm DNA fragmentation and oxidative stress from a small volume of semen sample with a very low economic cost.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Toxicology (AREA)
  • Physiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

La presente invención se refiere a un método para determinar la producción de especies reactivas de oxígeno en una población celular. Asimismo, la invención se refiere a un método para determinar la necesidad de una terapia antioxidante de un sujeto masculino y a un método para identificar una sustancia con capacidad de disminuir las especies reactivas de oxígeno presentes en una población celular.

Description

MÉTODO PARA DETERMINAR LA PRODUCCIÓN DE ESPECIES REACTIVAS DE OXÍGENO EN UNA POBLACIÓN CELULAR
CAMPO DE LA INVENCIÓN
La presente invención se refiere a un método para determinar la producción de especies reactivas de oxígeno en una población celular. Asimismo, la invención se refiere a un método para determinar la necesidad de una terapia antioxidante de un sujeto masculino y a un método para identificar una sustancia con capacidad de disminuir las especies reactivas de oxígeno presentes en una población celular.
ANTECEDENTES DE LA INVENCIÓN
La fertilidad se define como la capacidad que tienen los seres vivos de reproducirse. En base a este concepto, se asume que la esterilidad es la pérdida de esta capacidad y se estima que afecta a un 15% de las parejas en edad reproductora. Aproximadamente, en la mitad de los casos el factor masculino está presente: en un 20% es exclusivamente masculino, el 38% es predominantemente femenino, y en otro 27% se considera mixto mientras que en el 15% restante no se encuentra una causa específica, siendo estos casos clasificados como infertilidad de origen desconocido o idiopática. Según la American Society for Reproductive Medicine (The practice committee of The American Society for Reproductive Medicine, 2006) se considera la infertilidad como una patología siempre y cuando la pareja no consiga concebir en un periodo mínimo de 12 meses. A pesar de esto, entre un 20% - 30% consiguen tener descendencia superado este tiempo.
Para el diagnóstico de la infertilidad masculina, además de los principales parámetros que se determinan en el seminograma (concentración, movilidad y morfología espermática), recientemente se ha empezado a considerar un nuevo parámetro, la fragmentación del ADN espermático. El análisis de la fragmentación del ADN espermático determina la existencia de roturas en una o en las dos cadenas del ADN. Esto ha suscitado un cierto interés debido a que la presencia de estas roturas comprometen la capacidad del individuo para conseguir una descendencia sana al verse alterado el mensaje genético paterno. Efectivamente, en los últimos años, son varios los estudios que demuestran la presencia de un elevado porcentaje de espermatozoides con el ADN fragmentado en individuos infértiles respecto a los individuos fértiles (Evenson DP et al. Theriogenology 15:979-91 (2006)). La consecuencia ha sido inmediata en el ámbito del diagnóstico clínico de la infertilidad masculina y se empieza a valorar como marcador de calidad espermática puesto que la fragmentación del ADN ofrece un valor que complementa a los parámetros del seminograma, si bien es cierto que el valor predictivo respecto a la fertilidad es aún objeto de estudio (Zini y Sigman. J Androl. 30(3):219-29 (2009)).
En la actualidad, los valores que relacionan fragmentación del ADN con bajo potencial de fertilidad "in vivo" o "in vitro" estarían entre un 30-40% de espermatozoides afectados (Evenson DP y Wixon R. Fértil Steril 90(4): 1229-31 (2008)). En estos casos, el riesgo de abortos recurrentes, fallo en la implantación o de desarrollo embrionario anormal aumenta significativamente (Carrell DT et al. Arch Androl 49 (1): 49-55 (2003)). Por otra parte, cabe esperar que en individuos fértiles y sin otras patologías, el porcentaje de espermatozoides con el ADN fragmentado se sitúe por debajo del 20% mientras que valores intermedios entre el 20% y el 30% de fragmentación estarían indicando una situación anormal si bien aún no se podría relacionar con infertilidad (Erenpreiss J et al. Asían J Androl 8(1): 11-29 (2006)).
La etiología de la fragmentación del ADN espermático es multifactorial y aunque los mecanismos que provocan estas alteraciones están en parte identificados, no se sabe con absoluta certeza cuál es la procedencia de este daño (Tesarik et al. Reprod Biomed Online 12:715-21 (2006), Angelopoulo R et al. Reprod Biol Endocrinol 5:36 (2007)). No obstante, a nivel intrínseco, se ha propuesto que alteraciones durante la espermiogénesis afectan a la compactación del núcleo espermático, produciendo un estado de vulnerabilidad a ciertas formas de estrés oxidativo que producirían la rotura del ADN (Aitken RJ y De Iuliis GN. Mol Hum Reprod. 2009 Jul 31).
El estrés oxidativo está considerado como una de las principales causas de fragmentación del ADN espermático. De modo general, por estrés oxidativo se entiende que en el órgano afectado, se está produciendo un desequilibrio metabólico, al no ser capaz el organismo de neutralizar rápidamente las especies reactivas de oxígeno que se producen como consecuencia del constante aporte de energía metabólica que necesita para su actividad. De este modo, al acumularse producen daños en todos los componentes de la célula, entre ellos en el ADN, oxidación de ácidos grasos poliinsaturados y oxidación de aminoácidos en las proteínas.
Diversos estudios han demostrado que las especies reactivas de oxígeno, de origen tanto endógeno como exógeno, pueden inducir la rotura del ADN espermático in vitro o in vivo confirmando el papel que los radicales libres desempeñan en la etiología de la infertilidad masculina (Iwasaki A y col Fértil Steril. 1992;57:409-16, Zini A Int J Androl. 1993;16:183-8, Tremellen K Reprod Update. 2008 May-Jun;14(3):243-58).
Se estima que entre el 25% - 50% de los pacientes infértiles presentan concentraciones anómalas de especies reactivas de oxigeno (Twigg J et al, Hum Reprod. 1998; 13: 1429- 36, Aitken RJ et al, Biol Reprod. 1998;59: 1037-46, Sawyer DE Mutat Res. 2003;529:21-34).
En el caso particular de pacientes diagnosticados con varicocele, principal patología corregible quirúrgicamente y que representa entre 19% - 41% de los casos de infertilidad, la presencia de especies reactivas de oxigeno puede ser incluso mayor respecto a otros pacientes infértiles (T. Mostafa et al, Andrologia 41 (2009), pp. 125- 129, Naughton CK. Et al, Hum Reprod Update 7 (2001), pp. 473-481).
Dentro de este contexto, parece obvio que el tratamiento racional con terapias antioxidantes podría ayudar a mejorar la integridad del ADN espermático dado que su principal efecto está dirigido a mantener el equilibrio homeostático mediante la neutralización de especies reactivas de oxigeno. En efecto, varios estudios han demostrado un resultado positivo de ciertos tratamientos con antioxidantes sobre la fragmentación del ADN espermático y otros parámetros seminales de relevancia como son la concentración, movilidad o la morfología espermática (Agarwal A. et al, Reprod Biomed Online. 2004 Jun;8(6):616-27., Greco E. et al, J Androl. 2005 May- Jun;26(3):349-53, Ménézo YJ. et al, Reprod Biomed Online. 2007 Apr;14(4):418-21). Si bien estos estudios son escasos y los tamaños muéstrales insuficientes, los datos actuales apuntan a que el tratamiento con antioxidantes orales contribuyen a preservar la integridad del ADN espermático. Idealmente, la administración de tratamientos antioxidantes debería recomendarse tras determinar la presencia de estrés oxidativo en la muestra del paciente.
La determinación de estrés oxidativo en muestras de semen en los laboratorios de andrología no está incluida en la práctica rutinaria porque los métodos actuales son caros, complejos y están poco estandarizados. En la actualidad existen unos 30 métodos para determinar estrés oxidativo (Ochsendorf FR. Hum Reprod Update. 1999 Sep-Oct;5(5):399-420). Estos métodos se clasifican en métodos directos, indirectos y signos centinelas.
Los métodos directos determinan el daño producido por el exceso de especies reactivas de oxígeno contra los fosfolípidos presentes en la membrana plasmática o en el ADN. Los métodos directos determinan un daño que es el producto final de un desequilibrio entre la producción excesiva de radicales libres y la capacidad antioxidante de la célula. Dentro de este grupo podemos encontrar el test del ácido tiobarbitúrico que requiere de cromatografía de alta resolución (HPLC) o la determinación de isoprostano 8-Iso- PGF2a o el ensayo cl l-BODIPY. Estos tests son bastante prometedores pero no se utilizan de forma rutinaria por su complejidad.
Los métodos indirectos son por lo general muy sensibles y tienen la ventaja de que los valores de normalidad dentro de controles fértiles e infértiles están relativamente bien determinados. Estos métodos determinan la presencia de especies reactivas de oxígeno (en adelante ERO) en muestras de semen Las ERO incluyen iones de oxígeno, radicales libres y peróxidos tanto inorgánicos como orgánicos. Son generalmente moléculas muy pequeñas altamente reactivas que se forman de manera natural como subproducto del metabolismo normal del oxígeno y tienen un papel importante en la señalización celular. Son por lo general métodos basados en quimioluminiscencia utilizando Luminol o Lucigenina (Athayde KS. et al. J. Androl. 2007, 28:613-20). Sin embargo, la lucigenina tiende a autoxidarse provocando alteraciones en los resultados, y por otra parte, el análisis requiere de un luminómetro que es un instrumental muy costoso. Tune et al. (Int. J. AndroL, 33: 13-21) han descrito un ensayo indirecto de fertilidad basado en la detección de ERO mediante el uso de NBT como indicador. En las células que contienen ERO, el NBT se transforma en formazán, dando lugar a un precipitado coloreado. No obstante, este método tiene la desventaja de que los espermatozoides de la muestra tienden a agregar y sedimentar en las condiciones en las que se incuban para dar lugar a la formación de formazán, lo que dificulta la determinación del porcentaje de espermatozoides que contienen ERO. Por último, existe un conjunto de indicadores (signos centinelas) que indican la presencia de estrés oxidativo estos son: poca movilidad espermática, teratozoospermia, presencia de leucocitos en semen, aumento de la viscosidad, test HOST positivo o mala integridad de membrana. Existe por tanto la necesidad de encontrar un método económico y sencillo de realizar para determinar la presencia de ERO en una población celular.
COMPENDIO DE LA INVENCIÓN En un primer aspecto, la invención se refiere a un método para determinar la presencia de células que contienen especies reactivas de oxígeno en una población celular que comprende:
a) Poner en contacto en condiciones isotónicas dicha población celular con un agente espesante de forma que se reduzca sustancialmente la movilidad de las células de la población celular y con un compuesto indicador de la presencia de especies reactivas de oxígeno, b) mantener la mezcla obtenida en el paso a) durante el tiempo suficiente para la conversión del compuesto indicador en un compuesto detectable en aquellas células que contengan especies reactivas de oxígeno, c) colocar la mezcla obtenida en b) con un agente gelificante sobre un soporte sólido en condiciones adecuadas para que se produzca la gelificación del agente gelificante y d) identificar aquellas células en las que aparece el compuesto detectable en donde la presencia del compuesto detectable en una célula es indicativo de la presencia en dicha célula de especies reactivas de oxígeno. En un aspecto adicional, la invención se refiere a un método para determinar la necesidad de una terapia antioxidante a un paciente que comprende determinar la presencia en una muestra de semen de dicho sujeto de células que contienen ERO usando un método de la invención y el porcentaje de células que presentan fragmentación de ADN usando un método de la invención en donde si el porcentaje de células que comprenden ERO y el porcentaje de células que presentan fragmentación de ADN son superiores a dichos porcentajes en una muestra de referencia es indicativo de que dicho paciente debería ser tratado con una terapia antioxidante.
En un aspecto adicional, la invención se refiere a un método para identificar una sustancia X con capacidad de disminuir las especies reactivas de oxígeno presentes en una población celular que comprende:
a) poner en contacto dicha sustancia con dicha población celular, b) Poner en contacto en condiciones isotónicas dicha muestra biológica con un agente espesante de forma que se reduzca sustancialmente la movilidad de las células de la población celular y con un compuesto indicador de la presencia de especies reactivas de oxígeno, c) mantener la mezcla obtenida en el paso b) durante el tiempo suficiente para la conversión del compuesto indicador en un compuesto detectable en presencia de especies reactivas de oxígeno,
d) colocar la mezcla obtenida en c) con un agente gelificante sobre un soporte sólido en condiciones adecuadas para que se produzca la gelificación del agente gelificante y
e) cuantificar la proporción de células en las que aparece el compuesto detectable
en donde una disminución de la proporción de células que muestran un cambio en la coloración con respecto a la muestra de referencia es indicativo de que la sustancia X es capaz de disminuir en dichas células la presencia de especies reactivas de oxígeno. En otro aspecto, la invención se refiere a una composición que comprende un agente espesante y un compuesto con capacidad indicador de la presencia de ERO. En otro aspecto adicional, la invención se refiere a un kit que comprende un agente espesante, un compuesto indicador de la presencia de especies reactivas de oxígeno, una solución ácida que desnaturalice el ADN y una solución de lisis que elimine las proteínas nucleares.
En otro aspecto adicional, la invención se refiere al uso de una composición o de un kit que comprende un agente espesante y un compuesto indicador de la presencia de ERO para determinar la presencia de especies reactivas de oxígeno en una población celular.
En otro aspecto, la invención se refiere al uso de un kit que comprende un agente espesante, un compuesto indicador de la presencia de ERO, una solución ácida que desnaturalice el ADN y una solución de lisis que elimine las proteínas nucleares para determinar la necesidad de una terapia antioxidante de un sujeto masculino.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Vista al microscopio de espermatozoides con NBT en medio líquido. Obsérvese que los espermatozoides tienden a agregarse por lo que los espermatozoides NBT positivos (que presentan ERO) pueden afectar a los NBT negativos. Figura 2. Vista al microscopio de espermatozoides NBT positivos. Presentan un precipitado de color azul intenso localizado normalmente sobre la pieza intermedia y la cabeza.
Figura 3. Vista al microscopio óptico de una extensión de espermatozoides humanos inmersos en agarosa negativos para NBT, que no presentan ERO. Figura 4. Gráfico de bigotes y cajas en donde se representan los datos obtenidos para la variable SDF (porcentaje de espermatozoides con fragmentación de ADN ) según el tipo de agarosa que se ha utilizado: normales (izquierda), modificadas con NBT (derecha).
Figura 5. Gráfico de bigotes y cajas en donde se representan los datos obtenidos para la variable DS (porcentaje de espermatozoides degradados) según el tipo de agarosa que se ha utilizado: normales (izquierda), modificadas con NBT (derecha). DESCRIPCIÓN DETALLADA
Primer método de la invención
Los autores de la presente invención han desarrollado un método para la determinación de la presencia de células que contienen ERO en una población celular en una muestra biológica. Así, según se observa en el ejemplo de la presente invención, la puesta en contacto de una población celular con un agente indicador de la presencia de ERO y en presencia de un agente viscosizante permite detectar aquellas células entre la población que presentan ERO evitando los problemas asociados al estado de la técnica resultantes de la agregación de las células.
Por tanto, en un primer aspecto, la invención se relaciona con un método (en adelante primer método de la invención) para determinar la presencia de células que contienen ERO en una población celular que comprende:
a) Poner en contacto en condiciones isotónicas dicha población celular con un agente espesante de forma que se reduzca sustancialmente la movilidad de las células de la población celular y con un compuesto indicador de la presencia de ERO,
b) mantener la mezcla obtenida en el paso a) durante el tiempo suficiente para la conversión del compuesto indicador en un compuesto detectable en aquellas células que contengan ERO, c) colocar la mezcla obtenida en b) con un agente gelificante sobre un soporte sólido en condiciones adecuadas para que se produzca la gelificación del agente gelificante y
d) identificar aquellas células en las que aparece el compuesto detectable en donde la presencia del compuesto detectable en una célula es indicativo de la presencia en dicha célula de ERO.
Por "ERO" se entiende el conjunto de moléculas reactivas producidas en algunos procesos metabólicos en los que participa el oxígeno. Son moléculas muy reactivas debido a que poseen electrones desapareados que les hacen reaccionar con otras moléculas orgánicas en procesos de oxido-reducción. Ejemplos de ERO son iones de oxígeno, radicales libres y los peróxidos entre otros.
Por "población celular" se entiende, en el contexto de la presente invención, cultivos celulares de células eucariotas, en particular, células humanas, así como poblaciones de células primarias derivadas de la médula ósea, de la sangre, células usadas en técnicas de fertilización in vitro y similares. En una forma preferida de realización, la población celular es una población de espermatozoides. El término "espermatozoide", según se usa en la presente invención, se refiere a las células reproductivas del cualquier sujeto masculino (hombre, buey, etc.). La población de células puede encontrarse formando parte de una muestra de semen junto con el plasma seminal o diluido en una solución adecuada para preservar la integridad de los espermatozoides.
En una primera etapa, el primer método de la invención comprende poner en contacto en condiciones isotónicas dicha población celular con un agente espesante de forma que se reduzca sustancialmente la movilidad así como la sedimentación y agregación de las células de la población celular y con un compuesto indicador de la presencia de especies reactivas de oxígeno, Por "condiciones isotónicas" se refiere a las condiciones en las que a igual temperatura dos soluciones tienen la misma presión osmótica de forma que, si dichas soluciones se encuentran separadas por una membrana semipermeable, no existe flujo neto de agua a través de dicha membrana. Por "presión osmótica" se entiende la presión que ejercen las partículas del disolvente en una disolución sobre la membrana semipermeable que la separa de otra de mayor concentración. Las condiciones isotónicas son necesarias para mantener la integridad de la membrana plasmática celular. Condiciones isotónicas típicas incluyen 285-315 mOsm/kg H20, dependiendo del tipo celular. El término "agente espesante" se usa de forma intercambiable con "agente que aumente la viscosidad" o "agente viscosizante" y se entiende por aquel compuesto que incrementa la resistencia interna de una sustancia a fluir cuando se aplica un esfuerzo constante. Como consecuencia del aumento de la resistencia, las células muestran una menor tendencia a agregarse y además las células móviles en una mezcla con dicho compuesto tienen menor movilidad. Agentes espesantes adecuados para su uso en la presente invención incluyen, sin limitación:
(i) Polímeros de ácidos carboxílicos formados por polímeros entrecruzados formados por polímeros de ácido acrílico, ácido acrílico sustituido, sales y ésteres del ácido acrílico e incluyen compuestos de la familia de los carbopoles, incluyendo carbopoles carbopoles de la serie 900 (por ejemplo,
Carbopol 854), carbopol#1342, Carbopol# 1382, Pemulen TR-1 y Pemulen TR-2,
(ii) Polímeros de poliacrilato entrelazados
(iii) Polímeros de poliacrilamida y, en particular, polímeros de poliacrilamida no iónicos tanto ramificados como no ramificados y formados por monómeros de acrilamida y metacrilamida sustituidos con uno o dos grupos alquilo (Cí a C5). Monómeros preferidos incluyen, sin limitación, acrylamida, metacrilamida, N- metacrilamida, N-metilmetacrilamida, Ν,Ν-dimetilmetacrilamida, N- isopropilacrilamida, N-isopropilmetacrilamida y Ν,Ν-dimetilacrilamida. Estos polímeros tienen un peso molecular generalmente superior a 1000000, preferiblemente superior a 1500000 y hasta 3000000. Polímeros preferidos de esta categoría incluyen Sepigel 305 from Seppic Corporation (Fairfield, NJ), Hypan SR150H, SS500V, SS500W, SSSA100H, from Lipo Chemicals, Inc., (Patterson, NJ).
(iv) Polisacáridos tales como agarosa, celulosa, carboximetil hidroxietilcelulosa, hidroxietilcelulosa, hidroxietil etilcelulosa, hidroxipropilcelulosa, hidroxipropil metilcelulosa, metil hidroxietilcelulosa, celulosa microcristalina, celulosa sulfato sódico, y mezclas de las mismas. También resultan útiles las celulosas sustituidas por grupos alquilo en donde los grupos hidroxilo de las celulosas se encuentran hidroxialquiladas (preferiblemente hidroxietiladas o hidroxipropiladas) para formar celulosas hidroxialquiladas que se modifican posteriormente con un cadena lineal o ramificada C10-C30 a través de un enlaces tipo éter. Ejemplos de grupos alquilo que se usan para modificar las hidroxicelulosas incluyen estearil, isoesteariL lauriL miristiL cetiL, isocetil, cocoil, palmitiL oleiL, linoleil, linolenil, ricinoleiL behenil. Hidroxicelulosas preferidas incluyen cetil hidroxyetilcelulosa (Natrosol (3) CS Plus de Aqualon Corporation).
(v) gomas incluyendo gomas de acacia, agar, algin, ácido alginico, alginato amónico, amilopectina, alginato de calcio, carragenano de calcio, carnitina, carragenano, dextrina, gelatina, goma gellan, goma guar, guar hidroxipropiltrimonio cloruro, hectorita, ácido hialurónico, quitosano, guar hidroxipropli, goma karaya gum, kelp, goma de locust bean, goma natto, alginato de potasio, alginato de proplién glicol, goma escleroio, dextrano carboximetil sodio, sodio carrageenano, goma tragacanto, goma xantanay sus mezclas.
(vi) copolímeros entrelazados de éter vinilo y anhídrido maleico tales como PVM/MA.
(vii) Polímeros entrecruzados de polivinilpirrolidonas tales como ACP-1120, ACP- 1179, and ACPI 180, available from International Specialty Products (Wayne, NJ).
(viii) Agentes espesantes no incluidos en ninguno de los grupos anteriores tales como alginatos; carbomeros tales como los carbomeros 934, 934P, 940 y 941; goma de celuosa, alcoholo de cetearilo, cocamida DEA, dextrina; gelatina; hidroxietilcelulosa; hidroxipropilcelulosa; hidroxipropil metilcelulosa; silicato de magnesio y aluminio, alcohol de miristilo; harina de avena; oleamida DEA; alcohol olieco; PEG-7M; PEG-14M; PEG-90M; estearamida DEA; estearamida MEA; almidón de trigo, goma xantana y similares.
La etapa a) del primer método de la invención se lleva a cabo de forma que se reduzca sustancialmente la movilidad de las células de la población celular, preferiblemente durante el tiempo en que se lleva a cabo la etapa a). Por reducción sustancial de la movilidad de las células de la población celular se entiende que las células reducen su capacidad natural de movimiento o desplazamiento en al menos un 10%, un 20%, un 30%, un 40%, un 50%, un 60%, un 70%, un 80%, un 90% o un 100%, en cuyo caso las células no se desplazan apreciablemente durante el tiempo en que se lleva a cabo la etapa a). En el caso de que la población celular objeto de estudio sea una población de espermatozoides, el experto en la materia puede determinar las condiciones (concentración y temperatura) a la que un determinado agente espesante reduce la movilidad celular hasta valores adecuados para evitar la agregación celular usando métodos ampliamente conocidos tales como:
- Métodos colorimétricos tales como el comercializado bajo la marca Fertell en el que la muestra que contiene espermatozoides se calienta a 37°C y en donde los espermatoziodes móviles se detectan en base a su capacidad para nadar hasta un sensor recubierto con anticuerpos anti-CD95 conjugado con oro coliodal.
- Test colorimétricos tales como los descritos en WO 93/22053 y en US 5,434,027.
- Ensayos basados en dispositivos con microcanales en los que los espermatozoides móviles acceden a un detector y en donde la detección se lleva a cabo usando un indicador fluorescente que es captado por el espermatozoide y convertido en un agente detectable.
- Métodos basados en la inspección visual de espermatozoides desplazándose a través de un microcanal hacia un oocito.
- Métodos basados en la detección de variaciones en la densidad óptica de una muestra debida a la movilidad de las células tal y como se describe en US4,176,953. - Métodos basados en la detección de variaciones en la recepción de ondas acústicas causadas por el paso de espermatozoides a través de un microcanal tal y como se describe en WO07085839A.
La etapa a) comprende adicionalmente la puesta en contacto de la población celular objeto de estudio con un agente indicador de la presencia de ERO.
El término "agente indicador de la ERO", según se usa en la presente invención, se refiere a todo aquel compuesto que en presencia de ERO sufra un cambio en sus propiedades de manera que sea detectable, bien directamente por alguna propiedad de dicho compuesto bien indirectamente porque dicho compuesto tiene la capacidad de modificar una segunda molécula que es detectable.
Compuestos indicadores de ERO preferidos incluyen sales de tetrazolio, derivados y análogos. Las sales de tetrazolio son compuestos que presentan una estructura de tetrazol, tetrazolil o tetraozolo. La sal tetrazolio es una sal orgánica que comprende uno o dos anillos de tetrazol y una o más sustituciones con un resto arilo (fenilo o fenilo sustituido) o naftilo en distintas posiciones, preferiblemente en las posiciones 1, 2, 3 y 5. Típicamente, las sales de tetrazolio que comprenden dos anillos de tetrazol se encuentran acopladas de forma que aportan un grupo defenilo o un grupo naftilo en donde los grupos tetrazol se encuentran las dos posiciones para.
Los compuestos que en presencia de ERO sufren un cambio en sus propiedades de manera que son detectables que se pueden emplear para la realización de la presente invención pueden ser, entre otros, los indicados en la Tabla 1 descritos en la patente estadounidense US6368818.
TABLA 1 : COMPUESTO INDICADORES DE LA PRESENCIA DE ERO ADECUADOS PARA SU USO SEGÚN LA INVENCIÓN
I pABT Cloruro p-anisil azul de tetrazolio
II pApNBT Cloruro p-anisil p nitro azul de tetrazolio
III BSPT (Azul tiazolil) Cloruro de (2-2'-Benzotiazolil-5-stiril-3-(4'- TABLA 1 : COMPUESTO INDICADORES DE LA PRESENCIA DE ERO ADECUADOS PARA SU USO SEGÚN LA INVENCIÓN
ftalhidrazidil) tetrazolio)
IV BT también llamado Dicloruro de 2-[4-[4-(3,5-difeniltetrazol-2-io-2- Cloruro de azul de il)-3-metoxifenil]- tetrazolio 2-metoxifenil]-3,5-difeniltetrazol-2-io
V BTSPT Cloruro de 2-(2'-Benzotiazolil)-5-stiril-3-(4'- ftalhidrazidil)- tetrazolio
VI CTC Cloruro de 5-Ciano-2,3-ditolil tetrazolio
VII DMDPT bromuro de [3-4,s-Dimetiyltiazol-2-il)-2,5- difenil] tetrazolio o bromuro de l-[4,5- dimetiltiazol-2- il] -2, 5 -difeniltetrazolio
VIII DSNBT (Cloruro de
distirilnitroazul de
tetrazolio )
IX (lH)-tetrazol
X IDNTT Cloruro de Cloruro 2-(4-iodofenil)-3-(4-nitrofenil)-5- yodonitrotetrazolio feniltetrazol-
2-io
XI INT, (Cloruro de Nitro p-yodo violeta nitrotetrazolio (2-(4-iodofenil)-3- Tetrazolio Violeta) (4-nitrofenil)- 5 - feniltetrazolio
XII INpT Cloruro de 2-(p-iodofenil)-p-nitrofenil-5- feniltetrazolio
XIII Mnbt (Cloruro de m-Nitro
azul Tetrazolio)
XIV mNNT (Cloruro de m- Nitro Neotetrazolio)
XV MNSTC 2,2-bis(2-metoxil-4-nitro-5-sulfofenil)-2H- tetrazolio- 5 -carboxanilo
XVI MTS Sal de 3-(4,5-dimetiltiazol-2-il)-5-(3- carboximetoxifenil)-2-(4sulfofenil)-2H- TABLA 1 : COMPUESTO INDICADORES DE LA PRESENCIA DE ERO ADECUADOS PARA SU USO SEGÚN LA INVENCIÓN
tetrazolio
XVII MTT (Bromuro de Bromuro de 3+4,5-dimetiltiazol-2-il-2,s- tetrazolio o bromuro de difeniltetrazolio
tiazolil azul tetrazolio)
XVIII NBMT (Cloruro de Nitro
azul Monotetrazolio)
XIX NBT (p-Nitro Blue Cloruro de (2,2'-di-nitrofenil-5,5'-difenil-3,3'- Tetrazolium Chlorid o (3,3 'dimetoxi-4,4'-difenilene)ditetrazolio cloruro de Nitro azul
tetrazolio )
XX NT (Cloruro de Cloruro de 2,2',5,5'-Tetrafenil-3,3 '(p- Neotetrazolio) difenilene)-ditetrazolio
XXI NTV (Violeta de
Nitrotetrazolio)
XXII Azul tiazolil Bromuro de 2-(3,5-difeniltetrazol-2-ium-2-il)- 4,5- dimet il- 1 , 3 -tiazo 1
XXIII TB (Cloruro de azul de Dicloruro de [(3,3 '-dimetoxi (1,1 'bifenil)- tetrazolio) 4,4'dilil]- bis (2,5 difenil-2H-tetrazolio)
XXIV oTTR (o-Tolil Rojo Cloruro de 2-(2-metilfenil)-3,5-difeniltetrazol- Tetrazolio) 2-ium
XXV PCTMB sodium 3'-[l-[(fenilamino)-carbonil]-3,4- tetrazolio bis(4-metoxi-6-nitro)benzene-sulfonic acid hydrate
XXVI PNBT (Cloruro de p- 2-[2-metoxi-4-[3-metoxi-4-[3-(4-nitrofenil)-5- Nitro Azul de Tetrazolio) feniltetrazolidin-
2-il]fenil]fenil]-3-(4-nitrofenil)-5- feniltetrazolidine
XXVII PTB (Piperonil azul
tetrazolio) TABLA 1 : COMPUESTO INDICADORES DE LA PRESENCIA DE ERO ADECUADOS PARA SU USO SEGÚN LA INVENCIÓN
XXVIII pTTR (Rojo p-Tolil Cloruro de 2-(4-metilfenil)-3,5-difeniltetrazol- Tetrazolio) 2-ium
XXIX TC-NBT (Cloruro de Cloruro de (2,2'-di-p-nitrofenil-5,5'-di-p- Tiocarbamil nitro azul tiocarbamilfenil-3,3 '[3,3 'dimetoxi-4,4'- tetrazolio) bifenilene] -ditetrazolio
XXX TNBT (Cloruro de 2- [4- [4- [3,5 -bis(4-nitrofenil)tetrazol-2- ium- Tetranitroazul tetrazolio) Dicloruro 2-il] -3-metoxifenil] -2-metoxifenil] - 3,5-bis(4-nitrofenil)tetrazol-2-ium
XXXI TPTT (1,3,5- trifeniltetrazolio)
XXXII TR (TTC o TPT o Rojo Cloruro 2,3, 5-trifeniltetrazolio
tetrazolio)
XXXIII TV (Tetrazolio violeta o Tetrazolicloruro 2,3,5-Trifenil-2-H-, Cloruro
Violeta Tetrazolio) 2, 5 -difenil-3 - [alfa, -naftil] -tetrazolio, cloruro
2,5-difenil-3-[l-naftil]-2H-tetrasolio
XXXIV VTB (Veratril azul
tetrazolio)
XXXV WST-1 Disulfonato 4-[3-(4-yodofenil)-2-(4-nitrofenil)- 2H- 5 -tetrazolio]- 1,3-benzeno
XXXVI XTT 2,2-bis(2-metoxil-4-notro-5-sulfofenil)-2H- tetrazolio- 5 -carboxanilido
En la etapa b) del primer método de la invención, las mezcla obtenida en el paso a) se mantiene durante el tiempo suficiente para que el compuesto indicador de la presencia de ERO se transforme en un compuesto detectable en aquellas células que contengan dichas ERO. En el caso de que el agente indicador de la presencia de ERO sea NBT, la etapa b) se lleva a cabo durante el tiempo necesario para que dicho NBT se reduzca para dar lugar a formazan. Dicho proceso puede monitorizarse convenientemente mediante la detección de la absorbancia a 630 nm. En una forma preferida de realización, la reacción se mantiene al menos durante 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 60 minutos o al menos durante 2, 3, 4, 5, 6, 7, 8, 9 o 20 horas. La temperatura de reacción es típicamente de 37°C, aunque puede llevarse a cabo a temperaturas de entre 20-45 °C, preferiblemente, 25-40°C, aún más preferiblemente entre 30-40°C.
En una forma preferida de realización, el primer método de la invención comprende una etapa adicional (etapa b2) tras la etapa b) en donde se determina la concentración del compuesto detectable en la muestra en donde un aumento de la concentración de dicho compuesto con respecto a una muestra de referencia es indicativo de la presencia de especies reactivas de oxígeno en dicha población celular. De esta forma, además de la identificación directa del número de células que comprenden el compuesto detectable se obtienen un valor de absorbancia que es indicativo de la presencia de especies reactivas de oxígeno en dicha población celular. El experto en la materia apreciará que la determinación de la concentración del compuesto detectable puede hacerse de forma absoluta. Le. determinado la concentración del compuesto en la muestra o de forma relativa, i.e. determinando la relación entre la concentración del compuesto detectable en la muestra y en la muestra de referencia.
En una forma preferida de realización, el compuesto detectable es un compuesto coloreado, por lo que la concentración de dicho compuesto se mide mediante la determinación de la absorbancia de dicho compuesto a la longitud de onda adecuada. Por "absorbancia" o densidad óptica según se emplea en la presente invención se refiere a la proporción de luz incidente que es absorbida por una sustancia. La absorbancia de una muestra puede determinarse, por ejemplo, mediante un espectofotómetro. En una forma preferida de realización, el compuesto indicador de ERO es BT, en cuyo caso la determinación de la concetración del compuesto se lleva a cabo mediante medida de la absorbancia de la muestra en la etapa b2) a 630 nm.
Por muestra de referencia se entiende una población celular que carece de ERO o que ha sido tratada para eliminar los ERO. En una forma preferida de realización, cuando la población celular que es objeto de estudio es una población de espermatozoides, es posible usar como muestra de referencia una población de espermatozoides de un sujeto fértil. Por sujeto fértil se entiende a un sujeto cuyos espermatozoides son capaces de fecundar un ovocito. Los criterios de la OMS para considerar a un sujeto fértil es de una cantidad de 10 millones de espermatozoides móviles por mililitro de semen.
En una forma preferida de realización, el método de la invención incluye una etapa adicional tras la etapa b) (etapa b3), que puede llevarse a cabo en paralelo con la etapa b2) para determinar la presencia de fragmentación de ADN y que comprende incubar una muestra de la mezcla de la etapa b) en condiciones adecuadas para que se produzca la desnaturalización del ADN y determinar la aparición de halos en torno a la cabeza del espermatozoide, en donde la presencia de halos inferiores a un determinado valor umbral es indicativo de que los espermatozoides presentan fragmentación de ADN. La detección de la presencia de halos en torno a la cabeza de los espermatozoides se puede llevar a cabo esencialmente mediante la puesta en contacto de una fracción de las células de la muestra con una solución ácida y con una solución de lisis. El tratamiento con la solución ácida desnaturaliza el ADN. A continuación se trata con una solución de lisis que elimina la mayoría de las proteínas nucleares. Tras este tratamiento, los espermatozoides con ADN fragmentado no muestran halos, mientras que aquellos espermatozoides en los que el ADN está intacto desarrollan halos grandes alrededor del nucleoide.
El término "solución ácida", según se usa en la presente invención, se refiere a cualquier solución, suspensión, emulsión u otro fluido que contiene un compuesto que actúa como un donante de grupos H+. En una forma preferida de realización, la solución ácida puede contener un ácido seleccionado del grupo ácido clorhídrico, acético, nítrico o mezclas de éstos, entre otros. En una forma de realización aún más preferida, la solución ácida contiene ácido clorhídrico entre 0.04 y 0.08 M.
El término "solución de lisis", según se usa en la presente invención, se refiere a cualquier solución, suspensión, emulsión u otro fluido que es capaz de causar la lisis de las células que se han puesto en contacto con dicha solución. La solución de lisis puede contener al menos un detergente, al menos un agente caotrópico y/o al menos un agente reductor. Detergentes adecuados para su uso en la solución desnaturalizante incluyen, sin limitación, detergentes amónicos (por ejemplo, lauril sulfato sódico, lauril sulfato amónico), detergentes catiónicos (bromuro de cetil trimetilamonio, cloruro de cetilpiridinio, cloruro de benzalconio, cloruro de benzetonio y similares), detergentes zwiteriónicos (por ejemplo, CHAPS, lecitinas) o no iónicos (cetil alcoholo, estearil alcohol, oleil alcohol, decil glucósido, lauril glucósido, octil glucósido, Tritio X-100). En una forma preferida de realización, el detergente que forma parte de la solución de lisis es Tritón X-100. En una forma de realización aún más preferida, el detergente que forma parte de la solución de lisis es lauril sulfato sódico (SDS), preferiblemente al 1%.
Agentes caotrópicos para su uso en la presente invención incluyen, sin limitación, urea (típicamente a una concentración de 6-8M), thiourea (típicamente a una concentración de al menos 2 M), cloruro de guanidinio (típicamente a una concentración de al menos 6 M) y perclorato de litio (típicamente a una concentración de al menos 4.5 M).
Agentes reductores adecuados para su uso en la presente invención incluyen, sin limitación, beta-mercaptoetanol, ditiotreitol y tris(2-carboxietil)fosfíne. En una forma preferida de realización, el agente reductor es ditiotreitol, preferiblemente al 0.8M.
En una forma preferida de realización, el método analítico se lleva a cabo tal y como ha sido descrito por Fernández JL. et al, (Fértil. Steril. 2005; 84:860) y consiste en sumergir los espermatozoides procedentes de muestras frescas, congeladas o diluidas en un gel de agarosa cuyo soporte lo constituye un portaobjetos pretratado y en donde la muestra se trata de forma secuencial con una solución ácida desnaturalizante (0.08 N HC1), una primera solución de lisis neutralizante (0.4 M Tris, 0.8 M DTT, 1% SDS, and 50 mM EDTA, pH 7.5), una segunda solución de lisis neutralizante (0.4 M Tris, 2 M NaCl, and 1% SDS, pH 7.5). La detección de los halos de ADN se lleva a cabo de forma visual tras la tinción de los espermatozoides con una sonda de ADN, preferiblemente una sonda fluorescente y, aún más preferiblemente, DAPI). En una forma preferida de realización, se considera que la muestra es fértil cuando al menos un 20-30% de los espermatozoides tienen un halo superior o igual a 7,5 μηι. La determinación del halo se lleva a cabo típicamente mediante visualización directa de los espermatozoides mediante microscopía de contraste de fase.
Métodos para determinar si una solución es adecuada para su uso en el tratamiento ácido de la presente invención comprenden analizar si dicha solución es capaz de desnaturalizar el ADN. Dicha capacidad puede analizarse empleando diversas técnicas conocidas en el estado de la técnica, como el incremento de la absorbancia a 260 nm, entre otros.
Métodos para determinar si una solución de lisis es adecuada para su uso en la presente invención comprenden analizar la capacidad de dicha solución de eliminar las proteínas nucleares del ADN. Dicha capacidad puede analizarse empleando diversas técnicas ampliamente conocidas en el estado de la técnica entre las que se encuentran huella de DNAasa I, ensayo de cambio de movilidad en gel, ensayo de unión a nitrocelulosa, western blot, entre otros.
La etapa c) del primer método de la invención comprende colocar la mezcla obtenida en b) con un agente gelificante sobre un soporte sólido en condiciones adecuadas para que se produzca la gelificación del agente gelificante.
Por "agente gelificante" se entiende aquella sustancia que permite la coagulación en masa de una solución coloidal por formación de una red sólida extremadamente fina que contiene un líquido en sus mallas.
En una forma preferida de realización, el compuesto espesante usado en la etapa a) del primer método de la invención es a la vez un compuesto gelificante, de forma que la etapa c) no requiere de la adición de un compuesto gelificante sino simplemente de un cambio de condiciones de forma que el compuesto espesante/gelificante gelifique de forma que se inmovilice las células de la población celular. Agentes gelificantes y que aumentan la viscosidad que se pueden emplear en la presente invención se seleccionan de la Tabla 2.
TABLA 2: COMPUESTOS GELIFICANTES Y QUE AUMENTAN LA VISCOSIDAD ADECUADOS PARA SU USO SEGÚN LA INVENCIÓN.
I Agarosa, polisacárido formado por galactosas alfa y beta que se extrae principalmente de las algas de los géneros Gellidium y Gracillaria.
II Acido algínico, producto obtenido a partir de distintos tipos de algas,entre ellas Macrocystis, Fucus, Laminaria.
III Alginato y sus derivados entre los que destacan alginato sódico, potásico, amónico, cálcico, de propilnenglicol.
IV Agar-agar, extraído de varios tipos de algas rojas, entre ellas del género
Gellidium.
V Carragenanos, producto obtenido de varios tipos de algas Gigartina,
Chondrus, Furcellaria y otras.
VI Goma garrotín, producto extraído de las semillas de Ceratonia siliqua
VII Goma guar extraída de Cyamopsis tetragonolobus
VIII Goma tragacanto, producto exudado del árbol Astrogalus gummifer
IX Goma arábiga, producto exudado del árbol Acacia senegalia
X Goma xantana, producido por Xanthomonas campestris
XI Goma karaya, producto exudado del árbol Sterculia urens
XII Goma tara, extraída de la semilla de Caesalpinia spinosa
XIII Goma gellan, producido por Pseudomonas elodea
XIV Sorbitol y jarabe de sorbitol
XV Manitol
XVI Esteres de ácidos grasos y sorbitano, entre los que destacan Monolaurato de sorbitán polioxietilenado, Monooleato de sorbitán polioxietilenado, Monopalmitato de sorbitán polioxietilenado, Monoestearato de sorbitán polioxietilenado, Triestearato de sorbitán polioxietilenado
XVII Pectina, constituyente mayoritario de las paredes celulares vegetales
XVIII Fosfátidos de amonio TABLA 2: COMPUESTOS GELIFICANTES Y QUE AUMENTAN LA VISCOSIDAD ADECUADOS PARA SU USO SEGÚN LA INVENCIÓN.
XIX Acetato isobutirato de sacarosa
XX Esteres glicéridos de colofonia de madera
XXI Celulosa y derivados, entre los que destacan Celulosa microcristalina,
Metilcelulosa, Hidroxipropilcelulosa,Hidroxipropilmetilcelulosa,
El experto en la materia apreciará que las condiciones adecuadas para la gelificación del agente espesante dependerán de la naturaleza de éste. Así, en el caso preferido de que se usa agarosa como agente espesante en la etapa a) y como agente gelificante en la etapa c), es suficiente con disminuir la temperatura por debajo de la temperatura de gelificación de la agarosa a la concentración a la que ésta se encuentra. Dicha temperatura puede determinarse fácilmente por el experto en la materia a partir de tablas en las que se correlaciona la temperatura de gelificación de la agarosa con la concentración en la muestra (por ejemplo, la tabla disponible en http://www.lonzabio.com/uploads/tx_mwaxmarketingmaterial/Appendix_B_- _Agarose_Physical_Chemistry.pdf). En una forma preferida de realización el agente espesante/gelificante es una agarosa de bajo punto de fusión. Agarosas de bajo punto de fusión se encuentran disponibles comercialmente tales como Ultra Pure(R) agarose (Invitrogen), NuSieve(R) GTG(R) Agarosa (Lopza), LM Agarosa y LM Sieve (Pronadisa), Agarosa SERVA Premium (Serva) y similares. En el caso de que el agente gelificante sea agarosa, la etapa c) se lleva a cabo llevando la temperatura de la mezcla a 10-30°c, preferiblemente 15-25°C, aún más preferiblemente 20-25°C.
En el caso de que el agente gelificante sea alginato, la gelificación se induce mediante la adición al medio de iones calcio.
Por "soporte sólido" según se emplea en la invención se refiere a una superficie de cristal, plástico, cerámica o metal entre otros, que permita contener la mezcla de la invención que contiene el agente gelificante. Según el método empleado en la cuantificación de las células será necesario que dicho soporte deje pasar la luz. Preferiblemente el soporte sólido es un portaobjetos.
En una forma preferida de realización, la etapa c) se lleva a cabo usando agarosa a una concentración del 0,5-5%, en cuyo caso la gelificación se lleva a cabo directamente sobre el portaobjetos mediante la aplicación de la mezcla obtenida en la etapa b) a un portaobjetos e incubación a temperatura ambiente.
Por último, la etapa d) del primer método de la invención comprende identificar aquellas células en las que aparece el compuesto detectable, de forma que dichas células serán aquellas que contienen ERO. En una forma preferida de realización, las células que comprenden el compuesto detectable resultante de la conversión del indicador de ERO se detectan por observación directa mediante microscopía óptica. En el caso de que el compuesto indicador sea una sal de tetrazolio, preferentemente BT, el compuesto detectable (precipitado de formazán) aparece un precipitado de color azul intenso localizado normalmente sobre la pieza intermedia y la cabeza del espermatozoide.
Aunque la identificación de las distintas células en la muestra se puede hacer mediante microscopía de contraste de fase, es preferible teñir las células con un colorante. Típicamente, la tinción se lleva a cabo tras la etapa de gelificación del agente gelificante. Soluciones de tinción que pueden emplearse para la realización de la presente invención incluyen, sin limitación, ticrómica de gomori, tricrómica de masson, verde de metileno, giemsa, Wright, hematoxilina-eosina, azul de metileno, entre otras. En una forma preferida de realización, las células se tiñen con verde de metileno.
Segundo método de la invención
Los autores de la presente invención han puesto a punto un método para determinar la necesidad de una terapia antioxidante de un paciente que comprende determinar la presencia en una muestra de semen de dicho sujeto de células que contienen ERO usando un método de la invención, y el porcentaje de células que presentan fragmentación de ADN usando un método de la invención en donde si el porcentaje de células que comprenden ERO y el porcentaje de células que presentan fragmentación de ADN es superior a dichos porcentajes en una muestra de referencia es indicativo de que dicho paciente debería ser tratado con una terapia antioxidante.
Por "terapia antioxidante" según se emplea en la presente invención se refiere a la administración de agentes antioxidantes para el tratamiento de una enfermedad. Por "agente antioxidante" se entiende a todos aquellos elementos que tienen como función eliminar del organismo los radicales libres. Diversos estudios han demostrado el efecto del tratamiento con agentes antioxidantes en la reducción de la fragmentación del ADN de los espermatozoides (Greco E. et al, J Androl. 2005, 26:349-53). Entre los tratamientos antioxidantes que pueden administrarse a pacientes que presentan alto porcentaje de células que comprenden ERO y fragmentación de ADN espermático destacan la administración en las dosis adecuadas de Vitamina E, C, L-Carnitina, beta- caroteno, flavonoides, licopeno, cobre, zinc, manganeso, hierro y selenio entre otros.
Según se usa aquí, el término "determinación", se refiere a la determinación de la probabilidad de que el paciente necesite recibir una terapia antioxidante. Como entenderán los expertos en la materia, la predicción de la necesidad de dicha terapia antioxidante, aunque se prefiere que sea, no necesita ser correcta para el 100% de los sujetos a ser diagnosticados o evaluados. El experto en la materia puede determinar fácilmente si el resultado obtenido para un sujeto es estadísticamente significativo usando varias herramientas de evaluación estadística bien conocidas, por ejemplo, determinación de intervalos de confianza, determinación de los valores de p, prueba t de Student, prueba de Mann Whitney, etc. Los detalles se encuentran en Dowdy y Wearden, Statistics for Research, John Wiley & Sons, Nueva York 1983. Los intervalos de confianza preferidos son al menos del 50%, al menos del 60%, al menos del 70%, al menos del 80%, al menos del 90%, al menos del 95%. Los valores de p son, preferiblemente, 0,2, 0,1 ó 0,05.
Por "cuantificar la proporción de células" según se emplea aquí se refiere a expresar numéricamente las células que muestran el compuesto detectable en relación a las células que no muestran dicho compuesto. En una realización particular, dicho procedimiento se lleva a cabo mediante microscopía óptica.
Por "muestra de referencia" en el contexto de la presente invención, se entiende como la muestra biológica de un sujeto fértil o muestras anteriores del mismo individuo, que se usan para determinar la presencia de ERO.
El segundo método de la invención contempla la posibilidad de determinar la necesidad de una terapia antioxidante de un sujeto a partir de los distintos resultados que proporciona al primer método de la invención. Así, un indicativo de la existencia de la necesidad de una terapia antioxidante es la existencia de un porcentaje de células que muestran ERO superior a un determinado valor umbral. Dicho valor puede combinarse con la presencia de un porcentaje de células que no muestran halo superior a un determinado valor umbral. Así, el segundo método de la invención permite determinar la posibilidad de que un sujeto necesite una terapia antioxidante si:
- En una muestra de semen de dicho sujeto aparece un porcentaje de células que contienen ERO superior a un valor umbral. En una forma preferida de realización, el valor umbral de porcentaje de células que contienen ERO es del 20%. Alternativamente, si la muestra ha sido tratada con gradientes de Percoll, el valor umbral es de un 30% y/o
- En una muestra de semen de dicho sujeto aparece un porcentaje de células que contienen ERO superior a un valor umbral y el porcentaje de células que no muestran halo es superior a un valor umbral. En una forma preferida de realización el valor umbral de porcentaje de células que contienen ERO es del 20%. Alternativamente, si la muestra ha sido tratada con gradientes de Percoll, el valor umbral es de un 30%. En una forma preferida de realización, el valor umbral del porcentaje de células que no muestran halo es del 20%.
Valores umbrales para cada uno de los parámetros que se obtienen al aplicar las distintas realizaciones del primer método de la invención pueden determinarse a partir de una muestra de referencia. Los términos y expresiones "célula", "población celular", "condiciones isotónicas", "agente espesante", "compuesto indicador de la presencia de especies reactivas de oxígeno" y "agente gelificante" han sido definidos en detalle en el contexto del primer método de la invención y se usan de igual manera en el segundo método de la invención.
Tercer método de la invención
Los autores de la presente invención han desarrollado un método (en adelante tercer método de la invención) para identificar una sustancia (en adelante sustancia X) con capacidad de disminuir las ERO presentes en una población celular. Así, en otro aspecto, la invención se relaciona con un método (en adelante tercer método de la invención) que comprende:
a) poner en contacto dicha sustancia X con dicha población celular, b) Poner en contacto en condiciones isotónicas dicha población celular con un agente espesante de forma que se reduzca sustancialmente la movilidad de las células de la población celular y con un compuesto indicador de la presencia de especies reactivas de oxígeno, c) mantener la mezcla obtenida en el paso b) durante el tiempo suficiente para la conversión del compuesto indicador en un compuesto detectable en presencia de especies reactivas de oxígeno,
d) colocar la mezcla obtenida en c) con un agente gelificante sobre un soporte sólido en condiciones adecuadas para que se produzca la gelificación del agente gelificante y
e) cuantificar la proporción de células en las que aparece el compuesto detectable
en donde una disminución de la proporción de células que muestran un cambio en la coloración con respecto a muestra de referencia es indicativo de que la sustancia X es capaz de disminuir en dichas células la presencia de especies reactivas de oxígeno. en donde la disminución de la proporción de células que muestran un cambio en la coloración es indicativo de que la sustancia X es capaz de disminuir en dichas células la presencia de ERO. Un experto en la materia entenderá que en ocasiones será necesario el tratamiento previo con un agente que genere radicales libres para poder observar el efecto del compuesto antioxidante. Entre los compuestos que pueden emplearse para generar radicales libres destacan entre otros el agua oxigenada.
En una primera etapa, el tercer método de la invención comprende poner en contacto la población celular con un compuesto o preparación cuyo efecto. Por "poner en contacto" una célula con el compuesto candidato se incluye, según la presente invención, cualquier posible forma de llevar el compuesto candidato hasta el interior de la célula que expresa la construcción de ADN. Así, en caso de que el compuesto candidato sea una molécula de bajo peso molecular, es suficiente con añadir dicha molécula al medio de cultivo. En caso de que el compuesto candidato sea una molécula de alto peso molecular (por ejemplo, polímeros biológicos tales como un ácido nucleico o una proteína), es necesario aportar los medios para que esa molécula pueda acceder al interior celular. En caso de que la molécula candidata sea un ácido nucleico, pueden usarse métodos convencionales para transfección, según se ha descrito anteriormente para la introducción de la construcción de ADN. En caso de que el compuesto candidato sea una proteína, la célula puede ponerse en contacto tanto con la proteína directamente como con el ácido nucleico que la codifica acoplado a elementos que permitan su transcripción /traducción una vez que se encuentren en el interior celular. Para ello, se pueden usar cualquiera de los métodos mencionados anteriormente para permitir su entrada al interior celular. Alternativamente, es posible poner en contacto la célula con una variante de la proteína que se desea estudiar que ha sido modificada con un péptido que sea capaz de promover la translocación de la proteína al interior celular, tales como el péptido Tat derivado de la proteína TAT de HIV-1, la tercera hélice del homeodominio de la proteína Antennapedia de D.melanogaster, la proteína VP22 del virus del herpes simplex y oligómeros de arginina (Lindgren, A. et al, 2000, Trends Pharmacol. Sci, 21 :99-103, Schwarze, S.R. et al. , 2000, Trends Pharmacol. Sci., 21 :45-48, Lundberg, M et al, 2003, Mol. Therapy 8: 143-150 y Snyder, E.L. y Dowdy, S.F., 2004, Pharm. Res. 21 :389-393). Preferiblemente, el compuesto a ensayar no se encuentra aislado sino que se encuentra formando parte de una mezcla más o menos compleja bien derivada de una fuente natural o bien formando parte de una biblioteca de compuestos. Ejemplos de bibliotecas de compuestos que pueden ser ensayadas según el método de la presente invención incluyen, sin limitación, bibliotecas de péptidos incluyendo tanto péptidos como análogos peptídicos que comprenden D-amino ácidos o péptidos que comprenden enlaces no peptídicos, bibliotecas de ácidos nucleicos incluyendo ácidos nucleicos con enlaces no fosfodiester del tipo de fosforotioato o ácidos nucleicos peptídicos, bibliotecas de anticuerpos, de carbohidratos, de compuestos de bajo peso molecular, preferiblemente moléculas orgánicas, de peptidomiméticos, y similares. En el caso de que se use una biblioteca de compuestos orgánicos de bajo peso molecular, la biblioteca puede haber sido preseleccionada para que contengan compuestos que puedan acceder al interior celular con mayor facilidad. Así, los compuestos se pueden seleccionar en base a determinados parámetros tales como tamaño, lipofilicidad, hidrofilicidad, capacidad de formar puentes de hidrógeno.
Alternativamente, los compuestos a ensayar pueden estar formando parte de un extracto obtenido de una fuente natural. La fuente natural puede ser animal, vegetal obtenido de cualquier entorno, incluyendo, sin limitación, extractos de organismos terrestres, aéreos, marinos y similares.
Las etapas b) a e) coinciden esencialmente con las etapas a) a d) del primer método de la invención y los términos usados en dicho método se usan con el mismo significado en el tercer método de la invención. En caso de que el compuesto candidato se encuentre formando parte de una mezcla de mayor o menor complejidad, la invención comprende adicionalmente una o varias etapas de fraccionamiento de dicha mezcla y la repetición de las etapas (a), (b), (c), (d) y (e) del método de la invención un número variable de veces hasta que el compuesto de la mezcla responsable de la disminución del nivel de ERO se encuentre aislado. Métodos para el fraccionamiento de compuestos presentes en una mezcla incluyen cromatografía (en capa fina, de gases o de exclusión molecular en gel, de afinidad), cristalización, destilación, filtración, precipitación, sublimación, extracción, evaporación, centrifugación, espectrometría de masas, adsorción y similares.
En una realización particular del tercer método de la invención se incluye adicionalmente una etapa c2) que comprende determinar la concentración del compuesto detectable en la mezcla de la etapa c) y en donde una disminución de la absorbancia con respecto a una muestra de referencia es indicativo de que la sustancia X es capaz de disminuir la presencia de ERO en dicha población celular.
En otra realización particular del tercer método de la invención que comprende adicionalmente una etapa d2) que comprende incubar una muestra de la mezcla de la etapa c con una solución desnaturalizante, seguidamente con una solución de lisis y finalmente teñir dichas células en donde las células que no muestran halos de tamaño superior a un determinado valor umbral es indicativo de que dichas células presentan ADN fragmentado.
Composiciones y kits de la invención y usos diagnósticos de las mismas
En otro aspecto, la invención se refiere a una composición que comprende un agente gelificante y un compuesto indicador de la presencia de ERO.
El término "composición", según se usa en la presente invención, se refiere a una mezcla de dos o más componentes. En el caso de la presente invención, las composiciones de la invención contienen los reactivos necesarios para deteminar la necesidad de una terapia antioxidante de un sujeto a partir de una muestra de semen de dicho sujeto. Preferiblemente, la composición de la invención comprende un agente espesante (preferiblemente agarosa y aún más preferiblemente agarosa de bajo punto de fusión) y un indicador de ERO (preferiblemente una sal de tetrazolio y aún más preferiblemente BT) en donde ambos componentes se encuentran formando una mezcla. En una forma preferida de realización, las composiciones de la invención comprenden agarosa a una concentración del 2% al 5% y NBT a una concentración de hasta 1 mg/ml. Los términos "agente espesante", "agente indicador de la presencia de ERO" y "ERO", han sido definidos con anterioridad en el contexto del primer método de la invención. En una forma preferida de realización, el compuesto espesante es, además un compuesto gelificante, el compuesto espesante/gelificante es agarosa y la agarosa es agarosa de bajo punto de fusión.
En otra forma preferida de realización, el compuesto indicador de la presencia de especies reactivas de oxígeno es una sal de tetrazolio y, de forma aún más preferida, es NBT.
En otra forma preferida de realización de la composición de la invención, el compuesto espesante es agarosa de bajo punto de fusión, el compuesto indicador de ERO es NBT, la agarosa se encuentra a una concentración del 2% al 5% y el NBT se encuentra a una concentración de hasta 1 mg/ml.
En otro aspecto adicional, la invención se refiere a un kit que comprende un agente gelificante, un compuesto indicador de la presencia de especies reactivas de oxígeno, una solución ácida y una solución de lisis. Los términos "solución ácida" y "solución de lisis" se han explicado en detalle en el contexto del primer método de la invención y se aplican de igual manera al kit de la invención. En una forma preferida de realización, el kit de la invención comprende, adicionalmente, una sonda para la detección de ADN, prefereiblemente una sonda fluorescente (bromuro de etidio, naranja de acridina, ioduro de propidio, ToPro-3, DAPI) y, aún más preferiblemente, DAPI.
En otro aspecto adicional, la invención se refiere al uso de una composición o de un kit que comprende un agente gelificante y un compuesto con capacidad de formar un producto detectable en presencia de ERO para determinar la presencia de ERO en una población celular. En otro aspecto adicional, la invención se refiere al uso de una composición o de un kit que comprende un agente gelificante y un compuesto con capacidad de formar un producto detectable en presencia de ERO para determinar la necesidad de una terapia antioxidante de un sujeto masculino.
El término "kit", según se usa en la presente invención, se refiere a una combinación de artículos que facilitan la puesta en práctica de un proceso, método, ensayo, análisis o manipulación de una muestra. En el caso de la presente invención, los kits de la invención contienen los reactivos necesarios para determinar la necesidad de una terapia antioxidante de un sujeto a partir de una muestra de semen de ducho sujeto. Preferiblemente, el kit de la invención comprende un agente espesante (preferiblemente agarosa y aún más preferiblemente agarosa de bajo punto de fusión) y un indicador de ERO (preferiblemente una sal de tetrazolio y aún más preferiblemente BT) en donde ambos componentes se encuentran en un mismo contenedor o en contenedores separados. Componentes adicionales que pueden formar parte del kit de la invención incluyen:
- Reactivos adecuados para provocar la desnaturalización del ADN (soluciones ácidas) y la reactivos para eliminar las proteínas nucleares (solución de lisis).
- Reactivos adecuados para la tinción de los espermatozoides, preferiblemente verde de metileno.
Los términos "agente espesante", "agente gelificante", "ERO" y "compuesto con capacidad de formar un producto detectable en presencia de ERO" se han definido anteriormente.
La invención se describe ahora en detalle por medio de los siguientes ejemplos que se deben considerar como meramente ilustrativos y no limitantes del ámbito de la invención. EJEMPLO 1 El método de la presente invención para determinar la presencia de ERO en una población celular es un método indirecto que ha sido correlacionado con otras metodologías basadas en quimioluminiscencia (Esfandiari N. et al, J Androl. 2003 Nov-Dec;24(6): 862-70). Tiene como principales ventajas que es muy económico y tan solo requiere de un microscopio óptico.
Preparación de reactivos
El BT es una sal amarilla soluble en agua que reacciona en presencia de aniones superóxido dentro de las células produciendo un precipitado azul de diformazán. La cantidad de cristales de diformazán presentes en las células refleja la producción por parte de estas células de ion superóxido.
Para realizar el método de la invención, en primer lugar se preparó una mezcla de agarosas con NBT (agarosas-NBT). Para ello se disolvieron 10 mg de NBT (Sigma N5514-10 tab) en 10 mi de agua destilada y se mantuvo la solución a 37°C. Aparte, se disolvió una cantidad de agarosa de bajo punto de fusión en PBS a pH 7 entre el 2% y el 5% y se dejó sobre una placa calefactora a 37° para evitar que gelificara. Seguidamente se mezclaron en volúmenes iguales las dos disoluciones y se repartió en volúmenes de 100 μΐ en tubos eppendorff. La mezcla resultante es estable entre 2 °C y 22 °C.
Reacción NBT
La muestra de semen se diluyó en PBS a una concentración de entre 5-10 millones de espermatozoides por mililitro. Las agarosas-NBT se colocaron en un flotador e incubaron durante 5 minutos en un baño entre 90-100°C hasta que las agarosas se disolvieron. De modo alternativo podría utilizarse un microondas para fundir la agarosa. A continuación los tubos se transfirieron a un baño a 37 °C y se dejaron atemperar durante 5 minutos. Un volumen de semen (con la concentración ajustada) se mezcló con un volumen igual de agarosa y homogenizó con la ayuda de una micropipeta. La mezcla se incubó a 37°C durante 45 minutos. Con este tiempo, se produce el máximo de producto precipitado (diformazán). Durante el periodo de incubación es posible coger un volumen de 25 μΐ para determinar la fragmentación del ADN según el kit Halosperm (Halotech, S.L; Madrid).
Durante la incubación la mezcla puede adquirir una coloración azulada cuya intensidad dependerá de la presencia de ión superóxido, tanto en espermatozoides y en leucocitos presentes como en el plasma seminal. La intensidad de la coloración puede determinarse midiendo la absorbancia a 630 nm en un espectrofotómetro, citómetro o en un lector de placas. Este cambio de coloración supone un primer indicio de la presencia de estrés oxidativo o déficit en la capacidad detoxificante de la muestra.
Para determinar el porcentaje de espermatozoides o células presentes en la muestra que están produciendo ERO se cogieron 10 μΐ de muestra al final de la incubación y se colocaron sobre un portaobjetos previamente tratado. Se colocó un cubreobjetos para permitir que la agarosa se extendiera y se dejó gelificar a 4°C durante cinco minutos. Pasado este tiempo se retiró con suavidad el cubre y se dejó secar la agarosa al aire.
A continuación se tiñó con una solución de verde metileno durante 5 minutos. Para preparar dicha solución se pesó 0.15 gr de verde metileno (Sigma s580104 50mg) y se disolvió en 50 mi de agua destilada, se añadió 25 μΐ de acido acético glacial y se agitó. Tras incubar las muestras con la solución de tinción, se lavaron en agua corriente y se dejaron secar al aire. Se conserva a temperatura ambiente.
Por último, se montaron con DPX y se analizaron por observación directa al microscopio óptico 200 espermatozoides, determinando la proporción de células que presentan ERO.
Cuando se realiza el ensayo en ausencia de agarosa, los espermatozoides sedimentan o pueden interactuar físicamente con otros espermatozoides. El contacto de los espermatozoides que presentan ERO con los que no los presentan podría desencadena la producción de difarmazán en los que en principio no están produciendo especies reactivas de oxigeno y además se dificulta la cuantificación por microscopía óptica (Figura 1). La incorporación de agarosa en concentraciones adecuadas evita la sedimentación y el contacto no deseado entre espermatozoides que podrían artefactuar los resultados. Así, cuando se emplea agarosa- BT, en los espermatozoides NBT positivos, que presentan ERO, se observaba unos precipitados azul oscuros situados principalmente en la zona intermedia y la cabeza del espermatozoide (Figura 2).
En los espermatozoides NBT negativos, no se observan dichos precipitados (Figura 3)
Al final del proceso, se obtiene la siguiente información: 1) un valor de la fragmentación del ADN espermático, 2) la proporción de espermatozoides NBT positivos y 3) un cambio de coloración de la muestra que representa un valor cualitativo (negativo, leve, moderado, intenso) o cuantitativo (tras medir su absorbancia) que se podrá comparar con el de una muestra de referencia.
EJEMPLO 2
Estudio comparativo de las agarosas del kit Halosperm y las agarosas modificadas con NBT
La incorporación de agarosas modificadas con NBT para la determinación de la presencia de ERO en muestras de semen, no debería afectar la eficacia del test de fragmentación del kit comercial Halosperm. El objetivo del presente estudio fue determinar el efecto de las agarosas-NBT sobre el resultado del test de fragmentación del kit halospem.
Para ello, se analizaron 8 muestras de semen diferentes de pacientes con infertilidad y que tenían un seminograma alterado. Las variables de estudio fueron SDF (siglas en inglés de sperm DNA fragmentation) que determina el porcentaje de espermatozoides con el ADN fragmentado y DS (siglas del inglés degraded sperm) que indica el porcentaje de espermatozoides degradados. Se analizaron 8 muestras de semen de diferentes pacientes que mostraban un seminograma alterado. A continuación, se analizaron los datos estadísticamente. En la Tabla 3, se muestra la estadística descriptiva de las muestras para las variables SDF y DS.
Tabla 3. Estadística descriptiva de las muestras
Figure imgf000036_0001
confianza para la Límite superior
26,0552 media al 95%
Media recortada al 5% 13,1389
Mediana 9,0000
Varianza 207,929
Desv. típ. 14,41973
Mínimo 1,00
Máximo 42,50
Rango 41,50
Amplitud intercuartil 20,38
Asimetría 1,192 ,752
Curtosis ,944 1,481
Modificadas- Media 11,3125 3,62892
NBT Intervalo de Límite inferior 2,7315
confianza para la Límite superior
media al 95% 19,8935
Media recortada al 5% 11,0139
Mediana 9,7500
Varianza 105,353
Desv. típ. 10,26415
Mínimo ,00
Máximo 28,00
Rango 28,00
Amplitud intercuartil 18,75
Asimetría ,495 ,752
Curtosis -1,141 1,481
A continuación, para verificar el ajuste de los datos a una distribución de probabilidad se realizaron dos pruebas no paramétricas, concretamente la prueba de Kolgomorov- Smirnov y la prueba Shapiro Wilk, datos mostrados en la Tabla 4.
Tabla 4. Estudios de normalidad de las variables SDF y DS
Kolmogorov-Smirnov(a) Shapiro-Wilk tipo Estadístico gl Sig. Estadístico gl Sig.
SDF agarosas
,147 8 ,200 ,951 8 ,721 normales
modificadas ,236 8 ,200 ,896 8 ,263
DS agarosas
,222 8 ,200 ,860 8 ,121 normales
modificadas ,180 8 ,200 ,927 8 ,491 SDF: Fragmentación de ADN de espermatozoides, DS: Espermatozoides degradados, gl: grados de libertad, Sig: significancia.
Uno de los pasos previos a la comprobación de si existen diferencias entre las medias de varias muestras es determinar si las varianzas en tales muestras son iguales. Tras la realización de la Prueba de Levene, se aceptó que tanto para la variable SDF (Tabla 5 y Figura 4), como para la variable DS (Tabla 6 y Figura 5) las varianzas eran iguales y tras ellos que las medias eran iguales.
Tabla 5. Resultados del test para la variable SDF.
Figure imgf000038_0001
Tabla 6. Resultados del test para la variable DS
Figure imgf000038_0002
Por tanto, se concluyo que la agarosa BT empleada en el método de la presente invención es compatible con la agarosa del kit halosperm para la determinación del ADN espermático y al tratarse de dos variables relacionadas, fragmentación y estrés oxidativo, la optimización de este método podría representar una cómoda presentación que permitiría determinar simultáneamente fragmentación del ADN espermático y estrés oxidativo a partir de un pequeño volumen de muestra de semen con un coste económico muy reducido.

Claims

REIVINDICACIONES
Método para determinar la presencia de células que contienen especies reactivas de oxígeno en una población celular que comprende:
a) Poner en contacto en condiciones isotónicas dicha población celular con un agente espesante de forma que se reduzca sustancialmente la movilidad de las células de la población celular y con un compuesto indicador de la presencia de especies reactivas de oxígeno,
b) mantener la mezcla obtenida en el paso a) durante el tiempo suficiente para la conversión del compuesto indicador en un compuesto detectable en aquellas células que contengan especies reactivas de oxígeno, c) colocar la mezcla obtenida en b) con un agente gelificante sobre un soporte sólido en condiciones adecuadas para que se produzca la gelificación del agente gelificante y
d) identificar aquellas células en las que aparece el compuesto detectable en donde la presencia del compuesto detectable en una célula es indicativo de la presencia en dicha célula de especies reactivas de oxígeno.
Método según la reivindicación 1 que incluye adicionalmente una etapa b2) que comprende determinar la concentración del compuesto detectable en la muestra obtenida tras la etapa b) en donde un aumento de la concentración de dicho compuesto con respecto a una muestra de referencia es indicativo de la presencia de especies reactivas de oxígeno en dicha población celular.
Método según las reivindicaciones 1 o 2 que comprende adicionalmente una etapa c2) que comprende incubar una muestra de la mezcla de la etapa b en condiciones adecuadas para que se produzca la rotura del espermatozoide y detectar la formación de halos en torno a la cabeza del espermatozoide, en donde la presencia de halos superiores a un determinado valor umbral es indicativo de que dichas células presentan ADN intacto.
Método según cualquiera de las reivindicaciones 1 a 3 que incluye una etapa adicional c3) que comprende teñir las células de la etapa c).
5. Método según cualquiera de las reivindicaciones 1 a 4 en donde el agente que espesante usado en la etapa a) y el agente gelificante usado en la etapa c) es el mismo compuesto.
6. Método según la reivindicación 5 en donde el agente espesante y el agente espesante es agarosa.
7. Método según la reivindicación 6 en donde la concentración final de agarosa es del 1 al 2,5 % y la etapa b se lleva a cabo durante 45 minutos a 37 °C.
8. Método según cualquiera de las reivindicaciones 1 a 7 en donde el compuesto que en presencia de especies reactivas de oxígeno sufre un cambio en sus propiedades de manera que es detectable es una sal de tetrazolio.
9. Método según la reivindicación 8 en donde el compuesto indicador es nitroazul de tetrazolio.
10. Método según cualquiera de las reivindicaciones 1 a 9 en donde la etapa d) se lleva a cabo por observación directa mediante microscopía óptica. 11. Método según cualquiera de las reivindicaciones 1 a 10 en donde la población celular es una población de espermatozoides.
12. Método según la reivindicación 11 en donde la población celular se encuentra formando parte de una muestra de semen.
13. Método para determinar la necesidad de una terapia antioxidante de un paciente que comprende determinar la presencia en una muestra de semen de dicho sujeto de células que contienen ERO usando un método según cualquiera de las reivindicaciones 1 a 12, y el porcentaje de células que presentan fragmentación de ADN usando un método según cualquiera de las reivindicaciones 3 a 12 en donde si el porcentaje de células que comprenden ERO y el porcentaje de células que presentan fragmentación de ADN son superiores a dichos porcentajes en una muestra de referencia es indicativo de que dicho paciente debería ser tratado con una terapia antioxidante.
14. Método según la reivindicación 13 en donde la muestra es una muestra de semen.
15. Método para identificar una sustancia X con capacidad de disminuir las especies reactivas de oxígeno presentes en una población celular que comprende:
a) poner en contacto dicha sustancia con dicha población celular, b) Poner en contacto en condiciones isotónicas dicha muestra biológica con un agente espesante de forma que se reduzca sustancialmente la movilidad de las células de la población celular y con un compuesto indicador de la presencia de especies reactivas de oxígeno,
c) mantener la mezcla obtenida en el paso b) durante el tiempo suficiente para la conversión del compuesto indicador en un compuesto detectable en presencia de especies reactivas de oxígeno,
d) colocar la mezcla obtenida en c) con un agente gelificante sobre un soporte sólido en condiciones adecuadas para que se produzca la gelificación del agente gelificante y
e) cuantificar la proporción de células en las que aparece el compuesto detectable
en donde una disminución de la proporción de células que muestran un cambio en la coloración con respecto a muestra de referencia es indicativo de que la sustancia X es capaz de disminuir en dichas células la presencia de especies reactivas de oxígeno.
16. Método según la reivindicación 15 que incluye adicionalmente una etapa c2) que comprende determinar la concentración del compuesto detectable en la muestra obtenida tras la etapa c) en donde una disminución de la concentración con respecto a una muestra de referencia es indicativo de que la sustancia X es capaz de disminuir la presencia de especies reactivas de oxígeno en dicha población celular.
17. Método según la reivindicación 15 o 16 que comprende adicionalmente una etapa d2) que comprende incubar una muestra de la mezcla de la etapa c con una solución desnaturalizante, seguidamente con una solución de lisis y finalmente teñir dichas células en donde las células que no muestran halos es indicativo de que dichas células presentan ADN fragmentado.
18. Método según cualquiera de las reivindicaciones 15 a 17 que incluye una etapa adicional d3) que comprende teñir las células de la etapa d.
19. Método según la reivindicación 15 a 18 en donde el compuesto espesante y el agente gelificante es el mismo compuesto.
20. Método según la reivindicación 19 en donde el compuesto espesante y el agente gelificante es agarosa.
21. Método según la reivindicación 20 en donde la concentración final de agarosa es del 1 al 2,5 % y etapa c se lleva a cabo durante 45 minutos a 37 °C.
22. Método según cualquiera de las reivindicaciones 15 a 21 en donde el compuesto indicador de la presencia de especies reactivas de oxígeno es una sal de tetrazolio.
23. Método según cualquiera de las reivindicaciones 15 a 22 en donde el compuesto que en presencia de especies reactivas de oxígeno sufre un cambio en sus propiedades de manera que es detectable es nitroazul de tetrazolio.
24. Método según cualquiera de las reivindicaciones 15 a 23 en donde la cuantificación se lleva a cabo por observación directa mediante microscopía óptica.
25. Composición que comprende un agente espesante y un compuesto indicador de la presencia de especies reactivas de oxígeno.
26. Composición según la reivindicación 25 en donde el compuesto espesante es, además un compuesto gelificante.
27. Composición según la reivindicación 26 en donde el compuesto espesante/gelificante es agarosa.
28. Composición según la reivindicación 27 en donde la agarosa es agarosa de bajo punto de fusión.
29. Composición según cualquiera de las la reivindicaciones 25 a 28 en donde el compuesto indicador de la presencia de especies reactivas de oxígeno es una sal de tetrazolio.
30. Composición según la reivindicación 29 en donde la sal de tetrazolio es BT.
31. Composición según cualquiera de las reivindicaciones 25 a 30 en donde el compuesto espesante es agarosa de bajo punto de fusión, el compuesto indicador de ERO es NBT, la agarosa se encuentra a una concentración del 2% al 5% y el NBT se encuentra a una concentración de 1 mg/ml.
32. Kit que comprende un agente espesante, un compuesto indicador de la presencia de especies reactivas de oxígeno, una solución ácida que desnaturalice el ADN y una solución de lisis que elimine las proteínas nucleares.
33. Kit según la reivindicación 32 en donde el compuesto espesante es, además un compuesto gelificante.
34. Kit según la reivindicación 33 en donde el compuesto espesante/gelificante es agarosa.
35. Kit según la reivindicación 34 en donde la agarosa es agarosa de bajo punto de fusión.
36. Kit según cualquiera de las la reivindicaciones 32 a 35 en donde el compuesto indicador de la presencia de especies reactivas de oxígeno es una sal de tetrazolio.
37. Kit según la reivindicación 36 en donde la sal de tetrazolio es NBT.
38. Uso de una composición o de un kit que comprende un agente espesante y un compuesto indicador de la presencia de ERO para determinar la presencia de especies reactivas de oxígeno en una población celular.
39. Uso de un kit que comprende un agente espesante, un compuesto indicador de la presencia de ERO, una solución ácida desnaturalice el ADN y una solución de lisis que elimine las proteínas nucleares para determinar la necesidad de una terapia antioxidante de un sujeto masculino.
40. Uso según la reivindicación 33 o 34 en donde el compuesto espesante es, además un compuesto gelificante. 41. Uso según la reivindicación 35 en donde el compuesto espesante/gelificante es agarosa.
42. Uso según la reivindicación 36 en donde la agarosa es agarosa de bajo punto de fusión.
43. Uso según cualquiera de las la reivindicaciones 33 a 37 en donde el compuesto indicador de la presencia de especies reactivas de oxígeno es una sal de tetrazolio.
44. Uso según la reivindicación 38 en donde la sal de tetrazolio es BT.
PCT/ES2011/070756 2010-11-04 2011-11-04 Método para determinar la producción de especies reactivas de oxígeno en una población celular WO2012059615A1 (es)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES11837612.8T ES2649668T3 (es) 2010-11-04 2011-11-04 Procedimiento para determinar la producción de especies reactivas de oxígeno en una población celular
CA2815949A CA2815949C (en) 2010-11-04 2011-11-04 Method for determining the production of reactive oxygen species in a cellular population
US13/883,562 US9618503B2 (en) 2010-11-04 2011-11-04 Method for determining the production of reactive oxygen species in a cellular population
MX2013004984A MX339423B (es) 2010-11-04 2011-11-04 Metodo para determinar la produccion de especies reactivas de oxigeno en una poblacion celular.
EP11837612.8A EP2637019B1 (en) 2010-11-04 2011-11-04 Method for determining the production of reactive oxygen species in a cellular population

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201031624 2010-11-04
ES201031624A ES2381721B1 (es) 2010-11-04 2010-11-04 Método para determinar la producción de especies reactivas de oxígeno en una población celular.

Publications (1)

Publication Number Publication Date
WO2012059615A1 true WO2012059615A1 (es) 2012-05-10

Family

ID=46024054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070756 WO2012059615A1 (es) 2010-11-04 2011-11-04 Método para determinar la producción de especies reactivas de oxígeno en una población celular

Country Status (6)

Country Link
US (1) US9618503B2 (es)
EP (2) EP2637019B1 (es)
CA (1) CA2815949C (es)
ES (2) ES2381721B1 (es)
MX (1) MX339423B (es)
WO (1) WO2012059615A1 (es)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967230B (zh) * 2019-11-22 2022-05-31 珠海高瑞特医疗科技有限公司 一种***活性氧含量的测定方法及试剂盒
EP4019646A1 (en) * 2020-12-23 2022-06-29 Bonraybio Co., Ltd. Methods and kits for detecting sperm dna fragmentation
ES2961158T3 (es) * 2020-12-23 2024-03-08 Bonraybio Co Ltd Métodos y kits para detectar la fragmentación de ADN espermático
TWI777336B (zh) * 2020-12-23 2022-09-11 邦睿生技股份有限公司 用於偵測***dna片段化的方法以及套組
TWI775252B (zh) 2020-12-23 2022-08-21 邦睿生技股份有限公司 用於偵測***dna片段化的方法以及套組
CN113092430B (zh) * 2021-04-09 2022-06-28 青岛复诺生物医疗有限公司 一种***活性氧含量测定装置及其测定方法
CN114088491A (zh) * 2021-11-24 2022-02-25 北京仁基源医学研究院有限公司 一种***dna碎片检测试剂盒及其检测方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176953A (en) 1978-05-22 1979-12-04 SEM Israel Limited Method and apparatus for measuring the motility of sperm cells
GB2265709A (en) * 1992-03-25 1993-10-06 David Russell Blake Reactive oxygen species measuring device
WO1993022053A1 (en) 1992-05-01 1993-11-11 Trustees Of The University Of Pennsylvania Microfabricated detection structures
US5434027A (en) 1992-12-25 1995-07-18 Konica Corporation Photorecptor for electrophotography and image forming method
WO2001032802A1 (en) * 1999-10-29 2001-05-10 The Cleveland Clinic Foundation Method and apparatus for predicting male infertility
US6368818B1 (en) 2000-10-12 2002-04-09 Qingzhong Kong Methods and compositions for the visualization of cellular organelles using tetrazolium salts
WO2007085839A1 (en) 2006-01-25 2007-08-02 The Nottingham Trent University Acoustic sensor sperm test kit and assay
WO2008026205A1 (en) * 2006-08-28 2008-03-06 Ben-Gurion University Of The Negev Research And Development Authority Chemiluminescent method for identifying respiratory infections of different origins
WO2008044138A1 (en) * 2006-10-12 2008-04-17 Syddansk Universitet Optical nanosensor for detection of reactive oxygen species
ES2316288A1 (es) * 2007-07-20 2009-04-01 Universidad Publica De Navarra Metodo de cuantificacion del daño o estres oxidativo/nitrativo/nitrosativo.
WO2009107769A1 (ja) * 2008-02-29 2009-09-03 国立大学法人東京大学 活性酸素測定用試薬

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE553213T1 (de) 2004-12-13 2012-04-15 Bayer Healthcare Llc Zusammensetzungen mit eigener grössenbegrenzung sowie testvorrichtungen zur messung von analyten in biologischen flüssigkeiten
US8361741B2 (en) * 2007-08-29 2013-01-29 Millipore Corporation Serum-free growth medium for Acholeplasma laidlawii and methods for retention testing sterilizing grade filters

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4176953A (en) 1978-05-22 1979-12-04 SEM Israel Limited Method and apparatus for measuring the motility of sperm cells
GB2265709A (en) * 1992-03-25 1993-10-06 David Russell Blake Reactive oxygen species measuring device
WO1993022053A1 (en) 1992-05-01 1993-11-11 Trustees Of The University Of Pennsylvania Microfabricated detection structures
US5434027A (en) 1992-12-25 1995-07-18 Konica Corporation Photorecptor for electrophotography and image forming method
WO2001032802A1 (en) * 1999-10-29 2001-05-10 The Cleveland Clinic Foundation Method and apparatus for predicting male infertility
US6368818B1 (en) 2000-10-12 2002-04-09 Qingzhong Kong Methods and compositions for the visualization of cellular organelles using tetrazolium salts
WO2007085839A1 (en) 2006-01-25 2007-08-02 The Nottingham Trent University Acoustic sensor sperm test kit and assay
WO2008026205A1 (en) * 2006-08-28 2008-03-06 Ben-Gurion University Of The Negev Research And Development Authority Chemiluminescent method for identifying respiratory infections of different origins
WO2008044138A1 (en) * 2006-10-12 2008-04-17 Syddansk Universitet Optical nanosensor for detection of reactive oxygen species
ES2316288A1 (es) * 2007-07-20 2009-04-01 Universidad Publica De Navarra Metodo de cuantificacion del daño o estres oxidativo/nitrativo/nitrosativo.
WO2009107769A1 (ja) * 2008-02-29 2009-09-03 国立大学法人東京大学 活性酸素測定用試薬

Non-Patent Citations (33)

* Cited by examiner, † Cited by third party
Title
AGARWAL A. ET AL., REPROD BIOMED ONLINE., vol. 8, no. 6, June 2004 (2004-06-01), pages 616 - 27
AITKEN RJ ET AL., BIOL REPROD., vol. 59, 1998, pages 1037 - 46
AITKEN RJ; DE IULIIS GN., MOL HUM REPROD., 31 July 2009 (2009-07-31)
ANGELOPOULO R ET AL., BIOL ENDOCRINOL, vol. 5, 2007, pages 36
ATHAYDE KS. ET AL., J. ANDROL., vol. 28, 2007, pages 613 - 20
CARRELL DT ET AL., ARCH ANDROL, vol. 49, no. 1, 2003, pages 49 - 55
DOWDY; WEARDEN: "Statistics for Research", 1983, JOHN WILEY & SONS
ERENPREISS J ET AL., ASIAN J ANDROL, vol. 8, no. 1, 2006, pages 11 - 29
ESFANDIARI N. ET AL., J ANDROL., vol. 24, no. 6, November 2003 (2003-11-01), pages 862 - 70
EVENSON DP ET AL., THERIOGENOLOGY, vol. 15, 2006, pages 979 - 91
EVENSON DP; WIXON R., FERTIL STERIL, vol. 90, no. 4, 2008, pages 1229 - 31
FERNANDEZ JL. ET AL., FERTIL. STERIL., vol. 84, 2005, pages 860
GRECO E. ET AL., J ANDROL., vol. 26, 2005, pages 349 - 53
GRECO E. ET AL., J ANDROL., vol. 26, no. 3, May 2005 (2005-05-01), pages 349 - 53
IWASAKI A ET AL., FERTIL STERIL, vol. 57, 1992, pages 409 - 16
LINDGREN, A. ET AL., TRENDS PHARMACOL. SCI., vol. 21, 2000, pages 99 - 103
LUNDBERG, M. ET AL., MOL. THERAPY, vol. 8, 2003, pages 143 - 150
MENEZO YJ ET AL., REPROD BIOMED ONLINE, vol. 14, no. 4, April 2007 (2007-04-01), pages 418 - 21
NAUGHTON CK. ET AL., HUM REPROD UPDATE, vol. 7, 2001, pages 473 - 481
OCHSENDORF FR., HUM REPROD UPDATE, vol. 5, no. 5, September 1999 (1999-09-01), pages 399 - 420
SAWYER DE, MUTAT RES, vol. 529, 2003, pages 21 - 34
SCHWARZE, S.R. ET AL., TRENDS PHARMACOL. SCI., vol. 21, 2000, pages 45 - 48
See also references of EP2637019A4
SNYDER, E.L.; DOWDY, S.F., PHARM. RES., vol. 21, 2004, pages 389 - 393
T. MOSTAFA ET AL., ANDROLOGIA, vol. 41, 2009, pages 125 - 129
TESARIK ET AL., REPROD BIOMED ONLINE, vol. 12, 2006, pages 715 - 21
THE PRACTICE COMMITTEE OF THE AMERICAN SOCIETY FOR REPRODUCTIVE MEDICINE, 2006
TREMELLEN K, REPROD UPDATE, vol. 14, no. 3, May 2008 (2008-05-01), pages 243 - 58
TUNC ET AL., INT. J. ANDROL, vol. 33, pages 13 - 21
TUNC O. ET AL.: "Development of the NBT assay as a marker of sperm oxidative stress.", INTERNATIONAL JOURNAL OF ANDROLOGY, vol. 33, no. 1, 2010, pages 13 - 21, XP055089542 *
TWIGG J ET AL., HUM REPROD., vol. 13, 1998, pages 1429 - 36
ZINI A, INT J ANDROL, vol. 16, 1993, pages 183 - 8
ZINI; SIGMAN, J ANDROL., vol. 30, no. 3, 2009, pages 219 - 29

Also Published As

Publication number Publication date
MX339423B (es) 2016-05-25
CA2815949C (en) 2018-07-24
EP2637019B1 (en) 2017-07-26
ES2381721A1 (es) 2012-05-31
US9618503B2 (en) 2017-04-11
ES2381721B1 (es) 2013-05-06
EP2637019A1 (en) 2013-09-11
CA2815949A1 (en) 2012-05-10
ES2649668T3 (es) 2018-01-15
US20130224737A1 (en) 2013-08-29
EP2637019A4 (en) 2014-10-15
MX2013004984A (es) 2013-06-05
EP3023787A1 (en) 2016-05-25

Similar Documents

Publication Publication Date Title
WO2012059615A1 (es) Método para determinar la producción de especies reactivas de oxígeno en una población celular
Shiva et al. Renal ischemia/reperfusion injury: An insight on in vitro and in vivo models
Salvador et al. Senescence and associated blood–brain barrier alterations in vitro
Pierach et al. Red blood cell porphobilinogen deaminase in the evaluation of acute intermittent porphyria
ES2543171T3 (es) HbF y A1M como marcadores de fase inicial para preeclampsia
Sati et al. Sperm motility and viability: Overview of the cellular and physiological aspects that support these functions
Goss et al. Improved sperm motility after 4 h of ejaculatory abstinence: role of accessory sex gland secretions
Tvrda NBT test
US9809837B2 (en) Method for evaluating suitability of duodenal fluid sample as sample for detecting pancreatic fluid-derived components
ES2375662T3 (es) Método para evaluar el nivel de sensibilidad de la piel mediante el uso del ant�?geno relacionado con el carcinoma de células escamosas como indicación.
Rijsdijk et al. Use of the capillary–cumulus oophorus model for evaluating the selection of spermatozoa
ES2690745T3 (es) Evaluación de la viabilidad de embriones cultivados in vitro a partir del medio de cultivo
ES2733357A1 (es) Compuesto para la deteccion de celulas senescentes y uso del mismo
ES2752675B2 (es) Funcionalidad de las plaquetas para el diagnóstico muy temprano de la enfermedad de Parkinson
ES2206586T3 (es) Procedimiento para determinar el grado de agregacion del peptido beta a4.
Kor et al. Ischemia-modified albumin levels are elevated, and thiol/disulfite homeostasis is impaired in Behçet’s disease
Barroso et al. Sperm Flow Cytometry: Beyond Human Fertilization and Embryo Development
Mukherjee et al. Experimental mammalian cell culture-based assays
Rasool et al. Comparison between different DNA and conventional sperm parameters in infertile men
ES2358544T3 (es) Utilización de hepatocitos humanos y procedimiento in vitro para determinar la función hepática y la regeneración del hígado.
Hromova AM et al. Aseptic inflammation as the essential link in the pathogenesis of endometrioid disease
Zhou The Effect of Neutral Alpha-Glucosidase on Semen Parameters
Cerecedo et al. Reactive oxygen species downregulate dystroglycans in the megakaryocytes of rats with arterial hypertension
RU2542426C1 (ru) Способ оценки действия цитомегаловирусной инфекции на подавление дыхательной активности эритроцитов беременных путем определения активности глутатионредуктазы в эритроцитах периферической крови и при нарастании в них перекисей жирный кислот
Bainbridge et al. NAD+ depletion and altered mitochondrial function are key to the establishment of placental dysfunction in an inflammatory-driven subclass of preeclampsia

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11837612

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2815949

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/004984

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 13883562

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011837612

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011837612

Country of ref document: EP