WO2012057038A1 - Light-emitting module and lighting equipment - Google Patents

Light-emitting module and lighting equipment Download PDF

Info

Publication number
WO2012057038A1
WO2012057038A1 PCT/JP2011/074341 JP2011074341W WO2012057038A1 WO 2012057038 A1 WO2012057038 A1 WO 2012057038A1 JP 2011074341 W JP2011074341 W JP 2011074341W WO 2012057038 A1 WO2012057038 A1 WO 2012057038A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
emitting module
substrate
alignment mark
light
Prior art date
Application number
PCT/JP2011/074341
Other languages
French (fr)
Japanese (ja)
Inventor
友広 三瓶
絵梨果 竹中
Original Assignee
東芝ライテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝ライテック株式会社 filed Critical 東芝ライテック株式会社
Priority to CN201190000701.5U priority Critical patent/CN203481265U/en
Priority to JP2012540828A priority patent/JPWO2012057038A1/en
Publication of WO2012057038A1 publication Critical patent/WO2012057038A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0266Marks, test patterns or identification means
    • H05K1/0269Marks, test patterns or identification means for visual or optical inspection
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/11Printed elements for providing electric connections to or between printed circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09372Pads and lands
    • H05K2201/09381Shape of non-curved single flat metallic pad, land or exposed part thereof; Shape of electrode of leadless component
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10007Types of components
    • H05K2201/10106Light emitting diode [LED]

Definitions

  • Embodiments of the present invention relate to a light emitting module in which a plurality of light emitting elements are mounted side by side on a substrate, and a lighting fixture incorporating the light emitting module.
  • light emitting modules in which a plurality of light emitting elements (for example, LEDs; light emitting diodes) are arranged and mounted on a substrate have been developed, and lighting fixtures incorporating this type of light emitting module are becoming popular.
  • LEDs for example, LEDs; light emitting diodes
  • the light emitting module has an alignment mark (also referred to as a fiducial mark) used in an inspection process for inspecting whether or not a plurality of light emitting elements are normally mounted at predetermined positions on the substrate.
  • the alignment mark is formed on the surface of the substrate separately from the power supply pattern for supplying power to the light emitting element outside the mounting area of the light emitting element.
  • the alignment mark is used, for example, to determine a positional deviation of a lens-shaped sealing member that seals a light emitting element, or an aggregate substrate in which a plurality of light emitting modules are assembled is divided into modules. It is used as a mark when doing.
  • the alignment mark is formed on the substrate surface together with the above-described power supply pattern in order to simplify the manufacturing process of the light emitting module.
  • a metal (for example, silver) layer having a high reflectance is plated on the surface so as to have a high reflectance. That is, when the alignment mark is formed at the same time as the power feeding pattern, both can be formed by a single electrolytic plating.
  • the area of the alignment mark is extremely small compared to the power feeding pattern. For this reason, if both are plated at the same time, the same amount of current flows through the alignment mark and the power feeding pattern, and the density of the current flowing through the alignment mark is higher than that of the power feeding pattern. As a result, the plating layer of the alignment mark is thicker than the plating layer of the power feeding pattern, and plating spots are generated.
  • the alignment mark when plating spots are generated on the alignment mark, there is a high possibility that the alignment mark is erroneously recognized when the pattern is recognized. If the alignment mark is misrecognized, the light emitting element may not be properly mounted, the sealing member may be displaced, and the shape of the substrate may become unstable. That is, in such a case, the quality of the light emitting module is deteriorated and the light emitting characteristics are deteriorated.
  • the light emitting module includes a power supply pattern formed on the surface of the substrate for supplying power to the light emitting element, and an alignment mark formed integrally with the power supply pattern.
  • a light emitting module includes a power supply pattern having a base layer formed on a substrate surface adjacent to a light emitting element and a surface layer laminated on the base layer, and a base layer separately from the power supply pattern. And an alignment mark formed as a part on the substrate surface.
  • FIG. 1 is an external perspective view showing an LED lamp according to an embodiment.
  • FIG. 2 is a cross-sectional view of the LED lamp of FIG. 1 cut along an axis.
  • FIG. 3 is a plan view of the light emitting module according to the first embodiment incorporated in the LED lamp of FIG. 1 as viewed from the light extraction side. 4 is a cross-sectional view of the light emitting module of FIG. 3 taken along line F4-F4.
  • FIG. 5 is a plan view showing a module substrate of the light emitting module of FIG.
  • FIG. 6 is a plan view showing a protective layer covering the module substrate of FIG. 7 is a plan view showing a state in which the protective layer of FIG. 6 is provided on the module substrate of FIG.
  • FIG. 1 is an external perspective view showing an LED lamp according to an embodiment.
  • FIG. 2 is a cross-sectional view of the LED lamp of FIG. 1 cut along an axis.
  • FIG. 3 is a plan view of the light emitting module according to the first embodiment
  • FIG. 8 is a partially enlarged view showing a modification of the alignment mark of the light emitting module of FIG.
  • FIG. 9 is a plan view of the light emitting module according to the second embodiment incorporated in the LED lamp of FIG. 1 as viewed from the light extraction side.
  • FIG. 10 is a cross-sectional view of the light emitting module of FIG. 9 taken along line F10-F10.
  • FIG. 11 is a plan view showing a module substrate of the light emitting module of FIG.
  • FIG. 12 is a plan view showing a protective layer covering the module substrate of FIG. 13 is a plan view showing a state in which the protective layer of FIG. 12 is provided on the module substrate of FIG.
  • FIG. 1 the external view of the LED lamp 100 is shown as an example of the lighting fixture incorporating the light emitting module which concerns on embodiment.
  • FIG. 2 is a sectional view of the LED lamp 100 of FIG. 1 cut along the axis.
  • the LED lamp 100 includes a main body 102, an insulating member 111, a base 115, a lighting device 121, the light emitting module 1, and a lighting cover 161.
  • the LED lamp 100 is attached, for example, in such a manner that the illumination cover 161 faces downward by screwing a base 115 into a socket (not shown) attached to the ceiling. That is, in FIGS. 1 and 2, the LED lamp 100 is illustrated in a state where the mounting state is reversed upside down.
  • the main body 102 is made of aluminum having a relatively high thermal conductivity.
  • a module fixing base 103 for attaching the light emitting module 1 is provided at the upper end of the main body 102 in the figure.
  • an annular cover mounting convex portion 104 is integrally projected from the upper end of the main body around the module fixing base 103.
  • a concave portion 105 that is recessed upward in the drawing is provided on the lower end side of the main body 102 in the drawing.
  • a through hole 106 extending in the axial direction is formed inside the main body 102. The upper end of the through hole 106 shown in the figure opens at the upper end surface of the main body 102, and the lower end of the through hole 106 shown in the figure opens at the bottom of the recess 105.
  • a groove portion 106 a formed so as to bend laterally along the back surface of the module fixing base 103 is provided continuously to the upper end of the through hole 6.
  • the main body 102 integrally has a plurality of heat radiating fins 107 on its outer periphery. As shown in FIG. 1, the plurality of radiating fins 107 are curved and extended so as to spread outward toward the upper end of the main body 102. The plurality of heat radiation fins 107 are provided to radiate heat generated from the light emitting module 1 to the outside of the LED lamp 100.
  • the insulating member 111 is formed in a bottomed cylindrical shape as shown in a cross section in FIG.
  • the insulating member 111 integrally has an annular insulating convex portion 112 that protrudes from the outer peripheral surface at an intermediate portion in the height direction.
  • the insulating member 111 is accommodated and disposed in the recess 105 so that the bottom wall 111 a contacts the bottom surface of the recess 105 and the insulating protrusion 112 is engaged with the edge of the opening of the recess 105. That is, the outer surface of the insulating member 111 is in close contact with the inner surface of the recess 105.
  • the lower portion of the insulating member 111 in the drawing protrudes from the lower end of the main body 102 in the drawing from the lower end of the drawing. In other words, only the upper portion of the insulating member 111 in the drawing from the insulating convex portion 112 is inserted into the concave portion 105 of the main body 102. Further, the bottom wall 111 a of the insulating member 111 is provided with a through hole 114 for communicating the illustrated lower end of the through hole 6 with the inside of the insulating member 111.
  • the base 115 has a structure in which a base body 117 and an eyelet terminal 118 are attached to a substantially disc-shaped base 116 formed of an insulating material.
  • the base 115 of the present embodiment is an E26 type base.
  • the base 115 is attached so as to cover the above-described lower portion of the insulating member 111 so that the base 116 closes the opening of the insulating member 111.
  • the base body 117 is formed with a spiral groove that is screwed into a power source socket (not shown).
  • the lighting device 121 is accommodated and disposed inside the insulating member 111 as shown in FIG.
  • the lighting device 121 is formed by mounting a circuit component 123 such as a transformer, a capacitor, and a transistor on a circuit board 122.
  • the lighting device 121 is electrically connected to the base 115.
  • the connecting member 124 for that purpose is illustrated in FIG.
  • the connection member 124 electrically connects the eyelet terminal 118 and the circuit board 122.
  • the lighting device 121 is electrically connected to the light emitting module 1 to be described later via an insulating coated electric wire (not shown) that passes through the through hole 6 (groove 106a).
  • the lighting device 121 supplies direct current to the light emitting module 1 via the base 115.
  • the illumination cover 161 is formed in a substantially hemispherical shape as shown in FIG.
  • the illumination cover 161 is made of a translucent synthetic resin. As shown in FIG. 2, the illumination cover 161 is fitted and attached to a cover mounting convex portion 104 protruding from the upper end in the figure of the main body 102 so as to cover the light emitting side of the light emitting module 1. That is, the light emitted from the light emitting module 1 is used as illumination light through the illumination cover 161.
  • the cover mounting convex portion 104 on the main body 102 side has L-shaped mounting grooves (not shown) at a plurality of locations along the circumferential direction.
  • a plurality of locking projections are provided at positions corresponding to the plurality of mounting grooves of the cover mounting projection 104, respectively.
  • the illumination cover 161 is attached to the main body 102 by hooking its locking projections to the respective mounting grooves of the cover mounting projections 104. As shown in FIGS. 1 and 2, a blindfold ring 162 is provided at the edge of the illumination cover 161 to conceal the mounting groove and the locking projection described above.
  • FIG. 3 shows a plan view of the light emitting module 1 viewed from the light extraction side (hereinafter referred to as the front side), and FIG. 4 shows a cross section of the light emitting module 1 taken along line F4-F4 in FIG.
  • FIG. 5 shows a plan view of the module substrate 3 of the light emitting module 1
  • FIG. 6 shows a protective layer 19 covering the surface of the module substrate 3
  • FIG. A plan view of the module substrate 3 covered with the protective layer 19 is shown.
  • the light emitting module 1 of the present embodiment includes a module substrate 3, a plurality of LED chips 11 (light emitting elements), a frame member 15, a sealing member 17, and a protective layer 19, as shown in FIGS.
  • the module substrate 3 of this embodiment has a structure in which an insulating layer 3b is laminated on the surface of a base plate 3a using aluminum having a relatively high thermal conductivity, as shown in a cross section in FIG.
  • the base plate 3a is made of aluminum or an aluminum alloy.
  • the insulating layer 3b is formed of a synthetic resin such as an epoxy resin. The insulating layer 3b is much thinner than the base plate 3a.
  • the module substrate 3 for example, a resin substrate made of at least one synthetic resin layer, a metal base substrate in which an insulating layer is laminated on a metal plate other than aluminum, a ceramic substrate, or the like can be used.
  • the substrate surface white.
  • the substrate material may be white
  • the insulating layer is a white material. May be formed.
  • the module substrate 3 has a substantially rectangular plate-like outer shape, and has a notch 4 at each of its four corners. That is, the module substrate 3 is fastened and fixed to the main body 102 by screwing screws (not shown) inserted through the four notches 4 into screw holes (not shown) of the module fixing base 103.
  • the back surface of the base plate 3a is brought into close contact with and pressed against the surface 103a of the module fixing base 103.
  • the heat of the LED chip 11 can be easily transmitted to the main body 102 via the base plate 3a, and the heat dissipation of the LED chip 11 can be enhanced.
  • a pair of power supply patterns 6, a reflective layer 8, and a pair of power supply pads 9 are provided on the surface of the insulating layer 3 b of the module substrate 3.
  • the reflective layer 8 functions to improve the light extraction capability by reflecting relatively high energy light emitted from the back side of the plurality of LED chips 11 mounted thereon in the utilization direction.
  • the reflective layer 8 is not an essential component in the present embodiment, and can be omitted.
  • the protective layer 19 has a plurality of holes that expose all of the reflective layer 8, a part of the pair of power supply patterns 6, and all of the pair of power supply pads 9, and has a shape that covers substantially the entire surface of the substrate.
  • a protective layer 19 is formed by screen printing, for example.
  • the reflective layer 8 occupies the central portion of the module substrate 3 and is provided in a square shape on the insulating layer 3 b, and the pair of power supply patterns 6 are disposed in the vicinity of the reflective layer 8, for example, 8 is disposed on both sides of the reflective layer 8 so as to sandwich the 8 from the left and right in the figure.
  • the pair of power feeding patterns 6 has a shape shown in FIG.
  • a pair of power supply pads 9 are provided on the surface of the insulating layer 3 b corresponding to the pair of power supply patterns 6.
  • the power supply pad 9 on the left side of the figure is connected to the power supply pattern 6 on the left side of the figure via a conductive member (not shown), and the power supply pad 9 on the right side of the figure is connected to a power supply pattern 6 on the right side of the figure (not shown). Connected through. Further, the two power supply pads 9 are connected to the circuit board 122 of the lighting device 121 via an insulation coated electric wire (not shown).
  • an insulation-coated electric wire (not shown) connecting the light emitting module 1 and the lighting device 121 extends from the two power supply pads 9 of the light emitting module 1, passes through the through hole 106 through the groove 106 a, and is a circuit board of the lighting device 121. 122.
  • the pair of power supply patterns 6, the reflective layer 8, and the pair of power supply pads 9 having the above shapes are patterned on the surface of the insulating layer 3 b of the module substrate 3 (hereinafter also referred to as a substrate surface).
  • All of these metal patterns 6, 8 and 9 are formed in a three-layer structure of a base layer A, an intermediate layer B, and a surface layer C.
  • the base layer A is thicker than the intermediate layer B and the surface layer C, and the intermediate layer B and the surface layer C are substantially the same thickness.
  • the base layer A is provided by removing unnecessary portions by etching after bonding Cu (copper) to the entire surface of the insulating layer 3b of the module substrate 3 and bonding them.
  • the intermediate layer B is provided by plating Ni (nickel) on the surface of the base layer A, for example, electrolytic plating.
  • the surface layer C is provided by plating Ag (silver) on the surface of the intermediate layer B, for example, electrolytic plating.
  • the surface layer C is made of Ag, the light reflectance of the power supply pattern 6, the reflective layer 8, and the power supply pad 9 is higher than the light reflectance of the surface of the insulating layer 3b.
  • the material for the surface layer C having a higher light reflectance than the insulating layer 3b include gold, nickel, and aluminum in addition to Ag.
  • the connectivity with the bonding wire described later can be improved.
  • the surface layer C can also be formed by electroless plating.
  • the plurality of LED chips 11 are arranged in a matrix on the surface of the reflective layer 8.
  • the LED chip 11 of this embodiment is a bare chip of an LED (light emitting diode).
  • a semiconductor wafer in which a nitride compound semiconductor (for example, a gallium nitride compound semiconductor) is formed on a semiconductor substrate such as sapphire is used as a dicing cutter. And cut into a substantially rectangular parallelepiped.
  • the LED chip 11 emits light by passing a forward current through a pn junction portion of the semiconductor. That is, the LED chip 11 directly converts electrical energy into light. Therefore, the LED chip 11 has an energy saving effect as compared with an incandescent bulb that incandescents the filament to a high temperature by energization and emits visible light by the thermal radiation.
  • the LED chip 11 of this embodiment is a single-sided electrode type chip having two element electrodes on its upper surface as shown in FIG. For each LED chip 11, an LED that emits blue light is used because the LED lamp 100 emits white light, for example.
  • each LED chip 11 is preferably reflected on the back surface of its semiconductor substrate by using a light-transmitting die bond material 12 such as a transparent silicone resin so that the LED chip 11 can be reflected immediately below.
  • Adhesive fixing is performed on the surface layer C of the layer 8.
  • the plurality of LED chips 11 are mounted on the surface of the reflective layer 8 so as to be aligned vertically and horizontally.
  • a plurality of LED chips 11 in each row (only one row is illustrated in FIG. 4) are connected to bonding wires 13 (13a) so as to connect a pair of power supply patterns 6 arranged on the left and right sides of the reflective layer 8 in the figure. 13b) are connected in series.
  • each chip row the element electrodes having different polarities of two LED chips 11 adjacent to each other in the extending direction of the row, that is, the element electrodes on the positive side of one LED chip 11 and the other LED chip 11
  • the element electrode on the negative electrode side is connected by a bonding wire 13 made of a fine wire made of Au.
  • the plurality of LED chips 11 included in each chip row are electrically connected in series.
  • the LED chips 11 at both ends of each row are connected to the power feeding pattern 6 via the end bonding wires 13a and 13b. Since these end bonding wires 13a and 13b are also Au fine metal wires, it is difficult for heat to be transmitted. For this reason, the heat of the LED chips 11 at both ends of each row is difficult to move (escape) to the power feeding pattern 6 through the end bonding wires 13a and 13b. Thereby, temperature distribution in each part of the reflective layer 8 can be made uniform, and the temperature difference of the some LED chip 11 mounted in the reflective layer 8 can be suppressed.
  • the LED chips 11 in each row are connected in parallel to the power feeding pattern 6 via the end bonding wires 13a and 13b, respectively. For this reason, even if any one of the LED chips 11 in the plurality of chip rows cannot emit light due to bonding failure or the like, the light emitting module 1 as a whole cannot emit light.
  • the light emitting module 1 includes a frame member 15 surrounding a sealing region for sealing the plurality of LED chips 11, and a sealing member 17 filled in a sealing region inside the frame member 15.
  • the frame member 15 is, for example, applied in a rectangular frame shape on the insulating layer 3 b in an uncured state with a synthetic resin, and is cured and fixed to the surface of the module substrate 3.
  • a white silicone resin mixed with a filler formed of an inorganic material as the synthetic resin, the reflectance of light can be increased.
  • the filler include titanium oxide and silica.
  • the frame member 15 has a size surrounding all the LED chips 11.
  • the frame member 15 surrounds the entire reflective layer 8 and a part of the power feeding pattern 6. That is, the size of the frame member 15 defines the size of the sealing region that fills the sealing member 17.
  • the frame member 15 has a size surrounding all the LED chips 11, all the bonding wires 13, and all the end bonding wires 13a and 13b.
  • the thickness of the frame member 15, that is, the protruding height of the frame member 15 from the substrate surface is set to a height at which all of these constituent elements 11, 13, 13 a and 13 b can be embedded by the sealing member 17. Yes.
  • the size of the sealing region filled with the sealing member 17 corresponds to the area inside the frame member 15 (hereinafter, this area is referred to as a sealing area).
  • the sealing member 17 is filled inside the frame member 15, and includes a pair of power supply patterns 6, a reflective layer 8, a plurality of LED chips 11, a plurality of bonding wires 13, and a plurality of end bonding wires 13 a and 13 b. Fill.
  • the sealing member 17 is made of, for example, a transparent silicone resin. Note that a predetermined amount of the sealing member 17 is injected into a sealing region inside the frame member 15 in an uncured state, and then heat-cured.
  • An appropriate amount of phosphor (not shown) is mixed in the sealing member 17.
  • the phosphor is excited by light emitted from the LED chip 11 and emits light having a color different from the color of light emitted from the LED chip 11.
  • a yellow phosphor that emits yellow light that is complementary to the blue light is used as the phosphor so that white light can be emitted.
  • the sealing member 17 in which the phosphors are mixed in this manner emits light from the phosphors, so that the entire sealing member 17 inside the frame member 15 functions as a light emitting unit of the light emitting module 1.
  • the sealing member 17 When the light emitting module 1 having the above structure is incorporated in the LED lamp 100 and energized via the lighting device 121, the plurality of LED chips 11 covered with the sealing member 17 emit blue light all at once, and the sealing member 17. The yellow phosphor mixed in is excited to emit yellow light. That is, the sealing member 17 functions as a planar light source that emits white light in which blue light and yellow light are mixed.
  • the reflective layer 8 functions as a heat spreader that diffuses the heat generated by the plurality of LED chips 11 and also functions as a reflecting mirror that reflects the light emitted from the LED chips 11 toward the module substrate 3.
  • the power feeding pattern 6 in the sealing region functions as a heat spreader and also as a reflecting mirror, like the reflecting layer 8.
  • heat from each LED chip 11 is radiated to the outside of the LED lamp 100 through the reflective layer 8, the module substrate 3, the module fixing base 103, the upper surface of the main body 102, and the heat radiation fins 107. Further, the light reflected by the reflective layer 8 and the light diffused by the sealing member 17 and reflected by the power feeding pattern 6 are passed through the illumination cover 161 together with main light directly emitted from the sealing member 17. Used as illumination light.
  • an alignment mark provided on the light emitting module 1 is detected by a CCD sensor of an inspection machine (not shown) to identify a mounting failure portion.
  • This alignment mark is also used in other processes. For this reason, in this embodiment, an alignment mark integral with the power feeding pattern 6 is provided on the surface of the module substrate 3.
  • the pair of power supply patterns 6 includes a pair of elongated electrodes disposed adjacent to each other along two opposing sides of the reflective layer 8 on which the plurality of LED chips 11 are mounted. It has a portion 6a. In other words, the two electrode portions 6 a of the pair of electrode patterns 6 are respectively provided at positions where the reflective layer 8 is sandwiched.
  • Each electrode portion 6a includes a bonding portion 6b and a plurality of protruding portions 6c along two sides of the reflective layer 8, respectively.
  • the bonding portion 6b connects the device electrodes of the chips at both ends of each chip row of the plurality of LED chips 11 via the end bonding wires 13a and 13b. For this reason, the bonding portion 6 b is elongated along the opposing sides of the reflective layer 8.
  • the plurality of protruding portions 6c are provided corresponding to the chip rows of the LED chips 11, and protrude outward from the first end 61 spaced from the reflective layer 8 of each bonding portion 6b.
  • the protruding length from the end 61 of each protruding portion 6c is designed to be narrower than the width of the bonding portion 6b.
  • the width of each protruding portion 6c is designed to be narrower than the width of the bonding portion 6b.
  • the plurality of protruding portions 6c are provided to protrude along the end side 61 at a constant pitch of, for example, about 0.5 mm.
  • the plurality of protruding portions 6c function as alignment marks.
  • the second end 62 adjacent to the reflective layer 8 of each bonding portion 6b is opposed to the straight side of the reflective layer 8 that is substantially parallel with a slight gap therebetween, and is linear.
  • the second end side 62 is not provided with a protrusion or recess corresponding to the alignment mark.
  • the alignment mark (the plurality of protruding portions 6c) protrudes from the bonding portion 6b and is formed integrally with the power feeding pattern 6, the surface layer C of the power feeding pattern 6 including the alignment mark is electrolyzed. In the case of forming by plating, plating spots do not occur, and erroneous recognition of alignment marks can be suppressed.
  • the protruding portion 6c functioning as an alignment mark is not separated from the power feeding pattern 6, the current density flowing in the electrolytic plating is made the same even though the protruding portion 6c is thinner than the bonding portion 6b. And plating spots can be prevented. Thereby, the alignment mark can be reliably detected, and the light emitting module 1 having high quality and good light emission characteristics can be manufactured.
  • the protruding portion 6c and the bonding portion 6b can be used even when a very large direct current is applied to the LED chip 11. No discharge is generated between the LED chip 11 and the LED chip 11 can be prevented from being damaged by this discharge.
  • the number of leads when plating a metal pattern including these portions 6b and 6c can be reduced. Specifically, according to the present embodiment, as shown in FIG. However, when the protruding portion 6c is separated from the bonding portion 6b and plated separately, the number of leads L is increased by two.
  • the distance between the alignment mark (the protruding portion 6c) and the edge of the module substrate 3 is compared with the case where both are separated. Can be taken longer, and creepage distance can be earned. In other words, the module substrate 3 can be reduced in size while ensuring a sufficient creepage distance, and the light emitting module 1 can be downsized.
  • the number, width, protruding length, pitch, size, shape, and the like of the plurality of protruding portions 6c can be variously changed.
  • the shape and size of the alignment mark can be arbitrarily changed.
  • FIG. 8 shows one modification of the alignment mark of the light emitting module 1 of the first embodiment described above.
  • symbol is attached
  • the alignment mark according to this modification is also provided on the first end 61 ′ spaced from the reflective layer 8 of the electrode portion 6 a ′ of the power feeding pattern 6.
  • a plurality of notches 6c ' are provided on the first end 61' instead of the plurality of protruding portions 6c.
  • the width of the electrode portion 6a ' is made larger than the width of the electrode portion 6a of the first embodiment.
  • the width W of the bonding portion 6b ′ between the bottom of the plurality of notches 6c ′ and the second end 62 that are recessed from the first end 61 ′ of the electrode portion 6a ′ is the first embodiment.
  • the width of the electrode portion 6a of the power supply pattern 6 is designed to be substantially the same as the width of the bonding portion 6b.
  • the light emitting module 20 according to the second embodiment will be described with reference to FIGS. 9 to 13.
  • components that function in the same manner as the light emitting module 1 of the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 9 shows a plan view of the light emitting module 20 as viewed from the front side
  • FIG. 10 shows a cross-sectional view of the light emitting module 20 taken along line F10-F10 in FIG. 9, and
  • FIG. A plan view of the module substrate 3 of the light emitting module 20 is shown.
  • FIG. 12 shows a protective layer 19 covering the surface of the module substrate 3.
  • FIG. 13 shows a module in a state where the protective layer 19 is covered.
  • a plan view of the substrate 3 is shown.
  • the light emitting module 20 of this embodiment has two sets of alignment marks 16 and 18 that are separate from the power feeding pattern 6.
  • the pair of first alignment marks 16 are respectively disposed in the vicinity of the edges that are separated from the reflective layer 8 of the electrode portions 6 a of the pair of power supply patterns 6.
  • the pair of second alignment marks 18 are disposed further outside the first alignment marks 16.
  • each of the pair of first alignment marks 16 includes a straight portion extending substantially parallel to the electrode portion 6a and a plurality of branches provided at equal intervals along the longitudinal direction of the straight portion. And a line portion 16a. These straight portions and branch portions 16a are thinner than the electrode portion 6a.
  • the plurality of branch line portions 16 a are provided to correspond to the chip rows of the plurality of LED chips 11 mounted on the surface of the reflective layer 8 and orthogonal to the straight line portion.
  • Each of the pair of second alignment marks 18 also includes a straight line portion extending substantially parallel to the electrode portion 6a and a plurality of branch line portions 18a provided integrally with the straight line portion. These straight portions and branch line portions 18a are also thinner than the electrode portion 6a. The plurality of branch line portions 18a are also orthogonal to the straight line portions and provided corresponding to the chip rows.
  • the second alignment mark 18 has a plurality of branch line portions 18 a at equal intervals at the same pitch as the branch line portions 16 a of the first alignment mark 16.
  • the branch line portion 16a of the first alignment mark 16 and the branch line portion 18a of the second alignment mark 18 are shifted from each other by 1 ⁇ 2 pitch and are nested. For this reason, the branch line parts 16a and 18a are arrange
  • first and second alignment marks 16 and 18 are formed separately from the power feeding pattern 6, the degree of freedom in design such as the shape, size, and formation position is high. Therefore, for example, the first and second alignment marks 16 and 18 may be connected at one end thereof. However, it is desirable to form the first and second alignment marks 16 and 18 as close as possible to the reflective layer 8 in order to increase the creepage distance from the peripheral edge of the module substrate 3.
  • the first and second alignment marks 16 and 18 are formed as a part of the base layer A of the pair of power supply patterns 6, the reflective layer 8, and the pair of power supply pads 9.
  • the alignment marks 16 and 18 of this embodiment are formed together when patterning the base layer A of the metal patterns 6, 8 and 9 formed on the surface of the insulating layer 3 b of the module substrate 3. That is, unlike the other metal patterns 6, 8, 9, the first and second alignment marks 16, 18 do not have the intermediate layer B and the surface layer C.
  • a copper layer is formed on the surface of the module substrate 3, and etching is performed to form the base layer A of the power supply pattern 6, the base layer A of the reflective layer 8, the base layer A of the power supply pad 9, and the first alignment.
  • a mark 16 and a second alignment mark 18 are formed.
  • the intermediate layer B of the power supply pattern 6, the intermediate layer B of the reflective layer 8, and the intermediate layer B of the power supply pad 9 are formed by electrolytic plating.
  • the surface layer C of the power supply pattern 6, the surface layer C of the reflective layer 8, and the surface layer C of the power supply pad 9 are formed by electrolytic plating. That is, the first and second alignment marks 16, 18 do not have the intermediate layer B and the surface layer C, and are thinner than the other metal patterns 6, 8, 9.
  • the alignment marks 16 and 18 are formed only by the base layer A, it is possible to eliminate misrecognition of the alignment mark due to plating spots, and to obtain a light emitting module 20 having high quality and good light emitting characteristics. Can be manufactured. That is, according to the present embodiment, since the alignment marks 16 and 18 are not formed by plating in the first place, no plating spots are generated.
  • the two sets of alignment marks 16 and 18 are covered by a frame member 21 that defines a sealing region, as shown in FIG.
  • the frame member 21 is attached to the surface of the module substrate 3 so as to cover the two sets of alignment marks 16 and 18.
  • the alignment marks 16 and 18 may be formed in the sealing region. In this case, the alignment marks 16 and 18 are also sealed by the sealing member 17, and the occurrence of rust can be suppressed.
  • the alignment marks 16 and 18 are composed only of the copper base layer A, the reflectance of light is low, and when such alignment marks 16 and 18 are present in the sealing region, the corresponding amount is reduced. , Less light foot.
  • the frame member 21 includes a filler for whitening, the sulfur gas component in the air is more easily transmitted than the sealing member 17 that does not include the filler, and accordingly, deterioration of the alignment marks 16 and 18 is suppressed. be able to.
  • two sets of alignment marks 16 and 18 are formed on the module substrate 3.
  • the pitch of the branch line portions 16a is considered to be 0.5 mm because of the limit of etching accuracy.
  • the second alignment mark 18 is formed in addition to the first alignment mark 16 as in the second embodiment. It ’s fine.
  • the light emitting module having a relatively small number of LED chips 11 and the module substrate 3 of the light emitting module in which the number of LED chips 11 is doubled can be used as a common component. Storage and management can be facilitated, and the manufacturing cost of the light emitting module can be reduced accordingly.

Abstract

A light-emitting module according to an embodiment has a feed pattern that is formed on a substrate surface and powers a light-emitting element, and an alignment mark formed integrally with the feed pattern.

Description

発光モジュール、および照明器具Light emitting module and lighting apparatus
 本発明の実施形態は、基板上に複数個の発光素子を並べて実装した発光モジュール、およびこの発光モジュールを組み込んだ照明器具に関する。 Embodiments of the present invention relate to a light emitting module in which a plurality of light emitting elements are mounted side by side on a substrate, and a lighting fixture incorporating the light emitting module.
 近年、複数個の発光素子(例えば、LED;発光ダイオード)を基板上に並べて実装した発光モジュールが開発され、この種の発光モジュールを組み込んだ照明器具が普及されつつある。 In recent years, light emitting modules in which a plurality of light emitting elements (for example, LEDs; light emitting diodes) are arranged and mounted on a substrate have been developed, and lighting fixtures incorporating this type of light emitting module are becoming popular.
 発光モジュールは、複数個の発光素子が基板上の所定位置に正常に実装されたか否かを検査する検査工程で使用するアライメントマーク(フィデューシャルマークとも称される)を有する。アライメントマークは、発光素子の実装領域から外れて、発光素子に給電するための給電パターンとは別に、基板表面に形成されている。 The light emitting module has an alignment mark (also referred to as a fiducial mark) used in an inspection process for inspecting whether or not a plurality of light emitting elements are normally mounted at predetermined positions on the substrate. The alignment mark is formed on the surface of the substrate separately from the power supply pattern for supplying power to the light emitting element outside the mounting area of the light emitting element.
 このアライメントマークは、この他に、例えば、発光素子を封止したレンズ状の封止部材の位置ずれを判定するために用いられ、或いは、複数の発光モジュールを集合した集合基板をモジュール単位に分割する際の目印として用いられる。 In addition to this, the alignment mark is used, for example, to determine a positional deviation of a lens-shaped sealing member that seals a light emitting element, or an aggregate substrate in which a plurality of light emitting modules are assembled is divided into modules. It is used as a mark when doing.
 例えば、アライメントマークは、発光モジュールの製造工程を簡略化するため、上述した給電パターンとともに基板表面に形成される。この際、給電パターンは、発光量に寄与するため、高い反射率を備えるように、表面に反射率の高い金属(例えば、銀)層をメッキされる。つまり、アライメントマークを給電パターンと同時に形成する場合、一度の電解メッキで両者を形成できる。 For example, the alignment mark is formed on the substrate surface together with the above-described power supply pattern in order to simplify the manufacturing process of the light emitting module. At this time, since the power feeding pattern contributes to the light emission amount, a metal (for example, silver) layer having a high reflectance is plated on the surface so as to have a high reflectance. That is, when the alignment mark is formed at the same time as the power feeding pattern, both can be formed by a single electrolytic plating.
特開2009-94181号公報JP 2009-94181 A 特開2010-186814号公報JP 2010-186814 A
 しかし、アライメントマークは、給電パターンと比較して面積が極めて小さい。このため、両者を同時にメッキすると、アライメントマークと給電パターンに同じ量の電流が流れ、アライメントマークの方が給電パターンより流れる電流の密度が高くなる。これにより、アライメントマークのメッキ層の方が給電パターンのメッキ層より厚くなり、メッキ斑を生じてしまう。 However, the area of the alignment mark is extremely small compared to the power feeding pattern. For this reason, if both are plated at the same time, the same amount of current flows through the alignment mark and the power feeding pattern, and the density of the current flowing through the alignment mark is higher than that of the power feeding pattern. As a result, the plating layer of the alignment mark is thicker than the plating layer of the power feeding pattern, and plating spots are generated.
 このように、アライメントマークにメッキ斑を生じると、このアライメントマークをパターン認識する際に、誤認識してしまう可能性が高くなる。アライメントマークを誤認識すると、発光素子を正常に実装できなくなる可能性があり、封止部材にズレを生じる可能性があり、基板の形状が不安定になる可能性がある。つまり、このような場合、発光モジュールの品質が低下し、発光特性が悪くなる。 As described above, when plating spots are generated on the alignment mark, there is a high possibility that the alignment mark is erroneously recognized when the pattern is recognized. If the alignment mark is misrecognized, the light emitting element may not be properly mounted, the sealing member may be displaced, and the shape of the substrate may become unstable. That is, in such a case, the quality of the light emitting module is deteriorated and the light emitting characteristics are deteriorated.
 よって、品質の高い良好な発光特性を有する発光モジュール、およびこのような発光モジュールを組み込んだ照明器具の開発が望まれている。 Therefore, it is desired to develop a light emitting module having high quality and good light emitting characteristics, and a lighting fixture incorporating such a light emitting module.
 実施形態に係る発光モジュールは、発光素子に給電するため基板表面に形成された給電パターンと、この給電パターンと一体に形成されたアライメントマークと、を有する。 The light emitting module according to the embodiment includes a power supply pattern formed on the surface of the substrate for supplying power to the light emitting element, and an alignment mark formed integrally with the power supply pattern.
 また、他の実施形態に係る発光モジュールは、発光素子に隣接して基板表面に形成されたベース層およびこのベース層に積層された表層を有する給電パターンと、この給電パターンとは別にベース層の一部として基板表面に形成されたアライメントマークと、を有する。 A light emitting module according to another embodiment includes a power supply pattern having a base layer formed on a substrate surface adjacent to a light emitting element and a surface layer laminated on the base layer, and a base layer separately from the power supply pattern. And an alignment mark formed as a part on the substrate surface.
図1は、実施形態に係るLEDランプを示す外観斜視図である。FIG. 1 is an external perspective view showing an LED lamp according to an embodiment. 図2は、図1のLEDランプを軸線に沿って切断した断面図である。FIG. 2 is a cross-sectional view of the LED lamp of FIG. 1 cut along an axis. 図3は、図1のLEDランプに組み込まれた第1の実施形態に係る発光モジュールを光の取り出し側から見た平面図である。FIG. 3 is a plan view of the light emitting module according to the first embodiment incorporated in the LED lamp of FIG. 1 as viewed from the light extraction side. 図4は、図3の発光モジュールを線F4-F4で切断した断面図である。4 is a cross-sectional view of the light emitting module of FIG. 3 taken along line F4-F4. 図5は、図3の発光モジュールのモジュール基板を示す平面図である。FIG. 5 is a plan view showing a module substrate of the light emitting module of FIG. 図6は、図5のモジュール基板を被覆する保護層を示す平面図である。FIG. 6 is a plan view showing a protective layer covering the module substrate of FIG. 図7は、図5のモジュール基板に図6の保護層を設けた状態の平面図である。7 is a plan view showing a state in which the protective layer of FIG. 6 is provided on the module substrate of FIG. 図8は、図3の発光モジュールのアライメントマークの変形例を示す部分拡大図である。FIG. 8 is a partially enlarged view showing a modification of the alignment mark of the light emitting module of FIG. 図9は、図1のLEDランプに組み込まれた第2の実施形態に係る発光モジュールを光の取り出し側から見た平面図である。FIG. 9 is a plan view of the light emitting module according to the second embodiment incorporated in the LED lamp of FIG. 1 as viewed from the light extraction side. 図10は、図9の発光モジュールを線F10-F10で切断した断面図である。FIG. 10 is a cross-sectional view of the light emitting module of FIG. 9 taken along line F10-F10. 図11は、図9の発光モジュールのモジュール基板を示す平面図である。FIG. 11 is a plan view showing a module substrate of the light emitting module of FIG. 図12は、図11のモジュール基板を被覆する保護層を示す平面図である。FIG. 12 is a plan view showing a protective layer covering the module substrate of FIG. 図13は、図11のモジュール基板に図12の保護層を設けた状態の平面図である。13 is a plan view showing a state in which the protective layer of FIG. 12 is provided on the module substrate of FIG.
 以下、図面を参照しながら実施形態について詳細に説明する。 
 図1には、実施形態に係る発光モジュールを組み込んだ照明器具の一例として、LEDランプ100の外観図を示してある。また、図2には、図1のLEDランプ100を軸線に沿って切断した断面図を示してある。
Hereinafter, embodiments will be described in detail with reference to the drawings.
In FIG. 1, the external view of the LED lamp 100 is shown as an example of the lighting fixture incorporating the light emitting module which concerns on embodiment. FIG. 2 is a sectional view of the LED lamp 100 of FIG. 1 cut along the axis.
 LEDランプ100は、本体102と、絶縁部材111と、口金115と、点灯装置121と、発光モジュール1と、照明カバー161と、を備えている。 The LED lamp 100 includes a main body 102, an insulating member 111, a base 115, a lighting device 121, the light emitting module 1, and a lighting cover 161.
 このLEDランプ100は、例えば、天井に取り付けた図示しないソケットに口金115を螺合して照明カバー161が下を向く姿勢で取り付けられる。つまり、図1、2では、取り付け状態とは天地を逆転した状態でLEDランプ100を図示してある。 The LED lamp 100 is attached, for example, in such a manner that the illumination cover 161 faces downward by screwing a base 115 into a socket (not shown) attached to the ceiling. That is, in FIGS. 1 and 2, the LED lamp 100 is illustrated in a state where the mounting state is reversed upside down.
 本体102は、比較的熱伝導率の高いアルミニウムにより形成されている。図2に示すように、本体102の図示上端には、発光モジュール1を取り付けるためのモジュール固定台103が設けられている。また、このモジュール固定台103の周りには、円環状のカバー装着凸部104が、本体上端から一体に突設されている。 The main body 102 is made of aluminum having a relatively high thermal conductivity. As shown in FIG. 2, a module fixing base 103 for attaching the light emitting module 1 is provided at the upper end of the main body 102 in the figure. In addition, an annular cover mounting convex portion 104 is integrally projected from the upper end of the main body around the module fixing base 103.
 また、本体102の図示下端側には、図示上方に向けて凹んだ凹部105が設けられている。さらに、本体102の内部には、その軸方向に延びた通線孔106が形成されている。通線孔106の図示上端は本体102の上端面に開口し、通線孔106の図示下端は凹部105の底面に開口している。また、通線孔6の上端に連続して、モジュール固定台103の裏面に沿って、横向きに折れ曲がるように形成された溝部106aが設けられている。 Further, a concave portion 105 that is recessed upward in the drawing is provided on the lower end side of the main body 102 in the drawing. Further, a through hole 106 extending in the axial direction is formed inside the main body 102. The upper end of the through hole 106 shown in the figure opens at the upper end surface of the main body 102, and the lower end of the through hole 106 shown in the figure opens at the bottom of the recess 105. Further, a groove portion 106 a formed so as to bend laterally along the back surface of the module fixing base 103 is provided continuously to the upper end of the through hole 6.
 さらに、本体102は、その外周に、複数の放熱フィン107を一体に有する。これら複数の放熱フィン107は、図1に示すように、本体102の上端に向けて外側に広がるように湾曲して延設されている。これら複数の放熱フィン107は、発光モジュール1から発生される熱をLEDランプ100の外部に放熱するために設けられている。 Furthermore, the main body 102 integrally has a plurality of heat radiating fins 107 on its outer periphery. As shown in FIG. 1, the plurality of radiating fins 107 are curved and extended so as to spread outward toward the upper end of the main body 102. The plurality of heat radiation fins 107 are provided to radiate heat generated from the light emitting module 1 to the outside of the LED lamp 100.
 絶縁部材111は、図2に断面を示すように、有底円筒状に形成されている。また、絶縁部材111は、その高さ方向中間部でその外周面から突設された円環状の絶縁凸部112を一体に有する。そして、この絶縁部材111は、その底壁111aを凹部105の底面に接触させるとともに、絶縁凸部112を凹部105の開口の縁に係合させるように、凹部105内に収容配置される。つまり、凹部105の内面には、絶縁部材111の外面が密着して接触することになる。 The insulating member 111 is formed in a bottomed cylindrical shape as shown in a cross section in FIG. In addition, the insulating member 111 integrally has an annular insulating convex portion 112 that protrudes from the outer peripheral surface at an intermediate portion in the height direction. The insulating member 111 is accommodated and disposed in the recess 105 so that the bottom wall 111 a contacts the bottom surface of the recess 105 and the insulating protrusion 112 is engaged with the edge of the opening of the recess 105. That is, the outer surface of the insulating member 111 is in close contact with the inner surface of the recess 105.
 絶縁部材111の絶縁凸部112より図示下側部分は、本体102の図示下端より図示下側に突出している。言い換えると、絶縁部材111の絶縁凸部112より図示上方部分だけが、本体102の凹部105内に挿入されている。また、絶縁部材111の底壁111aには、上述した通線孔6の図示下端を絶縁部材111の内部に連通するための通孔114が設けられている。 The lower portion of the insulating member 111 in the drawing protrudes from the lower end of the main body 102 in the drawing from the lower end of the drawing. In other words, only the upper portion of the insulating member 111 in the drawing from the insulating convex portion 112 is inserted into the concave portion 105 of the main body 102. Further, the bottom wall 111 a of the insulating member 111 is provided with a through hole 114 for communicating the illustrated lower end of the through hole 6 with the inside of the insulating member 111.
 口金115は、図2に示すように、絶縁材により形成した略円板状のベース116に、口金本体117およびアイレット端子118を取り付けた構造を有する。本実施形態の口金115は、E26型の口金である。口金115は、ベース116で絶縁部材111の開口を塞ぐように、絶縁部材111の上述した下側部分に被せられて取り付けられている。口金本体117には、図示しない電源側のソケットに螺合される螺旋溝が形成されている。 As shown in FIG. 2, the base 115 has a structure in which a base body 117 and an eyelet terminal 118 are attached to a substantially disc-shaped base 116 formed of an insulating material. The base 115 of the present embodiment is an E26 type base. The base 115 is attached so as to cover the above-described lower portion of the insulating member 111 so that the base 116 closes the opening of the insulating member 111. The base body 117 is formed with a spiral groove that is screwed into a power source socket (not shown).
 点灯装置121は、図2に示すように、絶縁部材111の内側に収容配置されている。点灯装置121は、回路基板122に、トランス、コンデンサ、トランジスタなどの回路部品123を実装して形成されている。この点灯装置121は、口金115に電気的に接続されている。そのための接続部材124を図2に例示する。この接続部材124は、アイレット端子118と回路基板122とを電気的に接続する。 The lighting device 121 is accommodated and disposed inside the insulating member 111 as shown in FIG. The lighting device 121 is formed by mounting a circuit component 123 such as a transformer, a capacitor, and a transistor on a circuit board 122. The lighting device 121 is electrically connected to the base 115. The connecting member 124 for that purpose is illustrated in FIG. The connection member 124 electrically connects the eyelet terminal 118 and the circuit board 122.
 また、点灯装置121は、通線孔6(溝部106a)を通る図示しない絶縁被覆電線を介して、後述する発光モジュール1に電気的に接続されている。そして、点灯装置121は、口金115を介して、発光モジュール1に直流を給電する。 Further, the lighting device 121 is electrically connected to the light emitting module 1 to be described later via an insulating coated electric wire (not shown) that passes through the through hole 6 (groove 106a). The lighting device 121 supplies direct current to the light emitting module 1 via the base 115.
 照明カバー161は、図1に示すように、略半球形状に形成されている。照明カバー161は、透光性の合成樹脂により形成されている。図2に示すように、この照明カバー161は、発光モジュール1の発光側を覆うように、本体102の図示上端から突設されたカバー装着凸部104に嵌合して取り付けられている。つまり、発光モジュール1から発光された光は、この照明カバー161を介して照明光として使用に供される。 The illumination cover 161 is formed in a substantially hemispherical shape as shown in FIG. The illumination cover 161 is made of a translucent synthetic resin. As shown in FIG. 2, the illumination cover 161 is fitted and attached to a cover mounting convex portion 104 protruding from the upper end in the figure of the main body 102 so as to cover the light emitting side of the light emitting module 1. That is, the light emitted from the light emitting module 1 is used as illumination light through the illumination cover 161.
 本体102側のカバー装着凸部104は、その周方向に沿った複数箇所に図示しないL字状の取り付け溝を有する。一方、照明カバー161の嵌合部外周には、カバー装着凸部104の複数の取り付け溝に対応する位置に、それぞれ、図示しない複数の係止凸部が設けられている。 The cover mounting convex portion 104 on the main body 102 side has L-shaped mounting grooves (not shown) at a plurality of locations along the circumferential direction. On the other hand, on the outer periphery of the fitting portion of the illumination cover 161, a plurality of locking projections (not shown) are provided at positions corresponding to the plurality of mounting grooves of the cover mounting projection 104, respectively.
 つまり、照明カバー161は、その係止凸部をカバー装着凸部104の各取り付け溝に引掛けることによって、本体102に取り付けられる。なお、照明カバー161の縁部には、図1および図2に示すように、上述した取り付け溝と係止凸部を隠すための目隠しリング162が設けられている。 That is, the illumination cover 161 is attached to the main body 102 by hooking its locking projections to the respective mounting grooves of the cover mounting projections 104. As shown in FIGS. 1 and 2, a blindfold ring 162 is provided at the edge of the illumination cover 161 to conceal the mounting groove and the locking projection described above.
 以下、図3乃至図7を参照して、第1の実施形態に係る発光モジュール1について詳細に説明する。 
 図3には発光モジュール1を光の取り出し側(以下、表面側と称する)から見た平面図を示してあり、図4にはこの発光モジュール1を図3の線F4-F4で切断した断面図を示してあり、図5にはこの発光モジュール1のモジュール基板3の平面図を示してあり、図6にはこのモジュール基板3の表面を覆う保護層19を示してあり、図7にはこの保護層19を被覆した状態のモジュール基板3の平面図を示してある。
Hereinafter, the light emitting module 1 according to the first embodiment will be described in detail with reference to FIGS. 3 to 7.
FIG. 3 shows a plan view of the light emitting module 1 viewed from the light extraction side (hereinafter referred to as the front side), and FIG. 4 shows a cross section of the light emitting module 1 taken along line F4-F4 in FIG. FIG. 5 shows a plan view of the module substrate 3 of the light emitting module 1, FIG. 6 shows a protective layer 19 covering the surface of the module substrate 3, and FIG. A plan view of the module substrate 3 covered with the protective layer 19 is shown.
 本実施形態の発光モジュール1は、図3および図4に示すように、モジュール基板3、複数個のLEDチップ11(発光素子)、枠部材15、封止部材17、および保護層19を有する。 The light emitting module 1 of the present embodiment includes a module substrate 3, a plurality of LED chips 11 (light emitting elements), a frame member 15, a sealing member 17, and a protective layer 19, as shown in FIGS.
 本実施形態のモジュール基板3は、図4に断面を示すように、比較的熱伝導率の高いアルミニウムを用いたベース板3aの表面に絶縁層3bを積層した構造を有する。ベース板3aは、アルミニウム或いはアルミニウム合金で形成されている。絶縁層3bは、エポキシ樹脂などの合成樹脂により形成されている。絶縁層3bの厚さは、ベース板3aよりはるかに薄い。 The module substrate 3 of this embodiment has a structure in which an insulating layer 3b is laminated on the surface of a base plate 3a using aluminum having a relatively high thermal conductivity, as shown in a cross section in FIG. The base plate 3a is made of aluminum or an aluminum alloy. The insulating layer 3b is formed of a synthetic resin such as an epoxy resin. The insulating layer 3b is much thinner than the base plate 3a.
 モジュール基板3として、この他に、例えば、少なくとも1層の合成樹脂層からなる樹脂基板、アルミニウム以外の金属板に絶縁層を積層した金属ベース基板、セラミックス基板などを用いることができる。 As the module substrate 3, for example, a resin substrate made of at least one synthetic resin layer, a metal base substrate in which an insulating layer is laminated on a metal plate other than aluminum, a ceramic substrate, or the like can be used.
 モジュール基板3の表面で光を良好に反射させるため、基板表面を白色にすることが有効である。例えば、モジュール基板3が、上述した樹脂基板やセラミックス基板である場合、基板の材料を白色のものにすればよく、モジュール基板3が、上述した金属ベース基板である場合、絶縁層を白色の材料で形成すればよい。 In order to reflect light well on the surface of the module substrate 3, it is effective to make the substrate surface white. For example, when the module substrate 3 is the above-described resin substrate or ceramic substrate, the substrate material may be white, and when the module substrate 3 is the above-described metal base substrate, the insulating layer is a white material. May be formed.
 また、このモジュール基板3は、図3に示すように、略矩形板状の外形を有し、その4つの角部それぞれに切欠き4を有する。つまり、このモジュール基板3は、これら4つの切欠き4に挿通した図示しないネジをモジュール固定台103の図示しないネジ孔に螺合することで、本体102に締結固定される。 Further, as shown in FIG. 3, the module substrate 3 has a substantially rectangular plate-like outer shape, and has a notch 4 at each of its four corners. That is, the module substrate 3 is fastened and fixed to the main body 102 by screwing screws (not shown) inserted through the four notches 4 into screw holes (not shown) of the module fixing base 103.
 このように、モジュール基板3を本体102に締結固定することにより、ベース板3aの裏面がモジュール固定台103の表面103aに密着して押し付けられる。これにより、LEDチップ11の熱がベース板3aを介して本体102に伝わり易くなり、LEDチップ11の放熱性を高めることができる。 Thus, by fastening and fixing the module substrate 3 to the main body 102, the back surface of the base plate 3a is brought into close contact with and pressed against the surface 103a of the module fixing base 103. Thereby, the heat of the LED chip 11 can be easily transmitted to the main body 102 via the base plate 3a, and the heat dissipation of the LED chip 11 can be enhanced.
 モジュール基板3の絶縁層3bの表面には、図5に示すように、一対の給電パターン6、反射層8、および一対の給電パッド9が設けられている。反射層8は、その上に実装される複数個のLEDチップ11の裏面側から出射される比較的高エネルギーの光をその利用方向に反射させて光の取り出し能力を向上させるよう機能する。しかし、この反射層8は、本実施形態に必須の構成ではなく、省略することもできる。 As shown in FIG. 5, a pair of power supply patterns 6, a reflective layer 8, and a pair of power supply pads 9 are provided on the surface of the insulating layer 3 b of the module substrate 3. The reflective layer 8 functions to improve the light extraction capability by reflecting relatively high energy light emitted from the back side of the plurality of LED chips 11 mounted thereon in the utilization direction. However, the reflective layer 8 is not an essential component in the present embodiment, and can be omitted.
 また、このモジュール基板3の絶縁層3bの表面には、図6に示す形状の保護層19が、図7に示すように設けられている。保護層19は、反射層8の全部、一対の給電パターン6の一部、および一対の給電パッド9の全部を露出する複数の孔を有し、基板表面の略全面を覆う形状を有する。このような保護層19は、例えば、スクリーン印刷により形成される。 6 is provided on the surface of the insulating layer 3b of the module substrate 3 as shown in FIG. The protective layer 19 has a plurality of holes that expose all of the reflective layer 8, a part of the pair of power supply patterns 6, and all of the pair of power supply pads 9, and has a shape that covers substantially the entire surface of the substrate. Such a protective layer 19 is formed by screen printing, for example.
 図5に示すように、反射層8は、モジュール基板3の中央部を占めて絶縁層3b上に四角形状に設けられ、一対の給電パターン6は、反射層8の近傍に、例えば、反射層8を図示左右から挟むように反射層8の両側に夫々配設されている。一対の給電パターン6は、図5に示す形状を有する。また、一対の給電パッド9が一対の給電パターン6に対応して絶縁層3bの表面に設けられている。 As shown in FIG. 5, the reflective layer 8 occupies the central portion of the module substrate 3 and is provided in a square shape on the insulating layer 3 b, and the pair of power supply patterns 6 are disposed in the vicinity of the reflective layer 8, for example, 8 is disposed on both sides of the reflective layer 8 so as to sandwich the 8 from the left and right in the figure. The pair of power feeding patterns 6 has a shape shown in FIG. A pair of power supply pads 9 are provided on the surface of the insulating layer 3 b corresponding to the pair of power supply patterns 6.
 図示左側の給電パッド9は、図示左側の正極側の給電パターン6に図示しない導電部材を介して接続され、図示右側の給電パッド9は、図示右側の負極側の給電パターン6に図示しない導電部材を介して接続される。さらに、2つの給電パッド9は、図示しない絶縁被覆電線を介して、点灯装置121の回路基板122に接続される。 The power supply pad 9 on the left side of the figure is connected to the power supply pattern 6 on the left side of the figure via a conductive member (not shown), and the power supply pad 9 on the right side of the figure is connected to a power supply pattern 6 on the right side of the figure (not shown). Connected through. Further, the two power supply pads 9 are connected to the circuit board 122 of the lighting device 121 via an insulation coated electric wire (not shown).
 つまり、発光モジュール1と点灯装置121を接続した図示しない絶縁被覆電線は、発光モジュール1の2つの給電パッド9から延びて、溝部106aを介して通線孔106を通り、点灯装置121の回路基板122に接続される。 That is, an insulation-coated electric wire (not shown) connecting the light emitting module 1 and the lighting device 121 extends from the two power supply pads 9 of the light emitting module 1, passes through the through hole 106 through the groove 106 a, and is a circuit board of the lighting device 121. 122.
 ところで、上記形状の一対の給電パターン6、反射層8、および一対の給電パッド9は、モジュール基板3の絶縁層3bの表面(以下、基板表面と称する場合もある)に、一斉にパターニングされる。これらの金属パターン6、8、9は、いずれも、ベース層A、中間層B、表層Cの三層構造に形成されている。ベース層Aの厚さは、中間層Bや表層Cの厚さより厚く、中間層Bと表層Cの厚さは略同じ厚さである。 By the way, the pair of power supply patterns 6, the reflective layer 8, and the pair of power supply pads 9 having the above shapes are patterned on the surface of the insulating layer 3 b of the module substrate 3 (hereinafter also referred to as a substrate surface). . All of these metal patterns 6, 8 and 9 are formed in a three-layer structure of a base layer A, an intermediate layer B, and a surface layer C. The base layer A is thicker than the intermediate layer B and the surface layer C, and the intermediate layer B and the surface layer C are substantially the same thickness.
 本実施形態では、ベース層Aは、Cu(銅)をモジュール基板3の絶縁層3bの全面に貼り合わせて接合した後、エッチングにより不要部分を取り除くことにより設けられている。また、中間層Bは、Ni(ニッケル)をベース層Aの表面上にめっき、例えば電解めっきすることにより設けられている。さらに、表層Cは、Ag(銀)を中間層Bの表面上にめっき、例えば電解めっきすることにより設けられている。 In the present embodiment, the base layer A is provided by removing unnecessary portions by etching after bonding Cu (copper) to the entire surface of the insulating layer 3b of the module substrate 3 and bonding them. The intermediate layer B is provided by plating Ni (nickel) on the surface of the base layer A, for example, electrolytic plating. Further, the surface layer C is provided by plating Ag (silver) on the surface of the intermediate layer B, for example, electrolytic plating.
 このように、表層CがAgによって形成されているため、給電パターン6、反射層8、および給電パッド9の光反射率は、絶縁層3bの表面の光反射率より高くされている。絶縁層3bより光反射率が高い表層Cの材料として、Ag以外に、金、ニッケル、アルミニウムなどがある。特に、表層Cを銀で形成すると、その反射光が白色系になるため好ましい。また、表層Cを銀で形成すると、後述するボンディングワイヤーとの間の接続性を良好にできる。なお、表層Cは、無電解めっきでも形成することができる。 Thus, since the surface layer C is made of Ag, the light reflectance of the power supply pattern 6, the reflective layer 8, and the power supply pad 9 is higher than the light reflectance of the surface of the insulating layer 3b. Examples of the material for the surface layer C having a higher light reflectance than the insulating layer 3b include gold, nickel, and aluminum in addition to Ag. In particular, it is preferable to form the surface layer C with silver because the reflected light becomes white. Moreover, when the surface layer C is formed of silver, the connectivity with the bonding wire described later can be improved. The surface layer C can also be formed by electroless plating.
 複数のLEDチップ11は、反射層8の表面にマトリックス状に整列配置されている。本実施形態のLEDチップ11は、LED(発光ダイオード)のベアチップであり、例えば、サファイア等の半導体基板上に窒化物系化合物半導体(例えば窒化ガリウム系化合物半導体)を形成した半導体ウエハーを、ダイシングカッターでカットして略直方体に形成したものである。 The plurality of LED chips 11 are arranged in a matrix on the surface of the reflective layer 8. The LED chip 11 of this embodiment is a bare chip of an LED (light emitting diode). For example, a semiconductor wafer in which a nitride compound semiconductor (for example, a gallium nitride compound semiconductor) is formed on a semiconductor substrate such as sapphire is used as a dicing cutter. And cut into a substantially rectangular parallelepiped.
 このLEDチップ11は、半導体のp-n接合部分に順方向の電流を流すことで発光する。つまり、このLEDチップ11は、電気エネルギーを直接光に変換する。よって、通電によりフィラメントを高温に白熱させて、その熱放射によって可視光を放射する白熱電球と比較して、このLEDチップ11は、省エネルギー効果を有する。 The LED chip 11 emits light by passing a forward current through a pn junction portion of the semiconductor. That is, the LED chip 11 directly converts electrical energy into light. Therefore, the LED chip 11 has an energy saving effect as compared with an incandescent bulb that incandescents the filament to a high temperature by energization and emits visible light by the thermal radiation.
 本実施形態のLEDチップ11は、その上面に、図4に示すように2つの素子電極を有した片面電極型のチップである。各LEDチップ11には、LEDランプ100が例えば白色系の光を発光するため、青色の光を発するLEDが用いられている。 The LED chip 11 of this embodiment is a single-sided electrode type chip having two element electrodes on its upper surface as shown in FIG. For each LED chip 11, an LED that emits blue light is used because the LED lamp 100 emits white light, for example.
 図4に示すように、各LEDチップ11は、その直下での反射ができるように、好ましくは、透明なシリコーン樹脂などの透光性のダイボンド材12を用いて、その半導体基板の裏面が反射層8の表層C上に接着固定される。 As shown in FIG. 4, each LED chip 11 is preferably reflected on the back surface of its semiconductor substrate by using a light-transmitting die bond material 12 such as a transparent silicone resin so that the LED chip 11 can be reflected immediately below. Adhesive fixing is performed on the surface layer C of the layer 8.
 これら複数個のLEDチップ11は、縦横に整列して反射層8の表面に実装されている。そして、反射層8の図示左右両側に配置された一対の給電パターン6をつなぐように、各列(図4に1列だけ例示してある)の複数個のLEDチップ11がボンディングワイヤー13(13a、13b)によって直列接続されている。 The plurality of LED chips 11 are mounted on the surface of the reflective layer 8 so as to be aligned vertically and horizontally. A plurality of LED chips 11 in each row (only one row is illustrated in FIG. 4) are connected to bonding wires 13 (13a) so as to connect a pair of power supply patterns 6 arranged on the left and right sides of the reflective layer 8 in the figure. 13b) are connected in series.
 個々のチップ列において、その列が延びる方向に互いに隣接された2つのLEDチップ11の異極の素子電極同士、つまり、一方のLEDチップ11の正極側の素子電極と、他方のLEDチップ11の負極側の素子電極が、Au製の細線からなるボンディングワイヤー13で接続されている。これにより、個々のチップ列が有した複数個のLEDチップ11は電気的に直列に接続される。 In each chip row, the element electrodes having different polarities of two LED chips 11 adjacent to each other in the extending direction of the row, that is, the element electrodes on the positive side of one LED chip 11 and the other LED chip 11 The element electrode on the negative electrode side is connected by a bonding wire 13 made of a fine wire made of Au. Thus, the plurality of LED chips 11 included in each chip row are electrically connected in series.
 そして、各列の両端のLEDチップ11を端部ボンディングワイヤー13a、13bを介して給電パターン6に接続する。これら端部ボンディングワイヤー13a、13bも、Au製の金属細線であるため、熱が伝わり難い。このため、各列の両端のLEDチップ11の熱が端部ボンディングワイヤー13a、13bを伝って給電パターン6へ移動し(逃げ)難くなる。これにより、反射層8の各部での温度分布を均一にでき、反射層8に搭載された複数のLEDチップ11の温度差を抑制できる。 Then, the LED chips 11 at both ends of each row are connected to the power feeding pattern 6 via the end bonding wires 13a and 13b. Since these end bonding wires 13a and 13b are also Au fine metal wires, it is difficult for heat to be transmitted. For this reason, the heat of the LED chips 11 at both ends of each row is difficult to move (escape) to the power feeding pattern 6 through the end bonding wires 13a and 13b. Thereby, temperature distribution in each part of the reflective layer 8 can be made uniform, and the temperature difference of the some LED chip 11 mounted in the reflective layer 8 can be suppressed.
 また、上述したように各列のLEDチップ11は、それぞれ、端部ボンディングワイヤー13a、13bを介して、給電パターン6に対して並列に接続されている。このため、複数のチップ列のうち、いずれか一列のLEDチップ11がボンディング不良などを原因として発光できなくなることがあっても、発光モジュール1全体として発光ができなくなることはない。 Further, as described above, the LED chips 11 in each row are connected in parallel to the power feeding pattern 6 via the end bonding wires 13a and 13b, respectively. For this reason, even if any one of the LED chips 11 in the plurality of chip rows cannot emit light due to bonding failure or the like, the light emitting module 1 as a whole cannot emit light.
 この他に、発光モジュール1は、複数個のLEDチップ11を封止する封止領域を囲む枠部材15、およびこの枠部材15の内側の封止領域に充填される封止部材17を有する。 In addition to this, the light emitting module 1 includes a frame member 15 surrounding a sealing region for sealing the plurality of LED chips 11, and a sealing member 17 filled in a sealing region inside the frame member 15.
 枠部材15は、例えば合成樹脂を未硬化の状態で絶縁層3b上に矩形枠状に塗布し、硬化処理をして、モジュール基板3の表面に接着固定する。この合成樹脂として、無機材料で形成されたフィラーが混入された白色のシリコーン樹脂を用いることで、光の反射率を高めることができる。なお、フィラーとして、酸化チタンやシリカなどがある。 The frame member 15 is, for example, applied in a rectangular frame shape on the insulating layer 3 b in an uncured state with a synthetic resin, and is cured and fixed to the surface of the module substrate 3. By using a white silicone resin mixed with a filler formed of an inorganic material as the synthetic resin, the reflectance of light can be increased. Examples of the filler include titanium oxide and silica.
 この枠部材15は、全てのLEDチップ11を囲む大きさを有する。この枠部材15は、反射層8の全体、及び給電パターン6の一部を囲んでいる。つまり、この枠部材15の大きさは、封止部材17を充填する封止領域の大きさを規定する。 The frame member 15 has a size surrounding all the LED chips 11. The frame member 15 surrounds the entire reflective layer 8 and a part of the power feeding pattern 6. That is, the size of the frame member 15 defines the size of the sealing region that fills the sealing member 17.
 より詳細には、図4に示すように、枠部材15は、全てのLEDチップ11、全てのボンディングワイヤー13、および全ての端部ボンディングワイヤー13a、13bを囲む大きさを有する。そして、枠部材15の厚さ、すなわち枠部材15の基板表面からの突出高さは、これら全ての構成要素11、13、13a、13bを封止部材17によって埋設可能な高さに設定されている。なお、封止部材17を充填する封止領域の大きさは、枠部材15の内側の面積(以下、この面積を封止面積と称する)に相当する。 More specifically, as shown in FIG. 4, the frame member 15 has a size surrounding all the LED chips 11, all the bonding wires 13, and all the end bonding wires 13a and 13b. The thickness of the frame member 15, that is, the protruding height of the frame member 15 from the substrate surface is set to a height at which all of these constituent elements 11, 13, 13 a and 13 b can be embedded by the sealing member 17. Yes. The size of the sealing region filled with the sealing member 17 corresponds to the area inside the frame member 15 (hereinafter, this area is referred to as a sealing area).
 封止部材17は、枠部材15の内側に充填されて、一対の給電パターン6、反射層8、複数のLEDチップ11、複数本のボンディングワイヤー13、および複数本の端部ボンディングワイヤー13a、13bを埋める。この封止部材17は、例えば透明シリコーン樹脂で作られている。なお、封止部材17は、未硬化の状態で枠部材15の内側の封止領域に所定量注入され、その後、加熱硬化される。 The sealing member 17 is filled inside the frame member 15, and includes a pair of power supply patterns 6, a reflective layer 8, a plurality of LED chips 11, a plurality of bonding wires 13, and a plurality of end bonding wires 13 a and 13 b. Fill. The sealing member 17 is made of, for example, a transparent silicone resin. Note that a predetermined amount of the sealing member 17 is injected into a sealing region inside the frame member 15 in an uncured state, and then heat-cured.
 封止部材17には、図示しない蛍光体が適量混ぜられている。この蛍光体は、LEDチップ11が発する光で励起されて、LEDチップ11が発する光の色とは異なる色の光を放射する。LEDチップ11が青色光を発する本実施形態では、白色光を出射できるようにするために、蛍光体には青色の光とは補色の関係にある黄色系の光を放射する黄色蛍光体が使用されている。このように蛍光体が混ぜられた封止部材17は、その蛍光体が発光するため、枠部材15の内側の封止部材17全体が、発光モジュール1の発光部として機能する。 An appropriate amount of phosphor (not shown) is mixed in the sealing member 17. The phosphor is excited by light emitted from the LED chip 11 and emits light having a color different from the color of light emitted from the LED chip 11. In the present embodiment in which the LED chip 11 emits blue light, a yellow phosphor that emits yellow light that is complementary to the blue light is used as the phosphor so that white light can be emitted. Has been. The sealing member 17 in which the phosphors are mixed in this manner emits light from the phosphors, so that the entire sealing member 17 inside the frame member 15 functions as a light emitting unit of the light emitting module 1.
 上記構造の発光モジュール1がLEDランプ100に組み込まれて点灯装置121を介して通電されると、封止部材17で覆われた複数個のLEDチップ11が一斉に青色発光し、封止部材17に混入された黄色蛍光体が励起されて黄色発光する。つまり、封止部材17は、青色光と黄色光が混ざった白色の光を出射する面状光源として機能する。 When the light emitting module 1 having the above structure is incorporated in the LED lamp 100 and energized via the lighting device 121, the plurality of LED chips 11 covered with the sealing member 17 emit blue light all at once, and the sealing member 17. The yellow phosphor mixed in is excited to emit yellow light. That is, the sealing member 17 functions as a planar light source that emits white light in which blue light and yellow light are mixed.
 このとき、反射層8は、複数個のLEDチップ11が発した熱を拡散するヒートスプレッダとして機能するとともに、各LEDチップ11が放射した光のうちモジュール基板3に向かう光を反射する反射鏡として機能する。また、封止領域内にある給電パターン6も、反射層8と同様に、ヒートスプレッダとして機能するとともに反射鏡としても機能する。 At this time, the reflective layer 8 functions as a heat spreader that diffuses the heat generated by the plurality of LED chips 11 and also functions as a reflecting mirror that reflects the light emitted from the LED chips 11 toward the module substrate 3. To do. In addition, the power feeding pattern 6 in the sealing region functions as a heat spreader and also as a reflecting mirror, like the reflecting layer 8.
 つまり、各LEDチップ11からの熱は、反射層8、モジュール基板3、モジュール固定台103、本体102の上面、および放熱フィン107を介して、LEDランプ100の外部へ放熱される。また、反射層8で反射された光、および封止部材17で拡散されて給電パターン6で反射された光は、封止部材17から直接放出される主な光とともに、照明カバー161を介して、照明光として使用に供される。 That is, heat from each LED chip 11 is radiated to the outside of the LED lamp 100 through the reflective layer 8, the module substrate 3, the module fixing base 103, the upper surface of the main body 102, and the heat radiation fins 107. Further, the light reflected by the reflective layer 8 and the light diffused by the sealing member 17 and reflected by the power feeding pattern 6 are passed through the illumination cover 161 together with main light directly emitted from the sealing member 17. Used as illumination light.
 ところで、上述した発光モジュール1を製造する場合、いくつかの検査工程を経る。例えば、LEDチップ11の実装不良を検査する工程では、発光モジュール1に設けたアライメントマークを図示しない検査機のCCDセンサで検出して実装不良箇所を特定する。このアライメントマークは、他の工程でも使用される。このため、本実施形態では、モジュール基板3の表面に、給電パターン6と一体のアライメントマークを設けた。 By the way, when manufacturing the light emitting module 1 described above, several inspection processes are performed. For example, in the step of inspecting the mounting failure of the LED chip 11, an alignment mark provided on the light emitting module 1 is detected by a CCD sensor of an inspection machine (not shown) to identify a mounting failure portion. This alignment mark is also used in other processes. For this reason, in this embodiment, an alignment mark integral with the power feeding pattern 6 is provided on the surface of the module substrate 3.
 図3-5、7に示すように、一対の給電パターン6は、複数個のLEDチップ11を実装した反射層8の互いに対向する2辺に沿ってそれぞれ近接して配置された一対の細長い電極部分6aを有する。言い換えると、一対の電極パターン6の2つの電極部分6aは、反射層8を挟む位置にそれぞれ設けられている。 As shown in FIGS. 3-5 and 7, the pair of power supply patterns 6 includes a pair of elongated electrodes disposed adjacent to each other along two opposing sides of the reflective layer 8 on which the plurality of LED chips 11 are mounted. It has a portion 6a. In other words, the two electrode portions 6 a of the pair of electrode patterns 6 are respectively provided at positions where the reflective layer 8 is sandwiched.
 各電極部分6aは、反射層8の2辺に沿ったボンディング部分6bと複数の突起部分6cをそれぞれ含む。ボンディング部分6bは、複数個のLEDチップ11の各チップ列の両端にあるチップの素子電極を端部ボンディングワイヤー13a、13bを介して接続する。このため、ボンディング部分6bは、反射層8の対向する辺に沿って細長く延設されている。 Each electrode portion 6a includes a bonding portion 6b and a plurality of protruding portions 6c along two sides of the reflective layer 8, respectively. The bonding portion 6b connects the device electrodes of the chips at both ends of each chip row of the plurality of LED chips 11 via the end bonding wires 13a and 13b. For this reason, the bonding portion 6 b is elongated along the opposing sides of the reflective layer 8.
 複数の突起部分6cは、LEDチップ11のチップ列に対応して設けられ、各ボンディング部分6bの反射層8から離間した第1の端辺61から外側に突出している。各突起部分6cの端辺61からの突出長さは、ボンディング部分6bの幅より狭く設計されている。また、各突起部分6cの幅も、ボンディング部分6bの幅より狭く設計されている。さらに、複数の突起部分6cは、例えば0.5mm程度の一定のピッチで、端辺61に沿って突設されている。そして、これら複数の突起部分6cがアライメントマークとして機能する。 The plurality of protruding portions 6c are provided corresponding to the chip rows of the LED chips 11, and protrude outward from the first end 61 spaced from the reflective layer 8 of each bonding portion 6b. The protruding length from the end 61 of each protruding portion 6c is designed to be narrower than the width of the bonding portion 6b. In addition, the width of each protruding portion 6c is designed to be narrower than the width of the bonding portion 6b. Furthermore, the plurality of protruding portions 6c are provided to protrude along the end side 61 at a constant pitch of, for example, about 0.5 mm. The plurality of protruding portions 6c function as alignment marks.
 一方、各ボンディング部分6bの反射層8に近接した第2の端辺62は、反射層8の対向する真っ直ぐな辺と略平行に僅かな隙間を介して対向し、直線状にされている。言い換えると、本実施形態では、この第2の端辺62には、アライメントマークに相当する突起や凹みは設けられていない。このように、反射層8に対向する端辺62にアライメントマークを設けないことで、端辺62を反射層8に近接させることができ、上述した端部ボンディングワイヤー13a、13bの長さを短くすることができる。 On the other hand, the second end 62 adjacent to the reflective layer 8 of each bonding portion 6b is opposed to the straight side of the reflective layer 8 that is substantially parallel with a slight gap therebetween, and is linear. In other words, in the present embodiment, the second end side 62 is not provided with a protrusion or recess corresponding to the alignment mark. Thus, by not providing an alignment mark on the end side 62 facing the reflective layer 8, the end side 62 can be brought close to the reflective layer 8, and the length of the end bonding wires 13a and 13b described above can be shortened. can do.
 以上のように、本実施形態によると、アライメントマーク(複数の突起部分6c)をボンディング部分6bから突設して給電パターン6と一体に形成したため、アライメントマークを含む給電パターン6の表層Cを電解めっきにより形成する場合に、めっき斑を生じることがなく、アライメントマークの誤認識を抑制することができる。 As described above, according to the present embodiment, since the alignment mark (the plurality of protruding portions 6c) protrudes from the bonding portion 6b and is formed integrally with the power feeding pattern 6, the surface layer C of the power feeding pattern 6 including the alignment mark is electrolyzed. In the case of forming by plating, plating spots do not occur, and erroneous recognition of alignment marks can be suppressed.
 つまり、アライメントマークとして機能する突起部分6cが給電パターン6と別体に分離されていないため、突起部分6cがボンディング部分6bと比較して細いにも係らず、電解めっきで流れる電流密度を同じにでき、めっき斑を防止できる。これにより、アライメントマークを確実に検出でき、品質の高い良好な発光特性を有する発光モジュール1を製造できる。 That is, since the protruding portion 6c functioning as an alignment mark is not separated from the power feeding pattern 6, the current density flowing in the electrolytic plating is made the same even though the protruding portion 6c is thinner than the bonding portion 6b. And plating spots can be prevented. Thereby, the alignment mark can be reliably detected, and the light emitting module 1 having high quality and good light emission characteristics can be manufactured.
 また、本実施形態によると、複数の突起部分6cをボンディング部分6bと一体にしたため、LEDチップ11に対して非常に大きい直流電流が印加された場合であっても、突起部分6cとボンディング部分6bとの間で放電を生じることがなく、この放電によってLEDチップ11が破壊される不具合を防止することができる。 In addition, according to the present embodiment, since the plurality of protruding portions 6c are integrated with the bonding portion 6b, the protruding portion 6c and the bonding portion 6b can be used even when a very large direct current is applied to the LED chip 11. No discharge is generated between the LED chip 11 and the LED chip 11 can be prevented from being damaged by this discharge.
 また、本実施形態によると、複数の突起部分6cをボンディング部分6bと一体にしたため、これらの部分6b、6cを含む金属パターンをめっきする際のリードの本数を少なくできる。具体的には、本実施形態によると、図5に示すように、リードLの本数は5本で済む。しかし、突起部分6cをボンディング部分6bと分離して別々にめっきする場合、リードLの本数は2本増えることになる。 Further, according to the present embodiment, since the plurality of protruding portions 6c are integrated with the bonding portion 6b, the number of leads when plating a metal pattern including these portions 6b and 6c can be reduced. Specifically, according to the present embodiment, as shown in FIG. However, when the protruding portion 6c is separated from the bonding portion 6b and plated separately, the number of leads L is increased by two.
 このように、めっきのためのリードLの本数が増えると、電流密度の調整が困難になり、リードLに接続する配線の引き回しも面倒になる。つまり、この場合、安定しためっき処理が困難になり、めっき斑の原因にもなる。 As described above, when the number of leads L for plating increases, it becomes difficult to adjust the current density, and the wiring of the wires connected to the leads L becomes troublesome. That is, in this case, it is difficult to perform stable plating, and it may cause plating spots.
 さらに、本実施形態によると、複数の突起部分6cをボンディング部分6bと一体にしたため、両者を別体にした場合と比較して、アライメントマーク(突起部分6c)とモジュール基板3の縁までの距離を長くとることができ、沿面距離を稼ぐことができる。見方を変えると、十分な沿面距離を確保した上で、モジュール基板3のサイズを小さくすることができ、発光モジュール1の小型化が可能となる。 Further, according to the present embodiment, since the plurality of protruding portions 6c are integrated with the bonding portion 6b, the distance between the alignment mark (the protruding portion 6c) and the edge of the module substrate 3 is compared with the case where both are separated. Can be taken longer, and creepage distance can be earned. In other words, the module substrate 3 can be reduced in size while ensuring a sufficient creepage distance, and the light emitting module 1 can be downsized.
 なお、複数の突起部分6cの個数、幅、突出長さ、ピッチ、大きさ、形状などは種々変更可能である。言い換えると、アライメントマークの形状や大きさは任意に変更可能である。 It should be noted that the number, width, protruding length, pitch, size, shape, and the like of the plurality of protruding portions 6c can be variously changed. In other words, the shape and size of the alignment mark can be arbitrarily changed.
 例えば、図8には、上述した第1の実施形態の発光モジュール1のアライメントマークの1つの変形例を示してある。図8では、上述した第1の実施形態と同様に機能する構成要素に同一符号を付してある。 For example, FIG. 8 shows one modification of the alignment mark of the light emitting module 1 of the first embodiment described above. In FIG. 8, the same code | symbol is attached | subjected to the component which functions similarly to 1st Embodiment mentioned above.
 この変形例に係るアライメントマークも、給電パターン6の電極部分6a’の反射層8から離間した第1の端辺61’に設けられている。この変形例では、複数の突起部分6cの代りに複数の切欠き6c’を第1の端辺61’に設けた。 The alignment mark according to this modification is also provided on the first end 61 ′ spaced from the reflective layer 8 of the electrode portion 6 a ′ of the power feeding pattern 6. In this modification, a plurality of notches 6c 'are provided on the first end 61' instead of the plurality of protruding portions 6c.
 このため、電極部分6a’の幅は、第1の実施形態の電極部分6aの幅より大きくされている。そして、電極部分6a’の第1の端辺61’から凹んだ複数の切欠き6c’の底と第2の端辺62との間のボンディング部分6b’の幅Wが、第1の実施形態の給電パターン6の電極部分6aのボンディング部分6bの幅と略同じ幅に設計されている。 For this reason, the width of the electrode portion 6a 'is made larger than the width of the electrode portion 6a of the first embodiment. The width W of the bonding portion 6b ′ between the bottom of the plurality of notches 6c ′ and the second end 62 that are recessed from the first end 61 ′ of the electrode portion 6a ′ is the first embodiment. The width of the electrode portion 6a of the power supply pattern 6 is designed to be substantially the same as the width of the bonding portion 6b.
 次に、第2の実施形態に係る発光モジュール20について、図9乃至図13を参照して説明する。なお、以下の説明では、上述した第1の実施形態の発光モジュール1と同様に機能する構成要素には同一符号を付してその詳細な説明を省略する。 Next, the light emitting module 20 according to the second embodiment will be described with reference to FIGS. 9 to 13. In the following description, components that function in the same manner as the light emitting module 1 of the first embodiment described above are denoted by the same reference numerals, and detailed description thereof is omitted.
 図9には発光モジュール20を表面側から見た平面図を示してあり、図10にはこの発光モジュール20を図9の線F10-F10で切断した断面図を示してあり、図11にはこの発光モジュール20のモジュール基板3の平面図を示してあり、図12にはこのモジュール基板3の表面を覆う保護層19を示してあり、図13にはこの保護層19を被覆した状態のモジュール基板3の平面図を示してある。 FIG. 9 shows a plan view of the light emitting module 20 as viewed from the front side, FIG. 10 shows a cross-sectional view of the light emitting module 20 taken along line F10-F10 in FIG. 9, and FIG. A plan view of the module substrate 3 of the light emitting module 20 is shown. FIG. 12 shows a protective layer 19 covering the surface of the module substrate 3. FIG. 13 shows a module in a state where the protective layer 19 is covered. A plan view of the substrate 3 is shown.
 本実施形態の発光モジュール20は、給電パターン6と別体の2組のアライメントマーク16、18を有する。一対の第1のアライメントマーク16は、一対の給電パターン6の各電極部分6aの反射層8から離間した端辺に近接してそれぞれ配置されている。また、一対の第2のアライメントマーク18は、各第1のアライメントマーク16よりさらに外側に配置されている。 The light emitting module 20 of this embodiment has two sets of alignment marks 16 and 18 that are separate from the power feeding pattern 6. The pair of first alignment marks 16 are respectively disposed in the vicinity of the edges that are separated from the reflective layer 8 of the electrode portions 6 a of the pair of power supply patterns 6. In addition, the pair of second alignment marks 18 are disposed further outside the first alignment marks 16.
 一対の第1のアライメントマーク16は、それぞれ、図11に示すように、電極部分6aと略平行に延びた直線部と、この直線部の長手方向に沿って等間隔で設けられた複数の枝線部16aと、を一体に有する。これら直線部および枝線部16aは、電極部分6aより細い。複数の枝線部16aは、直線部と直交し、反射層8の表面に実装された複数個のLEDチップ11のチップ列に対応して設けられている。 As shown in FIG. 11, each of the pair of first alignment marks 16 includes a straight portion extending substantially parallel to the electrode portion 6a and a plurality of branches provided at equal intervals along the longitudinal direction of the straight portion. And a line portion 16a. These straight portions and branch portions 16a are thinner than the electrode portion 6a. The plurality of branch line portions 16 a are provided to correspond to the chip rows of the plurality of LED chips 11 mounted on the surface of the reflective layer 8 and orthogonal to the straight line portion.
 また、一対の第2のアライメントマーク18も、それぞれ、電極部分6aと略平行に延びた直線部と、この直線部と一体に設けられた複数の枝線部18aと、を有する。これら直線部および枝線部18aも、電極部分6aより細い。また、これら複数の枝線部18aも、直線部と直交し、チップ列に対応して設けられている。 Each of the pair of second alignment marks 18 also includes a straight line portion extending substantially parallel to the electrode portion 6a and a plurality of branch line portions 18a provided integrally with the straight line portion. These straight portions and branch line portions 18a are also thinner than the electrode portion 6a. The plurality of branch line portions 18a are also orthogonal to the straight line portions and provided corresponding to the chip rows.
 つまり、第2のアライメントマーク18は、第1のアライメントマーク16の枝線部16aと同じピッチで、複数の枝線部18aを等間隔で有する。そして、第1のアライメントマーク16の枝線部16aと第2のアライメントマーク18の枝線部18aが互いに1/2ピッチずらされて入れ子状に配置されている。このため、枝線部16a、18aが1/2のピッチで等間隔に配置されている。 That is, the second alignment mark 18 has a plurality of branch line portions 18 a at equal intervals at the same pitch as the branch line portions 16 a of the first alignment mark 16. The branch line portion 16a of the first alignment mark 16 and the branch line portion 18a of the second alignment mark 18 are shifted from each other by ½ pitch and are nested. For this reason, the branch line parts 16a and 18a are arrange | positioned at equal intervals with a 1/2 pitch.
 このように、第1および第2のアライメントマーク16、18は、給電パターン6と別体に形成されているため、その形状、大きさ、形成位置など、設計の自由度が高い。このため、例えば、第1および第2のアライメントマーク16、18をその一端でつなげても良い。しかし、モジュール基板3の周縁部からの沿面距離をかせぐため、第1および第2のアライメントマーク16、18は、反射層8にできるだけ近づけて形成することが望ましい。 Thus, since the first and second alignment marks 16 and 18 are formed separately from the power feeding pattern 6, the degree of freedom in design such as the shape, size, and formation position is high. Therefore, for example, the first and second alignment marks 16 and 18 may be connected at one end thereof. However, it is desirable to form the first and second alignment marks 16 and 18 as close as possible to the reflective layer 8 in order to increase the creepage distance from the peripheral edge of the module substrate 3.
 ところで、これら第1および第2のアライメントマーク16、18は、一対の給電パターン6、反射層8、および一対の給電パッド9のベース層Aの一部として形成される。言い換えると、本実施形態のアライメントマーク16、18は、モジュール基板3の絶縁層3bの表面に形成される金属パターン6、8、9のベース層Aをパターニングする際に一緒に形成される。つまり、これら第1および第2のアライメントマーク16、18は、他の金属パターン6、8、9とは異なり、中間層Bおよび表層Cを有していない。 Incidentally, the first and second alignment marks 16 and 18 are formed as a part of the base layer A of the pair of power supply patterns 6, the reflective layer 8, and the pair of power supply pads 9. In other words, the alignment marks 16 and 18 of this embodiment are formed together when patterning the base layer A of the metal patterns 6, 8 and 9 formed on the surface of the insulating layer 3 b of the module substrate 3. That is, unlike the other metal patterns 6, 8, 9, the first and second alignment marks 16, 18 do not have the intermediate layer B and the surface layer C.
 具体的には、モジュール基板3の表面に銅の層を形成して、エッチングにより、給電パターン6のベース層A、反射層8のベース層A、給電パッド9のベース層A、第1のアライメントマーク16、および第2のアライメントマーク18を形成する。そして、この後、給電パターン6の中間層B、反射層8の中間層B、および給電パッド9の中間層Bを電解めっきにより形成する。さらに、この後、給電パターン6の表層C、反射層8の表層C、給電パッド9の表層Cを電解めっきにより形成する。つまり、第1および第2のアライメントマーク16、18は、中間層Bおよび表層Cを有しておらず、他の金属パターン6、8、9より薄くされている。 Specifically, a copper layer is formed on the surface of the module substrate 3, and etching is performed to form the base layer A of the power supply pattern 6, the base layer A of the reflective layer 8, the base layer A of the power supply pad 9, and the first alignment. A mark 16 and a second alignment mark 18 are formed. Thereafter, the intermediate layer B of the power supply pattern 6, the intermediate layer B of the reflective layer 8, and the intermediate layer B of the power supply pad 9 are formed by electrolytic plating. Further, thereafter, the surface layer C of the power supply pattern 6, the surface layer C of the reflective layer 8, and the surface layer C of the power supply pad 9 are formed by electrolytic plating. That is, the first and second alignment marks 16, 18 do not have the intermediate layer B and the surface layer C, and are thinner than the other metal patterns 6, 8, 9.
 上記のように、アライメントマーク16、18をベース層Aだけで形成することにより、めっき斑に起因したアライメントマークの誤認識を無くすことができ、品質の高い良好な発光特性を有する発光モジュール20を製造できる。つまり、本実施形態によると、そもそもアライメントマーク16、18をめっきで形成しないため、めっき斑を生じることもない。 As described above, by forming the alignment marks 16 and 18 only by the base layer A, it is possible to eliminate misrecognition of the alignment mark due to plating spots, and to obtain a light emitting module 20 having high quality and good light emitting characteristics. Can be manufactured. That is, according to the present embodiment, since the alignment marks 16 and 18 are not formed by plating in the first place, no plating spots are generated.
 また、本実施形態では、2組のアライメントマーク16、18は、図9に示すように、封止領域を規定する枠部材21によってカバーされる。言い換えると、本実施形態では、枠部材21は、2組のアライメントマーク16、18を覆うように、モジュール基板3の表面に取り付けられる。 In the present embodiment, the two sets of alignment marks 16 and 18 are covered by a frame member 21 that defines a sealing region, as shown in FIG. In other words, in this embodiment, the frame member 21 is attached to the surface of the module substrate 3 so as to cover the two sets of alignment marks 16 and 18.
 このように、アライメントマーク16、18を枠部材21で覆うことで、アライメントマーク16、18が空気に触れることを抑制でき、錆びの発生を抑制でき、アライメントマーク16、18の劣化を抑制できる。或いは、アライメントマーク16、18を封止領域に形成しても良く、この場合、封止部材17によってアライメントマーク16、18も封止されることになり、錆びの発生を抑制することができる。 Thus, by covering the alignment marks 16 and 18 with the frame member 21, it is possible to suppress the alignment marks 16 and 18 from coming into contact with air, to suppress the occurrence of rust, and to suppress the deterioration of the alignment marks 16 and 18. Alternatively, the alignment marks 16 and 18 may be formed in the sealing region. In this case, the alignment marks 16 and 18 are also sealed by the sealing member 17, and the occurrence of rust can be suppressed.
 しかし、第2の実施形態のように、アライメントマーク16、18を枠部材21でカバーする方が、封止部材17で封止するより有利である。つまり、本実施形態のアライメントマーク16、18は、銅のベース層Aのみから成り立っているため、光の反射率が低く、封止領域にこのようなアライメントマーク16、18が存在すると、その分、光足が少なくなる。また、枠部材21は、白色化のためのフィラーを含むため、フィラーを含まない封止部材17より空気中の硫黄ガス成分を透過し易く、その分、アライメントマーク16、18の劣化を抑制することができる。 However, as in the second embodiment, it is more advantageous to cover the alignment marks 16 and 18 with the frame member 21 than to seal with the sealing member 17. That is, since the alignment marks 16 and 18 of the present embodiment are composed only of the copper base layer A, the reflectance of light is low, and when such alignment marks 16 and 18 are present in the sealing region, the corresponding amount is reduced. , Less light foot. Further, since the frame member 21 includes a filler for whitening, the sulfur gas component in the air is more easily transmitted than the sealing member 17 that does not include the filler, and accordingly, deterioration of the alignment marks 16 and 18 is suppressed. be able to.
 以上のように、本実施形態によると、2組のアライメントマーク16、18をモジュール基板3に形成したが、例えば、比較的少ない個数(例えば約半分)のLEDチップ11を実装する場合には、第1のアライメントマーク16だけを形成するようにしても良い。枝線部16aのピッチは、エッチング精度の限界のため、0.5mmが最小ピッチと考えられる。このため、このピッチより狭いピッチでLEDチップ11を高密度実装する場合には、例えば、第2の実施形態のように、第1のアライメントマーク16に加えて第2のアライメントマーク18を形成すれば良い。 As described above, according to the present embodiment, two sets of alignment marks 16 and 18 are formed on the module substrate 3. For example, when mounting a relatively small number (for example, about half) of the LED chips 11, Only the first alignment mark 16 may be formed. The pitch of the branch line portions 16a is considered to be 0.5 mm because of the limit of etching accuracy. For this reason, when the LED chips 11 are mounted with a pitch narrower than this pitch, for example, the second alignment mark 18 is formed in addition to the first alignment mark 16 as in the second embodiment. It ’s fine.
 言い換えると、本実施形態によると、LEDチップ11の実装数の比較的少ない発光モジュールとLEDチップ11の実装数を倍にした発光モジュールのモジュール基板3を共通部品として使用することができ、部品の保管、管理を容易にでき、その分、発光モジュールの製造コストを削減できる。 In other words, according to the present embodiment, the light emitting module having a relatively small number of LED chips 11 and the module substrate 3 of the light emitting module in which the number of LED chips 11 is doubled can be used as a common component. Storage and management can be facilitated, and the manufacturing cost of the light emitting module can be reduced accordingly.
 上述した実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。この実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。この実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。 The above-described embodiment is presented as an example, and is not intended to limit the scope of the invention. This embodiment can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. This embodiment and its modifications are included in the scope of the present invention and the gist thereof, and are also included in the invention described in the claims and the equivalent scope thereof.
 1、20…発行モジュール、3…モジュール基板、6…給電パターン、6a…電極部分、6b…ボンディング部分、6c…突起部分、8…反射層、11…LEDチップ、13…ボンディングワイヤー、15、21…枠部材、17…封止部材、19…保護層、100…LEDランプ、A…ベース層、B…中間層、C…表層。 DESCRIPTION OF SYMBOLS 1,20 ... Issue module, 3 ... Module board, 6 ... Feeding pattern, 6a ... Electrode part, 6b ... Bonding part, 6c ... Projection part, 8 ... Reflective layer, 11 ... LED chip, 13 ... Bonding wire, 15, 21 DESCRIPTION OF SYMBOLS ... Frame member, 17 ... Sealing member, 19 ... Protective layer, 100 ... LED lamp, A ... Base layer, B ... Intermediate layer, C ... Surface layer.

Claims (9)

  1.  基板と、
     この基板の表面に実装された発光素子と、
     この発光素子に給電するため上記基板表面に形成された給電パターンと、
     この給電パターンと一体に形成されたアライメントマークと、
     を有する発光モジュール。
    A substrate,
    A light emitting device mounted on the surface of the substrate;
    A power feeding pattern formed on the surface of the substrate to feed power to the light emitting element;
    An alignment mark formed integrally with the power feeding pattern;
    A light emitting module.
  2.  上記アライメントマークは、上記給電パターンの上記発光素子から離間した第1の端辺に設けられている、請求項1の発光モジュール。 The light emitting module according to claim 1, wherein the alignment mark is provided on a first end side of the power feeding pattern that is spaced apart from the light emitting element.
  3.  上記アライメントマークは、上記発光素子から離間する方向に上記第1の端辺から突出した少なくとも1つの突出部分を含む、請求項2の発光モジュール。 The light emitting module according to claim 2, wherein the alignment mark includes at least one projecting portion projecting from the first end side in a direction away from the light emitting element.
  4.  上記アライメントマークは、上記発光素子に近付く方向に上記第1の端辺から凹んだ少なくとも1つの切欠きを含む、請求項2の発光モジュール。 The light emitting module according to claim 2, wherein the alignment mark includes at least one notch recessed from the first end side in a direction approaching the light emitting element.
  5.  上記発光素子に近接した上記給電パターンの第2の端辺は、直線状である、請求項2の発光モジュール。 The light emitting module according to claim 2, wherein a second end side of the power feeding pattern adjacent to the light emitting element is linear.
  6.  上記発光素子、給電パターン、およびアライメントマークを上記基板表面に封止した封止部材をさらに有する、請求項1の発光モジュール。 The light-emitting module according to claim 1, further comprising a sealing member that seals the light-emitting element, the power feeding pattern, and the alignment mark on the substrate surface.
  7.  基板と、
     この基板の表面に実装された発光素子と、
     この発光素子に隣接して上記基板表面に形成されたベース層およびこのベース層の上に積層された表層を有し、上記発光素子に給電するための給電パターンと、
     この給電パターンとは別体で上記ベース層の一部として上記基板表面に形成されたアライメントマークと、
     を有する発光モジュール。
    A substrate,
    A light emitting device mounted on the surface of the substrate;
    A power supply pattern for supplying power to the light emitting element, having a base layer formed on the substrate surface adjacent to the light emitting element and a surface layer laminated on the base layer;
    An alignment mark formed on the substrate surface as a part of the base layer separately from the power feeding pattern,
    A light emitting module.
  8.  上記発光素子および給電パターンを囲むように上記基板表面に取り付けられた枠部材と、
     この枠部材の内側に充填されて上記発光素子および給電パターンを封止する封止部材と、をさらに有し、
     上記枠部材は、上記アライメントマークをカバーするように上記基板表面に取り付けられる、発光モジュール。
    A frame member attached to the substrate surface so as to surround the light emitting element and the power feeding pattern;
    A sealing member that is filled inside the frame member and seals the light emitting element and the power feeding pattern;
    The light emitting module, wherein the frame member is attached to the substrate surface so as to cover the alignment mark.
  9.  請求項1乃至請求項8のうちいずれか1項の発光モジュールを備えた照明器具。 A lighting fixture comprising the light emitting module according to any one of claims 1 to 8.
PCT/JP2011/074341 2010-10-26 2011-10-21 Light-emitting module and lighting equipment WO2012057038A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201190000701.5U CN203481265U (en) 2010-10-26 2011-10-21 Light-emitting module and lighting equipment
JP2012540828A JPWO2012057038A1 (en) 2010-10-26 2011-10-21 Light emitting module and lighting apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010-240161 2010-10-26
JP2010240160 2010-10-26
JP2010240161 2010-10-26
JP2010-240160 2010-10-26

Publications (1)

Publication Number Publication Date
WO2012057038A1 true WO2012057038A1 (en) 2012-05-03

Family

ID=45993748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/074341 WO2012057038A1 (en) 2010-10-26 2011-10-21 Light-emitting module and lighting equipment

Country Status (4)

Country Link
JP (1) JPWO2012057038A1 (en)
CN (1) CN203481265U (en)
TW (1) TW201230268A (en)
WO (1) WO2012057038A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014024627A1 (en) 2012-08-06 2014-02-13 シャープ株式会社 Light-emitting apparatus and method for manufacturing same
JP2014075516A (en) * 2012-10-05 2014-04-24 Toshiba Lighting & Technology Corp Light-emitting device and illuminating device
JP2014107327A (en) * 2012-11-26 2014-06-09 Citizen Electronics Co Ltd Led light-emitting unit and led light-emitting device
AT513747A4 (en) * 2013-02-28 2014-07-15 Mikroelektronik Ges Mit Beschränkter Haftung Ab Assembly process for circuit carriers and circuit carriers
JP2014204029A (en) * 2013-04-08 2014-10-27 立山科学工業株式会社 Led mounting substrate
AT514599A4 (en) * 2013-07-05 2015-02-15 Melecs Ews Gmbh & Co Kg Method for equipping electronic circuit boards with optical components
US9559267B2 (en) 2014-11-29 2017-01-31 Nichia Corporation Light-emitting device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI483433B (en) * 2012-07-30 2015-05-01 Huga Optotech Inc Light emitting module
TWI602322B (en) * 2013-06-27 2017-10-11 晶元光電股份有限公司 Light-emitting diode assembly and manufacturing method thereof
CN104282671B (en) * 2013-07-01 2018-08-21 晶元光电股份有限公司 Light-emitting diode component and production method
CN109830589B (en) * 2019-01-29 2021-04-16 泉州三安半导体科技有限公司 LED packaging device and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234899A (en) * 2006-03-01 2007-09-13 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2007324205A (en) * 2006-05-30 2007-12-13 Toyoda Gosei Co Ltd Light emitting device
JP2009501431A (en) * 2005-07-15 2009-01-15 パナソニック株式会社 Light emitting module and mounting board used therefor
JP2009272378A (en) * 2008-05-01 2009-11-19 Nichia Corp Semiconductor device
JP2011205055A (en) * 2010-03-05 2011-10-13 Toshiba Lighting & Technology Corp Light emitting module, and illumination device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562066U (en) * 1978-10-18 1980-04-26
JP2004207655A (en) * 2002-12-26 2004-07-22 Matsushita Electric Ind Co Ltd Metallic base substrate and light-emitting unit
JP4780203B2 (en) * 2009-02-10 2011-09-28 日亜化学工業株式会社 Semiconductor light emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009501431A (en) * 2005-07-15 2009-01-15 パナソニック株式会社 Light emitting module and mounting board used therefor
JP2007234899A (en) * 2006-03-01 2007-09-13 Sanyo Electric Co Ltd Semiconductor device and manufacturing method thereof
JP2007324205A (en) * 2006-05-30 2007-12-13 Toyoda Gosei Co Ltd Light emitting device
JP2009272378A (en) * 2008-05-01 2009-11-19 Nichia Corp Semiconductor device
JP2011205055A (en) * 2010-03-05 2011-10-13 Toshiba Lighting & Technology Corp Light emitting module, and illumination device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9484309B2 (en) 2012-08-06 2016-11-01 Sharp Kabushiki Kaisha Light emitting device and method for manufacturing light emitting device
EP2882000A4 (en) * 2012-08-06 2016-03-16 Sharp Kk Light-emitting apparatus and method for manufacturing same
JP2016106441A (en) * 2012-08-06 2016-06-16 シャープ株式会社 Light emitting device and light emitting device manufacturing method
US10224469B2 (en) 2012-08-06 2019-03-05 Sharp Kabushiki Kaisha Light emitting device and method for manufacturing light emitting device
CN104521014A (en) * 2012-08-06 2015-04-15 夏普株式会社 Light-emitting apparatus and method for manufacturing same
WO2014024627A1 (en) 2012-08-06 2014-02-13 シャープ株式会社 Light-emitting apparatus and method for manufacturing same
JPWO2014024627A1 (en) * 2012-08-06 2016-07-25 シャープ株式会社 Light emitting device and method for manufacturing light emitting device
JP2014075516A (en) * 2012-10-05 2014-04-24 Toshiba Lighting & Technology Corp Light-emitting device and illuminating device
JP2014107327A (en) * 2012-11-26 2014-06-09 Citizen Electronics Co Ltd Led light-emitting unit and led light-emitting device
US10672672B2 (en) 2013-02-28 2020-06-02 Ab Mikroelektronik Gesellschaft Mit Beschraenkter Haftung Placement method for circuit carrier and circuit carrier
AT513747A4 (en) * 2013-02-28 2014-07-15 Mikroelektronik Ges Mit Beschränkter Haftung Ab Assembly process for circuit carriers and circuit carriers
US10991632B2 (en) 2013-02-28 2021-04-27 Ab Mikroelektronik Gesellschaft Mit Beschraenkter Haftung Assembly process for circuit carrier and circuit carrier
US10217675B2 (en) 2013-02-28 2019-02-26 A.B. Mikroelektronik Gesellschaft Mit Beschraenkter Haftung Placement method for circuit carrier and circuit carrier
AT513747B1 (en) * 2013-02-28 2014-07-15 Mikroelektronik Ges Mit Beschränkter Haftung Ab Assembly process for circuit carriers and circuit carriers
JP2014204029A (en) * 2013-04-08 2014-10-27 立山科学工業株式会社 Led mounting substrate
AT514599B1 (en) * 2013-07-05 2015-02-15 Melecs Ews Gmbh & Co Kg Method for equipping electronic circuit boards with optical components
AT514599A4 (en) * 2013-07-05 2015-02-15 Melecs Ews Gmbh & Co Kg Method for equipping electronic circuit boards with optical components
US9559267B2 (en) 2014-11-29 2017-01-31 Nichia Corporation Light-emitting device

Also Published As

Publication number Publication date
JPWO2012057038A1 (en) 2014-05-12
CN203481265U (en) 2014-03-12
TW201230268A (en) 2012-07-16

Similar Documents

Publication Publication Date Title
WO2012057038A1 (en) Light-emitting module and lighting equipment
EP2261548B1 (en) Light emitting module and illumination device
JP5059739B2 (en) Light emitting diode package having an array of light emitting cells connected in series
JP5029893B2 (en) Light bulb shaped LED lamp and lighting device
US8197097B2 (en) Light source unit and lighting system
JP5266075B2 (en) Light bulb-type lighting device
JP5029822B2 (en) Light source and lighting device
JP2012532441A (en) Light emitting diode package
US8616732B2 (en) Light-emitting device and illumination device
JP5849238B2 (en) Lamp and lighting device
JP5447686B2 (en) Light emitting module and lighting apparatus
JP2012109478A (en) Light-emitting body and luminaire
JP5376404B2 (en) Light emitting device
JP2011134934A (en) Light emitting module, and lighting device
JP2011060960A (en) Light-emitting module
JP2009212126A (en) Lighting system
JP5212178B2 (en) Light emitting module
JP6252732B2 (en) Illumination light source and illumination device
WO2014013652A1 (en) Bulb-type lamp and illumination device
JP5582365B2 (en) Lighting device
KR20140063922A (en) Led lighting device
KR20130043835A (en) Light emitting device package, method of manufacturing the same and illuminating device having the same
JP2015162385A (en) Light source for lighting and lighting device
JP2013187397A (en) Light emitter and lighting device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201190000701.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11836172

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012540828

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11836172

Country of ref document: EP

Kind code of ref document: A1