WO2012053233A1 - 超純水製造方法 - Google Patents

超純水製造方法 Download PDF

Info

Publication number
WO2012053233A1
WO2012053233A1 PCT/JP2011/055782 JP2011055782W WO2012053233A1 WO 2012053233 A1 WO2012053233 A1 WO 2012053233A1 JP 2011055782 W JP2011055782 W JP 2011055782W WO 2012053233 A1 WO2012053233 A1 WO 2012053233A1
Authority
WO
WIPO (PCT)
Prior art keywords
biological treatment
water
treatment means
raw water
urea
Prior art date
Application number
PCT/JP2011/055782
Other languages
English (en)
French (fr)
Inventor
新井 伸説
繁樹 藤島
育野 望
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to KR1020137012448A priority Critical patent/KR101840896B1/ko
Priority to CN201180050274.6A priority patent/CN103168006B/zh
Priority to US13/879,894 priority patent/US9085475B2/en
Publication of WO2012053233A1 publication Critical patent/WO2012053233A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/302Nitrification and denitrification treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/02Aerobic processes
    • C02F3/10Packings; Fillings; Grids
    • C02F3/105Characterized by the chemical composition
    • C02F3/106Carbonaceous materials
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/04Non-contaminated water, e.g. for industrial water supply for obtaining ultra-pure water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/30Aerobic and anaerobic processes
    • C02F3/308Biological phosphorus removal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Definitions

  • the present invention relates to a method for producing ultrapure water in which treated water obtained by biological treatment of raw water containing organic matter is treated with a primary pure water device and a secondary pure water device, and in particular, highly removes urea in the raw water.
  • the present invention relates to a method for producing ultrapure water.
  • an ultrapure water production apparatus that produces ultrapure water from raw water such as city water, groundwater, and industrial water basically includes a pretreatment apparatus, a primary pure water production apparatus, and a secondary pure water production apparatus.
  • the pretreatment device is composed of agglomeration, levitation, and filtration devices.
  • the primary pure water production apparatus includes, for example, two reverse osmosis membrane separation devices and a mixed bed ion exchange device, or an ion exchange pure water device and a reverse osmosis membrane separation device.
  • the secondary pure water production apparatus is composed of, for example, a low-pressure ultraviolet oxidizer, a mixed bed ion exchanger, and an ultrafiltration membrane separator.
  • Patent Documents 1 to 3 describe that TOC in ultrapure water is sufficiently reduced by removing urea from the water supplied to the ultrapure water production apparatus.
  • Patent Document 1 discloses that a biological treatment apparatus is incorporated in a pretreatment apparatus and urea is decomposed by this biological treatment apparatus. Further, in Patent Document 2, a biological treatment apparatus is incorporated into a pretreatment apparatus, and mixed water of treated water (industrial water) and semiconductor cleaning / collecting water is passed through. It is disclosed that an organic substance contained in the semiconductor cleaning / collecting water serves as a carbon source for a biological treatment reaction and improves the decomposition rate of urea. In addition, there are cases where a large amount of ammonium ions (NH4 +) are contained in the semiconductor cleaning / recovered water, which becomes a nitrogen source in the same manner as urea, and may inhibit the decomposition of urea.
  • NH4 + ammonium ions
  • Patent Document 3 in order to solve the above-mentioned problem of Patent Document 2, the water to be treated (industrial water) and the semiconductor cleaning / collecting water are mixed after being biologically treated separately, It is described that water is passed through a secondary pure water production apparatus.
  • the present inventors have proposed a water treatment method and ultrapure water that can remove urea to a lower concentration in a short time by performing biological treatment after adding a nitrogen source to raw water. (Japanese Patent Application No. 2010-105151, etc.).
  • the nitrogen source added as a nutrient source is used by BOD-assimilating bacteria, and other phosphorus and trace metals ( Due to the fact that nutrient sources such as mineral components are also used by BOD-assimilating bacteria, the growth and activity of the nitrifying bacteria group are reduced.
  • the present invention has been made in view of the above problems, and is capable of highly decomposing and removing TOC, particularly urea, in raw water and capable of producing higher purity ultrapure water. It aims at providing the manufacturing method of.
  • the present invention provides an ultrapure water production method in which treated water obtained by biologically treating raw water containing an organic substance is treated with a pure water production apparatus, wherein the biological treatment is a first treatment.
  • a method for producing ultrapure water comprising a biological treatment means and a second biological treatment means, wherein a nutrient source of the second biological treatment means is added to the treated water of the first biological treatment means (Invention 1).
  • invention 1 first, in the first biological treatment means, the organic matter in raw water, in particular, the readily degradable organic matter is removed, whereby the easy degradation supplied to the next second biological treatment means.
  • the amount of organic substances can be reduced, and the growth of BOD-utilizing bacteria can be suppressed.
  • nutrient sources such as the ammoniacal nitrogen source of the second biological treatment means
  • biological treatment mainly composed of nitrifying bacteria can be performed, and high urea removal efficiency can be achieved.
  • consumption of the nutrient source by BOD utilization bacteria in a 2nd biological treatment means can be suppressed, there exists an effect that a process can be performed with fewer nutrient sources.
  • the first biological treatment is preferably a biological treatment means having a fixed bed of a biological carrier (Invention 2).
  • said 2nd biological treatment is a biological treatment means which has a fixed bed of a biological support
  • carrier invention 3).
  • the biological treatment means is composed of a fixed bed of the biological support carrier, the outflow of bacterial cells from the biological treatment means can be suppressed more than in the case of a fluidized bed.
  • the effect is high and the effect can be maintained for a long time.
  • the nutrient source of the second biological treatment means is preferably a nitrogen source (Invention 4).
  • an ammonium salt such as ammonium chloride is suitable for activating the nitrifying bacteria group, and its addition and control is easy, and it is suitable for maintaining a low urea concentration. It is.
  • the ultrapure water production method of the present invention when producing the ultrapure water by treating the treated water obtained by biologically treating the raw water containing the organic matter with the pure water production apparatus, It comprises a single biological treatment means and a second biological treatment means, and since the nutrient source of the second biological treatment means is added to the treated water of the first biological treatment means, high urea removal efficiency Can produce ultrapure water. Moreover, since consumption of the nutrient source by BOD utilization bacteria in a 2nd biological treatment means can be suppressed, there exists an effect that a process can be performed with fewer nutrient sources.
  • FIG. 1 is a schematic view showing a biological treatment apparatus for performing a water treatment method according to an embodiment of the ultrapure water production method of the present invention.
  • reference numeral 1 denotes a pretreatment system for raw water W supplied from a raw water storage tank (not shown). After the raw water W treated by the pretreatment system 1 is adjusted to a predetermined temperature by the heat exchanger 2, It is supplied to the first biological treatment means 3 and further continues to the second biological treatment means 4. And this 2nd biological treatment means 4 is following the microbial cell separation apparatus 5, and after processing with these various apparatuses, it supplies to a primary pure water apparatus as the treated water W1.
  • a first supply mechanism 6 for adding an easily decomposable organic substance, an oxidizing agent, and a bactericidal agent is provided in the previous stage of the first biological treatment means 3, and the previous stage of the second biological treatment means 4.
  • a third supply mechanism 8 for supplying a reducing agent and a slime control agent is provided at the subsequent stage of the second biological treatment means 4.
  • Reference numeral 9 denotes a pipe for feeding the raw water W or the like.
  • raw water W to be treated ground water, river water, city water, other industrial water, recovered water from a semiconductor manufacturing process, or the like can be used.
  • the urea concentration in the raw water (treatment target water) W is preferably about 5 to 200 ⁇ g / L, particularly about 5 to 100 ⁇ g / L.
  • the pretreatment system 1 a general pretreatment system in the production process of ultrapure water or a treatment similar to this is suitable. Specifically, a treatment system comprising agglomeration, pressurized levitation, filtration, or the like can be used.
  • the first biological treatment means 3 is a means for performing a treatment for decomposing and stabilizing pollutants in wastewater such as sewage by biological action, and is classified into an aerobic treatment and an anaerobic treatment.
  • organic matter is decomposed by biological treatment through oxygen respiration, nitric acid respiration, fermentation processes, etc., and is gasified or taken into the body of microorganisms and removed as sludge.
  • the removal process of nitrogen (nitrification denitrification method) and phosphorus (biological phosphorus removal method) can also be performed.
  • a means for performing such biological treatment is generally called a biological reaction tank.
  • the first biological treatment means 3 is not particularly limited, but preferably has a fixed bed of a biological carrier. In particular, a fixed bed of a downward flow type with less bacterial cell outflow is preferred.
  • the first biological treatment means 3 When the first biological treatment means 3 is a fixed bed, it is preferable to wash the fixed bed as necessary. As a result, it is possible to prevent the occurrence of blockage of the fixed bed, mudballing, a decrease in the decomposition and removal efficiency of urea, and the like due to the growth of organisms (bacteria).
  • this cleaning method There is no particular limitation on this cleaning method. For example, backwashing, that is, flowing the cleaning water in the direction opposite to the direction of passing raw water to fluidize the carrier, discharging sediment out of the system, It is preferable to perform pulverization, exfoliation of a part of the organism, and the like.
  • the type of carrier for the fixed bed and activated carbon, anthracite, sand, zeolite, ion exchange resin, plastic molded product, etc. are used, but in order to carry out biological treatment in the presence of an oxidizing agent. It is preferable to use a carrier that consumes less oxidant. However, when there is a possibility that a high concentration of oxidant flows into the biological treatment means, it is preferable to use a carrier such as activated carbon that can decompose the oxidant. Thus, when activated carbon etc. are used, even if it is a case where the density
  • Examples of readily decomposable organic substances added to the first biological treatment means 3 from the first supply mechanism 6 include organic acids such as acetic acid and citric acid, organic acid salts such as sodium acetate, alcohols such as methanol and ethanol, An organic solvent such as acetone and other general readily biodegradable organic substances can be preferably used. Among these, even if the added organic matter cannot be completely treated and remains in the biologically treated water, it can be removed in the reverse osmosis membrane treatment or ion exchange treatment with ion exchange resin that is performed as a subsequent treatment. An organic acid salt such as sodium acetate, which is a natural organic substance, can be used more suitably.
  • a chlorine-based oxidizing agent such as sodium hypochlorite and chlorine dioxide can be used.
  • a combined chlorine agent a combined chlorine agent having higher stability than chloramine
  • a chlorine-based oxidizing agent and a sulfamic acid compound, hydrogen peroxide, and the like can be used.
  • the same one as the first biological treatment means 3 described above can be used, and the one having the fixed bed of the biological support carrier is also preferable.
  • a fixed bed of a downward flow type with less bacterial cell outflow is preferred.
  • an ammonia nitrogen source As a nitrogen source as a nutrient source added from the second supply mechanism 7 in the first stage of the second biological treatment means 4, an ammonia nitrogen source is preferable, and both organic and inorganic ammonia nitrogen sources are used. It can be used suitably. Among these, even when the added ammoniacal nitrogen source cannot be completely treated and remains in the biologically treated water, it is an ionic ammoniacal nitrogen source from the viewpoint of easy removal in the subsequent treatment. Ammonium salts such as ammonium chloride and ammonium sulfate can be preferably used.
  • urea and urea derivatives may be added as an ammoniacal nitrogen source. good.
  • some urea and urea derivatives are not ionic and cannot be expected to be removed in subsequent treatments, when added in a large amount, they cannot be removed even in biological treatment and later treatment, and remain at the end. There is a high possibility that it will end. Therefore, when urea and urea derivatives are added, a method is preferred in which the addition concentration is minimized and the necessary amount as an ammoniacal nitrogen source is supplemented with an ammonium salt or the like.
  • a chlorine-based oxidizing agent such as sodium hypochlorite and chlorine dioxide can be used.
  • a combined chlorine agent a combined chlorine agent having higher stability than chloramine
  • a chlorine-based oxidizing agent and a sulfamic acid compound, hydrogen peroxide, and the like can be used.
  • the addition of the reducing agent and / or slime control agent from the third supply mechanism 8 in the subsequent stage of the second biological treatment means 4 to the pipe 9 and the bacterial cell separation device 5 are not necessarily required. Any one or more can be provided accordingly. Specifically, when an outflow of an oxidizing agent or the like is recognized at the subsequent stage of the second biological treatment means 4, or when an outflow of bacterial cells is observed, a reducing agent and a reductant from the third supply mechanism 8 as necessary. A slime control agent can be added to the pipe 9.
  • the slime control agent is preferably a bactericide that does not adversely affect oxidative degradation due to RO membrane treatment, ion exchange treatment, etc., which will be described later.
  • a combined chlorine agent chloramine
  • Bonded chlorine agent having higher stability hydrogen peroxide, and the like can be used.
  • This bacterial cell separation device 5 is an obstacle in subsequent processing such as a primary pure water device caused by bacterial cells contained in the treated water of the second biological treatment means 4 (microbial cells detached from the biological carrier) ( It is provided as needed to avoid clogging of piping, slime failure such as differential pressure increase, and biofouling of RO membrane. Specifically, membrane filtration (cartridge filter with a pore diameter of about 0.1 ⁇ m) Membrane filtration treatment), coagulation filtration, etc. can be used.
  • the efficiency of decomposition and removal of organic substances in the first biological treatment means 3 in the subsequent stage is reduced by the turbid components. And the increase in the pressure loss of the first biological treatment means 3 is suppressed.
  • the heat exchanger 2 adjusts the temperature of the pretreated raw water W as necessary so that the raw water W is heated when the water temperature of the raw water W is low, and is cooled to a predetermined water temperature when the water temperature is high. carry out. That is, the higher the water temperature of the raw water W, the higher the reaction rate and the higher the decomposition efficiency. On the other hand, when the water temperature is high, it is necessary to impart heat resistance to the treatment tank, the piping 9 and the like of the first biological treatment means 3, leading to an increase in equipment cost. Moreover, when the water temperature of the raw
  • the treatment water temperature is preferably about 20 to 40 ° C. Therefore, if the initial temperature of the raw water W is within the above range, nothing needs to be done.
  • the raw water W the temperature of which has been adjusted as necessary, is supplied to the first biological treatment means 3.
  • organic substances particularly easily degradable organic substances are removed, and then supplied to the second biological treatment means 4 at the subsequent stage.
  • the amount of readily degradable organic matter in the supplied water is reduced, and the increase in the growth and activity of BOD-utilizing bacteria is suppressed.
  • an easily decomposable organic substance, an oxidizing agent and / or a bactericidal agent are added from the first supply mechanism 6 to the first biological treatment means 3 as necessary.
  • the amount of the easily decomposable organic substance is less than 0.1 mg / L, the ability to ingest and decompose urea as a nitrogen source (N source) necessary for decomposing and assimilating this organic substance is not sufficient, but 2 mg Even if / L is exceeded, not only further decomposition of urea is not obtained, but also the amount of leak from the first biological treatment means 3 becomes too large, which is not preferable.
  • the amount of oxidizer added varies depending on the type of oxidizer used. For example, when a chlorinated oxidizer is used, the free effective chlorine concentration is about 1 to 10 mg / L, and particularly about 1 to 5 mgmg / L. That's fine. When the addition amount of the oxidant is less than 1 mg / L, the oxidative decomposition of the organic component is not sufficient. On the other hand, when it exceeds 10 mg / L, no further improvement in the effect is obtained, and the remaining oxidant (free chlorine) The amount of reducing agent required to remove this free chlorine is too great.
  • the bactericidal agent is a failure in the subsequent treatment caused by the bacteria contained in the treated water of the first biological treatment means 3 (slime trouble such as clogging of the pipe, increase in differential pressure, biofouling of the RO membrane, etc.). What is necessary is just to add suitably as needed for the purpose of avoidance.
  • the raw water W treated by the first biological treatment means 3 is used as supply water, and further biological treatment is performed by the second biological treatment means 4.
  • further biological treatment is performed by the second biological treatment means 4.
  • a biological treatment mainly composed of nitrifying bacteria can be performed, and urea can be efficiently decomposed and removed.
  • the addition amount of the nitrogen source may be 0.1 to 5 mg / L (converted to NH 4 +). If the ammonium ion concentration in the raw water W is less than 0.1 mg / L (NH4 + conversion), it will be difficult to maintain the activity of the nitrifying bacteria group, while if it exceeds 5 mg / L (NH4 + conversion), further nitrifying bacteria Not only the group activity is not obtained, but also the amount of leak from the second biological treatment means 4 becomes too large, which is not preferable.
  • the TOC concentration of the raw water W containing a large amount of easily decomposable organic matter is 1. Even when the concentration is as high as 0.0 mg / L or more, particularly about 1.5 to 2.0 mg / L, the urea concentration can be maintained at 2 ⁇ g / L or less.
  • the nitrogen source does not need to be added constantly.
  • the second biological treatment means 4 may be added only during the start-up period when the biological carrier is replaced, or may be added at regular intervals. A method of repeating the addition can be used.
  • the effect that the addition cost of a nitrogen source can also be reduced by not always adding a nitrogen source is also produced.
  • the activity of the BOD-assimilating bacteria in the first biological treatment means 4 is suppressed by removing readily decomposable organic substances. Since the consumption of the nutrient source by the BOD assimilating bacteria can be suppressed, there is also an effect that the treatment can be performed with fewer nutrient sources.
  • the disinfectant is a failure in the subsequent treatment caused by the bacteria contained in the treated water of the second biological treatment means 4 (slime trouble such as clogging of pipes, increase in differential pressure, biofouling of RO membrane, etc.) What is necessary is just to add suitably as needed for the purpose of avoidance.
  • a reducing agent and / or a slime control agent is added to the raw water W treated by the second biological treatment means 4 from the third supply mechanism 8 as necessary.
  • Bound chlorine is a component that is harder to remove even with activated carbon than free chlorine, and the bound chlorine leaks into biologically treated water. Bound chlorine is said to be a component with low oxidizing power compared to free chlorine, but it is also known that free chlorine is generated again from bound chlorine by an equilibrium reaction. May cause oxidative degradation.
  • a reducing agent for example, when reducing residual chlorine using sodium sulfite, sulfite ions (SO 3 2 ⁇ ) and hypochlorite ions (ClO ⁇ ) are equimolar. It may be added so as to be, and in consideration of safety, it may be added in an amount of 1.2 to 3.0 times. Since there is a variation in the oxidizing agent concentration of the treated water, it is more preferable to monitor the oxidizing agent concentration of the treating water and to control the amount of reducing agent added according to the oxidizing agent concentration. For simplicity, a method may be used in which the oxidant concentration is measured periodically and the addition amount corresponding to the measured concentration is set appropriately.
  • the slime control agent is a failure in the subsequent treatment (clogged pipe, increased differential pressure) caused by the microbial cells contained in the treated water of the second biological treatment means 4 (microbial cells detached from the biological carrier).
  • Such as slime damage and biofouling of RO membrane may be added as needed for the purpose.
  • the cells contained in the treated water of the second biological treatment means 4 are removed by the cell separation device 5 as necessary.
  • the addition of the reducing agent and / or slime control agent and the treatment by the bacterial cell separation device 5 may be appropriately performed in accordance with the quality of the biologically treated water from the second biological treatment means 4. If it is good, it may not be performed.
  • the raw water W is treated with the water treatment device 21 including the first biological treatment device 3 and the first biological treatment device 4 described above, and then the treated water W1 is treated with primary pure water. Further processing is performed by a pure water production apparatus provided with a water device 22 and a subsystem (secondary pure water device) 23.
  • the primary pure water device 22 includes a first reverse osmosis membrane (RO) separation device 24, a mixed bed ion exchange device 25, and a second reverse osmosis membrane (RO) separation device 26 in this order.
  • the device configuration of the primary pure water device 22 is not limited to such a configuration.
  • the sub-system 23 includes a sub-tank 27, a heat exchanger 28, a low-pressure ultraviolet oxidizer 29, a membrane degasser 30, a mixed bed ion exchanger 31, and an ultrafiltration membrane device (fine particle removal) 32. Arranged in this order.
  • the apparatus configuration of the subsystem 23 is not limited to such a configuration, and is configured by combining, for example, a UV oxidation processing apparatus, an ion exchange processing apparatus (non-regenerative type), a UF membrane separation apparatus, and the like. May be.
  • the treated water W1 treated by the water treatment device 21 is converted into a primary pure water device 22, a first reverse osmosis membrane (RO) separation device 24, a mixed bed ion exchange device 25, a second reverse osmosis membrane ( RO) Separation device 26 removes ion components and the like remaining in treated water W1.
  • RO reverse osmosis membrane
  • the treated water of the primary pure water device 22 is introduced into the low-pressure ultraviolet oxidizer 29 through the sub-tank 27 and the heat exchanger 28, and the contained TOC component is ionized or decomposed. Further, oxygen and carbon dioxide gas are removed by the membrane deaerator 30, and then the ionized organic substance is removed by the mixed bed ion exchanger 31 at the subsequent stage.
  • the treated water of the mixed bed type ion exchange device 31 is further subjected to membrane separation treatment by an ultrafiltration membrane device (fine particle removal) 32, and ultrapure water can be obtained.
  • the biological treatment means 5 sufficiently decomposes and removes urea, and the TOC component, metal ions, and other inorganic substances in the primary pure water device 22 and the subsystem 23 in the subsequent stage. -By removing the organic ion component, highly pure ultrapure water can be efficiently produced.
  • the first biological treatment means 3 may be a normal biological treatment apparatus
  • the nutrient source added to the supply water of the second biological treatment means 4 is not limited to the ammoniacal nitrogen source, but other than that.
  • the nitrogen source may be added, and in some cases, an easily decomposable organic substance may be added.
  • Example 1 As simulated raw water 1, municipal water (Nogicho water: average urea concentration 10 ⁇ g / L, average TOC concentration 0.7 mg / L, ammoniacal nitrogen concentration less than 0.1 mg / L, average total residual chlorine concentration 0.6 mg / LasCl 2 ) And reagent urea (manufactured by Kishida Chemical Co., Ltd.) added in an appropriate amount as necessary.
  • Municipal water Nogicho water: average urea concentration 10 ⁇ g / L, average TOC concentration 0.7 mg / L, ammoniacal nitrogen concentration less than 0.1 mg / L, average total residual chlorine concentration 0.6 mg / LasCl 2
  • reagent urea manufactured by Kishida Chemical Co., Ltd.
  • sodium acetate manufactured by Kishida Chemical was further added to simulated raw water 1 to adjust the TOC concentration to about 2 mg / L.
  • the water temperature of the city water was 25 to 30 ° C., so the water temperature of the simulated raw water 1 and the simulated raw water 2 was not adjusted by the heat exchanger 2.
  • sulfuric acid industrial dilute sulfuric acid, manufactured by Tsurumi Soda Co., Ltd.
  • Tsurumi Soda Co., Ltd. sulfuric acid
  • a first biological treatment means 3 granular activated carbon (“Crycol WG160, 10/32 mesh”, manufactured by Kurita Kogyo Co., Ltd.) as a biological carrier is filled in a cylindrical container with 2 L and fixed bed. What was used was used. In addition, as granular activated carbon of the 1st biological treatment means 3, what has already demonstrated the resolution
  • the second biological treatment means 4 granular activated carbon (“Crycol WG160, 10/32 mesh”, manufactured by Kurita Kogyo Co., Ltd.) as a biological carrier was filled in a cylindrical container with 2 L to form a fixed bed. .
  • the granular activated carbon of the second biological treatment means 4 one that has been acclimatized with the reagent urea and has already developed urea resolution is used.
  • ammonium chloride manufactured by Kishida Chemical Co., Ltd.
  • ammonia nitrogen NH 3 ⁇ N
  • the concentration was about 0.2 mg / LasN.
  • sodium hypochlorite (trade name: Sunrack, 12% sodium hypochlorite for industrial use, manufactured by Honmachi Chemical Industry Co., Ltd.) is added as an oxidizing agent, and the total residual chlorine concentration is about 0.5 mg / LasCl 2 . did.
  • the treated water to which these were added was passed through the second biological treatment means 4 in a downward flow.
  • the water flow rate SV was 20 / hr (water flow rate per hour ⁇ filled activated carbon amount).
  • the addition of the reducing agent and the slime control agent was not performed from the third supply mechanism 8 subsequent to the second biological treatment means 4.
  • Table 1 shows the results of measuring the urea concentration of the treated water W1 after the continuous flow of the simulated raw water 1 for 2 weeks under the water flow conditions as described above. Moreover, the treated water W1 was switched to the simulated raw water 2, and continuous water flow was further performed for two weeks under the same conditions. The results of measuring the urea concentration of the obtained treated water W1 are also shown in Table 1. At this time, the TOC concentration of the treated water of the first biological treatment means (the feed water of the second biological treatment means 4) was 0.3 to 0.5 mg / L.
  • the procedure for analyzing the urea concentration is as follows. That is, first, the total residual chlorine concentration of the test water is measured by the DPD method and reduced with a considerable amount of sodium bisulfite (then, the total residual chlorine is measured by the DPD method, and less than 0.02 mg / L). Confirm that it is.) Next, this reduced test water was passed through an ion exchange resin (“KR-UM1”, Kurita Kogyo Co., Ltd.) at SV50 / hr, deionized and concentrated 10 to 100 times with a rotary evaporator. Thereafter, the urea concentration is quantified by the diacetyl monooxime method.
  • KR-UM1 Kurita Kogyo Co., Ltd.
  • Example 1 In Example 1, the simulated raw water 1 and the simulated raw water 2 were treated in the same manner except that the first biological treatment means 3 was not provided. At this time, ammonium chloride was added from the second supply mechanism 7, but sodium hypochlorite was not added. Table 1 shows the results of measuring the urea concentration of the treated water W1 of the simulated raw water 1 and the simulated raw water 2.
  • Example 1 in which biological treatment was performed in two stages, the simulated raw water 1 with a low TOC concentration had a urea concentration of the treated water W1 of less than 2 ⁇ g / L, and the simulated raw water with a high TOC concentration. Even in the case of 2, the urea concentration of the treated water W1 was less than 2 ⁇ g / L and the urea concentration could be kept low.
  • the urea concentration in the treated water W1 was less than 2 ⁇ g / L in the case of the simulated raw water 1 with a low TOC concentration, but in the simulated raw water 2 with a high TOC concentration, The urea concentration of the treated water W1 was 10 to 20 ⁇ g / L.
  • Example 1 even if an easily degradable organic substance is contained in the raw water W, the first biological treatment means 3 removes this to maintain the urea decomposition performance in the second biological treatment means 4.
  • the second biological treatment means 4 can increase the growth and activity of BOD-utilizing bacteria by the readily degradable organic matter, thereby increasing urea. This is thought to be due to the inactivation of the nitrifying bacteria group with high removal efficiency, and the urea removal performance was lowered.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Microbiology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 1は図示しない原水貯槽から供給される原水Wの前処理システムであり、この前処理システム1で処理された原水Wは、熱交換器2で所定の温度に調整された後、第一の生物処理手段3に供給され、さらに第二の生物処理手段4に連続している。そして、この第二の生物処理手段4は、菌体分離装置5に連続していて、これらの各種装置で処理された後、処理水W1として一次純水装置に供給される。第二の生物処理手段4の前段には、栄養源としての窒素源、及び酸化剤(殺菌剤)を添加する第二の供給機構7が設けられている。かかる超純水製造方法によれば、原水中の尿素を高度に除去することが可能である。

Description

超純水製造方法
 本発明は、有機物を含有する原水を生物処理して得られた処理水を1次純水装置及び2次純水装置で処理する超純水製造方法に関し、特に原水中の尿素を高度に除去することができる超純水製造方法に関する。
 従来、市水、地下水、工水等の原水から超純水を製造する超純水製造装置は、基本的に前処理装置、一次純水製造装置及び二次純水製造装置から構成される。このうち、前処理装置は、凝集、浮上、濾過装置で構成される。一次純水製造装置は、例えば、2基の逆浸透膜分離装置及び混床式イオン交換装置、あるいはイオン交換純水装置及び逆浸透膜分離装置で構成される。また、二次純水製造装置は、例えば、低圧紫外線酸化装置、混床式イオン交換装置及び限外濾過膜分離装置で構成される。
 このような超純水製造装置においては、その純度の向上への要求が高まってきており、これに伴いTOC成分の除去が求められている。超純水中のTOC成分のうち、特に尿素はその除去が困難であり、TOC成分を低減すればするほど尿素の除去がTOC成分の含有率に与える影響が大きい。そこで、超純水製造装置に供給される水中から尿素を除去することにより、超純水中のTOCを十分に低減することが特許文献1~3に記載されている。
 特許文献1には、前処理装置に生物処理装置を組み込み、この生物処理装置で尿素を分解することが開示されている。また、特許文献2には、前処理装置に生物処理装置を組み込み、被処理水(工業用水)と半導体洗浄回収水との混合水を通水する。この半導体洗浄回収水中に含有される有機物が生物処理反応の炭素源となり、尿素の分解速度を向上させることが開示されている。なお、この半導体洗浄回収水中にはアンモニウムイオン(NH4+)が多量に含有されている場合があり、これが尿素と同様に窒素源となり、尿素の分解を阻害することがある。さらに、特許文献3には、特許文献2の上記問題点を解決するために、被処理水(工業用水)と半導体洗浄回収水とを別々に生物処理した後に混合し、一次純水製造装置及び二次純水製造装置に通水することが記載されている。
特開平6-63592号公報 特開平6-233997号公報 特開平7-313994号公報
 しかしながら、特許文献2に記載の水処理方法のように、被処理水に炭素源を添加すると、生物処理装置の尿素分解除去効率は向上するものの、生物処理装置内の菌体の増殖量が増加し、当該生物処理装置からの菌体の流出量が増加する、という問題点がある。これは、特許文献2の水処理方法は、硝化菌ではなく、BOD資化細菌(従属栄養細菌)が有機物を分解・資化するにあたり、窒素源として尿素及び尿素誘導体を分解し、アンモニアとして摂取することで、尿素及び尿素誘導体を分解し、アンモニアとして摂取することで、尿素及び尿素誘導体を除去する機構であるためであると考えられる。
 そこで、本発明者らは、原水に窒素源を添加した後、生物処理を実施することにより、尿素を短時間でより低濃度まで除去することが可能な水処理方法及び超純水を提案した(特願2010-105151号等)。
 ところがこの方法では、硝化菌群の関与により尿素分解効率の向上は得られるが故に、原水の有機物濃度が高い場合、特に易分解性の有機物濃度が高いときには、BOD資化細菌(従属栄養細菌)の増殖・活性が高まるため、硝化菌群の増殖・活性が低下し、尿素分解効率が低下し、十分に尿素が低減された超純水を得にくいことがあることがわかった。具体的には、BOD資化細菌の増殖・活性が高まることにより、栄養源として添加する窒素源がBOD資化細菌に利用されてしまうこと、またその他の原水中に含まれるリンや微量金属(ミネラル成分など)等の栄養源もBOD資化細菌に利用されてしまうことなどにより、硝化菌群の増殖・活性が低下する。
 本発明は、上記課題に鑑みてなされたものであり、原水中のTOC、特に尿素を高度に分解・除去することができ、より高純度な超純水を製造することの可能な超純水の製造方法を提供することを目的とする。
 上記課題を解決するために、本発明は、有機物を含有する原水を生物処理して得られた処理水を純水製造装置で処理する超純水製造方法において、前記生物処理が、第一の生物処理手段と、第二の生物処理手段とからなり、前記第一の生物処理手段の処理水に、前記第二の生物処理手段の栄養源を添加することを特徴とする超純水製造方法を提供する(発明1)。
 かかる発明(発明1)によれば、まず第一の生物処理手段において、原水中の有機物、特に易分解性の有機物を除去することにより、次の第二の生物処理手段に供給される易分解性の有機物量を削減し、BOD資化細菌の増殖・活性の高まりを抑制することができる。このようにBOD資化細菌の増殖・活性の高まりを抑制しつつ、第一の生物処理手段の処理水に、第二の生物処理手段のアンモニア性の窒素源などの栄養源を添加することで、硝化菌群を主体とする生物処理を施すことができ、高い尿素除去効率とすることができる。また、第二の生物処理手段でのBOD資化細菌による栄養源の消費を抑制することができるので、より少ない栄養源で処理を行うことができる、という効果も奏する。
 上記発明(発明1)においては、前記第一の生物処理が、生物担持担体の固定床を有する生物処理手段であるのが好ましい(発明2)。また、上記発明(発明1)においては、前記第二の生物処理が、生物担持担体の固定床を有する生物処理手段であるのが好ましい(発明3)。
 かかる発明(発明2、3)によれば、生物処理手段が生物担持担体の固定床よりなるため、流動床の場合よりも生物処理手段からの菌体の流出を抑制することができ、処理の効果が高く、かつその効果を長期間維持することができる。
 上記発明(発明1~3)においては、前記第二の生物処理手段の栄養源が、窒素源であるのが好ましい(発明4)。
 かかる発明(発明4)によれば、塩化アンモニウムなどのアンモニウム塩は、硝化菌群の活性化に好適であり、また、その添加・制御も容易であり、尿素の濃度を低く維持するのに好適である。
 本発明の超純水製造方法によれば、有機物を含有する原水を生物処理して得られた処理水を純水製造装置で処理して超純水を製造するに際し、前記生物処理が、第一の生物処理手段と、第二の生物処理手段とからなり、前記第一の生物処理手段の処理水に、前記第二の生物処理手段の栄養源を添加しているので、高い尿素除去効率で超純水を製造することができる。また、第二の生物処理手段でのBOD資化細菌による栄養源の消費を抑制することができるので、より少ない栄養源で処理を行うことができる、という効果も奏する。
本発明の一実施形態に係る超純水製造方法における生物処理装置を示す系統図である。 前記実施の形態に係る生物処理装置を利用した超純水製造方法を実施可能な装置を示す系統図である。
 以下、添付図面を参照して本発明の実施形態について説明する。図1は、本発明の超純水製造方法の一実施形態に係る水処理方法を実施する生物処理装置を示す概略図である。
 図1において、1は図示しない原水貯槽から供給される原水Wの前処理システムであり、この前処理システム1で処理された原水Wは、熱交換器2で所定の温度に調整された後、第一の生物処理手段3に供給され、さらに第二の生物処理手段4に連続している。そして、この第二の生物処理手段4は、菌体分離装置5に連続していて、これらの各種装置で処理された後、処理水W1として一次純水装置に供給される。
 そして、第一の生物処理手段3の前段には、易分解性有機物と酸化剤と殺菌剤とを添加する第一の供給機構6が設けられているとともに、第二の生物処理手段4の前段には、栄養源としての窒素源、及び酸化剤(殺菌剤)を添加する第二の供給機構7が設けられている。さらに、第二の生物処理手段4の後段には還元剤及びスライムコントロール剤を供給する第三の供給機構8が設けられている。なお、9は原水W等を送給する配管である。
 上述したような構成の生物処理装置において、処理対象となる原水Wとしては、地下水、河川水、市水、その他の工業用水、半導体製造工程からの回収水等を用いることができる。原水(処理対象水)W中の尿素濃度は、5~200μg/L、特に5~100μg/L程度が好適である。
 また、前処理システム1としては、超純水の製造工程における一般的な前処理システム又はこれと同様の処理が好適である。具体的には、凝集・加圧浮上・濾過等からなる処理システムを用いることができる。
 第一の生物処理手段3は、下水等の廃水中の汚濁物質を生物学的作用により分解、安定化させる処理を行う手段であり、好気性処理と嫌気性処理とに区別される。一般的に有機物は、生物処理により酸素呼吸・硝酸呼吸・発酵過程等で分解されて、ガス化されるか、微生物の体内に取り込まれ、汚泥として除去される。また、窒素(硝化脱窒法)やリン(生物学的リン除去法)の除去処理もできる。このような生物処理を行う手段を一般に生物反応槽という。このような第一の生物処理手段3としては、特に制限はないが、生物担持担体の固定床を有するものが好ましい。特に、菌体の流出が少ない下向流方式の固定床が好ましい。
 第一の生物処理手段3を固定床とする場合、固定床を必要に応じて洗浄するのが好ましい。これにより、生物(菌体)の増殖による固定床の閉塞、マッドボール化、尿素の分解除去効率の低下等が生じることが防止される。この洗浄方法には特に制限はなく、例えば逆洗、すなわち、原水の通水方向と逆方向に洗浄水を通水して担体を流動化させ、堆積物の系外への排出、マッドボールの粉砕、生物の一部の剥離等を行うようにするのが好ましい。
 また、固定床の担体の種類に特に制限はなく、活性炭、アンスラサイト、砂、ゼオライト、イオン交換樹脂、プラスチック製成形品等が用いられるが、酸化剤の存在下で生物処理を実施するためには、酸化剤の消費量の少ない担体を用いるのが好ましい。ただし、生物処理手段に高濃度の酸化剤流入する可能性がある場合には、酸化剤を分解し得る活性炭等の担体を用いるのが好ましい。このように活性炭等を用いた場合、被処理水中の酸化剤の濃度が高い場合であっても、菌体が失活、死滅することが防止される。
 この第一の生物処理手段3に第一の供給機構6から添加される易分解性有機物としては、酢酸、クエン酸などの有機酸、酢酸ナトリウムなど有機酸塩、メタノール、エタノールなどのアルコール類、アセトンなど有機溶媒、その他の汎用的な易生分解性の有機物を好適に用いることができる。これらの中では、添加した有機物が処理しきれずに生物処理水に残留した場合にも、後段処理として実施する逆浸透膜処理やイオン交換樹脂によるイオン交換処理において除去可能であるという観点から、イオン性のある有機物である酢酸ナトリウムなどの有機酸塩をより好適に用いることができる。
 また、酸化剤としては、次亜塩素酸ナトリウム、二酸化塩素等の塩素系酸化剤などを用いることができる。さらに、殺菌剤としては、例えば、塩素系酸化剤とスルファミン酸化合物とからなる結合塩素剤(クロラミンより安定性が高い結合塩素剤)、過酸化水素などを用いることができる。
 次に、第二の生物処理手段4としては、前述した第一の生物処理手段3と同じものを用いることができ、同様に生物担持担体の固定床を有するものが好ましい。特に、菌体の流出が少ない下向流方式の固定床が好ましい。
 この第二の生物処理手段4の前段に第二の供給機構7から添加される栄養源としての窒素源としては、アンモニア性の窒素源が好ましく、有機性、無機性いずれのアンモニア性窒素源も好適に用いることができる。これらのなかでは添加したアンモニア性の窒素源が処理しきれずに生物処理水に残留した場合にも、後段の処理において除去が容易であるという観点から、イオン性を有するアンモニア性の窒素源である塩化アンモニウム、硫酸アンモニウムなどのアンモニウム塩を好適に用いることができる。
 なお、本実施形態の目的は尿素除去であり、より尿素除去性に優れた菌体を獲得・保持することが好ましく、この観点からアンモニア性の窒素源として、尿素および尿素誘導体を添加しても良い。ただし、尿素および尿素誘導体の一部は、イオン性がないため、後段の処理での除去が期待できないので、多量に添加した場合には、生物処理および後段処理でも除去できず末端まで残留してしまう可能性が高い。したがって、尿素および尿素誘導体を添加する場合には、添加濃度は最小限とし、アンモニウム塩等でアンモニア性の窒素源としての必要量を補完する方法が好ましい。
 また、酸化剤としては、次亜塩素酸ナトリウム、二酸化塩素等の塩素系酸化剤などを用いることができる。また、殺菌剤としては、例えば、塩素系酸化剤とスルファミン酸化合物とからなる結合塩素剤(クロラミンより安定性が高い結合塩素剤)、過酸化水素などを用いることができる。
 さらに、第二の生物処理手段4の後段における第三の供給機構8からの還元剤及び/又はスライムコントロール剤の配管9への添加、及び菌体分離装置5は、必ずしも必要ではなく、状況に応じていずれか1以上を適宜設けることができるものである。具体的には、第二の生物処理手段4の後段で酸化剤等の流出が認められる場合や、菌体の流出が認められる場合には、必要に応じ第三の供給機構8から還元剤及び/又はスライムコントロール剤を配管9に添加することができる。
 この還元剤及びスライムコントロール剤のうち、還元剤としては、前述した第二の供給機構7から供給するものと同じものを用いることができる。また、スライムコントロール剤としては、後述するRO膜処理、イオン交換処理などで酸化劣化などによる悪影響を及ぼさない殺菌剤が好ましく、例えば、塩素系酸化剤とスルファミン酸化合物とからなる結合塩素剤(クロラミンより安定性が高い結合塩素剤)、過酸化水素などを用いることができる。
 さらに、菌体の流出が認められる場合には、菌体分離装置5を設けるのが望ましい。この菌体分離装置5は、第二の生物処理手段4の処理水中に含まれる菌体(生物担体より剥離してしまった菌体)により引き起こされる一次純水装置などの後段処理での障害(配管の詰まり、差圧上昇といったスライム障害、RO膜のバイオファウリングなど)の回避を目的に必要に応じて設けられるものであり、具体的には、膜ろ過(孔径0.1μm程度のカートリッジフィルタを用いた膜ろ過処理)、凝集ろ過などを用いることができる。
 次に上述したような構成の装置及び添加剤等を用いた水処理方法について説明する。
 まず、原水Wを前処理システム1に供給して、原水W中の濁質成分を除去することにより、該濁質成分により後段の第一の生物処理手段3での有機物の分解除去効率が低下するのを抑制するとともに、第一の生物処理手段3の圧力損失の増加を抑制する。
 そして、熱交換器2により、この前処理した原水Wを該原水Wの水温が低い場合には加温し、高い場合には冷却して所定の水温となるように、必要に応じ温度調節を実施する。すなわち、原水Wの水温が高いほど反応速度が高まり分解効率が向上する。一方、水温が高い場合には、第一の生物処理手段3の処理槽や配管9等に耐熱性を持たせる必要が生じ、設備コストの増大に繋がる。また、原水Wの水温が低い場合には、加温コストの増大につながる。具体的には、生物反応は水温が40℃以下であれば、基本的には水温が高いほど生物活性および除去速度は向上する。しかしながら、水温が40℃を超えると、逆に生物活性および除去効率は低下する傾向を示すことがある。以上の理由より、処理水温は20~40℃程度が好ましい。したがって、原水Wの初期の温度が上記範囲内であれば、何もしなくてもよい。
 このようにして、必要に応じ温度調整を行った原水Wを第一の生物処理手段3に供給し、まず有機物、特に易分解性の有機物を除去、後段の第二の生物処理手段4に供給される供給水中の易分解性の有機物量を削減し、BOD資化細菌の増殖・活性の高まりを抑制する。このとき、第一の供給機構6にから必要に応じ第一の生物処理手段3に易分解性有機物、酸化剤及び/又は殺菌剤を添加する。
 ここで、上記易分解性有機物の添加量は、0.1~2mg/L(asC=炭素)とすればよい。易分解性有機物の添加量が0.1mg/L未満では、この有機物を分解、資化する際に必要となる窒素源(N源)としての尿素を摂取・分解する能力が十分でない一方、2mg/Lを超えても、さらなる尿素の分解が得られないばかりか、第一の生物処理手段3からのリーク量が多くなりすぎるため好ましくない。
 また、酸化剤の添加量は、使用する酸化剤の種類によって異なるが、例えば、塩素系酸化剤を用いる場合、遊離有効塩素濃度で1~10mg/L程度、特に1~5mgmg/L程度とすればよい。酸化剤の添加量が1mg/L未満では、有機物成分の酸化分解が十分でない一方、10mg/Lを超えても、それ以上の効果の向上が得られないばかりか、残存する酸化剤(遊離塩素を含む)が増加するため、この遊離塩素の除去のために必要となる還元剤の量が多くなりすぎる。なお、殺菌剤は、第一の生物処理手段3の処理水中に含まれる菌体により引き起こされる後段処理での障害(配管の詰まり、差圧上昇といったスライム障害、RO膜のバイオファウリングなど)の回避を目的に必要に応じて適宜添加すればよい。
 この第一の生物処理手段3で処理した原水Wを供給水として、第二の生物処理手段4でさらに生物処理を行う。このとき、第二の供給機構7から窒素源を添加することにより、硝化菌群を主体とする生物処理を施すことができ、尿素を効率的に分解・除去することができる。
 ここで、窒素源の添加量は、0.1~5mg/L(NH4+換算)とすればよい。原水W中のアンモニウムイオン濃度が0.1mg/L(NH4+換算)未満では、硝化菌群の活性を維持するのが困難となる一方、5mg/L(NH4+換算)を超えても、さらなる硝化菌群の活性が得られないばかりか、第二の生物処理手段4からのリーク量が多くなりすぎるため好ましくない。
 窒素源、特にアンモニア性の窒素源を、第一の生物処理手段3で処理した原水Wに対して上記範囲で添加することにより、例えば、易分解性有機物を多く含む原水WのTOC濃度が1.0mg/L以上、特に約1.5~2.0mg/Lと高い場合であっても、尿素の濃度を2μg/L以下に維持することができる。
 上記窒素源、特にアンモニア性の窒素源は、常時添加する必要はなく、例えば、第二の生物処理手段4の生物担体交換時の立上げ期間のみ添加する方法、あるいは一定期間毎に添加、無添加を繰り返す方法等を用いることができる。このように常時窒素源を添加しないことにより、窒素源の添加コストを低減することもできる、という効果も奏する。さらに、第一の生物処理手段3において、易分解性の有機物を除去することで、第一の生物処理手段4におけるBOD資化細菌の活性を抑制しているので、第二の生物処理手段4でのBOD資化細菌による栄養源の消費を抑制することができるので、より少ない栄養源で処理を行うことができる、という効果も奏する。
 なお、殺菌剤は、第二の生物処理手段4の処理水中に含まれる菌体により引き起こされる後段処理での障害(配管の詰まり、差圧上昇といったスライム障害、RO膜のバイオファウリングなど)の回避を目的に必要に応じて適宜添加すればよい。
 続いて、この第二の生物処理手段4で処理した原水Wに、第三の供給機構8から、必要に応じて、還元剤及び/又はスライムコントロール剤を添加する。
 具体的には、生物処理の給水中に遊離塩素が存在し、アンモニア性の窒素源としてアンモニウム塩等を添加する場合、遊離塩素とアンモニウムイオンとが反応し結合塩素(クロラミン)が生成する。結合塩素は遊離塩素と比較して活性炭でも除去し難い成分であり、生物処理水に結合塩素がリークすることとなる。結合塩素は遊離塩素と比較して酸化力は低い成分と言われているが、平衡反応により結合塩素から再度遊離塩素が生成することも知られており、後段の一次純水処理システム等での酸化劣化を引き起こす可能性がある。還元剤を添加する場合、還元剤の添加量は、例えば、亜硫酸ナトリウムを用いて残留塩素を還元する場合、亜硫酸イオン(SO 2-)と次亜塩素酸イオン(ClO)とが等モルとなるように添加すればよく、安全性を考慮して1.2~3.0倍量を添加すればよい。処理水の酸化剤濃度には変動があることから、より好ましくは、処理水の酸化剤濃度を監視し、酸化剤濃度に応じ還元剤添加量を制御することが好ましい。また、簡易的には、定期的に酸化剤濃度を測定し、測定濃度に応じた添加量を適宜設定する方法を用いてもよい。
 また、スライムコントロール剤は、第二の生物処理手段4の処理水中に含まれる菌体(生物担体より剥離してしまった菌体)により引き起こされる後段処理での障害(配管の詰まり、差圧上昇といったスライム障害、RO膜のバイオファウリングなど)の回避を目的に必要に応じて適宜添加すればよい。
 さらに、必要に応じて菌体分離装置5により、第二の生物処理手段4の処理水中に含まれる菌体を除去する。
 これら還元剤及び/又はスライムコントロール剤の添加や菌体分離装置5による処理は、第二の生物処理手段4からの生物処理水の水質に応じて、1又は2以上を適宜行えばよく、水質が良好であれば行わなくてもよい。
 このようにして尿素を高度に除去した処理水W1が得られるので、これを純水製造装置によりさらに処理することで、尿素が高度に除去された超純水を製造することができる。
 次に、本発明の一実施形態に係る水処理方法を利用した超純水製造方法について、図2を参照して説明する。本実施形態における超純水製造方法では、原水Wを、前述した第一の生物処理装置3及び第一の生物処理装置4を備えた水処理装置21で処理した後、処理水W1を一次純水装置22及びサブシステム(二次純水装置)23を備えた純水製造装置でさらに処理する。
 一次純水装置22は、第1の逆浸透膜(RO)分離装置24と、混床式イオン交換装置25と、第2の逆浸透膜(RO)分離装置26とをこの順に配置してなる。ただし、この一次純水装置22の装置構成はこのような構成に制限されるものではなく、例えば、逆浸透膜分離装置、イオン交換処理装置、電気脱イオン交換処理装置、UV酸化処理装置等を適宜組み合わせて構成されていてもよい。
 サブシステム23は、サブタンク27と、熱交換器28と、低圧紫外線酸化装置29と、膜脱気装置30と、混床式イオン交換装置31と、限外濾過膜装置(微粒子除去)32とをこの順に配置してなる。ただし、このサブシステム23の装置構成はこのような構成に制限されるものではなく、例えば、UV酸化処理装置、イオン交換処理装置(非再生式)、UF膜分離装置等を組み合わせて構成されていてもよい。
 このような超純水製造システムによる超純水製造方法を以下に説明する。まず、水処理装置21で処理した処理水W1を一次純水装置22で、第1の逆浸透膜(RO)分離装置24と、混床式イオン交換装置25と、第2の逆浸透膜(RO)分離装置26とにより、処理水W1中に残存するイオン成分等を除去する。
 さらに、サブシステム23では、一次純水装置22の処理水をサブタンク27及び熱交換器28を経て低圧紫外線酸化装置29に導入し、含有されるTOC成分をイオン化又は分解する。さらに膜脱気装置30で、酸素や炭酸ガスを除去し、続いてイオン化された有機物を後段の混床式イオン交換装置31で除去する。この混床式イオン交換装置31の処理水は更に限外濾過膜装置(微粒子除去)32で膜分離処理され、超純水を得ることができる。
 上述したような超純水製造方法によると、生物処理手段5において、尿素を十分に分解除去し、その後段の一次純水装置22及びサブシステム23でその他のTOC成分、金属イオン、その他の無機・有機イオン成分を除去することにより、高純度の超純水を効率よく製造することができる。
 以上、本発明について添付図面を参照して説明してきたが、本発明は前記実施形態に限定されず、種々の変形実施が可能である。例えば、第一の生物処理手段3は、通常の生物処理装置としてもよく、また、第二の生物処理手段4の供給水に添加する栄養源は、アンモニア性の窒素源に限らず、それ以外の窒素源を添加してもよく、場合によっては、易分解性有機物を添加してもよい。
 以下の実施例により本発明をさらに詳細に説明する。
〔実施例1〕
 模擬原水1として、市水(野木町水:平均尿素濃度10μg/L、平均TOC濃度0.7mg/L、アンモニア性窒素濃度0.1mg/L未満、平均全残留塩素濃度0.6mg/LasCl)に試薬尿素(キシダ化学社製)を必要に応じ適量添加したものを用いた。
 模擬原水2として、模擬原水1に、さらに酢酸ナトリウム(キシダ化学製)を添加し、TOC濃度を約2mg/Lに調整したものを用いた。
 試験期間中市水の水温は25~30℃であったため、熱交換器2により模擬原水1及び模擬原水2の水温調整は行わなかった。また、市水のpHは6.8~7.3であったため、硫酸(工業用希硫酸、鶴見曹達社製)を添加して、模擬原水1及び模擬原水2のpHを約6.0に調整した。
 図1に示す構成の装置において、第一の生物処理手段3として、生物担体としての粒状活性炭(「クリコール WG160、10/32メッシュ」、栗田工業社製)を円筒容器に2L充填して固定床としたものを用いた。なお、第一生物処理手段3の粒状活性炭としては、有機物の分解能が既に発現しているものを用いた。
 さらに、第二の生物処理手段4としては、生物担体としての粒状活性炭(「クリコール WG160、10/32メッシュ」、栗田工業社製)を円筒容器に2L充填して固定床としたものを用いた。なお、第二の生物処理手段4の粒状活性炭としては、試薬尿素にて馴養を実施し、尿素分解能が既に発現しているものを用いた。
 このような生物処理装置において、模擬原水1を前処理システム1で前処理した後、第一の供給機構6からは何も添加せずに、第一の生物処理手段3に下向流にて通水した。通水速度SVは20/hr(毎時通水流量÷充填活性炭量)とした。なお、上記第一の生物処理手段3における通水処理においては、1日1回、10分間の逆洗を実施した。逆洗は、生物処理水にて、円筒容器下部から上部に向けて上向流にて、LV=25m/hr(毎時通水流量÷円筒容器断面積)にて実施した。この第一の生物処理手段の処理水(第二の生物処理手段4の給水)のTOC濃度は0.4~0.6mg/Lであった。
 次に、この第一の生物処理手段3の処理水に対し、第二の供給機構7からはアンモニア性の窒素源として塩化アンモニウム(キシダ化学社製)を添加し、アンモニア性窒素(NH-N)濃度を約0.2mg/LasNとした。また、酸化剤として次亜塩素酸ナトリウム(商品名:サンラック、工業用12%次亜塩素酸ナトリウム、本町化学工業社製)を添加し、全残留塩素濃度を約0.5mg/LasClとした。これらを添加した処理水を第二の生物処理手段4に下向流にて通水した。通水速度SVは20/hr(毎時通水流量÷充填活性炭量)とした。なお、上記第二の生物処理手段4における通水処理においては、1日1回、10分間の逆洗を実施した。逆洗は、生物処理水にて、円筒容器下部から上部に向けて上向流にて、LV=25m/hr(毎時通水流量÷円筒容器断面積)にて実施した。なお、第二の生物処理手段4の後段の第三の供給機構8から還元剤及びスライムコントロール剤の添加は実施しなかった。
 上述したような通水条件において、模擬原水1の連続通水を2週間実施した後の処理水W1の尿素濃度を測定した結果を表1に示す。また、処理水W1を模擬原水2に切り替えて、同様の条件によりさらに2週間の連続通水を行った。得られた処理水W1の尿素濃度を測定した結果を表1にあわせて示す。なお、この際の第一の生物処理手段の処理水(第二の生物処理手段4の給水)のTOC濃度は0.3~0.5mg/Lであった。
 尿素濃度の分析の手順は以下の通りである。すなわち、まず、検水の全残留塩素濃度をDPD法にて測定し、相当量の重亜硫酸ナトリウムで還元処理する(その後、DPD法にて全残留塩素を測定して、0.02mg/L未満であることを確認する。)。次に、この還元処理した検水をイオン交換樹脂(「KR-UM1」、栗田工業社製)にSV50/hrで通水し、脱イオン処理してロータリーエバポレータにて10~100倍に濃縮した後、ジアセチルモノオキシム法にて尿素濃度を定量する。
〔比較例1〕
 実施例1において、第一の生物処理手段3を設けなかった以外は、同様にして模擬原水1及び模擬原水2の処理を行った。なお、この際、第二の供給機構7からは、塩化アンモニウムは添加したが、次亜塩素酸ナトリウムの添加は行わなかった。これらの模擬原水1及び模擬原水2の処理水W1の尿素濃度を測定した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、二段で生物処理を行った実施例1では、TOC濃度の低い模擬原水1の場合で処理水W1の尿素濃度2μg/L未満であり、TOC濃度の高い模擬原水2の場合でも処理水W1の尿素濃度2μg/L未満と尿素濃度を低く維持することができた。これに対し、一段で生物処理を行った比較例1では、TOC濃度の低い模擬原水1の場合には処理水W1の尿素濃度2μg/L未満であったが、TOC濃度の高い模擬原水2では、処理水W1の尿素濃度10~20μg/Lとなった。
 これは実施例1では、原水Wに易分解性の有機物が含まれていても第一の生物処理手段3でこれを除去することで、第二の生物処理手段4での尿素分解性能を維持できたのに対し、比較例1では第一の生物処理手段3を有しないので、易分解性の有機物により第二の生物処理手段4でBOD資化細菌の増殖・活性が高まることにより、尿素除去効率の高い硝化菌群の失活に繋がり、尿素除去性能が低下したためと考えられる。
 このような生物処理装置を超純水の製造に適用することで、原水中の尿素を高度に除去することができる超純水製造方法とすることができる。
3…第一の生物処理手段
4…第二の生物処理手段
7…第二の供給機構(栄養源添加)
W…原水
W1…処理水

Claims (4)

  1.  有機物を含有する原水を生物処理して得られた処理水を純水製造装置で処理する超純水製造方法において、
     前記生物処理が、第一の生物処理手段と、第二の生物処理手段とからなり、前記第一の生物処理手段の処理水に、前記第二の生物処理手段の栄養源を添加することを特徴とする超純水製造方法。
  2.  前記第一の生物処理手段が、生物担持担体の固定床を有する生物処理手段であることを特徴とする請求項1に記載の超純水製造方法。
  3.  前記第二の生物処理手段が、生物担持担体の固定床を有する生物処理手段であることを特徴とする請求項1に記載の超純水製造方法。
  4.  前記第二の生物処理手段の栄養源が、窒素源であることを特徴とする請求項1乃至3のいずれかに記載の超純水製造方法。
PCT/JP2011/055782 2010-10-18 2011-03-11 超純水製造方法 WO2012053233A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137012448A KR101840896B1 (ko) 2010-10-18 2011-03-11 초순수 제조 방법
CN201180050274.6A CN103168006B (zh) 2010-10-18 2011-03-11 超纯水制造方法
US13/879,894 US9085475B2 (en) 2010-10-18 2011-03-11 Ultrapure water producing method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010233530A JP5914964B2 (ja) 2010-10-18 2010-10-18 超純水製造方法
JP2010-233530 2010-10-18

Publications (1)

Publication Number Publication Date
WO2012053233A1 true WO2012053233A1 (ja) 2012-04-26

Family

ID=45974961

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055782 WO2012053233A1 (ja) 2010-10-18 2011-03-11 超純水製造方法

Country Status (6)

Country Link
US (1) US9085475B2 (ja)
JP (1) JP5914964B2 (ja)
KR (1) KR101840896B1 (ja)
CN (1) CN103168006B (ja)
TW (1) TWI568686B (ja)
WO (1) WO2012053233A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230412A (ja) * 2012-04-27 2013-11-14 Swing Corp 淡水化装置及び淡水化方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016155052A (ja) * 2015-02-23 2016-09-01 栗田工業株式会社 水中微粒子の除去装置及び超純水製造・供給システム
JP2018513778A (ja) * 2015-03-13 2018-05-31 ザ クリーヴランド クリニック ファウンデーションThe Cleveland Clinic Foundation 多ボアの溶質カートリッジキャリア
JP6737583B2 (ja) * 2015-11-16 2020-08-12 野村マイクロ・サイエンス株式会社 水処理装置、超純水製造装置及び水処理方法
RU2617104C1 (ru) * 2016-04-01 2017-04-20 Акционерное общество "Водоканал-инжиниринг" Способ комбинированной очистки природной воды
CN108394994A (zh) * 2017-02-08 2018-08-14 鞍钢股份有限公司 一种强化焦化废水反硝化脱氮的方法
WO2019107045A1 (ja) * 2017-11-28 2019-06-06 オルガノ株式会社 尿素の分析方法及び分析装置
JP2022125844A (ja) * 2021-02-17 2022-08-29 オルガノ株式会社 尿素処理装置及び処理方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138187A (ja) * 1997-11-13 1999-05-25 Toray Ind Inc 有機酸塩の好気的分解方法
JP2001038390A (ja) * 1999-07-29 2001-02-13 Kurita Water Ind Ltd 超純水の製造方法
JP2001149974A (ja) * 1999-12-01 2001-06-05 Kuraray Co Ltd 排水の処理方法
JP2005246135A (ja) * 2004-03-01 2005-09-15 Kurita Water Ind Ltd 生物学的窒素除去方法
JP2007160233A (ja) * 2005-12-14 2007-06-28 Kurita Water Ind Ltd 有機物含有排水の処理装置及び処理方法
JP2007175582A (ja) * 2005-12-27 2007-07-12 Kurita Water Ind Ltd 有機物含有排水の処理装置及び処理方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4925802A (en) * 1988-12-21 1990-05-15 Ecova Corporation Method for stimulating biodegradation of halogenated aliphatic hydrocarbons
JP3468784B2 (ja) 1992-08-25 2003-11-17 栗田工業株式会社 超純水製造装置
JP3227863B2 (ja) 1993-02-10 2001-11-12 栗田工業株式会社 超純水の製造方法
JP3417052B2 (ja) 1994-05-23 2003-06-16 栗田工業株式会社 超純水の製造方法
US5578210A (en) * 1994-11-15 1996-11-26 The Dow Chemical Company Method for stimulating anaerobic biotransformation of halogenated hydrocarbons
JP2803725B2 (ja) * 1995-02-06 1998-09-24 インランド コンサルタンツ, インコーポレイテッド ハロゲン汚染土壌のバイオレメディエーションのための組成物および方法
US5833857A (en) * 1996-06-07 1998-11-10 Lytal Family Trust Mobile Bioreactor and Biogenerator
JPH10174990A (ja) * 1996-12-17 1998-06-30 Nisshinbo Ind Inc バイオリアクタ−用担体及び方法
JPH10202293A (ja) * 1997-01-20 1998-08-04 Japan Organo Co Ltd 窒素含有排水の生物学的硝化方法およびその装置
EP0933336A1 (en) * 1998-02-02 1999-08-04 Horeak AG Waste pre-treatment and modular process comprising said pre-treatment
JP4608765B2 (ja) * 2000-11-27 2011-01-12 栗田工業株式会社 Toc成分の生物分解方法
JP4663218B2 (ja) * 2002-06-24 2011-04-06 株式会社クラレ 窒素を含有する染料を含む排水の処理装置及び処理方法
JP3913129B2 (ja) * 2002-07-04 2007-05-09 日本碍子株式会社 生物処理装置の処理性能監視システム
JP3564574B1 (ja) * 2003-09-24 2004-09-15 エコサイクル株式会社 六価クロムに汚染された土壌・地下水、及び底質の浄化剤と浄化方法
JP5223219B2 (ja) * 2007-03-30 2013-06-26 栗田工業株式会社 有機性排水の処理装置
JP4925208B2 (ja) * 2007-09-12 2012-04-25 学校法人早稲田大学 好気性グラニュールの形成方法、水処理方法及び水処理装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11138187A (ja) * 1997-11-13 1999-05-25 Toray Ind Inc 有機酸塩の好気的分解方法
JP2001038390A (ja) * 1999-07-29 2001-02-13 Kurita Water Ind Ltd 超純水の製造方法
JP2001149974A (ja) * 1999-12-01 2001-06-05 Kuraray Co Ltd 排水の処理方法
JP2005246135A (ja) * 2004-03-01 2005-09-15 Kurita Water Ind Ltd 生物学的窒素除去方法
JP2007160233A (ja) * 2005-12-14 2007-06-28 Kurita Water Ind Ltd 有機物含有排水の処理装置及び処理方法
JP2007175582A (ja) * 2005-12-27 2007-07-12 Kurita Water Ind Ltd 有機物含有排水の処理装置及び処理方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013230412A (ja) * 2012-04-27 2013-11-14 Swing Corp 淡水化装置及び淡水化方法

Also Published As

Publication number Publication date
TWI568686B (zh) 2017-02-01
US20130292330A1 (en) 2013-11-07
KR20130127456A (ko) 2013-11-22
KR101840896B1 (ko) 2018-03-21
JP5914964B2 (ja) 2016-05-11
JP2012086124A (ja) 2012-05-10
CN103168006B (zh) 2015-03-04
US9085475B2 (en) 2015-07-21
CN103168006A (zh) 2013-06-19
TW201217278A (en) 2012-05-01

Similar Documents

Publication Publication Date Title
JP5914964B2 (ja) 超純水製造方法
KR101809769B1 (ko) 수처리 방법 및 초순수 제조 방법
WO2011108478A1 (ja) 水処理方法及び超純水製造方法
TWI568683B (zh) 水處理方法以及超純水製造方法
WO2009099207A1 (ja) 硝酸塩廃液処理方法及び装置
JP2010158605A (ja) 超純水製造方法及び装置
JP5516892B2 (ja) 水処理方法及び超純水製造方法
WO2012128212A1 (ja) 水処理方法及び超純水製造方法
JP2009297611A (ja) 過酸化水素含有有機性水の処理方法および処理装置
JP5516874B2 (ja) 水処理方法及び超純水製造方法
JP5789922B2 (ja) 水処理方法及び超純水製造方法
JP5604913B2 (ja) 水処理方法及び超純水製造方法
JP2013208583A (ja) 水処理方法、水処理システム及び超純水製造方法
JP5782675B2 (ja) 水処理方法及び超純水製造方法
JP5604914B2 (ja) 水処理方法及び超純水製造方法
WO2022259599A1 (ja) 純水製造方法および純水製造装置
JP6531441B2 (ja) 有機物含有水の膜処理方法及び膜処理装置
JP2012011357A (ja) 水処理方法及び超純水製造方法
JP2019048262A (ja) 有機性排水の処理方法及び処理装置
JP2003225691A (ja) 原水中の溶存酸素を除去する方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137012448

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13879894

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 11834078

Country of ref document: EP

Kind code of ref document: A1