WO2012053209A1 - 流量計測装置 - Google Patents

流量計測装置 Download PDF

Info

Publication number
WO2012053209A1
WO2012053209A1 PCT/JP2011/005871 JP2011005871W WO2012053209A1 WO 2012053209 A1 WO2012053209 A1 WO 2012053209A1 JP 2011005871 W JP2011005871 W JP 2011005871W WO 2012053209 A1 WO2012053209 A1 WO 2012053209A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
measurement
unit
fluid
flow
Prior art date
Application number
PCT/JP2011/005871
Other languages
English (en)
French (fr)
Inventor
竹村 晃一
木場 康雄
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/821,879 priority Critical patent/US9239256B2/en
Priority to CN201180050991.9A priority patent/CN103180694B/zh
Priority to EP11834055.3A priority patent/EP2631610B1/en
Publication of WO2012053209A1 publication Critical patent/WO2012053209A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/667Arrangements of transducers for ultrasonic flowmeters; Circuits for operating ultrasonic flowmeters
    • G01F1/668Compensating or correcting for variations in velocity of sound

Definitions

  • the present invention relates to a flow rate measuring device that measures the propagation time of an ultrasonic signal and measures the flow rate of the fluid from the flow velocity of the fluid.
  • FIG. 6 is a block diagram of a flow rate measuring apparatus using a conventional sing-around method.
  • the flow rate measuring device includes a first vibrator 42 and a second vibrator 43 provided in the fluid pipe 41, a measurement unit 44, a control unit 45, and a calculation unit 46.
  • the first vibrator 42 that transmits (transmits) the ultrasonic waves and the second vibrator 43 that receives the transmitted ultrasonic waves are disposed to face each other in the flow direction of the fluid flowing through the fluid conduit 41.
  • the measurement unit 44 measures the propagation time of the ultrasonic wave that propagates between the first transducer 42 and the second transducer 43.
  • the control unit 45 controls the measurement unit 44.
  • the computing unit 46 calculates the flow rate of the fluid flowing through the fluid conduit 41 based on the measurement result of the measuring unit 44.
  • the sound velocity is C
  • the fluid flow velocity is v
  • the distance between the first transducer 42 and the second transducer 43 is L
  • the angle between the ultrasonic propagation direction and the flow direction is defined.
  • the propagation time when ultrasonic waves are transmitted from the first vibrator 42 arranged on the upstream side of the fluid conduit 41 and received by the second vibrator 43 arranged on the downstream side is defined as t12.
  • the ultrasonic wave is transmitted from the second vibrator 43 disposed on the downstream side of the fluid pipe 41 and received by the first vibrator 42 disposed on the upstream side, in the direction opposite to the fluid flow. Is t21.
  • the propagation time t12 and the reverse propagation time t21 are obtained by the following equations.
  • the flow rate of the fluid can be obtained by multiplying the value of the flow velocity obtained by (Equation 3) by the cross-sectional area of the fluid conduit 41.
  • the term in parentheses in (Expression 3) can be transformed as in (Expression 4).
  • the measurement unit 44 is required to have the performance of measuring with a time resolution of the order of nanoseconds (ns), for example.
  • transmission / reception of ultrasonic waves is usually repeatedly performed a plurality of times, and the propagation time is repeatedly measured by the measuring unit 44.
  • the flow volume measuring apparatus which implement
  • the pulsation phenomenon is a phenomenon that fluctuates the pressure in the surrounding gas supply piping in synchronization with the rotation of the gas engine, such as an air conditioner using a gas engine called GHP (Gas Heat Pump).
  • Patent Document 1 As a method for suppressing the influence of the pulsation phenomenon, for example, a method shown in Patent Document 1 has been proposed.
  • the method of Patent Document 1 first, the number of repeated measurements M is suppressed to the minimum number that can maintain the measurement accuracy. Next, the number of repeated measurements M is set as one measurement unit, the measurement interval is shortened, and the measurement unit is executed N times continuously for a relatively long time in small increments. And it is the structure which reduces the influence of a pulsation by performing flow volume calculation using the measurement result of N times measured continuously. At this time, in particular, by performing the measurement interval at a sufficiently shorter interval than the pressure fluctuation period due to pulsation, the phase state of the fluid flow velocity fluctuation waveform can be captured evenly. Then, by averaging the measured flow rates, it is possible to detect the true fluid flow velocity (flow rate) from which fluctuation components due to pulsations have been removed.
  • Patent Document 2 a method as shown in Patent Document 2 has been proposed.
  • the method of Patent Document 2 is configured to control the number N of times of measurement in accordance with the amount of change in the fluid flow velocity in order to reduce power consumption. Specifically, if the flow rate fluctuation of the fluid is small and it can be determined that there is no pulsation, the number of measurements N is decreased. On the other hand, when the flow rate fluctuation of the fluid is large and there is pulsation, a method of measuring by increasing the number of times N is proposed.
  • Patent Document 2 it is possible to reduce power consumption when pulsation does not occur, but a measurement method for reducing power consumption according to the flow rate of the fluid is not disclosed. .
  • JP 2002-350202 A Japanese Patent No. 3427839
  • the flow rate measuring device of the present invention has a first vibrator and a second vibrator provided in a fluid flow path for transmitting and receiving an ultrasonic signal, and propagation of an ultrasonic signal that propagates between the first vibrator and the second vibrator.
  • An operation for measuring the propagation time of a bidirectional ultrasonic signal by the time measuring unit by switching the transmission / reception direction of the time measuring unit for measuring time and the first transducer and the second transducer is set as a unit measuring step, and the unit measuring step is predetermined.
  • a flow rate calculation unit that calculates the flow rate of the fluid flowing through the fluid flow path based on a predetermined number of propagation times.
  • the flow rate calculation unit includes a precision measurement step for performing the flow rate calculation by executing the unit measurement step a plurality of times, and a search measurement step for performing the flow rate calculation by executing the unit measurement step less than the number of executions in the precision measurement step. To measure the flow rate value of the fluid.
  • FIG. 1 is a block diagram of a flow rate measuring apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a time chart for explaining the operations of the unit measurement step and the unit flow rate calculation step of the flow rate measuring device according to the embodiment.
  • FIG. 3A is a time chart for explaining the operations of the search measurement process and the precision measurement process when the flow rate measurement device according to the embodiment of the present invention has a flow rate.
  • FIG. 3B is a time chart for explaining the operation of the search measurement process when the flow rate measurement device according to the embodiment of the present invention has no flow rate.
  • FIG. 4 is a time chart for explaining the switching operation between the search measurement process and the precision measurement process of the flow rate measuring device according to the second embodiment of the present invention.
  • FIG. 5 is another time chart for explaining the switching operation between the search measurement process and the precision measurement process in the flow rate measuring apparatus according to the embodiment.
  • FIG. 6 is a block diagram of a flow rate measuring apparatus using a conventional sing-around method.
  • Embodiment 1 a fluid measuring apparatus according to Embodiment 1 of the present invention will be described with reference to FIG.
  • FIG. 1 is a block diagram of a flow rate measuring apparatus according to Embodiment 1 of the present invention.
  • the flow rate measuring device switches at least the signals of the first vibrator 2 and the second vibrator 3 provided in the fluid flow path 1 and the signals of the transmitter 4 and the receiver 5.
  • Unit 6 measurement control unit 7, first addition unit 13 and second addition unit 14 that integrate the measurement values of time measuring unit 12, flow rate calculation unit 15, determination unit 16, selection unit 17, and integration unit 18.
  • the first vibrator 2 that transmits and receives the ultrasonic signal and the second vibrator 3 that receives and transmits the ultrasonic signal are arranged to face each other at a predetermined angle ⁇ with respect to the flow direction of the fluid flowing through the fluid flow path 1.
  • the transmission unit 4 outputs a drive signal to the first transducer 2, and the first transducer 2 transmits (transmits) an ultrasonic signal by the drive signal.
  • the ultrasonic signal output from the first transducer 2 is received by the second transducer 3, and the signal received by the second transducer is input to the receiving unit 5 and subjected to signal processing.
  • the switching unit 6 switches the connection between the transmission unit 4 and the reception unit 5 and the first transducer 2 and the second transducer 3 to switch the transmission / reception roles of the first transducer 2 and the second transducer 3.
  • the first vibrator 2 and the second vibrator 3 transmit and receive ultrasonic signals in both the forward and reverse directions of the fluid flow, and are propagated according to the relational expression described with reference to FIG. Time measurements can be made.
  • the measurement control unit 7 includes at least a trigger unit 8, a repetition unit 9, a delay unit 10, and a measurement process control unit 11, and an ultrasonic signal between the first transducer 2 and the second transducer 3. Controls sending and receiving.
  • the switching unit 6 includes the first transducer 2, the transmission unit 4, the second transducer 3, and the reception unit. 5 is connected. Thereby, the measurement of the propagation time is started with the first vibrator 2 as the transmission side and the second vibrator 3 as the reception side.
  • the above connection configuration will be referred to as “flow forward direction” measurement.
  • a predetermined delay time is output from the delay unit 10 to the trigger unit 8. Then, after a predetermined delay time has elapsed, the trigger unit 8 outputs a transmission / reception switching signal to the switching unit 6 so that the second transducer 3 and the transmission unit 4, the first transducer 2 and the reception unit 5 are connected. Connecting. Thereby, the measurement of the propagation time is started with the second vibrator 3 as the transmission side and the first vibrator 2 as the reception side.
  • the above connection configuration is referred to as “measurement in the reverse direction of the flow”.
  • a trigger signal for starting measurement is output from the trigger unit 8 to the switching unit 6 in the above connection state
  • a drive signal is output from the transmission unit 4 to the second vibrator 3 and the second vibrator 3
  • a sound wave signal is output.
  • the receiving unit 5 performs reception processing of the ultrasonic signal.
  • the “reverse direction of flow” sing-around measurement is executed for a predetermined number of repetitions set by the repeating unit 9 made of, for example, a counter.
  • the “reverse flow direction” measurement in which the roles of transmission / reception between the first vibrator 2 and the second vibrator are switched is executed with four repetitions.
  • the number of repetitions has been described as four, but the present invention is not limited to this.
  • the time resolution of the time measuring unit 12 described below is sufficiently ensured, one measurement may be performed without repeating.
  • the flow rate calculation unit 15 executes the flow rate calculation of the fluid.
  • the time measuring unit 12 measures the propagation time from the timing of the trigger signal output from the trigger unit 8 to the end of the sing-around measurement.
  • the propagation time corresponds to a time obtained by multiplying the number of times of single-around measurement in which the ultrasonic signal is repeatedly propagated between the first transducer and the second transducer by the number of times of single-around measurement.
  • the 1st addition part 13 accumulate
  • the second addition unit 14 integrates the measured value of the propagation time of the time measuring unit 12 in the “reverse direction of flow” measurement of each unit measurement process a predetermined number of times (for example, N times) defined in advance.
  • the flow rate calculation unit 15 uses the output value of the measurement value of the propagation time accumulated in the first addition unit 13 and the second addition unit 14.
  • the flow rate value of the fluid is calculated.
  • the fluid flow rate value calculated at this time is an average fluid flow rate during the N unit measurement steps defined in advance.
  • Nth measurement process which is a final measurement process corresponding to, for example, N repetitions, and then to the flow rate calculation unit 15 that executes the fluid flow rate calculation.
  • a series of operations will be described as a “unit flow rate calculation step”.
  • the unit flow rate calculation process has two modes in which the role of the search measurement process in which the number of execution times of the unit measurement process is small and the precision measurement process in which the number of execution times of the unit measurement process is larger than that of the search measurement process are different.
  • the search measurement process has a low measurement accuracy, but since the number of executions of the unit measurement process is small, the measurement can be completed in a short time, and is therefore used for rough determination of whether or not the fluid is flowing.
  • the precision measurement process has a higher measurement accuracy than the search measurement process because the number of executions of the unit measurement process is large. Therefore, the precision measurement process is used to calculate the average flow rate of fluid at a predetermined time and the integrated flow rate of fluid.
  • the determination unit 16 determines the presence or absence of the flow rate of the fluid according to the output value from the flow rate calculation unit 15 in the search and measurement process of the unit flow rate calculation process, and outputs the determination result to the measurement process control unit 11.
  • the measurement process control part 11 controls operation
  • the selection unit 17 determines the average flow rate value of the fluid in the cycle based on the result of the flow rate calculation of the flow rate calculation unit 15 executed within a predetermined cycle (fixed time). Then, the average flow rate value of the fluid determined by the selection unit 17 is output to the integration unit 18, and the total usage amount of the fluid is calculated by the integration unit 18.
  • each part is configured, and a fluid measuring device that detects the flow rate of the fluid is realized by its operation.
  • FIG. 2 is a time chart for explaining the operations of the unit measurement step and the unit flow rate calculation step of the flow rate measuring apparatus according to Embodiment 1 of the present invention.
  • the horizontal axis represents the elapsed time and the vertical axis represents the trigger signal timing from the trigger unit 8 indicating the start of measurement in the “flow forward direction” in the first measurement process, which is the first unit measurement process. Shows the operation of each part.
  • the measurement value Tda from the measurement value Td2 to the first addition unit 13, for example, The measurement value Tua is alternately added to the second addition unit 14 from the measurement value Tu2.
  • the measurement value Tda and the measurement value Tua indicate measurement values in the final measurement process corresponding to the a-th time in which the unit measurement process is repeated a times.
  • the flow rate calculation unit 15 calculates the flow rate of the fluid by multiplying the cross-sectional area of the fluid flow path by using the total value of the propagation times that are the measured values in the “reverse direction”.
  • the flow rate calculation unit 15 obtains the propagation time t12 and the propagation time t21, which are average values per time, from the measurement values added and held by the first addition unit 13 and the second addition unit 14.
  • the flow rate value of the fluid is obtained by multiplying the obtained flow velocity v by a necessary coefficient.
  • the coefficients include the fluid flow path cross-sectional area and the flow rate correction coefficient to correct the fluid flow velocity to the true average flow velocity.
  • FIG. 3A is a time chart for explaining the operations of the search measurement process and the precision measurement process when the flow rate measuring apparatus according to Embodiment 1 of the present invention has a flow rate.
  • FIG. 3B is a time chart for explaining the operation of the search measurement process when the flow rate measurement device according to Embodiment 1 of the present invention has no flow rate.
  • each of the unit measurement process, the flow rate calculation process, and the flow rate presence / absence determination process shown in FIGS. 3A and 3B is represented as a single processing block by a rectangle in the figure, and how a series of processes are executed. Is shown in a time chart.
  • the unit flow rate calculation step is executed by the measurement control unit 7 within a predetermined time, for example, a measurement process of 2 seconds as one section.
  • a predetermined time for example, a measurement process of 2 seconds as one section.
  • the unit flow rate calculation step is performed once or twice. By executing, the fluid flow rate and the like are measured.
  • a search measurement process including a first measurement process, which is a unit measurement process, and a flow rate calculation process is executed.
  • the unit measurement process is executed only once in the search measurement process. For this reason, for example, when the same flow rate continues, variation in the measurement result becomes large, so that it is difficult to measure with sufficient measurement accuracy when discriminating a slight change in the flow rate of the fluid.
  • it is possible to determine the presence or absence of a fluid flow by appropriately determining a predetermined value that is a threshold value of the fluid flow rate.
  • the determination unit 16 performs a flow rate presence / absence determination process for determining the flow rate based on the magnitude relationship between the output result of the flow rate calculation unit 15 and a predetermined value.
  • the specified value is a value specified by standards such as a flow measurement device, and corresponds to a flow rate of about 3 L / h, for example.
  • the measurement control unit 7 executes the precision measurement process after the flow rate presence / absence determination process.
  • the flow rate of the fluid is calculated using an average value of measurement values measured in 20 unit measurement processes. Therefore, in the precision measurement process, it is possible to obtain the flow rate of the fluid with higher accuracy than, for example, the search measurement process including one unit measurement process.
  • the measurement operation is stopped to reduce power consumption, and power can be distributed to the measurement operation in the precision measurement process that is performed when there is a fluid flow.
  • limited power resources such as batteries.
  • the power consumption can be further reduced by simplifying the flow rate presence / absence determination process in the determination unit 16.
  • the flow rate calculation unit 15 calculates a physical quantity corresponding to the difference in propagation time using the following (Equation 5) when executing the search measurement process.
  • Tdif1 Tu1-Td1 (Formula 5) Note that the values of Tu1 and Td1 in (Expression 5) are defined in the description of FIG.
  • Td1 in (Equation 5) is an integration result of propagation times of “flow forward direction” sing-around measurement obtained by four iterations.
  • Tu1 in (Equation 5) is an integration result of propagation times of “around the flow” sing-around measurement obtained by four iterations.
  • the predetermined value is usually determined based on the flow rate of the fluid.
  • the predetermined value corresponds to a time during which a flow rate of 3 L / h flows, although it varies depending on the cross section of the fluid flow channel.
  • the search and measurement step of the unit flow rate calculation step if it is determined whether or not the flow rate is present from an arithmetic expression using (Equation 3), first, the value of Tdif1 in (Equation 5) is measured four times around which is the number of repetitions. An averaging process is required in which the value is divided by 4 to obtain an average value. Then, the average value of the propagation time obtained by the averaging process is substituted into t12 and t21 in (Equation 3), and the multiplication / division process is executed.
  • one unit flow rate calculation process is always performed during a predetermined time (for example, 2 seconds). Executed.
  • the selection unit 17 illustrated in FIG. 1 uses either the “flow rate present” or “no flow rate” flow rate value obtained in the unit flow rate calculation step as an average flow rate for a certain period (2 seconds). Output to.
  • the flow rate value of the fluid obtained by the flow rate calculation unit 15 in the precision measurement step is set as the average flow rate for a certain period of time. Therefore, when there is a flow, it is guaranteed that the flow rate of the fluid is measured with high accuracy.
  • the average flow rate is set to 0 and output to the integrating unit 18 regardless of the fluid flow rate value obtained by the flow rate calculation unit 15.
  • the flow rate calculation by the flow rate calculation unit 15 can be omitted, so that power consumption in the unit flow rate calculation step can be further reduced.
  • the present invention is not limited to this.
  • the time interval may be made random. At this time, for example, the time interval is short when the pulsation cycle is short, and is long when the pulsation cycle is long. Thereby, the influence by the pulsation phenomenon of the fluid can be suppressed and more accurate measurement can be realized.
  • the unit flow rate calculation step is completed once or twice within a certain period (for example, 2 seconds), and is the same as FIG. 3A and FIG. 3B. It is.
  • the time interval of the section of one unit flow rate calculation process is fixed to 2 seconds, and the time interval from the starting point of the section to the start time of the first search measurement process is Is optional.
  • the flow rate measuring device of the present invention includes a determination unit that determines the presence or absence of the flow rate of the fluid from the magnitude of the flow rate value obtained in the search measurement step of the unit flow rate calculation step, and the determination unit has a flow rate. Only when it is determined, the precision measurement process is executed. Therefore, when it is determined that there is no fluid flow, the measurement operation is stopped to reduce power consumption, and power can be distributed to the measurement operation in the precision measurement process that is performed when there is a fluid flow. As a result, limited power resources such as batteries can be used effectively.
  • the flow rate calculation unit calculates the difference between the two propagation times of “forward direction of flow” and “reverse direction of flow” by addition and subtraction, Determine. And when the difference of the propagation time which the determination part calculated
  • the predetermined value is usually determined based on the flow rate of the fluid. In the above case, for example, the predetermined value corresponds to a time during which a flow rate of 3 L / h flows, although it varies depending on the cross section of the fluid flow channel.
  • the flow measurement device of the present invention sets the output of the flow rate calculation unit to zero and does not perform flow rate calculation processing. Can be further reduced. Specifically, after the flow rate calculation process, for example, there is a process for setting the power saving mode such as sleep until the start of the next section. However, if the calculation process is not performed, the power consumption can be reduced accordingly.
  • the selection unit selects the flow value obtained in the precision measurement process as the average flow value of the fluid.
  • Embodiment 2 Below, the fluid measuring device in Embodiment 2 of this invention is demonstrated using figures.
  • the overall configuration of the fluid measuring apparatus according to the present embodiment is the same as that shown in FIG. 1 shown in the first embodiment. Further, the operation of the unit flow rate calculation step is the same as that of the first embodiment described with reference to FIG.
  • this embodiment is different in the switching operation between the search measurement process and the precision measurement process in the measurement of “flow rate present” in FIG. 3A and “no flow rate” in FIG. This will be described with reference to FIGS. 4 and 5.
  • FIG. 1 is different in the switching operation between the search measurement process and the precision measurement process in the measurement of “flow rate present” in FIG. 3A and “no flow rate” in FIG. This will be described with reference to FIGS. 4 and 5.
  • FIG. 4 is a time chart for explaining the switching operation between the search measurement process and the precision measurement process of the flow rate measuring device according to the second embodiment of the present invention.
  • FIG. 5 is another time chart for explaining the switching operation between the search measurement process and the precision measurement process in the flow rate measuring apparatus according to the embodiment.
  • sections A to I shown in the figure show a unit flow rate calculation step in which the section width is set to a certain time (for example, 2 seconds). Then, for each section, the average flow rate and the integrated flow rate of the fluid are measured and updated.
  • the flow rate is zero and no fluid flow occurs, so the determination result of the determination unit 16 is “no flow rate”. Therefore, in the section A and the section B, the operation of the precision measurement process is omitted as in the first embodiment.
  • the operation of the search and measurement process can be omitted in the subsequent sections, so that power consumption can be reduced.
  • the flow rate value of the fluid obtained by the precision measurement process in both sections is zero or a value close to zero.
  • the determination unit 16 determines “no flow” when the result of the flow rate calculation by the precision measurement process is smaller than a predetermined value of the fluid flow rate, for example, twice in succession. Then, the operation of the search measurement process is restarted from the next section H.
  • the predetermined value is a value specified by standards for flow rate measuring devices, and corresponds to, for example, a flow rate of about 3 L / h.
  • the reason for the two times is to increase the reliability of the determination of “no flow”, and it goes without saying that the number of times is not limited to two. For example, it may be determined only once.
  • the description has been made at the same time interval from the starting point of a section of a certain time (for example, 2 seconds) to the start time of the unit measurement process, but is not limited thereto.
  • the time interval may be made random. Thereby, the influence by the pulsation phenomenon of the fluid can be suppressed and more accurate measurement can be realized.
  • the unit flow rate calculation step is completed once or twice within a certain period (for example, 2 seconds), and is the same as FIG. 4 and FIG. It is.
  • the time interval of the section of one unit flow rate calculation process is fixed to 2 seconds, and the time interval from the starting point of the section to the start time of the first search measurement process is Is optional.
  • the operation of the search and measurement process can be resumed by the operation shown in FIG. 5 and the flow rate can be measured.
  • the flow volume of the fluid by the usage condition such as gas
  • a search measurement process and a precise measurement process can be switched appropriately, and a flow volume can be measured.
  • a flow rate measuring device that operates stably over a long period of time by effectively using limited power resources such as batteries.
  • the execution of the search measurement process is stopped, and the measurement result by the precision measurement process is predetermined as shown in FIG. If the flow rate value is less than the value, the search and measurement process is resumed.
  • a flow rate measuring apparatus that can measure the flow rate by appropriately switching the measurement method according to the presence or absence of the flow rate.
  • the present invention measures the propagation time of an ultrasonic signal propagating between the first vibrator and the second vibrator, and between the first vibrator and the second vibrator provided in the fluid flow path for transmitting and receiving the ultrasonic signal.
  • the operation of measuring the propagation time of a bidirectional ultrasonic signal by the timing unit by switching the transmission / reception direction of the timing unit and the first transducer and the second transducer is a unit measurement step, and the unit measurement step is executed a predetermined number of times.
  • a flow rate calculation unit that calculates the flow rate of the fluid flowing through the fluid flow path based on a predetermined number of propagation times.
  • the flow rate calculation unit includes a precision measurement step for performing the flow rate calculation by executing the unit measurement step a plurality of times, and a search measurement step for performing the flow rate calculation by executing the unit measurement step less than the number of executions in the precision measurement step.
  • a precision measurement step for performing the flow rate calculation by executing the unit measurement step a plurality of times
  • a search measurement step for performing the flow rate calculation by executing the unit measurement step less than the number of executions in the precision measurement step.
  • the precision measurement process is executed only when the fluid flow rate obtained in the search and measurement process is greater than or equal to a predetermined value. Thereby, when there is no fluid flow, power consumption can be effectively reduced.
  • the output of the flow rate calculation unit is set to zero. Therefore, the power consumption when there is no fluid flow can be further reduced.
  • the precise measurement process is executed only when the difference between the two-way propagation times detected in the search measurement process is equal to or greater than a predetermined value.
  • the present invention sets the output of the flow rate calculation unit to zero when the difference between the two-way propagation times obtained in the search and measurement process is less than a predetermined value. Therefore, since the output of a flow volume calculating part is set to zero, the power consumption when there is no fluid flow can further be reduced.
  • the present invention provides a selection unit that executes either one of the search measurement process or the precision measurement process at least once within a predetermined time, calculates a flow rate value of the fluid, and selects the average flow rate within the predetermined time.
  • the selection unit selects the flow rate value of the fluid obtained in the precision measurement process when the precision measurement process is executed. Thereby, when there is a fluid flow, the flow velocity of the fluid can be measured with high accuracy.
  • the execution of the search measurement process is stopped. Therefore, the power consumption when the fluid flow rate is continuously generated can be reduced.
  • the search measurement process is resumed. Accordingly, the flow rate can be measured by appropriately switching the measurement method according to the presence or absence of the fluid flow rate.
  • the present invention can instantly determine the presence or absence of the flow rate of a fluid and realize a highly responsive flow rate measuring device according to the presence or absence of the flow rate, it can be used in a wide range of fields such as gas flow meters and liquid flow meters. Can be applied.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

 本発明の流量計測装置は、超音波信号を送受信する流体流路に設けられた第1振動子および第2振動子と、第1振動子および第2振動子間を伝播する超音波信号の伝搬時間を計測する計時部と、第1振動子および第2振動子の送受信方向を切り換えて計時部により双方向の超音波信号の伝搬時間を計測する動作を単位計測工程とし、単位計測工程を所定回数実行して所定回数分の伝搬時間に基づいて流体流路を流れる流体の流量を演算する流量演算部と、を備えている。そして、流量演算部は、単位計測工程を複数回実行して流量演算を行う精密計測工程と、単位計測工程を精密計測工程における実行回数より少ない回数を実行して流量演算を行う探索計測工程とにより、流体の流量値を計測する。

Description

流量計測装置
 本発明は、超音波信号の伝搬時間を計測して、流体の流速から流体の流量を計測する流量計測装置に関する。
 従来、2つの振動子間の送受信を複数回繰り返すことにより、計測分解能を高めるシングアラウンド法(Sing-around Method)という手法を用いた流量計測装置が提案されている。
 以下に、家庭用のガスメータに適用した従来の流量計測装置の例について、図6を用いて説明する。
 図6は、従来のシングアラウンド法を用いた流量計測装置のブロック図である。図6に示すように、流量計測装置は、流体管路41に設けた第1振動子42および第2振動子43と、計測部44と、制御部45と、演算部46とから構成されている。そして、超音波を送信(発信)する第1振動子42と送信された超音波を受信する第2振動子43は、流体管路41を流れる流体の流れ方向に対向して配置されている。計測部44は、第1振動子42と第2振動子43間を伝播する超音波の伝搬時間を計測する。制御部45は、計測部44を制御する。演算部46は、計測部44の計測結果に基づいて、流体管路41を流れる流体の流量を算出する。
 以下に、流体管路41を流れる流体の流量を算出する方法について、説明する。
 なお、図6に示すように、音速をC、流体の流速をv、第1振動子42と第2振動子43間の距離をL、超音波の伝搬方向と流れの方向とがなす角度をθとする。
 そして、流体管路41の上流側に配置された第1振動子42から超音波を送信し、下流側に配置された第2振動子43で受信した場合の伝搬時間をt12とする。また、流体管路41の下流側に配置された第2振動子43から超音波を送信し、上流側に配置された第1振動子42で受信する、流体の流れに対して逆方向の場合の伝搬時間をt21とする。
 このとき、伝播時間t12および逆方向の伝播時間t21は、次式で求められる。
  t12=L/(C+vcosθ)   (式1)
  t21=L/(C-vcosθ)   (式2)
 つぎに、(式1)および(式2)を変形すると、(式3)から流体の流速vが求まる。
  v=L・(1/t12-1/t21)/2cosθ  (式3)
 そして、(式3)で求めた流速の値に流体管路41の断面積を掛ければ、流体の流量が求められる。このとき、(式3)の括弧内の項は、(式4)のように変形できる。
  (t21-t12 )/t12・t21    (式4)
 ここで、(式4)の分母の項は流体の流速の変化に関わらずほぼ一定の値となるが、(式4)の分子の項は流体の流速にほぼ比例した値となる。
 したがって、流体の流速を正確に計測するには、伝播時間t12と逆方向の伝播時間t21との差を精度よく計測する必要がある。つまり、流体の流速が遅くなるほど、伝播時間の微小な差を求める必要がある。そのため、伝播時間t12と逆方向の伝播時間t21との差を単発で計測する場合、計測部44には、例えばナノ秒(ns)オーダーの時間分解能で計測する性能が要求される。
 しかし、通常、ナノ秒(ns)オーダーの時間分解能を実現するのは難しい。また、例え、ナノ秒(ns)オーダーの時間分解能を実現しても、高速の処理により、消費電力が増加するなどの課題が生じる。
 そこで、上記課題を解消するために、通常、まず、超音波の送受信を複数回繰り返し実行して、繰り返して伝播時間を計測部44で計測する。そして、計測部44で計測した伝播時間の平均値を求めることにより、必要な時間分解能を実現する流量計測装置が開発されている。すなわち、計測部44の時間分解能をTA、超音波の送受信の繰り返し回数をMとすれば、繰り返して計測の間、計測部44を連続して動作させることにより、伝搬時間の時間分解能をTA/Mにできる。これにより、流体管路41内の圧力が安定している時には精度の高い伝播時間の計測が実現できる。
 しかし、上記流量計測装置を、例えば一般家庭にエネルギー源として供給されるガス流量を計測するガスメータに適用した場合、いわゆる脈動現象と呼ばれる固有の課題に直面する。脈動現象は、例えばGHP(Gas Heat Pump)と呼ばれるガスエンジンを利用した空調機のように、ガスエンジンの回転に同期して周辺のガス供給配管内の圧力に変動を及ぼす現象である。
 そして、脈動現象が発生した場合、ガス器具を使用していない場合でも、圧力の変動に同期して、ガスがガス供給配管内を移動する。その結果、ガス供給配管内を、あたかもガスが流れているように流量計測装置が流量を検出するという課題がある。
 そこで、脈動現象の影響を抑える方法として、例えば特許文献1に示すような方法が提案されている。特許文献1の方法は、まず、繰り返し計測回数Mを計測精度が維持できる最低限の回数に抑える。つぎに、繰り返し計測回数Mを1つの計測単位とし、計測間隔を短くして、小刻みに比較的長時間連続して計測単位をN回実行する。そして、連続して計測したN回の計測結果を用いて流量演算を行うことで、脈動の影響を低減する構成である。このとき、特に、計測間隔を脈動による圧力変動周期よりも充分短い間隔で行うことにより、流体の流速変動波形の位相状態を満遍なく捉えることができる。そして、計測された流量を平均化することにより、脈動による変動成分を取り除いた真の流体の流速(流量)を検出することができるとしている。
 しかし、上記のような計測方法を常時続ける場合、脈動の影響は低減できるが、消費電力が増加するという問題が生じる。
 そこで、上記課題を解決するために、例えば特許文献2に示すような方法が提案されている。特許文献2の方法は、消費電力を低減するために、流体の流速の変動量に応じて、計測回数Nを制御する構成である。具体的には、流体の流量変動が小さく、脈動がないと判断できる場合には、計測回数Nを小さくする。一方、流体の流量変動が大きく、脈動がある場合には、計測回数Nを大きくして計測する方法を提案している。
 しかし、特許文献2の構成では、脈動が発生していない場合に、消費電力を低減することは可能であるが、流体の流量の大小に応じた消費電力を低減する計測方法が開示されていない。
 つまり、例えば電池などを駆動源とするガスメータのように、限られた電力資源を有効に使用するためには、まず、脈動がない場合に消費電力を抑える。さらに、積算流量に影響を及ぼさない場合、すなわち、流体の流れがない場合には、流量の計測動作の頻度を抑えて、流量計測装置全体の消費電力を低減する方法が要望されている。
特開2002-350202号公報 特許第3427839号公報
 本発明の流量計測装置は、超音波信号を送受信する流体流路に設けられた第1振動子および第2振動子と、第1振動子および第2振動子間を伝播する超音波信号の伝搬時間を計測する計時部と、第1振動子および第2振動子の送受信方向を切り換えて計時部により双方向の超音波信号の伝搬時間を計測する動作を単位計測工程とし、単位計測工程を所定回数実行して所定回数分の伝搬時間に基づいて流体流路を流れる流体の流量を演算する流量演算部と、を備えている。そして、流量演算部は、単位計測工程を複数回実行して流量演算を行う精密計測工程と、単位計測工程を精密計測工程における実行回数より少ない回数を実行して流量演算を行う探索計測工程とにより、流体の流量値を計測する。
 これにより、流体の流れの有無を効率的に検出できる。その結果、流体の流れがない場合には消費電力を低減し、流れがある場合には電力を集中して使用することにより、限られた電力資源を有効に配分する流量計測装置を実現できる。
図1は、本発明の実施の形態1における流量計測装置のブロック図である。 図2は、同実施の形態における流量計測装置の単位計測工程および単位流量算出工程の動作を説明するタイムチャートである。 図3Aは、本発明の実施の形態における流量計測装置の流量有の場合の探索計測工程および精密計測工程の動作を説明するタイムチャートである。 図3Bは、本発明の実施の形態における流量計測装置の流量無の場合の探索計測工程の動作を説明するタイムチャートである。 図4は、本発明の実施の形態2における流量計測装置の探索計測工程と精密計測工程の切り換わり動作を説明するタイムチャートである。 図5は、同実施の形態における流量計測装置における探索計測工程と精密計測工程の切り換わり動作を説明する別のタイムチャートである。 図6は、従来のシングアラウンド法を用いた流量計測装置のブロック図である。
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。
 (実施の形態1)
 以下、本発明の実施の形態1における流体計測装置について、図1を用いて説明する。
 図1は、本発明の実施の形態1における流量計測装置のブロック図である。
 図1に示すように、本実施の形態の流量計測装置は、少なくとも流体流路1に設けた第1振動子2および第2振動子3と、送信部4と受信部5の信号を切り換える切換部6と、計測制御部7と、計時部12の計測値を積算する第1加算部13および第2加算部14と、流量演算部15と、判定部16と、選択部17と、積算部18とから構成されている。
 そして、超音波信号を送受信する第1振動子2と超音波信号を受送信する第2振動子3は、流体流路1を流れる流体の流れ方向に対して、所定角度θで対向して配置されている。送信部4は、第1振動子2へ駆動信号を出力し、駆動信号により第1振動子2は超音波信号を送信(発信)する。第1振動子2から出力された超音波信号は第2振動子3で受信され、第2振動子で受信された信号は受信部5に入力されて信号処理される。切換部6は、送信部4および受信部5と、第1振動子2および第2振動子3との接続を切り換えて、第1振動子2および第2振動子3の送受信の役割を切り換える。これにより、第1振動子2および第2振動子3で、流体の流れの順方向と逆方向の双方向において、超音波信号の送受信を行い、図6を用いて説明した関係式により、伝搬時間の測定を行うことできる。
 計測制御部7は、少なくともトリガ部8と、繰り返し部9と、遅延部10と、計測工程制御部11とから構成され、第1振動子2と第2振動子3との間の超音波信号の送受信を制御する。
 以下に、計測制御部7の制御動作を主に、第1振動子2と第2振動子3の送受信の動作について、具体的に説明する。
 まず、図1に示すように、トリガ部8から計測開始のトリガ信号が切換部6に出力されると、切換部6は第1振動子2と送信部4、第2振動子3と受信部5とを接続する。これにより、第1振動子2を送信側とし、第2振動子3を受信側として、伝播時間の計測が開始される。なお、以降では、上記の接続構成を「流れの順方向」の計測と称して説明する。
 つぎに、送信部4から駆動信号が第1振動子2に出力されると、第1振動子2から超音波信号が出力される。出力された超音波信号が第2振動子3に到達して受信されると、受信部5は超音波信号の受信処理を行う。このとき、一旦、受信部5で受信処理が実行されると、例えばカウンターなどからなる繰り返し部9で設定された所定の繰り返し回数の「流れの順方向」のシングアラウンド計測が実行される。以降では、所定の繰り返し回数として、4回を例に説明する。
 つぎに、4回の繰り返しの「流れの順方向」のシングアラウンド計測が完了すると、遅延部10から所定の遅延時間がトリガ部8に出力される。そして、トリガ部8は、所定の遅延時間を経過した後、切換部6に送受信の切換信号を出力して、第2振動子3と送信部4、第1振動子2と受信部5とを接続する。これにより、第2振動子3を送信側とし、第1振動子2を受信側として、伝播時間の計測が開始される。なお、以降では、上記の接続構成を「流れの逆方向」の計測と称して説明する。
 つぎに、上記接続状態で、トリガ部8から計測開始のトリガ信号が切換部6に出力されると、送信部4から駆動信号が第2振動子3に出力され、第2振動子3から超音波信号が出力される。出力された超音波信号が第1振動子2に到達して受信されると、受信部5は超音波信号の受信処理を行う。このとき、一旦、受信部5で受信処理が実行されると、例えばカウンターなどからなる繰り返し部9で設定された所定の繰り返し回数の「流れの逆方向」のシングアラウンド計測が実行される。これにより、第1振動子2と第2振動子の送受信の役割が切り換わった、「流れの逆方向」の計測が、4回の繰り返し回数で実行される。
 なお、本実施の形態では繰り返し回数を4回として説明したが、これに限られない。例えば、以降で説明する計時部12の時間分解能が充分確保されているならば、繰り返しを行わずに1回の計測でもよい。また、必要な伝播時間の測定精度に応じて、4回以外の任意の繰り返し回数で計測してもよい。
 ここで、上記で説明した、「流れの順方向」のシングアラウンド計測(4回の繰り返し計測)と、所定の遅延時間と、「流れの逆方向」のシングアラウンド計測(4回の繰り返し計測)を交互に1回行う一連の動作を「単位計測工程」と称して、以降で説明する。
 つぎに、図2を用いて以降で詳細に説明するように、最初に実行される単位計測工程である第1計測工程から、遅延部10から遅延信号の出力による所定の遅延時間を挟んで、第1計測工程と同様の第2計測工程の動作が順次繰り返される。そして、上記動作が、計測工程制御部11を介して、予め規定された回数後の最終計測工程まで繰り返される。これにより、第1計測工程から最終計測工程までの規定の回数の単位計測工程が実行された後、流量演算部15は、流体の流量演算を実行する。
 このとき、計時部12は、トリガ部8のトリガ信号の出力のタイミングからシングアラウンド計測の終了までの伝播時間を計測する。なお、伝播時間は、正確には、第1振動子と第2振動子間を超音波信号が伝播する時間に繰り返し計測するシングアラウンド計測の回数を乗じた時間に相当する。
 そして、第1加算部13は、予め規定した所定の回数(例えば、N回)の各単位計測工程の「流れの順方向」の計測における計時部12の伝播時間の計測値を積算する。第2加算部14は、予め規定した所定の回数(例えば、N回)の各単位計測工程の「流れの逆方向」の計測における計時部12の伝播時間の計測値を積算する。
 つぎに、規定されたN回の単位計測工程の動作が完了すると、流量演算部15は、第1加算部13および第2加算部14に積算された伝播時間の計測値の出力値を用いて、流体の流量値を算出する。なお、このとき算出される流体の流量値とは、予め規定されたN回の単位計測工程が実行されている間の流体の平均流量である。
 以降では、上記で説明した第1計測工程から、例えばN回繰り返した場合に相当する最終計測工程である第N計測工程までの動作と、その後に流体の流量演算を実行する流量演算部15までの一連の動作を「単位流量算出工程」と称して、説明する。
 なお、単位流量算出工程は、単位計測工程の実行回数が少ない探索計測工程と、単位計測工程の実行回数が探索計測工程より多い精密計測工程の役割の異なる2つのモードを有している。
 ここで、探索計測工程は、計測精度は低いが、単位計測工程の実行回数が少ないため計測を短時間で終了できるので、流体が流れているかどうかの粗い判断に利用される。一方、精密計測工程は、単位計測工程の実行回数が多いために、探索計測工程より計測精度が高いので、一定時間毎の流体の平均流量や、流体の積算流量の算出に利用される。
 また、判定部16は、単位流量算出工程の探索計測工程において、流量演算部15からの出力値に応じて、流体の流量の有無を判定し、計測工程制御部11に判定結果を出力する。そして、計測工程制御部11は、判定部16の判定結果に基づいて、流体計測装置の動作を制御するが、詳細は後述する。
 選択部17は、定められた周期(一定時間)内に実行される流量演算部15の流量演算の結果に基づいて、その周期内の流体の平均流量値を決定する。そして、選択部17で決定された流体の平均流量値は積算部18に出力されて、流体の総使用量が積算部18で算出される。
 上記で説明したように各部が構成されるとともに、その動作により流体の流量を検出する流体計測装置が実現される。
 以下に、上記で説明した単位計測工程および単位流量算出工程における各部の動作の流れについて、図2を用いて具体的に説明する。
 図2は、本発明の実施の形態1における流量計測装置の単位計測工程および単位流量算出工程の動作を説明するタイムチャートである。なお、図2では、最初の単位計測工程である第1計測工程で「流れの順方向」の計測開始を示すトリガ部8からのトリガ信号のタイミングを原点として、横軸に経過時間、縦軸に各部の動作を示している。
 図2に示すように、まず、トリガ信号に同期して、最初の単位計測工程である第1計測工程の「流れの順方向」の計測が時間t1まで実行される。そして、第1計測工程の時間t1において、計時部12で計測された第1計測工程の「流れの順方向」の伝播時間の計測値Td1が第1加算部13に加算される。
 つぎに、遅延部10で設定された所定の遅延時間Tintが経過した時間t2から、第1計測工程の「流れの逆方向」の計測が開始され、時間t3まで実行される。そして、第1計測工程の時間t3において、計時部12で計測された第1計測工程の「流れの逆方向」の伝播時間の計測値Tu1が第2加算部14に加算される。
 その後、遅延部10で設定された所定の遅延時間Tintが経過した後に、第2計測工程が開始される。
 そして、第2計測工程以降においても、同様に、「流れの順方向」と「流れの逆方向」の計測が終わる毎に、例えば計測値Td2から計測値Tdaが第1加算部13に、例えば計測値Tu2から計測値Tuaが第2加算部14に交互に加算される。なお、計測値Tdaと計測値Tuaは、単位計測工程をa回繰り返したa回目に相当する最終計測工程における計測値を示している。
 つぎに、定められた回数(上記ではa回)の単位計測工程が全て終了する時間tdにおいて、第1加算部13および第2加算部14に加算された「流れの順方向」と「流れの逆方向」の計測値であるそれぞれの伝搬時間の合計値を用いて、流体流路の断面積を乗じることにより、流量演算部15で流体の流量演算を行う。
 以下に、流量演算部15で行われる流体の流量演算の方法について、具体的に説明する。
 まず、流量演算部15は、第1加算部13および第2加算部14で加算されて保持された計測値から1回当たりの平均値である伝播時間t12および伝播時間t21を求める。
 つぎに、背景技術で説明した(式3)を用いて、流体の流速vを求める。
 そして、求められた流速vに必要な係数を乗じることにより、流体の流量値が求められる。このとき、係数としては、流体流路断面積と、流体の流速を真の平均流速の補正するための流量補正係数などです。
 つまり、図2に示す、時間t=0から流量演算が実行される時間tdまでが単位流量算出工程に相当する。
 以下に、上記単位流量算出工程を構成する精密計測工程と探索計測工程の関係について、図1を参照しながら、図3Aと図3Bを用いて、「流量有」の場合と「流量無」の場合とを対比して説明する。
 図3Aは、本発明の実施の形態1における流量計測装置の流量有の場合の探索計測工程および精密計測工程の動作を説明するタイムチャートである。図3Bは、本発明の実施の形態1における流量計測装置の流量無の場合の探索計測工程の動作を説明するタイムチャートである。具体的には、図3Aと図3Bに示す単位計測工程、流量演算処理および流量有無判定処理のそれぞれを1つの処理ブロックとして、図中に長方形で示し、一連の処理がどのように実行されるかをタイムチャートで示している。
 なお、「流量有」とは流体の流れが発生している場合を、「流量無」とは流体の流れがない場合を意味している。
 また、図3Aと図3Bでは、単位計測工程の実行回数(繰り返し回数)Nの一例として、探索計測工程ではN=1、精密計測工程ではN=20として説明するが、これに限られるものではない。
 図3Aと図3Bに示すように、単位流量算出工程は、計測制御部7により一定時間内、例えば2秒の計測処理を1区間として実行され、例えば1回もしくは2回の単位流量算出工程を実行することにより、流体の流量などが計測される。
 そして、図3Aと図3Bに示す計測周期(一定時間)の先頭で、まず、単位計測工程である第1計測工程と流量演算処理からなる探索計測工程が実行される。
 このとき、探索計測工程では、単位計測工程を1回しか実行しない。そのため、例えば同一流量が続く場合、計測結果のばらつきが大きくなるので、わずかな流体の流量変化を判別する場合には充分な計測精度で計測することが困難である。しかし、流体の流量の閾値である所定値を適宜定めて、流体の流れの有無を判断することは可能である。
 そこで、探索計測工程を実行した後に、判定部16で、流量演算部15の出力結果と所定値との大小関係に基づいて、流量の有無を判定する流量有無判定処理を行う。なお、所定値とは、流量計測装置などの規格で規定される値で、例えば3L/h程度の流量に相当します。
 ここで、図3Aに示すように、流量有無判定処理において、判定部16の判定結果が「流量有」の場合、流量有無判定処理後、計測制御部7は精密計測工程を実行する。このとき、精密計測工程は、例えば20回の単位計測工程で計測した計測値の平均値を用いて、流体の流量を算出する。そのため、精密計測工程では、例えば1回の単位計測工程からなる探索計測工程に比べて、高い精度で流体の流量を求めることが可能となる。
 一方、図3Bに示すように、流量有無判定処理において、判定部16の判定結果が「流量無」の場合、流量有無判定処理後、計測制御部7は精密計測工程を実行せず、次の単位流量算出工程である2秒の区間が来るまで動作を停止する。
 これにより、流体の流れがないと判断した場合、計測動作を停止して消費電力を低減するとともに、流体の流れがある場合に実行する精密計測工程の計測動作に電力を振り分けることができる。その結果、例えば電池などの限られた電力資源を有効に使うことが可能となる。
 以下に、単位流量算出工程において、消費電力をさらに低減する別の方法について説明する。具体的には、判定部16における流量有無判定処理の簡略化により、消費電力をさらに低減することができるものである。
 つまり、(式4)で説明したように、「流れの順方向」と「流れの逆方向」との伝搬時間の差は、おおよそ流体の流量に比例する。
 そこで、伝搬時間の差と流量値の関係から、(式3)を用いずに、(式4)の分子に相当する減算処理を実行する。これにより、(式4)の分子の演算結果の大小から、流体の流量の有無の判断が可能となる。
 具体的には、まず、流量演算部15で、探索計測工程実行時に、以下の(式5)を用いて、伝搬時間の差に相当する物理量を算出する。
  Tdif1=Tu1-Td1    (式5)
 なお、(式5)中のTu1およびTd1の値は、図2の説明で定義したものである。
 (式5)のTd1は、4回の繰り返しで得られた「流れの順方向」のシングアラウンド計測の伝播時間の積算結果である。同様に、(式5)のTu1は、4回の繰り返しで得られた「流れの逆方向」のシングアラウンド計測の伝播時間の積算結果である。
 つまり、(式5)のTdif1の値は、伝搬時間の4倍の差として求められる。
 したがって、(式5)で求めたTdif1の値と、例えば実験などの結果に基づいて予め定めた所定値を比較することにより、流体の流量有無の判定が可能となる。これにより、比較的単純な計算の実行により流量の有無を判定できるので、以下で説明する理由により、消費電力を低減できる。ここで、所定値とは、通常流体の流量で判断するが、上記場合は、流体流路の流路断面で異なるが、例えば3L/hの流量が流れる時間に相当する。
 以下に、(式5)の流量の判定から、消費電力を低減できる理由について、説明する。
 単位流量算出工程の探索計測工程において、仮に(式3)を用いた演算式から流量有無を判断する場合、まず、(式5)のTdif1の値を、繰り返し回数である4回のシングアラウンド計測値を4で除して平均値を求める平均化処理が必要となる。そして、つぎに、平均化処理で求めた伝播時間の平均値を(式3)のt12およびt21に代入して、乗除算処理を実行する。
 このとき、(式3)の乗除算処理は、(式5)の加減算処理に比べて、処理時間が長くかかるため、消費電力が大きくなる。
 したがって、(式5)を用いて、流体の流量の有無を判断すると、消費電力を大幅に低減することができる。特に、一般的な電池を電源とする、例えば家庭用のガスメータなど、10年程度の流量計測装置の寿命が要求される機器の場合には、消費電力の低減は寿命などに対して非常に大きな効果となる。
 上記では、単位流量算出工程において、流体の流量の有無の判断および流量値を計測する方法について説明したが、以下では、流体の総使用量を求める積算処理について説明する。
 図3Aと図3Bに示すように、「流量有」と「流量無」のいずれの計測においても、定められた一定時間(例えば、2秒)の間に、1回の単位流量算出工程が必ず実行される。
 そこで、図1に示す選択部17は、単位流量算出工程により求めた「流量有」と「流量無」の流量値のいずれかを、一定時間(2秒)の区間の平均流量として積算部18に出力する。
 このとき、図3Aの「流量有」の場合、精密計測工程において流量演算部15が求めた流体の流量値を、一定時間の区間の平均流量とする。したがって、流れがある場合には、流体の流量を高い精度で計測することが保証される。
 一方、図3Bの「流量無」の場合、流量演算部15で求めた流体の流量値に関係なく、平均流量を0として積算部18に出力する。このとき、図3Bの「流量無」の場合、流量演算部15による流量演算自体を省略できるので、単位流量算出工程における消費電力をさらに低減できる。
 なお、本実施の形態では、図3Aの「流量有」および図3Bの「流量無」の場合において、一定時間(例えば、2秒)の区間の起点から最初の探索計測工程の開始時間までは同じ時間間隔で説明したが、これに限られない。例えば、脈動などにより周期的な流体の流量変動を考慮して、時間間隔にランダム性を持たせてもよい。このとき、時間間隔は、例えば脈動周期が短い場合には短く、脈動周期が長い場合は長くするなどである。これにより、流体の脈動現象による影響を抑制して、より精度の高い計測を実現できる。このとき、時間間隔にランダム性を持たせた場合でも、一定時間(例えば、2秒)の区間内に1回もしくは2回の単位流量算出工程が完結する点では、図3Aおよび図3Bと同じである。ここで、時間間隔にランダム性を持たせるとは、1回の単位流量算出工程の区間の時間間隔を2秒に固定し、区間の起点から最初の探索計測工程の開始時間までの時間間隔を任意することである。
 以上で説明したように、本発明の流量計測装置は、単位流量算出工程の探索計測工程で求めた流量値の大小から流体の流量の有無を判断する判定部を備え、判定部が流量有と判定した場合のみにおいて、精密計測工程を実行する。そのため、流体の流れがないと判断した場合、計測動作を停止して消費電力を低減するとともに、流体の流れがある場合に実行する精密計測工程の計測動作に電力を振り分けることができる。その結果、例えば電池などの限られた電力資源を有効に使うことができる。
 また、本発明の流量計測装置は、探索計測工程において、流量演算部は「流れの順方向」および「流れの逆方向」の双方向の伝搬時間の差を加減算で算出して、流体の流量を判定する。そして、判定部が流量演算部で求めた伝搬時間の差が所定値未満の時、流量無と判定して流量演算を省略する。これにより、流体の流量の有無の判定において、演算処理部の演算処理時間の長い乗除算の実行回数を低減できるので、消費電力を低減できる。ここで、所定値とは、通常流体の流量で判断するが、上記場合は、流体流路の流路断面で異なるが、例えば3L/hの流量が流れる時間に相当する。
 また、本発明の流量計測装置は、判定部が流体の流量がないと判定した場合には、流量演算部の出力をゼロにして流量の演算処理を行わないので、流れがない場合における消費電力をさらに低減できる。具体的には、流量の演算処理の後、例えば、次の区間の開始までスリープなどの省電力モードとする処理があるが、演算処理を行わなければその分、消費電力を抑えることができる。
 また、本発明の流量計測装置は、精密計測工程が実行された場合、選択部は精密計測工程で求めた流量値を流体の平均流量値として選択する。その結果、流体の流れがある場合において、流体の流量を高い精度で計測できる。
 (実施の形態2)
 以下に、本発明の実施の形態2における流体計測装置について、図を用いて説明する。
 なお、本実施の形態の流体計測装置の全体構成は、実施の形態1で示した図1と同様である。また、単位流量算出工程の動作も、図2を用いて説明した実施の形態1と同様であるので、詳細な説明は省略する。
 つまり、本実施の形態は、実施の形態1の図3Aの「流量有」および図3Bの「流量無」の計測における探索計測工程と精密計測工程との切り換わり動作が異なるので、具体的に、図4と図5を用いて説明する。
 図4は、本発明の実施の形態2における流量計測装置の探索計測工程と精密計測工程の切り換わり動作を説明するタイムチャートである。図5は、同実施の形態における流量計測装置における探索計測工程と精密計測工程の切り換わり動作を説明する別のタイムチャートである。
 なお、図4と図5では、流体の流量と計測工程の切り換わりの関係を対比して示し、説明する。また、図中に示す区間A~区間Iは、区間幅を一定時間(例えば、2秒)とした単位流量算出工程を示している。そして、区間毎に、流体の平均流量および積算流量が計測され、更新される。
 まず、図4に示す、判定部16の判定結果が「流量無」から「流量有」に切り換わる場合の動作について説明する。
 図4に示すように、区間Aおよび区間Bでは、流量がゼロで流体の流れが生じていないので、判定部16の判定結果は「流量無」となる。そのため、区間Aおよび区間B内では、実施の形態1と同様に、精密計測工程の動作が省略される。
 つぎに、区間Cにおいて、流量Qa(L/h)の流体の流れが発生すると、判定部16の判定結果は「流量有」に変化する。そのため、探索計測工程に続いて区間Cにおいて、流量を計測する精密計測工程が実行される。
 つぎに、区間Dにおいて、区間Cで発生した流量Qa(L/h)が継続して発生しているので、区間Cの精密計測工程を実行した後は、区間Dの探索計測工程の動作を省略し、精密計測工程のみを動作させて流体の流量を計測する。
 したがって、ある区間の探索計測工程で流体の流れを検出した後、それ以降の区間では探索計測工程の動作を省略できるので、消費電力の低減が可能となる。
 なお、上記動作は、流量がゼロにならない限り継続される。
 そして、その後、流体の流れが停止する場合について、図5に示す判定部16の判定結果が「流量有」から「流量無」に切り換わる場合の動作で説明する。
 図5に示すように、区間Fおよび区間Gにおいては、流体の流れが停止しているため、両区間で精密計測工程によって求めた流体の流量値はゼロもしくはゼロに近い値となる。
 そこで、判定部16は、精密計測工程による流量演算の結果が、例えば2回続けて、流体の流量の所定値よりも小さい場合、「流量無」と判断する。そして、次の区間Hから探索計測工程の動作を再開する。なお、所定値とは、流量計測装置などの規格で規定される値で、例えば流量3L/h程度に相当します。
 なお、本実施の形態では、流量演算の「流量無」の判定条件として、所定値以下を連続2回検出した場合を例に説明したが、これに限られない。2回としたのは、「流量無」の判定の信頼性を高めるためであり、2回に限定されないことは言うまでもない。例えば、1回のみの判断でも構わない。
 また、本実施の形態では、図4および図5において、一定時間(例えば、2秒)の区間の起点から単位計測工程の開始時間までは同じ時間間隔で説明したが、これに限られない。例えば、脈動などにより周期的な流体の流量変動を考慮して、時間間隔にランダム性を持たせてもよい。これにより、流体の脈動現象による影響を抑制して、より精度の高い計測を実現できる。このとき、時間間隔にランダム性を持たせた場合でも、一定時間(例えば、2秒)の区間内に1回もしくは2回の単位流量算出工程が完結する点では、図4および図5と同じである。ここで、時間間隔にランダム性を持たせるとは、1回の単位流量算出工程の区間の時間間隔を2秒に固定し、区間の起点から最初の探索計測工程の開始時間までの時間間隔を任意することである。
 本実施の形態によれば、図4に示すように探索計測工程の動作を停止させた場合でも、図5に示す動作により探索計測工程の動作を再開して流量を計測できる。これにより、例えばガスなどの使用状況による流体の流量に応じて、適切に探索計測工程および精密計測工程を切り換えて、流量を計測できる。その結果、電池などの限られた電力資源を有効に利用して、長期にわたって安定に動作する流量計測装置を実現できる。
 また、本実施の形態によれば、図4に示すように、精密計測工程による計測が開始された後は、探索計測工程の実行を停止する。その結果、流量が連続して検出される場合には、消費電力を低減できる。
 また、本実施の形態によれば、図4に示すように精密計測工程による計測が開始された後は探索計測工程の実行を停止し、図5に示すように精密計測工程による計測結果が所定の流量値より少ない場合には、探索計測工程の実行を再開する。その結果、流量の有無に応じて適切に計測方法を切り換えて、流量を計測できる流量計測装置を実現できる。
 本発明は、超音波信号を送受信する流体流路に設けられた第1振動子および第2振動子と、第1振動子および第2振動子間を伝播する超音波信号の伝搬時間を計測する計時部と、第1振動子および第2振動子の送受信方向を切り換えて計時部により双方向の超音波信号の伝搬時間を計測する動作を単位計測工程とし、単位計測工程を所定回数実行して所定回数分の伝搬時間に基づいて流体流路を流れる流体の流量を演算する流量演算部と、を備えている。そして、流量演算部は、単位計測工程を複数回実行して流量演算を行う精密計測工程と、単位計測工程を精密計測工程における実行回数より少ない回数を実行して流量演算を行う探索計測工程とにより、流体の流量値を計測する。これにより、流体の流れの有無を効率的に検出できる。その結果、流体の流れがない場合には消費電力を低減し、流れがある場合には電力を集中して使用することにより、限られた電力資源を有効に配分する流量計測装置を実現できる。
 また、本発明は、探索計測工程で求めた流体の流量値が所定値以上の場合にのみ精密計測工程を実行する。これにより、流体の流れがない場合には消費電力を効果的に低減できる。
 また、本発明は、探索計測工程で求めた流体の流量値が所定値未満の場合、流量演算部の出力をゼロとする。これにより、流体の流れがない場合の消費電力をさらに低減できる。
 また、本発明は、探索計測工程において検出された双方向の伝搬時間の差が所定値以上の場合にのみ精密計測工程を実行する。これにより、流量有無の判定において、演算処理時間の長い乗除算の実行回数を低減し、消費電力の低減することができる。
 また、本発明は、探索計測工程で求めた双方向の伝搬時間の差が所定値未満の場合、流量演算部の出力をゼロとする。これにより、流量演算部の出力をゼロとするので、流体の流れがない場合の消費電力をさらに低減できる。
 また、本発明は、探索計測工程もしくは精密計測工程のいずれか一方を、一定時間内に、少なくとも1回実行し、流体の流量値を算出して一定時間内における平均流量として選択する選択部を備え、選択部は、精密計測工程が実行された場合、精密計測工程で求めた流体の流量値を選択する。これにより、流体の流れのある場合には、高い精度で流体の流速を計測できる。
 また、本発明は、精密計測工程による計測が開始された後は、探索計測工程の実行を停止する。これにより、流体の流量が連続して発生している場合の消費電力を低減できる。
 また、本発明は、精密計測工程による計測結果が所定の流体の流量値より少ない場合、探索計測工程の実行を再開する。これにより、流体の流量の有無に応じて適切に計測方法を切り換えて、流量を計測できる。
 本発明は、流体の流量の有無を瞬時に判定し、流量の有無に応じて応答性の高い流量計測装置を実現できるので、ガスメータのみならず気体用流量計や液体用流量計など幅広い分野に適用することができる。
 1  流体流路
 2,42  第1振動子
 3,43  第2振動子
 4  送信部
 5  受信部
 6  切換部
 7  計測制御部
 8  トリガ部
 9  繰り返し部
 10  遅延部
 11  計測工程制御部
 12  計時部
 13  第1加算部
 14  第2加算部
 15  流量演算部
 16  判定部
 17  選択部
 18  積算部
 41  流体管路
 44  計測部
 45  制御部
 46  演算部

Claims (8)

  1. 超音波信号を送受信する流体流路に設けられた第1振動子および第2振動子と、
    前記第1振動子および前記第2振動子間を伝播する前記超音波信号の伝搬時間を計測する計時部と、
    前記第1振動子および前記第2振動子の送受信方向を切り換えて前記計時部により双方向の前記超音波信号の前記伝搬時間を計測する動作を単位計測工程とし、前記単位計測工程を所定回数実行して前記所定回数の前記伝搬時間に基づいて前記流体流路を流れる流体の流量を演算する流量演算部と、を備え、
    前記流量演算部は、前記単位計測工程を複数回実行して流量演算を行う精密計測工程と、前記単位計測工程を前記精密計測工程における実行回数より少ない回数を実行して流量演算を行う探索計測工程とにより、前記流体の流量値を計測する流量計測装置。
  2. 前記探索計測工程で求めた前記流体の流量値が所定値以上の場合にのみ前記精密計測工程を実行する請求項1に記載の流量計測装置。
  3. 前記探索計測工程で求めた前記流体の流量値が所定値未満の場合、前記流量演算部の出力をゼロとする請求項1に記載の流量計測装置。
  4. 前記探索計測工程において検出された双方向の前記伝搬時間の差が所定値以上の場合にのみ前記精密計測工程を実行する請求項1に記載の流量計測装置。
  5. 前記探索計測工程で求めた双方向の前記伝搬時間の差が所定値未満の場合、前記流量演算部の出力をゼロとする請求項1に記載の流量計測装置。
  6. 前記探索計測工程もしくは前記精密計測工程のいずれか一方を、一定時間内に、少なくとも1回実行し、前記流体の流量値を算出して前記一定時間内における平均流量として選択する選択部を備え、
    前記選択部は、前記精密計測工程が実行された場合、前記精密計測工程で求めた前記流体の流量値を選択する請求項1に記載の流量計測装置。
  7. 前記精密計測工程による計測が開始された後は、前記探索計測工程の実行を停止する請求項1に記載の流量計測装置。
  8. 前記精密計測工程による計測結果が所定の前記流体の流量値より少ない場合、前記探索計測工程の実行を再開する請求項7に記載の流量計測装置。
PCT/JP2011/005871 2010-10-22 2011-10-20 流量計測装置 WO2012053209A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/821,879 US9239256B2 (en) 2010-10-22 2011-10-20 Flow-rate measurement device
CN201180050991.9A CN103180694B (zh) 2010-10-22 2011-10-20 流量测量装置
EP11834055.3A EP2631610B1 (en) 2010-10-22 2011-10-20 Flow-rate measurement device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010236996A JP5753970B2 (ja) 2010-10-22 2010-10-22 流量計測装置
JP2010-236996 2010-10-22

Publications (1)

Publication Number Publication Date
WO2012053209A1 true WO2012053209A1 (ja) 2012-04-26

Family

ID=45974938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/005871 WO2012053209A1 (ja) 2010-10-22 2011-10-20 流量計測装置

Country Status (5)

Country Link
US (1) US9239256B2 (ja)
EP (1) EP2631610B1 (ja)
JP (1) JP5753970B2 (ja)
CN (1) CN103180694B (ja)
WO (1) WO2012053209A1 (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2485015A4 (en) * 2009-09-30 2017-12-20 Panasonic Corporation Flow rate measuring device
JP2013148523A (ja) * 2012-01-23 2013-08-01 Panasonic Corp 流量計測装置
JP2014006151A (ja) * 2012-06-25 2014-01-16 Taiyo Nippon Sanso Corp 液体材料有無検知方法
US9867612B2 (en) 2013-04-16 2018-01-16 Ethicon Llc Powered surgical stapler
JP6111422B2 (ja) * 2013-05-15 2017-04-12 パナソニックIpマネジメント株式会社 流量計測装置
JP6111423B2 (ja) * 2013-05-15 2017-04-12 パナソニックIpマネジメント株式会社 流量計測装置
JP6209732B2 (ja) * 2013-05-29 2017-10-11 パナソニックIpマネジメント株式会社 超音波流量計測装置
WO2016025859A2 (en) 2014-08-14 2016-02-18 Soneter, Inc. Devices and system for channeling and automatic monitoring of fluid flow in fluid distribution systems
CA2960772C (en) * 2014-08-14 2022-02-22 Soneter, Inc. Methods and apparatus for fluid flow monitoring and leak detection
US10335149B2 (en) 2015-06-18 2019-07-02 Ethicon Llc Articulatable surgical instruments with composite firing beam structures with center firing support member for articulation support
CA2895361C (en) * 2015-06-19 2023-08-01 Accutron Instruments Inc. Method and system for ultrasonic airflow measurements
TWI580932B (zh) * 2016-05-19 2017-05-01 China Steel Corp Discharge flow measurement method and flow measurement device
CN109029644B (zh) * 2018-08-15 2020-09-08 山东拙诚智能科技有限公司 一种膜式燃气表计量性能的在线监测方法
EP4043838A4 (en) * 2019-11-15 2022-11-02 Shenzhen Goodix Technology Co., Ltd. FLOW VELOCITY MEASUREMENT CIRCUIT, ASSOCIATED CHIP, AND FLOW METER

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146648A (ja) * 1998-11-17 2000-05-26 Matsushita Electric Ind Co Ltd 計測装置
JP2002350202A (ja) 2001-05-30 2002-12-04 Matsushita Electric Ind Co Ltd 流量計測装置
JP2003028685A (ja) * 2001-07-18 2003-01-29 Matsushita Electric Ind Co Ltd 流量計測装置
JP2003028688A (ja) * 2001-07-18 2003-01-29 Matsushita Electric Ind Co Ltd 流量計測装置
JP3427839B1 (ja) 2001-11-22 2003-07-22 松下電器産業株式会社 流量計測装置
JP2003247877A (ja) * 2002-02-22 2003-09-05 Matsushita Electric Ind Co Ltd 流量計測装置及び流量計測プログラム
JP2004069532A (ja) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd 計測装置
JP2004340711A (ja) * 2003-05-15 2004-12-02 Fuji Electric Fa Components & Systems Co Ltd 流量計の積算方法
JP2007286076A (ja) * 2007-08-08 2007-11-01 Matsushita Electric Ind Co Ltd 流量計
JP2010160005A (ja) * 2009-01-07 2010-07-22 Panasonic Corp 流量計測装置
JP2010181401A (ja) * 2009-01-06 2010-08-19 Panasonic Corp 流量計測装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3575050A (en) * 1968-12-04 1971-04-13 Panametrics Fluid flowmeter
US5419189A (en) * 1993-08-30 1995-05-30 Lew; Hyok S. Method for obtaining zero flowmeter reading for zero flow
TW482892B (en) * 1999-05-11 2002-04-11 Matsushita Electric Ind Co Ltd Flow rate measuring device
AUPQ041099A0 (en) 1999-05-17 1999-06-10 Email Limited Low power consumption meter
DE102004023147A1 (de) 2004-05-07 2005-11-24 Endress + Hauser Flowtec Ag, Reinach Vorrichtung zur Bestimmung und/oder Überwachung des Volumen- und/oder Massendurchflusses eines Mediums
JP4788235B2 (ja) * 2005-08-16 2011-10-05 パナソニック株式会社 流体の流れ計測装置
US7290455B2 (en) * 2005-08-22 2007-11-06 Daniel Measurement And Control, Inc. Driver configuration for an ultrasonic flow meter
EP2485015A4 (en) * 2009-09-30 2017-12-20 Panasonic Corporation Flow rate measuring device

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000146648A (ja) * 1998-11-17 2000-05-26 Matsushita Electric Ind Co Ltd 計測装置
JP2002350202A (ja) 2001-05-30 2002-12-04 Matsushita Electric Ind Co Ltd 流量計測装置
JP2003028685A (ja) * 2001-07-18 2003-01-29 Matsushita Electric Ind Co Ltd 流量計測装置
JP2003028688A (ja) * 2001-07-18 2003-01-29 Matsushita Electric Ind Co Ltd 流量計測装置
JP3427839B1 (ja) 2001-11-22 2003-07-22 松下電器産業株式会社 流量計測装置
JP2003247877A (ja) * 2002-02-22 2003-09-05 Matsushita Electric Ind Co Ltd 流量計測装置及び流量計測プログラム
JP2004069532A (ja) * 2002-08-07 2004-03-04 Matsushita Electric Ind Co Ltd 計測装置
JP2004340711A (ja) * 2003-05-15 2004-12-02 Fuji Electric Fa Components & Systems Co Ltd 流量計の積算方法
JP2007286076A (ja) * 2007-08-08 2007-11-01 Matsushita Electric Ind Co Ltd 流量計
JP2010181401A (ja) * 2009-01-06 2010-08-19 Panasonic Corp 流量計測装置
JP2010160005A (ja) * 2009-01-07 2010-07-22 Panasonic Corp 流量計測装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2631610A4 *

Also Published As

Publication number Publication date
EP2631610A4 (en) 2014-08-13
JP2012088256A (ja) 2012-05-10
JP5753970B2 (ja) 2015-07-22
US9239256B2 (en) 2016-01-19
CN103180694B (zh) 2016-03-30
EP2631610B1 (en) 2020-12-16
EP2631610A1 (en) 2013-08-28
US20130167656A1 (en) 2013-07-04
CN103180694A (zh) 2013-06-26

Similar Documents

Publication Publication Date Title
WO2012053209A1 (ja) 流量計測装置
JP5524972B2 (ja) 流量計測装置
JP5402620B2 (ja) 流量計測装置
JP4788235B2 (ja) 流体の流れ計測装置
KR100440759B1 (ko) 유량 계측 장치
WO2012081195A1 (ja) 流量計測装置
JP2001004419A (ja) 流量計
JP4835068B2 (ja) 流体の流れ計測装置
JP4973035B2 (ja) 超音波流量計
JP3427762B2 (ja) 超音波流量計
JPH0921667A (ja) 流量計測装置
JP5467332B2 (ja) 流体の流れ計測装置
RU118743U1 (ru) Ультразвуковой расходомер
JP2006214793A (ja) 流量計測装置
JP2008014800A (ja) 流量計測装置
JP4734822B2 (ja) 流量計測装置
JP4157313B2 (ja) 流量計
JP3443657B2 (ja) 流量計測装置
JP3945530B2 (ja) 流量計測装置
JP2003232663A (ja) 流量計測装置
JP5990770B2 (ja) 超音波計測装置
JP2004286762A (ja) 流量計測装置
JP2007322442A (ja) 流量計測装置
JP3399938B2 (ja) 流量測定方法及び超音波流量計
JP5548951B2 (ja) 流量計測装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180050991.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11834055

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13821879

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011834055

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE