WO2012046282A1 - 光通信システム、局側装置および加入者側装置 - Google Patents

光通信システム、局側装置および加入者側装置 Download PDF

Info

Publication number
WO2012046282A1
WO2012046282A1 PCT/JP2010/006036 JP2010006036W WO2012046282A1 WO 2012046282 A1 WO2012046282 A1 WO 2012046282A1 JP 2010006036 W JP2010006036 W JP 2010006036W WO 2012046282 A1 WO2012046282 A1 WO 2012046282A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
gain
side device
subscriber
control unit
Prior art date
Application number
PCT/JP2010/006036
Other languages
English (en)
French (fr)
Inventor
彰展 野原
隆志 西谷
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2010/006036 priority Critical patent/WO2012046282A1/ja
Priority to JP2012537496A priority patent/JP5436690B2/ja
Publication of WO2012046282A1 publication Critical patent/WO2012046282A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/693Arrangements for optimizing the preamplifier in the receiver
    • H04B10/6931Automatic gain control of the preamplifier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/66Non-coherent receivers, e.g. using direct detection
    • H04B10/69Electrical arrangements in the receiver
    • H04B10/697Arrangements for reducing noise and distortion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/40Bus networks
    • H04L12/40006Architecture of a communication node
    • H04L12/40013Details regarding a bus controller

Definitions

  • the present invention relates to an optical communication system such as a PON (Passive Optical Network) system, an optical communication system, an OLT (Optical Linear Terminal), and a subscriber side apparatus (ONU) that improve the uplink transmission efficiency. ).
  • PON Passive Optical Network
  • OLT Optical Linear Terminal
  • ONU subscriber side apparatus
  • the FTTH service is a home data communication service using optical fibers.
  • a plurality of subscriber-side devices are connected to one station-side device by optical fibers and optical couplers, and data is transmitted and received between the station-side device and each subscriber-side device. ing.
  • the transmission direction for transmitting data from the station side device to the subscriber side device is defined as downlink, and the transmission direction for transmitting data from the subscriber side device to the station side device is defined as uplink.
  • downstream data transmission is a continuous transmission system
  • upstream data transmission is a burst transmission system.
  • the burst transmission method is a transmission method in which signals on a physical medium are sent as one unit (burst).
  • data from a plurality of subscriber side devices is time-division multiplexed and transmitted to the station side device. Therefore, increasing uplink transmission efficiency is important in realizing high-speed communication.
  • JP 2008-199233 A Japanese Patent Application Laid-Open No. 2007-116587
  • the AGC period can be shortened by measuring the RTT up to the station side device and the subscriber side device and the light intensity input to the station side device.
  • the CDR period cannot be deleted.
  • Patent Document 2 reduces SyncTime by connecting a plurality of data frames when a plurality of LLIDs are provided in one subscriber side device. Therefore, there has been a problem that it is not possible to apply uplink data transmission efficiency when one subscriber-side device has one LLID.
  • the present invention has been made in order to solve the above-described problems, and it is possible to reduce the SyncTime by deleting the CDR period, and to improve the uplink bandwidth utilization efficiency. It is an object to provide a device and a subscriber side device.
  • An optical communication system includes a station-side device and a plurality of subscriber-side devices that communicate with the station-side device, and the station-side device receives data received from each subscriber-side device.
  • a frame control unit for generating a phase information notification frame for notifying the used phase adjustment amount, and an optical transmission unit for transmitting the phase information notification frame generated by the frame control unit to the subscriber side device.
  • the apparatus includes a phase control unit that performs phase adjustment on data to be transmitted to the station side device using the position adjustment amount included in the phase information notification frame from the optical transmission unit.
  • the SyncTime can be reduced by deleting the CDR period, and the uplink bandwidth utilization efficiency can be improved.
  • FIG. 1 is a block diagram showing a configuration of a PON system according to Embodiment 1.
  • FIG. 2 is a block diagram illustrating a configuration of each unit in the PON system according to the first embodiment.
  • FIG. 3 is a sequence diagram showing an operation of the PON system according to the first embodiment.
  • 6 is a diagram illustrating a configuration of a Register frame in which phase information is embedded in Embodiment 1.
  • FIG. 3 is a diagram illustrating a configuration of an uplink burst frame in Embodiment 1.
  • FIG. FIG. 6 is a block diagram illustrating a configuration of each unit in a PON system according to Embodiment 2.
  • FIG. 10 is a sequence diagram showing an operation of the PON system according to the second embodiment.
  • FIG. 10 is a block diagram illustrating another configuration of each unit in the PON system according to the second embodiment.
  • FIG. 10 is a block diagram illustrating a configuration of each unit in a PON system according to a third embodiment.
  • FIG. 10 is a sequence diagram showing an operation of the PON system according to the third embodiment.
  • FIG. 10 is a block diagram illustrating another configuration of each unit in the PON system according to Embodiment 3.
  • FIG. 10 is a block diagram illustrating another configuration of each unit in the PON system according to Embodiment 3.
  • FIG. 1 is a diagram showing a PON system according to Embodiment 1 of the present invention
  • FIG. 2 is a block diagram showing the configuration of each part.
  • the PON system includes a station-side device (OLT) 1 installed on the station side and subscriber-side devices (ONU) 2-1 to 2 installed on a plurality of premises. -N (hereinafter referred to as subscriber-side device 2).
  • the station-side device 1 and the plurality of subscriber-side devices 2 are connected via an optical fiber 3, an optical splitter 4, and optical fibers 5-1 to 5-n (hereinafter referred to as optical fiber 5).
  • the station side device 1 is connected to the host device 6 and transmits and receives the upper and lower data.
  • the subscriber side device 2 is connected to the lower level device 7 and transmits and receives upper and lower data. Note that the transmission direction from the higher level device 6 to the lower level device 7 is defined as downlink, and the transmission direction from the lower level device 7 to the higher level device 6 is defined as uplink.
  • the station apparatus 1 includes a WDM (Wavelength Division Multiplexing) coupler 101, an optical receiving unit 102, a bandwidth allocation control unit 103, a power supply control unit 104, a phase control unit 105, a frame separation unit 106, a frame control unit 107, and a downlink buffer unit 108.
  • the frame multiplexer 109 and the optical transmitter 110 are provided.
  • the WDM coupler 101 transmits uplink data from each subscriber side device 2 to the optical receiving unit 102 via the optical splitter 4, and downlink data from the optical transmission unit 110 via the optical splitter 4 to each subscriber side device. 2 is transmitted.
  • the optical receiver 102 receives uplink data from each subscriber side device 2 via the WDM coupler 101.
  • the optical receiving unit 102 includes an O / E (Optical / Electrical) converter 111, selectors 112 and 113, an intensity adjusting unit 114, and a phase adjusting unit 115.
  • O / E Optical / Electrical
  • the O / E converter 111 converts the uplink data (burst optical signal) received from each subscriber apparatus 2 via the WDM coupler 101 into an electric signal. Data converted into an electrical signal by the O / E converter 111 is transmitted to the selector 112.
  • the selectors 112 and 113 switch the transmission paths in the intensity adjusting unit 114 and the phase adjusting unit 115 based on the communication cycle with each subscriber apparatus 2 notified from the band allocation control unit 103.
  • the selectors 112 and 113 change the first transmission path (AGC circuit 116 and CDR circuit 119 described later) in FIG. (Transmission path that passes through) is selected, and in the case of a period other than the initial period, the second transmission path (transmission path that passes through the GAIN circuit 118) is selected.
  • the intensity adjustment unit 114 performs GAIN adjustment on data received from the O / E converter 111 via the selector 112.
  • the intensity adjusting unit 114 includes an AGC circuit 116, a GAIN holding unit 117, and a GAIN circuit 118.
  • the AGC circuit 116 performs GAIN adjustment on the data received from the O / E converter 111 via the selector 112.
  • the data subjected to GAIN adjustment by the AGC circuit 116 is transmitted to the phase adjustment unit 115. Further, the GAIN information indicating the GAIN amount used for the data of each subscriber side device 2 is transmitted to the GAIN holding unit 117 by the AGC circuit 116.
  • the GAIN holding unit 117 holds GAIN information for each subscriber side device 2 received from the AGC circuit 116.
  • the GAIN information held in the GAIN holding unit 117 is extracted by the GAIN circuit 118.
  • the GAIN circuit 118 extracts the corresponding GAIN amount from the GAIN holding unit 117 based on the data transmission start time and duration of each subscriber side device 2 notified from the band allocation control unit 103, and uses this GAIN amount.
  • GAIN adjustment is performed on the data received from the O / E converter 111 via the selector 112.
  • the data subjected to the GAIN adjustment by the GAIN circuit 118 is transmitted to the frame separation unit 106 via the selector 113.
  • the phase adjustment unit 115 adjusts the phase of the data received from the intensity adjustment unit 114.
  • the phase adjustment unit 115 includes a CDR circuit 119.
  • the CDR circuit 119 performs phase adjustment on the data received from the intensity adjustment unit 114.
  • the data whose phase is adjusted by the CDR circuit 119 is transmitted to the frame separation unit 106 via the selector 113.
  • the CDR circuit 119 transmits phase information indicating the phase adjustment amount used for the data of each subscriber side device to the phase control unit 105.
  • the bandwidth allocation control unit 103 determines the data transmission start time and duration of each subscriber side device 2 in the next cycle, and notifies each block (GAIN holding unit 117 and frame control unit 107). In addition, the bandwidth allocation control unit 103 notifies the Discovery Window information to each block (the selectors 112 and 113 and the power control unit 104).
  • This Discovery Window information is information (information necessary to establish a PON link) exchanged in Discovery Window (period in which the unregistered subscriber side device 2 makes a registration request to the station side device 1).
  • the Discovery Window information includes information indicating whether the communication cycle with the subscriber apparatus 2 is a discovery cycle.
  • the discovery period is a generation period of Discovery Window.
  • the power supply control unit 104 uses unused blocks (AGC circuits 116, 116) on the transmission path not selected by the selectors 112 and 113.
  • the power of the CDR circuit 119 or the GAIN circuit 118) is turned off.
  • the phase control unit 105 holds the phase information for each subscriber side device 2 received from the CDR circuit 119.
  • the phase information held in the phase control unit 105 is extracted by the frame control unit 107.
  • the frame separation unit 106 separates the data received from the selector 113 into a User frame (received data) and a control frame (Register Request frame, Register Ack frame or Report frame).
  • the User frame separated by the frame separation unit 106 is transmitted to the host device 6, and the control frame is transmitted to the frame control unit 107.
  • the frame control unit 107 When the frame control unit 107 recognizes the control frame from the frame separation unit 106, the frame control unit 107 controls the control frame (Discovery Gate frame, Register frame, or Gate frame) based on information from the band allocation control unit 103 and the phase control unit 105. Alternatively, a phase information notification frame including phase information is generated. The phase information notification frame is configured to be embedded in an empty area of the Register frame. The control frame generated by the frame control unit 107 is transmitted to the frame multiplexing unit 109.
  • the control frame Discovery Gate frame, Register frame, or Gate frame
  • the downlink buffer unit 108 temporarily accumulates downlink data received from the host device 6.
  • the downlink data (User frame) stored in the downlink buffer unit 108 is read by the frame multiplexing unit 109.
  • the frame multiplexing unit 109 multiplexes the User frame (received data) read from the downlink buffer unit 108 and the control frame (Discovery Gate frame, Register frame, or Gate frame) from the frame control unit 107.
  • the frame multiplexed by the frame multiplexing unit 109 is transmitted to the optical transmission unit 110.
  • the optical transmission unit 110 converts a frame (electric signal) from the frame multiplexing unit 109 into an optical signal.
  • the frame (downlink data) converted into an optical signal by the optical transmission unit 110 is transmitted to the WDM coupler 101.
  • the subscriber-side device 2 includes a WDM coupler 201, an optical receiving unit 202, a frame separation unit 203, a frame control unit 204, an uplink buffer unit 205, a frame multiplexing unit 206, a phase control unit 207, and an optical transmission unit 208. Yes.
  • the WDM coupler 201 transmits downlink data from the station side device 1 to the optical receiving unit 202 via the optical splitter 4, and transmits uplink data from the optical transmission unit 208 to the station side device 1 via the optical splitter 4. Is.
  • the optical receiving unit 202 receives downlink data (optical signal) from the station side device 1 via the WDM coupler 201 and converts it into an electrical signal.
  • the data converted into an electrical signal by the optical receiver 202 is transmitted to the frame separator 203.
  • the frame separation unit 203 separates the data received from the optical reception unit 202 into a User frame (reception data) and a control frame (Discovery Gate frame, Register frame or Gate frame).
  • the User frame separated by the frame separation unit 203 is transmitted to the lower apparatus 7, and the control frame is transmitted to the frame control unit 204.
  • the frame control unit 204 processes the control frame (all frames other than the User frame) from the frame separation unit 203.
  • the frame control unit 204 extracts a phase information notification frame from the Register frame and transmits the phase information to the phase control unit 207.
  • the upstream buffer unit 205 temporarily stores upstream data received from the lower device 7.
  • the uplink data (User frame) stored in the uplink buffer unit 205 is read by the frame multiplexing unit 206.
  • the frame multiplexing unit 206 multiplexes the User frame (received data) read from the uplink buffer unit 205 and the control frame (Register Request frame, Register Ack frame or Report frame) from the frame control unit 204.
  • the frame multiplexed by the frame multiplexing unit 206 is transmitted to the optical transmission unit 208.
  • the phase control unit 207 performs phase adjustment on the frame transmitted to the optical transmission unit 208 using the phase information from the frame control unit 204.
  • the optical transmission unit 208 converts the frame (electric signal) multiplexed by the frame multiplexing unit 206 and adjusted in phase by the phase control unit 207 into an optical signal.
  • the frame (uplink data) converted into an optical signal by the optical transmission unit 208 is transmitted to the WDM coupler 201.
  • FIG. 3 is a sequence diagram showing the operation of the PON system according to Embodiment 1 of the present invention.
  • MPCP Multi-Point Control Protocol
  • the station side device 1 transmits the Discovery Gate frame 11 to the unregistered subscriber side device 2 (step ST31).
  • the Discovery Gate frame 11 is a frame for notifying the registration request period from the station side device 1 to the unregistered subscriber side device 2.
  • the frame control unit 107 generates the Discovery Gate frame 11 for the unregistered subscriber side device 2.
  • the frame multiplexing unit 109 multiplexes the Discovery Gate frame 11 from the frame control unit 107 and the User frame from the downlink buffer unit 108.
  • the optical transmission unit 110 converts the frame multiplexed by the frame multiplexing unit 109 into an optical signal, and transmits the optical signal to the unregistered subscriber side device 2 via the WDM coupler 101 and the optical splitter 4.
  • the Subscriber side device 2 transmits a Register Request frame 12 to the station side device 1 (step ST32).
  • the Register Request frame 12 is a frame in which the subscriber side apparatus 2 makes a registration request.
  • the optical receiving unit 202 receives downlink data from the station side device 1 via the WDM coupler 201 and converts it into an electrical signal.
  • the frame separation unit 203 separates the data converted into the electrical signal by the optical reception unit 202 into the User frame and the Discovery Gate frame 11.
  • the frame control unit 204 recognizes the Discovery Gate frame 11 separated by the frame separation unit 203, and then generates a Register Request frame 12.
  • the frame multiplexing unit 206 multiplexes the Register Request frame 12 from the frame control unit 204 and the User frame from the uplink buffer unit 205.
  • the optical transmission unit 208 converts the frame multiplexed by the frame multiplexing unit 206 into an optical signal, and transmits the optical signal to the station side device 1 via the WDM coupler 201 and the optical splitter 4.
  • the station apparatus 1 performs GAIN adjustment and phase adjustment, and acquires GAIN information and phase information (step ST33).
  • the O / E converter 111 receives the uplink data from the subscriber side device 2 via the WDM coupler 101 and converts it into an electrical signal.
  • the selectors 112 and 113 determine that it is the first discovery cycle based on the Discovery Window information from the bandwidth allocation control unit 103, and switch to the first transmission path.
  • the power control unit 104 turns off the power of the unused block (GAIN circuit 118) based on the Discovery Window information from the band allocation control unit 103 to save energy.
  • the AGC circuit 116 performs GAIN adjustment on the data from the O / E converter 111.
  • the GAIN information by the AGC circuit 116 is held in the GAIN holding unit 117.
  • the CDR circuit 119 performs phase adjustment on the data that has been GAIN adjusted by the AGC circuit 116.
  • the phase information by the CDR circuit 119 is held in the phase control unit 105.
  • the frame separation unit 106 separates the data received from the CDR circuit 119 via the selector 113 into the User frame and the Register Request frame 12.
  • the User frame separated by the frame separation unit 106 is transmitted to the host device 6, and the Register Request frame 12 is transmitted to the frame control unit 107.
  • the station side apparatus 1 transmits the Register frame 13 and the Gate frame 14 to the subscriber side apparatus 2 (steps ST34 and 35).
  • the Register frame 13 is a frame in which an LLID for assigning an ID to the subscriber side device 2 is stored.
  • the Gate frame 14 is a frame for notifying the subscriber side device 2 of the data transmission start time and duration.
  • the bandwidth allocation control unit 103 determines the data transmission start time and duration of each subscriber side device 2 in the next cycle, and notifies the GAIN holding unit 117 and the frame control unit 107 of the data transmission start time and duration. .
  • the Discovery Window information in the next cycle is notified to the selectors 112 and 113 and the power supply control unit 104.
  • the frame control unit 107 recognizes the Register Request frame 12 and then generates the Register frame 13. Further, the Gate frame 14 is generated based on the data transmission start time and duration of each subscriber-side device 2 in the next period notified from the bandwidth allocation control unit 103. At this time, the frame control unit 107 also generates a phase information notification frame in which the phase information extracted from the phase control unit 105 is embedded in an empty area of the Register frame 13. For example, as shown in FIG. 4, a phase information notification frame is generated by embedding 1 byte in the pad / reserved band of the register frame 13.
  • the frame multiplexing unit 109 multiplexes the Register frame 13 and the Gate frame 14 in which the position information notification frame is embedded from the frame control unit 107 and the User frame from the downlink buffer unit 108.
  • the optical transmission unit 110 converts the frame multiplexed by the frame multiplexing unit 109 into an optical signal, and transmits the optical signal to the corresponding subscriber side device 2 via the WDM coupler 101 and the optical splitter 4.
  • the Register Ack frame 15 is a frame in which the subscriber side device 2 notifies the station side device 1 of the completion of registration.
  • the optical receiving unit 202 receives downlink data from the station side device 1 via the WDM coupler 201 and converts it into an electrical signal.
  • the frame separation unit 203 separates the data converted into the electrical signal by the optical reception unit 202 into the Register frame 13 and the Gate frame 14 in which the User frame and the position information notification frame are embedded.
  • the frame control unit 204 recognizes the Gate frame 14 separated by the frame separation unit 203 and then generates a Register Ack frame 15.
  • the frame control unit 204 extracts a phase information notification frame from the Register frame 13 and transmits the phase information to the phase control unit 207.
  • the frame multiplexing unit 206 multiplexes the Register Ack frame 15 from the frame control unit 204 and the User frame from the uplink buffer unit 205.
  • the phase control unit 207 performs phase adjustment on the frame transmitted to the optical transmission unit 208 using the phase information from the frame control unit 204.
  • the optical transmission unit 208 converts the frame multiplexed by the frame multiplexing unit 206 and phase-adjusted by the phase control unit 207 into an optical signal, and transmits the optical signal to the station-side apparatus 1 via the WDM coupler 201 and the optical splitter 4. To do.
  • the station side apparatus 1 performs GAIN adjustment (step ST38).
  • the O / E converter 111 receives the uplink data from the subscriber side device 2 via the WDM coupler 101 and converts it into an electrical signal.
  • the selectors 112 and 113 determine that it is not the first discovery cycle based on the Discovery Window information from the bandwidth allocation control unit 103, and switch to the second transmission path.
  • the power supply control unit 104 turns off the power of unused blocks (AGC circuit 116 and CDR circuit 119) based on the Discovery Window information from the band allocation control unit 103 to save energy.
  • the GAIN circuit 118 extracts the corresponding GAIN amount from the GAIN holding unit 117 based on the data transmission start time and duration of each subscriber side device 2 notified from the band allocation control unit 103, and this GAIN The GAIN adjustment is performed on the data from the O / E converter 111 using the amount.
  • the frame separation unit 106 separates the data received from the GAIN circuit 118 via the selector 113 into the User frame and the Register Ack frame 15. The User frame separated by the frame separation unit 106 is transmitted to the host device 6, and the Register Ack frame 15 is transmitted to the frame control unit 107.
  • the frame control unit 107 recognizes the Register Ack frame 15, generates a Gate frame, and then becomes a Gate-Report sequence. In the light intensity adjustment and the phase adjustment in the Gate-Report sequence, the GAIN amount and the phase adjustment amount extracted in the first discovery cycle are reflected.
  • a phase adjustment (CDR) ) Period 22 data transmission (Data) period 23, and laser falling (Loff: Laser Off) period 24.
  • the AGC period 21 and the CDR period 22 are a synchronization period (SyncTime) 25, and data cannot be transmitted within the SyncTime 25.
  • the light intensity adjustment by the AGC circuit and the phase adjustment by the CDR circuit need to be performed every cycle, and the SyncTime 25 needs to be provided every cycle. Efficiency will be low.
  • the light intensity adjustment by the AGC circuit 116 and the phase adjustment by the CDR circuit 119 are performed only in the first discovery cycle, and thereafter extraction is performed. The GAIN amount and phase adjustment amount are reflected. For this reason, the SyncTime 25 after the first discovery cycle can be deleted, and the data transmission amount can be increased, so that the utilization efficiency of the upstream band can be improved.
  • the phase information notification frame is embedded in the free area of the Register frame 13.
  • the present invention is not limited to this, and the phase information notification frame is embedded in the free area of the Gate frame 14.
  • the phase information notification frame may be configured as a frame of another format.
  • the light intensity adjustment by the AGC circuit 116 and the phase adjustment by the CDR circuit 119 are performed only in the first discovery cycle.
  • the present invention is not limited to this.
  • the discovery cycle The light intensity adjustment by the AGC circuit 116 and the phase adjustment by the CDR circuit 119 may be performed at predetermined intervals such as every time. Thereby, more stable synchronization can be realized.
  • Embodiment 2 FIG. In the first embodiment, the GAIN amount and the phase control amount extracted in the first discovery cycle are used to perform the subsequent GAIN adjustment and phase adjustment. In the second embodiment, the GAIN amount and the phase control amount are used. A method for updating the period is described.
  • FIG. 6 is a block diagram showing the configuration of each part in the PON system according to the second embodiment.
  • the GAIN holding unit 117 is deleted from the intensity adjusting unit 114 in the first embodiment shown in FIG. 2, and the light intensity monitor 120 and the GAIN control unit (GAIN holding unit) 121 are deleted. Is added.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the light intensity monitor 120 calculates the GAIN amount required for the GAIN adjustment based on data received from the O / E converter 111 via the selector 112.
  • the light intensity monitor 120 transmits GAIN information indicating the GAIN amount calculated based on the data of each subscriber side device 2 to the GAIN control unit 121.
  • the data input to the light intensity monitor 120 is transmitted to the GAIN circuit 118 as it is.
  • the GAIN control unit 121 holds GAIN information for each subscriber-side device 2 received from the AGC circuit 116 or the light intensity monitor 120.
  • the GAIN information held in the GAIN control unit 121 is extracted by the GAIN circuit 118.
  • the selectors 112 and 113 select the first transmission path (transmission path that passes through the AGC circuit 116 and the CDR circuit 119) in FIG. 6 when the communication period with the subscriber side apparatus 2 is the first discovery period.
  • a second transmission path (a path that passes through the light intensity monitor 120 and the GAIN circuit 118, passes through the CDR circuit 119 and terminates, and a path that does not pass through the CDR circuit 119) Select the transmission route that branches to.
  • the GAIN circuit 118 uses the GAIN amount of the previous cycle extracted from the GAIN control unit 121 for the current cycle data received from the O / E converter 111 via the selector 112 and the light intensity monitor 120 to perform the GAIN. Make adjustments.
  • the data subjected to GAIN adjustment by the GAIN circuit 118 is branched into two, one being transmitted to the CDR circuit 119 and the other being transmitted to the frame separation unit 106 via the selector 113.
  • the CDR circuit 119 performs phase adjustment on the data received from the AGC circuit 116 or the GAIN circuit 118. Note that the data from the AGC circuit 116 is transmitted to the frame separation unit 106 via the selector 113 after phase adjustment. On the other hand, the data from the GAIN circuit 118 is terminated after the phase adjustment.
  • FIG. 7 is a sequence diagram showing the operation of the PON system according to Embodiment 2 of the present invention.
  • a case where an MPCP Discovery sequence is used as a method for performing phase synchronization will be described.
  • the operations of steps ST71 and 72 of the PON system according to Embodiment 2 shown in FIG. 7 are the same as the operations of Steps ST31 and 32 of the PON system according to Embodiment 1 shown in FIG. Omitted.
  • step ST73 the station apparatus 1 performs GAIN adjustment and phase adjustment, and acquires GAIN information and phase information.
  • the O / E converter 111 receives the uplink data from the subscriber side apparatus 2 via the WDM coupler 101 and converts it into an electrical signal.
  • the selectors 112 and 113 determine that it is the first discovery cycle based on the Discovery Window information from the bandwidth allocation control unit 103, and select the first transmission path.
  • the power supply control unit 104 turns off power to unused blocks (the GAIN circuit 118 and the light intensity monitor 120) on the basis of the Discovery Window information from the band allocation control unit 103 to save energy.
  • the AGC circuit 116 performs GAIN adjustment on the data from the O / E converter 111.
  • the GAIN information by the AGC circuit 116 is held in the GAIN control unit 121.
  • the CDR circuit 119 performs phase adjustment on the data that has been GAIN adjusted by the AGC circuit 116.
  • the phase information by the CDR circuit 119 is held in the phase control unit 105.
  • the frame separation unit 106 separates the data received from the CDR circuit 119 via the selector 113 into the User frame and the Register Request frame 12.
  • the User frame separated by the frame separation unit 106 is transmitted to the host device 6, and the Register Request frame 12 is transmitted to the frame control unit 107.
  • the station side apparatus 1 transmits the Register frame 13 and the Gate frame 14 to the subscriber side apparatus 2 (steps ST74 and 75).
  • the bandwidth allocation control unit 103 determines the data transmission start time and duration of each subscriber side apparatus 2 in the next period, and notifies the GAIN control unit 121 and the frame control unit 107 of the data transmission start time and duration. .
  • the Discovery Window information in the next cycle is notified to the selectors 112 and 113 and the power supply control unit 104.
  • the frame control unit 107 recognizes the Register Request frame 12 and then generates the Register frame 13. Further, the Gate frame 14 is generated based on the data transmission start time and duration of each subscriber-side device 2 in the next period notified from the bandwidth allocation control unit 103. At this time, the frame control unit 107 also generates a phase information notification frame in which the phase information extracted from the phase control unit 105 is embedded in an empty area of the Gate frame 14. For example, as shown in FIG. 8, the phase information notification frame is generated by embedding 1 byte in the Pad / Reserved band of the Gate frame 14.
  • the frame multiplexing unit 109 multiplexes the Gate frame 14 embedded with the Register frame 13 and the position information notification frame from the frame control unit 107 and the User frame from the downlink buffer unit 108.
  • the optical transmission unit 110 converts the frame multiplexed by the frame multiplexing unit 109 into an optical signal, and transmits the optical signal to the corresponding subscriber side device 2 via the WDM coupler 101 and the optical splitter 4.
  • the subscriber side device 2 performs phase adjustment and transmits a Register Ack frame 15 to the station side device 1 (steps ST76 and 77).
  • the optical receiving unit 202 receives downlink data from the station side device 1 via the WDM coupler 201 and converts it into an electrical signal.
  • the frame separation unit 203 separates the data converted into the electric signal by the optical reception unit 202 into the User frame, the Register frame 13 and the Gate frame 14 in which the position information notification frame is embedded.
  • the frame control unit 204 recognizes the Gate frame 14 separated by the frame separation unit 203 and then generates a Register Ack frame 15.
  • the frame control unit 204 extracts the phase information notification frame from the Gate frame 14 and transmits the phase information to the phase control unit 207.
  • the frame multiplexing unit 206 multiplexes the Register Ack frame 15 from the frame control unit 204 and the User frame from the uplink buffer unit 205.
  • the phase control unit 207 performs phase adjustment on the frame transmitted to the optical transmission unit 208 using the phase information from the frame control unit 204.
  • the optical transmission unit 208 converts the frame multiplexed by the frame multiplexing unit 206 and phase-adjusted by the phase control unit 207 into an optical signal, and transmits the optical signal to the station-side apparatus 1 via the WDM coupler 201 and the optical splitter 4. To do.
  • the station apparatus 1 performs GAIN adjustment and updates the GAIN amount and the phase adjustment amount (step ST78).
  • the O / E converter 111 receives the uplink data from the subscriber side apparatus 2 via the WDM coupler 101 and converts it into an electrical signal.
  • the selectors 112 and 113 determine that it is not the first discovery cycle based on the Discovery Window information from the bandwidth allocation control unit 103, and switch to the second transmission path.
  • the power control unit 104 turns off the power of the unused block (AGC circuit 116) based on the Discovery Window information from the band allocation control unit 103 to save energy.
  • the light intensity monitor 120 calculates the GAIN amount required for the GAIN adjustment based on the data received from the O / E converter 111 via the selector 112 and notifies the GAIN control unit 121 of the GAIN information.
  • the data input to the light intensity monitor 120 is transmitted to the GAIN circuit 118 as it is.
  • the GAIN circuit 118 extracts the GAIN amount of the corresponding previous period from the GAIN control unit 121 based on the data transmission start time and duration of each subscriber side device 2 notified from the band allocation control unit 103. Using this GAIN amount, GAIN adjustment is performed on the data of the current cycle received from the O / E converter 111 via the light intensity monitor 120.
  • the data subjected to GAIN adjustment by the GAIN circuit 118 is branched into two, one being transmitted to the CDR circuit 119 and the other being transmitted to the frame separation unit 106 via the selector 113.
  • the GAIN control unit 121 updates the GAIN information by overwriting the GAIN information of the current cycle from the light intensity monitor 120 with the GAIN information of the previous cycle held.
  • the CDR circuit 119 extracts the phase adjustment amount based on the data received from the GAIN circuit 118, notifies the phase information to the phase control unit 105, and terminates.
  • the phase control unit 105 updates the phase information by overwriting the phase information of the current cycle from the CDR circuit 119 over the held previous phase information.
  • the frame separation unit 106 separates the data received from the GAIN circuit 118 via the selector 113 into the User frame and the Register Ack frame 15.
  • the User frame separated by the frame separation unit 106 is transmitted to the host device 6, and the Register Ack frame 15 is transmitted to the frame control unit 107.
  • the frame control unit 107 recognizes the Register Ack frame 15 and then generates the Gate frame 14, and thereafter becomes a Gate-Report sequence.
  • the Gate-Report sequence in the light intensity adjustment, the GAIN amount in the current cycle calculated by the light intensity monitor 120 is reflected in the GAIN circuit 118 in the next cycle, so that the GAIN amount is updated every cycle.
  • the phase adjustment amount is updated every cycle by transmitting the phase adjustment amount extracted by the CDR circuit 119 to the ONU 5 every cycle.
  • the data from each subscriber side device 2 passes through the light intensity monitor 120 and GAIN.
  • the data is branched into two at the front stage of the light intensity monitor 120, and one data is input to the GAIN circuit 118.
  • the GAIN adjustment using the GAIN amount may be performed, and the other data may be input to the light intensity monitor 120 to calculate the GAIN amount for the current cycle.
  • Embodiment 3 In the first embodiment, a method for obtaining the GAIN amount and the phase adjustment amount only in the case of the first discovery cycle is described, and in the second embodiment, a method for updating the GAIN amount and the phase adjustment amount every cycle has been described. In the third embodiment, a method of updating the phase adjustment amount when a bit error is detected during data transmission / reception will be described.
  • FIG. 10 is a block diagram showing the configuration of each part in the PON system according to the third embodiment.
  • the PON system according to the third embodiment shown in FIG. 10 is obtained by adding an error monitoring unit 122 and a selector 123 to the station side apparatus 1 in the second embodiment shown in FIG.
  • Other configurations are the same, and the same reference numerals are given and description thereof is omitted.
  • the error monitoring unit 122 monitors the data received from the optical receiving unit 102 and detects a bit error. Here, when a bit error is detected, the error monitoring unit 122 notifies the frame control unit 107 to that effect and a phase readjustment instruction. Further, the data input to the error monitoring unit 122 is transmitted to the frame separation unit 106 as it is.
  • the frame control unit 107 requests transmission of a frame including SyncTime in order to perform phase readjustment when a phase readjustment instruction is notified from the error monitoring unit 122. It has a function of generating a Gate frame. The frame control unit 107 also notifies the band allocation control unit 103 of the phase readjustment instruction from the error monitoring unit 122.
  • the bandwidth allocation control unit 103 transmits a transmission path that passes through the CDR circuit 119 when a phase readjustment instruction is notified from the error monitoring unit 122 via the frame control unit 107. To the selector 123. At this time, the power control unit 104 is notified of a change in unused blocks.
  • the selector 123 switches the transmission path in the phase adjustment unit 115 in accordance with an instruction from the band allocation control unit 103.
  • the selector 123 selects the second transmission path (transmission path that does not pass through the CDR circuit 119) in FIG. If an error is detected, the third transmission path (transmission path passing through the CDR circuit 119) is selected.
  • FIG. 11 is a sequence diagram showing the operation of the PON system according to Embodiment 3 of the present invention.
  • a case where an MPCP Discovery sequence is used as a method for performing phase synchronization will be described.
  • the operations of steps ST111 to ST117 of the PON system according to the third embodiment shown in FIG. 11 are the same as the operations of steps ST71 to 77 of the PON system according to the second embodiment shown in FIG. Omitted.
  • step ST118 the station side apparatus 1 performs GAIN adjustment and updates the GAIN amount.
  • the O / E converter 111 receives the uplink data from the subscriber side apparatus 2 via the WDM coupler 101 and converts it into an electrical signal.
  • the selectors 112 and 113 determine that it is not the first discovery cycle based on the Discovery Window information from the bandwidth allocation control unit 103, and switch to the second transmission path.
  • the selector 123 switches to the second transmission path according to the instruction from the bandwidth allocation control unit 103 if no bit error is detected by the error monitoring unit 122.
  • the power control unit 104 turns off the power of unused blocks (the AGC circuit 116 and the CDR circuit 119) based on the Discovery Window information from the band allocation control unit 103 to save energy.
  • the light intensity monitor 120 calculates the GAIN amount required for the GAIN adjustment based on the data received from the O / E converter 111 via the selector 112 and notifies the GAIN control unit 121 of the GAIN information.
  • the data input to the light intensity monitor 120 is transmitted to the GAIN circuit 118 as it is.
  • the GAIN circuit 118 extracts the GAIN amount of the corresponding previous period from the GAIN control unit 121 based on the data transmission start time and duration of each subscriber side device 2 notified from the band allocation control unit 103. Using this GAIN amount, GAIN adjustment is performed on the data of the current cycle received from the O / E converter 111 via the light intensity monitor 120.
  • the GAIN control unit 121 updates the GAIN information by overwriting the GAIN information of the current cycle from the light intensity monitor 120 to the GAIN information of the previous cycle held.
  • the error monitoring unit 122 monitors the data received from the optical receiving unit 102 and performs bit error detection.
  • the error monitoring unit 122 determines that there is no bit error, the error monitoring unit 122 transmits this data to the frame separation unit 106.
  • the frame control unit 107 is notified of this and a phase readjustment instruction. The phase readjustment operation after this bit error detection will be described later.
  • the frame separation unit 106 separates the data received from the error monitoring unit 122 into a User frame and a Register Ack frame 15. The User frame separated by the frame separation unit 106 is transmitted to the host device 6, and the Register Ack frame 15 is transmitted to the frame control unit 107.
  • the frame control unit 107 recognizes the Register Ack frame 15, generates a Gate frame, and then becomes a Gate-Report sequence.
  • the gate-report sequence in the light intensity adjustment, as in the second embodiment, the GAIN amount calculated by the light intensity monitor 120 in the current cycle is reflected in the GAIN circuit 118 in the next cycle to update the GAIN amount. Is performed every cycle.
  • the phase adjustment after the phase adjustment is performed in the first discovery cycle, the phase adjustment amount extracted in the first discovery cycle is reflected until a bit error is detected by the error monitoring unit 122.
  • phase readjustment is performed and the phase adjustment amount is updated.
  • phase readjustment when a bit error is detected by the error monitoring unit 122 will be described. In the following, the phase readjustment after the transition to the Gate-Report sequence will be described with reference to the sequence shown in FIG.
  • the station side apparatus 1 first transmits the Gate frame 16 to the subscriber side apparatus 2 (step ST119).
  • the frame control unit 107 when notified of the phase readjustment instruction from the error monitoring unit 122, generates the Gate frame 16 for requesting transmission of a frame including SyncTime.
  • the frame multiplexing unit 109 multiplexes the Gate frame 16 from the frame control unit 107 and the User frame from the downlink buffer unit 108.
  • the optical transmission unit 110 converts the frame multiplexed by the frame multiplexing unit 109 into an optical signal, and transmits the optical signal to the corresponding subscriber side device 2 via the WDM coupler 101 and the optical splitter 4.
  • the subscriber side apparatus 2 transmits a Report frame 17 to the station side apparatus 1 (step ST120).
  • the optical receiving unit 202 receives downlink data from the station side device 1 via the WDM coupler 201 and converts it into an electrical signal.
  • the frame separation unit 203 separates the data converted into the electrical signal by the optical reception unit 202 into the User frame and the Gate frame 16.
  • the frame control unit 204 After recognizing the Gate frame 16 separated by the frame separation unit 203, the frame control unit 204 generates a Report frame 17 provided with a SyncTime region for performing phase readjustment.
  • the frame multiplexing unit 206 multiplexes the Report frame 17 from the frame control unit 204 and the User frame from the uplink buffer unit 205.
  • the optical transmission unit 208 converts the frame multiplexed by the frame multiplexing unit 206 into an optical signal, and transmits the optical signal to the station side device 1 via the WDM coupler 201 and the optical splitter 4.
  • step ST121 the station side apparatus 1 performs GAIN adjustment and phase readjustment, and updates the GAIN amount and the phase adjustment amount (step ST121).
  • step ST121 first, the selector 123 switches to the third transmission path in accordance with an instruction from the bandwidth allocation control unit 103. Thereby, the data from the subscriber side device 2 is GAIN adjusted by the GAIN circuit 118 and then transmitted to the CDR circuit 119. Further, the power supply control unit 104 turns off the power of the unused block (AGC circuit 116) in accordance with the instruction from the band allocation control unit 103 to save energy.
  • the CDR circuit 119 performs phase readjustment on the data that has been GAIN adjusted by the GAIN circuit 118.
  • the phase information from the CDR circuit 119 is transmitted to the phase control unit 105.
  • the phase control unit 105 updates the phase information by overwriting the phase information from the CDR circuit 119 on the held phase information.
  • the error monitoring unit 122 confirms that there is no bit error in the data received from the CDR circuit 119 via the selector 113, and transmits this data to the frame separation unit 106.
  • the frame separation unit 106 separates the data received from the error monitoring unit 122 into the User frame and the Report frame 17.
  • the User frame separated by the frame separation unit 106 is transmitted to the host device 6, and the Report frame 17 is transmitted to the frame control unit 107.
  • the station side device 1 transmits the Gate frame 18 to the subscriber side device 2 (step ST122).
  • the frame control unit 107 recognizes the report frame 17, and then generates the gate frame 18.
  • the frame control unit 107 also generates a phase information notification frame in which the phase information extracted from the phase control unit 105 is embedded in an empty area of the Gate frame 18.
  • the frame multiplexing unit 109 multiplexes the Gate frame 18 embedded with the position information notification frame from the frame control unit 107 and the User frame from the downlink buffer unit 108.
  • the optical transmission unit 110 converts the frame multiplexed by the frame multiplexing unit 109 into an optical signal, and transmits the optical signal to the corresponding subscriber side device 2 via the WDM coupler 101 and the optical splitter 4.
  • the subscriber side apparatus 2 performs phase adjustment and transmits the Report frame 19 to the station side apparatus 1 (steps ST123 and 124).
  • the optical receiving unit 202 receives downlink data from the station side device 1 via the WDM coupler 201 and converts it into an electrical signal.
  • the frame separation unit 203 separates the data converted into the electrical signal by the optical reception unit 202 into the User frame and the Gate frame 18 in which the position information notification frame is embedded.
  • the frame control unit 204 recognizes the Gate frame 18 separated by the frame separation unit 203 and then generates the Report frame 19. Further, the frame control unit 204 extracts the phase information notification frame from the Gate frame 18 and transmits the phase information to the phase control unit 207.
  • the frame multiplexing unit 206 multiplexes the Report frame 19 from the frame control unit 204 and the User frame from the uplink buffer unit 205.
  • the phase control unit 207 performs phase adjustment on the frame transmitted to the optical transmission unit 208 using the phase information from the frame control unit 204.
  • the optical transmission unit 208 converts the frame multiplexed by the frame multiplexing unit 206 and phase-adjusted by the phase control unit 207 into an optical signal, and transmits the optical signal to the station-side apparatus 1 via the WDM coupler 201 and the optical splitter 4. To do.
  • the station side apparatus 1 performs GAIN adjustment and updates the GAIN amount (step ST125).
  • the O / E converter 111 receives the uplink data from the subscriber side device 2 via the WDM coupler 101 and converts it into an electrical signal.
  • the selector 123 switches to the second transmission path according to the instruction from the bandwidth allocation control unit 103.
  • the power control unit 104 turns off power to unused blocks (the AGC circuit 116 and the CDR circuit 119) to save energy.
  • the light intensity monitor 120 calculates the GAIN amount required for the GAIN adjustment based on the data received from the O / E converter 111 via the selector 112 and notifies the GAIN control unit 121 of the GAIN information.
  • the data input to the light intensity monitor 120 is transmitted to the GAIN circuit 118 as it is.
  • the GAIN circuit 118 extracts the GAIN amount of the corresponding previous period from the GAIN control unit 121 based on the data transmission start time and duration of each subscriber side device 2 notified from the band allocation control unit 103. Using this GAIN amount, GAIN adjustment is performed on the data of the current cycle received from the O / E converter 111 via the light intensity monitor 120.
  • the GAIN control unit 121 updates the GAIN information by overwriting the GAIN information of the current cycle from the light intensity monitor 120 with the GAIN information of the previous cycle held.
  • the error monitoring unit 122 monitors the data received from the optical receiving unit 102 and performs bit error detection.
  • the error monitoring unit 122 determines that there is no bit error, the error monitoring unit 122 transmits this data to the frame separation unit 106.
  • a phase readjustment instruction is issued again.
  • the frame separation unit 106 separates the data received from the error monitoring unit 122 into the User frame and the Report frame 19.
  • the User frame separated by the frame separation unit 106 is transmitted to the host device 6, and the Report frame 19 is transmitted to the frame control unit 107.
  • the frame control unit 107 recognizes the Report frame 19, generates a Gate frame, and becomes a Gate-Report sequence again.
  • phase adjustment amount is updated when a bit error is detected, in addition to the effects in the first embodiment, stable synchronization can be realized. Can do.
  • the error monitoring unit 122 is provided so that the phase adjustment amount is updated when a bit error is detected.
  • the difference between the GAIN amount of the previous period held and the GAIN amount of the current period calculated by the light intensity monitor 120 is compared with a predetermined threshold, and if the difference is equal to or greater than the threshold, the CDR circuit You may comprise so that the phase readjustment by 119 may be performed.
  • the conventional intensity adjusting unit 114b that performs GAIN adjustment every cycle by the AGC circuit 116 is connected to the GAIN amount of the previous cycle and the GAIN amount of the current cycle used by the AGC circuit 116.
  • a GAIN control unit 121b that compares the difference with a predetermined threshold may be provided, and the phase readjustment by the CDR circuit 119 may be performed when the difference is equal to or greater than the threshold.
  • stable synchronization can also be realized by updating the phase adjustment amount based on the amount of change between the GAIN amount in the previous cycle and the GAIN amount in the current cycle.
  • the MPCP sequence has been described as the phase synchronization method.
  • the present invention is not limited to this, and may be applied to the OAM defined in the PON system. Alternatively, it may be applied to a unique sequence that is not defined in the PON system.
  • the present invention is not limited to this, and the present invention can be similarly applied to other general optical communication systems.
  • any constituent element of the embodiment can be modified or any constituent element of the embodiment can be omitted within the scope of the invention.
  • the optical communication system according to the present invention can reduce the SyncTime by deleting the CDR period, can improve the uplink bandwidth utilization efficiency, and performs communication between the station side device and the station side device. It is suitable for use in an optical communication system including a plurality of subscriber side devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)

Abstract

 局側装置1は、各加入者側装置2から受信したデータに対して位相調整を行うCDR回路119と、各加入者側装置2から受信したデータの送信経路として、CDR回路119を通過する送信経路またはCDR回路119を通過しない送信経路を選択するセレクタ112,113と、CDR回路119による位相調整で用いられた位相調整量を通知する位相情報通知フレームを生成するフレーム制御部107と、フレーム制御部107により生成された位相情報通知フレームを加入者側装置2に送信する光送信部110とを備え、加入者側装置2は、光送信部110からの位相情報通知フレームに含まれる位置調整量を用いて、局側装置1に送信するデータに対して位相調整を行う位相制御部207を備えた。

Description

光通信システム、局側装置および加入者側装置
 この発明は、PON(Passive Optical Network)システムなどの光通信システムにおいて、上り伝送効率向上を図った光通信システム、局側装置(OLT:Optical Linear Terminal)および加入者側装置(ONU:Optical Network Unit)に関するものである。
 近年、インターネットの普及により、一本の光ファイバを複数の加入者宅に引き込むPON技術が発展してきている。中でも主流であるFTTH(Fiber To The Home)サービスの利用者が増加している。
 FTTHサービスとは、光ファイバによる家庭向けのデータ通信サービスである。構成としては、1つの局側装置に対して複数の加入者側装置が光ファイバおよび光カプラにより接続されたものであり、局側装置と各加入者側装置との間でデータの送受信を行っている。
 なお、局側装置から加入者側装置へデータを伝送する伝送方向を下り、加入者側装置から局側装置へデータを伝送する伝送方向を上りと定義する。
 現状のPONシステムでは、下りのデータ伝送は連続伝送方式であるのに対して、上りのデータ伝送はバースト伝送方式である。バースト伝送方式とは、物理媒体上での信号が1つの固まり(バースト)として送られる伝送方式である。
 この上りのデータ伝送では、複数の加入者側装置からのデータを時分割多重して局側装置に伝送している。そのため、上りの伝送効率を上げることが高速通信化を実現する上で重要となる。
 一方、上りのデータ伝送では、加入者側装置毎に通信距離が異なるため、光強度と位相の異なるバーストが送られてくる。そのため、先頭でビット同期を取り直すため、光強度調整(AGC:Automatic Gain Control)期間および位相調整(CDR:Clock and Data Recovery)期間である同期期間(SyncTime)を設ける必要がある。
 そこで、特許文献1では、局側装置と加入者側装置までの往復時間であるRTT(Round Trip Time)および局側装置に入力する光強度を計測し、AGC回路に計測値に応じた初期GAINをプリセットすることで、AGC期間を短縮している。これにより、SyncTimeを従来よりも短縮することができ、上り帯域の有効利用を図ることができる。
 また、特許文献2では、1つの加入者側装置に複数の論理リンク情報(LLID:Logical Link ID)を設けた場合に、加入者側装置が複数のデータフレームを連結して送信している。これにより、SyncTimeを削減することができ、上り帯域の有効利用を図ることができる。
特開2008-199233号公報 特開2007-116587号公報
 上記のように、従来のPONシステムを適応した光通信システムでは、加入者側装置毎に光強度と位相が異なるバーストが送られてくるため、AGC期間およびCDR期間であるSyncTimeが必要となる。しかしながら、このSyncTimeの期間にはデータを送信することができず、伝送効率を下げる働きをしてしまうため、上り帯域の有効利用が図れないという課題があった。
 また、特許文献1の技術では、局側装置と加入者側装置までのRTTと局側装置に入力する光強度を計測することで、AGC期間を短縮することができる。しかしながら、CDR期間を削除することはできないという課題があった。
 また、特許文献2の技術は、1つの加入者側装置に複数のLLIDを設けた場合に、複数のデータフレームを連結することで、SyncTimeを削減している。したがって、1つの加入者側装置に1つのLLIDを持たせた場合における上りデータ伝送効率化については適用することができないという課題があった。
 この発明は、上記のような課題を解決するためになされたもので、CDR期間を削除することでSyncTimeを削減することができ、上り帯域利用効率を向上させることができる光通信システム、局側装置および加入者側装置を提供することを目的としている。
 この発明に係る光通信システムは、局側装置と、局側装置との間で通信を行う複数の加入者側装置とを備え、局側装置は、各加入者側装置から受信したデータに対して位相調整を行うCDR回路と、各加入者側装置から受信したデータの送信経路として、CDR回路を通過する送信経路またはCDR回路を通過しない送信経路を選択するセレクタと、CDR回路による位相調整で用いられた位相調整量を通知する位相情報通知フレームを生成するフレーム制御部と、フレーム制御部により生成された位相情報通知フレームを加入者側装置に送信する光送信部とを備え、加入者側装置は、光送信部からの位相情報通知フレームに含まれる位置調整量を用いて、局側装置に送信するデータに対して位相調整を行う位相制御部を備えたものである。
 この発明によれば、上記のように構成したので、CDR期間を削除することでSyncTimeを削減することができ、上り帯域利用効率を向上させることができる。
実施の形態1に係るPONシステムの構成を示すブロック図である。 実施の形態1に係るPONシステム内の各部の構成を示すブロック図である。 実施の形態1に係るPONシステムの動作を示すシーケンス図である。 実施の形態1における位相情報を埋め込んだRegisterフレームの構成を示す図である。 実施の形態1における上りバーストフレームの構成を示す図である。 実施の形態2に係るPONシステム内の各部の構成を示すブロック図である。 実施の形態2に係るPONシステムの動作を示すシーケンス図である。 実施の形態2における位相情報を埋め込んだGateフレームの構成を示す図である。 実施の形態2に係るPONシステム内の各部の別の構成を示すブロック図である。 実施の形態3に係るPONシステム内の各部の構成を示すブロック図である。 実施の形態3に係るPONシステムの動作を示すシーケンス図である。 実施の形態3に係るPONシステム内の各部の別の構成を示すブロック図である。 実施の形態3に係るPONシステム内の各部の別の構成を示すブロック図である。
 以下、この発明の実施の形態について図面を参照しながら詳細に説明する。
実施の形態1.
 図1はこの発明の実施の形態1に係るPONシステムを示す図であり、図2は各部の構成を示すブロック図である。
 PONシステムは、図1,2に示すように、局舎側に設置される局側装置(OLT)1と、複数の宅内側にそれぞれ設置される加入者側装置(ONU)2-1~2-n(以下、加入者側装置2と示す)とを備えている。
 この局側装置1と複数の加入者側装置2は、光ファイバ3、光スプリッタ4および光ファイバ5-1~5-n(以下、光ファイバ5と示す)を介して接続され、上下データの送受信を行う。
 また、図2に示すように、局側装置1は上位装置6と接続され、上下データの送受信を行う。また、加入者側装置2は下位装置7と接続され、上下データの送受信を行う。
 なお、上位装置6から下位装置7への伝送方向を下り、下位装置7から上位装置6への伝送方向を上りと定義する。
 局側装置1は、WDM(Wavelength Division Multiplexing)カプラ101、光受信部102、帯域割当制御部103、電源制御部104、位相制御部105、フレーム分離部106、フレーム制御部107、下りバッファ部108、フレーム多重部109および光送信部110を備えている。
 WDMカプラ101は、光スプリッタ4を介して各加入者側装置2からの上りデータを光受信部102に送信し、光送信部110からの下りデータを光スプリッタ4を介して各加入者側装置2に送信するものである。
 光受信部102は、WDMカプラ101を介して各加入者側装置2からの上りデータを受信するものである。この光受信部102は、O/E(Optical/Electrical)変換器111、セレクタ112,113、強度調整部114および位相調整部115を備えている。
 O/E変換器111は、WDMカプラ101を介して各加入者側装置2から受信した上りデータ(バースト光信号)を電気信号に変換するものである。O/E変換器111により電気信号に変換されたデータはセレクタ112に送信される。
 セレクタ112,113は、帯域割当制御部103から通知された各加入者側装置2との通信周期に基づいて、強度調整部114内および位相調整部115内の送信経路を切り替えるものである。ここで、セレクタ112,113は、加入者側装置2との通信周期が初回周期(最初のdiscovery周期)の場合には、図2の第1送信経路(後述するAGC回路116およびCDR回路119を通過する送信経路)を選択し、初回周期以外の周期の場合には、第2送信経路(GAIN回路118を通過する送信経路)を選択する。
 強度調整部114は、セレクタ112を介してO/E変換器111から受信したデータに対してGAIN調整を行うものである。この強度調整部114は、AGC回路116、GAIN保持部117およびGAIN回路118を備えている。
 AGC回路116は、セレクタ112を介してO/E変換器111から受信したデータに対してGAIN調整を行うものである。このAGC回路116によりGAIN調整されたデータは位相調整部115に送信される。また、AGC回路116により、各加入者側装置2のデータに対して用いられたGAIN量を示すGAIN情報は、GAIN保持部117に送信される。
 GAIN保持部117は、AGC回路116から受信した加入者側装置2毎のGAIN情報を保持するものである。このGAIN保持部117に保持されているGAIN情報はGAIN回路118により抽出される。
 GAIN回路118は、帯域割当制御部103から通知された各加入者側装置2のデータ送信開始時間および継続時間に基づいて、GAIN保持部117から該当するGAIN量を抽出し、このGAIN量を用いて、セレクタ112を介してO/E変換器111から受信したデータに対してGAIN調整を行うものである。このGAIN回路118によりGAIN調整されたデータはセレクタ113を介してフレーム分離部106に送信される。
 位相調整部115は、強度調整部114から受信したデータに対して位相調整を行うものである。この位相調整部115は、CDR回路119を備えている。
 CDR回路119は、強度調整部114から受信したデータに対して位相調整を行うものである。このCDR回路119により位相調整されたデータはセレクタ113を介してフレーム分離部106に送信される。また、CDR回路119により、各加入者側装置のデータに対して用いられた位相調整量を示す位相情報は、位相制御部105に送信される。
 帯域割当制御部103は、次の周期での各加入者側装置2のデータ送信開始時間および継続時間を決定し、各ブロック(GAIN保持部117およびフレーム制御部107)に通知するものである。また、帯域割当制御部103は、Discovery Window情報を各ブロック(セレクタ112,113および電源制御部104)に通知する。
 このDiscovery Window情報とは、Discovery Window(未登録の加入者側装置2が局側装置1に登録要請を行う期間)でやり取りする情報(PONリンクを確立するのに必要となる情報)である。このDiscovery Window情報には、加入者側装置2との通信周期がdiscovery周期であるかを示す情報が含まれている。なお、discovery周期とは、Discevery Windowの生成周期である。
 電源制御部104は、帯域割当制御部103から通知された各加入者側装置2との通信周期に基づいて、セレクタ112,113により選択されていない送信経路上の未使用ブロック(AGC回路116、CDR回路119またはGAIN回路118)の電源をOFFにするものである。
 位相制御部105は、CDR回路119から受信した加入者側装置2毎の位相情報を保持するものである。この位相制御部105に保持されている位相情報はフレーム制御部107により抽出される。
 フレーム分離部106は、セレクタ113から受信したデータをUserフレーム(受信データ)と制御フレーム(Register Requestフレーム、Register AckフレームまたはReportフレーム)とに分離するものである。このフレーム分離部106により分離されたUserフレームは上位装置6に送信され、制御フレームはフレーム制御部107に送信される。
 フレーム制御部107は、フレーム分離部106からの制御フレームを認識した場合に、帯域割当制御部103や位相制御部105からの情報に基づいて、制御フレーム(Discovery Gateフレーム、RegisterフレームまたはGateフレーム)や、位相情報が含まれた位相情報通知フレームを生成するものである。なお、位相情報通知フレームはRegisterフレームの空き領域に埋め込まれて構成される。このフレーム制御部107により生成された制御フレームはフレーム多重部109に送信される。
 下りバッファ部108は、上位装置6から受信した下りデータを一時的に蓄積するものである。この下りバッファ部108に蓄積された下りデータ(Userフレーム)はフレーム多重部109により読み出される。
 フレーム多重部109は、下りバッファ部108から読み出したUserフレーム(受信データ)とフレーム制御部107からの制御フレーム(Discovery Gateフレーム、RegisterフレームまたはGateフレーム)とを多重するものである。このフレーム多重部109により多重されたフレームは光送信部110に送信される。
 光送信部110は、フレーム多重部109からのフレーム(電気信号)を光信号に変換するものである。この光送信部110により光信号に変換されたフレーム(下りデータ)はWDMカプラ101に送信される。
 また、加入者側装置2は、WDMカプラ201、光受信部202、フレーム分離部203、フレーム制御部204、上りバッファ部205、フレーム多重部206、位相制御部207および光送信部208を備えている。
 WDMカプラ201は、光スプリッタ4を介して局側装置1からの下りデータを光受信部202に送信し、光送信部208からの上りデータを光スプリッタ4を介して局側装置1に送信するものである。
 光受信部202は、WDMカプラ201を介して局側装置1からの下りデータ(光信号)を受信し、電気信号に変換するものである。この光受信部202により電気信号に変換されたデータはフレーム分離部203に送信される。
 フレーム分離部203は、光受信部202から受信したデータをUserフレーム(受信データ)と制御フレーム(Discovery Gateフレーム、RegisterフレームまたはGateフレーム)とに分離するものである。このフレーム分離部203により分離されたUserフレームは下位装置7に送信され、制御フレームはフレーム制御部204に送信される。
 フレーム制御部204は、フレーム分離部203からの制御フレーム(Userフレーム以外の全フレーム)を処理するものである。このフレーム制御部204は、Registerフレームから位相情報通知フレームを抽出し、位相情報を位相制御部207へ送信する。
 上りバッファ部205は、下位装置7から受信した上りデータを一時的に蓄積するものである。この上りバッファ部205に蓄積された上りデータ(Userフレーム)はフレーム多重部206により読み出される。
 フレーム多重部206は、上りバッファ部205から読み出したUserフレーム(受信データ)とフレーム制御部204からの制御フレーム(Register Requestフレーム、Register AckフレームまたはReportフレーム)とを多重するものである。このフレーム多重部206により多重されたフレームは光送信部208に送信される。
 位相制御部207は、フレーム制御部204からの位相情報を用いて、光送信部208に送信されたフレームに対して位相調整を行うものである。
 光送信部208は、フレーム多重部206により多重され、位相制御部207により位相が調整されたフレーム(電気信号)を光信号に変換するものである。この光送信部208により光信号に変換されたフレーム(上りデータ)はWDMカプラ201に送信される。
 次に、上記のように構成されたPONシステムの動作について説明する。
 図3はこの発明の実施の形態1に係るPONシステムの動作を示すシーケンス図である。なお、実施の形態1に係るPONシステムでは、位相同期を行う方法として、MPCP(Multi-Point Control Protocol)のDiscoveryシーケンスを利用した場合について述べる。
 PONシステムの動作では、図3に示すように、まず、局側装置1はDiscovery Gateフレーム11を未登録の加入者側装置2に送信する(ステップST31)。Discovery Gateフレーム11とは、局側装置1から未登録の加入者側装置2に対して登録要請する期間を通知するフレームである。
 このステップST31では、まず、フレーム制御部107は、未登録の加入者側装置2に対するDiscovery Gateフレーム11を生成する。次に、フレーム多重部109は、フレーム制御部107からのDiscovery Gateフレーム11と下りバッファ部108からのUserフレームとを多重する。次に、光送信部110は、フレーム多重部109により多重されたフレームを光信号に変換し、WDMカプラ101および光スプリッタ4を介して未登録の加入者側装置2に送信する。
 次いで、加入者側装置2はRegister Requestフレーム12を局側装置1に送信する(ステップST32)。Register Requestフレーム12とは、加入者側装置2が登録要請を行うフレームである。
 このステップST32では、まず、光受信部202は、WDMカプラ201を介して局側装置1から下りデータを受信し、電気信号に変換する。次に、フレーム分離部203は、光受信部202により電気信号に変換されたデータをUserフレームとDiscovery Gateフレーム11とに分離する。次に、フレーム制御部204は、フレーム分離部203により分離されたDiscovery Gateフレーム11を認識した後、Register Requestフレーム12を生成する。次に、フレーム多重部206は、フレーム制御部204からのRegister Requestフレーム12と上りバッファ部205からのUserフレームとを多重する。次に、光送信部208は、フレーム多重部206により多重されたフレームを光信号に変換し、WDMカプラ201および光スプリッタ4を介して局側装置1に送信する。
 次いで、局側装置1は、GAIN調整および位相調整を行い、GAIN情報および位相情報を取得する(ステップST33)。
 このステップST33では、まず、O/E変換器111は、WDMカプラ101を介して加入者側装置2からの上りデータを受信し、電気信号に変換する。次に、セレクタ112,113は、帯域割当制御部103からのDiscovery Window情報に基づいて最初のdiscovery周期であると判断し、第1送信経路に切り替える。また、電源制御部104は、帯域割当制御部103からのDiscovery Window情報に基づいて、未使用ブロック(GAIN回路118)の電源をOFFにして、省エネを図る。
 次に、AGC回路116は、O/E変換器111からのデータに対してGAIN調整を行う。このAGC回路116によるGAIN情報はGAIN保持部117に保持される。次に、CDR回路119は、AGC回路116によりGAIN調整されたデータに対して位相調整を行う。このCDR回路119による位相情報は位相制御部105に保持される。
 次に、フレーム分離部106は、セレクタ113を介してCDR回路119から受信したデータをUserフレームとRegister Requestフレーム12とに分離する。このフレーム分離部106により分離されたUserフレームは上位装置6に送信され、Register Requestフレーム12はフレーム制御部107に送信される。
 次いで、局側装置1はRegisterフレーム13およびGateフレーム14を加入者側装置2に送信する(ステップST34,35)。Registerフレーム13とは、加入者側装置2にIDを割当てるLLIDを格納したフレームである。また、Gateフレーム14とは、データ送信開始時間および継続時間を加入者側装置2に通知するフレームである。
 このステップST34,35では、まず、帯域割当制御部103は、次周期での各加入者側装置2のデータ送信開始時間および継続時間を決定し、GAIN保持部117およびフレーム制御部107に通知する。さらに、次周期でのDiscovery Window情報をセレクタ112,113および電源制御部104に通知する。
 次に、フレーム制御部107は、Register Requestフレーム12を認識した後、Registerフレーム13を生成する。また、帯域割当制御部103から通知された次周期での各加入者側装置2のデータ送信開始時間および継続時間に基づいて、Gateフレーム14を生成する。この際、フレーム制御部107は、位相制御部105から抽出した位相情報をRegisterフレーム13の空き領域に埋めこんだ位相情報通知フレームも生成する。例えば図4に示すように、Registerフレーム13のPad/Reservedの帯域に1byte分埋め込むことで位相情報通知フレームを生成する。
 次に、フレーム多重部109は、フレーム制御部107からの、位置情報通知フレームが埋め込まれたRegisterフレーム13およびGateフレーム14と、下りバッファ部108からのUserフレームとを多重する。次に、光送信部110は、フレーム多重部109により多重されたフレームを光信号に変換し、WDMカプラ101および光スプリッタ4を介して対応する加入者側装置2に送信する。
 次いで、加入者側装置2は、位相調整を行い、Register Ackフレーム15を局側装置1に送信する(ステップST36,37)。Register Ackフレーム15とは、加入者側装置2が登録完了を局側装置1に通知するフレームである。
 このステップST36,37では、まず、光受信部202は、WDMカプラ201を介して局側装置1からの下りデータを受信し、電気信号に変換する。次に、フレーム分離部203は、光受信部202により電気信号に変換されたデータをUserフレームと位置情報通知フレームが埋め込まれたRegisterフレーム13とGateフレーム14とに分離する。次に、フレーム制御部204は、フレーム分離部203により分離されたGateフレーム14を認識した後、Register Ackフレーム15を生成する。また、フレーム制御部204は、Registerフレーム13から位相情報通知フレームを抽出して、位相情報を位相制御部207に送信する。次に、フレーム多重部206は、フレーム制御部204からのRegister Ackフレーム15と上りバッファ部205からのUserフレームとを多重する。
 次に、位相制御部207は、フレーム制御部204からの位相情報を用いて、光送信部208に送信されたフレームに対して位相調整を行う。次に、光送信部208は、フレーム多重部206により多重され、位相制御部207により位相調整されたフレームを光信号に変換し、WDMカプラ201および光スプリッタ4を介して局側装置1に送信する。
 次いで、局側装置1はGAIN調整を行う(ステップST38)。
 このステップST38では、まず、O/E変換器111は、WDMカプラ101を介して加入者側装置2からの上りデータを受信し、電気信号に変換する。次に、セレクタ112,113は、帯域割当制御部103からのDiscovery Window情報に基づいて最初のdiscovery周期ではないと判断し、第2送信経路に切り替える。また、電源制御部104は、帯域割当制御部103からのDiscovery Window情報に基づいて、未使用ブロック(AGC回路116およびCDR回路119)の電源をOFFにして、省エネを図る。
 次に、GAIN回路118は、帯域割当制御部103から通知された各加入者側装置2のデータ送信開始時間および継続時間に基づいて、GAIN保持部117から該当するGAIN量を抽出し、このGAIN量を用いて、O/E変換器111からのデータに対してGAIN調整を行う。次に、フレーム分離部106は、セレクタ113を介してGAIN回路118から受信したデータをUserフレームとRegister Ackフレーム15とに分離する。このフレーム分離部106により分離されたUserフレームは上位装置6に送信され、Register Ackフレーム15はフレーム制御部107に送信される。
 その後、フレーム制御部107は、Register Ackフレーム15を認識した後、Gateフレームを生成し、以後Gate-Reportシーケンスとなる。
 Gate-Reportシーケンスにおける光強度調整および位相調整では、最初のdiscovery周期で抽出したGAIN量および位相調整量を反映させていく。
 ここで、従来の上りバーストフレームの構成を大きく分類すると、図5(a)に示すように、レーザ立ち上げ(Lon:Laser On)期間20、光強度調整(AGC)期間21、位相調整(CDR)期間22、データ送信(Data)期間23、レーザ立ち下げ(Loff:Laser Off)期間24となる。AGC期間21およびCDR期間22は同期期間(SyncTime)25であり、このSyncTime25内ではデータを送信することはできない。
 従来のPONシステムでは、図5(a)に示すように、AGC回路による光強度調整およびCDR回路による位相調整を毎周期行う必要があり、SyncTime25を毎周期設ける必要があるため、上り帯域の利用効率が低くなってしまう。それに対して、実施の形態1に係るPONシステムでは、図5(b)に示すように、最初のdiscovery周期にのみAGC回路116による光強度調整およびCDR回路119による位相調整を行い、以後、抽出したGAIN量および位相調整量を反映させている。そのため、最初のdiscovery周期以後のSyncTime25を削除することができ、データ送信量を増加させることができるため、上り帯域の利用効率を向上させることができる。
 以上のように、この実施の形態1によれば、最初のdiscovery周期にのみAGC回路116による光強度調整およびCDR回路119による位相調整を行い、以後、抽出したGAIN量および位相調整量を反映させるように構成したので、SyncTimeを削除することができる。そのため、データ送信量を増加させることができ、上り帯域の利用効率を向上させることが可能となる。具体的には、加入者側装置2を128台接続した場合において、従来では、SyncTime=1.2μsで上り帯域の利用効率が65.87%であったのに対して、SyncTime=0μsにすることで、上り帯域の利用効率を79.24%まで向上させることが可能である。
 また、強度調整部114および位相調整部115の未使用ブロックの電源をOFFにする電源制御部104を設けたので、省電力化を図ることもできる。
 なお、実施の形態1に係るPONシステムでは、位相情報通知フレームをRegisterフレーム13の空き領域に埋め込むようにして構成したが、これに限るものではなく、Gateフレーム14の空き領域に埋め込むようにして構成してもよいし、位相情報通知フレームを別フォーマットのフレームとして構成してもよい。
 また、実施の形態1に係るPONシステムでは、最初のdiscovery周期にのみAGC回路116による光強度調整およびCDR回路119による位相調整を行うように構成したが、これに限るものではなく、例えばdiscovery周期毎など所定の周期毎にAGC回路116による光強度調整およびCDR回路119による位相調整を行うように構成してもよい。これにより、より安定した同期を実現することができる。
実施の形態2.
 実施の形態1では、最初のdiscovery周期で抽出したGAIN量および位相制御量を用いて、以後のGAIN調整および位相調整を行うように構成したが、実施の形態2は、GAIN量および位相制御量を毎周期更新する手法について述べる。
 図6は実施の形態2に係るPONシステム内の各部の構成を示すブロック図である。
 図6に示す実施の形態2に係るPONシステムは、図2に示す実施の形態1における強度調整部114からGAIN保持部117を削除し、光強度モニタ120およびGAIN制御部(GAIN保持部)121を追加したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
 光強度モニタ120は、セレクタ112を介してO/E変換器111から受信したデータに基づいて、GAIN調整に要するGAIN量を算出するものである。この光強度モニタ120により、各加入者側装置2のデータに基づき算出されたGAIN量を示すGAIN情報は、GAIN制御部121に送信される。また、光強度モニタ120に入力されたデータはGAIN回路118にそのまま送信される。
 GAIN制御部121は、AGC回路116または光強度モニタ120から受信した加入者側装置2毎のGAIN情報を保持するものである。このGAIN制御部121に保持されているGAIN情報はGAIN回路118により抽出される。
 なお、セレクタ112,113は、加入者側装置2との通信周期が最初のdiscovery周期の場合には、図6の第1送信経路(AGC回路116およびCDR回路119を通過する送信経路)を選択し、最初のdiscovery周期以外の周期の場合には、第2送信経路(光強度モニタ120およびGAIN回路118を通過し、CDR回路119を通過して終端する経路とCDR回路119を通過しない経路とに分岐する送信経路)を選択する。
 また、GAIN回路118は、セレクタ112および光強度モニタ120を介してO/E変換器111から受信した今周期のデータに対して、GAIN制御部121から抽出した前周期のGAIN量を用いてGAIN調整を行う。このGAIN回路118によりGAIN調整されたデータは2つに分岐され、一方はCDR回路119に送信され、他方はセレクタ113を介してフレーム分離部106に送信される。
 また、CDR回路119は、AGC回路116またはGAIN回路118から受信したデータに対して位相調整を行う。なお、AGC回路116からのデータは、位相調整後、セレクタ113を介してフレーム分離部106に送信される。一方、GAIN回路118からのデータは、位相調整後、終端する。
 次に、上記のように構成されたPONシステムの動作について説明する。
 図7はこの発明の実施の形態2に係るPONシステムの動作を示すシーケンス図である。なお、実施の形態2に係るPONシステムでは、位相同期を行う方法として、MPCPのDiscoveryシーケンスを利用した場合について述べる。
 また、図7に示す実施の形態2に係るPONシステムのステップST71,72の動作は、図3に示す実施の形態1に係るPONシステムのステップST31,32の動作と同様であり、その説明を省略する。
 PONシステムの動作では、図7に示すように、ステップST73において、局側装置1は、GAIN調整および位相調整を行い、GAIN情報および位相情報を取得する。
 このステップST73では、まず、O/E変換器111は、WDMカプラ101を介して加入者側装置2からの上りデータを受信し、電気信号に変換する。次に、セレクタ112,113は、帯域割当制御部103からのDiscovery Window情報に基づいて最初のdiscovery周期であると判断し、第1送信経路を選択する。また、電源制御部104は、帯域割当制御部103からのDiscovery Window情報に基づいて、未使用ブロック(GAIN回路118および光強度モニタ120)の電源をOFFにして、省エネを図る。
 次に、AGC回路116は、O/E変換器111からのデータに対してGAIN調整を行う。このAGC回路116によるGAIN情報はGAIN制御部121に保持される。次に、CDR回路119は、AGC回路116によりGAIN調整されたデータに対して位相調整を行う。このCDR回路119による位相情報は位相制御部105に保持される。
 次に、フレーム分離部106は、セレクタ113を介してCDR回路119から受信したデータをUserフレームとRegister Requestフレーム12とに分離する。このフレーム分離部106により分離されたUserフレームは上位装置6に送信され、Register Requestフレーム12はフレーム制御部107に送信される。
 次いで、局側装置1はRegisterフレーム13およびGateフレーム14を加入者側装置2に送信する(ステップST74,75)。
 このステップST74,75では、まず、帯域割当制御部103は、次周期での各加入者側装置2のデータ送信開始時間および継続時間を決定し、GAIN制御部121およびフレーム制御部107に通知する。さらに、次周期でのDiscovery Window情報をセレクタ112,113および電源制御部104に通知する。
 次に、フレーム制御部107は、Register Requestフレーム12を認識した後、Registerフレーム13を生成する。また、帯域割当制御部103から通知された次周期での各加入者側装置2のデータ送信開始時間および継続時間に基づいて、Gateフレーム14を生成する。この際、フレーム制御部107は、位相制御部105から抽出した位相情報を、Gateフレーム14の空き領域に埋めこんだ位相情報通知フレームも生成する。例えば図8に示すように、Gateフレーム14のPad/Reservedの帯域に1byte分埋め込むことで位相情報通知フレームを生成する。
 次に、フレーム多重部109は、フレーム制御部107からの、Registerフレーム13および位置情報通知フレームが埋め込まれたGateフレーム14と、下りバッファ部108からのUserフレームとを多重する。次に、光送信部110は、フレーム多重部109により多重されたフレームを光信号に変換し、WDMカプラ101および光スプリッタ4を介して対応する加入者側装置2に送信する。
 次いで、加入者側装置2は、位相調整を行い、Register Ackフレーム15を局側装置1に送信する(ステップST76,77)。
 このステップST76,77では、まず、光受信部202は、WDMカプラ201を介して局側装置1からの下りデータを受信し、電気信号に変換する。次に、フレーム分離部203は、光受信部202により電気信号に変換されたデータをUserフレームとRegisterフレーム13と位置情報通知フレームが埋め込まれたGateフレーム14とに分離する。次に、フレーム制御部204は、フレーム分離部203により分離されたGateフレーム14を認識した後、Register Ackフレーム15を生成する。また、フレーム制御部204は、Gateフレーム14から位相情報通知フレームを抽出して、位相情報を位相制御部207に送信する。次に、フレーム多重部206は、フレーム制御部204からのRegister Ackフレーム15と上りバッファ部205からのUserフレームとを多重する。
 次に、位相制御部207は、フレーム制御部204からの位相情報を用いて、光送信部208に送信されたフレームに対して位相調整を行う。次に、光送信部208は、フレーム多重部206により多重され、位相制御部207により位相調整されたフレームを光信号に変換し、WDMカプラ201および光スプリッタ4を介して局側装置1に送信する。
 次いで、局側装置1は、GAIN調整を行い、GAIN量および位相調整量の更新を行う(ステップST78)。
 このステップST78では、まず、O/E変換器111は、WDMカプラ101を介して加入者側装置2からの上りデータを受信し、電気信号に変換する。次に、セレクタ112,113は、帯域割当制御部103からのDiscovery Window情報に基づいて最初のdiscovery周期ではないと判断し、第2送信経路に切り替える。また、電源制御部104は、帯域割当制御部103からのDiscovery Window情報に基づいて未使用ブロック(AGC回路116)の電源をOFFにして、省エネを図る。
 次に、光強度モニタ120は、セレクタ112を介してO/E変換器111から受信したデータに基づいて、GAIN調整に要するGAIN量を算出し、GAIN情報をGAIN制御部121に通知する。また、光強度モニタ120に入力したデータはGAIN回路118にそのまま送信される。
 次に、GAIN回路118は、帯域割当制御部103から通知された各加入者側装置2のデータ送信開始時間および継続時間に基づいて、GAIN制御部121から該当する前周期のGAIN量を抽出し、このGAIN量を用いて、光強度モニタ120を介してO/E変換器111から受信した今周期のデータに対してGAIN調整を行う。このGAIN回路118によりGAIN調整されたデータは2つに分岐され、一方はCDR回路119に送信され、他方はセレクタ113を介してフレーム分離部106に送信される。
 次に、GAIN制御部121は、光強度モニタ120からの今周期のGAIN情報を、保持している前周期のGAIN情報に上書きすることによって、GAIN情報の更新を行う。
 次に、CDR回路119は、GAIN回路118から受信したデータに基づいて、位相調整量を抽出し、位相情報を位相制御部105に通知して終端する。次に、位相制御部105は、CDR回路119からの今周期の位相情報を、保持している前周期の位相情報に上書きすることにより、位相情報の更新を行う。
 次に、フレーム分離部106は、セレクタ113を介してGAIN回路118から受信したデータをUserフレームとRegister Ackフレーム15とに分離する。このフレーム分離部106により分離されたUserフレームは上位装置6に送信され、Register Ackフレーム15はフレーム制御部107に送信される。
 その後、フレーム制御部107は、Register Ackフレーム15を認識した後、Gateフレーム14を生成し、以後Gate-Reportシーケンスとなる。
 Gate-Reportシーケンスにおいて、光強度調整では、光強度モニタ120により算出した今周期でのGAIN量を、次周期のGAIN回路118に反映させることでGAIN量の更新を毎周期行う。また、位相調整では、CDR回路119により抽出した位相調整量を毎周期ONU5に送信することで位相調整量の更新を毎周期行う。
 以上のように、実施の形態2によれば、GAIN量および位相調整量を毎周期更新するように構成したので、実施の形態1における効果に加えて、安定した同期を実現することができる。
 なお、図6に示す実施の形態2に係るPONシステムでは、セレクタ112,113が第2送信経路に切り替えた場合に、各加入者側装置2からのデータが光強度モニタ120を通過してGAIN回路118に送信される場合について示したが、例えば図9に示すように、光強度モニタ120の前段でデータを2つに分岐させて、一方のデータをGAIN回路118に入力させて、前周期のGAIN量を用いたGAIN調整を行わせ、他方のデータを光強度モニタ120に入力させて、今周期のGAIN量の算出を行わせるように構成してもよい。
実施の形態3.
 実施の形態1では、最初のdiscovery周期の場合にのみGAIN量および位相調整量を取得する手法について述べ、実施の形態2では、GAIN量および位相調整量を毎周期更新する手法について述べた。実施の形態3では、データ送受信中にビットエラーを検出した場合に位相調整量を更新する手法について述べる。
 図10は実施の形態3に係るPONシステム内の各部の構成を示すブロック図である。
 図10に示す実施の形態3に係るPONシステムは、図6に示す実施の形態2における局側装置1にエラー監視部122およびセレクタ123を追加したものである。その他の構成は同様であり、同一の符号を付してその説明を省略する。
 エラー監視部122は、光受信部102から受信したデータを監視して、ビットエラーを検出するものである。ここで、エラー監視部122は、ビットエラーを検出した場合には、その旨および位相再調整指示をフレーム制御部107に通知する。また、エラー監視部122に入力されたデータは、フレーム分離部106にそのまま送信される。
 なお、フレーム制御部107は、実施の形態1における機能に加えて、エラー監視部122から位相再調整指示が通知された場合に、位相再調整を行うため、SyncTimeを含むフレームの送信を要求するGateフレームを生成する機能を有している。また、フレーム制御部107は、エラー監視部122からの位相再調整指示を帯域割当制御部103にも通知する。
 また、帯域割当制御部103は、実施の形態1における機能に加えて、フレーム制御部107を介してエラー監視部122から位相再調整指示が通知された場合に、CDR回路119を通過する送信経路への切り替えをセレクタ123に指示する。この際、電源制御部104に対して未使用ブロックの変更を通知する。
 セレクタ123は、帯域割当制御部103による指示に従い、位相調整部115内の送信経路を切り替えるものである。ここで、セレクタ123は、エラー監視部122によりビットエラーが検出されていない場合には、図10の第2送信経路(CDR回路119を通過しない送信経路)を選択し、エラー監視部122によりビットエラーが検出された場合には、第3送信経路(CDR回路119を通過する送信経路)を選択する。
 次に、上記のように構成されたPONシステムの動作について説明する。
 図11はこの発明の実施の形態3に係るPONシステムの動作を示すシーケンス図である。なお、実施の形態3に係るPONシステムでは、位相同期を行う方法として、MPCPのDiscoveryシーケンスを利用する場合について述べる。
 また、図11に示す実施の形態3に係るPONシステムのステップST111~117の動作は、図7に示す実施の形態2に係るPONシステムのステップST71~77の動作は同様であり、その説明を省略する。
 PONシステムの動作では、図10に示すように、ステップST118において、局側装置1は、GAIN調整を行い、GAIN量の更新を行う。
 このステップST118では、まず、O/E変換器111は、WDMカプラ101を介して加入者側装置2からの上りデータを受信し、電気信号に変換する。次に、セレクタ112,113は、帯域割当制御部103からのDiscovery Window情報に基づいて最初のdiscovery周期ではないと判断し、第2送信経路に切り替える。また、セレクタ123は、帯域割当制御部103による指示に従い、エラー監視部122によりビットエラーが検出されていなければ第2送信経路に切り替える。また、電源制御部104は、帯域割当制御部103からのDiscovery Window情報に基づいて未使用ブロック(AGC回路116およびCDR回路119)の電源をOFFにして、省エネを図る。
 次に、光強度モニタ120は、セレクタ112を介してO/E変換器111から受信したデータに基づいて、GAIN調整に要するGAIN量を算出し、GAIN情報をGAIN制御部121に通知する。また、光強度モニタ120に入力したデータはGAIN回路118にそのまま送信される。
 次に、GAIN回路118は、帯域割当制御部103から通知された各加入者側装置2のデータ送信開始時間および継続時間に基づいて、GAIN制御部121から該当する前周期のGAIN量を抽出し、このGAIN量を用いて、光強度モニタ120を介してO/E変換器111から受信した今周期のデータに対してGAIN調整を行う。次に、GAIN制御部121は、光強度モニタ120からの今周期のGAIN情報を、保持している前周期のGAIN情報に上書することによって、GAIN情報の更新を行う。
 次に、エラー監視部122は、光受信部102から受信したデータを監視してビットエラー検出を行う。ここで、エラー監視部122は、ビットエラーはないと判定した場合には、このデータをフレーム分離部106に送信する。一方、ビットエラーを検出した場合には、その旨および位相再調整指示をフレーム制御部107に通知する。このビットエラー検出後の位相再調整動作については後述する。
 次に、フレーム分離部106は、エラー監視部122から受信したデータをUserフレームとRegister Ackフレーム15とに分離する。このフレーム分離部106により分離されたUserフレームは上位装置6に送信され、Register Ackフレーム15はフレーム制御部107に送信される。
 その後、フレーム制御部107は、Register Ackフレーム15を認識した後、Gateフレームを生成し、以後Gate-Reportシーケンスとなる。
 Gate-Reportシーケンスにおいて、光強度調整では、実施の形態2と同様に、光強度モニタ120により算出した今周期でのGAIN量を、次周期でのGAIN回路118に反映させることでGAIN量の更新を毎周期行う。また、位相調整では、最初のdiscovery周期に位相調整を行った後、エラー監視部122によりビットエラーが検出されるまでは、最初のdiscovery周期で抽出した位相調整量を反映させる。一方、エラー監視部122によりビットエラーが検出された場合には、位相再調整を行い、位相調整量の更新を行う。
 次に、エラー監視部122によりビットエラーが検出された場合の位相再調整について説明する。なお以下では、図11に示すシーケンスを参照しながら、Gate-Reportシーケンス移行後での位相再調整について述べる。
 PONシステムによる位相再調整動作では、図11に示すように、まず、局側装置1はGateフレーム16を加入者側装置2に送信する(ステップST119)。
 このステップST119では、まず、フレーム制御部107は、エラー監視部122から位相再調整指示が通知されると、SyncTimeを含むフレームの送信を要求するGateフレーム16を生成する。次に、フレーム多重部109は、フレーム制御部107からのGateフレーム16と下りバッファ部108からのUserフレームとを多重する。次に、光送信部110は、フレーム多重部109により多重されたフレームを光信号に変換し、WDMカプラ101および光スプリッタ4を介して対応する加入者側装置2に送信する。
 次いで、加入者側装置2はReportフレーム17を局側装置1に送信する(ステップST120)
 このステップST120では、まず、光受信部202は、WDMカプラ201を介して局側装置1から下りデータを受信し、電気信号に変換する。次に、フレーム分離部203は、光受信部202により電気信号に変換されたデータをUserフレームとGateフレーム16とに分離する。次に、フレーム制御部204は、フレーム分離部203により分離されたGateフレーム16を認識した後、位相再調整を行うためのSyncTime領域を設けたReportフレーム17を生成する。次に、フレーム多重部206は、フレーム制御部204からのReportフレーム17と上りバッファ部205からのUserフレームとを多重する。次に、光送信部208は、フレーム多重部206により多重されたフレームを光信号に変換し、WDMカプラ201および光スプリッタ4を介して局側装置1に送信する。
 次いで、局側装置1は、GAIN調整および位相再調整を行い、GAIN量および位相調整量の更新を行う(ステップST121)。
 このステップST121では、まず、セレクタ123は、帯域割当制御部103による指示に従い、第3送信経路に切り替える。これにより、加入者側装置2からのデータは、GAIN回路118によりGAIN調整された後、CDR回路119に送信される。また、電源制御部104は、帯域割当制御部103による指示に従い、未使用ブロック(AGC回路116)の電源をOFFにして、省エネを図る。
 次に、CDR回路119は、GAIN回路118によりGAIN調整されたデータに対して位相再調整を行う。このCDR回路119による位相情報は位相制御部105に送信される。次に、位相制御部105は、CDR回路119からの位相情報を、保持している位相情報に上書きすることによって、位相情報の更新を行う。
 次に、エラー監視部122は、セレクタ113を介してCDR回路119から受信したデータにビットエラーがないことを確認して、このデータをフレーム分離部106に送信する。次に、フレーム分離部106は、エラー監視部122から受信したデータをUserフレームとReportフレーム17とに分離する。このフレーム分離部106により分離されたUserフレームは上位装置6に送信され、Reportフレーム17はフレーム制御部107に送信される。
 次いで、局側装置1はGateフレーム18を加入者側装置2に送信する(ステップST122)。
 このステップST122では、まず、フレーム制御部107は、Reportフレーム17を認識した後、Gateフレーム18を生成する。この際、フレーム制御部107は、位相制御部105から抽出した位相情報を、Gateフレーム18の空き領域に埋めこんだ位相情報通知フレームも生成する。次に、フレーム多重部109は、フレーム制御部107からの、位置情報通知フレームが埋め込まれたGateフレーム18と、下りバッファ部108からのUserフレームとを多重する。次に、光送信部110は、フレーム多重部109により多重されたフレームを光信号に変換し、WDMカプラ101および光スプリッタ4を介して対応する加入者側装置2に送信する。
 次いで、加入者側装置2は、位相調整を行い、Reportフレーム19を局側装置1に送信する(ステップST123,124)。
 このステップST123,124では、まず、光受信部202は、WDMカプラ201を介して局側装置1からの下りデータを受信し、電気信号に変換する。次に、フレーム分離部203は、光受信部202により電気信号に変換されたデータをUserフレームと位置情報通知フレームが埋め込まれたGateフレーム18とに分離する。次に、フレーム制御部204は、フレーム分離部203により分離されたGateフレーム18を認識した後、Reportフレーム19を生成する。また、フレーム制御部204は、Gateフレーム18から位相情報通知フレームを抽出して、位相情報を位相制御部207に送信する。次に、フレーム多重部206は、フレーム制御部204からのReportフレーム19と上りバッファ部205からのUserフレームとを多重する。
 次に、位相制御部207は、フレーム制御部204からの位相情報を用いて、光送信部208に送信されたフレームに対して位相調整を行う。次に、光送信部208は、フレーム多重部206により多重され、位相制御部207により位相調整されたフレームを光信号に変換し、WDMカプラ201および光スプリッタ4を介して局側装置1に送信する。
 次いで、局側装置1は、GAIN調整を行い、GAIN量の更新を行う(ステップST125)。
 このステップST125では、まず、O/E変換器111は、WDMカプラ101を介して加入者側装置2からの上りデータを受信し、電気信号に変換する。次に、セレクタ123は、帯域割当制御部103による指示に従い、第2送信経路に切り替える。また、電源制御部104は、未使用ブロック(AGC回路116およびCDR回路119)の電源をOFFにして、省エネを図る。
 次に、光強度モニタ120は、セレクタ112を介してO/E変換器111から受信したデータに基づいて、GAIN調整に要するGAIN量を算出し、GAIN情報をGAIN制御部121に通知する。また、光強度モニタ120に入力したデータはGAIN回路118にそのまま送信される。
 次に、GAIN回路118は、帯域割当制御部103から通知された各加入者側装置2のデータ送信開始時間および継続時間に基づいて、GAIN制御部121から該当する前周期のGAIN量を抽出し、このGAIN量を用いて、光強度モニタ120を介してO/E変換器111から受信した今周期のデータに対してGAIN調整を行う。次に、GAIN制御部121は、光強度モニタ120からの今周期のGAIN情報を、保持している前周期のGAIN情報に上書きすることによって、GAIN情報の更新を行う。
 次に、エラー監視部122は、光受信部102から受信したデータを監視してビットエラー検出を行う。ここで、エラー監視部122は、ビットエラーはないと判定した場合には、このデータをフレーム分離部106に送信する。一方、ビットエラーを検出した場合には、再度、位相再調整指示を行う。
 次に、フレーム分離部106は、エラー監視部122から受信したデータをUserフレームとReportフレーム19とに分離する。このフレーム分離部106により分離されたUserフレームは上位装置6に送信され、Reportフレーム19はフレーム制御部107に送信される。
 その後、フレーム制御部107は、Reportフレーム19を認識した後、Gateフレームを生成し、再度Gate-Reportシーケンスとなる。
 以上のように、実施の形態3によれば、ビットエラーを検出した場合に位相調整量の更新を行うように構成したので、実施の形態1における効果に加えて、安定した同期を実現することができる。
 なお、実施の形態3に係るPONシステムでは、エラー監視部122を設けて、ビットエラーを検出した場合に位相調整量の更新を行うように構成したが、例えば図12に示すように、GAIN制御部121にて、保持している前周期のGAIN量と光強度モニタ120により算出された今周期のGAIN量との差を所定の閾値と比較し、差が閾値以上である場合に、CDR回路119による位相再調整を行うように構成してもよい。
 また、例えば図13に示すように、AGC回路116によりGAIN調整を毎周期行っている従来の強度調整部114bに、AGC回路116により用いられた前周期のGAIN量と今周期のGAIN量との差を所定の閾値と比較するGAIN制御部121bを設け、差が閾値以上である場合に、CDR回路119による位相再調整を行うように構成してもよい。
 このように、前周期のGAIN量と今周期のGAIN量との変化量に基づいて、位相調整量の更新を行うことによっても、安定した同期を実現することができる。
 また、実施の形態1~3に係るPONシステムでは、位相同期の方法としてMPCPシーケンスを用いて説明を行ったが、これに限るものではなく、PONシステムで規定されているOAMに適用させてもよいし、PONシステムでは規定されていない独自のシーケンスに適用させてもよい。
 また、実施の形態1~3では、PONシステムを用いて説明を行ったが、これに限るものではなく、その他の一般的な光通信システムにも同様に適用可能である。
 なお、本願発明はその発明の範囲内において、実施の形態の任意の構成要素の変形、もしくは実施の形態の任意の構成要素の省略が可能である。
 この発明に係る光通信システムは、CDR期間を削除することでSyncTimeを削減することができ、上り帯域利用効率を向上させることができ、局側装置と、局側装置との間で通信を行う複数の加入者側装置とを備えた光通信システムなどに用いるのに適している。

Claims (17)

  1.  局側装置と、前記局側装置との間で通信を行う複数の加入者側装置とを備えた光通信システムにおいて、
     前記局側装置は、
     前記各加入者側装置から受信したデータに対して位相調整を行うCDR(Clock and Data Recovery)回路と、
     前記各加入者側装置から受信したデータの送信経路として、前記CDR回路を通過する送信経路または前記CDR回路を通過しない送信経路を選択するセレクタと、
     前記CDR回路による位相調整で用いられた位相調整量を通知する位相情報通知フレームを生成するフレーム制御部と、
     前記フレーム制御部により生成された位相情報通知フレームを前記加入者側装置に送信する光送信部とを備え、
     前記加入者側装置は、
     前記光送信部からの位相情報通知フレームに含まれる位置調整量を用いて、前記局側装置に送信するデータに対して位相調整を行う位相制御部を備えた
    ことを特徴とする光通信システム。
  2.  前記局側装置は、前記セレクタにより選択されていない送信経路上の未使用ブロックの電源をOFFにする電源制御部をさらに備えた
    ことを特徴とする請求項1記載の光通信システム。
  3.  前記セレクタは、前記加入者側装置との通信周期が最初のdiscovery周期の場合には、前記CDR回路を通過する送信経路を選択し、当該最初のdiscovery周期以外の周期の場合には、前記CDR回路を通過しない送信経路を選択する
    ことを特徴とする請求項1記載の光通信システム。
  4.  前記セレクタは、所定の周期ごとに前記CDR回路を通過する送信経路を選択する
    ことを特徴とする請求項1記載の光通信システム。
  5.  前記セレクタは、前記加入者側装置との通信周期が最初のdiscovery周期の場合には、前記CDR回路を通過する送信経路を選択し、当該最初のdiscovery周期以外の周期の場合には、前記CDR回路を通過して終端する送信経路および前記CDR回路を通過しない送信経路を選択する
    ことを特徴とする請求項1記載の光通信システム。
  6.  前記局側装置は、前記加入者側装置から受信したデータを監視して、ビットエラーを検出するエラー監視部をさらに備え、
     前記セレクタは、前記加入者側装置との通信周期が最初のdiscovery周期の場合または前記エラー監視部によりビットエラーが検出された場合には、前記CDR回路を通過する送信経路を選択し、当該最初のdiscovery周期以外の周期であり、かつ、当該ビットエラーが検出されていない場合には、前記CDR回路を通過しない送信経路を選択する
    ことを特徴とする請求項1記載の光通信システム。
  7.  前記局側装置は、前記各加入者側装置から受信したデータに対してGAIN調整を行うAGC(Automatic Gain Control)回路と、
     前記AGC回路によるGAIN調整で用いられた前周期のGAIN量と今周期のGAIN量との差を閾値と比較するGAIN制御部とをさらに備え、
     前記セレクタは、前記加入者側装置との通信周期が最初のdiscovery周期の場合または前記GAIN制御部によりGAIN量の差が閾値以上であると判定された場合には、前記CDR回路を通過する送信経路を選択し、当該最初のdiscovery周期以外の周期であり、かつ、当該GAIN量の差が閾値未満であると判定された場合には、前記CDR回路を通過しない送信経路を選択する
    ことを特徴とする請求項1記載の光通信システム。
  8.  前記局側装置は、前記各加入者側装置から受信したデータに基づいて、GAIN調整に要するGAIN量を算出する光強度モニタと、
     前記光強度モニタにより算出された前周期のGAIN量と今周期のGAIN量との差を閾値と比較するGAIN制御部とをさらに備え、
     前記セレクタは、前記加入者側装置との通信周期が最初のdiscovery周期の場合または前記GAIN制御部によりGAIN量の差が閾値以上であると判定された場合には、前記CDR回路を通過する送信経路を選択し、当該最初のdiscovery周期以外の周期であり、かつ、当該GAIN量の差が閾値未満であると判定された場合には、前記CDR回路を通過しない送信経路を選択する
    ことを特徴とする請求項1記載の光通信システム。
  9.  複数の加入者側装置との間で通信を行う局側装置において、
     前記各加入者側装置から受信したデータに対して位相調整を行うCDR回路と、
     前記各加入者側装置から受信したデータの送信経路として、前記CDR回路を通過する送信経路または前記CDR回路を通過しない送信経路を選択するセレクタと、
     前記CDR回路による位相調整で用いられた位相調整量を通知し、前記加入者側装置に当該位相調整量を用いて位相調整を行わせる位相情報通知フレームを生成するフレーム制御部と、
     前記フレーム制御部により生成された位相情報通知フレームを前記加入者側装置に送信する光送信部とを
    備えたことを特徴とする局側装置。
  10.  前記セレクタにより選択されていない送信経路上の未使用ブロックの電源をOFFにする電源制御部をさらに備えた
    ことを特徴とする請求項9記載の局側装置。
  11.  前記セレクタは、前記加入者側装置との通信周期が最初のdiscovery周期の場合には、前記CDR回路を通過する送信経路を選択し、当該最初のdiscovery周期以外の周期の場合には、前記CDR回路を通過しない送信経路を選択する
    ことを特徴とする請求項9記載の局側装置。
  12.  前記セレクタは、所定の周期ごとに前記CDR回路を通過する送信経路を選択する
    ことを特徴とする請求項9記載の局側装置。
  13.  前記セレクタは、前記加入者側装置との通信周期が最初のdiscovery周期の場合には、前記CDR回路を通過する送信経路を選択し、当該最初のdiscovery周期以外の周期の場合には、前記CDR回路を通過して終端する送信経路および前記CDR回路を通過しない送信経路を選択する
    ことを特徴とする請求項9記載の局側装置。
  14.  前記加入者側装置から受信したデータを監視して、ビットエラーを検出するエラー監視部をさらに備え、
     前記セレクタは、前記加入者側装置との通信周期が最初のdiscovery周期の場合または前記エラー監視部によりビットエラーが検出された場合には、前記CDR回路を通過する送信経路を選択し、当該最初のdiscovery周期以外の周期であり、かつ、当該ビットエラーが検出されていない場合には、前記CDR回路を通過しない送信経路を選択する
    ことを特徴とする請求項9記載の局側装置。
  15.  前記各加入者側装置から受信したデータに対してGAIN調整を行うAGC回路と、
     前記AGC回路によるGAIN調整で用いられた前周期のGAIN量と今周期のGAIN量との差を閾値と比較するGAIN制御部とをさらに備え、
     前記セレクタは、前記加入者側装置との通信周期が最初のdiscovery周期の場合または前記GAIN制御部によりGAIN量の差が閾値以上であると判定された場合には、前記CDR回路を通過する送信経路を選択し、当該最初のdiscovery周期以外の周期であり、かつ、当該GAIN量の差が閾値未満であると判定された場合には、前記CDR回路を通過しない送信経路を選択する
    ことを特徴とする請求項9記載の局側装置。
  16.  前記各加入者側装置から受信したデータに基づいて、GAIN調整に要するGAIN量を算出する光強度モニタと、
     前記光強度モニタにより算出された前周期のGAIN量と今周期のGAIN量との差を閾値と比較するGAIN制御部とをさらに備え、
     前記セレクタは、前記加入者側装置との通信周期が最初のdiscovery周期の場合または前記GAIN制御部によりGAIN量の差が閾値以上であると判定された場合には、前記CDR回路を通過する送信経路を選択し、当該最初のdiscovery周期以外の周期であり、かつ、当該GAIN量の差が閾値未満であると判定された場合には、前記CDR回路を通過しない送信経路を選択する
    ことを特徴とする請求項9記載の局側装置。
  17.  局側装置との間で通信を行う複数の加入者側装置において、
     前記局側装置に受信されたデータに基づいて、前記局側装置により抽出・送信された位相調整量を用いて、前記局側装置に送信するデータに対して位相調整を行う位相制御部
    を備えたことを特徴とする加入者側装置。
PCT/JP2010/006036 2010-10-08 2010-10-08 光通信システム、局側装置および加入者側装置 WO2012046282A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2010/006036 WO2012046282A1 (ja) 2010-10-08 2010-10-08 光通信システム、局側装置および加入者側装置
JP2012537496A JP5436690B2 (ja) 2010-10-08 2010-10-08 光通信システム、局側装置および加入者側装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/006036 WO2012046282A1 (ja) 2010-10-08 2010-10-08 光通信システム、局側装置および加入者側装置

Publications (1)

Publication Number Publication Date
WO2012046282A1 true WO2012046282A1 (ja) 2012-04-12

Family

ID=45927307

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006036 WO2012046282A1 (ja) 2010-10-08 2010-10-08 光通信システム、局側装置および加入者側装置

Country Status (2)

Country Link
JP (1) JP5436690B2 (ja)
WO (1) WO2012046282A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11115124B1 (en) 2020-05-29 2021-09-07 Corning Research & Development Corporation Adaptive scheduling for periodic data traffic in an optical communications network for a wireless communications system (WCS)
JP7496794B2 (ja) 2021-03-17 2024-06-07 三菱電機株式会社 光通信装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199233A (ja) * 2007-02-13 2008-08-28 Kddi Corp 光受信装置及び方法並びに局側光終端装置
JP2009077280A (ja) * 2007-09-21 2009-04-09 Hitachi Communication Technologies Ltd パッシブ光ネットワークシステムおよびレンジング方法
JP2009225170A (ja) * 2008-03-17 2009-10-01 Mitsubishi Electric Corp 通信システム、局側装置および通信方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008199233A (ja) * 2007-02-13 2008-08-28 Kddi Corp 光受信装置及び方法並びに局側光終端装置
JP2009077280A (ja) * 2007-09-21 2009-04-09 Hitachi Communication Technologies Ltd パッシブ光ネットワークシステムおよびレンジング方法
JP2009225170A (ja) * 2008-03-17 2009-10-01 Mitsubishi Electric Corp 通信システム、局側装置および通信方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11115124B1 (en) 2020-05-29 2021-09-07 Corning Research & Development Corporation Adaptive scheduling for periodic data traffic in an optical communications network for a wireless communications system (WCS)
JP7496794B2 (ja) 2021-03-17 2024-06-07 三菱電機株式会社 光通信装置

Also Published As

Publication number Publication date
JP5436690B2 (ja) 2014-03-05
JPWO2012046282A1 (ja) 2014-02-24

Similar Documents

Publication Publication Date Title
US9112612B2 (en) Relay device, station-side optical communication device, communication system, and bandwidth allocation method
JP5556921B1 (ja) 加入者側装置登録方法及び光ネットワークシステム
JP2006345284A (ja) 伝送システムおよび局側装置
KR20140127167A (ko) 하이브리드 pon 시스템에서의 오동작 onu 방지를 위한 제어 방법
US20110008046A1 (en) Subscriber terminal of adjusting intensity of optical signal by controlling attenuation, and a method therefor
CN106664234B (zh) Wdm/tdm-pon***和其发送开始时刻校正方法
JP2007295151A (ja) Ponシステムとこれに使用する局側装置及び端末装置
JP5380689B2 (ja) 光回線装置、帯域制御方法、及び、光ネットワークシステム
JP2008199233A (ja) 光受信装置及び方法並びに局側光終端装置
JP5436690B2 (ja) 光通信システム、局側装置および加入者側装置
JP5725226B1 (ja) 動的波長割当制御方法及び局側装置
CN101478701A (zh) 上行数据传输的控制方法及装置
JP5303760B2 (ja) Ponシステムおよび局側装置
US11646791B2 (en) Passive optical network systems
JP5654638B2 (ja) Ponシステム
JP5323267B2 (ja) 局側装置
JP5456547B2 (ja) 光通信システム及び光通信方法
JP5455614B2 (ja) 通信システム、親局装置および子局装置
JP5524394B2 (ja) Ponシステムおよび局側装置
JP5565489B1 (ja) 加入者側装置登録方法
JP2011101116A (ja) 光中継器、光通信システム、及び光中継器の制御方法
KR20150024286A (ko) 시간 및 주파수 분할 다중 - 수동형 광 네트워크에서 파장가변 수신기의 수신 파장 안정화 방법
JP2011146966A (ja) 局側装置
US9094150B2 (en) Method for registering optical network unit in telecommunications network and optical network unit therefor
KR100944864B1 (ko) 버스트모드 패킷수신을 위한 파장분할 다중화를 이용한수동형 광가입자망

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10858090

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012537496

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10858090

Country of ref document: EP

Kind code of ref document: A1