WO2012043453A1 - エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 - Google Patents

エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 Download PDF

Info

Publication number
WO2012043453A1
WO2012043453A1 PCT/JP2011/071842 JP2011071842W WO2012043453A1 WO 2012043453 A1 WO2012043453 A1 WO 2012043453A1 JP 2011071842 W JP2011071842 W JP 2011071842W WO 2012043453 A1 WO2012043453 A1 WO 2012043453A1
Authority
WO
WIPO (PCT)
Prior art keywords
epoxy resin
resin composition
mass
parts
fiber
Prior art date
Application number
PCT/JP2011/071842
Other languages
English (en)
French (fr)
Inventor
林真実
藤原隆行
三角潤
吉岡健一
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to US13/823,004 priority Critical patent/US9738782B2/en
Priority to KR1020137009295A priority patent/KR101569595B1/ko
Priority to CN201180047158.9A priority patent/CN103140536B/zh
Priority to EP11829007.1A priority patent/EP2623533B1/en
Priority to CA2811881A priority patent/CA2811881A1/en
Priority to RU2013119741/04A priority patent/RU2013119741A/ru
Publication of WO2012043453A1 publication Critical patent/WO2012043453A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/3236Heterocylic compounds
    • C08G59/3245Heterocylic compounds containing only nitrogen as a heteroatom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/32Epoxy compounds containing three or more epoxy groups
    • C08G59/38Epoxy compounds containing three or more epoxy groups together with di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/243Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/249Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs characterised by the additives used in the prepolymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Definitions

  • the present invention relates to an epoxy resin composition preferably used as a matrix resin of a fiber reinforced composite material suitable for sports applications and general industrial applications, and a prepreg and a fiber reinforced composite material using the epoxy resin composition as a matrix resin.
  • Fiber reinforced composite materials using carbon fibers, aramid fibers, etc. as reinforcing fibers make use of their high specific strength and specific modulus to make structural materials such as aircraft and automobiles, sports applications such as tennis rackets, golf shafts and fishing rods Widely used in general industrial applications.
  • a method for producing these fiber reinforced composite materials a method is often used in which a prepreg, which is a sheet-like intermediate material in which reinforcing fibers are impregnated with a matrix resin, is laminated and then cured.
  • the method using a prepreg has an advantage that a high-performance fiber-reinforced composite material can be easily obtained because the orientation of the reinforcing fibers can be strictly controlled and the degree of freedom in designing the laminated structure is high.
  • the matrix resin used for the prepreg a thermosetting resin is mainly used from the viewpoint of heat resistance and productivity, and an epoxy resin is preferably used from the viewpoint of mechanical properties such as adhesion to reinforcing fibers.
  • Measures for improving the elastic modulus of the epoxy resin include addition of inorganic fillers such as carbon nanotubes and blending of an amine type epoxy resin having a high elastic modulus.
  • Patent Document 1 by adding an amine-type epoxy resin having a high elastic modulus, the elastic modulus of the epoxy resin is improved, and in a fiber-reinforced composite material in which this is applied as a matrix resin, there is a correlation with the fiber direction compressive strength. A significant improvement in strong fiber direction bending strength has been observed. However, in this method, since the toughness of the epoxy resin is lowered, the impact resistance is lowered.
  • thermoplastic resin for example, by blending a block copolymer such as a copolymer composed of styrene-butadiene-methyl methacrylate or a block copolymer composed of butadiene-methyl methacrylate.
  • a block copolymer such as a copolymer composed of styrene-butadiene-methyl methacrylate or a block copolymer composed of butadiene-methyl methacrylate
  • Patent Documents 2 and 3 Methods for greatly improving the toughness of epoxy resins have been proposed.
  • these methods have problems such as reduced heat resistance, deteriorated processability due to thickening, and reduced quality such as void generation. Also, this method has an insufficient elastic modulus.
  • An object of the present invention is to improve the drawbacks of the prior art, provide a cured resin having both excellent elastic modulus and toughness, and has a low viscosity and excellent impregnation between reinforcing fibers, and Another object is to provide a prepreg and a fiber reinforced composite material using the epoxy resin composition.
  • the cured resin means a cured epoxy resin or epoxy resin composition. The same applies hereinafter.
  • An epoxy resin composition comprising an epoxy resin [A1], an epoxy resin [B1], an epoxy resin [C1] and a curing agent [D], wherein [A1] is a bisphenol type epoxy resin having a softening point of 90 ° C. or higher, [ B1] is a tri- or higher functional amine type epoxy resin, and [C1] a bisphenol F type epoxy resin having a number average molecular weight of 450 or less, and the epoxy resins [A1] to [C1] are contained in 100 parts by mass of all epoxy resin components.
  • the SP value of the cured resin [B2 ′] obtained by reacting and curing the epoxy resin [B2] with the curing agent [D] has epoxy resins [A2] and [C2].
  • the softening point of the epoxy resin [A2] is 90 ° C. or higher, and the softening points of the epoxy resins [B2] and [C2] are both 50 ° C.
  • a cured resin obtained by curing the epoxy resin composition has a phase separation structure including [A2] rich phase and [B2] rich phase. The period of the phase separation structure is 1 nm to 1 ⁇ m.
  • this invention contains the prepreg containing said epoxy resin composition and a reinforced fiber. Moreover, this invention contains the fiber reinforced composite material formed by hardening said prepreg. Moreover, this invention contains the hardened
  • a fine phase separation structure of an epoxy resin is formed at the time of curing, a high elastic modulus and high toughness resin cured product is obtained, and the epoxy resin composition has a low viscosity and excellent impregnation between reinforcing fibers.
  • cured material of the epoxy resin composition of this invention as matrix resin has the outstanding static strength characteristic and impact resistance.
  • the epoxy resin composition provides an epoxy resin [A] that gives the resin cured product high toughness, and an epoxy resin that gives the resin cured product a high elastic modulus [ B], an epoxy resin [C] that functions as a compatibilizing agent for epoxy resins [A] and [B], and a curing agent [D], and a resin curing obtained by curing the epoxy resin composition
  • a cured product having a high elastic modulus and high toughness can be obtained by forming a fine phase separation structure including an epoxy resin [A] rich phase and an epoxy resin [B] rich phase.
  • the spinodal decomposition occurs in the curing process, and the epoxy resin [A] rich phase and the epoxy resin [ B] It is preferable to form a phase separation structure with the rich phase. Further, the phase separation structure period is more preferably 1 nm to 5 ⁇ m, and a more preferable phase separation structure period is 1 nm to 1 ⁇ m.
  • the epoxy resin [C] functions as a compatibilizing agent for the epoxy resins [A] and [B].
  • the structural period When the structural period is less than 1 nm, the cavitation effect cannot be exhibited, and not only the toughness is insufficient but also the elastic modulus tends to be insufficient.
  • the structural period exceeds 5 ⁇ m, the structural period is large, so the crack does not progress to the island phase, but only in the sea phase.
  • the toughness may be insufficient. That is, the cured product of the epoxy resin composition contains an epoxy resin [A] rich phase and an epoxy resin [B] rich phase, and has a fine phase separation structure, so that the elastic modulus and toughness of the resin cured product can be improved. It is possible to achieve both.
  • the phase separation structure means a structure in which two or more phases including an epoxy resin [A] rich phase and an epoxy resin [B] rich phase are separated.
  • the epoxy resin [A] rich phase and the epoxy resin [B] rich phase refer to phases mainly composed of the epoxy resin [A] and the epoxy resin [B], respectively.
  • a main component means the component contained by the highest content rate in the said phase here.
  • the phase separation structure may be a phase separation structure of three or more phases further including a phase mainly composed of components other than the epoxy resin [A] and the epoxy resin [B].
  • the state of being uniformly mixed at the molecular level is called a compatible state.
  • phase separation structure of the cured resin product can be observed with a scanning electron microscope or a transmission electron microscope. You may dye
  • the structural period of phase separation is defined as follows.
  • the phase separation structure includes a two-phase continuous structure and a sea-island structure.
  • draw three straight lines of a predetermined length on the micrograph draw three straight lines of a predetermined length on the micrograph, extract the intersection of the straight line and the phase interface, measure the distance between the adjacent intersections, These number average values are used as the structure period.
  • the predetermined length is set as follows based on a micrograph.
  • a sample photograph was taken at a magnification of 20,000 times, and a length of 20 mm drawn on the photograph (1 ⁇ m on the sample) Is a predetermined length of a straight line.
  • the phase separation structure period is expected to be on the order of 0.1 ⁇ m (0.1 ⁇ m or more and less than 1 ⁇ m)
  • a photograph is taken at a magnification of 2,000 times and a length of 20 mm on the photograph (10 ⁇ m on the sample) (Length) is a predetermined length of a straight line.
  • phase separation structure period When the phase separation structure period is expected to be on the order of 1 ⁇ m (1 ⁇ m or more and less than 10 ⁇ m), a photograph is taken at a magnification of 200 times, and a length of 20 mm on the photograph (a length of 100 ⁇ m on the sample) is defined as a predetermined straight line length. To do. If the measured phase separation structure period is out of the expected order, the measurement is performed again at a magnification corresponding to the corresponding order.
  • the phase separation structure is a sea-island structure
  • three predetermined regions on the micrograph are selected at random, the island phase size in the region is measured, and the number average value of these is the structure period.
  • the size of the island phase refers to the length of the shortest distance line drawn from the phase interface to one phase interface through the island phase. Even when the island phase is an ellipse, an indeterminate shape, or a circle or ellipse of two or more layers, the shortest distance passing through the island phase from the phase interface to one phase interface is defined as the island phase size.
  • the predetermined area is set as follows based on a micrograph.
  • phase separation structure period When the phase separation structure period is expected to be on the order of 0.01 ⁇ m (0.01 ⁇ m or more and less than 0.1 ⁇ m), a photograph of the sample was taken at a magnification of 20,000 times, and an area of 4 mm square on the photograph (0 on the sample) .2 ⁇ m square area) is defined as a predetermined area. Similarly, when the phase separation structure period is expected to be on the order of 0.1 ⁇ m (0.1 ⁇ m or more and less than 1 ⁇ m), a photograph is taken at a magnification of 2,000 times, and an area of 4 mm square on the photograph (2 ⁇ m square on the sample) Is defined as a predetermined area.
  • phase separation structure period When the phase separation structure period is expected to be on the order of 1 ⁇ m (1 ⁇ m or more and less than 10 ⁇ m), a photograph is taken at a magnification of 200 times, and an area of 4 mm square on the photograph (an area of 20 ⁇ m square on the sample) is defined as a predetermined area. If the measured phase separation structure period is out of the expected order, the measurement is performed again at a magnification corresponding to the corresponding order.
  • a first aspect of the epoxy resin composition of the present invention is an epoxy resin composition comprising an epoxy resin [A1], an epoxy resin [B1], an epoxy resin [C1], and a curing agent [D], wherein [A1] Is a bisphenol type epoxy resin having a softening point of 90 ° C.
  • [B1] is a trifunctional or higher amine type epoxy resin
  • [C1] is a bisphenol F type epoxy resin having a number average molecular weight of 450 or less
  • the epoxy resin [A1 ] To [C1] satisfy the compounding ratio of [A1] 20 to 50 parts by mass, [B1] 30 to 50 parts by mass and [C1] 10 to 40 parts by mass with respect to 100 parts by mass of all epoxy resin components. It is a resin composition.
  • the epoxy resin [A1] needs to contain 20 to 50 parts by mass of 100 parts by mass of the total epoxy resin of bisphenol type epoxy resin having a softening point of 90 ° C. or higher. Preferably, 30 to 50 parts by mass of the epoxy resin [A1] is included in 100 parts by mass of the total epoxy resin.
  • the softening point of the epoxy resin [A1] is less than 90 ° C., the toughness of the cured resin is insufficient.
  • content of epoxy resin [A1] is less than 20 mass parts, the toughness of resin cured material is insufficient.
  • the content of the epoxy resin [A1] exceeds 50 parts by mass, not only the elastic modulus and heat resistance of the resin cured product are insufficient, but also the viscosity of the epoxy resin composition becomes too high. If the viscosity of the epoxy resin composition becomes too high, the epoxy resin composition cannot be sufficiently impregnated between the reinforcing fibers when the prepreg is produced. For this reason, voids are generated in the obtained fiber reinforced composite material, and the strength of the fiber reinforced composite material is lowered.
  • the epoxy resin [A1] is selected from bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol AD type epoxy resin, bisphenol S type epoxy resin, and halogen-substituted products, alkyl-substituted products, hydrogenated products, etc.
  • An epoxy resin can be preferably used.
  • Examples of such commercially available epoxy resin [A1] include “jER (registered trademark)” 1004AF, 1007, 1009P, 1010P, 4005P, 4007P, 4009P, and 4010P (above, manufactured by Mitsubishi Chemical Corporation).
  • bisphenol A type epoxy resin or bisphenol F type epoxy resin is preferable, and bisphenol F type epoxy resin is more preferable because of a good balance of heat resistance, elastic modulus, and toughness.
  • the epoxy resin [B1] needs to contain 30 to 50 parts by mass of trifunctional or higher amine type epoxy resin out of 100 parts by mass of the total epoxy resin.
  • the content of the epoxy resin [B1] is less than 30 parts by mass, the elastic modulus of the resin cured product is insufficient.
  • content of epoxy resin [B1] exceeds 50 mass parts, the plastic deformation capability and toughness of resin hardened
  • the tri-functional amine-type epoxy resins are preferable because they give the cured resin a good balance between elastic modulus and toughness.
  • aminophenol type epoxy resins are more preferable because the toughness of the cured resin is relatively high.
  • epoxy resin [B1] examples include amine type epoxy resins such as tetraglycidyldiaminodiphenylmethane, tetraglycidyldiaminodiphenylsulfone, tetraglycidyldiaminodiphenylether, triglycidylaminophenol, triglycidylaminocresol, tetraglycidylxylylenediamine, and triglycidyl.
  • Epoxy resins having an isocyanurate skeleton and epoxy resins selected from halogen-substituted products, alkyl-substituted products, hydrogenated products and the like are preferably used.
  • tetraglycidyldiaminodiphenylmethane examples include “Sumiepoxy (registered trademark)” ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), YH434L (manufactured by Nippon Steel Chemical Co., Ltd.), and “jER (registered trademark)” 604 (Mitsubishi Chemical Corporation). ), “Araldide (registered trademark)” MY720, MY721 (manufactured by Huntsman Advanced Materials), and the like.
  • tetraglycidyl diaminodiphenyl ether 3,3′-TGDDE (manufactured by Toray Fine Chemical Co., Ltd.) or the like can be used.
  • triglycidylaminophenol or triglycidylaminocresol “Araldide (registered trademark)” MY0500, MY0510, MY0600 (manufactured by Huntsman Advanced Materials), “jER (registered trademark)” 630 (Mitsubishi Chemical Corporation) ))
  • Aldide registered trademark
  • Tetraglycidylxylylenediamine and its hydrogenated product may be “TETRAD (registered trademark)”-X, “TETRAD (registered trademark)”-C (above, manufactured by Mitsubishi Gas Chemical Co., Ltd.), etc. .
  • TG3DAS tetraglycidyl diaminodiphenyl sulfone
  • the epoxy resin [C1] gives a high elastic modulus, it is necessary to use bisphenol F type epoxy resin having a number average molecular weight of 450 or less of 10 to 40 parts by mass out of 100 parts by mass of the total epoxy resin.
  • the epoxy resin [C1] is contained in 20 to 40 parts by mass out of 100 parts by mass of the total epoxy resin.
  • the compounding quantity of epoxy resin [C1] exceeds 40 mass parts, the toughness of the resin cured material obtained tends to be insufficient.
  • the compounding quantity of epoxy resin [C1] is less than 10 mass parts, the viscosity of an epoxy resin composition may become high.
  • the viscosity of the epoxy resin composition obtained can be made low by making the number average molecular weight of epoxy resin [C1] 450 or less. Therefore, in the prepreg manufacturing process, the epoxy resin composition is easily impregnated between the reinforcing fibers, so that the fiber content of the obtained prepreg can be improved.
  • the number average molecular weight of the epoxy resin [C1] is larger than 450, the viscosity of the epoxy resin composition tends to be high, so that the epoxy resin composition is difficult to impregnate between the reinforcing fibers in the prepreg manufacturing process. It tends to be difficult to improve the fiber content.
  • the effect as a compatibilizing agent becomes large because the number average molecular weight of epoxy resin [C1] is 450 or less, it is easy to form a fine phase-separation structure.
  • the number average molecular weight of the bisphenol F type epoxy resin [C1] is larger than 450, the component [C1] is easily compatible with any one of the phases, so that the effect as a compatibilizer tends to be small. As a result, the phase separation structure period of the cured resin tends to increase.
  • the number average molecular weight as used in the field of this invention is the value calculated
  • the curing agent [D] is not particularly limited as long as it cures an epoxy resin, and amines such as aromatic amines and alicyclic amines, acid anhydrides, polyaminoamides, organic acid hydrazides, isocyanates And the like.
  • An amine curing agent is preferable because the cured resin obtained has excellent mechanical properties and heat resistance.
  • the amine curing agent diaminodiphenyl sulfone and diaminodiphenylmethane which are aromatic amines, dicyandiamide or a derivative thereof which is an aliphatic amine, hydrazide compounds, and the like are used.
  • Examples of such commercially available dicyandiamide include DICY-7 and DICY-15 (manufactured by Mitsubishi Chemical Corporation).
  • the dicyandiamide derivative is obtained by bonding various compounds to dicyandiamide, and includes a reaction product with an epoxy resin, a reaction product with a vinyl compound or an acrylic compound.
  • dicyandiamide or a derivative thereof as a curing agent [D] is blended into an epoxy resin composition from the viewpoint of storage stability at room temperature and viscosity stability during prepreg formation.
  • the average particle size is preferably 10 ⁇ m or less, more preferably 7 ⁇ m or less.
  • dicyandiamide or a derivative thereof having a particle size of more than 10 ⁇ m does not enter the reinforcing fiber bundle and remains on the surface of the fiber bundle. There is a case.
  • the total amount of the curing agent [D] preferably includes an amount such that the active hydrogen groups are in the range of 0.6 to 1.0 equivalent with respect to the epoxy groups of all the epoxy resin components contained in the epoxy resin composition. More preferably, it is in the range of 0.7 to 0.9 equivalent.
  • the active hydrogen group is less than 0.6 equivalent, the reaction rate, heat resistance and elastic modulus of the resin cured product are insufficient, and the glass transition temperature and strength of the obtained fiber reinforced composite material may be insufficient.
  • the active hydrogen group exceeds 1.0 equivalent, the reaction rate, glass transition temperature and elastic modulus of the cured resin are sufficient, but the plastic deformation ability is insufficient, so that the resulting fiber-reinforced composite material has a resistance to resistance. Impact may be insufficient.
  • Each curing agent may be used in combination with a curing accelerator or other epoxy resin curing agent.
  • the curing accelerator to be combined include ureas, imidazoles, and Lewis acid catalysts.
  • urea compound examples include N, N-dimethyl-N ′-(3,4-dichlorophenyl) urea, toluene bis (dimethylurea), 4,4′-methylenebis (phenyldimethylurea), and 3-phenyl-1 , 1-dimethylurea and the like can be used.
  • examples of commercially available urea compounds include DCMU99 (manufactured by Hodogaya Chemical Co., Ltd.), “Omicure (registered trademark)” 24, 52, and 94 (manufactured by CVC Specialty Chemicals, Inc.).
  • Lewis acid catalysts include boron trifluoride / piperidine complex, boron trifluoride / monoethylamine complex, boron trifluoride / triethanolamine complex, boron trichloride / octylamine complex, etc. Is mentioned.
  • urea compounds are preferably used from the balance between storage stability and catalytic ability.
  • the amount of the urea compound is preferably 1 to 3 parts by mass with respect to 100 parts by mass of all the epoxy resin components contained in the epoxy resin composition.
  • the compounding amount of the urea compound is less than 1 part by mass, the reaction does not proceed sufficiently, and the elastic modulus and heat resistance of the cured resin product tend to decrease.
  • the compounding quantity of a urea compound exceeds 3 mass parts, since the self-polymerization reaction of an epoxy resin inhibits reaction with an epoxy resin and a hardening
  • the second embodiment of the epoxy resin composition of the present invention comprises an epoxy resin [A2], an epoxy resin [B2], an epoxy resin [C2] and a curing agent [D], and the following conditions (1) to ( An epoxy resin composition satisfying 4): (1) The SP value of the cured resin [B2 ′] obtained by reacting the epoxy resin [B2] with the curing agent [D] and curing the epoxy resin [A2] and [C2] is the curing agent [D]. Greater than the SP value of any of the cured resin products [A2 ′] and [C2 ′] obtained by reacting with and curing the resin; (2) The softening point of the epoxy resin [A2] is 90 ° C.
  • An epoxy resin composition comprising (3,4-dichlorophenyl) -1,1-dimethylurea (hereinafter referred to as DCMU) was heated from room temperature to 130 ° C. at a rate of 2.5 ° C./min and then at 130 ° C. for 90 minutes.
  • the elastic modulus of the cured resin obtained by reacting is 3.5 GPa or more; and (4) The cured resin obtained by reacting and curing the epoxy resins [A2] to [C2] with the curing agent [D]. However, it has a phase separation structure including [A2] rich phase and [B2] rich phase, and the phase separation structure period is 1 nm to 1 ⁇ m.
  • the cured resin products [A2 ′], [B2 ′], and [C2 ′ obtained by reacting the epoxy resins [A2], [B2], and [C2] with the curing agent [D], respectively. ] Must satisfy the following condition. (1) (SP value of [B2 ′]) ⁇ (SP value of [A2 ′]) + 1.2 (2) (SP value of [B2 ′]) ⁇ (SP value of [C2 ′]) + 1.2
  • the SP value is a generally known solubility parameter, and is an index of solubility and compatibility.
  • the SP value defined in the present invention is Polym. Eng. Sci.
  • the softening point of the epoxy resin [A2] is 90 ° C. or higher and the softening points of the epoxy resins [B2] and [C2] are 50 ° C. or lower.
  • the epoxy resins [A2] to [C2] satisfy these requirements, it is possible to prevent [A2] from being compatible with [B2] and obtaining a uniform structure in the obtained resin cured product. Both rate and toughness are improved.
  • the epoxy resin [C2] an amount of dicyandiamide in which the active hydrogen group is 0.9 equivalent to the epoxy group of the epoxy resin [C2], and 100 parts by mass of the epoxy resin [C2]
  • the epoxy resin composition comprising 2 parts by mass of DCMU is heated from room temperature to 130 ° C. at 2.5 ° C./min and reacted at 130 ° C. for 90 minutes, and the elastic modulus of the cured resin obtained is 3. It needs to be 5 GPa or more. When the elastic modulus of the cured resin is less than 3.5 GPa, the cured resin obtained from the epoxy resin composition of the present invention cannot obtain a good elastic modulus.
  • the epoxy resin [C2] acts as a compatibilizing agent and is a component that dissolves in both the [A2] rich phase and the [B2] rich phase, and thus the resin obtained by the high elastic modulus of the epoxy resin [C2]
  • the elastic modulus of the cured product is increased.
  • the phase separation structure is a sea-island structure
  • it is important that the sea phase covering the island phase has a high elastic modulus. Therefore, when the epoxy resin [C2] is dissolved in the sea phase, the sea phase has a high elastic modulus.
  • the active hydrogen group means a functional group that can react with an epoxy group. Examples of the active hydrogen group include an amino group and a hydroxyl group.
  • the cured resin obtained by curing the epoxy resin composition has a phase separation structure including an epoxy resin [A2] rich phase and an epoxy resin [B2] rich phase, and the phase separation structure The period must be 1 nm to 1 ⁇ m.
  • both the elastic modulus and toughness of the cured resin can be achieved.
  • the structural period is less than 1 nm, the cavitation effect cannot be exhibited, and not only the toughness is insufficient but also the elastic modulus is insufficient.
  • the structural period exceeds 1 ⁇ m, the structural period is large, so the crack does not progress to the island phase, but only in the sea phase, so the cavitation effect cannot be expressed and the toughness is insufficient. It becomes.
  • epoxy resin [A2] an epoxy selected from bisphenol type epoxy resins having a softening point of 90 ° C. or higher, isocyanate-modified epoxy resins, anthracene type epoxy resins and halogen-substituted products, alkyl-substituted products, hydrogenated products, etc.
  • a resin can be preferably used.
  • the epoxy resin [A2] is preferably contained in an amount of 20 to 50 parts by mass of 100 parts by mass of the total epoxy resin, and more preferably 30 to 50 parts by mass of 100 parts by mass of the total epoxy resin.
  • the obtained resin cured product tends to be difficult to form a phase separation structure, and the toughness tends to decrease.
  • the content exceeds 50 parts by mass, not only the elastic modulus and heat resistance of the cured resin product tends to be lowered, but also the viscosity of the epoxy resin composition tends to be too high. If the viscosity of the epoxy resin composition becomes too high, the epoxy resin composition may not be sufficiently impregnated between the reinforcing fibers when the prepreg is produced. For this reason, voids are generated in the obtained fiber-reinforced composite material, and the strength of the fiber-reinforced composite material may be reduced.
  • an amine-type epoxy resin such as tetraglycidyldiaminodiphenylmethane, tetraglycidyldiaminodiphenylether, triglycidylaminophenol, triglycidylaminocresol, tetraglycidylxylylenediamine having a softening point of 50 ° C. or less, Epoxy resins having a triglycidyl isocyanurate skeleton and epoxy resins selected from halogen-substituted products, alkyl-substituted products, hydrogenated products, and the like can be used.
  • tetraglycidyldiaminodiphenylmethane examples include “Sumiepoxy (registered trademark)” ELM434 (manufactured by Sumitomo Chemical Co., Ltd.), YH434L (manufactured by Nippon Steel Chemical Co., Ltd.), and “jER (registered trademark)” 604 (Mitsubishi Chemical Corporation). ), “Araldide (registered trademark)” MY720, MY721 (manufactured by Huntsman Advanced Materials), etc. can be used.
  • tetraglycidyl diaminodiphenyl ether 3,3′-TGDDE (manufactured by Toray Fine Chemical Co., Ltd.) or the like can be used.
  • triglycidylaminophenol or triglycidylaminocresol “Araldide (registered trademark)” MY0500, MY0510, MY0600 (manufactured by Huntsman Advanced Materials), “jER (registered trademark)” 630 (manufactured by Mitsubishi Chemical Corporation) ) Etc. can be used.
  • TETRAD tetraglycidylxylylenediamine and hydrogenated products thereof
  • TETRAD registered trademark
  • TETRAD registered trademark
  • C manufactured by Mitsubishi Gas Chemical Co., Inc.
  • TEPIC registered trademark
  • the epoxy resin [B2] is preferably a tri- or higher functional amine type epoxy resin.
  • the epoxy resin [B2] is preferably contained in 30 to 50 parts by mass out of 100 parts by mass of the total epoxy resin.
  • the tri- or higher functional amine-type epoxy resins the tri-functional amine-type epoxy resins are preferable because they give the cured resin a good balance between elastic modulus and toughness.
  • aminophenol type epoxy resins have relatively high toughness and are more preferable.
  • epoxy resin [C2] a bisphenol F type epoxy resin, a bisphenol AD type epoxy resin, a bisphenol S type epoxy resin, a phenol novolak type epoxy resin having a softening point of 50 ° C. or less, halogen substitution products thereof, alkyl substitution products, An epoxy resin selected from hydrogenated products is used.
  • examples of commercially available epoxy resin [C2] include “Epiclon (registered trademark)” 830 and 806 (manufactured by DIC Corporation), “jER (registered trademark)” 152 (manufactured by Mitsubishi Chemical Corporation), and the like.
  • the epoxy resin [C2] a bisphenol F-type epoxy resin having a number average molecular weight of 450 or less is preferable because it gives a high elastic modulus and has good compatibility with the epoxy resins [A2] and [B2].
  • the epoxy resin [C2] is preferably contained in an amount of 10 to 40 parts by mass out of 100 parts by mass of the total epoxy resin. More preferably, the epoxy resin [C2] is contained in an amount of 20 to 40 parts by mass out of 100 parts by mass of the total epoxy resin.
  • the compounding quantity of epoxy resin [C2] is less than 10 mass parts, there exists a tendency for the phase-separation structure period of the resin cured material obtained to become large.
  • the compounding amount of the epoxy resin [C2] exceeds 40 parts by mass, the epoxy resins [A2] and [B2] are easily compatible with each other, and it is difficult to form a phase separation structure. Rate and toughness are likely to decrease.
  • the number average molecular weight as used in the field of this invention is the value calculated
  • the viscosity of the resulting epoxy resin composition can be lowered. Therefore, in the prepreg manufacturing process, the epoxy resin composition is easily impregnated between the reinforcing fibers, so that the fiber content of the obtained prepreg can be improved.
  • the number average molecular weight of the epoxy resin [C2] is larger than 450, the viscosity of the epoxy resin composition tends to be high, so that the epoxy resin composition is difficult to impregnate between the reinforcing fibers in the prepreg manufacturing process. It tends to be difficult to improve the fiber content.
  • the effect as a compatibilizer becomes large because the number average molecular weight of epoxy resin [C2] is 450 or less, it is easy to form a fine phase-separated structure.
  • the number average molecular weight of the bisphenol F-type epoxy resin [C2] is larger than 450, the component [C2] is easily compatible with any one of the phases, so that the effect as a compatibilizer tends to be small. As a result, the phase separation structure period of the cured resin tends to increase.
  • Examples of commercially available bisphenol F type epoxy resins having a number average molecular weight of 450 or less include “Epiclon (registered trademark)” 830 and 806 (manufactured by DIC Corporation).
  • the curing agent [D] is the same as the curing agent [D] described in the first embodiment.
  • the epoxy resin composition of the present invention contains an epoxy resin other than the epoxy resins [A] to [C] for the purpose of adjusting viscoelasticity and improving workability or the elastic modulus and heat resistance of the cured resin. It can add in the range which does not lose the effect of invention. These may be used in combination of not only one type but also a plurality of types.
  • phenol novolac type epoxy resin cresol novolac epoxy resin, resorcinol type epoxy resin, phenol aralkyl type epoxy resin, dicyclopentadiene type epoxy resin, epoxy resin having biphenyl skeleton, isocyanate modified epoxy resin, anthracene type epoxy resin Polyethylene glycol type epoxy resin, N, N′-diglycidylaniline, liquid bisphenol A type epoxy resin, and the like.
  • phenol novolak type epoxy resins include “Epicoat (registered trademark)” 152, 154 (above, manufactured by Mitsubishi Chemical Corporation), “Epicron (registered trademark)” N-740, N-770, N-775 ( As mentioned above, DIC Corporation) etc. are mentioned.
  • cresol novolac type epoxy resins Commercial products of cresol novolac type epoxy resins include “Epiclon (registered trademark)” N-660, N-665, N-670, N-673, N-695 (above, manufactured by DIC Corporation), “EOCN ( Registered trademark) "1020, 102S, 104S (Nippon Kayaku Co., Ltd.).
  • resorcinol type epoxy resin examples include “Denacol (registered trademark)” EX-201 (manufactured by Nagase ChemteX Corporation).
  • dicyclopentadiene type epoxy resins include “Epiclon (registered trademark)” HP7200, HP7200L, HP7200H (above, manufactured by DIC Corporation), “TACTIX (registered trademark)” 558 (manufactured by Huntsman Advanced Materials) XD-1000-1L, XD-1000-2L (Nippon Kayaku Co., Ltd.) and the like.
  • Examples of commercially available epoxy resins having a biphenyl skeleton include “Epicoat (registered trademark)” YX4000H, YX4000, YL6616 (manufactured by Mitsubishi Chemical Corporation), NC-3000 (manufactured by Nippon Kayaku Co., Ltd.), and the like. It is done.
  • Examples of commercially available isocyanate-modified epoxy resins include “AER (registered trademark)” 4152 (manufactured by Asahi Kasei E-Materials Co., Ltd.) and XAC4151 (manufactured by Asahi Kasei Chemicals Co., Ltd.) having an oxazolidone ring.
  • Examples of commercially available anthracene epoxy resins include YX8800 (manufactured by Mitsubishi Chemical Corporation).
  • Examples of commercially available polyethylene glycol type epoxy resins include “Denacol (registered trademark)” EX810, 811, 850, 851, 821, 830, 841, 861 (manufactured by Nagase ChemteX Corporation).
  • liquid bisphenol A type epoxy resins examples include “jER (registered trademark)” 828 (manufactured by Mitsubishi Chemical Corporation).
  • the epoxy resin composition of the present invention has a heat-solubility soluble in an epoxy resin in order to control viscoelasticity and improve mechanical properties such as tack and drape characteristics of prepreg and impact resistance of fiber reinforced composite materials.
  • Organic particles such as plastic resins, rubber particles and thermoplastic resin particles, inorganic particles, and the like can be blended.
  • thermoplastic resin soluble in the epoxy resin a thermoplastic resin having a hydrogen-bonding functional group that can be expected to improve the adhesion between the resin and the reinforcing fiber is preferably used.
  • the hydrogen bondable functional group include an alcoholic hydroxyl group, an amide bond, a sulfonyl group, and a carboxyl group.
  • thermoplastic resin having an alcoholic hydroxyl group examples include polyvinyl acetal resins such as polyvinyl formal and polyvinyl butyral; polyvinyl alcohol and phenoxy resin.
  • thermoplastic resin having an amide bond examples include polyamide, polyimide, polyamideimide, and polyvinylpyrrolidone.
  • thermoplastic resin having a sulfonyl group examples include polysulfone.
  • polyamide, polyimide and polysulfone may have a functional group such as an ether bond and a carbonyl group in the main chain.
  • the polyamide may have a substituent on the nitrogen atom of the amide group.
  • thermoplastic resin having a carboxyl group examples include polyester, polyamide, and polyamideimide.
  • thermoplastic resins soluble in epoxy resins and having hydrogen-bonding functional groups include: Denkabutyral as a polyvinyl acetal resin; “Denkapoval (registered trademark)” as a polyvinyl alcohol resin (manufactured by Denki Kagaku Kogyo Co., Ltd.) , “Vinylec (registered trademark)” (manufactured by JNC); “Macromelt (registered trademark)” (manufactured by Henkel Co., Ltd.), “Amilan (registered trademark)” CM4000 (manufactured by Toray Industries, Inc.); polyimide As “Ultem (registered trademark)” (manufactured by Subic Innovative Plastics), “Aurum (registered trademark)” (manufactured by Mitsui Chemicals), “Vespel (registered trademark)” (manufactured by DuPont); “Victrex (registered trademark)” (registere
  • the acrylic resin has high compatibility with the epoxy resin and is preferably used for controlling the viscoelasticity.
  • Commercially available acrylic resins include “Dianar (registered trademark)” BR series (Mitsubishi Rayon Co., Ltd.), “Matsumoto Microsphere (registered trademark)” M, M100, M500 (Matsumoto Yushi Seiyaku Co., Ltd.) ) And the like.
  • cross-linked rubber particles, and core-shell rubber particles obtained by graft polymerization of a different polymer on the surface of the cross-linked rubber particles are preferably used from the viewpoint of handleability and the like.
  • Examples of commercially available core-shell rubber particles include “Paraloid (registered trademark)” EXL-2655, EXL-2611, and EXL-3387 (produced by Rohm and Haas Co., Ltd.) made of a butadiene / alkyl methacrylate / styrene copolymer.
  • thermoplastic resin particles polyamide particles or polyimide particles are preferably used.
  • polyamide particles SP-500 (manufactured by Toray Industries, Inc.), “Orgazol (registered trademark)” (manufactured by Arkema Co., Ltd.) and the like can be used.
  • At least one block copolymer [E] (hereinafter abbreviated to block copolymer [E]) selected from the group consisting of SBM, BM, and MBM Further, it is effective to improve toughness and impact resistance while maintaining excellent heat resistance of the epoxy resin composition.
  • S, B, and M mean each block defined below.
  • Each block represented by S, B and M is linked directly by a covalent bond or through some chemical structure.
  • any block of S, B, and M is used.
  • the block copolymer is BM or MBM, B and M are used. It is preferable from the viewpoint of improving toughness that any of the blocks is compatible with the epoxy resin.
  • Block M is a block made of a polymethyl methacrylate homopolymer or a copolymer containing 50% by mass or more of methyl methacrylate.
  • the block M is preferably composed of 60% by mass or more of syndiotactic PMMA (polymethyl methacrylate).
  • Block B is a block that is incompatible with block M and has a glass transition temperature of 20 ° C. or lower.
  • the glass transition temperature of the block B is a dynamic viscoelasticity measuring device (RSAII: manufactured by Rheometrics, Inc. or rheometer ARES: whether the epoxy resin composition or the block copolymer [E] alone is used.
  • Rheometrics, Inc. or rheometer ARES whether the epoxy resin composition or the block copolymer [E] alone is used.
  • TA Instruments can be measured by the DMA method. That is, the measurement sample is made into a plate having a thickness of 1 mm, a width of 2.5 mm, and a length of 34 mm, and the period for applying stress is measured while sweeping it at a temperature of ⁇ 100 to 250 ° C., and its tan ⁇ value is measured.
  • the sample is manufactured as follows. When an epoxy resin composition is used, the uncured resin composition is defoamed in vacuum, and then 130 mm in a mold set to a thickness of 1 mm by a 1 mm thick “Teflon (registered trademark)” spacer. By curing at a temperature of 2 ° C. for 2 hours, a cured resinous plate-like resin can be obtained. When a block copolymer is used alone, a void-free plate is prepared using a biaxial extruder. These plates can be evaluated by cutting them into the above size with a diamond cutter.
  • the glass transition temperature of block B is 20 ° C. or lower, preferably 0 ° C. or lower, more preferably ⁇ 40 ° C. or lower.
  • the glass transition temperature is preferably as low as possible from the viewpoint of toughness. However, if the glass transition temperature is lower than ⁇ 100 ° C., there may be a problem in workability such as a roughened cutting surface when a fiber-reinforced composite material is obtained.
  • the block B is preferably an elastomer block.
  • the monomer constituting such an elastomer block can be selected from butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene and 2-phenyl-1,3-butadiene.
  • the block B is preferably selected from polydienes, particularly polybutadiene, polyisoprene and random copolymers thereof, or partially or completely hydrogenated polydienes from the viewpoint of toughness.
  • polydienes particularly polybutadiene, polyisoprene and random copolymers thereof, or partially or completely hydrogenated polydienes from the viewpoint of toughness.
  • Such partially or fully hydrogenated polydienes can be made according to conventional hydrogenation methods.
  • 1,4-polybutadiene (glass transition temperature of about -90 ° C.) having the lowest glass transition temperature. This is because the use of the block B having a lower glass transition temperature is advantageous from the viewpoint of impact resistance and toughness.
  • alkyl (meth) acrylate can also be used as the monomer constituting the elastomer block B.
  • alkyl (meth) acrylate can also be used.
  • Specific examples include ethyl acrylate ( ⁇ 24 ° C.), butyl acrylate ( ⁇ 54 ° C.), 2-ethylhexyl acrylate ( ⁇ 85 ° C.), hydroxyethyl acrylate ( ⁇ 15 ° C.), and 2-ethylhexyl methacrylate ( ⁇ 10 ° C.).
  • the numerical value shown in parentheses after the name of each acrylate is the glass transition temperature of the block B obtained when each acrylate is used. Of these, butyl acrylate is preferably used.
  • the block B is more preferably selected from poly 1,4-butadiene, polybutyl acrylate and poly (2-ethylhexyl acrylate), and more preferably poly 1,4-butadiene or poly (butyl acrylate).
  • Block S is a block that is incompatible with blocks B and M and has a glass transition temperature higher than that of block B.
  • the glass transition temperature or melting point of the block S is preferably 23 ° C. or higher, and more preferably 50 ° C. or higher.
  • monomers constituting the block S include aromatic vinyl compounds such as styrene, ⁇ -methylstyrene or vinyl toluene; alkyl esters of (meth) acrylic acid having an alkyl chain having 1 to 18 carbon atoms. it can.
  • the blending amount of the block copolymer [E] is preferably 1 to 10 parts by mass, more preferably 100 parts by mass with respect to 100 parts by mass of all epoxy resin components, from the viewpoint of mechanical properties and compatibility with the composite production process. Is 2 to 7 parts by mass.
  • the blending amount of the block copolymer [E] is less than 1 part by mass, the effect of improving the toughness and plastic deformation ability of the cured resin is small, and the impact resistance of the fiber-reinforced composite material may be lowered.
  • the elastic modulus of the cured resin is lowered, the mechanical properties of the fiber-reinforced composite material are lowered, and the viscosity of the epoxy resin composition is increased, so that the handleability may be deteriorated.
  • the two blocks M of the triblock copolymer MBM may be the same as or different from each other. Also, the molecular weight can be different due to the same monomer.
  • the block M of the triblock copolymer MBM is diblock copolymer.
  • the M block of the polymer BM may be the same as or different from the M block, and the block B of the MBM triblock may be the same as or different from the diblock copolymer BM.
  • the triblock copolymer SBM and the diblock copolymer BM and / or the triblock copolymer MBM are used in combination as the block copolymer [E], the triblock The block M of the copolymer SBM, each block M of the triblock copolymer MBM, and the block M of the diblock copolymer BM may be the same as or different from each other.
  • the blocks B of the triblock copolymer SBM, the triblock copolymer MBM, and the diblock copolymer BM may be the same as or different from each other.
  • the block copolymer [E] can be produced by anionic polymerization.
  • it can be produced by the methods described in European Patent No. EP 524,054 and European Patent No. EP 749,987.
  • triblock copolymer MBM examples include Nanostrength M22 (manufactured by Arkema) consisting of methyl methacrylate-butyl acrylate-methyl methacrylate and Nanostrength M22N (manufactured by Arkema) having polar functional groups. Can be mentioned.
  • Specific examples of the triblock copolymer SBM are Nanostrength 123, Nanostrength 250, Nanostrength 012, Nanostrength E20, Nanostrength E40 (manufactured by Arkema, Inc.) made of Arkema, which is made of styrene-butadiene-methyl methacrylate. Is mentioned.
  • the epoxy resin composition comprising the epoxy resins [A2] to [C2], the curing agent [D] and the block copolymer [E] has a cured resin obtained by the epoxy resin [A2] rich phase, the epoxy resin [B2 ] Having a phase separation structure including a rich phase and a block copolymer [E] rich phase, an epoxy resin [A2] rich phase, an epoxy resin [B2] rich phase, and a block copolymer [E] rich phase
  • the phase separation structure period is preferably 1 nm to 1 ⁇ m.
  • the epoxy resin composition comprising the epoxy resins [A1] to [C1], the curing agent [D] and the block copolymer [E] has a cured resin obtained by the epoxy resin [A1] rich phase and the epoxy resin [B1. ] Having a phase separation structure containing a rich phase and a block copolymer [E] rich phase, and comprising an epoxy resin [A1] rich phase, an epoxy resin [B1] rich phase, and a block copolymer [E] rich phase.
  • the phase separation structure period is preferably 1 nm to 5 ⁇ m, and the phase separation period of the block copolymer [E] rich phase is more preferably 1 nm to 1 ⁇ m.
  • phase separation structure period of the epoxy resin [A] rich phase and the epoxy resin [B] rich phase is too small, one or more of the following adjustment methods are within the range not impairing the object of the present invention.
  • the phase separation structure period can be increased. (1) The blending ratio of the epoxy resin [C] to the total epoxy resin is reduced. (2) Increase the softening point of the epoxy resin [A]. (3) Lower the softening point of the epoxy resin [B]. (4) Increase the blending ratio of both epoxy resins [A] and [B].
  • the phase separation structure period of the epoxy resin [A] rich phase and the epoxy resin [B] rich phase is within a range that does not impair the object of the present invention, and one or more of the following adjustment methods are performed. Therefore, it can be reduced.
  • (1) Increase the blending ratio of the epoxy resin [C] to the total epoxy resin.
  • (2) Lower the softening point of the epoxy resin [A].
  • (3) Increase the softening point of the epoxy resin [B].
  • the blending ratio of both epoxy resins [A] and [B] is reduced.
  • phase separation structure period of the block copolymer [E] rich phase can be reduced by performing one or more of the following adjustment methods within a range that does not impair the object of the present invention. it can.
  • phase separation structure period of the block copolymer [E] rich phase can be increased by performing one or more of the following adjustment methods within a range that does not impair the object of the present invention. .
  • the viscosity at 80 ° C. of the epoxy resin composition is preferably 0.5 to 200 Pa ⁇ s from the viewpoint of processability such as tack and drape. .
  • the viscosity at 80 ° C. of the epoxy resin composition is less than 0.5 Pa ⁇ s, the produced prepreg is difficult to maintain its shape, and the prepreg may be cracked.
  • many resin flows are produced at the time of molding of the fiber reinforced composite material, and there is a possibility that the reinforced fiber content varies. Further, when the viscosity at 80 ° C.
  • the viscosity at 80 ° C. of the epoxy resin composition is more preferably in the range of 5 to 50 Pa ⁇ s because the resin can easily be impregnated between the reinforcing fibers in the prepreg manufacturing process and a prepreg having a high fiber content can be manufactured. .
  • the viscosity can be lowered by performing one or more of the following methods (1) to (2) within the range not impairing the object of the present invention, and the following (3) to (4)
  • the viscosity can be increased by performing one or more methods.
  • (1) Use epoxy resin [A] and / or [B] having a low softening point.
  • (2) Increase the amount of the epoxy resin [C].
  • (3) An epoxy resin [A] and / or [B] having a high softening point is used.
  • a thermoplastic resin is blended.
  • the viscosity is a dynamic viscoelasticity measuring device (Rheometer RDA2: manufactured by Rheometrics or Rheometer ARES: manufactured by TA Instruments), a parallel plate having a diameter of 40 mm, and a temperature rising rate of 1. It refers to the complex viscoelastic modulus ⁇ * obtained by simply raising the temperature at 5 ° C./min and measuring at a frequency of 0.5 Hz and a gap of 1 mm.
  • the elastic modulus of the cured resin product is preferably in the range of 3.8 to 5.0 GPa. More preferably, it is 4.0 to 5.0 GPa.
  • the elastic modulus is less than 3.8 GPa, the static strength of the obtained fiber-reinforced composite material may be lowered.
  • this elastic modulus exceeds 5.0 GPa, the plastic deformation ability of the obtained fiber reinforced composite material tends to be low, and the impact strength of the fiber reinforced composite material may be reduced. The method for measuring the elastic modulus will be described in detail later.
  • the elastic modulus of the cured resin can be improved by performing one or more of the following methods within a range that does not impair the object of the present invention.
  • a bisphenol F type epoxy resin having a high elastic modulus is used as the epoxy resin [A].
  • (3) An amine type epoxy is used as the epoxy resin [B], and an aminophenol type epoxy resin having a high elastic modulus is used.
  • (4) A bisphenol F type epoxy resin is used as the epoxy resin [C].
  • the curing temperature and curing time for obtaining the cured resin are selected according to the curing agent and catalyst to be blended.
  • the curing agent and catalyst for example, in the case of a curing agent system in which dicyandiamide and DCMU are combined, conditions for curing at a temperature of 130 to 150 ° C. for 90 minutes to 2 hours are preferable, and when diaminodiphenyl sulfone is used, a temperature of 180 ° C. for 2 to 3 hours. Conditions for curing are preferred.
  • the resin toughness value of the cured resin obtained by curing the epoxy resin composition of the present invention is preferably 1.1 MPa ⁇ m 0.5 or more. More preferably, it is 1.3 MPa ⁇ m 0.5 or more. If the resin toughness value is less than 1.1 MPa ⁇ m 0.5 , the impact resistance of the resulting fiber-reinforced composite material may be reduced. The method for measuring the resin toughness value will be described in detail later.
  • the resin toughness value can be improved by performing one or more of the following methods within a range that does not impair the object of the present invention.
  • An epoxy resin [A] and / or [B] having a large number average molecular weight is used.
  • a kneader, a planetary mixer, a three-roll extruder, a twin-screw extruder, or the like is preferably used.
  • the epoxy resins [A] to [C] are added, and the temperature of the epoxy resin mixture is increased to an arbitrary temperature of 130 to 180 ° C. while stirring to dissolve the epoxy resins [A] to [C] uniformly.
  • other components such as the block copolymer [E] other than the curing agent [D] and the curing accelerator may be added and kneaded together.
  • the temperature is preferably lowered to 100 ° C. or lower, more preferably 80 ° C. or lower, and further preferably 60 ° C. or lower, and the curing agent [D] and the curing accelerator are added, kneaded and dispersed.
  • This method is preferably used because an epoxy resin composition having excellent storage stability can be obtained.
  • the fiber-reinforced composite material containing the cured product of the epoxy resin composition of the present invention as a matrix resin can be obtained by impregnating the epoxy resin composition of the present invention into a reinforcing fiber and then curing.
  • the reinforcing fiber used in the present invention is not particularly limited, and glass fiber, carbon fiber, aramid fiber, boron fiber, alumina fiber, silicon carbide fiber and the like are used. Two or more of these fibers may be mixed and used. Among these, it is preferable to use carbon fibers from which a lightweight and highly rigid fiber-reinforced composite material can be obtained. Among these, carbon fibers having a tensile modulus of 230 to 800 GPa are preferably used, and carbon fibers having a tensile modulus of 280 GPa are more preferably used.
  • the form of the reinforcing fiber is not particularly limited, and for example, long fibers arranged in one direction, tows, woven fabrics, mats, knits, braids, short fibers chopped to a length of less than 10 mm, and the like are used.
  • the term “long fiber” as used herein refers to a single fiber or fiber bundle that is substantially continuous by 10 mm or more.
  • a short fiber is a fiber bundle cut to a length of less than 10 mm.
  • an array in which reinforcing fiber bundles are aligned in a single direction is most suitable.
  • the method for producing the fiber-reinforced composite material of the present invention is not particularly limited, but includes a prepreg lamination molding method, a resin transfer molding method, a resin film infusion method, a hand layup method, a sheet molding compound method, and a filament winding method. , Pultrusion method, etc.
  • the resin transfer molding method is a method in which a reinforcing fiber base material is directly impregnated with a liquid thermosetting resin composition and then cured. Since this method does not go through an intermediate such as a prepreg, it has the potential to reduce molding costs, and can be preferably used for structural materials such as spacecraft, aircraft, railway vehicles, automobiles, and ships.
  • the prepreg laminate molding method is to form and / or laminate a prepreg impregnated with a thermosetting resin composition on a reinforcing fiber substrate, and then heat cure the resin while applying pressure to the shaped product and / or laminate.
  • a fiber reinforced composite material is obtained.
  • the filament winding method 1 to several tens of rovings of reinforcing fibers are arranged, wound around a rotating mold (mandrel) while impregnated with a thermosetting resin composition, tensioned to a predetermined thickness and wound at a predetermined angle, This is a method of demolding after curing.
  • reinforcing fibers are continuously passed through an impregnation tank filled with a liquid thermosetting resin composition to impregnate the thermosetting resin composition, and then continuously by a squeeze die and a heating mold by a tension machine.
  • This is a method of forming and curing while pulling out. Since this method has an advantage that a fiber reinforced composite material can be continuously formed, it is used for manufacturing reinforced fiber plastics (FRP) such as fishing rods, rods, pipes, sheets, antennas, and building structures.
  • FRP reinforced fiber plastics
  • the prepreg laminate molding method is preferable because the obtained fiber-reinforced composite material is excellent in rigidity and strength.
  • a preferred prepreg includes the epoxy resin composition of the present invention and reinforcing fibers. Such a prepreg can be obtained by impregnating the reinforcing fiber substrate with the epoxy resin composition of the present invention. Examples of the impregnation method include a wet method and a hot melt method (dry method).
  • the reinforcing fiber is pulled up, and the solvent is evaporated from the reinforcing fiber using an oven or the like.
  • the hot melt method is a method in which a reinforcing fiber is impregnated directly with an epoxy resin composition whose viscosity is reduced by heating, or a film in which an epoxy resin composition is coated on a release paper is prepared, and then both sides of the reinforcing fiber are prepared.
  • it is a method of impregnating a reinforcing fiber with a resin by overlapping the film from one side and heating and pressing. Since there is no solvent remaining in the prepreg, it is preferable to use a hot melt method.
  • the amount of reinforcing fibers per unit area of the prepreg is preferably 70 to 200 g / m 2 .
  • the mass content of the reinforcing fiber in the prepreg is preferably 60 to 90% by mass, more preferably 65 to 85% by mass, and further preferably 70 to 80% by mass.
  • the mass content of the reinforced fiber is less than 60% by mass, the resin ratio is too large, so that it is difficult to obtain the advantages of the fiber reinforced composite material having excellent specific strength and specific elastic modulus, or when the fiber reinforced composite material is cured.
  • the calorific value may be too high.
  • the mass content of the reinforcing fiber exceeds 90% by mass, the resin is difficult to be impregnated, so that the obtained fiber-reinforced composite material may have a lot of voids.
  • a press molding method as a method of applying heat and pressure, a press molding method, an autoclave molding method, a bagging molding method, a wrapping tape method, an internal pressure molding method, or the like can be appropriately used.
  • the autoclave molding method is a method in which a prepreg is laminated on a tool plate having a predetermined shape, covered with a bagging film, and pressurized and heat-cured while degassing the inside of the laminate. Since the fiber orientation can be precisely controlled and the generation of voids is small, a molded article having excellent mechanical properties and high quality can be obtained.
  • the pressure applied during molding is preferably 0.3 to 1.0 MPa.
  • the molding temperature is preferably in the range of 90 to 200 ° C.
  • the wrapping tape method is a method of forming a tubular body made of a fiber reinforced composite material by winding a prepreg around a mandrel or the like. This is a preferable method when producing rod-shaped bodies such as golf shafts and fishing rods. More specifically, the prepreg is wound around a mandrel, and in order to fix and apply pressure to the prepreg, a wrapping tape made of a thermoplastic film is wound around the wound prepreg while applying tension, and pressure is applied to the prepreg. After the resin is heat-cured in an oven, the mandrel is withdrawn to obtain a tubular body.
  • the tension for winding the wrapping tape is preferably 20 to 78N.
  • the molding temperature is preferably in the range of 80 to 200 ° C.
  • the internal pressure molding method is to set a preform in which a prepreg is wound on an internal pressure applying body such as a tube made of a thermoplastic resin in a mold, and then introduce a high pressure gas into the internal pressure applying body to apply pressure. At the same time, the mold is heated and molded.
  • This method is preferably used when molding a complicated shape such as a golf shaft, a bad, a racket such as tennis or badminton.
  • the pressure applied during molding is preferably 0.1 to 2.0 MPa.
  • the molding temperature is preferably in the range of room temperature to 200 ° C, more preferably in the range of 80 to 180 ° C.
  • the cured product of the epoxy resin composition of the present invention and a fiber-reinforced composite material containing reinforcing fibers are preferably used for sports applications, general industrial applications, and aerospace applications. More specifically, in sports applications, it is preferably used for golf shafts, fishing rods, tennis or badminton rackets, hockey sticks, ski poles, and the like. In addition, in general industrial applications, structural materials for moving bodies such as automobiles, bicycles, ships and railway vehicles, drive shafts, leaf springs, windmill blades, pressure vessels, flywheels, paper rollers, roofing materials, cables, and repair reinforcement materials Etc. are preferably used.
  • the tubular body made of fiber reinforced composite material obtained by curing the prepreg of the present invention into a tubular shape can be preferably used for golf shafts, fishing rods and the like.
  • SBM copolymer (“Nanostrength®” E40: S is polystyrene (Tg: about 90 ° C.), B is poly 1,4-butadiene (Tg: about ⁇ 90 ° C.), M is poly Block copolymer consisting of methyl methacrylate (Tg: about 130 ° C., manufactured by Arkema Co., Ltd.) MBM copolymer ("Nanostrength (registered trademark)" M22N: B is polybutyl acrylate (Tg: about -50 ° C), M is polar methacrylate having higher SP value than methyl methacrylate and methyl methacrylate A block copolymer comprising a copolymer of group-containing monomers (Tg: about 130 ° C., manufactured by Arkema Co., Ltd.).
  • HLC Number average molecular weight measurement “HLC (registered trademark)” 8220GPC (manufactured by Tosoh Corporation) as a measuring device, UV-8000 (254 nm) as a detector, and TSK-G4000H (manufactured by Tosoh Corporation) as a column.
  • the epoxy resin to be measured was dissolved in THF at a concentration of 0.1 mg / ml, and this was measured at a flow rate of 1.0 ml / min and a temperature of 40 ° C.
  • the retention time of the measurement sample was converted to molecular weight using the retention time of the polystyrene calibration sample, and the number average molecular weight was determined.
  • the initial precrack was introduced into the test piece by applying a razor blade cooled to liquid nitrogen temperature to the test piece and applying an impact to the razor with a hammer.
  • the resin toughness value refers to the critical stress strength of deformation mode I (opening type).
  • phase separation structure is a biphasic continuous structure
  • draw three straight lines of a predetermined length on the micrograph extract the intersection of the straight line and the phase interface, measure the distance between the adjacent intersections, These number average values were used as the structure period.
  • the predetermined length is set as follows based on a micrograph.
  • the structural period is expected to be on the order of 0.01 ⁇ m (0.01 ⁇ m or more and less than 0.1 ⁇ m)
  • a sample photograph was taken at a magnification of 20,000 times, and a length of 20 mm drawn on the photograph (1 ⁇ m on the sample) was defined as a predetermined straight line length.
  • phase separation structure period is expected to be on the order of 0.1 ⁇ m (0.1 ⁇ m or more and less than 1 ⁇ m)
  • a photograph is taken at a magnification of 2,000 times and a length of 20 mm on the photograph (10 ⁇ m on the sample)
  • the length is a predetermined length of the straight line.
  • the phase separation structure period is expected to be on the order of 1 ⁇ m (1 ⁇ m or more and less than 10 ⁇ m)
  • a photograph is taken at a magnification of 200 times, and a length of 20 mm on the photograph (a length of 100 ⁇ m on the sample) is defined as a predetermined straight line length. did. If the measured phase separation structure period was out of the expected order, it was measured again at a magnification corresponding to the corresponding order.
  • the phase separation structure is a sea-island structure
  • three predetermined regions on the micrograph were selected at random, the island phase size in the region was measured, and the number average value thereof was taken as the structure period.
  • the size of the island phase refers to the length of the shortest distance line drawn from the phase interface to one phase interface through the island phase. Even when the island phase is an ellipse, an indeterminate shape, or a circle or ellipse of two or more layers, the shortest distance passing through the island phase from the phase interface to one phase interface is defined as the island phase size.
  • the predetermined region is set as follows based on a micrograph.
  • phase separation structure period When the phase separation structure period is expected to be on the order of 0.01 ⁇ m (0.01 ⁇ m or more and less than 0.1 ⁇ m), a photograph of the sample was taken at a magnification of 20,000 times, and an area of 4 mm square on the photograph (0 on the sample) .2 ⁇ m square area) was defined as a predetermined area.
  • a sample photograph is taken at a magnification of 2,000 times, and a 4 mm square area (sample) The upper 2 ⁇ m square area) was defined as a predetermined area.
  • phase separation structure period When the phase separation structure period is expected to be on the order of 1 ⁇ m (1 ⁇ m or more and less than 10 ⁇ m), a photograph was taken at a magnification of 200 times, and an area of 4 mm square on the photograph (an area of 20 ⁇ m square on the sample) was defined as a predetermined area. If the measured phase separation structure period was out of the expected order, it was measured again at a magnification corresponding to the corresponding order.
  • T700SC-24K manufactured by Toray Industries, Inc., tensile elastic modulus: 230 GPa, tensile strength: 4900 MPa
  • the mass of carbon fiber per unit area was 125 g / m 2
  • a unidirectional prepreg using T700SC having a fiber mass content of 75% by mass was also produced.
  • a wrapping tape heat-resistant film tape
  • the width of the wrapping tape was 15 mm
  • the tension was 34 N
  • the winding pitch (deviation amount at the time of winding) was 2.0 mm
  • E WR [(cos ⁇ cos ⁇ ) ⁇ (cos ⁇ ′ ⁇ cos ⁇ ) ( ⁇ + ⁇ ) / ( ⁇ + ⁇ ′)]
  • J Absorbed energy
  • WR Moment around the rotation axis of the hammer (N ⁇ m)
  • Hammer lift angle (°)
  • ⁇ ' Swing angle when the hammer is swung from the lift angle ⁇ (°)
  • Hammer swing angle after test specimen breakage (°)
  • the 0 ° bending strength of the unidirectional laminated plate was measured as an index of bending strength of the fiber reinforced composite material.
  • a test piece was cut out of the unidirectional laminate so as to have a thickness of 2 mm, a width of 15 mm, and a length of 100 mm.
  • the test piece was measured at a crosshead speed of 5.0 mm / min, a span of 80 mm, an indenter diameter of 10 mm, and a fulcrum diameter of 4 mm, and the bending strength was calculated.
  • the obtained bending strength was converted into Vf60%.
  • Example 1 40 parts of jER1007 as epoxy resin [A1] or [A2], 20 parts of jER630 as epoxy resin [B1] or [B2], 40 parts of Epicron 830 as epoxy resin [C1] or [C2], curing agent [D ]
  • An epoxy resin composition was prepared using DICY7 as an amount of 0.9 equivalent of active hydrogen groups with respect to the epoxy groups of all epoxy resin components and 2 parts of DCMU99 as a curing accelerator.
  • the resulting resin composition had a good viscosity at 80 ° C.
  • the resulting epoxy resin composition was heated at 2.5 ° C./min and cured at 130 ° C. for 90 minutes.
  • the obtained cured resin formed a fine phase separation structure and had good mechanical properties.
  • Epoxy resin compositions were prepared in the same manner as in Example 1 except that the compositions shown in Tables 2 to 5 were changed. The evaluation results are shown in Tables 2-5.
  • the cured resin obtained from the epoxy resin composition of each example formed a fine phase separation structure and had good mechanical properties. Moreover, the impact resistance property and the 0 ° bending strength of the unidirectional laminate were good for the tubular body made of fiber-reinforced composite material produced using the prepreg composed of the epoxy resin composition and carbon fiber obtained.
  • the obtained cured resin formed a uniform phase separation structure and lacked the elastic modulus. Furthermore, since the viscosity at 80 ° C. of the epoxy resin composition exceeded 200 Pa ⁇ s, voids occurred in the fiber-reinforced composite material. As a result, the 0 ° bending strength of the unidirectional laminate produced using the obtained epoxy resin composition and carbon fiber was insufficient.
  • the epoxy resin composition of the present invention has a high elastic modulus and high toughness, and further has a low viscosity, so that it enables prepreg molding with a high fiber content.
  • strength can be obtained by combining an epoxy resin composition and a reinforced fiber.
  • the fiber-reinforced composite material obtained is preferably used for sports applications, general industrial applications, and aircraft applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Reinforced Plastic Materials (AREA)
  • Epoxy Resins (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

 エポキシ樹脂[A1]、エポキシ樹脂[B1]、エポキシ樹脂[C1]および硬化剤[D]を含むエポキシ樹脂組成物であって、[A1]は軟化点が90℃以上のビスフェノール型エポキシ樹脂、[B1]は3官能以上のアミン型エポキシ樹脂、そして[C1]数平均分子量450以下のビスフェノールF型エポキシ樹脂であり、かつ、エポキシ樹脂[A1]~[C1]が全エポキシ樹脂成分100質量部に対して、[A1]20~50質量部、[B1]30~50質量部および[C1]10~40質量部の配合比を満たす、エポキシ樹脂組成物。本発明は、優れた弾性率と靭性を併せ持つ樹脂硬化物を形成し、かつ低粘度で強化繊維間への含浸性に優れたエポキシ樹脂組成物、および該エポキシ樹脂組成物を用いたプリプレグおよび繊維強化複合材料を提供する。

Description

エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
 本発明は、スポーツ用途および一般産業用途に適した繊維強化複合材料のマトリックス樹脂として好ましく用いられるエポキシ樹脂組成物、ならびに、これをマトリックス樹脂としたプリプレグおよび繊維強化複合材料に関するものである。
 炭素繊維やアラミド繊維などを強化繊維として用いた繊維強化複合材料は、その高い比強度および比弾性率を利用して、航空機や自動車などの構造材料、テニスラケット、ゴルフシャフト、釣り竿などのスポーツ用途、一般産業用途などに広く利用されている。これら繊維強化複合材料の製造方法には、強化繊維にマトリックス樹脂が含浸されたシート状中間材料であるプリプレグを用い、それを複数枚積層した後、硬化する方法がよく用いられている。プリプレグを用いる方法は、強化繊維の配向を厳密に制御でき、また積層構成の設計自由度が高いことから、高性能な繊維強化複合材料を得やすい利点がある。プリプレグに用いられるマトリックス樹脂としては、耐熱性や生産性の観点から、主に熱硬化性樹脂が用いられ、中でも強化繊維との接着性などの力学特性の観点からエポキシ樹脂が好ましく用いられる。
 近年では、金属等の従来材料を繊維強化複合材料に置き換えることで軽量化を目指す動きに加えて、様々な用途において、繊維強化複合材料そのもののさらなる軽量化を求める動きが活発化してきている。軽量化を達成する方法としては、より高弾性率な強化繊維を使用し、繊維強化複合材料の剛性は維持したまま軽量化する方法が挙げられる。しかし、強化繊維を高弾性率化した場合、繊維方向圧縮強度などの強度特性は、低下する傾向にある。繊維方向圧縮強度などの強度特性を改善するには、マトリックス樹脂として用いるエポキシ樹脂の弾性率を向上させることが有効である。
 エポキシ樹脂の弾性率を向上させる手法としては、カーボンナノチューブなどの無機フィラーの添加や弾性率の高いアミン型エポキシ樹脂の配合があげられる。
 例えば、特許文献1では、高弾性率なアミン型エポキシ樹脂を配合することで、エポキシ樹脂の弾性率が向上し、これをマトリックス樹脂として適用した繊維強化複合材料において、繊維方向圧縮強度と相関の強い繊維方向曲げ強さに顕著な向上が見られている。しかし、この方法では、エポキシ樹脂の靱性が低下するために、耐衝撃性が低下する。
 繊維強化複合材料の耐衝撃性を向上させるためには、繊維強化複合材料を構成する強化繊維の伸度やエポキシ樹脂の塑性変形能力や靱性を向上させる必要がある。これらのうち、特にエポキシ樹脂の靱性を向上させることが重要かつ有効であるとされている。
 従来、エポキシ樹脂の靱性を向上させる方法としては、靱性に優れるゴム成分や熱可塑性樹脂を配合する方法などが試されてきた。しかし、ゴムは、弾性率やガラス転移温度がエポキシ樹脂に比べて大幅に低いため、エポキシ樹脂に配合した場合、エポキシ樹脂の弾性率やガラス転移温度の低下が見られ、靱性と弾性率のバランスを取ることが困難である。また、熱可塑性樹脂を配合する方法としては、例えばスチレン-ブタジエン-メタクリル酸メチルからなる共重合体や、ブタジエン-メタクリル酸メチルからなるブロック共重合体などのブロック共重合体を配合することにより、エポキシ樹脂の靭性を大きく向上させる方法が提案されている(特許文献2、3)。しかし、これらの方法には、耐熱性の低下や増粘によるプロセス性の悪化、ボイド発生等の品位低下といった問題があった。また、この方法でも弾性率が不十分であった。
 弾性率と靱性のバランスを向上させる方法としては、特定の数平均分子量を有するジグリシジルエーテル型エポキシ樹脂と前記エポキシ樹脂と特定の範囲でSP値が異なるエポキシ樹脂を組み合わせる方法が開示されている(特許文献4)。しかし、この方法でも、弾性率と靱性のバランスが不十分であるだけでなく、粘度が高くなりがちであり、不十分であった。
特開昭62-1717号公報 国際公開第2006/077153号パンフレット 特表2003-535181号公報 国際公開第2009/107697号パンフレット
 本発明の目的は、かかる従来技術の欠点を改良し、優れた弾性率と靭性を併せ持つ樹脂硬化物を与え、かつ低粘度で強化繊維間への含浸性に優れたエポキシ樹脂組成物、ならびに、該エポキシ樹脂組成物を用いたプリプレグおよび繊維強化複合材料を提供することにある。ここで、樹脂硬化物とは、エポキシ樹脂またはエポキシ樹脂組成物を硬化させたものを意味する。以下同様である。
 本発明者らは、前記課題を解決すべく鋭意検討した結果、下記構成からなるエポキシ樹脂組成物を見いだし、本発明を完成させるに至った。すなわち本発明は、以下の構成からなる。
エポキシ樹脂[A1]、エポキシ樹脂[B1]、エポキシ樹脂[C1]および硬化剤[D]を含むエポキシ樹脂組成物であって、[A1]は軟化点が90℃以上のビスフェノール型エポキシ樹脂、[B1]は3官能以上のアミン型エポキシ樹脂、そして[C1]数平均分子量450以下のビスフェノールF型エポキシ樹脂であり、かつ、エポキシ樹脂[A1]~[C1]が全エポキシ樹脂成分100質量部に対して、[A1]20~50質量部、[B1]30~50質量部および[C1]10~40質量部の配合比を満たす、エポキシ樹脂組成物。
(2)エポキシ樹脂[A2]、エポキシ樹脂[B2]、エポキシ樹脂[C2]および硬化剤[D]を含み、かつ、以下の条件(1)~(4)を満たすエポキシ樹脂組成物:
また、本発明の別の態様は、エポキシ樹脂[B2]を硬化剤[D]と反応し硬化させて得られる樹脂硬化物[B2’]のSP値が、エポキシ樹脂[A2]および[C2]をそれぞれ硬化剤[D]と反応し硬化させて得られる樹脂硬化物[A2’]および[C2’]のいずれのSP値に対してよりも1.2以上大きい;
(2)エポキシ樹脂[A2]の軟化点が90℃以上であり、かつエポキシ樹脂[B2]と[C2]の軟化点がいずれも50℃以下である;
(3)エポキシ樹脂[C2]と、エポキシ樹脂[C2]のエポキシ基に対し活性水素基が0.9当量のジシアンジアミドと、エポキシ樹脂[C2]100質量部に対して2質量部の3-(3,4-ジクロロフェニル)-1,1-ジメチルウレアからなるエポキシ樹脂組成物を、室温から130℃まで2.5℃/分で昇温し、130℃で90分間反応させて得られる樹脂硬化物の弾性率が、3.5GPa以上である;および
(4)エポキシ樹脂組成物を硬化させて得られる樹脂硬化物が、[A2]リッチ相と[B2]リッチ相を含む相分離構造を有し、その相分離構造周期が1nm~1μmである。
また、本発明は、上記のエポキシ樹脂組成物と強化繊維を含むプリプレグを含む。
また、本発明は、上記のプリプレグを硬化させてなる繊維強化複合材料を含む。
また、本発明は、上記のエポキシ樹脂組成物の硬化物と、強化繊維を含む繊維強化複合材料を含む。
 本発明によれば、硬化時にエポキシ樹脂の微細な相分離構造が形成され、高弾性率かつ高靱性の樹脂硬化物を与え、かつ低粘度で強化繊維間への含浸性に優れるエポキシ樹脂組成物を提供できる。また、本発明のエポキシ樹脂組成物の硬化物をマトリックス樹脂とした繊維強化複合材料は、優れた静的強度特性と耐衝撃性を併せ持つ。
 発明者らは、上記の目的を達成するために鋭意検討した結果、エポキシ樹脂組成物が、樹脂硬化物に高い靱性を与えるエポキシ樹脂[A]、樹脂硬化物に高い弾性率を与えるエポキシ樹脂[B]、エポキシ樹脂[A]および[B]の相溶化剤として機能するエポキシ樹脂[C]、および、硬化剤[D]を含み、かつ、該エポキシ樹脂組成物を硬化させて得られる樹脂硬化物が、エポキシ樹脂[A]リッチ相とエポキシ樹脂[B]リッチ相を含む微細な相分離構造を形成することによって、高弾性率かつ高靱性の樹脂硬化物が得られることを見出した。
 ここで、エポキシ樹脂[A]~[C]は、硬化前において互いに均一に相溶している状態であったとしても、硬化過程においてスピノーダル分解し、エポキシ樹脂[A]リッチ相とエポキシ樹脂[B]リッチ相とで相分離構造を形成することが好ましい。また、その相分離構造周期は1nm~5μmであることがより好ましく、さらに好ましい相分離構造周期は1nm~1μmである。エポキシ樹脂組成物の硬化過程において、エポキシ樹脂[C]はエポキシ樹脂[A]および[B]の相溶化剤として機能する。
 構造周期が1nm未満の場合は、キャビテーション効果を発揮できず、靱性が不足するだけでなく、弾性率も不足しやすい。また、構造周期が5μmを超える場合では、その構造周期が大きいために、亀裂が島相への進展なく、海相のみの領域で進展するのでキャビテ―ション効果を発現できず、樹脂硬化物の靱性が不充分である場合がある。すなわち、エポキシ樹脂組成物の硬化物が、エポキシ樹脂[A]リッチ相とエポキシ樹脂[B]リッチ相を含み、かつ、微細な相分離構造を有することにより、樹脂硬化物の弾性率と靭性の両立が可能となるのである。
 本発明において相分離構造とは、エポキシ樹脂[A]リッチ相とエポキシ樹脂[B]リッチ相を含む2相以上の相が分離して形成されている構造をいう。ここで、エポキシ樹脂[A]リッチ相およびエポキシ樹脂[B]リッチ相とは、それぞれエポキシ樹脂[A]およびエポキシ樹脂[B]を主成分とする相のことをいう。また、ここで主成分とは、当該相において最も高い含有率で含まれている成分のことをいう。相分離構造は、エポキシ樹脂[A]およびエポキシ樹脂[B]以外の成分を主成分とする相をさらに含む3相以上の相分離構造であっても良い。これに対し、分子レベルで均一に混合している状態を、相溶状態という。
 樹脂硬化物の相分離構造は、樹脂硬化物の断面を走査型電子顕微鏡もしくは透過型電子顕微鏡により観察することができる。必要に応じて、オスミウムなどで染色しても良い。染色は、通常の方法で行うことができる。
 本発明において、相分離の構造周期は、次のように定義するものとする。なお、相分離構造には、両相連続構造と海島構造が有るので、それぞれについて定義する。相分離構造が両相連続構造の場合、顕微鏡写真の上に所定の長さの直線をランダムに3本引き、その直線と相界面の交点を抽出し、隣り合う交点間の距離を測定し、これらの数平均値を構造周期とする。かかる所定の長さとは、顕微鏡写真を基に以下のようにして設定するものとする。構造周期が0.01μmオーダー(0.01μm以上0.1μm未満)と予想される場合、倍率を20,000倍でサンプルの写真を撮影し、写真上で引いた20mmの長さ(サンプル上1μmの長さ)を直線の所定の長さとする。同様にして、相分離構造周期が0.1μmオーダー(0.1μm以上1μm未満)と予想される場合、倍率を2,000倍で写真撮影し、写真上で20mmの長さ(サンプル上10μmの長さ)を直線の所定の長さとする。相分離構造周期が1μmオーダー(1μm以上10μm未満)と予想される場合、倍率を200倍で写真撮影し、写真上で20mmの長さ(サンプル上100μmの長さ)を直線の所定の長さとする。もし、測定した相分離構造周期が予想したオーダーより外れていた場合、該当するオーダーに対応する倍率にて再度測定する。
 相分離構造が海島構造の場合、顕微鏡写真の上の所定の領域をランダムに3箇所選出し、その領域内の島相サイズを測定し、これらの数平均値を構造周期とする。島相のサイズは、相界面から一方の相界面へ島相を通って引く最短距離の線の長さをいう。島相が楕円形、不定形、または、二層以上の円または楕円になっている場合であっても、相界面から一方の相界面へ島相を通る最短の距離を島相サイズとする。かかる所定の領域とは、顕微鏡写真を基に以下のようにして設定するものとする。相分離構造周期が0.01μmオーダー(0.01μm以上0.1μm未満)と予想される場合、倍率を20,000倍でサンプルの写真を撮影し、写真上で4mm四方の領域(サンプル上0.2μm四方の領域)を所定の領域とする。同様にして、相分離構造周期が0.1μmオーダー(0.1μm以上1μm未満)と予想される場合、倍率を2,000倍で写真撮影し、写真上で4mm四方の領域(サンプル上2μm四方の領域)を所定の領域とする。相分離構造周期が1μmオーダー(1μm以上10μm未満)と予想される場合、倍率を200倍で写真撮影し、写真上で4mm四方の領域(サンプル上20μm四方の領域)を所定の領域とする。もし、測定した相分離構造周期が予想したオーダーより外れていた場合、該当するオーダーに対応する倍率にて再度測定する。
 次に、本発明の具体的態様について説明する。本発明のエポキシ樹脂組成物の第1の態様は、エポキシ樹脂[A1]、エポキシ樹脂[B1]、エポキシ樹脂[C1]および硬化剤[D]を含むエポキシ樹脂組成物であって、[A1]は軟化点が90℃以上のビスフェノール型エポキシ樹脂、[B1]は3官能以上のアミン型エポキシ樹脂、そして[C1]数平均分子量450以下のビスフェノールF型エポキシ樹脂であり、かつ、エポキシ樹脂[A1]~[C1]が全エポキシ樹脂成分100質量部に対して、[A1]20~50質量部、[B1]30~50質量部および[C1]10~40質量部の配合比を満たす、エポキシ樹脂組成物である。
 本態様においては、エポキシ樹脂[A1]として、90℃以上の軟化点を有するビスフェノール型エポキシ樹脂を、全エポキシ樹脂100質量部のうち、20~50質量部含む必要がある。好ましくは、エポキシ樹脂[A1]を全エポキシ樹脂100質量部のうち30~50質量部含むことである。エポキシ樹脂[A1]の軟化点が90℃に満たない場合、樹脂硬化物の靱性が不足する。また、エポキシ樹脂[A1]の含有量が、20質量部に満たない場合、樹脂硬化物の靭性が不足する。エポキシ樹脂[A1]の含有量が、50質量部を超える場合は、樹脂硬化物の弾性率や耐熱性が不足するだけでなく、エポキシ樹脂組成物の粘度が高くなりすぎる。エポキシ樹脂組成物の粘度が高くなりすぎると、プリプレグを製造する際、強化繊維間にエポキシ樹脂組成物を充分に含浸できない。このために、得られる繊維強化複合材料中にボイドを生じ、繊維強化複合材料の強度が低下する。
 かかるエポキシ樹脂[A1]としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、およびこれらのハロゲン置換体、アルキル置換体、水添品などから選ばれるエポキシ樹脂を好ましく使用できる。かかるエポキシ樹脂[A1]の市販品としては、“jER(登録商標)”1004AF、1007、1009P、1010P、4005P、4007P、4009P、4010P(以上、三菱化学(株)製)などが挙げられる。中でも、耐熱性、弾性率および靭性のバランスが良いことから、ビスフェノールA型エポキシ樹脂、またはビスフェノールF型エポキシ樹脂が好ましく、より好ましくはビスフェノールF型エポキシ樹脂である。
 本態様においては、エポキシ樹脂[B1]として、3官能以上のアミン型エポキシ樹脂を、全エポキシ樹脂100質量部のうち30~50質量部含む必要がある。エポキシ樹脂[B1]の含有量が30質量部に満たない場合、樹脂硬化物の弾性率が不足する。また、エポキシ樹脂[B1]の含有量が50質量部を超える場合は、樹脂硬化物の塑性変形能力と靭性が不足する。3官能以上のアミン型エポキシ樹脂の中でも、3官能アミン型エポキシ樹脂が、樹脂硬化物に弾性率と靭性をバランス良く与えるため好ましい。さらに、3官能アミン型エポキシ樹脂の中でも、アミノフェノール型エポキシ樹脂は、樹脂硬化物の靭性が比較的高く、より好ましい。
 かかるエポキシ樹脂[B1]としては、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルジアミノジフェニルスルホン、テトラグリシジルジアミノジフェニルエーテル、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシリレンジアミンなどのアミン型エポキシ樹脂や、トリグリシジルイソシアヌレート骨格を有するエポキシ樹脂、およびこれらのハロゲン置換体、アルキル置換体、水添品などから選ばれるエポキシ樹脂が好ましく使用される。
 前記テトラグリシジルジアミノジフェニルメタンとしては、“スミエポキシ(登録商標)”ELM434(住友化学(株)製)、YH434L(新日鐵化学(株)製)、“jER(登録商標)”604(三菱化学(株)製)、“アラルダイド(登録商標)”MY720、MY721(以上、ハンツマン・アドバンズド・マテリアルズ社製)等を使用することができる。テトラグリシジルジアミノジフェニルエーテルとしては、3,3’-TGDDE(東レファインケミカル(株)製)等を使用することができる。トリグリシジルアミノフェノールまたはトリグリシジルアミノクレゾールとしては、“アラルダイド(登録商標)”MY0500、MY0510、MY0600(以上、ハンツマン・アドバンズド・マテリアルズ社製)、“jER(登録商標)”630(三菱化学(株)製)等を使用することができる。テトラグリシジルキシリレンジアミンおよびその水素添加品としては、“TETRAD(登録商標)”-X、“TETRAD(登録商標)”-C(以上、三菱ガス化学(株)製)等を使用することができる。テトラグリシジルジアミノジフェニルスルホンの市販品としては、TG3DAS(小西化学工業(株)製)が挙げられる。
 本態様においては、エポキシ樹脂[C1]として、高い弾性率を与えることから、450以下の数平均分子量を持つビスフェノールF型エポキシ樹脂を、全エポキシ樹脂100質量部のうち10~40質量部用いる必要がある。好ましくは、エポキシ樹脂[C1]が全エポキシ樹脂100質量部のうち20~40質量部含まれることである。エポキシ樹脂[C1]の配合量が40質量部を超える場合は、得られる樹脂硬化物の靭性が不足しやすい。また、エポキシ樹脂[C1]の配合量が10質量部未満の場合、エポキシ樹脂組成物の粘度が高くなる場合がある。さらに、エポキシ樹脂[C1]の数平均分子量を450以下にすることにより、得られるエポキシ樹脂組成物の粘度を低くすることができる。したがって、プリプレグ製造工程において、前記エポキシ樹脂組成物が強化繊維間に含浸しやすくなるため、得られるプリプレグの繊維含有率を向上させることができる。一方で、エポキシ樹脂[C1]の数平均分子量が450より大きい場合、エポキシ樹脂組成物の粘度が高くなりやすいため、プリプレグ製造工程において、エポキシ樹脂組成物が強化繊維間に含浸しにくくなり、プリプレグの繊維含有率を向上させにくい傾向がある。また、エポキシ樹脂[C1]の数平均分子量が450以下であることで、相溶化剤としての効果が大きくなるため、微細な相分離構造を形成させやすい。ビスフェノールF型エポキシ樹脂[C1]の数平均分子量が450より大きい場合、構成要素[C1]はいずれか一方の相に相溶しやすくなるため、相溶化剤としての効果が小さくなる傾向がある。その結果、樹脂硬化物の相分離構造周期が大きくなる傾向がある。
 なお、本発明でいう数平均分子量は、測定するエポキシ樹脂をテトラヒドロフラン(THF)に溶解して、ゲル浸透クロマトグラフ(GPC)により測定して、ポリスチレン換算で求めた値である。測定条件の詳細は後述する。
 硬化剤[D]としては、エポキシ樹脂を硬化させるものであれば特に限定はなく、芳香族アミン、脂環式アミンなどのアミン類、酸無水物類、ポリアミノアミド類、有機酸ヒドラジド類、イソシアネート類等が挙げられる。
 アミン硬化剤は、得られる樹脂硬化物の力学特性や耐熱性に優れることから好ましい。アミン硬化剤としては、芳香族アミンであるジアミノジフェニルスルホン、ジアミノジフェニルメタンや、脂肪族アミンであるジシアンジアミドまたはその誘導体、ヒドラジド化合物等が用いられる。かかるジシアンジアミドの市販品としては、DICY-7、DICY-15(以上、三菱化学(株)製)などが挙げられる。ジシアンジアミドの誘導体は、ジシアンジアミドに各種化合物を結合させたものであり、エポキシ樹脂との反応物、ビニル化合物やアクリル化合物との反応物などが挙げられる。
 さらに、硬化剤[D]としてジシアンジアミドまたはその誘導体を粉体としてエポキシ樹脂組成物に配合することは、室温での保存安定性や、プリプレグ化時の粘度安定性の観点から好ましい。ジシアンジアミドまたはその誘導体を粉体として樹脂に配合する場合、その平均粒径は10μm以下であることが好ましく、さらに好ましくは7μm以下である。例えば、プリプレグ製造工程において加熱加圧により強化繊維束にエポキシ樹脂組成物を含浸させる際、10μmを超える粒径を持つジシアンジアミドまたはその誘導体は、強化繊維束中に入り込まず、繊維束表層に取り残される場合がある。
 また、硬化剤[D]の総量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂成分のエポキシ基に対し、活性水素基が0.6~1.0当量の範囲となる量を含むことが好ましく、より好ましくは0.7~0.9当量の範囲である。活性水素基が0.6当量に満たない場合は、樹脂硬化物の反応率、耐熱性および弾性率が不足し、また、得られる繊維強化複合材料のガラス転移温度や強度が不足する場合がある。また、活性水素基が1.0当量を超える場合は、樹脂硬化物の反応率、ガラス転移温度および弾性率は充分であるが、塑性変形能力が不足するため、得られる繊維強化複合材料の耐衝撃性が不足する場合がある。
 各硬化剤は、硬化促進剤や、その他のエポキシ樹脂の硬化剤と組み合わせて用いても良い。組み合わせる硬化促進剤としては、ウレア類、イミダゾール類、ルイス酸触媒などが挙げられる。
 かかるウレア化合物としては、例えば、N,N-ジメチル-N’-(3,4-ジクロロフェニル)ウレア、トルエンビス(ジメチルウレア)、4,4’-メチレンビス(フェニルジメチルウレア)、3-フェニル-1,1-ジメチルウレアなどを使用することができる。かかるウレア化合物の市販品としては、DCMU99(保土ヶ谷化学(株)製)、“Omicure(登録商標)”24、52、94(以上CVC SpecialtyChemicals,Inc.製)などが挙げられる。
 イミダゾール類の市販品としては、2MZ、2PZ、2E4MZ(以上、四国化成(株)製)などが挙げられる。ルイス酸触媒としては、三フッ化ホウ素・ピペリジン錯体、三フッ化ホウ素・モノエチルアミン錯体、三フッ化ホウ素・トリエタノールアミン錯体、三塩化ホウ素・オクチルアミン錯体などの、ハロゲン化ホウ素と塩基の錯体が挙げられる。
 中でも、保存安定性と触媒能力のバランスから、ウレア化合物が好ましく用いられる。かかるウレア化合物の配合量は、エポキシ樹脂組成物に含まれる全エポキシ樹脂成分100質量部に対して1~3質量部が好ましい。ウレア化合物の配合量が1質量部に満たない場合は、反応が充分に進行せず、樹脂硬化物の弾性率と耐熱性が低下しがちである。また、ウレア化合物の配合量が3質量部を超える場合は、エポキシ樹脂の自己重合反応が、エポキシ樹脂と硬化剤との反応を阻害するため、樹脂硬化物の靭性が低下する上、弾性率も低下する。
 本発明のエポキシ樹脂組成物の第2の態様は、エポキシ樹脂[A2]、エポキシ樹脂[B2]、エポキシ樹脂[C2]および硬化剤[D]を含み、かつ、以下の条件(1)~(4)を満たすエポキシ樹脂組成物である:
(1)エポキシ樹脂[B2]を硬化剤[D]と反応し硬化させて得られる樹脂硬化物[B2’]のSP値が、エポキシ樹脂[A2]および[C2]をそれぞれ硬化剤[D]と反応し硬化させて得られる樹脂硬化物[A2’]および[C2’]のいずれのSP値に対してよりも1.2以上大きい;
(2)エポキシ樹脂[A2]の軟化点が90℃以上であり、かつエポキシ樹脂[B2]と[C2]の軟化点がいずれも50℃以下である;
(3)エポキシ樹脂[C2]と、エポキシ樹脂[C2]のエポキシ基に対して活性水素基が0.9当量のジシアンジアミドと、エポキシ樹脂[C2]100質量部に対して2質量部の3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア(以下、DCMUと呼ぶ)からなるエポキシ樹脂組成物を、室温から130℃まで2.5℃/分で昇温し、130℃で90分間反応させて得られる樹脂硬化物の弾性率が、3.5GPa以上である;および
(4)エポキシ樹脂[A2]~[C2]を硬化剤[D]と反応し硬化させて得られる樹脂硬化物が、[A2]リッチ相と[B2]リッチ相を含む相分離構造を有し、その相分離構造周期が1nm~1μmである。
 本態様においては、エポキシ樹脂[A2]、[B2]、および[C2]をそれぞれ、硬化剤[D]と反応させて得られる樹脂硬化物[A2’]、[B2’]、および[C2’]のSP値が、次の条件を満たす必要がある。
(1) ([B2’]のSP値)≧([A2’]のSP値)+1.2
(2) ([B2’]のSP値)≧([C2’]のSP値)+1.2
 ここで、SP値とは、一般に知られている溶解性パラメータのことであり、溶解性および相溶性の指標となる。本発明で規定されるSP値は、Polym.Eng.Sci.,14(2),147-154(1974)に記載された、Fedorsの方法に基づき、分子構造から算出した値である。[B2’]のSP値が、[A2’]のSP値に1.2を足した値より小さい場合は、得られる樹脂硬化物中で、[A2]が[B2]と相溶し、均一構造になるため、樹脂硬化物の弾性率と靱性が十分でない。また、[B2’]のSP値が、[C2’]のSP値に1.2を足した値より小さい場合は、得られる樹脂硬化物中で、相溶化剤である[C2]が[B2]のみに溶け込むため、[A2]リッチ相と[B2]リッチ相の粗大相分離を引き起こす。
 また、本態様においては、前記エポキシ樹脂[A2]の軟化点が90℃以上であり、かつ前記エポキシ樹脂[B2]と[C2]の軟化点が50℃以下であることが必要である。エポキシ樹脂[A2]~[C2]がこれらの要件を満たす場合、得られる樹脂硬化物中で、[A2]が[B2]と相溶し、均一構造になることを抑えることができるため、弾性率と靱性がともに向上する。
 さらに、本態様においては、前記エポキシ樹脂[C2]と、エポキシ樹脂[C2]のエポキシ基に対し活性水素基が0.9当量となる量のジシアンジアミドと、エポキシ樹脂[C2]100質量部に対して2質量部のDCMUからなるエポキシ樹脂組成物を、室温から130℃まで2.5℃/分で昇温し、130℃で90分間反応させて得られる樹脂硬化物の弾性率が、3.5GPa以上である必要がある。この樹脂硬化物の弾性率が3.5GPa未満の場合は、本発明のエポキシ樹脂組成物から得られる樹脂硬化物が良好な弾性率を得られない。エポキシ樹脂[C2]は、相溶化剤として作用し、[A2]リッチ相にも[B2]リッチ相にも溶け込む成分であるため、エポキシ樹脂[C2]の弾性率が高いことによって、得られる樹脂硬化物の弾性率が高くなる。特に相分離構造が海島構造の場合、島相を覆っている海相の弾性率が高いことが重要であるので、エポキシ樹脂[C2]が海相に溶け込むことによって、海相の弾性率が高くなることによる効果が大きい。ここで、活性水素基とは、エポキシ基と反応しうる官能基を意味する。活性水素基として、アミノ基や水酸基等が挙げられる。
 さらに、本態様においては、エポキシ樹脂組成物を硬化させて得られる樹脂硬化物が、エポキシ樹脂[A2]リッチ相とエポキシ樹脂[B2]リッチ相を含む相分離構造を有し、その相分離構造周期が1nm~1μmであることが必要である。
 樹脂硬化物が、相分離構造を有することにより、樹脂硬化物の弾性率と靭性の両立が可能となる。構造周期が1nm未満の場合は、キャビテーション効果を発揮できず、靱性が不足するだけでなく、弾性率も不足する。また、構造周期が1μmを超える場合では、その構造周期が大きいために、亀裂が島相への進展なく、海相のみの領域で進展するのでキャビテ―ション効果を発現できず、靱性が不充分となる。
 エポキシ樹脂[A2]としては、90℃以上の軟化点を有するビスフェノール型エポキシ樹脂、イソシアネート変性型エポキシ樹脂、アントラセン型エポキシ樹脂およびこれらのハロゲン置換体、アルキル置換体、水添品等から選ばれるエポキシ樹脂を好ましく用いることができる。
 かかるエポキシ樹脂[A2]の市販品としては、ビスフェノール型エポキシ樹脂として“jER(登録商標)”1004AF、1007、1009P、1010P、4005P、4007P、4009P、4010P(以上、三菱化学(株)製)、イソシアネート変性エポキシ樹脂としてXAC4151(旭化成ケミカルズ(株)製)、などが挙げられる。
 樹脂硬化物に高い靱性を与えることから、エポキシ樹脂[A2]として、90℃以上の軟化点を有するビスフェノール型エポキシ樹脂を用いることが好ましい。中でも、耐熱性、弾性率および靭性のバランスが良いことから、ビスフェノールA型エポキシ樹脂、またはビスフェノールF型エポキシ樹脂がより好ましく用いられる。さらに好ましくは、高い弾性率を与えることからビスフェノールF型エポキシ樹脂である。また、エポキシ樹脂[A2]は、全エポキシ樹脂100質量部のうち20~50質量部含まれることが好ましく、全エポキシ樹脂100質量部のうち30~50質量部含まれることがより好ましい。含有量が20質量部に満たない場合、得られる樹脂硬化物が相分離構造を形成することが難しくなりがちであり、靭性が低下しやすい。含有量が50質量部を超える場合は、樹脂硬化物の弾性率や耐熱性が低下しがちであるだけでなく、エポキシ樹脂組成物の粘度が高くなりすぎる傾向がある。エポキシ樹脂組成物の粘度が高くなりすぎると、プリプレグを製造する際、強化繊維間にエポキシ樹脂組成物を充分に含浸できない場合がある。このために、得られる繊維強化複合材料中にボイドを生じ、繊維強化複合材料の強度が低下する恐れがある。
 エポキシ樹脂[B2]としては、軟化点が50℃以下である、テトラグリシジルジアミノジフェニルメタン、テトラグリシジルジアミノジフェニルエーテル、トリグリシジルアミノフェノール、トリグリシジルアミノクレゾール、テトラグリシジルキシリレンジアミンなどのアミン型エポキシ樹脂や、トリグリシジルイソシアヌレート骨格を有するエポキシ樹脂、およびこれらのハロゲン置換体、アルキル置換体、水添品などから選ばれたエポキシ樹脂を使用することができる。
 前記テトラグリシジルジアミノジフェニルメタンとしては、“スミエポキシ(登録商標)”ELM434(住友化学(株)製)、YH434L(新日鐵化学(株)製)、“jER(登録商標)”604(三菱化学(株)製)、“アラルダイド(登録商標)”MY720、MY721(ハンツマン・アドバンズド・マテリアルズ社製)等を使用することができる。テトラグリシジルジアミノジフェニルエーテルとしては、3,3’-TGDDE(東レファインケミカル(株)製)等を使用することができる。トリグリシジルアミノフェノールまたはトリグリシジルアミノクレゾールとしては、“アラルダイド(登録商標)”MY0500、MY0510、MY0600(ハンツマン・アドバンズド・マテリアルズ社製)、“jER(登録商標)”630(三菱化学(株)製)等を使用することができる。テトラグリシジルキシリレンジアミンおよびその水素添加品として、“TETRAD(登録商標)”-X、“TETRAD(登録商標)”-C(三菱ガス化学(株)製)等を使用することができる。トリグリシジルイソシアヌレート骨格を有するエポキシ樹脂として“TEPIC(登録商標)”B26(日産化学工業(株))等を使用することができる。
 エポキシ樹脂[B2]としては、3官能以上のアミン型エポキシ樹脂が好ましい。またエポキシ樹脂[B2]は、全エポキシ樹脂100質量部のうち30~50質量部含まれることが好ましい。含有量が30質量部に満たない場合、得られる樹脂硬化物が相分離構造を形成しがたく、弾性率が低下しやすくなる。また、含有量が50質量部を超える場合は、樹脂硬化物の塑性変形能力と靭性が低下しやすい。3官能以上のアミン型エポキシ樹脂の中でも、3官能アミン型エポキシ樹脂が、樹脂硬化物に弾性率と靭性をバランス良く与えるため好ましい。さらに、3官能アミン型エポキシ樹脂の中でも、アミノフェノール型エポキシ樹脂は、靭性が比較的高く、より好ましい。
 エポキシ樹脂[C2]としては、50℃以下の軟化点を有するビスフェノールF型エポキシ樹脂、ビスフェノールAD型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、フェノールノボラック型エポキシ樹脂およびこれらのハロゲン置換体、アルキル置換体、水添品等から選ばれたエポキシ樹脂が用いられる。エポキシ樹脂[C2]の市販品としては、“エピクロン(登録商標)”830、806(DIC(株)製)、“jER(登録商標)”152(三菱化学(株)製)などが挙げられる。
 エポキシ樹脂[C2]としては、高い弾性率を与え、エポキシ樹脂[A2]および[B2]への相溶性が良好であることから、450以下の数平均分子量を持つビスフェノールF型エポキシ樹脂が好ましい。また、エポキシ樹脂[C2]は、全エポキシ樹脂100質量部のうち10~40質量部含まれることが好ましい。より好ましくは、エポキシ樹脂[C2]が、全エポキシ樹脂100質量部のうち20~40質量部含まれることである。エポキシ樹脂[C2]の配合量が10質量部に満たない場合、得られる樹脂硬化物の相分離構造周期が大きくなる傾向がある。また、エポキシ樹脂[C2]の配合量が40質量部を超える場合は、エポキシ樹脂[A2]と[B2]が相溶しやすく、相分離構造を形成し難いため、得られる樹脂硬化物の弾性率や靭性が低下しやすい。
 なお、本発明でいう数平均分子量は、測定するエポキシ樹脂をテトラヒドロフラン(THF)に溶解して、ゲル浸透クロマトグラフ(GPC)により測定して、ポリスチレン換算で求めた値である。測定条件の詳細は後述する。
 エポキシ樹脂[C2]の数平均分子量を450以下にすることにより、得られるエポキシ樹脂組成物の粘度を低くすることができる。したがって、プリプレグ製造工程において、前記エポキシ樹脂組成物が強化繊維間に含浸しやすくなるため、得られるプリプレグの繊維含有率を向上させることができる。一方で、エポキシ樹脂[C2]の数平均分子量が450より大きい場合、エポキシ樹脂組成物の粘度が高くなりやすいため、プリプレグ製造工程において、エポキシ樹脂組成物が強化繊維間に含浸しにくくなり、プリプレグの繊維含有率を向上させにくい傾向がある。また、エポキシ樹脂[C2]の数平均分子量が450以下であることで、相溶化剤としての効果が大きくなるため、微細な相分離構造を形成させやすい。ビスフェノールF型エポキシ樹脂[C2]の数平均分子量が450より大きい場合、構成要素[C2]はいずれか一方の相に相溶しやすくなるため、相溶化剤としての効果が小さくなる傾向がある。その結果、樹脂硬化物の相分離構造周期が大きくなる傾向がある。
 かかる数平均分子量450以下のビスフェノールF型エポキシ樹脂の市販品としては、“エピクロン(登録商標)”830、806(以上、DIC(株)製)などが挙げられる。
 硬化剤[D]は、前記第一の形態で記載した硬化剤[D]と同様である。
 次に、その他の成分について説明する。本発明のエポキシ樹脂組成物には、粘弾性を調整して作業性または樹脂硬化物の弾性率や耐熱性を向上させる目的で、エポキシ樹脂[A]~[C]以外のエポキシ樹脂を、本発明の効果が失われない範囲で添加することができる。これらは1種類だけでなく、複数種組み合わせて用いても良い。具体的には、フェノールノボラック型エポキシ樹脂、クレゾールノボラックエポキシ樹脂、レゾルシノール型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ビフェニル骨格を有するエポキシ樹脂、イソシアネート変性エポキシ樹脂、アントラセン型エポキシ樹脂、ポリエチレングリコール型エポキシ樹脂、N,N’-ジグリシジルアニリン、液状ビスフェノールA型エポキシ樹脂などが挙げられる。
 フェノールノボラック型エポキシ樹脂の市販品としては“エピコート(登録商標)”152、154(以上、三菱化学(株)製)、“エピクロン(登録商標)”N-740、N-770、N-775(以上、DIC(株)製)などが挙げられる。
 クレゾールノボラック型エポキシ樹脂の市販品としては、“エピクロン(登録商標)”N-660、N-665、N-670、N-673、N-695(以上、DIC(株)製)、“EOCN(登録商標)”1020、102S、104S(以上、日本化薬(株)製)などが挙げられる。
 レゾルシノール型エポキシ樹脂の具体例としては、“デナコール(登録商標)”EX-201(ナガセケムテックス(株)製)などが挙げられる。
 ジシクロペンタジエン型エポキシ樹脂の市販品としては“エピクロン(登録商標)”HP7200、HP7200L、HP7200H(以上、DIC(株)製)、“TACTIX(登録商標)”558(ハンツマン・アドバンスト・マテリアル社製)、XD-1000-1L、XD-1000-2L(以上、日本化薬(株)製)などが挙げられる。
 ビフェニル骨格を有するエポキシ樹脂の市販品としては、“エピコート(登録商標)”YX4000H、YX4000、YL6616(以上、三菱化学(株)製)、NC-3000(日本化薬(株)製)などが挙げられる。
 イソシアネート変性エポキシ樹脂の市販品としては、オキサゾリドン環を有する“AER(登録商標)”4152(旭化成イーマテリアルズ(株)製)やXAC4151(旭化成ケミカルズ(株)製)などが挙げられる。
 アントラセン型エポキシ樹脂の市販品としては、YX8800(三菱化学(株)製)などが挙げられる。
 ポリエチレングリコール型エポキシ樹脂の市販品としては、“デナコール(登録商標)”EX810、811、850、851、821、830、841、861(ナガセケムテックス(株)製)などが挙げられる。
 N,N’-ジグリシジルアニリンの市販品としては、GAN(日本化薬(株))が挙げられる。
 液状ビスフェノールA型エポキシ樹脂の市販品としては、“jER(登録商標)”828(三菱化学(株)製)などが挙げられる。
 また、本発明のエポキシ樹脂組成物には、粘弾性を制御し、プリプレグのタックおよびドレープ特性や、繊維強化複合材料の耐衝撃性などの力学特性を改良するために、エポキシ樹脂に可溶性の熱可塑性樹脂や、ゴム粒子および熱可塑性樹脂粒子等の有機粒子や、無機粒子等を配合することができる。
 エポキシ樹脂に可溶性の熱可塑性樹脂としては、樹脂と強化繊維との接着性改善効果が期待できる水素結合性の官能基を有する熱可塑性樹脂が好ましく用いられる。水素結合性官能基としては、アルコール性水酸基、アミド結合、スルホニル基、カルボキシル基などを挙げることができる。
 アルコール性水酸基を有する熱可塑性樹脂としては、ポリビニルホルマールやポリビニルブチラールなどのポリビニルアセタール樹脂;ポリビニルアルコール、フェノキシ樹脂などを挙げることができる。アミド結合を有する熱可塑性樹脂としては、ポリアミド、ポリイミド、ポリアミドイミド、ポリビニルピロリドンなどを挙げることができる。スルホニル基を有する熱可塑性樹脂としては、ポリスルホンなどを挙げることができる。ここで、ポリアミド、ポリイミドおよびポリスルホンは、主鎖にエーテル結合、カルボニル基などの官能基を有してもよい。ポリアミドは、アミド基の窒素原子に置換基を有してもよい。カルボキシル基を有する熱可塑性樹脂としては、ポリエステル、ポリアミド、ポリアミドイミドなどを挙げることができる。
 エポキシ樹脂可溶で、水素結合性官能基を有する熱可塑性樹脂の市販品としては、ポリビニルアセタール樹脂としてデンカブチラール;ポリビニルアルコール樹脂として“デンカポバール(登録商標)”(電気化学工業(株)製)、“ビニレック(登録商標)”(JNC(株)製);ポリアミド樹脂として“マクロメルト(登録商標)”(ヘンケル株式会社製)、“アミラン(登録商標)”CM4000(東レ株式会社製);ポリイミドとして“ウルテム(登録商標)”(サビックイノベーティブプラスチックス社製)、“オーラム(登録商標)”(三井化学(株)製)、“ベスペル(登録商標)”(デュポン社製);PEEKポリマーとして“Victrex(登録商標)”(ビクトレックス社製);ポリスルホンとして“UDEL(登録商標)”(ソルベイ アドバンストポリマーズ社製)、ポリビニルピロリドンとして“ルビスコール(登録商標)”(ビーエーエスエフジャパン(株)製)を挙げることができる。
 また、アクリル系樹脂は、エポキシ樹脂との高い相溶性を有し、粘弾性制御のために好ましく用いられる。アクリル樹脂の市販品としては、“ダイヤナール(登録商標)”BRシリーズ(三菱レイヨン(株)製)、“マツモトマイクロスフェアー(登録商標)”M、M100、M500(松本油脂製薬(株)製)などを挙げることができる。
 ゴム粒子としては、架橋ゴム粒子、および架橋ゴム粒子の表面に異種ポリマーをグラフト重合したコアシェルゴム粒子が、取り扱い性等の観点から好ましく用いられる。
 コアシェルゴム粒子の市販品としては、例えば、ブタジエン・メタクリル酸アルキル・スチレン共重合物からなる“パラロイド(登録商標)”EXL-2655、EXL-2611、EXL-3387(ロームアンドハーズ(株)製)、アクリル酸エステル・メタクリル酸エステル共重合体からなる“スタフィロイド(登録商標)”AC-3355、TR-2122(ガンツ(株)製)、“NANOSTRENGTH(登録商標)”M22、51、52、53(アルケマ社製)、“カネエース(登録商標)”MXシリーズ(カネカ(株)製)等を使用することができる。
 熱可塑性樹脂粒子としては、ポリアミド粒子やポリイミド粒子が好ましく用いられる。ポリアミド粒子の市販品として、SP-500(東レ(株)製)、“オルガゾル(登録商標)”(アルケマ社製)等を使用することができる。
 本発明において、S-B-M、B-M、およびM-B-Mからなる群から選ばれる少なくとも1種のブロック共重合体[E](以下略して、ブロック共重合体[E]と記すこともある)をさらに含んでいることは、エポキシ樹脂組成物の優れた耐熱性を維持しつつ、靱性や耐衝撃性を向上させるために有効である。
 ここで、前記のS、BおよびMは、以下で定義される各ブロックを意味する。S、BおよびMで表される各ブロックは、共有結合によって直接、もしくは、何らかの化学構造を介して連結されている。
 また、ブロック共重合体がS-B-Mの場合は、S、B、Mのいずれかのブロックが、ブロック共重合体がB-MまたはM-B-Mの場合は、B、Mのいずれかのブロックが、エポキシ樹脂と相溶することは、靱性の向上の観点から好ましい。
 ブロックMは、ポリメタクリル酸メチルのホモポリマーまたはメタクリル酸メチルを50質量%以上含むコポリマーからなるブロックである。ブロックMは60質量%以上がシンジオタクティックPMMA(ポリメタクリル酸メチル)からなるのが好ましい。
 ブロックBは、ブロックMに非相溶で、かつ、ガラス転移温度が20℃以下であるブロックである。ブロックBのガラス転移温度は、エポキシ樹脂組成物、およびブロック共重合体[E]単体のいずれを用いた場合でも、動的粘弾性測定装置(RSAII:レオメトリックス社製、または、レオメーターARES:TAインスツルメント社製)を用いてDMA法により測定できる。すなわち、測定サンプルを厚さ1mm、幅2.5mm、長さ34mmの板状にし、それを、-100~250℃の温度で掃引しながら、ストレスを加える周期を1Hzとして測定し、そのtanδ値が最大となる温度をブロックBのガラス転移温度とする。ここで、サンプルの作製は次のようにして行う。エポキシ樹脂組成物を用いた場合は、未硬化の樹脂組成物を真空中で脱泡した後、1mm厚の“テフロン(登録商標)”製スペーサーにより厚み1mmになるように設定したモールド中で130℃の温度で2時間硬化させることでボイドのない板状樹脂硬化物が得られる。ブロック共重合体単体を用いた場合、2軸押し出し機を用いてボイドのない板を作成する。これらの板をダイヤモンドカッターにより上記サイズに切り出して評価することができる。
 ブロックBのガラス転移温度は20℃以下、好ましくは0℃以下、より好ましくは-40℃以下である。ガラス転移温度は、靱性の観点では低ければ低いほど好ましいが、-100℃を下回ると繊維強化複合材料とした際に切削面が荒れるなどの加工性に問題が生じる場合がある。
 ブロックBは、エラストマーブロックであることが好ましい。かかるエラストマーブロックを構成するモノマーとしては、ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンおよび2-フェニル-1,3-ブタジエンから選択することができる。
 ブロックBは、ポリジエン、特にポリブタジエン、ポリイソプレンおよびこれらのランダム共重合体または部分的または完全に水素化されたポリジエン類の中から選択するのが靱性の観点から好ましい。かかる部分的または完全に水素化されたポリジエン類は、通常の水素化方法に従って作製できる。上記で列記したジエンの中で、最も低いガラス転移温度を有する1,4-ポリブタジエン(ガラス転移温度約-90℃)を使用するのがより好ましい。ガラス転移温度がより低いブロックBを用いることは耐衝撃性や靱性の観点から有利だからである。
 エラストマ-ブロックBを構成するモノマーとしては、アルキル(メタ)アクリレートを用いることもできる。具体例としては、エチルアクリレート(-24℃)、ブチルアクリレート(-54℃)、2-エチルヘキシルアクリレート(-85℃)、ヒドロキシエチルアクリレート(-15℃)および2-エチルヘキシルメタアクリレート(-10℃)を挙げることができる。ここで、各アクリレートの名称の後のカッコ中に示した数値は、それぞれのアクリレートを用いた場合に得られるブロックBのガラス転移温度である。これらの中では、ブチルアクリレートを用いるのが好ましい。これらのアクリレートは、メタクリル酸メチルを50質量%以上含むブロックMとは非相溶である。ブロックBは、ポリ1,4-ブタジエン、ポリブチルアクリレート、ポリ(2-エチルヘキシルアクリレート)から選ばれたものがより好ましく、ポリ1,4-ブタジエンまたはポリ(ブチルアクリレート)がさらに好ましい。
 ブロックSは、ブロックBおよびMに非相溶であり、かつ、そのガラス転移温度が、ブロックBよりも高いブロックである。ブロックSのガラス転移温度または融点は、23℃以上であることが好ましく、50℃以上であることがより好ましい。ブロックSを構成するモノマーの例として、芳香族ビニル化合物、例えばスチレン、α-メチルスチレンまたはビニルトルエン;アルキル鎖が1~18の炭素原子を有する(メタ)アクリル酸のアルキルエステルなどを挙げることができる。
 ブロック共重合体[E]の配合量は、力学特性やコンポジット作製プロセスへの適合性の観点から、全エポキシ樹脂成分100質量部に対して、1~10質量部であることが好ましく、さらに好ましくは2~7質量部である。ブロック共重合体[E]の配合量が1質量部未満の場合、樹脂硬化物の靭性および塑性変形能力の向上効果が小さく、繊維強化複合材料の耐衝撃性が低くなる場合がある。10質量部を超える場合、樹脂硬化物の弾性率が低下して繊維強化複合材料の機械特性が低下する上、エポキシ樹脂組成物の粘度が高くなるため、取り扱い性が悪くなる場合がある。
 ブロック共重合体[E]としてトリブロック共重合体M-B-Mを用いる場合、トリブロック共重合体M-B-Mの二つのブロックMは、互いに同一でも異なっていてもよい。また、同じモノマーによるもので分子量が異なるものにすることもできる。
 ブロック共重合体[E]としてトリブロック共重合体M-B-Mとジブロック共重合体B-Mを併用する場合は、トリブロック共重合体M-B-MのブロックMがジブロック共重合体B-MのMブロックと同一でも、異なっていてもよく、また、M-B-MトリブロックのブロックBはジブロック共重合体B-Mと同一でも異なっていてもよい。
 ブロック共重合体[E]としてトリブロック共重合体S-B-Mとジブロック共重合体B-Mおよび/またはトリブロック共重合体M-B-Mを併用する場合には、このトリブロック共重合体S-B-MのブロックMと、トリブロック共重合体M-B-Mの各ブロックMと、ジブロック共重合体B-MのブロックMとは互いに同一でも異なっていてもよく、トリブロック共重合体S-B-Mと、トリブロック共重合体M-B-Mと、ジブロック共重合体B-Mとの各ブロックBは互いに同一でも異なっていてもよい。
 ブロック共重合体[E]はアニオン重合によって製造できる。例えば欧州特許第EP524,054号公報や欧州特許第EP749,987号公報に記載の方法で製造できる。
 トリブロック共重合体M-B-Mの具体例としては、メタクリル酸メチル-ブチルアクリレート-メタクリル酸メチルからなるNanostrength M22(アルケマ社製)や、極性官能基をもつNanostrength M22N(アルケマ社製)が挙げられる。トリブロック共重合体S-B-Mの具体例としては、スチレン-ブタジエン-メタクリル酸メチルからなるアルケマ社製のNanostrength 123、Nanostrength 250、Nanostrength 012,Nanostrength E20,Nanostrength E40(以上、アルケマ社製)が挙げられる。
 ブロック共重合体[E]が含まれる場合、硬化前においてエポキシ樹脂[A]~[C]およびブロック共重合体[E]が互いに均一に相溶している状態であったとしても、硬化過程においてスピノーダル分解し、エポキシ樹脂[A]リッチ相とエポキシ樹脂[B]リッチ相とブロック共重合体[E]リッチ相の少なくとも3相を含む相分離構造を形成する傾向がある。
 エポキシ樹脂[A2]~[C2]、硬化剤[D]およびブロック共重合体[E]からなるエポキシ樹脂組成物は、得られる樹脂硬化物が、エポキシ樹脂[A2]リッチ相、エポキシ樹脂[B2]リッチ相、およびブロック共重合体[E]リッチ相を含む相分離構造を有し、エポキシ樹脂[A2]リッチ相と、エポキシ樹脂[B2]リッチ相、およびブロック共重合体[E]リッチ相の相分離構造周期が1nm~1μmであることが好ましい。
 エポキシ樹脂[A1]~[C1]、硬化剤[D]およびブロック共重合体[E]からなるエポキシ樹脂組成物は、得られる樹脂硬化物が、エポキシ樹脂[A1]リッチ相、エポキシ樹脂[B1]リッチ相およびブロック共重合体[E]リッチ相を含む相分離構造を有し、エポキシ樹脂[A1]リッチ相と、エポキシ樹脂[B1]リッチ相、およびブロック共重合体[E]リッチ相の相分離構造周期が1nm~5μmであることが好ましく、ブロック共重合体[E]リッチ相の相分離周期が1nm~1μmであることがさらに好ましい。
 かかるエポキシ樹脂[A]リッチ相とエポキシ樹脂[B]リッチ相の相分離構造周期が小さすぎる場合は、本発明の目的を損なうことのない範囲内で、下記の調整方法の1つ以上の方法を行うことにより、相分離構造周期を大きくすることができる。
(1)全エポキシ樹脂に対するエポキシ樹脂[C]の配合割合を減らす。
(2)エポキシ樹脂[A]の軟化点を高くする。
(3)エポキシ樹脂[B]の軟化点を低くする。
(4)エポキシ樹脂[A]、[B]両方の配合割合を増やす。
 また、かかるエポキシ樹脂[A]リッチ相とエポキシ樹脂[B]リッチ相の相分離構造周期は、本発明の目的を損なうことのない範囲内で、下記の調整方法の1つ以上の方法を行うことにより、小さくすることができる。
(1)全エポキシ樹脂に対するエポキシ樹脂[C]の配合割合を増やす。
(2)エポキシ樹脂[A]の軟化点を低くする。
(3)エポキシ樹脂[B]の軟化点を高くする。
(4)エポキシ樹脂[A]および[B]両方の配合割合を減らす。
 また、ブロック共重合体[E]リッチ相の相分離構造周期は、本発明の目的を損なうことのない範囲内で、下記の調整方法の1つ以上の方法を行うことにより、小さくすることができる。
(1)ブロック共重合体[E]の配合割合を減らす。
(2)エポキシ樹脂[A]の軟化点を低くする。
(3)エポキシ樹脂[B]の配合割合を増やす。
 また、ブロック共重合体[E]リッチ相の相分離構造周期は、本発明の目的を損なうことのない範囲内で、下記の調整方法の1つ以上の方法を行うことにより、大きくすることできる。
(1)ブロック共重合体[E]の配合割合を増やす。
(2)エポキシ樹脂[A]の軟化点を高くする。
(3)エポキシ樹脂[B]の配合割合を減らす。
 本発明のエポキシ樹脂組成物をプリプレグのマトリックス樹脂として用いる場合、タックやドレープなどのプロセス性の観点から、エポキシ樹脂組成物の80℃における粘度は、0.5~200Pa・sであることが好ましい。エポキシ樹脂組成物の80℃における粘度が0.5Pa・sに満たない場合、製造したプリプレグが形状を保持しがたく、プリプレグに割れを生じる可能性がある。また、繊維強化複合材料の成形時に多くの樹脂フローを生じ、強化繊維含有量にばらつきが生じたりする可能性がある。また、80℃における粘度が200Pa・sを超える場合、プリプレグを製造する際、強化繊維間にエポキシ樹脂組成物を充分に含浸できないことがある。このために、得られる繊維強化複合材料中にボイドを生じ、繊維強化複合材料の強度が低下する恐れがある。エポキシ樹脂組成物の80℃における粘度は、プリプレグ製造工程において、強化繊維間に樹脂が含浸しやすく、高繊維含有率のプリプレグを製造できるため、5~50Pa・sの範囲にあることがより好ましい。粘度については、本発明の目的を損なうことのない範囲内で、下記の(1)~(2)の1つ以上の方法を行うことにより低粘度化でき、下記の(3)~(4)の1つ以上の方法を行うことにより高粘度化できる。
(1)軟化点の低いエポキシ樹脂[A]および/または[B]を用いる。
(2)エポキシ樹脂[C]の配合量を増量する。
(3)軟化点の高いエポキシ樹脂[A]および/または[B]、を用いる。
(4)熱可塑樹脂を配合する。
 ここで粘度とは、動的粘弾性測定装置(レオメーターRDA2:レオメトリックス社製、またはレオメーターARES:TAインスツルメント社製)を用い、直径40mmのパラレルプレートを用い、昇温速度1.5℃/分で単純昇温し、周波数0.5Hz、Gap 1mmで測定を行った複素粘弾性率ηのことを指している。
 本発明のエポキシ樹脂組成物は、その樹脂硬化物の弾性率が、3.8~5.0GPaの範囲内であることが好ましい。より好ましくは、4.0~5.0GPaである。かかる弾性率が3.8GPaに満たない場合、得られる繊維強化複合材料の静的強度が低くなる場合がある。かかる弾性率が5.0GPaを超える場合、得られる繊維強化複合材料の塑性変形能力が低くなりがちで、繊維強化複合材料の衝撃強度が低下する場合がある。弾性率の測定方法については、後で詳述する。
 樹脂硬化物の弾性率は、本発明の目的を損なうことのない範囲内で、下記の1つ以上の方法を行うことにより、向上させることができる。
(1)エポキシ樹脂[A]として弾性率の高いビスフェノールF型エポキシ樹脂を用いる。
(2)エポキシ樹脂[B]の配合量を増やす。
(3)エポキシ樹脂[B]としてアミン型エポキシを用い、中でも弾性率の高いアミノフェノール型エポキシ樹脂を用いる。
(4)エポキシ樹脂[C]としてビスフェノールF型エポキシ樹脂を用いる。
 樹脂硬化物を得るための硬化温度や硬化時間は、配合する硬化剤や触媒に応じて選択する。例えば、ジシアンジアミドとDCMUを組み合わせた硬化剤系では、130~150℃の温度で90分~2時間硬化させる条件が好ましく、ジアミノジフェニルスルホンを用いた場合には、180℃の温度で2~3時間硬化させる条件が好ましい。
 本発明のエポキシ樹脂組成物を硬化させた樹脂硬化物の樹脂靱性値は、1.1MPa・m0.5以上であることが好ましい。より好ましくは、1.3MPa・m0.5以上である。樹脂靱性値が1.1MPa・m0.5未満であると、得られる繊維強化複合材料の耐衝撃性が低下する場合がある。樹脂靭性値の測定方法については、後で詳述する。
 樹脂靱性値は、本発明の目的を損なうことのない範囲内で下記の1つ以上の方法を行うことにより、向上させることができる。
(1)数平均分子量の大きなエポキシ樹脂[A]および/または[B]、を用いる。
(2)エポキシ樹脂[A]の配合量を増やす。
(3)ブロック共重合体[E]を配合する。
 本発明のエポキシ樹脂組成物の調製には、ニーダー、プラネタリーミキサー、3本ロールおよび2軸押出機などが好ましく用いられる。エポキシ樹脂[A]~[C]を投入し、撹拌しながらエポキシ樹脂混合物の温度を130~180℃の任意の温度まで上昇させ、エポキシ樹脂[A]~[C]を均一に溶解させる。このとき、硬化剤[D]と硬化促進剤以外の、ブロック共重合体[E]などのその他の成分を添加し、ともに混練しても良い。その後、撹拌しながら、好ましくは100℃以下、より好ましくは80℃以下、さらに好ましくは60℃以下の温度まで下げて、硬化剤[D]ならびに硬化促進剤を添加し、混練、分散させる。この方法は、保存安定性に優れるエポキシ樹脂組成物を得ることができるため好ましく用いられる。
 次に、繊維強化複合材料について説明する。本発明のエポキシ樹脂組成物を、強化繊維に含浸させた後、硬化させることにより、本発明のエポキシ樹脂組成物の硬化物をマトリックス樹脂として含む繊維強化複合材料を得ることができる。
 本発明に用いられる強化繊維は特に限定されるものではなく、ガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、アルミナ繊維、炭化ケイ素繊維等が用いられる。これらの繊維を2種以上混合して用いても構わない。この中で、軽量かつ高剛性な繊維強化複合材料が得られる炭素繊維を用いることが好ましい。中でも、230~800GPaの引張弾性率を有する炭素繊維が好ましく用いられ、より好ましくは引張弾性率280GPaの炭素繊維が用いられる。230~800GPaの高弾性率を有する炭素繊維を本発明のエポキシ樹脂組成物と組み合わせた場合に、本発明の効果が特に顕著に現れ、良好な耐衝撃性を有する繊維強化複合材料が得られる傾向がある。
 強化繊維の形態は特に限定されるものではない、たとえば、一方向に引き揃えた長繊維、トウ、織物、マット、ニット、組み紐、10mm未満の長さにチョップした短繊維などが用いられる。ここでいう長繊維とは、実質的に10mm以上連続な単繊維もしくは繊維束のことをさす。また、短繊維とは10mm未満の長さに切断された繊維束である。特に、高い比強度および比弾性率を要求される用途には、強化繊維束を単一方向に引き揃えた配列が最も適している。
 本発明の繊維強化複合材料の製造方法は、特に限定されるものではないが、プリプレグ積層成形法、レジントランスファーモールディング法、レジンフィルムインフュージョン法、ハンドレイアップ法、シートモールディングコンパウンド法、フィラメントワインディング法、プルトルージョン法、などにより製造することができる。
 レジントランスファーモールディング法とは、強化繊維基材に直接液状の熱硬化樹脂組成物を含浸させた後、硬化させる方法である。この方法は、プリプレグのような中間体を経由しないため、成形コスト低減のポテンシャルを有し、宇宙機、航空機、鉄道車両、自動車、船舶などの構造材料に好ましく用いることができる。
 プリプレグ積層成形法とは、強化繊維基材に熱硬化樹脂組成物を含浸させたプリプレグを賦形および/または積層後、賦形物および/または積層物に圧力を付与しながら樹脂を加熱硬化させて繊維強化複合材料を得る方法である。
 フィラメントワインディング法とは、強化繊維のロービングを1~数十本引き揃え、熱硬化樹脂組成物を含浸させながら回転する金型(マンドレル)に所定の厚さまでテンションを掛けて所定の角度で巻き付け、硬化後脱型する方法である。
 プルトルージョン法は、強化繊維を液状の熱硬化樹脂組成物の満たされた含浸槽に連続的に通して熱硬化樹脂組成物を含浸させた後、スクイーズダイおよび、加熱金型を通して引張機によって連続的に引き抜きつつ、成形、硬化させる方法である。この方法は、繊維強化複合材料を連続的に成形できるという利点を有するため、釣竿、ロッド、パイプ、シート、アンテナ、建築構造物等の強化繊維プラスチック(FRP)の製造に用いられている。
 これらの中でもプリプレグ積層成形法が、得られる繊維強化複合材料の剛性および強度に優れているため好ましい。
 好ましいプリプレグは、本発明のエポキシ樹脂組成物と強化繊維を含むものである。そのようなプリプレグは、本発明のエポキシ樹脂組成物を強化繊維基材に含浸させて得ることができる。含浸させる方法としては、ウェット法とホットメルト法(ドライ法)等を挙げることができる。
 ウェット法は、メチルエチルケトン、メタノール等の溶媒にエポキシ樹脂組成物を溶解させた溶液に強化繊維を浸漬した後、強化繊維を引き上げ、オーブン等を用いて強化繊維から溶媒を蒸発させ、エポキシ樹脂組成物を強化繊維に含浸させる方法である。ホットメルト法は、加熱により低粘度化したエポキシ樹脂組成物を直接強化繊維に含浸させる方法、または離型紙等の上にエポキシ樹脂組成物をコーティングしたフィルムを作製しておき、次いで強化繊維の両側または片側から前記フィルムを重ね、加熱加圧することにより強化繊維に樹脂を含浸させる方法である。プリプレグ中に残留する溶媒がないため、ホットメルト法を用いることが好ましい。
 プリプレグの単位面積あたりの強化繊維量は、70~200g/mであることが好ましい。強化繊維量が70g/m未満の場合、繊維強化複合材料を成形する際に、所定の厚みを得るために積層枚数を多くする必要があり、積層作業が繁雑になることがある。一方で、強化繊維量が200g/mを超える場合、プリプレグのドレープ性が悪くなる傾向にある。また、プリプレグ中の強化繊維の質量含有率は、好ましくは60~90質量%であり、より好ましくは65~85質量%であり、さらに好ましくは70~80質量%である。強化繊維の質量含有率が60質量%未満では、樹脂の比率が多すぎるため、比強度と比弾性率に優れる繊維強化複合材料の利点が得られにくいことや、繊維強化複合材料の硬化時の発熱量が高くなりすぎることがある。また、強化繊維の質量含有率が90質量%を超える場合、樹脂が含浸しにくくなるため、得られる繊維強化複合材料はボイドの多いものとなる恐れがある。
 プリプレグ積層成形法において、熱および圧力を付与する方法としては、プレス成形法、オートクレーブ成形法、バッギング成形法、ラッピングテープ法、内圧成形法等を適宜使用することができる。
 オートクレーブ成形法は、所定の形状のツール版にプリプレグを積層して、バッギングフィルムで覆い、積層物内を脱気しながら加圧、加熱硬化させる方法である。繊維配向が精密に制御でき、またボイドの発生が少ないため、力学特性に優れ、また高品位な成形体が得られる。成形時に掛ける圧力は0.3~1.0MPaが好ましい。また、成形温度は90~200℃の範囲であることが好ましい。
 ラッピングテープ法は、マンドレル等の芯金にプリプレグを捲回して、繊維強化複合材料製の管状体を成形する方法である。ゴルフシャフト、釣り竿等の棒状体を作製する際に好ましい方法である。より具体的には、マンドレルにプリプレグを捲回し、プリプレグの固定および圧力付与のため、捲回したプリプレグの外側に熱可塑性フィルムからなるラッピングテープを張力をかけつつ捲回し、プリプレグに圧力を加える。オーブン中で樹脂を加熱硬化させた後、マンドレルを抜き取って管状体を得る。ラッピングテープを巻く張力は20~78Nであることが好ましい。また成形温度は80~200℃の範囲であることが好ましい。
 また、内圧成形法は、熱可塑性樹脂製のチューブ等の内圧付与体にプリプレグを捲回したプリフォームを金型中にセットし、次いで内圧付与体に高圧の気体を導入して圧力を付与すると同時に金型を加熱せしめ、成形する方法である。本方法は、ゴルフシャフト、バッド、テニスやバドミントン等のラケットの如き複雑な形状物を成形する際に好ましく用いられる。成形時に付与する圧力は0.1~2.0MPaが好ましい。また成形温度は室温~200℃の範囲であることが好ましく、80~180℃の範囲であることがさらに好ましい。
 本発明のエポキシ樹脂組成物の硬化物と、強化繊維を含む繊維強化複合材料は、スポーツ用途、一般産業用途および航空宇宙用途に好ましく用いられる。より具体的には、スポーツ用途では、ゴルフシャフト、釣り竿、テニスやバドミントンのラケット、ホッケー等のスティック、およびスキーポール等に好ましく用いられる。さらに一般産業用途では、自動車、自転車、船舶および鉄道車両等の移動体の構造材、ドライブシャフト、板バネ、風車ブレード、圧力容器、フライホイール、製紙用ローラ、屋根材、ケーブル、および補修補強材料等に好ましく用いられる。
 本発明のプリプレグを管状に硬化させてなる繊維強化複合材料製管状体は、ゴルフシャフト、釣り竿などに好ましく用いることができる。
 以下、本発明を実施例により、さらに詳細に説明する。各種物性の測定は次の方法で行った。なお、これらの物性は、特に断わりのない限り、温度23℃、相対湿度50%の環境で測定した。
 (1)エポキシ樹脂組成物の調製
 ニーダー中に、硬化剤および硬化促進剤以外の成分を所定量投入し、混練しつつ、150℃まで昇温し、150℃、1時間混練することで、透明な粘調液を得た。粘調液を70℃まで混練しつつ降温させた後、硬化剤および硬化促進剤を所定量添加して、さらに混練しエポキシ樹脂組成物を得た。各実施例および比較例の成分配合比は、表2~5に示す通りである。また、使用したエポキシ樹脂のSP値、軟化点および数平均分子量を表1に示す。
 <エポキシ樹脂([A1]または[A2])>
・ビスフェノールA型エポキシ樹脂(“jER(登録商標)”1007、エポキシ当量:1925、三菱化学(株)製)
・ビスフェノールF型エポキシ樹脂(“jER(登録商標)”4007P、エポキシ当量:2270、三菱化学(株)製)
・ビスフェノールF型エポキシ樹脂(“jER(登録商標)”4010P、エポキシ当量:4400、三菱化学(株)製)
 <エポキシ樹脂([B1]または[B2])>
・テトラグリシジルジアミノジフェニルメタン(“スミエポキシ(登録商標)”ELM434、住友化学(株)製、エポキシ当量:125)
・トリグリシジル-p-アミノフェノール(“jER(登録商標)”jER630、エポキシ当量:98、三菱化学(株)製))
・トリグリシジル-p-アミノフェノール(“アラルダイド(登録商標)”MY0500、エポキシ当量:110、ハイツマン・アドバンスドマテリアル(株)製)
・3,3’-テトラグリシジルジアミノジフェニルエーテル(TG3DDE、エポキシ当量:122、東レファインケミカル(株)製)
 <エポキシ樹脂([B1])>
・3,3’-テトラグリシジルジアミノジフェニルスルホン(TG3DAS、エポキシ当量:136、小西化学工業(株)製)
 <エポキシ樹脂([C1]または[C2])>
・ビスフェノールF型エポキシ樹脂(“エピクロン(登録商標)”830、エポキシ当量:170、DIC(株)製)
 <エポキシ樹脂([C1])>
・フェノールノボラック樹脂“jER(登録商標)”152(三菱化学(株)製)
 <硬化剤([D])>
・ジシアンジアミド(硬化剤、DICY7、三菱化学(株)製)。
 <ブロック共重合体[E]>
・S-B-M共重合体(“Nanostrength(登録商標)”E40:Sがポリスチレン(Tg:約90℃)、Bがポリ1,4-ブタジエン(Tg:約-90℃)、Mがポリメタクリル酸メチル(Tg:約130℃)からなるブロック共重合体、アルケマ(株)製)
・M-B-M共重合体(“Nanostrength(登録商標)”M22N:Bがポリブチルアクリレート(Tg:約-50℃)、Mがメタクリル酸メチルおよびメタクリル酸メチルよりもSP値の高い極性官能基含有モノマーの共重合体(Tg:約130℃)からなるブロック共重合体、アルケマ(株)製)。
 <その他の成分>
・多官能エポキシ樹脂(“jER(登録商標)”1031S、エポキシ当量:200、三菱化学(株)製)
・ビスフェノールA型エポキシ樹脂(“jER(登録商標)”1001、エポキシ当量:470、三菱化学(株)製)
・ビスフェノールF型エポキシ樹脂(“jER(登録商標)”4004P、エポキシ当量:880、三菱化学(株)製)
・グリシジルフタルイミド(“デナコール(登録商標)”EX731、エポキシ当量:216、ナガセケムテックス(株)製)
・ポリエチレングリコール型エポキシ樹脂(“デナコール(登録商標)”EX821、エポキシ当量:185、ナガセケムテックス(株)製)
・N,N’-ジグリシジルアニリン(GAN、エポキシ当量:125、日本化薬(株))
・“ビニレック(登録商標)”PVF-K(ポリビニルホルマール)、JNC(株)製)
・DCMU99(3-(3,4-ジクロロフェニル)-1,1-ジメチルウレア、硬化促進剤、保土ヶ谷化学工業(株)製)。
 (2)数平均分子量測定
 測定装置としては、“HLC(登録商標)”8220GPC(東ソー株式会社製)、検出器としてUV-8000(254nm)、カラムにはTSK-G4000H(東ソー株式会社製)を用いた。測定するエポキシ樹脂をTHFに、濃度0.1mg/mlで溶解させ、これを流速1.0ml/分、温度40℃で測定した。測定サンプルの保持時間を、ポリスチレンの校正用サンプルの保持時間を用いて、分子量に換算して数平均分子量を求めた。
 (3)樹脂硬化物の弾性率
 エポキシ樹脂組成物を真空中で脱泡した後、2mm厚のテフロン(登録商標)製スペーサーにより厚み2mmになるように設定したモールド中で、特に断らない限り130℃の温度で90分間硬化させ、厚さ2mmの板状の樹脂硬化物を得た。この樹脂硬化物から、幅10mm、長さ60mmの試験片を切り出し、インストロン万能試験機(インストロン社製)を用い、スパンを32mm、クロスヘッドスピードを100mm/分とし、JIS K7171(1994)に従って3点曲げを実施し、弾性率を測定した。サンプル数n=5で測定した値の平均値を弾性率の値とした。
 (4)樹脂硬化物の樹脂靱性値の測定
 エポキシ樹脂組成物を真空中で脱泡した後、6mm厚のテフロン(登録商標)製スペーサーにより厚み6mmになるように設定したモールド中で、特に断らない限り130℃の温度で90分間硬化させ、厚さ6mmの板状の樹脂硬化物を得た。この樹脂硬化物から、幅12.7mm、長さ150mmの試験片を切り出し、ASTM D5045(1999)に従って、試験片を加工し、インストロン万能試験機(インストロン社製)を用い、測定をおこなった。試験片への初期の予亀裂の導入は、液体窒素温度まで冷やした剃刀の刃を試験片にあてハンマーで剃刀に衝撃を加えることで行った。ここでいう、樹脂靱性値とは、変形モードI(開口型)の臨界応力強度のことを指している。サンプル数n=5で測定した値の平均値を、樹脂靱性値とした。
 (5)構造周期の測定
 上記(4)で得られた樹脂硬化物を染色後、薄切片化し、透過型電子顕微鏡(TEM)を用いて下記の条件で透過電子像を取得した。染色剤は、モルホロジーに充分なコントラストが付くよう、OsOとRuOを樹脂組成に応じて使い分けた。
装置:H-7100透過型電子顕微鏡(日立(株)製)
加速電圧:100kV
倍率:10,000倍
 透過電子像より、[A1]または[A2]リッチ相、[B1]または[B2]リッチ相および[E]リッチ相の構造周期を観察した。各成分の種類や比率により、樹脂硬化物の相分離構造は、両相連続構造や海島構造を形成するのでそれぞれについて以下のように測定した。
 相分離構造が両相連続構造の場合、顕微鏡写真の上に所定の長さの直線をランダムに3本引き、その直線と相界面の交点を抽出し、隣り合う交点間の距離を測定し、これらの数平均値を構造周期とした。かかる所定の長さとは、顕微鏡写真を基に以下のようにして設定するものとした。構造周期が0.01μmオーダー(0.01μm以上0.1μm未満)と予想される場合、倍率を20,000倍でサンプルの写真を撮影し、写真上で引いた20mmの長さ(サンプル上1μmの長さ)を直線の所定の長さとした。同様にして、相分離構造周期が0.1μmオーダー(0.1μm以上1μm未満)と予想される場合、倍率を2,000倍で写真撮影し、写真上で20mmの長さ(サンプル上10μmの長さ)を直線の所定の長さとした。相分離構造周期が1μmオーダー(1μm以上10μm未満)と予想される場合、倍率を200倍で写真撮影し、写真上で20mmの長さ(サンプル上100μmの長さ)を直線の所定の長さとした。もし、測定した相分離構造周期が予想したオーダーより外れていた場合、該当するオーダーに対応する倍率にて再度測定した。
 相分離構造が海島構造の場合、顕微鏡写真の上の所定の領域をランダムに3箇所選出し、その領域内の島相サイズを測定し、これらの数平均値を構造周期とした。島相のサイズは、相界面から一方の相界面へ島相を通って引く最短距離の線の長さをいう。島相が楕円形、不定形、または、二層以上の円または楕円になっている場合であっても、相界面から一方の相界面へ島相を通る最短の距離を島相サイズとした。かかる所定の領域とは、顕微鏡写真を基に以下のようにして設定するものとした。相分離構造周期が0.01μmオーダー(0.01μm以上0.1μm未満)と予想される場合、倍率を20,000倍でサンプルの写真を撮影し、写真上で4mm四方の領域(サンプル上0.2μm四方の領域)を所定の領域とした。同様にして、相分離構造周期が0.1μmオーダー(0.1μm以上1μm未満)と予想される場合、倍率を2,000倍でサンプルの写真を撮影し、写真上で4mm四方の領域(サンプル上2μm四方の領域)を所定の領域とした。相分離構造周期が1μmオーダー(1μm以上10μm未満)と予想される場合、倍率を200倍で写真撮影し、写真上で4mm四方の領域(サンプル上20μm四方の領域)を所定の領域とした。もし、測定した相分離構造周期が予想したオーダーより外れていた場合、該当するオーダーに対応する倍率にて再度測定した。
 (6)プリプレグの作製
 エポキシ樹脂組成物を、リバースロールコーターを使用し離型紙上に塗布し、樹脂フィルムを作製した。次に、該樹脂フィルム2枚をシート状に一方向に整列させた炭素繊維“トレカ(登録商標)”T800SC-24K(東レ(株)製、引張弾性率:294GPa、引張強度:5880MPa)の両面から重ね、加熱加圧してエポキシ樹脂組成物を炭素繊維に含浸させ、単位面積辺りの炭素繊維質量125g/m、繊維質量含有率75質量%の、T800SC使い一方向プリプレグを作製した。また、炭素繊維としてT700SC-24K(東レ(株)製、引張弾性率:230GPa、引張強度:4900MPa)を用いたこと以外は上記と同様にして、単位面積辺りの炭素繊維質量125g/m、繊維質量含有率75質量%の、T700SC使い一方向プリプレグも作製した。
 (7)一方向積層板の作製
 上記(6)で作成した一方向プリプレグを、繊維方向を揃えて20ply積層した。次に、積層したプリプレグをナイロンフィルムで隙間のないように覆った。これをオートクレーブ中で135℃、内圧588kPaで2時間加熱加圧して硬化し、一方向積層板を作製した。
 (8)円筒シャルピー衝撃試験用繊維強化複合材料製管状体の作製
 次の(a)~(e)の操作により、T800SC使い一方向プリプレグを、繊維方向が円筒軸方向に対して45°および-45°になるよう、各3plyを交互に積層し、さらにT800SC使い一方向プリプレグを、繊維方向が円筒軸方向に対して平行になるよう、3plyを積層し、内径が6.3mmの繊維強化複合材料製管状体を作製した。マンドレルとしては、直径6.3mm、長さ1000mmのステンレス製丸棒を使用した。
 (a)上記(6)に従い作製したT800SC使い一方向プリプレグから、縦104mm、横800mmの長方形の形状(長辺の方向に対して繊維軸方向が45度となるように)に2枚のプリプレグを切り出した。切り出した2枚のプリプレグの繊維の方向をお互いに交差するように、かつ短辺方向に10mm(マンドレル半周分)ずらして貼り合わせた。
 (b)プリプレグの長方形の長辺とマンドレル軸方向が同一方向になるように、離型処理したマンドレルに前記貼り合わせたプリプレグを捲回した。
 (c)その上に、上記(6)に従い作製したT800SC使い一方向プリプレグを縦114mm、横800mmの長方形形状(長辺方向が繊維軸方向となる)に切り出したものを、その繊維の方向がマンドレル軸の方向と同一になるように捲回した。
 (d)さらに、その上から、ラッピングテープ(耐熱性フィルムテープ)を巻きつけて捲回物を覆い、硬化炉中、特に断らない限り、130℃で90分間、加熱成形した。なお、ラッピングテープの幅は15mm、張力は34N、巻き付けピッチ(巻き付け時のずれ量)は2.0mmとし、これを2plyラッピングした。
 (e)この後、マンドレルを抜き取り、ラッピングテープを除去して繊維強化複合材料製管状体を得た。
また、一方向プリプレグとして上記(6)で作成したT700SC使い一方向プリプレグを用いたこと以外は、上記(a)~(e)の操作を同様にしてT700SC使い繊維強化複合材料製管状体も作製した。
 (9)繊維強化複合材料製管状体のシャルピー衝撃試験
 上記(8)で得た繊維強化複合材料製管状体を長さ60mmでカットし、内径6.3mm、長さ60mmの試験片を作製した。秤量300kg・cmで管状体の側面から衝撃を与えてシャルピー衝撃試験を行った。振り上がり角から、下記の式、
E=WR[(cosβ-cosα)-(cosα'-cosα)(α+β)/(α+α')]
 E:吸収エネルギー(J)
 WR:ハンマーの回転軸の周りのモーメント(N・m)
 α:ハンマーの持ち上げ角度(°)
 α’:ハンマーの持ち上げ角αから空振りさせたときの振り上がり角(°)
 β:試験片破断後のハンマーの振り上がり角(°)
に従って衝撃の吸収エネルギーを計算した。なお、試験片にはノッチ(切り欠き)は導入していない。測定数はn=5で行い、平均値をシャルピー衝撃値とした。
 (10)一方向積層板の0°曲げ強度の測定方法
 繊維強化複合材料の曲げ強度の指標として、一方向積層板の0°曲げ強度を測定した。一方向積層板を、厚み2mm、幅15mm、長さ100mmとなるように試験片を切り出した。インストロン万能試験機(インストロン社製)を用い、クロスヘッド速度5.0mm/分、スパン80mm、圧子径10mm、支点径4mmで試験片の測定を行ない、曲げ強度を計算した。また、作製したプリプレグの目付に基づいて、実Vfを求めた後、得られた曲げ強度をVf60%に換算した。
 (11)軟化点測定(環球法)
 環球法JIS-K7234(2008年)にて測定した。
 (12)樹脂硬化物のエポキシ成分のガラス転移温度の測定
 上記(3)と同様の方法で作製した樹脂硬化物をダイヤモンドカッターで幅13mm、長さ35mmに切り出し、試験片とした。試験片を動的粘弾性測定装置(DMAQ800:ティー・エイ・インスツルメンツ社製)を用い、40℃~250℃まで昇温速度5℃/分で昇温し、周波数1.0Hzの曲げモードでガラス転移温度の測定を行った。このときの貯蔵弾性率のオンセット温度をガラス転移温度とした。表2~5にその結果を示す。ただし、相分離構造を有する樹脂硬化物のガラス転移温度測定では、樹脂硬化物のガラス転移温度が2つ生じる場合があり、表2~5に記載のガラス転移温度は、低い方のガラス転移温度である。
 (実施例1)
 エポキシ樹脂[A1]または[A2]としてjER1007を40部、エポキシ樹脂[B1]または[B2]としてjER630を20部、エポキシ樹脂[C1]または[C2]としてエピクロン830を40部、硬化剤[D]としてDICY7を全エポキシ樹脂成分のエポキシ基に対し、活性水素基が0.9当量となる量、および硬化促進剤としてDCMU99を2部用いて、エポキシ樹脂組成物を調製した。得られた樹脂組成物の80℃での粘度は良好であった。得られたエポキシ樹脂組成物を2.5℃/分で昇温し、130℃で90分間かけて硬化した。得られた樹脂硬化物は、微細な相分離構造を形成し、力学特性は良好であった。得られたエポキシ樹脂組成物と炭素繊維としてT800SC-24Kを用いて、前記のようにしてプリプレグを作成した。得られたプリプレグを用いて、前記のようにして作製した繊維強化複合材料製管状体の耐衝撃特性および一方向積層板の0°曲げ強度は、良好であった。結果を表2に示す。
 (実施例2~26、比較例1~11)
 表2~5に示す組成に変更した以外は、実施例1と同様に、エポキシ樹脂組成物を調製した。評価結果を表2~5に示す。各実施例のエポキシ樹脂組成物から得られた樹脂硬化物は、いずれも微細な相分離構造を形成し、力学特性は良好であった。また、得られたエポキシ樹脂組成物と炭素繊維からなるプリプレグを用いて作製した繊維強化複合材料製管状体の耐衝撃特性および一方向積層板の0°曲げ強度は、良好であった。
 比較例1のエポキシ樹脂組成物は、エポキシ樹脂[A1]または[A2]を用いなかったため、得られた樹脂硬化物は、相分離せず均一なものとなり、樹脂靱性値が不足した。その結果、得られたエポキシ樹脂と炭素繊維を用いて作製した繊維強化複合材料製管状体の耐衝撃特性が不足した。
 比較例2のエポキシ樹脂組成物は、エポキシ樹脂[B1]または[B2]を用いなかったため、得られた樹脂硬化物は、相分離せず均一なものとなり、樹脂靱性値は不足した。その結果、繊維強化複合材料製管状体の耐衝撃特性が不足した。
 比較例3のエポキシ樹脂組成物は、エポキシ樹脂[B1]または[B2]を用いなかったため、得られた樹脂硬化物は、相分離せず均一なものとなり、弾性率が不足した。その結果、得られたエポキシ樹脂と炭素繊維を用いて作製した一方向積層板の0°曲げ強度が不足した。
 比較例4のエポキシ樹脂組成物は、エポキシ樹脂[A1]または[A2]を用いなかったため、得られた樹脂硬化物は、相分離せず均一なものとなり、樹脂靱性値が不足した。その結果、得られたエポキシ樹脂と炭素繊維を用いて作製した繊維強化複合材料製管状体の耐衝撃特性が不足した。
 比較例5のエポキシ樹脂組成物は、エポキシ樹脂[C1]または[C2]を用いていないために、得られた樹脂硬化物は、粗大相分離構造を形成し、弾性率が不足した。さらにエポキシ樹脂組成物の80℃での粘度が200Pa・sを越えたために、繊維強化複合材料にボイドが生じた。その結果、得られたエポキシ樹脂と炭素繊維を用いて作製した繊維強化複合材料の力学特性が不足した。
 比較例6のエポキシ樹脂組成物は、得られた樹脂硬化物は、微細な相分離構造を形成したが、エポキシ樹脂[C1]または[C2]を用いていないために、実施例10対比弾性率が不足した。その結果、得られたエポキシ樹脂と炭素繊維を用いて作製した一方向積層板の0°曲げ強度が不足した。
 比較例7のエポキシ樹脂組成物は、エポキシ樹脂[B1]または[B2]を用いていないために、得られた樹脂硬化物は、均一相分離構造を形成し、弾性率が不足した。さらにエポキシ樹脂組成物の80℃での粘度が200Pa・sを越えたために、繊維強化複合材料にボイドが生じた。その結果、得られたエポキシ樹脂組成物と炭素繊維を用いて作製した一方向積層板の0°曲げ強度が不足した。
 比較例8のエポキシ樹脂組成物は、エポキシ樹脂[A1]または[A2]を用いていないために、得られた樹脂硬化物は、均一相分離構造を形成し、樹脂靱性値が著しく不足した。その結果、得られたエポキシ樹脂と炭素繊維を用いて作製した繊維強化複合材料製管状体の耐衝撃特性が不足した。
 比較例9のエポキシ樹脂組成物は、エポキシ樹脂[C1]または[C2]を用いていないために、得られた樹脂硬化物は、粗大相分離構造を形成し、樹脂靱性値が著しく不足した。その結果、得られたエポキシ樹脂と炭素繊維を用いて作製した繊維強化複合材料製管状体の耐衝撃特性が不足した。
比較例10のエポキシ樹脂組成物は、エポキシ樹脂[A1]または[A2]を用いていないために、得られた樹脂硬化物は、均一構造を形成し、樹脂靱性値が著しく不足した。その結果、得られたエポキシ樹脂と炭素繊維を用いて作製した繊維強化複合材料製管状体の耐衝撃特性が不足した。
 比較例11のエポキシ樹脂組成物は、エポキシ樹脂[A1]または[A2]を用いていないために、得られた樹脂硬化物は、均一構造を形成し、弾性率と樹脂靱性値が不足した。その結果、得られたエポキシ樹脂と炭素繊維を用いて作製した一方向積層板の0°曲げ強度および繊維強化複合材料製管状体の耐衝撃特性が不足した。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 本発明のエポキシ樹脂組成物は、高い弾性率と高い靱性を有し、さらに低粘度であるため、高繊維含有率のプリプレグ成形を可能にする。このため、エポキシ樹脂組成物と強化繊維を組み合わせることにより、優れた耐衝撃性と強度を併せ持つ繊維強化複合材料を得ることができる。このため、得られる繊維強化複合材料は、スポーツ用途、一般産業用途、さらに航空機用途に好ましく用いられる。

Claims (13)

  1. エポキシ樹脂[A1]、エポキシ樹脂[B1]、エポキシ樹脂[C1]および硬化剤[D]を含むエポキシ樹脂組成物であって、[A1]は軟化点が90℃以上のビスフェノール型エポキシ樹脂、[B1]は3官能以上のアミン型エポキシ樹脂、そして[C1]数平均分子量450以下のビスフェノールF型エポキシ樹脂であり、かつ、エポキシ樹脂[A1]~[C1]が全エポキシ樹脂成分100質量部に対して、[A1]20~50質量部、[B1]30~50質量部および[C1]10~40質量部の配合比を満たす、エポキシ樹脂組成物。
  2. エポキシ樹脂組成物を硬化させて得られる樹脂硬化物が、[A1]リッチ相と[B1]リッチ相を有してなる相分離構造を有し、その相分離構造周期が1nm~5μmである、請求項1に記載のエポキシ樹脂組成物。
  3. エポキシ樹脂[A2]、エポキシ樹脂[B2]、エポキシ樹脂[C2]および硬化剤[D]を含み、かつ、以下の条件(1)~(4)を満たすエポキシ樹脂組成物:
    (1)エポキシ樹脂[B2]を硬化剤[D]と反応し硬化させて得られる樹脂硬化物[B2’]のSP値が、エポキシ樹脂[A2]および[C2]をそれぞれ硬化剤[D]と反応し硬化させて得られる樹脂硬化物[A2’]および[C2’]のいずれのSP値に対してよりも1.2以上大きい;
    (2)エポキシ樹脂[A2]の軟化点が90℃以上であり、かつエポキシ樹脂[B2]と[C2]の軟化点がいずれも50℃以下である;
    (3)エポキシ樹脂[C2]と、エポキシ樹脂[C2]のエポキシ基に対し活性水素基が0.9当量のジシアンジアミドと、エポキシ樹脂[C2]100質量部に対して2質量部の3-(3,4-ジクロロフェニル)-1,1-ジメチルウレアからなるエポキシ樹脂組成物を、室温から130℃まで2.5℃/分で昇温し、130℃で90分間反応させて得られる樹脂硬化物の弾性率が、3.5GPa以上である;および
    (4)エポキシ樹脂組成物を硬化させて得られる樹脂硬化物が、[A2]リッチ相と[B2]リッチ相を含む相分離構造を有し、その相分離構造周期が1nm~1μmである。
  4. [A2]は軟化点が90℃以上のビスフェノール型エポキシ樹脂、[B2]は3官能以上のアミン型エポキシ樹脂、そして[C2]数平均分子量450以下のビスフェノールF型エポキシ樹脂であり、かつ、エポキシ樹脂[A2]~[C2]が全エポキシ樹脂成分100質量部に対して、[A2]20~50質量部、[B2]30~50質量部および[C2]10~40質量部の配合比を満たす請求項3に記載のエポキシ樹脂組成物。
  5. エポキシ樹脂[B1]または[B2]が3官能のアミノフェノール型エポキシ樹脂である、請求項1~4のいずれかに記載のエポキシ樹脂組成物。
  6. 硬化剤[D]がジシアンジアミドまたはその誘導体である、請求項1~5のいずれかに記載のエポキシ樹脂組成物。
  7. さらに、S-B-M、B-MおよびM-B-Mからなる群から選ばれる少なくとも1種のブロック共重合体[E]を、全エポキシ樹脂成分100質量部に対して1~10質量部含む、請求項1~6に記載のエポキシ樹脂組成物;
    ここで、前記のS、BおよびMで表される各ブロックは、共有結合によって直接、もしくは、何らかの化学構造を介して連結されており、ブロックMはポリメタクリル酸メチルのホモポリマーまたは、メタクリル酸メチルを50質量%以上含むコポリマーからなるブロックであり、ブロックBはブロックMに非相溶で、かつ、そのガラス転移温度が20℃以下であるブロックであり、ブロックSはブロックBおよびMに非相溶で、かつ、そのガラス転移温度が、ブロックBのガラス転移温度よりも高いブロックである。
  8. 前記ブロック共重合体[E]が、M-B-Mで表されるブロック共重合体であり、Mブロックがメタクリル酸メチルよりもSP値の高いモノマーを共重合成分として含有する、請求項7に記載のエポキシ樹脂組成物。
  9. 前記ブロック共重合体[E]におけるブロック共重合体のブロックBが、ポリ1,4-ブタジエンまたはポリ(ブチルアクリレート)である、請求項7に記載のエポキシ樹脂組成物。
  10. エポキシ樹脂組成物の80℃における粘度が0.5~200Pa・sであり、かつ、硬化させて得られる樹脂硬化物の樹脂靱性値が1.3MPa・m0.5以上である、請求項1~9のいずれかに記載のエポキシ樹脂組成物。
  11. 請求項1~10のいずれかに記載のエポキシ樹脂組成物と強化繊維を含むプリプレグ。
  12. 請求項11に記載のプリプレグを硬化させてなる繊維強化複合材料。
  13. 請求項1~10のいずれかに記載のエポキシ樹脂組成物の硬化物と、強化繊維を含む繊維強化複合材料。
PCT/JP2011/071842 2010-09-28 2011-09-26 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料 WO2012043453A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/823,004 US9738782B2 (en) 2010-09-28 2011-09-26 EPOXY resin composition, prepreg and fiber-reinforced composite materials
KR1020137009295A KR101569595B1 (ko) 2010-09-28 2011-09-26 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합 재료
CN201180047158.9A CN103140536B (zh) 2010-09-28 2011-09-26 环氧树脂组合物、预浸料坯及纤维增强复合材料
EP11829007.1A EP2623533B1 (en) 2010-09-28 2011-09-26 Epoxy resin composition, prepreg and fiber-reinforced compound material
CA2811881A CA2811881A1 (en) 2010-09-28 2011-09-26 Epoxy resin composition, prepreg and fiber-reinforced composite materials
RU2013119741/04A RU2013119741A (ru) 2010-09-28 2011-09-26 Композиция эпоксидной смолы, препрег и армированные волокнами композитные материалы

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2010216633 2010-09-28
JP2010-216632 2010-09-28
JP2010216632 2010-09-28
JP2010-216633 2010-09-28
JP2011047407 2011-03-04
JP2011047406 2011-03-04
JP2011-047406 2011-03-04
JP2011-047407 2011-03-04

Publications (1)

Publication Number Publication Date
WO2012043453A1 true WO2012043453A1 (ja) 2012-04-05

Family

ID=45892899

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/071842 WO2012043453A1 (ja) 2010-09-28 2011-09-26 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Country Status (8)

Country Link
US (1) US9738782B2 (ja)
EP (1) EP2623533B1 (ja)
KR (1) KR101569595B1 (ja)
CN (1) CN103140536B (ja)
CA (1) CA2811881A1 (ja)
RU (1) RU2013119741A (ja)
TW (1) TWI513755B (ja)
WO (1) WO2012043453A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030636A1 (ja) * 2012-08-20 2014-02-27 三菱レイヨン株式会社 エポキシ樹脂組成物及びこれを用いたフィルム、プリプレグ、繊維強化プラスチック
JP2014051639A (ja) * 2012-08-07 2014-03-20 Toray Ind Inc プリプレグおよび炭素繊維強化複合材料
JP2014080566A (ja) * 2012-09-25 2014-05-08 Toray Ind Inc プリプレグおよび炭素繊維強化複合材料
JP2014122312A (ja) * 2012-12-21 2014-07-03 Toray Ind Inc プリプレグおよび炭素繊維強化複合材料
WO2014142024A1 (ja) * 2013-03-11 2014-09-18 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
US20150175760A1 (en) * 2012-08-20 2015-06-25 Mitsubishi Rayon Co., Ltd. Epoxy-resin composition and film, prepreg, and fiber-reinforced plastic using same
WO2016104314A1 (ja) * 2014-12-25 2016-06-30 三菱レイヨン株式会社 エポキシ樹脂組成物、並びにこれを用いたフィルム、プリプレグ及び繊維強化プラスチック
KR20160127023A (ko) 2014-02-25 2016-11-02 도레이 카부시키가이샤 에폭시 수지 조성물, 수지 경화물, 섬유 강화 복합 재료 및 프리프레그
JP1565920S (ja) * 2015-08-21 2016-12-19
US9765194B2 (en) 2012-07-25 2017-09-19 Toray Industries, Inc. Prepreg and carbon fiber-reinforced composite material

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6354763B2 (ja) * 2012-10-15 2018-07-11 東レ株式会社 強化界面相を有する繊維強化高弾性ポリマー複合材料
FR2997146B1 (fr) * 2012-10-22 2014-11-21 Hydromecanique & Frottement Element d'articulation autolubrifiant fonctionnant sous fortes charges en regime dynamique
JP6180204B2 (ja) * 2013-07-02 2017-08-16 ダンロップスポーツ株式会社 ゴルフクラブシャフト
GB201313420D0 (en) * 2013-07-26 2013-09-11 Hexcel Composites Ltd Improvements in or relating to fibre reinforced composites
BR112016002599A2 (pt) * 2013-08-16 2017-08-01 Dow Global Technologies Llc composição de epóxi termofixa 1k
EP3333212B1 (en) 2015-09-17 2019-08-28 Toray Industries, Inc. Epoxy resin composition, prepreg, and fiber-reinforced composite material
WO2017154102A1 (ja) * 2016-03-08 2017-09-14 日立化成株式会社 熱硬化性樹脂硬化物の分解生成物の回収方法及び再生材料の製造方法
WO2018003691A1 (ja) * 2016-06-28 2018-01-04 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
KR102224073B1 (ko) * 2016-06-28 2021-03-08 도레이 카부시키가이샤 에폭시 수지 조성물, 프리프레그 및 섬유 강화 복합 재료
KR20190046842A (ko) 2016-08-26 2019-05-07 도레이 카부시키가이샤 에폭시 수지 조성물, 프리프레그, 및 섬유 강화 플라스틱 재료
EP3339356B1 (en) * 2016-12-20 2019-10-30 Sika Technology Ag An article of thermosetting epoxy resin composition and carbon fibre fabric, and reinforced structural component made therewith
TWI655239B (zh) 2016-12-21 2019-04-01 日商三菱化學股份有限公司 硬化性樹脂組成物,以及使用該組成物的膜、成形品、預浸體及纖維強化塑膠
CN107337900B (zh) * 2016-12-23 2019-05-24 北京科化新材料科技有限公司 一种环氧树脂组合物及其制备方法和应用
US11261358B2 (en) * 2017-08-22 2022-03-01 Sunstar Engineering Inc. Curable composition
WO2019111747A1 (ja) * 2017-12-04 2019-06-13 東レ株式会社 プリプレグおよび繊維強化複合材料
JP2020050833A (ja) * 2018-09-28 2020-04-02 日鉄ケミカル&マテリアル株式会社 プリプレグ及びその成形物
EP3921363B1 (en) * 2019-02-08 2023-03-01 Toray Industries, Inc. Resin composition for carbon fiber composite material, towpreg
EP3974467A4 (en) * 2019-05-23 2023-07-26 Toray Industries, Inc. PREPREG, LAMINATE AND MOLDING
US20220251317A1 (en) * 2019-05-23 2022-08-11 Toray Industries, Inc. Prepreg, laminate, and molding
EP4059977A4 (en) * 2019-11-15 2023-11-29 Toray Industries, Inc. EPOXY RESIN COMPOSITION, PREPREG AND FIBER REINFORCED COMPOSITE MATERIAL
JP6904441B1 (ja) * 2020-01-30 2021-07-14 横浜ゴム株式会社 プリプレグ用エポキシ樹脂組成物およびプリプレグ
CN112707654A (zh) * 2021-01-21 2021-04-27 河南光远新材料股份有限公司 一种无碱玻璃纤维浸润剂及其制备方法
CN114410065B (zh) * 2022-01-21 2022-09-30 深圳市郎搏万先进材料有限公司 一种环氧树脂组合物及碳纤维预浸料、碳纤维复合材料

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021717A (ja) 1983-07-14 1985-02-04 理研軽金属工業株式会社 圧力調理器
JPS621719A (ja) * 1985-06-28 1987-01-07 Nippon Oil Co Ltd エポキシ樹脂組成物
JPS621717A (ja) * 1985-06-28 1987-01-07 Nippon Oil Co Ltd エポキシ樹脂組成物
EP0749987A1 (fr) 1995-06-15 1996-12-27 Elf Atochem S.A. Procédé de polymérisation anionique en continu d'au moins un monomère (méth)acrylique pour l'obtention de polymères à haut taux de solide
JP2003535181A (ja) 2000-05-31 2003-11-25 アトフィナ 耐衝撃強度に優れた熱硬化性樹脂材料
WO2006077153A2 (en) 2005-01-20 2006-07-27 Arkema France Thermoset materials with improved impact resistance
WO2008143044A1 (ja) * 2007-05-16 2008-11-27 Toray Industries, Inc. エポキシ樹脂組成物、プリプレグ、繊維強化複合材料
JP2009074009A (ja) * 2007-09-25 2009-04-09 Toray Ind Inc プリプレグおよびゴルフクラブシャフト
WO2009107697A1 (ja) 2008-02-26 2009-09-03 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
WO2010035859A1 (ja) * 2008-09-29 2010-04-01 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57181686A (en) 1982-03-29 1982-11-09 Terumo Corp Device for subculture and cultivation of microorganism
JPS6112298A (ja) 1984-06-26 1986-01-20 Daiwa Kasei Kk ジペプチド類の連続製造法
JPH08302161A (ja) * 1995-05-10 1996-11-19 Hitachi Chem Co Ltd 樹脂組成物及びその樹脂組成物をケミカルエッチングする方法
JPH11171974A (ja) * 1997-12-08 1999-06-29 Toray Ind Inc 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
US6399199B1 (en) * 1999-12-28 2002-06-04 Toray Industries Inc. Prepeg and carbon fiber reinforced composite materials
JP2001260553A (ja) * 2000-03-21 2001-09-25 Fuji Photo Film Co Ltd 感熱性平版印刷用原板
JP4141479B2 (ja) * 2006-04-25 2008-08-27 横浜ゴム株式会社 繊維強化複合材料用エポキシ樹脂組成物
CN102604333B (zh) 2006-06-30 2016-10-05 东丽株式会社 环氧树脂组合物、预浸料及纤维增强复合材料
JP4829766B2 (ja) * 2006-12-13 2011-12-07 横浜ゴム株式会社 繊維強化複合材料用エポキシ樹脂組成物
CN100569826C (zh) * 2007-04-18 2009-12-16 广州秀珀化工股份有限公司 一种自乳化型水性环氧固化剂乳液及其制备方法
US20090143526A1 (en) * 2007-11-29 2009-06-04 Kansai Paint Co., Ltd. Coating composition and coated article

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6021717A (ja) 1983-07-14 1985-02-04 理研軽金属工業株式会社 圧力調理器
JPS621719A (ja) * 1985-06-28 1987-01-07 Nippon Oil Co Ltd エポキシ樹脂組成物
JPS621717A (ja) * 1985-06-28 1987-01-07 Nippon Oil Co Ltd エポキシ樹脂組成物
EP0749987A1 (fr) 1995-06-15 1996-12-27 Elf Atochem S.A. Procédé de polymérisation anionique en continu d'au moins un monomère (méth)acrylique pour l'obtention de polymères à haut taux de solide
JP2003535181A (ja) 2000-05-31 2003-11-25 アトフィナ 耐衝撃強度に優れた熱硬化性樹脂材料
WO2006077153A2 (en) 2005-01-20 2006-07-27 Arkema France Thermoset materials with improved impact resistance
WO2008143044A1 (ja) * 2007-05-16 2008-11-27 Toray Industries, Inc. エポキシ樹脂組成物、プリプレグ、繊維強化複合材料
JP2009074009A (ja) * 2007-09-25 2009-04-09 Toray Ind Inc プリプレグおよびゴルフクラブシャフト
WO2009107697A1 (ja) 2008-02-26 2009-09-03 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
WO2010035859A1 (ja) * 2008-09-29 2010-04-01 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
POLYM. ENG. SCI., vol. 14, no. 2, 1974, pages 147 - 154

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9765194B2 (en) 2012-07-25 2017-09-19 Toray Industries, Inc. Prepreg and carbon fiber-reinforced composite material
US11111345B2 (en) 2012-07-25 2021-09-07 Toray Industries, Inc. Prepreg and carbon fiber-reinforced composite material
US11286359B2 (en) 2012-07-25 2022-03-29 Toray Industries, Inc. Prepreg and carbon fiber-reinforced composite material
JP2014051639A (ja) * 2012-08-07 2014-03-20 Toray Ind Inc プリプレグおよび炭素繊維強化複合材料
US20150175760A1 (en) * 2012-08-20 2015-06-25 Mitsubishi Rayon Co., Ltd. Epoxy-resin composition and film, prepreg, and fiber-reinforced plastic using same
CN104583310A (zh) * 2012-08-20 2015-04-29 三菱丽阳株式会社 环氧树脂组合物以及使用该环氧树脂组合物的膜、预浸料、纤维增强塑料
WO2014030636A1 (ja) * 2012-08-20 2014-02-27 三菱レイヨン株式会社 エポキシ樹脂組成物及びこれを用いたフィルム、プリプレグ、繊維強化プラスチック
US9574081B2 (en) 2012-08-20 2017-02-21 Mitsubishi Rayon Co., Ltd. Epoxy-resin composition, and film, prepreg and fiber-reinforced plastic using the same
US9988508B2 (en) * 2012-08-20 2018-06-05 Mitsubishi Chemical Corporation Epoxy-resin composition and film, prepreg, and fiber-reinforced plastic using same
JP2014080566A (ja) * 2012-09-25 2014-05-08 Toray Ind Inc プリプレグおよび炭素繊維強化複合材料
JP2014122312A (ja) * 2012-12-21 2014-07-03 Toray Ind Inc プリプレグおよび炭素繊維強化複合材料
WO2014142024A1 (ja) * 2013-03-11 2014-09-18 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JPWO2014142024A1 (ja) * 2013-03-11 2017-02-16 東レ株式会社 エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
US9783670B2 (en) 2013-03-11 2017-10-10 Toray Industries, Inc. Epoxy resin composition, prepreg, and fiber-reinforced composite material
KR20160127023A (ko) 2014-02-25 2016-11-02 도레이 카부시키가이샤 에폭시 수지 조성물, 수지 경화물, 섬유 강화 복합 재료 및 프리프레그
CN107001586A (zh) * 2014-12-25 2017-08-01 三菱化学株式会社 环氧树脂组合物、以及使用其的膜、预浸料和纤维增强塑料
JPWO2016104314A1 (ja) * 2014-12-25 2017-04-27 三菱レイヨン株式会社 炭素繊維強化プラスチック用エポキシ樹脂組成物、並びにこれを用いたフィルム、プリプレグ及び炭素繊維強化プラスチック
WO2016104314A1 (ja) * 2014-12-25 2016-06-30 三菱レイヨン株式会社 エポキシ樹脂組成物、並びにこれを用いたフィルム、プリプレグ及び繊維強化プラスチック
JP1565920S (ja) * 2015-08-21 2016-12-19

Also Published As

Publication number Publication date
KR20130108351A (ko) 2013-10-02
TW201224048A (en) 2012-06-16
TWI513755B (zh) 2015-12-21
CN103140536B (zh) 2015-09-23
RU2013119741A (ru) 2014-11-10
EP2623533B1 (en) 2020-04-29
US9738782B2 (en) 2017-08-22
EP2623533A4 (en) 2017-10-18
KR101569595B1 (ko) 2015-11-16
CA2811881A1 (en) 2012-04-05
EP2623533A1 (en) 2013-08-07
US20130217805A1 (en) 2013-08-22
CN103140536A (zh) 2013-06-05

Similar Documents

Publication Publication Date Title
US9738782B2 (en) EPOXY resin composition, prepreg and fiber-reinforced composite materials
JP5321464B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP5747763B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP5401790B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP5444713B2 (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料
TWI447139B (zh) 環氧樹脂組成物、預浸漬物及纖維強化複合材料
JP5747762B2 (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP5347630B2 (ja) エポキシ樹脂組成物、プリプレグ、繊維強化複合材料
JP5564870B2 (ja) エポキシ樹脂組成物、プリプレグ、および繊維強化複合材料
WO2012039456A1 (ja) 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
WO2012102201A1 (ja) 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2008007682A (ja) エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP5811883B2 (ja) 繊維強化複合材料用エポキシ樹脂組成物、プリプレグおよび繊維強化複合材料
JP2012131849A (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグおよび繊維強化複合材料
JP2012056981A (ja) エポキシ樹脂組成物、エポキシ樹脂硬化物、プリプレグ、および繊維強化複合材料

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180047158.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11829007

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011829007

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2811881

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13823004

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137009295

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013119741

Country of ref document: RU

Kind code of ref document: A