WO2012042743A1 - アルカリ二次電池 - Google Patents

アルカリ二次電池 Download PDF

Info

Publication number
WO2012042743A1
WO2012042743A1 PCT/JP2011/004833 JP2011004833W WO2012042743A1 WO 2012042743 A1 WO2012042743 A1 WO 2012042743A1 JP 2011004833 W JP2011004833 W JP 2011004833W WO 2012042743 A1 WO2012042743 A1 WO 2012042743A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
battery
secondary battery
alkaline secondary
positive electrode
Prior art date
Application number
PCT/JP2011/004833
Other languages
English (en)
French (fr)
Inventor
真知子 築地
文晴 阪下
正敏 羽野
加藤 文生
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/502,499 priority Critical patent/US20120208051A1/en
Priority to JP2011554013A priority patent/JPWO2012042743A1/ja
Publication of WO2012042743A1 publication Critical patent/WO2012042743A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/167Lids or covers characterised by the methods of assembling casings with lids by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/169Lids or covers characterised by the methods of assembling casings with lids by welding, brazing or soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • H01M50/171Lids or covers characterised by the methods of assembling casings with lids using adhesives or sealing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/182Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells with a collector centrally disposed in the active mass, e.g. Leclanché cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • H01M50/325Re-sealable arrangements comprising deformable valve members, e.g. elastic or flexible valve members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/578Devices or arrangements for the interruption of current in response to pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an alkaline secondary battery.
  • Alkaline batteries are primary batteries and are discarded after use, but there is a demand for reuse to save resources. Although it is theoretically possible to charge and reuse an alkaline battery after use, charging an alkaline battery designed as a primary battery as it is causes various problems such as leakage. Therefore, development has been carried out to make the shape of the alkaline secondary battery the same as that of the dry battery, with some modifications to the active material and internal structure (for example, Patent Document 1).
  • alkaline dry battery As much active material as possible is packed in a certain space in order to increase the battery capacity. Even in an alkaline secondary battery, such a structure makes the space for storing gas very small, and even if a small amount of gas is stored, the internal pressure increases, leading to liquid leakage. In particular, when the battery is overcharged or when the amount of generated gas increases at the end of the cycle, there is a high possibility of leakage. If liquid leakage occurs, the alkaline electrolyte may enter the electronic device containing the alkaline secondary battery, and the electronic device itself may be damaged due to short-circuiting or corrosion.
  • the present invention has been made in view of the above points, and the object of the present invention is to stop charging / discharging before reaching leakage even if gas is generated inside to suppress generation of further gas.
  • the object is to provide an alkaline secondary battery.
  • the alkaline secondary battery of the present application is a bottomed cylindrical battery case provided with a positive electrode terminal, a cylindrical positive electrode, a negative electrode disposed in a hollow portion of the positive electrode, the positive electrode and the negative electrode
  • An opening of the battery case is sealed by a sealing body that contains a separator and an alkaline electrolyte disposed between and sealed with a negative electrode terminal, and the internal pressure of the sealing body reaches a predetermined pressure P1. Then, it has the structure which has the electric current interruption mechanism which interrupts
  • the negative electrode active material zinc, a hydrogen storage alloy, metallic magnesium, or the like can be used.
  • the negative electrode is provided with a negative electrode current collector that supplies current to the negative electrode terminal, and the current interruption mechanism is made of a metal that is electrically connected to the negative electrode terminal.
  • the second connecting member is broken by the internal pressure when the internal pressure reaches the predetermined pressure P1, and interrupts current conduction between the negative electrode current collector and the negative electrode terminal.
  • the negative electrode may be made of zinc or a zinc alloy as a main active material, and the first and second connecting members may be made of copper or an alloy mainly composed of copper.
  • the predetermined pressures P1 [MPa] and P2 [MPa] may satisfy the relational expressions 2.0 ⁇ P1, P2 ⁇ 8.0, and P2 ⁇ P1 ⁇ 3.5. Good.
  • the predetermined pressures P1 [MPa] and P2 [MPa] may satisfy the relational expressions of 3.0 ⁇ P1, P2 ⁇ 11.0, and P2 ⁇ P1 ⁇ 6.0. Good.
  • the predetermined pressures P1 [MPa] and P2 [MPa] may satisfy the relational expressions of 0.5 ⁇ P1, P2 ⁇ 2.0, and P2 ⁇ P1 ⁇ 1.0. Good.
  • the predetermined pressures P1 [MPa] and P2 [MPa] may satisfy the relational expressions 1.0 ⁇ P1, P2 ⁇ 3.0, and P2 ⁇ P1 ⁇ 1.0. Good.
  • the first connecting member is provided with a thin portion having a thickness smaller than that of the surroundings, and the communication mechanism is a mechanism that functions when the thin portion is broken by internal pressure.
  • the positive electrode terminal may be provided with a return-type rubber valve body or a spring valve body, and the communication mechanism may be a mechanism that functions when the rubber valve body or the spring valve body operates.
  • the connecting member may be made of a plate having a thickness of 0.1 mm to 0.7 mm.
  • a water repellent may be applied to at least a part of the surface of the first connecting member, the second connecting member, or the energizing intermediate member facing the negative electrode.
  • the negative electrode may be a gel zinc negative electrode in which zinc or zinc alloy particles are dispersed in a gel alkaline electrolyte.
  • a porous body of zinc or zinc alloy may be used as the negative electrode.
  • the positive electrode can have manganese dioxide as a main active material. Further, metatitanic acid is added to the positive electrode, and the addition amount of metatitanic acid may be 0.1% or more and 3% or less by mass ratio with respect to manganese dioxide. Furthermore, when the theoretical capacity of manganese dioxide is 308 mAh / g and the theoretical capacity of zinc is 819 mAh / g, the value of negative electrode theoretical capacity / positive electrode theoretical capacity may be 1.10 or more and 1.30 or less. Alternatively, nickel oxyhydroxide, silver oxide, or the like may be used for the positive electrode active material.
  • the battery internal volume generated when the battery case is sealed with the sealing body is larger than 6.15 mL
  • the weight of manganese dioxide contained in the positive electrode is 8.0 g or more and 9.0 g or less.
  • the weight of zinc contained in the negative electrode may be 3.0 g or more and 4.0 g or less, and the total amount of the alkaline electrolyte may be 3.5 g or more and 4.0 g or less.
  • the alkaline secondary battery of the present invention can not be charged / discharged when the internal pressure reaches the predetermined pressure P1, thus preventing the generation of further gas and indicating to the user that the battery needs to be replaced. Prevent leakage in the equipment.
  • FIG. 1 is a partial cross-sectional view of an alkaline secondary battery according to Embodiment 1.
  • FIG. 4 is a partial cross-sectional view of an alkaline secondary battery according to Embodiment 2.
  • FIG. 6 is a partial cross-sectional view of an alkaline secondary battery according to Embodiment 3.
  • FIG. 3 is a graph showing an evaluation result according to Example 1.
  • FIG. 10 is a diagram illustrating an evaluation device according to Example 3. 6 is a partial cross-sectional view of an alkaline secondary battery according to Example 5.
  • FIG. 10 is a graph showing an evaluation result according to Example 6. It is a partial cross section figure of the alkaline secondary battery concerning other embodiments. It is a partial cross section figure of another alkaline secondary battery concerning other embodiments. It is a partial cross section figure of another alkaline secondary battery which concerns on other embodiment. It is a partial cross section figure of an alkaline dry battery.
  • the fact that the negative electrode has zinc or a zinc alloy as a main active material means that the proportion of zinc or the zinc alloy in the active material of the negative electrode is 50% or more by mass.
  • An alloy mainly composed of copper is an alloy having a copper ratio of 50% or more by mass.
  • the fact that the positive electrode has manganese dioxide as the main active material means that the proportion of manganese dioxide in the active material of the positive electrode is 50% or more in mass.
  • the non-woven fabric that separates the negative electrode and the connection member has a configuration that serves as a boundary surface that bisects the space between the negative electrode and the connection member into the negative electrode side and the connection member side.
  • the single type is LR20 of an alkaline battery in IEC 60086, and is represented by D in the United States.
  • the AA type is LR14 of an alkaline battery in IEC 60086, and is represented by C in the United States.
  • AA type is LR6 of an alkaline battery in IEC 60086, and is represented by AA in the United States.
  • the AAA type is LR03 of an alkaline battery in IEC 60086, and is represented by AAA in the United States.
  • FIG. 11 is a partial cross-sectional view of an example of an alkaline battery.
  • a cylindrical positive electrode 102 is inserted so as to be in close contact with the inner wall of a metal battery case 101 having a bottomed cylindrical shape, a separator 104 is disposed on the inner wall of the positive electrode 102, and a negative electrode 103 is placed therein.
  • the bottom side of the battery case 101 protrudes outward to form a positive electrode terminal 108.
  • the positive electrode 102 is formed by mixing electrolytic manganese dioxide as a positive electrode mixture with a small amount of graphite.
  • the negative electrode 103 is obtained by dispersing zinc alloy powder in a gel, and an aqueous potassium hydroxide solution is mixed in the gel as an alkaline electrolyte. In addition, the alkaline electrolyte is also infiltrated into the positive electrode 102 and the separator 104.
  • a nail-shaped negative electrode current collector 106 is inserted into the central portion of the negative electrode 103, and its upper portion protrudes above the negative electrode 103.
  • a sealing resin member 107 is disposed around a portion of the negative electrode current collector 106 protruding from the negative electrode 103, and a negative electrode terminal plate 105 is placed thereon to be electrically connected to the negative electrode current collector 106.
  • the battery is sealed by caulking the open end of the battery case 101 to the peripheral edge of the negative electrode terminal plate 105 via the outer peripheral end of the sealing resin member 107.
  • the outer surface side of the negative electrode terminal plate 105 is a negative electrode terminal 109.
  • the alkaline dry battery shown in FIG. 11 can be charged, it can be used as an alkaline secondary battery in principle.
  • gas such as hydrogen may be generated from the negative electrode 103 due to corrosion of zinc, which is a negative electrode active material, during discharging, charging, or storage.
  • the inside of the battery reaches a predetermined pressure due to this gas, the thin portion 120 of the sealing resin member 107 is broken, and the gas inside the battery is discharged from the gas discharge port 111 provided in the negative electrode terminal plate 105 to the outside of the battery. In this way, the battery is prevented from being ruptured by internally generated gas.
  • this is a structure for emergency preparation, and a gas that causes the thin-walled portion 120 to break is not generated during normal storage / discharge.
  • alkaline secondary batteries may generate gas even when they are charged, and charging and discharging are repeated several times to use them for several times longer than alkaline batteries.
  • a large amount of gas may be generated.
  • the internal gas is hardly discharged to the outside (with the electrolyte being discharged to the outside), but the secondary battery is charged and discharged multiple times.
  • the internal gas is discharged to the outside. That is, if a normal alkaline battery is used as it is as a secondary battery, the possibility of leakage is much greater than in the case of use as a dry battery.
  • a large amount of negative electrode active material has been packed in order to increase the battery capacity, and the space for storing gas has become smaller than before. The potential for leaking is greater.
  • Patent Documents 2 and 3 disclose a mechanism for stopping charging / discharging when the internal pressure is increased, which is used in nickel-hydrogen secondary batteries and the like.
  • the alkaline electrolyte used in the alkaline secondary battery has better wettability than the electrolyte of other secondary batteries, it is difficult to suppress leaching to the outside, and the materials that can be used are also limited.
  • the configurations of Patent Documents 2 and 3 cannot be used as they are.
  • the inventors of the present application have conducted various experiments and examinations based on such a view to arrive at the present invention.
  • the alkaline secondary battery of this embodiment includes a cylindrical positive electrode 2, a negative electrode 3 disposed in a hollow portion of the positive electrode 2, a positive electrode 2, and a negative electrode 3 in a battery case 1 having a bottomed cylindrical shape. And the alkaline electrolyte infiltrated into the positive electrode 2, the negative electrode 3, and the separator 4 are accommodated.
  • a positive electrode terminal 8 protruding outward is provided at the bottom of the battery case 1.
  • a nail-shaped negative electrode current collector 6 is disposed on the central axis of the battery case 1, and a lower part (most part of the body) of the negative electrode current collector 6 is embedded in the negative electrode 3.
  • the positive electrode 2 is formed into a cylindrical shape by mixing manganese dioxide as an active material with carbon powder as a conductive material.
  • the negative electrode 3 is a gelled negative electrode in which zinc powder or zinc alloy powder is dispersed in a gel, and an alkaline electrolyte is mixed in the gel.
  • the alkaline electrolyte is a strong alkaline aqueous solution such as an aqueous potassium hydroxide solution or an aqueous sodium hydroxide solution.
  • the separator 4 has insulation and water permeability such as a nonwoven fabric, a porous resin film, and a combination thereof.
  • the portion immediately below the head of the negative electrode current collector 6 is covered with a sealing resin member 7 made of resin, and the sealing resin member 7 extends to the battery case 1 in a disk shape.
  • the sealing resin member 7 is provided with a first ventilation hole 12 penetrating vertically.
  • a current-carrying interposed member 20 made of metal and in a disk shape is welded to cover the opening of the battery case 1.
  • the energization interposed member 20 is also provided with a second vent hole 21 penetrating vertically.
  • the energization interposing member 20 is welded to the negative electrode current collector 6 at the center, but is located upward as it goes from the welded portion to the outer edge, and the center is recessed.
  • a second connection member 30 that is a metal circular thin plate is installed at the upper end portion (outer edge portion) of the energization interposing member 20, and the energization interposition member 20 and the second connection member 30 are pressed by the pressing member 10 by caulking, which will be described later. They are strongly pressed against each other to ensure electrical connection.
  • the second connecting member 30 is provided with a circumferential marking 31 centered on the central axis of the battery case 1.
  • the stamped portion 31 is a portion that is thinner than the surroundings due to stamping.
  • the first connection member 40 which is a metal circular thin plate, is disposed on the second connection member 30.
  • the central portion of the first connection member 40 is electrically connected and fixed to the second connection member 30 by welding or the like inside the circumference of the marking portion 31 of the second connection member 30.
  • a thin portion 41 is formed on the first connecting member 40 so as to be thinner than the surroundings by engraving.
  • An insulating pressing member 10 is interposed between the outer peripheral edge of the first connecting member 40 and the second connecting member 30 to electrically insulate the outer peripheral edge portion. Since the first connecting member 40 is positioned above the central portion at the outer peripheral portion by the thickness of the pressing member 10, and the central portion is fixed below the second connecting member 30, the first connecting member 40. As a whole, the upward force is stored as stress. That is, the first connecting member 40 acts as an elastic member (a leaf spring in the present embodiment).
  • a metal negative electrode terminal plate 5 having a hat shape is arranged with the convex side up.
  • the hat shape is a shape in which the flange (hat flange) is arranged outward from the outer side edge of the petri dish.
  • the flange portion of the outer peripheral edge of the negative electrode terminal plate 5 and the first connecting member 40 are overlapped, and both are sandwiched and pressed by the pressing member 10 to ensure electrical connection.
  • the pressing member 10 is a ring-shaped thin plate made of insulating resin, and is bent along the circumferential direction so as to have a U-shaped cross section, and sandwiches the negative electrode terminal plate 5 and the first connection member 40.
  • a through hole 11 is provided at the base of the flange portion of the negative electrode terminal plate 5.
  • the upper end of the battery case 1, the sealing resin member 7, the energization interposed member 20, the second connection member 30, the first connection member 40, the pressing member 10 and the negative electrode terminal plate 5 are caulked to seal the battery.
  • a sealing body is formed by the sealing resin member 7, the energization interposed member 20, the second connection member 30, the first connection member 40, the pressing member 10, and the negative electrode terminal plate 5.
  • the alkaline secondary battery of the present embodiment having the above structure, when a gas such as hydrogen is generated by charging / discharging or storage, the gas is stored in the space above the negative electrode 3.
  • This space is a space communicating with the first vent hole 12 and the second vent hole 21, but is blocked from the upper space by the second connecting member 30.
  • the pressure in the space above the negative electrode 3 increases.
  • the current interruption mechanism provided with the first connection member 40 and the second connection member 30 as described above cuts off current conduction in the battery before the internal pressure reaches a high pressure enough to cause the battery itself to rupture. Therefore, for example, when gas is generated by charging, charging can be stopped to prevent further generation of gas, which is safe.
  • the current interruption mechanism of this embodiment is effective as a safety measure against overcharge. Further, since a large amount of gas may be generated as the number of times of charging / discharging increases, this current interruption mechanism is also effective as a safety measure in this case. Since the user notices that charging / discharging can no longer be performed, the user knows that the battery can no longer be used and replaces the battery.
  • the alkaline secondary battery of the present embodiment is sealed by the first connection member 40, so that the alkaline electrolyte comes out of the battery after the current is interrupted. That is, it is possible to prevent leakage.
  • P2 is a pressure larger than P1 and smaller than the battery internal pressure at which the alkaline secondary battery bursts.
  • the alkaline secondary battery according to this embodiment includes a communication mechanism in which the inside and outside of the battery communicate with each other by breaking the thin-walled portion 41 as described above, the battery is left after the current conduction inside the battery is interrupted. Even if the alkaline secondary battery does not rupture, it is safe. In particular, if charging / discharging is stopped by the current interruption mechanism, a sign of battery replacement is shown to the user, and if the user notices it and replaces the battery as soon as possible, even if the communication mechanism works, it will be outside the electronic device. Gas is discharged from the battery, and leakage in the electronic device can be prevented.
  • the current-carrying member 20, the first connecting member 40, and the second connecting member 30 are preferably made of copper or an alloy mainly composed of copper. This is because, unlike nickel-metal hydride batteries and lithium ion secondary batteries, the electrolyte solution of alkaline secondary batteries generates hydrogen gas when it adheres to a metal other than copper or a copper-based alloy during energization.
  • FIG. 2 shows a partial cross section of the alkaline secondary battery according to the second embodiment.
  • the second connecting member 50 is different from that of the first embodiment, and the other portions are substantially the same as those of the first embodiment. Therefore, parts different from the first embodiment will be described below.
  • the second connecting member 50 of the present embodiment is a circular metal foil, and is spot-welded to the recessed bottom portion (center portion) of the energization interposed member 20.
  • the second connecting member 50 is spot-welded with the central portion of the first connecting member 40.
  • the second connecting member 50 has a size that does not block the second vent hole 21.
  • the space in which the gas is stored when the gas is generated inside the battery is blocked from the upper space by the first connecting member 40.
  • the force that the second connecting member 50 that is a metal foil is pulled upward by the first connecting member 40 increases.
  • the battery internal pressure reaches the predetermined pressure P1 the boundary between the spot welded portion and the other portions cannot withstand the force of pulling upward, and the second connecting member 50 breaks. Therefore, the first connection member 40 moves upward by the stored spring force, and the electrical connection between the first connection member 40 and the second connection member 50 is interrupted.
  • This embodiment has the same effect as the first embodiment. Further, the structure is simpler than that of the first embodiment, and the manufacturing cost is lower than that of the first embodiment.
  • FIG. 3 shows a partial cross section of the alkaline secondary battery according to the third embodiment.
  • the present embodiment is different from the first embodiment in that a thin portion is not formed on the first connecting member 40 'and a return-type rubber valve body 45 is provided on the positive electrode 8 side. Since it is substantially the same as the first embodiment, the parts different from the first embodiment will be described below.
  • the current interruption mechanism is the same as that of the first embodiment, but the communication mechanism is different from that of the first embodiment.
  • the communication mechanism of this embodiment is provided on the positive electrode 8 side.
  • the battery case 1 ′ has a hole at the bottom center.
  • the hole is closed by a rubber valve body 45.
  • the rubber valve body 45 has a substantially disk shape made of rubber.
  • a hat-like positive electrode terminal plate 46 is covered so as to cover the entire rubber valve body 45, and the flange portion is electrically connected and fixed to the battery case 1 'by welding or the like.
  • a through hole 47 is provided in the hat-shaped side surface portion of the positive electrode terminal plate 46.
  • the rubber valve body 45 is deformed and a gap is formed in a part between the battery case 1 ′ and the battery case 1 ′.
  • the gap and the through hole 47 allow the inside and outside of the battery to communicate with each other. Accordingly, the gas inside the battery can be discharged from the gap through the through hole 47 to the outside of the battery, and the battery internal pressure can be lowered to less than P2.
  • This embodiment has the same effect as the first embodiment.
  • Example> An AA alkaline secondary battery was produced according to the following procedure. Of the batteries produced, the battery having the structure shown in Embodiment 1 was designated as battery A0, and the battery having the structure shown in Embodiment 2 was designated as battery B0.
  • the positive electrode 2 was produced.
  • Electrolytic manganese dioxide and graphite were mixed at a mass ratio of 94: 6 to obtain a mixed powder. After adding 2 parts by mass of the alkaline electrolyte to 100 parts by mass of the mixed powder, the mixed powder and the alkaline electrolyte were uniformly mixed by stirring with a mixer and sized to a constant particle size.
  • the alkaline electrolyte was a 35 mass% potassium hydroxide aqueous solution (ZnO: 1 mass% included).
  • the above sized mixed powder was pressure molded using a hollow cylindrical mold. This obtained the positive electrode 2 (positive electrode mixture pellet).
  • HSO-TF manufactured by Tosoh Corporation was used as the electrolytic manganese dioxide
  • SP-20 manufactured by Nippon Graphite Industries Co., Ltd. was used as the graphite.
  • a plurality of positive electrode mixture pellets were inserted into a bottomed cylindrical battery case 1 and pressurized, and the positive electrode mixture pellets were brought into close contact with the inner surface of the battery case 1 to form a positive electrode 2.
  • a non-woven fabric made of Kuraray Co., Ltd.'s vinylon-lyocell composite fiber and a cellophane made by Futamura Chemical Co., Ltd. are stacked and rolled into a cylindrical shape.
  • the separator 4 was formed on the bottom. This separator 4 was inserted into the hollow part inside the positive electrode 2 with the bottom part facing down. Thereafter, an alkaline electrolyte was injected for the purpose of wetting the separator 4 and the positive electrode mixture pellet.
  • a zinc alloy powder containing Al: 0.005% by mass, Bi: 0.015% by mass, and In: 0.02% by mass was prepared by a gas atomization method.
  • the prepared zinc alloy powder was classified using a sieve. And the powder of the zinc alloy was adjusted so that a BET specific surface area might be 0.040 cm ⁇ 2 > / g.
  • the sealing body shown in Embodiment 1 and the sealing body shown in Embodiment 2 were prepared.
  • a negative electrode current collector 6 was attached to both sealing bodies.
  • the first connecting member 40 was a copper plate having a thickness of 0.2 mm.
  • the 2nd connection member 30 was made into the copper plate of thickness 0.2mm.
  • P1 was set to 3.5 MPa, and the thickness of the stamped portion 31 and the thickness of the second connecting member 50 that was a copper foil were adjusted.
  • P2 7.0 MPa was set, and the thickness of the thin portion 41 was adjusted.
  • a commercially available alkaline secondary battery (manufactured by Pure Energy) was used as the battery Y of the comparative example, and a commercially available alkaline dry battery (manufactured by Panasonic Corporation) was used as the battery Z of the comparative example.
  • the battery evaluation method is as follows.
  • the battery was evaluated by combining discharge / charging and high-temperature storage, repeating this, and observing the occurrence of liquid leakage.
  • the discharge was terminated when the battery voltage reached 1.0 V by continuously discharging at 100 mA.
  • Charging was performed after discharging. Charging was first carried out at a constant current of 150 mA and then at a constant voltage of 1.8 V, and terminated when the current value reached 25 mA. Once charged, the battery was stored at 60 ° C. for one day, which provided one cycle.
  • FIG. 4 is a diagram showing the discharge capacity during discharge for each cycle.
  • a commercially available alkaline secondary battery battery Y
  • the low capacity seems to be because the amount of active material is reduced to increase the number of charge / discharge cycles without a current interrupting mechanism, and a space for storing gas is secured to some extent.
  • a commercially available alkaline dry battery (battery Z) had sufficient capacity, but liquid leakage occurred when charging was performed three times.
  • Both the batteries A0 and B0 of this example had a capacity that was the same as that of the alkaline battery at the first time and the second time, although the capacity gradually decreased as the number of cycles increased. At 12 cycles, the current interruption mechanism worked and charging / discharging could not be performed, but no liquid leakage occurred. Accordingly, it is considered that the batteries A and B are discarded before reaching the user, indicating that the batteries cannot be used, prompting the user to replace the batteries.
  • Example 2 In Example 2, the sizes of P1 and P2 were examined.
  • the battery was evaluated by (1) performing the same cycle as in Example 1 and confirming the number of cycles in which the current interruption mechanism (CID) was activated. (2) The battery in which the current interruption mechanism was activated was measured at 60 ° C. for 4 days. 3 types of storage and confirming the presence or absence of leakage, (3) the battery where leakage did not occur according to the test of (2) is stored at 80 ° C. for 1 month and the presence or absence of rupture is confirmed. did. In each evaluation, five batteries having the same specifications of P1 and P2 were used. The evaluation results are shown in Table 1.
  • Table 1 lists the number of batteries in which the current interruption mechanism was activated before reaching 5 cycles in the evaluation (1). If the setting of P1 is 2.0 MPa or more, it can be said that the number of batteries in which the current interrupting mechanism has been activated before reaching 5 cycles is 0 and has practically sufficient characteristics.
  • the setting of P2 is preferably 8.0 MPa or less.
  • AAA type AA type alkaline secondary batteries A10-A18 (structure of Embodiment 1) and C2 (structure of Embodiment 3) were produced and evaluated in the same manner. The evaluation results are shown in Table 2.
  • P1 ⁇ 3.0 MPa, P2-P1 ⁇ 6.0 MPa, and P2 ⁇ 11.0 MPa are preferable for the AAA alkaline secondary battery.
  • P1 ⁇ 0.5 MPa, P2-P1 ⁇ 1.0 MPa, and P2 ⁇ 2.0 MPa are preferable for the single-type alkaline secondary battery.
  • P1 ⁇ 1.0 MPa, P2-P1 ⁇ 1.0 MPa, and P2 ⁇ 3.0 MPa are preferable for the single-type alkaline secondary battery.
  • Alkaline secondary batteries A37-A41 (Embodiment 1) are obtained by changing the thickness of the first connecting member and the second connecting member of the alkaline secondary battery A0 of Example 1 and the thickness of the first connecting member of the alkaline secondary battery B0.
  • B2-B6 structure of Embodiment 2 were prepared and evaluated.
  • Evaluation was performed by measuring the internal pressure of the battery with an apparatus as shown in FIG. First, a hole having a diameter of about 2 mm was opened by an electric drill at the center of the positive electrode terminal of the battery 85, and the opening was covered with a packing 84 and sealed using an O-ring 88.
  • the lead wires 86, 86 were connected to the positive electrode (battery case) and the negative electrode terminal of the battery 85, and the battery 85 was charged with the DC power supply 81.
  • gas was intentionally generated in the battery 85 by overcharging.
  • the internal pressure of the battery was measured by the pressure sensor 87 through the packing 84, and the internal pressure of the battery was displayed on the pressure monitor 83.
  • the battery voltage was measured with a voltage monitor 82. Eight batteries of each specification were evaluated, and the battery internal pressure variation (standard deviation) when the current interrupting mechanism (CID) was operated was calculated.
  • Table 5 shows the evaluation results.
  • the standard deviation of the battery internal pressure when the current interrupting mechanism is activated is preferably 0.3 MPa or less. If the thickness of the first connecting member and the second connecting member made of thin plates is 0.08 mm, the thin connecting plate is deformed when the sealing body is assembled, and the assembling accuracy is lowered. As a result, the variation in the internal pressure of the battery when the current interrupting mechanism is activated increases, which exceeds the preferable range. If the thickness is 0.1 mm, the variation in the battery internal pressure is within a preferable range.
  • the thickness of the first connection member and the second connection member is preferably 0.1 mm or more and 0.7 mm or less.
  • Example 4- The alkaline secondary battery in which a water repellent was applied to the lower surface (the side facing the negative electrode 3) of the second connection member 30 of the battery A0 of Example 1 was designated as a battery E1.
  • the alkaline electrolyte adheres to the surface of the second connecting member facing the negative electrode, if a part of this surface is coated with a water repellent, creeping up of the alkaline electrolyte due to electrocapillarity (creep) This prevents the alkaline electrolyte from coming out of the battery. Therefore, the battery E1 does not leak due to creep even in a high temperature and high humidity environment.
  • the water repellent has the above-described effects if it is applied to at least the caulked portion on the outer peripheral side and the exposed portion following the portion on the lower surface of the second connecting member 30.
  • Example 5 As shown in FIG. 6, in the battery A0 of Example 1, a separator 4 ′ having a length (52 mm) longer than normal (49 mm) was prepared, and the portion protruding above the negative electrode 3 was folded back in the central axis direction. A lid 4a covering the upper side of the negative electrode 3 was formed. As a result, a battery F1 in which the second connection member 30 and the negative electrode 3 were isolated by the lid portion 4a (nonwoven fabric and cellophane) was produced.
  • Alkaline secondary batteries A0 and F1 were repeatedly discharged, charged and stored under the same conditions as in Example 1 for 10 cells each, and the current interruption mechanism of all cells was activated. Thereafter, the battery was forcibly vibrated, and then a resistance measurement between +/ ⁇ of the battery was performed. Table 7 shows the number of cells whose resistance value could be measured.
  • the zinc alloy powder of the negative electrode 3 jumps to the second connecting member 30 by vibrating the battery even when the current interrupting mechanism is activated, and the first connecting member is again formed. 40 and the second connection member 30 may be caused to become conductive. For this reason, there has been a cell capable of measuring a resistance value between +/ ⁇ . In this case, there is a possibility that a battery that should be disabled due to the current interruption mechanism operating can be used. If the battery is continuously used in this state, the battery leaks in the electronic device. There is a fear and it is not preferable.
  • Example 6- Metatitanic acid was added to the positive electrode and the effect was examined.
  • the alkaline secondary battery A0 of Example 1 was designated as a battery D1 without addition of metatitanic acid.
  • a battery G1 in which 0.1% by mass of metatitanic acid was added to electrolytic manganese dioxide, a battery G2 in which 3.0% by mass was added, and a battery G3 in which 4.0% by mass was added to the positive electrode of the battery A0 were produced.
  • Example 1 The same discharging, charging, and storage cycle as in Example 1 was performed.
  • the discharge capacity in each cycle is shown in FIG.
  • the batteries G1 and G2 have preferable cycle characteristics that the discharge capacity is large even when the number of cycles is increased as compared with the battery D1.
  • the absolute amount of electrolytic manganese dioxide decreases in the battery G3
  • the discharge capacity is equal to or less than that of the battery D1.
  • the battery design in order to oxidize and reduce manganese dioxide within the range of a reversible one-electron reaction, the battery design should be made with a low negative electrode theoretical capacity / positive electrode theoretical capacity ratio (less than 1.10). There was a need to do.
  • Table 8 due to the addition effect of metatitanic acid, a large discharge capacity can be obtained at a high value of the ratio of 1.10 to 1.30. That is, a large amount of negative electrode active material can be added, and the discharge capacity can be increased.
  • Example 8 The appropriate values (balance) of the internal space volume of the AA alkaline secondary battery, the positive electrode active material amount, the negative electrode active material amount, and the alkaline electrolyte amount were examined.
  • Batteries I1-I9 having the same configuration as that of the alkaline secondary battery A0 of Example 1 and having the above four quantities shown in Table 9 were manufactured. Using 10 cells each of these batteries, a cycle of discharging, charging and storing was repeated under the same conditions as in Example 1.
  • the type 3 alkaline secondary battery has an internal space volume of 6.15 ml or more, manganese dioxide of 8.0 g or more and 9.0 g or less, zinc of 3.0 g or more and 4.0 g or less, and an alkaline electrolyte. The total amount of is 3.5 g or more and 4.0 g or less.
  • Such an AA alkaline secondary battery can achieve both a large amount of active material and a sufficient space for storing gas.
  • the above embodiments and examples are examples of the present invention, and the present invention is not limited to these examples.
  • the electrolyte concentration, the specific surface area of zinc of the negative electrode, the zinc alloy composition, and the like shown in the examples are also illustrative and are not limited to these numerical values.
  • a hydrogen storage alloy or metallic magnesium may be used as the negative electrode.
  • zinc or a zinc alloy as a negative electrode active material, you may use a zinc porous body etc. instead of a gel-like negative electrode.
  • the positive electrode active material nickel oxyhydroxide, silver oxide, or the like may be used.
  • the current interruption mechanism may be the configuration of the second embodiment, and the communication mechanism may be an alkaline secondary battery that is the configuration of the third embodiment.
  • the first connecting member 40 ′ does not have a thin portion.
  • the current interruption mechanism may be the configuration of the third embodiment, and the communication mechanism may be an alkaline secondary battery that is a return type spring valve body instead of the rubber valve body.
  • the spring valve body includes a plate-like valve portion that closes the bottom hole of the battery case 1 ′ and a coil spring 61 that is a pressing member that presses the valve portion against the battery case 1 ′.
  • the valve portion includes an elastic body portion 63 on the hole side of the battery case 1 ′ and a steel plate portion 62 on the coil spring 61 side.
  • the current interruption mechanism may be the configuration of the second embodiment, and the communication mechanism may be an alkaline secondary battery including the same return-type spring valve body as in FIG. 9.
  • the first connecting member and the second connecting member are not limited to a configuration that breaks at the stamped portion or the thin portion. It is good also as a structure which has an engagement structure or a fitting structure, and an engagement or fitting is cancelled
  • the water repellent may be applied also to at least a part of the lower surfaces of the first connecting member and the energization interposed member.
  • the coated portion is preferably an outer peripheral portion as with the second connecting member.
  • the alkaline secondary battery according to the present invention cuts off the electrical connection inside the battery so that charging and discharging cannot be performed when the internal pressure of the battery increases. Therefore, the secondary battery with high leakage resistance is an electronic device or toy. It is useful as a power source.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Secondary Cells (AREA)

Abstract

 内部にガスが発生しても漏液に至る前に充放電を止めてそれ以上のガスの発生を抑止するアルカリ二次電池を提供する。 本発明のアルカリ二次電池は、有底円筒形であって正極端子8が設けられた電池ケース1に、円筒状の正極2と、該正極の中空部分に配置されている負極3と、前記正極と前記負極との間に配置されたセパレータ4と、アルカリ電解液とを収容し、負極端子9を備えた封口体によって前記電池ケースの開口部が密封されており、前記封口体は、内部圧力が所定圧力P1に達すると前記負極と前記負極端子との間の電流導通を遮断する電流遮断機構を有しているアルカリ二次電池である。

Description

アルカリ二次電池
 本発明は、アルカリ二次電池に関するものである。
 アルカリ乾電池は一次電池であるので使用し終えた後は廃棄されるのであるが、省資源のための再利用の要望が出されている。使用後のアルカリ乾電池を充電して再利用することは原理的に可能ではあるが、一次電池として設計されたアルカリ乾電池をそのまま充電すると漏液等の種々の問題が生じてしまう。そこで形状は乾電池と同じにして、活物質や内部構造等に工夫を加えてアルカリ二次電池とする開発が行われている(例えば特許文献1)。
特表平8-508847号公報 特開2001-60454号公報 特開2005-294046号公報
 しかしながら、上記のようなアルカリ二次電池は過充電された場合や、何度も繰り返し充放電を行った場合に電池内部にガスが発生して貯まっていき、電池内圧が所定の圧力を超えると、電池の破裂を防止するための防爆弁が作動するため、弁が破断した部分およびガス排出口からアルカリ電解液が電池外に漏れだしてしまう。
 特に現状のインサイドアウト型(正極の内側に負極が存している)のアルカリ乾電池では電池容量を高くするために、一定の空間にできるだけ多くの活物質を詰め込むようにしている。アルカリ二次電池においてもこのような構造にするとガスの貯まる空間が非常に小さくなり、少しのガスが貯まっただけで内圧が大きくなって、漏液に至ってしまう。特に過充電された場合や、サイクル末期に発生ガス累積量が多くなってきた場合に漏液が生じる可能性が大きい。漏液が生じると、アルカリ二次電池を入れた電子機器内部にアルカリ電解液が侵入することが生じるため、電子機器自体がショートしたり腐食したりして破損してしまう可能性がある。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、内部にガスが発生しても漏液に至る前に充放電を止めてそれ以上のガスの発生を抑止するアルカリ二次電池を提供することにある。
 本願のアルカリ二次電池は、有底円筒形であって正極端子が設けられた電池ケースに、円筒状の正極と、該正極の中空部分に配置されている負極と、前記正極と前記負極との間に配置されたセパレータと、アルカリ電解液とを収容し、負極端子を備えた封口体によって前記電池ケースの開口部が密封されており、前記封口体は、内部圧力が所定圧力P1に達すると前記負極と前記負極端子との間の電流導通を遮断する電流遮断機構を有している構成を備えている。負極活物質は亜鉛、水素吸蔵合金、金属マグネシウムなどを用いることができる。
 ある好適な実施形態において、前記負極には、前記負極端子に電流を供給する負極集電体が配置されており、前記電流遮断機構は、前記負極端子に電気的に接続している金属製の第1接続部材と、前記負極集電体に電気的に接続している金属製の第2接続部材とを備えており、前記第1接続部材と前記第2接続部材とは電気的に接続しており、前記第2接続部材は、内部圧力が所定圧力P1に達すると当該内部圧力によって破断して、前記負極集電体と前記負極端子との間の電流導通を遮断する。
 前記負極は亜鉛または亜鉛合金を主活物質としており、前記第1及び第2接続部材は銅または銅を主体とした合金からなっていてもよい。
 内部圧力が所定圧力P2(但し、P1<P2)に達すると、内部と外部とを連通させる連通機構を備えていることが好ましい。
 単3形である場合は、前記所定圧力P1[MPa]およびP2[MPa]は、2.0≦P1、P2≦8.0、P2-P1≧3.5、の関係式を満たしていてもよい。
 単4形である場合は、前記所定圧力P1[MPa]およびP2[MPa]は、3.0≦P1、P2≦11.0、P2-P1≧6.0、の関係式を満たしていてもよい。
 単1形である場合は、前記所定圧力P1[MPa]およびP2[MPa]は、0.5≦P1、P2≦2.0、P2-P1≧1.0、の関係式を満たしていてもよい。
 単2形である場合は、前記所定圧力P1[MPa]およびP2[MPa]は、1.0≦P1、P2≦3.0、P2-P1≧1.0、の関係式を満たしていてもよい。
 ある好適な実施形態において、前記第1接続部材には周囲よりも厚みの小さい薄肉部が設けられており、前記連通機構は、内部圧力によって前記薄肉部が破断することにより機能する機構である。
 前記正極端子は、復帰式のゴム弁体またはバネ弁体を備えており、前記連通機構は、前記ゴム弁体またはバネ弁体が作動することにより機能する機構であってもよい。
 前記接続部材は、厚さが0.1mm以上0.7mm以下である板からなる構成とするとすることができる。
 前記第1接続部材、第2接続部材または通電介在部材の前記負極に向き合っている表面の少なくとも一部に撥水剤が塗布されていてもよい。
 前記負極は、ゲル状のアルカリ電解液に、亜鉛または亜鉛合金の粒子を分散させたゲル状亜鉛負極である構成とするとすることができる。あるいは、亜鉛または亜鉛合金の多孔体を負極してもよい。
 前記負極と前記第2接続部材との間には、前記負極と前記第2接続部材とを隔離する不織布が存する構成とするとすることができる。
 前記正極は、二酸化マンガンを主活物質とすることができる。また、前記正極にはメタチタン酸が添加されており、メタチタン酸の添加量は、二酸化マンガンに対する質量比率で0.1%以上3%以下であってもよい。さらに、前記二酸化マンガンの理論容量を308mAh/g、前記亜鉛の理論容量を819mAh/gとしたとき、負極理論容量/正極理論容量の値が1.10以上1.30以下であってもよい。あるいは、正極活物質にオキシ水酸化ニッケルや酸化銀等を用いてもよい。
 単3形であって、前記電池ケースを前記封口体で密閉した際に生じる電池内空間体積が6.15mLよりも大きく、前記正極に含まれる二酸化マンガンの重量が8.0g以上9.0g以下であり、前記負極に含まれる亜鉛の重量が3.0g以上4.0g以下であり、前記アルカリ電解液の総量が3.5g以上4.0g以下であってもよい。
 本発明のアルカリ二次電池は、内部圧力が所定圧力P1に達すると充放電ができなくなるので、それ以上のガスの発生を防ぐとともに、電池の交換を行う必要があることを使用者に示し、機器内での漏液を防ぐ。
実施形態1に係るアルカリ二次電池の一部断面図である。 実施形態2に係るアルカリ二次電池の一部断面図である。 実施形態3に係るアルカリ二次電池の一部断面図である。 実施例1に係る評価結果を表すグラフである。 実施例3に係る評価用の機器を示す図である。 実施例5に係るアルカリ二次電池の一部断面図である。 実施例6に係る評価結果を表すグラフである。 その他の実施形態に係るアルカリ二次電池の一部断面図である。 その他の実施形態に係る別のアルカリ二次電池の一部断面図である。 その他の実施形態に係る更に別のアルカリ二次電池の一部断面図である。 アルカリ乾電池の一部断面図である。
 (定義)
 負極が亜鉛または亜鉛合金を主活物質としているというのは、負極の活物質のうち亜鉛または亜鉛合金が占める割合が質量において50%以上ということである。
 銅を主体とした合金とは、銅の割合が質量において50%以上の合金のことである。
 正極が二酸化マンガンを主活物質としているというのは、正極の活物質のうち二酸化マンガンが占める割合が質量において50%以上であることである。
 負極と接続部材とを隔離する不織布とは、負極と接続部材とに挟まれた空間を負極側と接続部材側とに二分する境界面となる構成を有しているものである。
 単1形とは、IEC60086におけるアルカリ乾電池のLR20のことであり、米国ではDで表される。
 単2形とは、IEC60086におけるアルカリ乾電池のLR14のことであり、米国ではCで表される。
 単3形とは、IEC60086におけるアルカリ乾電池のLR6のことであり、米国ではAAで表される。
 単4形とは、IEC60086におけるアルカリ乾電池のLR03のことであり、米国ではAAAで表される。
 (本発明に至った経緯)
 図11はアルカリ乾電池の一例の一部断面図である。有底円筒形である金属製の電池ケース101の内壁に密着するように円筒形の正極102が挿入され、正極102の内壁にセパレータ104を配置してその内部に負極103が入れられている。電池ケース101の底側は外側に突き出して正極端子108となっている。正極102は電解二酸化マンガンを正極合剤としてそこに少量の黒鉛を混合して形成されている。負極103はゲルの中に亜鉛合金粉末を分散させてなり、ゲル中にはアルカリ電解液として水酸化カリウム水溶液が混合されている。また、正極102及びセパレータ104にもアルカリ電解液が染み込んでいる。負極103の中央部には釘形状の負極集電体106が差し込まれ、その上部は負極103の上に突き出している。負極集電体106の負極103から突き出した部分の周囲に封口樹脂部材107が配置され、その上方に負極端子板105が置かれて負極集電体106と電気的に接続されている。電池ケース101の開口端部を封口樹脂部材107の外周端を介して負極端子板105の周縁部にかしめつけて電池は密封されている。なお、負極端子板105の外面側が負極端子109となっている。
 図11に示すアルカリ乾電池は充電をすることも可能であるため、原理的にはアルカリ二次電池としても使用できる。この電池は放電時、充電時あるいは保管時に負極103から負極活物質である亜鉛の腐食により水素等のガスが発生する場合がある。このガスにより電池内部が所定の圧力に達したら、封口樹脂部材107の薄肉部120が破断して電池内部のガスは負極端子板105に設けられたガス排出口111から電池外部に排出される。このようにして、内部発生したガスによって電池が破裂してしまうことを防止している。ただし、これは緊急時の備えのための構造であり、通常の保管・放電では薄肉部120の破断が生じるほどのガスは発生しない。
 しかしながら、アルカリ二次電池は充電によってもガスが発生する場合があることと、充放電を複数回繰り返してアルカリ乾電池の数倍以上長時間の使用が行われるので、アルカリ乾電池に比べて使用中にガスが多量に発生する可能性がある。その結果、乾電池として1度だけ使用した場合は内部のガスが外部に排出される(それとともに電解液が外部に排出される)ことはほとんど発生しないが、二次電池として複数回充放電を行うと、この構造では内部のガスが外部に排出される可能性が高くなる。すなわち、通常のアルカリ乾電池をそのまま二次電池として用いると、漏液が発生する可能性が乾電池としての使用の場合よりもずっと大きくなる。特に、近年において電池容量を大きくするために負極活物質を多く詰め込むようになり、ガスを溜め込む空間が以前より小さくなっているため、少量のガス発生でも内圧が高くなって、ガスの外部排出及び漏液に至る可能性がより大きくなっている。
 そこで本願発明者らは、アルカリ二次電池において漏液が発生することを防ぐために種々の検討を行った。例えば、特許文献2,3にはニッケル水素二次電池などに用いられる、内圧上昇した際に充放電を止める機構が開示されている。しかしながら、アルカリ二次電池に用いられるアルカリ電解液は、他の二次電池の電解液に比べて濡れ性が良く、外部への浸みだしを抑えるのが難しく、使用できる材料も限定されるため、単純に特許文献2,3の構成をそのまま用いることはできない。本願発明者らは、このような見解を基にさまざまな実験・検討を行って本発明に至った。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。以下の図面においては、説明の簡潔化のため、実質的に同一の機能を有する構成要素を同一の参照符号で示す。
 (実施形態1)
 実施形態1に係るアルカリ二次電池の構造を図1に示す。本実施形態のアルカリ二次電池は、有底円筒形状である電池ケース1の中に、円筒状の正極2と、正極2の中空部分に配置されている負極3と、正極2と負極3との間に配置されているセパレータ4と、正極2、負極3及びセパレータ4に浸潤しているアルカリ電解液とが収容されている。電池ケース1の底には外側に突出した正極端子8が設けられている。電池ケース1の中心軸上には釘形状の負極集電体6が配置され、負極集電体6の下部(胴部の大半)は負極3の中に埋め込まれている。
 正極2は、二酸化マンガンを活物質として導電材のカーボン粉末等を混ぜて円筒形に整形したものである。負極3は、ゲル中に亜鉛粉末または亜鉛合金粉末が分散したゲル状負極であり、ゲル中にアルカリ電解液が混合している。アルカリ電解液は水酸化カリウム水溶液や水酸化ナトリウム水溶液などの強アルカリ水溶液である。セパレータ4は、不織布やポーラスな樹脂フィルム、これらの組合せ等の絶縁性且つ通水性を備えたものである。
 負極集電体6の頭部直下は、樹脂からなる封口樹脂部材7によりその周囲を覆われて取りまかれており、封口樹脂部材7は電池ケース1まで円板状に拡がっている。封口樹脂部材7には上下に貫通した第1の通気孔12が設けられている。
 負極集電体6の頭部上には、金属製で円板状である通電介在部材20が溶接されており、電池ケース1の開口部分を覆っている。また、通電介在部材20にも上下に貫通した第2の通気孔21が設けられている。通電介在部材20は中央部分が負極集電体6に溶接されているが、溶接部分から外縁にいくに従って上方へ位置しており、中央部が窪んだ形状となっている。
 通電介在部材20の上端部分(外縁部分)には、金属製の円形薄板である第2接続部材30が設置され、後述のかしめにより通電介在部材20と第2接続部材30とが押し付け部材10によって互いに強く押し付けられて電気的接続を確保している。第2接続部材30には、電池ケース1の中心軸を中心とした円周状の刻印部31が設けられている。刻印部31は、刻印により周囲よりも薄くなっている部分である。
 第2接続部材30の上には、金属製の円形薄板である第1接続部材40が配置されている。第1接続部材40の中央部は、第2接続部材30の刻印部31の円周よりも内側において第2接続部材30と溶接等により電気的に接続され固定されている。この固定された部分よりも外縁側には、刻印により周囲よりも薄くされた薄肉部41が第1接続部材40に形成されている。第1接続部材40の外周縁と第2接続部材30との間に絶縁性の押し付け部材10が介在しており、外周縁部分を電気的に絶縁している。この押し付け部材10の厚み分だけ第1接続部材40は中央部よりも外周部の方が上に位置し、中央部が第2接続部材30と下方で固定されているため、第1接続部材40全体としては上方への力が応力として蓄えられている状態となっている。すなわち第1接続部材40が弾性部材(本実施形態では板バネ)として作用している。
 第1接続部材40の上には、ハット(hat:帽子)形状である金属製の負極端子板5が凸側を上にして配置されている。ここでハット形状というのはシャーレの側面外縁からフランジ(ハットの鍔部分)が外方に配置された形状である。負極端子板5の外周縁のフランジ部分と第1接続部材40とが重ねられて、押し付け部材10により両者が挟み込まれて押し付けられて電気的接続が確保されている。押し付け部材10はリング状の絶縁樹脂製の薄板であり、断面がU字状になるように周方向に沿って折り曲げられ、負極端子板5と第1接続部材40とを挟んでいる。負極端子板5のフランジ部分の付け根には貫通孔11が設けられている。
 電池ケース1上端、封口樹脂部材7、通電介在部材20、第2接続部材30、第1接続部材40、押し付け部材10及び負極端子板5はかしめられて電池が密封されている。封口樹脂部材7、通電介在部材20、第2接続部材30、第1接続部材40、押し付け部材10及び負極端子板5により封口体が形成されている。
 上記の構造を有する本実施形態のアルカリ二次電池において、充放電や保管によって水素等のガスが発生したら、そのガスは負極3の上方の空間に貯まってくる。この空間は、第1の通気孔12、第2の通気孔21によって連通している空間であるが、第2接続部材30によってその上側の空間と遮断されている。発生したガスの量が増えてくると、負極3の上方の空間の圧力(電池の内圧)が上昇する。
 電池の内圧が所定圧力P1に達すると、第2接続部材30の刻印部31が破断して第1接続部材40が、蓄えられていたばねの力によって上方に移動し、第1接続部材40と第2接続部材30との電気的な導通が遮断される。これにより負極3から負極端子9までの電流導通が途中で遮断されることになる。P1はアルカリ二次電池が破裂する電池内圧よりもずっと小さい圧力である。
 このような、第1接続部材40と第2接続部材30とを備えた電流遮断機構によって、電池自体が破裂するほどの高圧に内圧が達する前に電池内部での電流導通が遮断される。そのため、例えば充電によりガスが発生しているときに充電を停止させてそれ以上のガスの発生を防ぐことができて、安全である。特に過充電となるとガスが多量に発生するため、本実施形態の電流遮断機構は過充電に対する安全対策として有効である。また、充放電の回数が多くなってくると同様にガスが多量に発生する場合があるので、この場合にも安全対策としてこの電流遮断機構は有効である。そして使用者は充放電ができなくなったことに気づくため、この電池が使用できなくなったことがわかって電池交換を行うようになる。
 また、第2接続部材30の刻印部31が破断しても、第1接続部材40により本実施形態のアルカリ二次電池は密閉されているので、電流遮断後に電池外部にアルカリ電解液が出てしまうこと、すなわち漏液してしまうことを防止できる。
 さらに、電流遮断機構が働いて電池内部の電流導通が遮断された後で、たとえ負極の亜鉛の腐食により電池の内圧がより高くなっていったとしても、電池内圧が所定の圧力P2に達すると、第1接続部材40の薄肉部41が破断して、電池内部のガスは薄肉部41の破断部分から貫通孔11を通って電池外部に排出される。ここでP2は、P1よりも大きく、アルカリ二次電池が破裂する電池内圧よりも小さい圧力である。
 このように薄肉部41が破断することにより電池の内部と外部とが連通する連通機構を本実施形態のアルカリ二次電池は備えているので、電池内部の電流導通が遮断された後に放置されていてもアルカリ二次電池が破裂することなく、安全である。特に、電流遮断機構による充放電の停止によって、電池交換のサインが使用者に示されて、使用者がそれに気が付いて早めに電池交換を行えば、たとえ連通機構が働いたとしても電子機器外で電池からガスが排出されることになり、電子機器内での漏液を防ぐことができる。
 通電介在部材20、第1接続部材40および第2接続部材30は、特に銅または銅を主体とした合金製であることが好ましい。ニッケル水素電池やリチウムイオン二次電池などとは異なり、アルカリ二次電池の電解液は銅または銅を主体とした合金以外の金属に通電時に付着すると、水素ガスを発生させるからである。
 (実施形態2)
 実施形態2に係るアルカリ二次電池の一部断面を図2に示す。本実施形態は、第2接続部材50が実施形態1と異なっていてそれ以外は実施形態1と実質的に同じであるので、実施形態1と異なっている部分を以下に説明する。
 本実施形態の第2接続部材50は円形の金属箔であり、通電介在部材20の窪んだ底部(中央部分)にスポット溶接されている。また第1接続部材40の中央部分とも第2接続部材50はスポット溶接されている。第2接続部材50は、第2の通気孔21を塞がない程度の大きさである。
 本実施形態においては、電池内部にガスが発生した際にガスが貯まる空間は、第1接続部材40によってその上側の空間と遮断されている。電池の内圧が上昇すると、金属箔である第2接続部材50は第1接続部材40により上方に引っ張られる力が大きくなっていく。電池内圧が所定圧力P1に達すると、スポット溶接部分とそれ以外の部分の境目が上方に引っ張られる力に耐えられなくなって、第2接続部材50が破断する。そのため、第1接続部材40が蓄えられていたばねの力で上方に移動し、第1接続部材40と第2接続部材50との電気的な導通が遮断される。
 本実施形態は実施形態1と同じ効果を奏する。また、実施形態1よりも構造が簡単であり、製造コストも実施形態1よりも小さくなる。
 (実施形態3)
 実施形態3に係るアルカリ二次電池の一部断面を図3に示す。本実施形態は、第1接続部材40’に薄肉部が形成されていない点と正極8側に復帰式のゴム弁体45を備えている点などが実施形態1と異なっていてそれら以外は実施形態1と実質的に同じであるので、実施形態1と異なっている部分を以下に説明する。
 本実施形態は、電流遮断機構は実施形態1と同じであるが、連通機構が実施形態1と異なっている。本実施形態の連通機構は正極8側に設けられている。
 電池ケース1’は底の中央部分に孔が設けられている。その孔はゴム弁体45により塞がれている。ゴム弁体45はゴムからなる略円板形状である。さらにゴム弁体45全体を覆うようにハット状の正極端子板46がかぶせられ、鍔部分が電池ケース1’に溶接等で電気的に接続され固定されている。正極端子板46のハット状の側面部分には貫通孔47が設けられている。
 本実施形態においては、電流遮断機構が作動した後、さらに電池の内圧が上昇してP2に達したときに、ゴム弁体45が変形して電池ケース1’との間の一部に隙間ができて、この隙間と貫通孔47とにより電池の内部と外部とが連通される。従って、電池内部のガスを、この隙間から貫通孔47を通って電池外部に排出することができ、電池内圧をP2未満に下げることができる。電池内圧がP2未満になると、ゴム弁体45と電池ケース1’との間の隙間は消失する。
 本実施形態は実施形態1と同じ効果を奏する。
 <実施例>
 -実施例1-
 以下の手順で単3形アルカリ二次電池を作製した。なお作製した電池のうち、実施形態1に示す構造を有するものを電池A0とし、実施形態2に示す構造を有するものを電池B0とした。
 まず正極2を作製した。
 電解二酸化マンガン及び黒鉛を質量比94:6の割合で混合して混合粉を得た。この混合粉100質量部に対してアルカリ電解液2質量部を加えた後、ミキサーで攪拌して混合粉とアルカリ電解液とを均一に混合し、一定粒度に整粒した。アルカリ電解液は、35質量%水酸化カリウム水溶液(ZnO:1質量%含む)とした。
 上記の整粒した混合粉を、中空円筒型を用いて加圧成形した。これにより正極2(正極合剤ペレット)を得た。ここで、電解二酸化マンガンとしては東ソー株式会社製のHH-TFを用い、黒鉛としては日本黒鉛工業株式会社製のSP-20を用いた。
 有底円筒形の電池ケース1に正極合剤ペレットを複数個挿入して加圧し、正極合剤ペレットを電池ケース1内面に密着させて正極2とした。
 次にセパレータ4を作製した。
 株式会社クラレ製のビニロン-リヨセル複合繊維からなる不織布と、フタムラ化学株式会社製のセロハンとを重ねて丸めて円筒形にし、一方の底にも不織布とセロハンを重ねたものをホットメルトにより接着させて底部にしてセパレータ4とした。このセパレータ4を正極2の内側の中空部分に底部を下にして挿入した。その後、セパレータ4と正極合剤ペレットを湿潤させる目的で、アルカリ電解液を注入した。
 続いて負極3を作製した。
 まず、Al:0.005質量%、Bi:0.015質量%、In:0.02質量%を含有する亜鉛合金粉をガスアトマイズ法によって作製した。次に、作製された亜鉛合金の粉末を、篩を用いて分級した。そして、BET比表面積が0.040cm/gとなるように、亜鉛合金の粉末を調整した。
 それから、亜鉛合金粉100質量部に対して、分散媒であるゲル状アルカリ電解液として、アルカリ電解液50質量部と、架橋型ポリアクリル酸0.35質量部、架橋型ポリアクリル酸ナトリウム0.7質量部を混合し、ゲル状電解液を作製した。前記亜鉛合金の粉末と前記ゲル状アルカリ電解液とを混合してゲル状負極を作製し、セパレータ4の中空部分に注入した。
 次に、実施形態1に示す封口体と実施形態2に示す封口体とをそれぞれ用意した。どちらの封口体にも負極集電体6を取り付けておいた。いずれの封口体も第1接続部材40は厚み0.2mmの銅板とした。また、実施形態1に示す封口体においては第2接続部材30は厚み0.2mmの銅板とした。いずれもP1=3.5MPaと設定し、刻印部31の厚み及び銅箔である第2接続部材50の厚みを調整した。また、P2=7.0MPaと設定し、薄肉部41の厚みを調整した。これらの封口体をそれぞれ電池ケース1の開口部分に差し込んでかしめつけ、密封した。こうして本実施例の電池A,Bを作製した。
 比較のため、市販のアルカリ二次電池(Pure Energy社製)を比較例の電池Yとし、市販のアルカリ乾電池(パナソニック株式会社製)を比較例の電池Zとした。
 電池の評価方法は以下の通りである。
 電池の評価は、放電・充電と高温保存とを組み合わせてこれを繰り返し、漏液の発生を観察することにより行った。放電は、100mAで連続放電させて電池電圧が1.0Vに達したら終了とした。放電後に充電を行った。充電は、まず150mAの定電流充電を行い、その後1.8Vの定電圧充電を行い電流値が25mAになったら終了とした。充電を行ったら、電池を60℃で1日保管し、これで1サイクルとした。
 図4は、各サイクル毎の放電時の放電容量を示した図である。まず、市販のアルカリ二次電池(電池Y)は最初の充電により放電容量が1000mAh以下となり、容量が低い。また、電流遮断機構を備えていないので、14サイクルのところで漏液が発生した。容量が低いのは、電流遮断機構なしで充放電回数を増やすために活物質の量を少なくして、ガスを貯める空間をある程度広く確保しているためと思われる。
 市販のアルカリ乾電池(電池Z)は、容量は十分であるが、充電が3回行われたところで漏液が発生した。
 本実施例の電池A0,B0はともに、サイクルが多くなるに従って容量が徐々に低下していくものの、初回と2回目はアルカリ乾電池と同等の容量を備えていた。そして、12サイクルのところで電流遮断機構が働いて充放電ができなくなったが漏液は生じていなかった。これにより、電池A,Bは、使用できなくなったことを使用者に示して電池の交換を促し、漏液に至る前に廃棄されるようになると考えられる。
 -実施例2-
 実施例2はP1及びP2の大きさを検討したものである。
 《単3形》
 実施例1の電池A0において刻印部31と薄肉部41との厚みを調節して、P1及びP2の大きさを調整した電池A1-A9を作製した。また、実施形態3の構造を有し、実施例1と同様の原材料・仕様・方法で電池C1を作製した。電池C1はP1=2.0MPaと設定して刻印部31の厚みを調節し、またP2=7.0MPaと設定してゴム弁体45の素材・厚みを調節した。
 電池の評価は、(1)実施例1と同じサイクルを行って電流遮断機構(CID)が作動したサイクルの回数を確認する、(2)電流遮断機構が作動した電池を60℃にて4日間保存して漏液発生の有無を確認する、(3)(2)の試験によって漏液が発生しなかった電池を80℃にて1ヶ月保存して破裂の有無を確認する、の3種類とした。いずれの評価もP1,P2の仕様が同じ電池を5個ずつ使用した。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 二次電池として5サイクル以上の充放電が可能であることが好ましいので、評価(1)では5サイクルに至る前に電流遮断機構が作動した電池の数を表1に載せている。P1の設定が2.0MPa以上であれば、5サイクルに至る前に電流遮断機構が作動した電池の数は0であり実用的に十分な特性を有していると言える。
 評価(2)では、60℃4日間の保存は、室温にて約半年と同等と考えられるので、この間に漏液がないことが好ましい。P2-P1が2.5MPaである電池A7は5個中3個の電池が漏液してしまったが、P2-P1が3.5MPa以上である他の電池は漏液がなかった。すなわち、P2-P1が3.5MPa以上であると、電流遮断機構が作動して電池が使用不可の状態になってから、負極の亜鉛の腐食によって電池内圧が更に高くなって連通機構が作動するまでの間が半年以上となる。従って、これだけの期間があれば使用者は電池が使用不可であることに気づくと考えられるので、電池が交換されて電子機器内での漏液が回避される。
 評価(3)では、P2の設定が8.0MPaであれば破裂する電池はなかったが、9.0MPaであると電池の破裂が生じるため、P2の設定は8.0MPa以下が好ましい。
 《単4形》
 上記の単3形と同様にして単4形のアルカリ二次電池A10-A18(実施形態1の構造)とC2(実施形態3の構造)を作製し、同様の評価を行った。評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 単4形アルカリ二次電池では、P1≧3.0MPa、P2-P1≧6.0MPa、P2≦11.0MPaが好ましいことがわかる。
 《単1形》
 上記の単3形と同様にして単1形のアルカリ二次電池A19-A27(実施形態1の構造)とC3(実施形態3の構造)を作製し、同様の評価を行った。評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 単1形アルカリ二次電池では、P1≧0.5MPa、P2-P1≧1.0MPa、P2≦2.0MPaが好ましいことがわかる。
 《単2形》
 上記の単3形と同様にして単2形のアルカリ二次電池A28-A36(実施形態1の構造)とC4(実施形態3の構造)を作製し、同様の評価を行った。評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 単2形アルカリ二次電池では、P1≧1.0MPa、P2-P1≧1.0MPa、P2≦3.0MPaが好ましいことがわかる。
 -実施例3-
 実施例1のアルカリ二次電池A0の第1接続部材、第2接続部材の厚み、及びアルカリ二次電池B0の第1接続部材の厚みを変更してアルカリ二次電池A37-A41(実施形態1の構造)、B2-B6(実施形態2の構造)を作製して、評価を行った。
 評価は図5に示すような装置で電池内圧を測定して行った。まず電池85の正極端子の中心に電動ドリルで直径2mm程度の穴を開けて開口させ、この開口部をパッキン84で覆いOリング88を用いて密封した。リード線86,86を電池85の正極(電池ケース)、負極端子に接続して、直流電源81で電池85を充電した。ここでは過充電を行うことで意図的に電池85内にガスを発生させた。パッキン84を介して圧力センサー87によって電池内圧を測定し、圧力モニター83に電池内圧を表示させた。また、電池電圧を電圧モニター82で測定した。各仕様の電池をそれぞれ8個ずつ評価して、電流遮断機構(CID)が作動する時の電池内圧バラツキ具合(標準偏差)を算出した。
 表5に評価結果を示す。
Figure JPOXMLDOC01-appb-T000005
 実際の製造におけるバラツキを考慮すると、電流遮断機構が作動する時の電池内圧の標準偏差は0.3MPa以下が好ましい。薄板からなる第1接続部材、第2接続部材の厚みが0.08mmであると、薄いために、封口体組み込み時に変形してしまい組み込み精度が低下する。これにより電流遮断機構が作動するときの電池内圧のバラツキが大きくなってしまい、好ましい範囲を越える。厚みが0.1mmであれば、電池内圧のバラツキは好ましい範囲内となる。
 一方、厚みが大きい場合、具体的には0.8mmでは電池内圧が大きくなっていっても刻印部あるいは金属箔からなる第2接続部材に負荷が上手くかからなくて、結果的に電流遮断機構が作動する際の電池内圧のバラツキが大きくなってしまい、好ましい範囲を越えてしまう。厚みが0.7mmであれば、電池内圧のバラツキは好ましい範囲内となる。以上より、第1接続部材、第2接続部材の厚みは、0.1mm以上0.7mm以下が好ましい。
 -実施例4-
 実施例1の電池A0の第2接続部材30の下面(負極3に向き合っている側)に撥水剤を塗布したアルカリ二次電池を電池E1とした。
 アルカリ二次電池A0、E1をそれぞれ10セルずつ、電池を組み立てて未放電のまま60℃、湿度90%の環境下に3ヶ月保存した。保存後に漏液が発生しているか否かを観察した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 第2接続部材の負極に向き合った面側にはアルカリ電解液が付着するので、この面に一部でも撥水剤を塗布しておくと、電気毛管現象によるアルカリ電解液の這い上がり(クリープ)を防いで、電池外にアルカリ電解液が出ていくことを防ぐことができる。よって、電池E1は高温多湿環境においてもクリープによる漏液が生じない。
 撥水剤を塗布していない電池A0は、10セル中2セルに漏液が観察された。漏液した電池の+/-間の抵抗測定を行ったところ電流遮断機構は作動していないことを確認したので、この漏液は、アルカリ電解液のクリープによるものであることが判明した。
 なお、撥水剤は第2接続部材30の下面において、少なくとも、外周側のかしめられている部分及びその部分に続く露出している部分に塗布されていれば上記の効果を奏する。
 -実施例5-
 図6に示すように、実施例1の電池A0において、セパレータ4’を通常(49mm)よりも長いもの(52mm)を用意し、負極3の上方に突出している部分を中心軸方向に折り返して負極3の上方を覆う蓋部4aを形成した。これにより蓋部4a(不織布とセロハン)によって第2接続部材30と負極3との間が隔離された電池F1を作製した。
 アルカリ二次電池A0、F1をそれぞれ10セルずつ、実施例1と同じ条件で放電・充電・保管を繰り返し、全てのセルの電流遮断機構を作動させた。その後、電池を強制的に振動させて、それから電池の+/-間の抵抗測定を行った。抵抗値を測定できたセル数を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 蓋部4aのないアルカリ二次電池A0は、電流遮断機構が作動しても電池を振動させることによって負極3の亜鉛合金粉末が第2接続部材30のところまで飛来して、再び第1接続部材40と第2接続部材30との間の導通を甦らせてしまうことがある。そのため、+/-間の抵抗値が測定できるセルが存した。このようになると、本来電流遮断機構が作動して使用不可となっているべきである電池が使用できる可能性があり、この状態で電池の使用が継続されると電子機器内で漏液に至るおそれがあり、好ましくない。
 一方、不織布の蓋部4aにより負極3と第2接続部材30との間を隔離すると、亜鉛合金粉末は蓋部4aにより第2接続部材30の方に飛んでいくことが阻止されるため、上記のような事態は生じない。
 -実施例6-
 正極にメタチタン酸を添加して、その効果を調べた。実施例1のアルカリ二次電池A0をメタチタン酸添加なしの電池D1とした。電池A0の正極に、電解二酸化マンガンに対しメタチタン酸を0.1質量%添加した電池G1、3.0質量%添加した電池G2、4.0質量%添加した電池G3を作製した。
 実施例1と同様の放電、充電、保管のサイクルを行った。各サイクルにおける放電容量を図7に示す。電池G1,G2は、電池D1に比べてサイクル数が増えても放電容量が大きいという好ましいサイクル特性を有している。しかし、電池G3は、電解二酸化マンガンの絶対量が減少するためと考えられるが、電池D1と同等以下の放電容量となった。
 従って、正極にメタチタン酸を二酸化マンガンに対する質量比で0.1%以上3.0%以下添加すると、サイクル経過に伴う二酸化マンガンの酸化・還元の可逆性の劣化を抑制し、放電容量を維持できるので好ましい。
 -実施例7-
 正極と負極との理論容量の比の適正値を検討した。
 検討には実施例6のアルカリ二次電池G1をベース(メタチタン酸を0.1質量%添加)にして、表8に示す負極理論容量/正極理論容量比を有する電池H1-H4を作製した。
Figure JPOXMLDOC01-appb-T000008
 一般的にはアルカリ二次電池において、二酸化マンガンを可逆性のある1電子反応の範囲内で酸化・還元させるために、低い負極理論容量/正極理論容量比(1.10未満)で電池設計を行う必要があった。けれども、表8に示されているようにメタチタン酸の添加効果により、当該比が1.10以上1.30以下という高い値で大きな放電容量が得られる。すなわち、負極活物質を多く入れることができて、放電容量を大きくできる。
 -実施例8-
 単3形アルカリ二次電池の電池内空間体積、正極活物質量、負極活物質量、アルカリ電解液量の適正値(バランス)を検討した。
 実施例1のアルカリ二次電池A0と同じ構成であって、上記の4つの量を表9に示す構成とした電池I1-I9を作製した。これらの電池をそれぞれ10セルずつ用いて、実施例1と同条件で放電、充電、保管のサイクルを繰り返した。
Figure JPOXMLDOC01-appb-T000009
 複数回充放電を行っても高い放電容量を備えており(5サイクル目の放電容量で判断)、多数回の充放電が可能(10サイクルまでは電流遮断機構が作動しないことで判断)な単3形アルカリ二次電池は、電池内空間体積が6.15ml以上であり、二酸化マンガンが8.0g以上9.0g以下であり、亜鉛が3.0g以上4.0g以下であり、アルカリ電解液の総量が3.5g以上4.0g以下である。このような単3形アルカリ二次電池は、多量の活物質とガスを貯める十分な空間とを両立できる。
 (その他の実施形態)
 上記の実施形態、実施例は本発明の例示であって、本発明はこれらの例に限定されない。実施例中で示した電解液濃度や負極の亜鉛の比表面積、亜鉛合金組成なども例示であってこれらの数値等に限定されない。負極として水素吸蔵合金や金属マグネシウムを用いてもよい。また、亜鉛や亜鉛合金を負極活物質として用いるときには、ゲル状の負極ではなく、亜鉛多孔体等を用いても構わない。正極活物質としてオキシ水酸化ニッケルや酸化銀等を用いてもよい。
 また、図8に示すように電流遮断機構は実施形態2の構成であって、連通機構は実施形態3の構成であるアルカリ二次電池であってもよい。なお、この時第1接続部材40’には薄肉部が存していない。
 また、図9に示すように、電流遮断機構は実施形態3の構成であって、連通機構はゴム弁体に換えて復帰式のバネ弁体であるアルカリ二次電池であってもよい。このバネ弁体は、電池ケース1’の底の孔を塞ぐ板状の弁部分と、その弁部分を電池ケース1’に押さえつける押圧部材であるコイルバネ61とからなっている。弁部分は電池ケース1’の孔側に弾性体部63、コイルバネ61側に鋼板部62が配置されている。さらに、図10に示すように、電流遮断機構は実施形態2の構成であって、連通機構は図9と同じ復帰式のバネ弁体からなるアルカリ二次電池であってもよい。
 第1接続部材及び第2接続部材は、刻印部や薄肉部において破断する構成に限定されない。係合構造あるいは嵌合構造を有していて、内部圧力上昇により係合あるいは嵌合が解除される構成としてもよい。
 撥水剤は、第1接続部材および通電介在部材の下面の少なくとも一部にも塗布されていてもよい。塗布部分は、第2接続部材と同様に外周部分が好ましい。
 以上説明したように、本発明に係るアルカリ二次電池は、電池内圧が高まると充放電ができなくなるように電池内部の導通を遮断するので、耐漏液性が高い二次電池として電子機器や玩具等の電源として有用である。
 1、1’  電池ケース
 2     正極
 3     負極
 4、4’  セパレータ
 5     負極端子板
 6     負極集電体
 7     封口樹脂部材
 8     正極端子
 9     負極端子
10     押し付け部材
11     貫通孔
20     通電介在部材
30     第2接続部材
31     刻印部
40、40’ 第1接続部材
41     薄肉部
45     ゴム弁体
47     貫通孔
50     第2接続部材
61     コイルバネ
62     弁部材の鋼板部
63     弁部材の弾性体部

Claims (18)

  1.  有底円筒形であって正極端子が設けられた電池ケースに、円筒状の正極と、該正極の中空部分に配置されている負極と、前記正極と前記負極との間に配置されたセパレータと、アルカリ電解液とを収容し、
     負極端子を備えた封口体によって前記電池ケースの開口部が密封されており、
     前記封口体は、内部圧力が所定圧力P1に達すると前記負極と前記負極端子との間の電流導通を遮断する電流遮断機構を有している、アルカリ二次電池。
  2.  前記負極には、前記負極端子に電流を供給する負極集電体が配置されており、
     前記電流遮断機構は、前記負極端子に電気的に接続している金属製の第1接続部材と、前記負極集電体に電気的に接続している金属製の第2接続部材とを備えており、
     前記第1接続部材と前記第2接続部材とは電気的に接続しており、
     前記第2接続部材は、内部圧力が所定圧力P1に達すると当該内部圧力によって破断して、前記負極集電体と前記負極端子との間の電流導通を遮断する、請求項1に記載されているアルカリ二次電池。
  3.  前記負極は亜鉛または亜鉛合金を主活物質としており、
     前記第1接続部材及び前記第2接続部材は銅または銅を主体とした合金からなる、請求項2に記載されているアルカリ二次電池。
  4.  内部圧力が所定圧力P2(但し、P1<P2)に達すると、内部と外部とを連通させる連通機構を備えている、請求項3に記載されているアルカリ二次電池。
  5.  単3形であり、
     前記所定圧力P1[MPa]およびP2[MPa]は、2.0≦P1、P2≦8.0、P2-P1≧3.5、の関係式を満たす、請求項4に記載されているアルカリ二次電池。
  6.  単4形であり、
     前記所定圧力P1[MPa]およびP2[MPa]は、3.0≦P1、P2≦11.0、P2-P1≧6.0、の関係式を満たす、請求項4に記載されているアルカリ二次電池。
  7.  単1形であり、
     前記所定圧力P1[MPa]およびP2[MPa]は、0.5≦P1、P2≦2.0、P2-P1≧1.0、の関係式を満たす、請求項4に記載されているアルカリ二次電池。
  8.  単2形であり、
     前記所定圧力P1[MPa]およびP2[MPa]は、1.0≦P1、P2≦3.0、P2-P1≧1.0、の関係式を満たす、請求項4に記載されているアルカリ二次電池。
  9.  前記第1接続部材には周囲よりも厚みの小さい薄肉部が設けられており、
     前記連通機構は、内部圧力によって前記薄肉部が破断することにより機能する機構である、請求項4から8のいずれか一つに記載されているアルカリ二次電池。
  10.  前記正極端子は、復帰式のゴム弁体またはバネ弁体を備えており、
     前記連通機構は、前記ゴム弁体またはバネ弁体が作動することにより機能する機構である、請求項4から8のいずれか一つに記載されているアルカリ二次電池。
  11.  前記第2接続部材は、厚さが0.1mm以上0.7mm以下である板からなる、請求項4から10のいずれか一つに記載されているアルカリ二次電池。
  12.  前記第1接続部材、前記第2接続部材または前記通電介在部材の前記負極に向き合っている表面の少なくとも一部に撥水剤が塗布されている、請求項2から11のいずれか一つに記載されているアルカリ二次電池。
  13.  前記負極は、ゲル状のアルカリ電解液に、亜鉛または亜鉛合金の粒子を分散させたゲル状亜鉛負極である、請求項3から12のいずれか一つに記載されているアルカリ二次電池。
  14.  前記負極と前記第2接続部材との間には、前記負極と前記第2接続部材とを隔離する不織布が存している、請求項13に記載されているアルカリ二次電池。
  15.  前記正極は、二酸化マンガンを主活物質とする、請求項3から14のいずれか一つに記載されているアルカリ二次電池。
  16.  前記正極にはメタチタン酸が添加されており、
     メタチタン酸の添加量は、二酸化マンガンに対する質量比率で0.1%以上3%以下である、請求項15に記載されているアルカリ二次電池。
  17.  前記二酸化マンガンの理論容量を308mAh/g、前記亜鉛の理論容量を819mAh/gとしたとき、負極理論容量/正極理論容量の値が1.10以上1.30以下である、請求項16に記載されているアルカリ二次電池。
  18.  単3形であって、
     前記電池ケースを前記封口体で密閉した際に生じる電池内空間体積が6.15mLよりも大きく、
     前記正極に含まれる二酸化マンガンの重量が8.0g以上9.0g以下であり、
     前記負極に含まれる亜鉛の重量が3.0g以上4.0g以下であり、
     前記アルカリ電解液の総量が3.5g以上4.0g以下である、請求項15から17のいずれか一つに記載されているアルカリ二次電池。
PCT/JP2011/004833 2010-09-30 2011-08-30 アルカリ二次電池 WO2012042743A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/502,499 US20120208051A1 (en) 2010-09-30 2011-08-30 Alkaline secondary battery
JP2011554013A JPWO2012042743A1 (ja) 2010-09-30 2011-08-30 アルカリ二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010222402 2010-09-30
JP2010-222402 2010-09-30

Publications (1)

Publication Number Publication Date
WO2012042743A1 true WO2012042743A1 (ja) 2012-04-05

Family

ID=45892239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004833 WO2012042743A1 (ja) 2010-09-30 2011-08-30 アルカリ二次電池

Country Status (3)

Country Link
US (1) US20120208051A1 (ja)
JP (1) JPWO2012042743A1 (ja)
WO (1) WO2012042743A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014186949A (ja) * 2013-03-25 2014-10-02 Toyota Industries Corp 蓄電装置および二次電池
WO2015001718A1 (ja) * 2013-07-01 2015-01-08 三洋電機株式会社 非水電解質二次電池
JP2016066599A (ja) * 2012-04-12 2016-04-28 株式会社豊田自動織機 蓄電装置
JP2018073573A (ja) * 2016-10-27 2018-05-10 株式会社豊田中央研究所 二次電池
JPWO2017164000A1 (ja) * 2016-03-25 2019-01-31 三洋電機株式会社 円筒形電池

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9634301B2 (en) 2015-01-05 2017-04-25 Johnson Controls Technology Company Lithium ion battery cell with secondary seal
USD773390S1 (en) 2015-02-27 2016-12-06 Johnson Controls Technology Company Lithium ion battery cell
KR102005488B1 (ko) * 2015-06-16 2019-10-01 주식회사 엘지화학 이차 전지용 셀 커버 및 이를 포함하는 배터리 모듈
US10615412B2 (en) * 2018-01-30 2020-04-07 Octopus Technologies Inc. Manganese oxide composition and method for preparing manganese oxide composition
WO2021237079A1 (en) 2020-05-22 2021-11-25 Duracell U.S. Operations, Inc. Seal assembly for a battery cell

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035634A (ja) * 1973-08-03 1975-04-04
JPH03295177A (ja) * 1990-04-11 1991-12-26 Matsushita Electric Ind Co Ltd 密閉形アルカリ蓄電池
JP2001076701A (ja) * 1999-09-07 2001-03-23 Matsushita Electric Ind Co Ltd 筒形アルカリ電池
JP2006066269A (ja) * 2004-08-27 2006-03-09 Sanyo Electric Co Ltd 密閉形蓄電池
JP2009048866A (ja) * 2007-08-20 2009-03-05 Gs Yuasa Corporation:Kk 密閉型蓄電池
JP2009146710A (ja) * 2007-12-13 2009-07-02 Panasonic Corp アルカリ一次電池
JP2010113929A (ja) * 2008-11-06 2010-05-20 Toyota Motor Corp 密閉型電池

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2950860B2 (ja) * 1989-08-16 1999-09-20 日立マクセル株式会社 無機非水電解液電池
JP3450884B2 (ja) * 1993-10-21 2003-09-29 松下電器産業株式会社 円筒形アルカリ電池
WO1997016859A1 (en) * 1995-10-31 1997-05-09 Matsushita Electric Industrial Co., Ltd. Explosion-proof seal plate for enclosed type cell and production method thereof
JP3456622B2 (ja) * 1997-07-24 2003-10-14 東芝電池株式会社 アルカリ乾電池
JP5240897B2 (ja) * 2007-12-19 2013-07-17 日立マクセル株式会社 アルカリ電池
JP2009170157A (ja) * 2008-01-11 2009-07-30 Panasonic Corp 単3形アルカリ乾電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5035634A (ja) * 1973-08-03 1975-04-04
JPH03295177A (ja) * 1990-04-11 1991-12-26 Matsushita Electric Ind Co Ltd 密閉形アルカリ蓄電池
JP2001076701A (ja) * 1999-09-07 2001-03-23 Matsushita Electric Ind Co Ltd 筒形アルカリ電池
JP2006066269A (ja) * 2004-08-27 2006-03-09 Sanyo Electric Co Ltd 密閉形蓄電池
JP2009048866A (ja) * 2007-08-20 2009-03-05 Gs Yuasa Corporation:Kk 密閉型蓄電池
JP2009146710A (ja) * 2007-12-13 2009-07-02 Panasonic Corp アルカリ一次電池
JP2010113929A (ja) * 2008-11-06 2010-05-20 Toyota Motor Corp 密閉型電池

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016066599A (ja) * 2012-04-12 2016-04-28 株式会社豊田自動織機 蓄電装置
US10020146B2 (en) 2012-04-12 2018-07-10 Kabushiki Kaisha Toyota Jidoshokki Current interruption device and electric storage device using same
JP2014186949A (ja) * 2013-03-25 2014-10-02 Toyota Industries Corp 蓄電装置および二次電池
WO2015001718A1 (ja) * 2013-07-01 2015-01-08 三洋電機株式会社 非水電解質二次電池
JPWO2015001718A1 (ja) * 2013-07-01 2017-02-23 三洋電機株式会社 非水電解質二次電池
US10109889B2 (en) 2013-07-01 2018-10-23 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
JPWO2017164000A1 (ja) * 2016-03-25 2019-01-31 三洋電機株式会社 円筒形電池
JP7077940B2 (ja) 2016-03-25 2022-05-31 三洋電機株式会社 円筒形電池
JP2018073573A (ja) * 2016-10-27 2018-05-10 株式会社豊田中央研究所 二次電池
US10897043B2 (en) 2016-10-27 2021-01-19 Kabushiki Kaisha Toyota Chuo Kenkyusho Secondary battery

Also Published As

Publication number Publication date
US20120208051A1 (en) 2012-08-16
JPWO2012042743A1 (ja) 2014-02-03

Similar Documents

Publication Publication Date Title
WO2012042743A1 (ja) アルカリ二次電池
EP2272124B1 (en) Cylindrical nickel-zinc cell with negative can
JP4259890B2 (ja) 密閉形蓄電池
EP1926161A2 (en) Cylindrical secondary battery
US5171647A (en) Hydrogen containment cover assembly for sealing the cell can of a rechargeable electrochemical hydrogen storage cell
JP2019016423A (ja) 円筒形電池
JP2009231207A (ja) 円筒形電池
EP3561904A1 (en) Alkaline secondary battery
JP4562984B2 (ja) 密閉型アルカリ一次電池
JP7197251B2 (ja) アルカリ二次電池
JP2003045480A (ja) 薄型ニッケル水素二次電池、ハイブリッドカー及び電気自動車
JP2000251949A (ja) 密閉型蓄電池
JP2013012349A (ja) アルカリ蓄電池
JPH10188934A (ja) 円筒形電池
JPH08148135A (ja) 防爆機能付電池
KR20190049205A (ko) 전류차단부재 및 캡 조립체
JP7488008B2 (ja) アルカリ蓄電池
JP3670357B2 (ja) 円筒形電池
JP2000173602A (ja) 円筒形アルカリ電池
JP2022138530A (ja) アルカリ二次電池用電極及びアルカリ二次電池
JPH117930A (ja) 密閉型電池
JP2022124195A (ja) アルカリ蓄電池
JP2002280057A (ja) アルカリ二次電池
CN110875444A (zh) 电池用封口板及使用该封口板的电池
JP2002260623A (ja) 密閉型電池及び電池用封口部材の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2011554013

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13502499

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11828311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11828311

Country of ref document: EP

Kind code of ref document: A1