WO2012036409A2 - 제어 정보를 전송하는 방법 및 이를 위한 장치 - Google Patents

제어 정보를 전송하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2012036409A2
WO2012036409A2 PCT/KR2011/006611 KR2011006611W WO2012036409A2 WO 2012036409 A2 WO2012036409 A2 WO 2012036409A2 KR 2011006611 W KR2011006611 W KR 2011006611W WO 2012036409 A2 WO2012036409 A2 WO 2012036409A2
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
pucch
resource
ack
harq
Prior art date
Application number
PCT/KR2011/006611
Other languages
English (en)
French (fr)
Other versions
WO2012036409A3 (ko
Inventor
안준기
양석철
김민규
서동연
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to US13/822,624 priority Critical patent/US9055574B2/en
Priority to CN201180044059.5A priority patent/CN103109486B/zh
Priority to DE112011103063T priority patent/DE112011103063T5/de
Priority to KR1020137007167A priority patent/KR101802761B1/ko
Priority to GB1304752.7A priority patent/GB2497468B/en
Publication of WO2012036409A2 publication Critical patent/WO2012036409A2/ko
Publication of WO2012036409A3 publication Critical patent/WO2012036409A3/ko
Priority to US14/700,840 priority patent/US9736820B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1893Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method for transmitting control information and an apparatus therefor.
  • Wireless communication systems are widely deployed to provide various kinds of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing a useful system resource (bandwidth, transmission power).
  • multiple access systems include code division multiple access (CDMA) systems, frequency division multiple access (FDMA) systems, time division multiple access (TDMA) systems, orthogonal frequency division multiple access (0FDMA) systems, and single carrier (SC-FDMA) systems. frequency division multiple access) systems.
  • a method for transmitting uplink control information by a communication device configured with a plurality of cells in a wireless communication system, the plurality of cells on one cell Receiving a PDCCHCPhysical Downlink Control CHannel) signal; Receiving a plurality of Physical Downlink Shared CHannel (PDSCH) signals indicated by the plurality of PDCCHs; Generating a plurality of HARQ ACKCHybr id Automatic Repeat reQuest-Acknowledgments corresponding to the plurality of PDSCH signals; And transmitting a bit value corresponding to the plurality of HARQ-ACKs using one PUCCH resource among a plurality of Physical Uplink Control CHannel (PUCCH) resources, wherein the plurality of PUCCH resources transmit each PDCCH signal.
  • a method is provided that includes a plurality of first PUCCH resources linked with a resource index for at least one second PUCCH resource configured by a higher layer.
  • a communication apparatus configured to transmit uplink control information in a situation where a plurality of cells are configured in a wireless communication system, comprising: a radio frequency (RF) unit; And a processor, wherein the processor receives a plurality of PDCQK Physical Downlink Control CHannel signals on one cell, receives a plurality of Physical Downlink Shared CHannel (PDSCH) signals indicated by the plurality of PDCCHs, Generates a plurality of HARQ ACKs (Hybrid Automatic Repeat reQuest-Acknowledgement) corresponding to the PDSCH signal of the plurality of HARQ ACK, and corresponds to the plurality of HARQ-ACK by using one PUCCH resource among a plurality of Pl] CCH (Physical Uplink Control CHannel) resources
  • the plurality of PUCCH resources includes a plurality of first PUCCH resources linked with a resource index for transmission of each PDCCH signal and at least one second PUCCH resource configured by an upper layer.
  • At least one of the plurality of PDCCH signals includes resource indication information for HARQ-ACK, and the resource indication information for HARQ-ACK is used to modify the at least one second PUCCH resource.
  • the resource indication information for the HARQ-ACK includes an offset value.
  • the resource indication information for the HARQ-ACK is included in the TPC (Transmit Power Field) field of the PDCCH signal for the PDSCH signal transmitted on the secondary cell.
  • At least one of the plurality of PDCCH signals is a resource for HARQ-ACK Resource indication information for the HARQ-ACK includes information indicating the at least one second PUCCH resource from a second PUCCH resource candidate set configured by the higher layer.
  • the first PUCCH resource is given using the smallest CCE Control Channel Element (CCE) index for transmission of the corresponding PDCCH signal.
  • CCE Control Channel Element
  • said plurality of PDCCH signals are received on a primary cell.
  • uplink control information can be efficiently transmitted in a wireless communication system.
  • control information preferably ACK / NACK information, in a multicarrier situation.
  • 1 illustrates a structure of a radio frame.
  • FIG. 2 illustrates a resource grid of a downlink slot.
  • 3 shows a structure of a downlink subframe.
  • FIG. 5 shows an example of physically mapping a PUCCH format to a PUCCH region.
  • FIG. 6 shows a slot level structure of the PUCCH format 2 / 2a / 2b.
  • CA 9 illustrates a Carrier Aggregation (CA) communication system.
  • 10 illustrates scheduling when a plurality of carriers are merged.
  • 11 through 16 illustrate an ACK / NACK resource allocation method according to an embodiment of the present invention.
  • 17 illustrates a base station and a terminal that can be applied to an embodiment of the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • CDMA may be used in a wireless access system.
  • CDMA may be implemented by radio technology such as UTRACUniversal Terrestrial Radio Access) or CDMA2000.
  • TDMA may be implemented with wireless technologies such as Global System for Mobile Communication (GSM) / General Packet Radio Service (GPRS) / Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile Communication
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • 0FDMA may be implemented in a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA).
  • UTRA is part of UMTS Jniversal Mobile Telecommunications System.
  • 3rd Generation Partnership Project (3GPP) LTEdong term evolution (Evolution) uses E-UTRA.
  • E-UMTS Evolved UMTS
  • 0FDMA is adopted in downlink and SOFDMA is adopted in uplink.
  • LTE-A Advanced is an evolution of 3GPP LTE.
  • 1 illustrates the structure of a radio frame.
  • the wireless frame includes 10 subframes.
  • the subframe includes two slots in the time domain.
  • the time for transmitting a subframe is defined as a transmission time interval ( ⁇ ).
  • transmission time interval
  • the subframe may have a length of lms, and one slot may have a length of 0.5 ms.
  • One slot has a plurality of 0rthogonal frequency division multiplexing (0FDM) or single carrier frequency division multiple access (SC to FDMA) triplets in the time domain. Since LTE uses 0FDMA in downlink and SOFD in uplink, an OFDM or SC-FDMA symbol represents one symbol period.
  • a resource block (RB) is a resource allocation unit and includes a plurality of consecutive subcarriers in one slot.
  • the structure of a radio frame is shown by way of example. The number of subframes included in the radio frame, the number of slots included in the subframe, and the number of heartbulls included in the slot may be modified in various ways.
  • FIG. 2 illustrates a resource grid of a downlink slot.
  • the downlink slot includes a plurality of 0FDM symbols in the time domain.
  • One downlink slot may include 7 (6) 0FDM symbols, and the resource block may include 12 subcarriers in the frequency domain.
  • Each element on the resource grid is referred to as a resource element (RE).
  • One RB contains 12X7 (6) REs.
  • the number N ffi of RBs included in the downlink slot depends on the downlink transmission band.
  • the structure of the uplink slot is the same as that of the downlink slot, but the 0FDM symbol is replaced by the SC-FDMA symbol.
  • 3 illustrates a structure of a downlink subframe.
  • the PDSCH is used to carry a transport block (TB) or a codeword (Cwordword, CW) corresponding thereto.
  • the transport block refers to a data block transferred from the MAC layer to the PHY layer through a transport channel.
  • the codeword corresponds to the encoded version of the transport block. Correspondence between the transport block and the codeword may vary according to swapping. In this specification, PDSCH, transport block, and codeword are commonly used.
  • PCFICH physical control format indicator
  • PDCCH Physical Downlink Control Channel
  • PHICH Physical Hybrid ARQ indicator Channel
  • the PCFICH is transmitted in the first OFDM symbol of a subframe and carries information on the number of OFDM symbols used for transmission of a control channel within the subframe.
  • the PHICH carries a hybrid automatic repeat request acknowledgment / negative acknowledgment (HARQ ACK / NACK) signal in response to uplink transmission.
  • HARQ ACK / NACK hybrid automatic repeat request acknowledgment / negative acknowledgment
  • DCI includes resource allocation information and other control information for a terminal or a terminal group.
  • DCI includes uplink / downlink scheduling information, uplink transmission (Tx) power control command, and the like.
  • Information contents of a transmission mode and a DCI format for configuring a multi-antenna technology are as follows.
  • Transmission mode 1 Transmission from a single base station antenna port
  • Transmission mode 2 Transmit diversity
  • Transmission mode 3 open-loop spatial multiplexing
  • Transmission module c 4 Closed-loop spatial multiplexing
  • Transmission mode 7 Transmission using UE-specif ic reference signals
  • Po 1 1A Compact signaling of resource assignments for single codeword PDSCH (all modes)
  • the PDCCH includes a downlink shared channel
  • a plurality of PDCCHs may be transmitted in the control region.
  • the terminal may monitor the plurality of PDCCHs.
  • the PDCCH is transmitted on an aggregate of one or a plurality of consecutive control channel elements (CCEs).
  • the CCE is a logical allocation unit used to provide a PDCCH with a coding rate based on radio channel conditions.
  • the CCE corresponds to a plurality of resource element groups (REGs).
  • the format of the PDCCH and the number of PDCCH bits are determined according to the number of CCEs.
  • the base station determines the PDCCH format according to the DCI to be transmitted to the terminal, and adds a cyclic redundancy check (CRC) to the control information.
  • the CRC is masked with an identifier (eg, RNTKradio network temporary identifier) according to the owner or purpose of use of the PDCCH.
  • an identifier eg, RNTKradio network temporary identifier
  • an identifier eg, cell-RNTI (C-RNTI)
  • C-RNTI cell-RNTI
  • P-RNTI paging-R TI
  • PDCCH In the case of system information (more specifically, a system information block (SIC)), the SI-R TI (system information RNTI) may be masked in the CRC.
  • SI-R TI system information RNTI
  • RA-RNTI random access-R TI
  • FIG. 4 illustrates a structure of an uplink subframe used in LTE.
  • the uplink subframe includes a plurality of (eg, two) slots. Slots are different depending on CP length . It may include a number of SC-FDMA symbols.
  • the uplink subframe is divided into a data region and a control region in the frequency domain.
  • the data area includes a PUSCH and is used to transmit a data signal such as voice.
  • the control region includes a PUCCH and is used to transmit uplink control information (UCI).
  • UCI uplink control information
  • the PUCCH includes RB pairs located at both ends of the data region on the frequency axis and hops to a slot boundary.
  • PUCCH may be used to transmit the following control information.
  • SR Scheduling Request
  • SR Information used for requesting an uplink UL-SCH resource. It is transmitted using 00K (0n-0ff Keying) method.
  • HARQ ACK / NACK This is a response signal for a downlink data packet on a PDSCH. Indicates whether the downlink data packet was successfully received. One bit of ACK / NACK is transmitted in response to a single downlink codeword, and two bits of ACK / NACK are transmitted in response to two downlink codewords.
  • CQI Channel Quality Indicator
  • Multiple Input Multiple Output (MIM0) -related feedback information includes a RKRank Indicator and a PMK Precoding Matrix Indicator. 20 bits are used per subframe.
  • the amount of control information (UCI) that the UE can transmit in a subframe depends on the number of SC-FDMA available for control information transmission. SC-FDMA available for transmission of control information means the remaining SC-FDMA symbol except for the SC-FDMA symbol for transmitting the reference signal in the subframe, and in the case of the subframe in which the Sounding Reference Signal (SRS) is set, the last of the subframe SC-FDMA symbols are also excluded.
  • Reference signal is coherent of PUCCH Popo Popo Popo Popo Popo Popo
  • 3 ⁇ 4 3 ⁇ 4 MAT Used for the 3 ⁇ 4-format line.
  • PUCCH supports seven formats according to the transmitted information.
  • Table 1 shows the mapping relationship between the PUCCH format and UCI in LTE.
  • FIG. 5 shows an example of physically mapping a PUCCH format to a PUCCH region.
  • the PUCCH format starts from the band edge and inwards.
  • PUCCH region m 2)
  • the number of PUCCH RBs that can be used for the PUCCH format 2 / 2a / 2b (CQI) is transmitted to the UE through broadcast signaling within a thin cell.
  • Period and frequency resolution at which the UE reports the CQI are controlled by the base station. Periodic CQI reporting and aperiodic CQI reporting are supported in the time domain. PUCCH format 2 is used for periodic CQI reporting. However, in the periodic CQI report, if the PUSCH is scheduled in a subframe in which the CQI transmission is scheduled, the CQI is transmitted through the PUSCH after being piggybacked on the data. PUSCH is used for aperiodic CQI reporting. To this end, the base station instructs the user equipment to transmit an individual CQI report by embedding the individual CQI report in a scheduled resource (ie, PUSCH) for uplink data transmission.
  • a scheduled resource ie, PUSCH
  • PUCCH format 2 / 2a / 2b shows a slot level structure of PUCCH format 2 / 2a / 2b.
  • PUCCH format 2 / 2a / 2b is used for CQI transmission.
  • SC-FDMA # 1 and # 5 are used for DMS (Demodulation Reference Signal) transmission in a slot.
  • SC—FDMA # 3 is used for DM RS transmission in the slot.
  • 10-bit CQI information at a subframe level has a rate 1/2.
  • the coding bits are then scrambled (not shown) and mapped to Quadrature Phase Shift Keying (QPSR) constellation (QPSK modulation).
  • QPSR Quadrature Phase Shift Keying
  • Scramble can be performed using a length -31 gold sequence similarly to the case of the PUSCH data.
  • Ten QPS modulation symbols are generated and five QPSK modulation symbols do ⁇ d 4 in each slot are transmitted through corresponding SC-FDMA symbols.
  • Each QPSK modulation symbol is used to modulate a base RS sequence (r u , 0 ) of length -12 before an Inverse Fast Fourier Transform (IFFT).
  • IFFT Inverse Fast Fourier Transform
  • the DM RS sequence is similar to the CQI sequence in the frequency domain but is not modulated by the CQI modulation symbol.
  • the parameters / resources for periodic reporting of CQI are semi-statically configured by higher layer (eg, Radio Resource Control (RRC)) signaling.
  • RRC Radio Resource Control
  • the CQI is the PUCCH resource index
  • PUCCH resource index is CCH
  • PUCCH format la / lb shows a slot level structure of the PUCCH format la / lb.
  • SC-FDMA # 2 / # 3 / # 4 is used for DM RS (Demodulation Reference Signal) transmission.
  • SOFDMA # 2 / # 3 is used for DM RS transmission, so four SC-FDMA symbols in the slot are used for ACK / NACK transmission.
  • the PUCCH format la / lb is collectively called PUCCH format 1.
  • ACK / NACK information are modulated according to BPSK and QPSK modulation schemes, respectively, and one ACK / NACK modulation symbol. Is generated (d 0 ).
  • Table 2 shows the PUCCH format la in the existing LTE. And a modulation table defined for lb.
  • the PUCCH format la / lb like the CQI described above, performs an orthogonal cover (e.g., Walsh-Hadamard or DFT code) in addition to performing cyclic shifts (a cs , x ) in the frequency domain ( ⁇ ⁇ 0 ,, 2 ,) Using time domain spreading.
  • an orthogonal cover e.g., Walsh-Hadamard or DFT code
  • cyclic shifts a cs , x
  • time domain spreading e.g., time domain spreading.
  • the RS transmitted from different terminals is multiplexed using the same method as UCI.
  • the number of cyclic shifts supported in the SC-FDMA symbol for the PUCCH ACK / NACK RB may be configured by the cell-specific higher layer signaling parameter Ashift .
  • Ashift e ⁇ 1, 2, 3 ⁇ indicates that the shift values are 12, 6, and 4, respectively.
  • the number of spreading codes that can actually be used for ACK / NACK in time-domain CDM may be limited by the number of RS symbols. This is because the RS's multiplexing capacity is smaller than that of the UCI symbol due to the small number of RS symbols. 8 shows an example of determining a PUCCH resource for ACK / NACK.
  • the PUCCH resources for ACK / NACK are not allocated to each UE in advance, and a plurality of PUCCH resources are divided and used at every time point by a plurality of UEs in a cell.
  • the PUCCH resource used by the UE to transmit ACK / NACK corresponds to a PDCCH carrying scheduling information about corresponding downlink data.
  • the entire region in which the PDCCH is transmitted in each downlink subframe consists of a plurality of CCECControl Channel Elements), and the PDCCH transmitted to the UE consists of one or more CCEs.
  • the UE transmits ACK / NACK through a PUCCH resource that is treated for a specific CCE (eg, the first CCE) among the CCEs constituting the PDCCH received by the UE.
  • a specific CCE eg, the first CCE
  • each rectangle represents a CCE in a downlink component carrier (DL CC)
  • each rectangle represents a PUCCH resource in an uplink component carrier (UL CC).
  • Each PUCCH index corresponds to a PUCCH resource for ACK / NACK.
  • FIG. 8 illustrates a case in which up to M PUCCHs exist in a UL CC when there are up to N CCEs in a DL CC.
  • N may be M, but it is also possible to design M and N values differently and to overlap the mapping of CCE and PUCCH.
  • the PUCCH index for ACK / NACK transmission in the LTE system is determined as follows.
  • PU ccH represents a resource index of PUCCH format 1 for transmitting ACK / NACK / DTX
  • N (1) raccH represents a signaling value received from the upper layer
  • n CCE is a CCE used for PDCCH transmission Represents the smallest value among the indices.
  • the UE transmits one multiplexed ACK / NACK signal for a plurality of PDSCHs received through subframes at different time points.
  • the UE transmits one multiplexed ACK / NACK signal for a plurality of PDSCHs using a PUCCH selection transmission scheme.
  • PUCCH selection transmission is also referred to as an ACK / NACK selection scheme or an ACK / NACK multiplexing scheme.
  • the terminal multiplexes ACK / NACK when receiving a plurality of downlink data. It occupies a plurality of uplink physical channel resources to transmit a signal.
  • the UE may occupy the same number of PUCCH resources by using a specific CCE of a PDCCH indicating each PDSCH.
  • the multiplexed ACK / NACK signal may be transmitted using a combination of a PUCCH resource selected from among a plurality of occupied PUCCH resources and a modulation / coded content applied to the selected PUCCH resource.
  • Table 3 shows the PUCCH selective transmission scheme defined in the LTE system.
  • HARQ-ACK (i) is HARQ ACK / NACK / DTX of the i-th data unit (0 ⁇ i ⁇ 3) Results are shown.
  • DTX discontinuous Transmission indicates a case in which there is no transmission of a data unit for Q-ACK (i) or the terminal does not detect the presence of a data unit corresponding to HARQ-ACK (i).
  • HARQ-ACK is commonly used herein with ACK / NACK.
  • Up to four PUCCH resources ie, n (1) PUCCH, 0 to n (1) PlJCCH , 3 ) may be occupied for each data unit.
  • the multiplexed ACK / NACK is transmitted on one PUCCH resource selected from occupied PUCCH resources.
  • PUCCH, x described in Table 3 actually represents the PUCCH resources used to transmit ACK / NACK.
  • b (0) b (l) represents two bits transmitted through the selected PUCCH resource and is modulated by the QPSK scheme. For example, when the terminal successfully decodes four data units, the terminal transmits (1, 1) to the base station through the PUCCH resource associated with ⁇ ; ⁇ .
  • NACK and DTX are coupled (NACK / DTX, N / D) except in some cases because the combination of PUCCH resources and QPSK symbols is insufficient to represent all possible ACK / NACK assumptions.
  • a plurality of PUCCH resources may be considered for ACK / NACK transmission for a single PDCCH.
  • the first PUCCH index may be determined according to the first CCE index used for the PDCCH transmission.
  • CA 9 illustrates a Carrier Aggregation (CA) communication system.
  • the LTE-A system uses a carrier aggregation or bandwidth aggregation technique that aggregates multiple uplink / downlink frequency blocks for a wider frequency band and uses a larger uplink / downlink bandwidth.
  • Each frequency block is transmitted using the components' carrier (Component Carrier, CC).
  • a component carrier may be understood as a carrier frequency (or center carrier, center frequency) for a corresponding frequency component.
  • CC uplink / downlink component carriers
  • Each CC It may be adjacent or non-adjacent to each other in the frequency domain.
  • the bandwidth of each component carrier can be determined independently.
  • the configuration may be configured to be 2: 1.
  • the DL CC / UL CC link may be fixed in the system or configured semi-statically.
  • the frequency band that can be monitored / received by a specific terminal may be limited to M ( ⁇ N) CCs.
  • Various parameters for carrier aggregation may be set in a cell-specific, UE group-specific, or UE-specific manner.
  • the control information may be set to be transmitted and received only through a specific CC.
  • a specific CC may be referred to as a primary CC (or CCC) (or an anchor CC), and the remaining CCs may be referred to as a secondary CC (SCC).
  • LTE-A uses the concept of a cell to manage radio resources.
  • a cell is defined as a combination of downlink resources and uplink resources, and uplink resources are not required. Accordingly, the cell may be configured with only downlink resources or with downlink resources and uplink resources.
  • a linkage between the carrier frequency (or DL CC) of the downlink resource and the carrier frequency (or UL CC) of the uplink resource may be indicated by system information.
  • a cell operating on a primary frequency (or PCC) may be referred to as a primary cell (PCell) and a cell equalizing on a secondary frequency (or SCC) may be referred to as a secondary cell (SCell).
  • PCC primary frequency
  • SCell secondary cell
  • the PCell is used by the terminal to perform an initial connection establishment process or to perform a connection re-establishment process.
  • PCell may refer to a cell indicated in the handover process.
  • the SCell is configurable after the RRC connection is established and can be used to provide additional radio resources.
  • PCell and SCell may be collectively referred to as a serving cell. Accordingly, in the case of the UE which is in the RRC_C0NNECTED state but the carrier aggregation is not configured or does not support the carrier aggregation, there is only one serving cell configured only with the PCell.
  • the network may configure one or more SCells for terminals supporting carrier aggregation in addition to the PCell initially configured in the connection establishment process.
  • DL CC A is set to PDCCH CC.
  • DL CC A to C may be referred to as a serving CC, a serving carrier, a serving cell, and the like.
  • each DL CC may transmit only the PDCCH scheduling its PDSCH without the CIF according to the LTE PDCCH rule.
  • DL CC A (PDCCH CC) schedules PDSCH of DL CC A using CIF.
  • the PDCCH scheduling the PDSCH of another CC may be transmitted.
  • PDCCH is not transmitted in DL CC B / C that is not configured as PDCCH CC. Therefore, DL CC A (PDCCH CC) should include both the PDCCH search space associated with DL CC A, the PDCCH search space associated with DL CC B, and the PDCCH search space associated with DL CC C.
  • LTE-A considers feeding back a plurality of ACK / NACK information / signals for a plurality of PDSCHs transmitted through a plurality of DL CCs through a specific ULCC (eg, ULPCC or UL PCell).
  • a specific ULCC eg, ULPCC or UL PCell.
  • the UE receives two codewords (or transport blocks) by operating in a SU—MIMC Single User Multiple Input Multiple Output (SU) mode in a certain DL CC.
  • the terminal should be able to transmit a maximum of five feedback states including a total of four feedback states of ACK / ACK, ACK / NACK, NACK / ACK, NACK / NACK, and up to DTX for the corresponding DL CC.
  • the DL CC is set to support a single codeword (black transport block), there are up to three states of ACK, NACK, and DTX for the DL CC. If the NACK is processed in the same way as the DTX, two feedback states of ACK and NACK / DTX exist for the corresponding DL CC. Therefore, if the UE merges up to five DL CCs and operates in the SU-MIM0 mode in all CCs, the terminal may have a maximum of 55 transmittable feedback states, and the total ACK / NACK payload size for representing the total 12 Bit. If the DTX is processed in the same way as the NACK, the number of feedback states is 45, and the ACK / NACK payload size for expressing the total is 10 bits.
  • a method of securing a plurality of PUCCH resources for each UE for ACK / NACK transmission may be divided into an implicit method and an explicit method.
  • the implicit method is a method of allocating PUCCH resources linked to a PDCCH for scheduling a PDSCH to the UE as in the conventional LTE (see Equation 1).
  • the explicit method is a method of pre-allocating PUCCH resources to be used by the UE through RRC signaling. Therefore, a method of using an implicit resource, an explicit resource, or a combination of an implicit resource and an explicit resource may be considered for ACK / NACK channel selection.
  • the present invention transmits information such as ARI (ACK / NACK resource index) through the PDSCH-scheduling PDCCH in order to avoid the PUCCH resources for ACK / NACK transmission of each terminal collide with the PUCCH resources of the other terminal, It is proposed to change the PUCCH resource for ACK / NACK transmission.
  • the present invention specifically proposes a method of applying the ARI according to the combination of the implicit / explicit PUCCH resources allocated to the terminal.
  • .2 DL CCs are configured for the UE, and the UE receives up to two MIM0 codewords (eg, a transmission block) through the PDSCH of each DLCC.
  • MIM0 codewords e.g, a transmission block
  • a plurality of ACK / NACK is transmitted using the ACK / NACK channel selection scheme.
  • the UE occupies four PUCCH resources to transmit up to four bits of ACK / NACK information corresponding to up to four codewords (or transport blocks).
  • the UE receives a PDCCH for scheduling PDSCH through a plurality of DL CCs, but PUCCH resources for ACK / NACK transmission are allocated only within a specific ULCC (eg, ULPCC) (eg, UL CC linked with DL PCC). Decide.
  • ULPCC UL CC linked with DL PCC.
  • the following description assumes the case in which up to two MIM0 codewords (eg, a transport block) are received through the PDSCH through each DL CC, thus illustrating a case where two PUCCH resources are secured for one PDCCH. do.
  • a maximum of one codeword eg, a transport block
  • an ACK / NACK signal is transmitted using a multi-antenna transmission scheme (eg, transmit diversity).
  • a multi-antenna transmission scheme eg, transmit diversity
  • PCC PDCCH means PDCCH received on the PCC
  • black means PDCCH received PDSCH on the PCC
  • an SCC PDCCH means a PDCCH received on an SCC, or a PDCCH in which a Daesung PDSCH is received on an SCC.
  • CC is commonly used with cells
  • PCC is commonly used with PCell
  • SCC is commonly used with SCell.
  • Embodiment 1 When a PDCCH is transmitted through a plurality of PDCCH monitoring CCs and an implicit resource is used for all PDCCHs
  • FIG. 11 illustrates a method of allocating PUCCH resources for ACK / NACK transmission according to the present embodiment.
  • This example illustrates the use of implicit resources for all PDCCHs.
  • a UE can receive a PDSCH-scheduling PDCCH through a plurality of DL CCs.
  • the figure illustrates a case where one PDCCH is received on the PCC and the SCC, respectively.
  • the terminal receives a PDSCH signal for each PDCCH.
  • up to two codewords may be transmitted through each PDSCH.
  • the UE may be allocated two PUCCH resources linked to each PDCCH to transmit ACK / NACK for up to four codewords.
  • the terminal feeds back a plurality of ACK / NACK using an ACK / NACK channel selection scheme. That is, the terminal transmits a bit value for the plurality of ACK / NACK using one of the plurality of PUCCH resources.
  • the PI XH resources linked to the PCC PDCCH and the SCC PDCCH are linked.
  • PUCCH resources may collide.
  • the PUCCH resource linked to the corresponding PDCCH is changed through ARI information informed through the PDCCH.
  • the resource may be changed by a specific offset with respect to the PUCCH resource linked to the corresponding PDCCH through the ARI information.
  • the ARI information may include a case in which the PUCCH resource is not changed and a case in which the PUCCH resource is changed to one or a plurality of offset values.
  • the ARI information is included only in the SCC PDCCH and can only change the location of the PUCCH resource linked to the corresponding PDCCH.
  • the ARI information may be included only in the PCC PDCCH to change only the location of the PUCCH resource linked to the corresponding PDCCH. Black ARI information may be included in both PCC PDCCH and SCC PDCCH.
  • ARI information in each PDCCH may be applied only to PUCCH resources linked to the corresponding PDCCH.
  • ARI information in each SCC PDCCH may be applied only to PUCCH resources linked to the corresponding PDCCH. That is, the ARI information of the SCC PDCCHs may be set independently of each other.
  • ARI eg offset value
  • the ARI can be used to directly change at least one of the cyclic shift, the orthogonal cover and the PRB.
  • Equation 2 shows an example of changing an implicit PUCCH resource using ARI information. This example is implied PUCCH . Similar changes can be applied to changing resources.
  • n CCE , PCC represents the minimum CCE index constituting the PCC PDCCH.
  • n CCE, scc represents the minimum CCE index constituting the SCC PDCCH.
  • N (1) PUCCH represents a signaling value received from a higher layer (eg, RRC).
  • represents an offset value according to ARI.
  • offsets for PUCCH index # 3 (n (1) PUCCH , 3 ) and PUCCH index # 4 (n (1) # , 4 ) may be given independently.
  • FIG. 12 illustrates a method of allocating PUCCH resources for ACK / NACK transmission according to the present embodiment.
  • This example illustrates a case in which an implicit PUCCH resource is used for a PDCCH transmitted through a specific DL CC (eg, PCC) and an explicit PUCCH resource is used for a PDCCH transmitted in the remaining DL CC (s).
  • a specific DL CC eg, PCC
  • a UE may receive a PDSCH-scheduling PDCCH through a plurality of DL CCs.
  • the figure illustrates a case in which one PDCCH is received on the PCC and the SCC, respectively.
  • the UE receives a PDSCH signal corresponding to each PDCCH.
  • up to two codewords may be transmitted through each I SCH.
  • two PUCCH resources linked to the corresponding PDCCH may be allocated for ACK / NACK transmission for two codewords (or transport blocks) transmitted through a PDSCH scheduled by the PCC PDCCH.
  • Two codewords (or transport blocks) transmitted on a scheduling PDSCH may be pre-allocated for ACK / NACK transmission with two explicit PUCCH resources. Thereafter, the terminal feeds back a plurality of ACK / NACK using an ACK / NACK channel selection scheme. That is, the terminal transmits a bit value for the plurality of ACK / NACK using one of the plurality of PUCCH resources.
  • PUCCH resources may be allocated to a plurality of terminals.
  • explicit PUCCH resources may be changed / designated using ARI information included in the PDCCH.
  • the ARI information may be included in the PCC PDCCH and / or the SCC PDCCH.
  • the ARI information may be included in a PDCCH (eg, a PDCCH transmitted through an SCC) that is not used to designate an implicit PUCCH resource.
  • the ARI information may include, for example, an offset value used to change an explicit PUCCH resource.
  • the ARI information can be used to change the PUCCH index.
  • a changed cyclic shift, a changed orthogonal cover, and / or a changed PRB can be obtained from the changed PUCCH index. It can also be used to directly change at least one of an ARI cyclic shift, an orthogonal cover and a PRB.
  • Table 4 illustrates explicit PUCCH resources according to this example.
  • the upper layer in the table includes the RRCCRadio Resource Control) layer. This example may be similarly applied to the case of changing the explicit PUCCH resource in the following embodiment.
  • the ARI information may specify different explicit PUCCH resource sets.
  • the explicit resource set means a plurality of explicit resources allocated per one PDCCH.
  • an explicit resource set includes a PUCCH resource pair.
  • Table 5 illustrates explicit PUCCH resources according to this example. This example may be similarly applied to the case of specifying explicit PUCCH resources in the following embodiment.
  • the 1 ⁇ 1st PUCCH resource value The 1 ⁇ 2st PUCCH resource value
  • the 2-lnd PUCCH resource value The 2 ⁇ 2nd PUCCH resource value
  • the 3 "lrd PUCCH resource value The 3 ⁇ 2rd PUCCH resource value
  • the 4 ⁇ 1th PUCCH resource value The 4-2th PUCCH resource value
  • Each SCC PDCCH may include ARI information.
  • ARI information eg, PUCCH resource offset value or PUCCH resource set
  • the ARI information included in each SCC PDCCH may be independent of each other.
  • the ARI information is implicit information (Example 1), or explicit information (Example
  • the ARI information may be used to selectively specify / change an implicit resource or explicit resource.
  • the ARI information may inform whether to use an implicit resource linked to the corresponding PDCCH (Example 1) or to use an explicit resource (Example 2).
  • the ARI information may indicate whether to use the corresponding PUCCH resource or the explicit resource for each of the two implicit resources linked to the PDCCH.
  • the ARI information may designate one or a plurality of resource set (s) and one explicit resource set represented by an offset with respect to the implicit resource and the implicit resource derived from the PDCCH.
  • the ARI information may designate one of an implicit resource derived from the PDCCH and a plurality of explicit resource sets (or resources determined by the explicit resource set and offset thereof). Black, ARI information is determined by one or more resource set (s) and a plurality of explicit resource sets expressed as offsets for the implicit and implicit resources derived from the PDCCH (black is determined by the explicit resource set and its offset) One of the available resources).
  • Example 3 When a combination of implicit and explicit resources is used for a specific DL CC for a plurality of PDCCH monitoring CCs and an explicit resource is used for the remaining DL CCs
  • FIG. 13 illustrates a method of allocating PUCCH resources for ACK / NACK transmission according to the present embodiment.
  • This example uses two codewords transmitted over a particular DL CC (e.g. PCC). For example, a case in which one implicit PUCCH resource is allocated to a PDCCH scheduling MIMO transmission and the remaining PUCCH resources are allocated in an explicit manner.
  • DL CC e.g. PCC
  • a UE may receive a PDSCH-scheduling PDCCH through a plurality of DL CCs.
  • the figure illustrates a case where one PDCCH is received on the PCC and the SCC, respectively.
  • the terminal receives a PDSCH signal corresponding to each PDCCH.
  • up to two codewords may be transmitted through each PDSCH.
  • one PUCCH resource linked to the corresponding PDCCH may be allocated for ACK / NACK transmission for two codewords transmitted in the PDSCH scheduled by the PCC PDCCH.
  • the remaining three PUCCH resources may be allocated in advance in an explicit manner.
  • the UE feeds back a plurality of ACK / NACKs using an ACK / NACK channel selection scheme.
  • the same explicit PUCCH resources may be allocated to a plurality of terminals.
  • an explicit PUCCH resource may be changed / designated using ARI information included in the PDCCH.
  • the ARI information may be included in the PCC PDCCH and / or the SCC PDCCH.
  • the ARI information may be included in a PDCCH (eg, a PDCCH transmitted through an SCC) that is not used to designate an implicit PUCCH resource.
  • the ARI information may include, for example, an offset value used to change the explicit PUCCH resource (see Table 4).
  • the ARI information can be used to change the PUCCH index.
  • a changed cyclic shift, a changed orthogonal cover and / or a changed PRB can be obtained from the changed PUCCH index. It can also be used to directly change at least one of ARI cyclic shifts, orthogonal covers and PRBs.
  • the ARI information may specify different explicit PUCCH resource sets (see Table 5).
  • the explicit resource set means a plurality of explicit resources allocated per one PDCCH.
  • an explicit resource set includes a PUCCH resource pair.
  • the PUCCH resource that is changed by the ARI may be part of the overall explicit PUCCH resource. have.
  • one of the three explicit PUCCH resources of FIG. 13 may be used only for the mapping of ACK / NACK information for PDSCHs that are primarily scheduled on the PCC.
  • ARI information of SCC PDCCH may not be applied to the one PUCCH resource. Accordingly, when the UE misses the SCC PDCCH, an error may be avoided in the ACK / NACK answer for the PDSCH transmitted to the PCC.
  • each SCC PDCCH may include ARI information.
  • ARI information eg, PUCCH resource offset value or PUCCH resource set
  • the ARI information included in each SCC PDCCH may be independent of each other.
  • the ARI information is implicit information (Example 1), or explicit information (Example
  • ARI information may be used to selectively specify / change an implicit resource or explicit resource.
  • the ARI information may indicate whether to use an implicit resource linked to the corresponding PDCCH (Example 1) or to use an explicit resource (Example 3). More preferably, the ARI information may indicate whether to use a corresponding PUCCH resource or an explicit resource for each of two implicit resources linked to the PDCCH. More preferably, the ARI information may designate one or a plurality of resource set (s) and one explicit resource set represented by an offset with respect to the implicit resource and the implicit resource derived from the PDCCH.
  • the ARI information may specify an implicit resource derived from the PDCCH and a plurality of explicit resource sets (or resources determined by the explicit resource set and offset thereof).
  • the ARI information may be determined by one or more resource set (s) and a plurality of explicit resource sets (or explicit resource sets and offsets) expressed as offsets for implicit and implicit resources derived from the PDCCH. Can be specified.
  • Embodiment 4 When a plurality of PDCCHs are transmitted through one PDCCH monitoring CC and a combination of an implicit resource and an explicit resource is used for each PDCCH
  • PUCCH 14 illustrates a method of allocating PUCCH resources for ACK / NACK transmission according to the present embodiment.
  • one implicit PUCCH resource is allocated to each PDCCH scheduling two codeword MIMO transmissions transmitted through one PDCCH monitoring CC (eg, PCC), and one explicit PUCCH resource is added in advance for each PDCCH.
  • PDCCH monitoring CC eg, PCC
  • An example of the assignment is given.
  • the terminal uses a plurality of PDCCH monitoring CCs.
  • PDSCH-scheduling PDCCH may be received.
  • the figure illustrates a case where a plurality of PDCCHs are received through the PCC.
  • the terminal receives a PDSCH signal corresponding to each PDCCH.
  • up to two codewords may be transmitted through each? DSCH.
  • one PUCCH resource linked to each PDCCH may be allocated for ACK / NACK transmission, and two PUCCH resources may be allocated in advance in an explicit manner.
  • the terminal feeds back a plurality of ACK / NACK using an ACK / NACK channel selection scheme. That is, the terminal transmits bit values corresponding to the plurality of ACK / NACK using one of the plurality of PUCCH resources.
  • the same explicit PUCCH resources may be allocated to a plurality of terminals.
  • an explicit PUCCH resource may be changed / designated using ARI information included in the PDCCH.
  • the ARI information may be included in the PCC PDCCH and / or the SCC PDCCH.
  • the ARI information may be included in a PDCCH (eg, a PDCCH transmitted through an SCC) that is not used to designate an implicit PUCCH resource.
  • the ARI information may include, for example, an offset value used to change an explicit PUCCH resource.
  • the ARI information can be used to change the PUCCH index (see Table 4).
  • a changed cyclic shift, a changed orthogonal cover and / or a changed PRB can be obtained from the changed PUCCH index. It can also be used to directly change at least one of an ARI cyclic shift, an orthogonal cover and a PRB.
  • the ARI information may specify different explicit PUCCH resource sets (see Table 5).
  • the explicit resource set means a plurality of explicit resources allocated per one PDCCH.
  • an explicit resource set includes a PUCCH resource pair.
  • the PUCCH resource changed by the ARI may be part of all explicit PUCCH resources. "For example, one of the two express PUCCH resources shown in FIG. 14 may be used only in the mapping of the ACK / NACK information for the PDSCH is scheduled mainly to the PCC. In this case, ARI information of SCC PDCCH may not be applied to the one PUCCH resource. Therefore, when the UE misses the SCC PDCCH, it is possible to avoid an error in the ACK / NACK response to the PDSCH transmitted to the PCC.
  • each SCC PDCCH may include ARI information.
  • ARI information eg, PUCCH resource offset value or PUCCH resource set
  • the ARI information included in each SCC PDCCH may be independent of each other.
  • the implicit resource and the explicit resource may be selectively used for the second PUCCH resource allocated to each PDCCH using ARI information.
  • the ARI information may indicate whether to use an implicit resource linked to the corresponding PDCCH (Example 1) or to use an explicit resource (Example 4).
  • the ARI information may designate one of a plurality of resource (s) and one explicit resource represented by an offset with respect to the implicit resource and the implicit resource derived from the PDCCH.
  • the ARI information may designate one of an implicit resource derived from the PDCCH and a plurality of explicit resources (or resources determined by explicit resources and offsets thereof).
  • the ARI information may include one or more resource (s) and a plurality of explicit resources (or resources determined by an explicit resource and an offset thereof) expressed as an offset with respect to the implicit resource and the implicit resource derived from the PDCCH. You can specify one.
  • Embodiment 5 When a plurality of PDCCHs are transmitted through one PDCCH monitoring CC and an implicit resource is used for all PDCCHs
  • the UE may receive a plurality of PDSCH-scheduling PECCHs through one PDCCH monitoring CC.
  • the drawing shows that a plurality of PDCCHs Illustrate the case where it is received.
  • the terminal receives a PDSCH signal corresponding to each PDCCH.
  • up to two codewords may be transmitted through each and the PDSCH.
  • two PUCCH resources linked to each PDCCH may be allocated to transmit ACK / NACK for two codewords transmitted through each PDSCH.
  • the terminal feeds back a plurality of ACK / NACK using an ACK / NACK channel selection scheme. That is, the terminal transmits a bit value for the plurality of ACK / NACK using one of the plurality of PUCCH resources.
  • two PUCCH resources linked to two CCEs (eg, the first CCE and the second CCE) constituting the corresponding PDCCH may be allocated.
  • the allocated PUCCH resources may collide with the PUCCH resources used by other terminals.
  • the resource may be changed by a specific offset for all or some of the PUCCH resources linked to the corresponding PDCCH (for example, the PUCCH resources linked to the second CCE) through the ARI information.
  • the ARI information may include a case where the PUCCH resource is not changed and a case where the PUCCH resource is changed to one or a plurality of offset values.
  • the figure illustrates a method of changing only one of two PUCCH resources linked to the SCC PDCCH through the ARI.
  • the ARI information is included only in the PCC PDCCH so that only PUCCH resources linked to the corresponding PDCCH can be changed.
  • the ARI information may be included only in the SCC PDCCH to change only PUCCH resources linked to the corresponding PDCCH.
  • ARI information in each SCC PDCCH may be applied only to PUCCH resources linked to the corresponding PDCCH. That is, the ARI information of the SCC PDCCHs may be independently set.
  • An ARI (eg, offset value) can be used to change the PUCCH index linked to the PDCCH.
  • a changed cyclic shift, a changed orthogonal cover, and / or a changed PRB can be obtained from the changed PUCCH index.
  • the ARI eg, offset value
  • the ARI can be used to directly change at least one of the cyclic shift, the orthogonal cover and the PRB.
  • the ARI information may designate one or a plurality of resource (s) and one explicit resource expressed as an offset with respect to the implicit resource and the implicit resource derived from the PDCCH.
  • the ARI information may specify one of an implicit resource derived from the PDCCH and a plurality of explicit resources (or resources determined by explicit resources and offsets thereof).
  • the ARI information may include one or more resource (s) and a plurality of explicit resources represented by offsets with respect to the implicit resource and the implicit resource derived from the PDCCH (the resources determined by the explicit resource and the offset thereof). You can specify one of them.
  • Embodiment 6 When a PDCCH is transmitted to a plurality of PDCCH monitoring CCs and a combination of an implicit resource and an explicit resource is used for each PDCCH
  • FIG. 16 illustrates a method of allocating PUCCH resources for ACK / NACK transmission according to an embodiment of the present invention.
  • FIG. 16 illustrates one implicit PUCCH resource for each PDCCH scheduling two codeword MIM0 transmissions transmitted through each DL CC.
  • a terminal may receive a PDSCH-scheduling PDCCH through a plurality of DL CCs.
  • the figure illustrates a case where one PDCCH is received on the PCC and the SCC, respectively.
  • the terminal receives a PDSCH signal corresponding to each PDCCH.
  • up to two codewords may be transmitted through each PDSCH.
  • one PUCCH resource linked to each PDCCH may be allocated for AC / NACK transmission, and the remaining PUCCH resources may be pre-allocated in an explicit manner.
  • the terminal feeds back a plurality of ACK / NACK using an ACK / NACK channel selection scheme. That is, the terminal A bit value corresponding to a plurality of ACK / NACKs is transmitted using one of the plurality of PUCCH resources.
  • the same explicit PUCCH resources may be allocated to a plurality of terminals.
  • an explicit PUCCH resource may be changed / designated using ARI information included in the PDCCH.
  • the ARI information may be included in the PCC PDCCH and / or the SCC PDCCH.
  • the ARI information may be included in a PDCCH (eg, a PDCCH transmitted through an SCC) that is not used to designate an implicit PUCCH resource.
  • the ARI information may include, for example, an offset value used to change the explicit PUCCH resource.
  • the ARI information can be used to change the PUCCH index (see Table 4).
  • a changed cyclic shift, a changed orthogonal cover and / or a changed PRB can be obtained from the changed PUCCH index, and can also be used to directly change at least one of the ARI cyclic shift, the orthogonal cover and the PRB.
  • the ARI information may specify different explicit PUCCH resource sets (see Table 5).
  • the explicit resource set means a plurality of explicit resources allocated per one PDCCH.
  • an explicit resource set includes a PUCCH resource pair.
  • the PUCCH resource changed by ARH1 may be part of all explicit PUCCH resources.
  • one of the two explicit PUCCH resources of FIG. 16 may be used only for the mapping of ACK / NACK information for PDSCHs that are primarily scheduled on the PCC.
  • ARI information of SCC PDCCH may not be applied to the one PUCCH resource. Accordingly, when the UE misses the SCC PDCCH, an error may be avoided in the ACK / NACK answer for the PDSCH transmitted to the PCC.
  • each SCC PDCCH may include ARI information.
  • ARI information eg, PUCCH resource offset value or PUCCH resource set
  • the ARI information included in each SCC PDCCH may be independent of each other.
  • an ARI transmitted on a PDCCH is an implicit PUCCH linked to that PDCCH. You can change the resource. That is, when the implicit PUCCH resources linked to the PDCCHs transmitted to different DL CCs are not separately secured to the same UL CC, collisions may be avoided through the ARI since there may be a layer between the implicit PUCCH resources. In this case, the ARI information may be included only in the PDCCH transmitted on the DL CC other than the PCC.
  • the implicit resource and the explicit resource may be selectively used for the second PUCCH resource allocated to each PDCCH using ARI information.
  • the ARI information may indicate whether to use an implicit resource linked to the corresponding PDCCH (Example 1) or to use an explicit resource (Example 6).
  • the ARI information may designate one or a plurality of resource (s) and one explicit resource expressed as an offset with respect to the implicit resource and the implicit resource derived from the PDCCH.
  • the ARI information may designate one of an implicit resource derived from the PDCCH and a plurality of explicit resources (or resources determined by explicit resources and offsets thereof).
  • the ARI information may be represented by an offset with respect to the implicit resource and the implicit resource derived from the PDCCH, or one or more of a plurality of resource (s) and a plurality of explicit resources (or resources determined by the explicit resource and the offset thereof). You can specify one of them.
  • a wireless communication system includes a base station (BS) 110 and a terminal (UE) 120.
  • Base station 110 includes a processor 112, a memory 114, and a radio frequency (RF) unit 116.
  • the processor 112 may be configured to implement the procedures and / or methods proposed in the present invention.
  • the memory 114 is connected with the processor 112 and stores various information related to the operation of the processor 112.
  • the RF unit 116 is connected with the processor 112 and transmits and / or receives a radio signal.
  • Terminal 120 includes a processor 122, a memory 124, and an RF unit 126.
  • the processor 122 may be configured to implement the procedures and / or methods proposed in the present invention.
  • Memory 124 It is connected with the processor 122 and stores various information related to the operation of the processor 122.
  • the RF unit 126 is connected with the processor 122 and transmits and / or receives a radio signal.
  • the base station 110 and / or the terminal 120 may have a single antenna or multiple antennas.
  • embodiments of the present invention have been mainly described based on data transmission / reception relations between a terminal and a base station.
  • Certain operations described in this document as being performed by a base station may, in some cases, be performed by their upper node. That is, it is apparent that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • the base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • the terminal may be a UECUser Equipment (MS), a Mobile Station (MS), or an MSSC Mobile Subscriber Station. ), Etc. may be substituted.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more ASICs (ap 1 i cat ion specific integrated circuits), DSPs digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), Field programmable gate arrays (FPGAs), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs ap 1 i cat ion specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs Field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of modules, procedures, and functions that perform the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.
  • the present invention can be used in a wireless communication device such as a terminal, a relay, a base station, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것이다. 구체적으로, 본 발명은 상향링크 제어 정보를 전송하는 방법 및 이를 위한 장치에 관한 것으로서, 복수의 상향링크 제어 채널 자원으로부터 복수의 HARQ-ACK에 대응하는 하나의 상향링크 제어 채널 자원을 선택하는 단계; 및 상기 선택된 상향링크 제어 채널 자원을 이용하여 상기 복수의 HARQ-ACK에 대응하는 비트 값을 전송하는 단계를 포함하는 방법 및 이를 위한 장치에 관한 것이다.

Description

【명세서】
【발명의 명칭】
제어 정보를 전송하는 방법 및 이를 위한 장치
【기술분야】
본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 제어 정보를 전송하는 방법 및 이를 위한 장치에 관한 것이다.
【배경기술】
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 간용한 시스템 자원 (대역폭, 전송 파워 둥)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속 (multiple access) 시스템이다. 다증 접속 시스템의 예들로는 CDMA (code division multiple access) 시스템, FDMA( frequency division multiple access) 시스템, TDMA(t ime division multiple access) 시스템, 0FDMA( orthogonal frequency division multiple access) 시스템, SC-FDMA( single carrier frequency division multiple access) 시스템 등이 있다.
【발명의 내용】
【해결하려는 과제】
본 발명의 목적은 무선 통신 시스템에서 상향링크 제어 정보를 효율적으로 전송하는 방법 및 이를 위한 장치를 제공하는데 있다. 본 발명의 다른 목적은 멀티캐리어 상황에서 제어 정보, 바람직하게는 ACK/NACK 정보를 효율적으로 전송하는 방법 및 이를 위한 장치를 제공하는데 있다.
\발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되.지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다. 【과제의 해결 수단】
본 발명의 일 양상으로, 무선 통신 시스템에서 복수의 셀이 구성된 통신 장치가 상향링크 제어정보를 전송하는 방법에 있어서, 하나의 셀 상에서 복수의 PDCCHCPhysical Downlink Control CHannel) 신호를 수신하는 단계; 상기 복수의 PDCCH가 지시하는 복수의 PDSCH(Physical Downlink Shared CHannel)신호를 수신하는 단계; 상기 복수의 PDSCH신호에 대응하는 복수의 HARQ ACKCHybr id Automatic Repeat reQuest - Acknowledgement)을 생성하는 단계; 및 복수의 PUCCH(Physical Uplink Control CHannel) 자원 중 하나의 PUCCH 자원을 이용하여 상기 복수의 HARQ-ACK에 대응하는 비트 값을 전송하는 단계를 포함하고,상기 복수의 PUCCH자원은, 각 PDCCH 신호의 전송을 위한 자원 인덱스와 링크된 복수의 제 1 PUCCH 자원과 상위 계층에 의해 구성된 적어도 하나의 제 2 PUCCH자원을 포함하는 방법이 제공된다.
본 발명의 다른 양상으로, 무선 통신 시스템에서 복수의 셀이 구성된 상황에서 상향링크 제어정보를 전송하도록 구성된 통신 장치에 있어서, 무선 주파수 (Radio Frequency, RF)유닛 ; 및 프로세서를 포함하고,상기 프로세서는 하나의 샐 상에서 복수의 PDCQKPhysical Downlink Control CHannel)신호를 수신하며 , 상기 복수의 PDCCH가 지.시하는 복수의 PDSCH(Physical Downlink Shared CHannel) 신호를 수신하고, 상기 복수의 PDSCH 신호에 대응하는 복수의 HARQ ACK(Hybrid Automatic Repeat reQuest - Acknowledgement)을 생성하며, 복수의 Pl]CCH(Physical Uplink Control CHannel) 자원 중 하나의 PUCCH 자원을 이용하여 상기 복수의 HARQ-ACK에 대응하는 비트 값을 전송하도톡 구성되고, 상기 복수의 PUCCH 자원은, 각 PDCCH 신호의 전송을 위한 자원 인덱스와 링크된 복수의 제 1 PUCCH 자원과 상위 계층에 의해 구성된 적어도 하나의 제 2 PUCCH자원을 포함하는 통신 장치가 제공된다.
바람직하게, 상기 복수의 PDCCH신호 중 적어도 하나는 HARQ-ACK을 위한 자원 지시 정보를 포함하고, 상기 HARQ— ACK을 위한자원 지시 정보는 상기 적어도 하나의 제 2 PUCCH자원을 변형하는데 사용된다.
바람직하게, 상기 HARQ-ACK을 위한 자원 지시 정보는 오프셋 값을 포함한다. 바람직하게, 상기 HARQ-ACK을 위한 자원 지시 정보는 세컨더리 셀 상에서 전송되는 PDSCH 신호에 대웅하는 PDCCH 신호의 TPC(Transmit Power Field) 필드에 포함된다.
바람직하게, 상기 복수의 PDCCH신호 중 적어도 하나는 HARQ-ACK을 위한 자원 지시 정보를 포함하고, 상기 HARQ-ACK을 위한 자원 지시 정보는 상기 상위 계층에 의해 구성된 제 2 PUCCH 자원 후보 세트로부터 상기 적어도 하나의 제 2 PUCCH 자원을 지시하는 정보를 포함한다.
바람직하게, 상기 제 1 PUCCH 자원은 해당 PDCCH 신호의 전송을 위한 가장 작은 CCE Control Channel Element) 인덱스를 이용하여 주어진다.
바람직하게, 상기 복수의 PDCCH 신호는 프라이머리 셀 상에서 수신된다. [발명의 효과】
본 발명에 의하면, 무선 통신 시스템에서 상향링크 제어 정보를 효율적으로 전송할 수 있다. 또한, 멀티캐리어 상황에서 제어 정보, 바람직하게는 ACK/NACK 정보를 효율적으로 전송할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
【도면의 간단한 설명】
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 프레임 (radio frame)의 구조를 예시한다.
도 2는 하향링크 슬롯의 자원 그리드를 예시한다.
도 3은 하향링크 서브프레임의 구조를 나타낸다.
도 4는 상향링크 서브프레임의 구조를 예시한다.
도 5는 PUCCH 포맷을 PUCCH 영역에 물리적으로 매핑하는 예를 나타낸다.
도 6은 PUCCH포맷 2/2a/2b의 슬롯 레벨 구조를 나타낸다.
도 7은 PUCCH 포맷 /lb의 슬롯 레벨 구조를 나타낸다.
도 8은 ACK/NACK을 위한 PUCCH 자원을 결정하는 예를 나타낸다.
도 9는 캐리어 병합 (Carrier Aggregation, CA) 통신 시스템을 예시한다.
도 10은 복수의 캐리어가 병합된 경우의 스케줄링을 예시한다. 도 11~16은 본 발명의 실시예에 따른 ACK/NACK자원 할당 방법을 예시한다. 도 17은는 본 발명에 일 실시예에 적용될 수 있는 기지국 및 단말을 예시한다.
【발명을 실시하기 위한 구체적인 내용】
이하의 기술은 CDMA(code division multiple access) , FDMA( frequency division multiple access) , TDMA(time division multiple access), 0FDMA( orthogonal frequency division multiple access) , SC-FDMAC single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRACUniversal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술 (radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communi cat ions )/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. 0FDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA( Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS Jniversal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTEdong term evolution)는 E-UTRA를 사용하는. E-UMTS(Evolved UMTS)의 일부로서 하향링크에서 0FDMA를 채용하고 상향링크에서 SOFDMA를 채용한다. LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP LTE/LTE-A를 위주로 기술하지만 본 발명의 기술 ¾ 사상이 이에 제한되는 것은 아니다. 또한, 이하의 설명에서 사용되는 특정 (特定) 용어들은 본 발명의 이해를 돕기 위해서 제공된 것이며, 이러한 특정 용어의 사용은 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다른 형태로 변경될 수 있다.
도 1은 무선 프레임의 구조를 예시한다.
도 1을 참조하면 ,무선 프레임은 10개의 서브프레임을 포함한다 .서브프레임은 시간 도메인에서 두 개의 슬롯을 포함한다. 서브프레임을 전송하는 시간이 전송 시간 간격 (Transmission Time Interval, ΤΉ)으로 정의된다. 예를 들어, 하나의 서브프레임은 lms의 길이를 가질 수 있고, 하나의 슬롯은 0.5ms의 길이를 가질 수 있다. 하나의 슬롯은 시간 도메인에서 복수의 0FDM(0rthogonal Frequency Division Multiplexing) 또는 SC~FDMA(S ingle Carrier Frequency Division Multiple Access) 삼볼을 가진다. LTE는 하향링크에서 0FDMA를 사용하고 상향링크에서 SOFD 를 사용하므로, OFDM 또는 SC-FDMA 심볼은 하나의 심볼 기간을 나타낸다. 자원 블록 (Resource Block, RB)은 자원 할당 유닛이고, 하나의 슬롯에서 복수의 연속된 부반송파를 포함한다. 무선 프레임의 구조는 예시적으로 도시된 것이다. 무선 프레임에 포함되는 서브프레임의 개수, 서브프레임에 포함되는 슬롯의 개수, 슬롯에 포함되는 심불의 개수는 다양한 방식으로 변형될 수 있다.
도 2는 하향링크 슬롯의 자원 그리드를 예시한다.
도 2를 참조하면, 하향링크 슬롯은 시간 도메인에서 복수의 0FDM 심볼올 포함한다. 하나의 하향링크 슬롯은 7(6)개의 0FDM 심볼을 포함하고 자원 블록은 주파수 도메인에서 12개의 부반송파를 포함할 수 있다. 자원 그리드 상의 각 요소 (element)는 자원 요소 (Resource Element, RE)로 지칭된다. 하나의 RB는 12X7(6)개의 RE를 포함한다. 하향링크 슬롯에 포함되는 RB의 개수 Nffi는 하향링크 전송 대역에 의존한다. 상향링크 슬롯의 구조는 하향링크 슬롯의 구조와 동일하되, 0FDM심볼이 SC-FDMA심볼로 대체된다.
도 3은 하향링크 서브프레임의 구조를 예시한다.
도 3을 참조하면, 서브프레임의 첫 번째 슬롯에서 앞부분에 위치한 최대 3(4)개의 0FDM 심볼은 제어 채널이 할당되는 제어 영역에 대응한다. 남은 0FDM 심볼은 PDSQKPhysical Downlink Shared CHannel)가 할당되는 데이터 영역에 해당한다. PDSCH는 전송블록 (Transport Block, TB) 혹은 그에 대웅하는 부호어 (Codeword, CW)를 나르는데 사용된다. 전송블록은 전송 채널을 통해 MAC 계층으로부터 PHY 계층으로 전달된 데이터 블록을 의미한다. 부호어는 전송 블록의 부호화된 버전에 해당한다. 전송블록과 부호어의 대응 관계는 스와핑에 따라 달라질 수 있다. 본 명세서에서 PDSCH, 전송블록, 부호어는 서로 흔용된다. LTE에서 사용되는 하향링크 제어 채널의 예는 PCFICH(Physical Control Format Indicator Channel), PDCCH(Physical Downlink Control Channel), PHICH(Physical hybrid ARQ indicator Channel) 등을 포함한다. PCFICH는 서브프레임의 첫 번째 OFDM 심블에서 전송되고 서브프레임 내에서 제어 채널의 전송에 사용되는 OFDM심볼의 개수에 관한 정보를 나른다. PHICH는 상향링크 전송에 대한 웅답으로 HARQ ACK/NACK( Hybrid Automatic Repeat request acknowledgment/negative— acknowledgment)신호를 나른다.
PDCCH를 통해 전송되는 제어 정보를 DCKDownlink Control Information)라고 지칭한다. DCI는 단말 또는 단말 그룹을 위한 자원 할당 정보 및 다른 제어 정보를 포함한다ᅳ 예를 들어, DCI는 상향 /하향링크 스케줄링 정보, 상향링크 전송 (Tx) 파워 제어 명령 등을 포함한다. 다중-안테나 기술을 구성하기 위한 전송 모드 및 DCI 포맷의 정보 컨텐츠는 다음과 같다.
전송 모드 (Transmission Mode)
參 전송 모드 1: Transmission from a single base station antenna port 전송 모仁 2: Transmit diversity
전송 모드 3: Open- loop spatial multiplexing
•전송 모 c 4: Closed- loop spatial multiplexing
전송 모드 5: Mult i -user M1M0
•전송 모드 6: Closed- loop rank-1 precoding
전송 모드 7: Transmission using UE-specif ic reference signals
DCI 포^
• 포1 0: Resource grants for the PUSCH transmissions (uplink)
• 포맷 1: Resource assignments for single codeword PDSCH transmissions (transmission modes 1, 2 and 7)
• 포1 1A: Compact signaling of resource assignments for single codeword PDSCH (all modes)
•포맷 IB: Compact resource assignments for PDSCH using rank-1 closed loop precoding (mode 6)
• 포맷 IC: Very compact resource assignments for PDSCH (e.g. paging/broadcast system information)
• 포맷 ID: Compact resource assignments for PDSCH using mult i -user MIMO (mode 5)
• 포맷 2: Resource assignments for PDSCH for closed- loop MIMO operation (mode 4)
• 포맷 2A: Resource assignments for PDSCH for open- loop MIMO operation (mode 3)
• 포맷 3/3A: Power control commands for PUCCH and PUSCH with 2-bit/l-bit power adjustments
상술한 바와 같이, PDCCH는 하향링크 공유 채널 (downlink shared channel ,
DL一 SCH)의 전송 포맷 및 자원 할당 정보, 상향링크 공유 채널 (uplink shared channel UL— SCH)의 전송 포맷 및 자원 할당 정보, 페이징 채널 (paging channel, PCH) 상의 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 웅답과 같은 상위 -계층 제어 메시지의 자원 할당 정보, 단말 그룹 내의 개별 단말들에 대한 Tx 파워 제어 명령 세트, Τχ 파워 제어 명령, VoIP(Voice over IP)의 활성화 지시 정보 등을 나른다. 복수의 PDCCH가 제어 영역 내에서 전송될 수 있다. 단말은 복수의 PDCCH를 모니터링 할 수 있다. PDCCH는 하나 또는 복수의 연속된 제어 채널 요소 (control channel element, CCE)들의 집합 (aggregat ion)상에서 전송된다. CCE는 PDCCH에 무선 채널 상태에 기초한 코딩 레이트를 제공하는데 사용되는 논리적 할당 유닛이다. CCE는 복수의 자원 요소 그룹 (resource element group, REG)에 대응한다. PDCCH의 포맷 및 PDCCH 비트의 개수는 CCE의 개수에 따라 결정된다. 기지국은 단말에게 전송될 DCI에 따라 PDCCH 포맷을 결정하고, 제어 정보에 CRC(cyclic redundancy check)를 부가한다. CRC는 PDCCH의 소유자 또는 사용 목적에 따라 식별자 (예, RNTKradio network temporary identifier))로 마스킹 된다. 예를 들어, PDCCH가 특정 단말을 위한 것일 경우, 해당 단말의 식별자 (예, cell-RNTI (C-RNTI))가 CRC에 마스킹 될 수 있다. PDCCH가 페이징 메시지를 위한 것일 경우, 페이징 식별자 (예, paging-R TI (P-RNTI))가 CRC에 마스킹 돨 수 있다. PDCCH가 시스템 정보 (보다 구체적으로, 시스템 정보 불록 (system information block, SIC))를 위한 것일 경우, SI-R TI (system information RNTI)가 CRC에 마스 ¾ 될 수 있다. PDCCH가 랜덤 접속 응답을 위한 것일 경우, RA-RNTI (random access-R TI)가 CRC에 마스킹 될 수 있다.
도 4는 LTE에서 사용되는 상향링크 서브프레임의 구조를 예시한다.
도 4를 참조하면, 상향링크 서브프레임은 복수 (예, 2개)의 슬롯을 포함한다. 슬롯은 CP 길이에 따라 서로 다른 .수의 SC-FDMA 심볼을 포함할 수 있다. 상향링크 서브프레임은 주파수 영역에서 데이터 영역과 제어 영역으로 구분된다. 데이터 영역은 PUSCH를 포함하고 음성 등의 데이터 신호를 전송하는데 사용된다. 제어 영역은 PUCCH를 포함하고 상향링크 제어 정보 (Uplink Control Information, UCI)를 전송하는데 사용된다. PUCCH는 주파수 축에서 데이터 영역의 양끝 부분에 위치한 RB 쌍 (RB pair)을 포함하며 슬롯을 경계로 호핑한다.
PUCCH는 다음의 제어 정보를 전송하는데 사용될 수 있다.
- SR( Scheduling Request): 상향링크 UL-SCH 자원을 요청하는데 사용되는 정보이다. 00K(0n-0ff Keying) 방식을 이용하여 전송된다.
- HARQ ACK/NACK: PDSCH 상의 하향링크 데이터 패킷에 대한 응답 신호이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 하향링크 코드워드에 대한 응답으로 ACK/NACK 1비트가 전송되고, 두 개의 하향링크 코드워드에 대한 응답으로 ACK/NACK 2비트가 전송된다.
ᅳ CQI (Channel Quality Indicator): 하향링크 채널에 대한 피드백 정보이다.
MIM0(Multiple Input Multiple Output)-관련 피드백 정보는 RKRank Indicator) 및 PMKPrecoding Matrix Indicator)를 포함한다. 서브프레임 당 20비트가사용된다. 단말이 서브프레임에서 전송할 수 있는 제어 정보 (UCI)의 양은 제어 정보 전송에 가용한 SC-FDMA의 개수에 의존한다. 제어 정보 전송에 가용한 SC-FDMA는 서브프레임에서 참조 신호 전송을 위한 SC-FDMA 심볼을 제외하고 남은 SC-FDMA 심볼을 의미하고, SRS(Sounding Reference Signal)가 설정된 서브프레임의 경우 서브프레임의 마지막 SC-FDMA 심볼도 제외된다. 참조 신호는 PUCCH의 코히어런트 포포포포포포포
¾ ¾맷 ¾맷맷 검줄에 사용된다. PUCCH는 전송되는 정보에 따라 7개의 포맷을 지원한다.
표 1은 LTE에서 PUCCH포맷과 UCI의 매핑 관계를 나타낸다.
【표 1】
PUCCH 포맷 ' 상향링크 제어 정보 (Uplink Control Information, UCI)
SR(Scheduling Request) (비변조된 파형)
1-비트 HARQ ACK/NACK (SR 존재 /비존재)
2-비트 HARQ ACK/NACK (SR 존재 /비존재)
CQI (20개의 코딩된 비트)
CQI 및 1- 또는 2-비트 HARQ ACK/NACK (20비트) (확장 CP만 해당)
CQI 및 1ᅳ비트 HARQ ACK/NACK (20+1개의 코딩된 비트)
Figure imgf000011_0001
CQI 및 2-비트 HARQ ACK/NACK (20+2개의 코딩된 비트)
도 5는 PUCCH포맷을 PUCCH 영역에 물리적으로 매핑하는 예를 나타낸다.
도 5를 참조하면, PUCCH 포맷은 밴드 -에지 (edge)로부터 시작해서 안쪽으로
PUCCH포맷 2/2a/2b(CQI) (예, PUCCH 영역 m = 0, 1), PUCCH포맷 2/2a/2b(CQI) 또는 PUCCH포맷 l/la/lb(SR/HARQ ACK/NACK) (예, 존재할 경우 PUCCH영역 m = 2), 및 PUCCH 포맷 37la/lb(SR/HARQ ACK/NACK) (예, PUCCH 영역 m = 3, 4, 5) 순으로 RB들 상에 매핑되어 전송된다. PUCCH 포맷 2/2a/2b(CQI)에 사용될 수 있는 PUCCH RB의 개수 엷는 샐 내에서 브로드캐스트 시그널링을 통해 단말에게 전송된다.
단말이 CQI를 보고하는 주기 (periodicity) 및 빈도 (frequency resolution)는 기지국에 의해 제어된다. 시간 도메인에서 주기적 CQI 보고 방식 및 비주기적 CQI 보고 방식이 지원된다. PUCCH 포맷 2는 주기적 CQI 보고에 사용된다. 다만, 주기적 CQI 보고에서, CQI 전송이 예정된 서브프레임에 PUSCH가 스케줄링 되어 있다면, CQI는 데이터에 피기백 된 뒤에 PUSCH를 통해 전송된다. 비주기적 CQI 보고에는 PUSCH가사용된다. 이를 위해, 기지국은 단말에게 개별 CQI 보고를 상향링크 데이터 전송을 위해 스케줄링된 자원 (즉, PUSCH)에 임베디드 (embedded) 하여 전송할 것을 지시한다 .
도 6은 PUCCH 포맷 2/2a/2b의 슬롯 레벨 구조를 나타낸다. PUCCH 포맷 2/2a/2b는 CQI 전송에 사용된다. 노멀 (normal) CP(Cyclic Prefix)인 경우 슬롯 내에서 SC-FDMA #1및 #5는 DM S (Demodulation Reference Signal) 전송에 사용된다. 확장 (extended) CP인 경우 슬롯 내에서 SC—FDMA #3만 DM RS 전송에 사용된다.
도 6을 참조하면, 서브프레임 레벨에서 10비트 CQI 정보가 레이트 1/2 펑처링된 (20, k) Reed-Muller 코드를 사용하여 20개의 코딩 (coded) 비트로 채널 코딩된다 (미도시). 그 후, 코딩 비트는 스크램블을 거쳐 (미도시), QPSR(Quadrature Phase Shift Keying)성상 (constel lation)에 매핑된다 (QPSK변조). 스크램블은 PUSCH 데이터의 경우와 유사하게 길이 -31골드 시뭔스를 이용하여 수행될 수 있다. 10개의 QPS 변조 심볼이 생성되고 각 슬롯에서 5개의 QPSK 변조 심볼 (do~d4)이 해당 SC-FDMA심볼을 통해 전송된다. 각각의 QPSK변조 심볼은 IFFT(Inverse Fast Fourier Transform) 이전에 길이 -12의 베이스 (base) RS시뭔스 (ru,0)를 변조하는데 사용된다. 결과적으로 RS 시¾스는 QPSK 변조 심볼의 값에 따라 시간 도메인에서 사이클릭 쉬프트 된다 (dx*ru,0, x=0~4). QPSK 변조 심볼과 곱해진 RS 시뭔스는 사이클릭 쉬프트된다 ( cics,x, x=l, 5).사이클릭 쉬프트의 개수가 N인 경우,동일한 CQIPUCCHRB 상에 N개의 단말이 다중화 될 수 있다. DM RS 시퀀스는 주파수 도메인에서 CQI 시¾스와 유사하지만, CQI 변조 심볼에 의해 변조되지 않는다.
CQI의 주기적 보고를 위한 파라미터 /자원은 상위 계층 (예, RRC(Radio Resource Control))시그널링에 의해 반 -정적 (semi-static)으로 구성된다. 예를 들어 ,
(2)
CQI전송을 위해 PUCCH자원 인덱스 " CCH가 설정되었다면 , CQI는 PUCCH자원 인덱스
"PUCCH 링크된 CQI PUCCH상에서 주기적으로 전송된다. PUCCH자원 인덱스 "™CCH
PUCCH RB와 사이클릭 쉬프트 (acs)를 지시한다.
도 7은 PUCCH 포맷 la/ lb의 슬롯 레벨 구조를 나타낸다. PUCCH 포맷 la/ lb는
ACK/NACK전송에 사용된다. 노멀 CP인 경우 SC-FDMA #2/#3/#4가 DM RS (Demodulation Reference Signal) 전송에 사용된다. 확장 CP인 경우 SOFDMA #2/#3이 DM RS 전송에 사용된다.따라서 ,슬롯에서 4개의 SC-FDMA심볼이 ACK/NACK전송에 사용된다.편의상,
PUCCH포맷 la/lb를 PUCCH포맷 1이라고 통칭한다.
도 7을 참조하면, 1비트 [b(0)] 및 2비트 [b(0)b(l)] ACK/NACK정보는 각각 BPSK 및 QPSK 변조 방식에 따라 변조되며, 하나의 ACK/NACK 변조 심볼이 생성된다 (d0). ACK/NACK 정보에서 각각의 비트 [b(i), i=0,l]는 해당 DL 전송 블록에 대한 HARQ 웅답을 나타내며, 포지티브 ACK일 경우 해당 비트는 1로 주어지고 네거티브
ACK(NA )일 경우 해당 비트는 0으로 주어진다. 표 2는 기존 LTE에서 PUCCH포맷 la 및 lb를 위해 정의된 변조 테이블을 나타낸다.
【표 2]
Figure imgf000013_0001
PUCCH 포맷 la/lb는 상술한 CQI와 마찬가지로 주파수 도메인에서 사이클릭 쉬프트 (acs,x)를 수행하는 것 외에, 직교 커버 (예, Walsh- Hadamard 또는 DFT 코드)(\¥0, , 2, )를 이용하여 시간 도메인 확산을 한다. PUCCH 포맷 la/lb의 경우, 주파수 및 시간 도메인 모두에서 코드 다중화가 사용되므로 보다 많은 단말이 동일한 PUCCH RB 상에 다중화 될 수 있다.
서로 다른 단말로부터 전송되는 RS는 UCI와 동일한 방법을 이용하여 다중화된다. PUCCH ACK/NACK RB를 위한 SC-FDMA 심볼에서 지원되는 사이클릭 쉬프트의 개수는 셀ᅳ특정 (cell-specific) 상위 계층 시그널링 파라미터 Ashift 에 의해 구성될 수 있다. Ashift e {1, 2, 3}는 각각 쉬프트 값이 12, 6 및 4인 것을 나타낸다. 시간-도메인 CDM에서 ACK/NACK에 실제 사용될 수 있는 확산 코드의 개수는 RS심볼의 개수에 의해 제한될 수 있다. 적은 수의 RS심볼로 인해 RS심볼의 다중화 용량 (multiplexing- capacity)이 UCI 심불의 다중화 용량보다 작기 때문이다. 도 8은 ACK/NACK을 위한 PUCCH 자원을 결정하는 예를 나타낸다. LTE 시스템에서 ACK/NACK을 위한 PUCCH 자원은 각 단말에게 미리 할당되어 있지 않고, 복수의 PUCCH 자원을 셀 내의 복수의 단말들이 매 시점마다 나눠서 사용한다. 구체적으로, 단말이 ACK/NACK을 전송하는데 사용하는 PUCCH 자원은 해당 하향링크 데이터에 대한 스케줄링 정보를 나르는 PDCCH에 대응된다. 각각의 하향링크 서브프레임에서 PDCCH가 전송되는 전체 영역은 복수의 CCECControl Channel Element)로 구성되고, 단말에게 전송되는 PDCCH는 하나 이상의 CCE로 구성된다. 단말은 자신이 수신한 PDCCH를 구성하는 CCE들 중 특정 CCE (예, 첫 번째 CCE)에 대웅되는 PUCCH 자원을 통해 ACK/NACK을 전송한다. 도 8을 참조하면, 하향링크 콤포넌트 반송파 (DownLink Component Carrier, DL CC)에서 각 사각형은 CCE를 나타내고, 상향링크 콤포넌트 반송파 (UpLink Component Carrier, UL CC)에서 각 사각형은 PUCCH 자원을 나타낸다. 각각의 PUCCH 인덱스는 ACK/NACK을 위한 PUCCH 자원에 대응된다. 도 8에서와 같이 4~6 번 CCE로 구성된 PDCCH를 통해 PDSCH에 대한 정보가 전달된다고 가정할 경우, 단말은 PDCCH를 구성하는 첫 번째 CCE인 4번 CCE에 대웅되는 4번 PUCCH를 통해 PDSCH에 대한 ACK/NACK을 전송한다. 도 8은 DL CC에 최대 N개의 CCE가 존재할 때에 UL CC에 최대 M개의 PUCCH가 존재하는 경우를 예시한다. N=M일 수도 있지만 M값과 N값을 다르게 설계하고 CCE와 PUCCH들의 매핑이 겹치게 하는 것도 가능하다.
구체적으로, LTE 시스템에서 ACK/NACK 전송을 위한 PUCCH 인덱스는 다음과 같이 정해진다.
【수학식 1】
n(1)puccH = nccE + N(1)PUCCH
n(1) PUccH는 ACK/NACK/DTX을 전송하기 위한 PUCCH 포맷 1의 자원 인덱스를 나타내고, N(1) raccH는 상위계층으로부터 전달받는 시그널링 값을 나타내며, nCCE는 PDCCH 전송에 사용된 CCE 인덱스 중에서 가장 작은 값을 나타낸다. n(1) PUCCH로부터 PUCCH 포맷 la/lb를 위한 사이클릭 쉬프트, 직교 커버 및 PRB(Physical Resource Block)가 얻어진다. PUCCH 자원들은 서로 직교한다. 일반적으로, 기지국은 PDCCH 전송을 위한 CCE의 개수와 동일한 개수의 PUCCH 자원을 점유해야 한다. 그러나, PDCCH 전송을 위한 CCE의 개수가 2 이상인 경우, 첫 번째 CCE 이와의 남은 CCE 인덱스에 맵핑되는 PUCCH 인텍스는 실제 PUCCH 전송에 사용되지 못한다.
LTE 시스템이 TDD 방식으로 동작하는 경우, 단말은 서로 다른 시점의 서브프레임을 통해 수신한 복수의 PDSCH에 대해 하나의 다중화된 ACK/NACK 신호를 전송한다. 구체적으로, 단말은 PUCCH 선택 전송 (PUCCH selection) 방식을 이용하여 복수의 PDSCH에 대해 하나의 다중화된 ACK/NACK신호를 전송한다. PUCCH선택 전송은 ACK/NACK 선택 방식 또는 ACK/NACK 다중화 방식으로도 지칭된다. PUCCH 선택 전송 방식에서 단말은 복수의 하향링크 데이터를 수신한 경우에 다중화된 ACK/NACK 신호를 전송하기 위해 복수의 상향링크 물리 채널 자원을 점유한다. 일 예로, 단말은 복수의 PDSCH를 수신한 경우에 각각의 PDSCH를 지시하는 PDCCH의 특정 CCE를 이용하여 동일한 수의 PUCCH자원을 점유할 수 있다. 이 경우, 점유한 복수의 PUCCH 자원 중 어느 PUCCH 자원을 선택하는가와 선택한 PUCCH 자원에 적용되는 변조 /부호화된 내용의 조합을 이용하여 다중화된 ACK/NACK신호를 전송할 수 있다. 표 3은 LTE 시스템에 정의된 PUCCH 선택 전송 방식을 나타낸다.
【표 3】
Figure imgf000015_0001
표 3에서, HARQ-ACK(i)는 iᅳ번째 데이터 유닛 (0≤i≤3)의 HARQ ACK/NACK/DTX 결과를 나타낸다. DTX(Discontinuous Transmission)는 膽 Q-ACK(i)에 대웅하는 데이터 유닛의 전송이 없거나 단말이 HARQ-ACK(i)에 대응하는 데이터 유닛의 존재를 검출하지 못한 경우를 나타낸다. 본 명세서에서 HARQ-ACK은 ACK/NACK과 흔용된다. 각각의 데이터 유닛과 관련하여 최대 4개의 PUCCH 자원 (즉, n(1) PUCCH,0 ~ n(1) PlJCCH,3)이 점유될 수 있다. 다중화된 ACK/NACK은 점유된 PUCCH 자원으로부터 선택된 하나의 PUCCH 자원을 통해 전송된다. 표 3에 기재된 n(1) PUCCH,x는 실제로 ACK/NACK을 전송하는데 사용되는 PUCCH 자원을 나타낸다. b(0)b(l)은 선택된 PUCCH 자원을 통해 전송되는 두 비트를 나타내며 QPSK방식으로 변조된다. 일 예로, 단말이 4개의 데이터 유닛을 성공적으로 복호한 경우, 단말은 ^^^;^와 연결된 PUCCH 자원을 통해 (1,1)을 기지국으로 전송한다. PUCCH자원과 QPSK심볼의 조합이 가능한 ACK/NACK 가정을 모두 나타내기에 부족하므로 일부의 경우를 제외하고는 NACK과 DTX는 커플링된다 (NACK/DTX, N/D).
LTE-A 시스템에서, 단일 PDCCH를 위한 ACK/NACK 전송을 위해, 복수의 PUCCH 자원이 고려될 수 있다. 예를 들어, 상향링크에서 다중 안테나를 이용한 전송 다이버시티 기법이 적용될 경우, 동일한 ACK/NACK 신호가 서로 다른 안테나를 위한 서로 다른 PUCCH자원 상에서 전송되어야 한다. 이 경우, LTE시스템과 유사하게, 첫 번째 PUCCH 인덱스는 대웅되는 PDCCH 전송에 사용된 첫 번째 CCE 인덱스에 따라 결정될 수 있다. 그러나, 첫 번째 PUCCH 인덱스 이외의 다른 PUCCH 인덱스에 대한 할당 방법은 LTE 시스템에 존재하지 않는다.
도 9는 캐리어 병합 (Carrier Aggregation, CA)통신 시스템을 예시한다. LTE—A 시스템은 보다 넓은 주파수 대역을 위해 복수의 상 /하향링크 주파수 블록을 모아 더 큰 상 /하향링크 대역폭을 사용하는 캐리어 병합 (carrier aggregation 또는 bandwidth aggregation) 기술을 사용한다. 각 주파수 블록은 콤포넌트 '캐리어 (Component Carrier, CC)를 이용해 전송된다. 콤포넌트 캐리어는 해당 주파수 블특을 위한 캐리어 주파수 (또는 중심 캐리어, 중심 주파수)로 이해될 수 있다. 도 9를 참조하면, 복수의 상 /하향링크 콤포넌트 캐리어 (Component. Carrier, CC)들을 모아서 더 넓은 상 /하향링크 대역폭을 지원할 수 있다. 각각의 CC들은 주파수 영역에서 서로 인접하거나 비-인접할 수 있다. 각 콤포넌트 캐리어의 대역폭은 독립적으로 정해질 수 있다. UL CC의 개수와 DL CC의 개수가 다른 비대칭 캐리어 병합도 가능하다. 예를 들어, DL CC 2개 UL CC 1개인 경우에는 2:1로 대웅되도록 구성이 가능하다. DL CC/UL CC 링크는 시스템에 고정되어 있거나 반-정적으로 구성될 수 있다. 또한, 시스템 전체 대역이 N개의 CC로 구성되더라도 특정 단말이 모니터링 /수신할 수 있는 주파수 대역은 M(<N)개의 CC로 한정될 수 있다. 캐리어 병합에 대한 다양한 파라미터는 셀 특정 (cell-specific), 단말 그룹 특정 (UE group-specific) 또는 단말 특정 (UE-specif ic) 방식으로 설정될 수 있다. 한편, 제어 정보는 특정 CC를 통해서만 송수신 되도록 설정될 수 있다. 이러한 특정 CC를 프라이머리 CC(Primary CC, PCC) (또는 앵커 CC)로 지칭하고, 나머지 CC를 세컨더리 CC(Secondary CC, SCC)로 지칭할 수 있다.
LTE-A는 무선 자원을 관리하기 위해 셀 (cell)의 개념을 사용한다. 셀은 하향링크 자원과 상향링크 자원의 조합으로 정의되며, 상향링크 자원은 필수 요소는 아니다. 따라서, 셀은 하향링크 자원 단독,또는 하향링크 자원과 상향링크 자원으로 구성될 수 있다. 캐리어 병합이 지원되는 경우, 하향링크 자원의 캐리어 주파수 (또는, DL CC)와 상향링크 자원의 캐리어 주파수 (또는, UL CC) 사이의 링키지 (linkage)는 시스템 정보에 의해 지시될 수 있다. 프라이머리 주파수 (또는 PCC) 상에서 동작하는 셀을 프라이머리 셀 (Primary Cell, PCell)로 지칭하고 세컨더리 주파수 (또는 SCC) 상에서 등작하는 셀을 세컨더리 샐 (Secondary Cell, SCell)로 지칭할 수 있다. PCell은 단말이 초기 연결 설정 (initial connection establishment) 과정을 수행하거나 연결 재 -설정 과정을 수행하는데 사용된다. PCell은 핸드오버 과정에서 지시된 셀을 지칭할 수도 있다. SCell은 RRC 연결이 설정이 이루어진 이후에 구성 가능하고 추가적인 무선 자원을 제공하는데 사용될 수 있다. PCell과 SCell은 서빙 셀로 통칭될 수 있다. 따라서, RRC_C0NNECTED상태에 있지만 캐리어 병합이 설정되지 않았거나 캐리어 병합을 지원하지 않는 단말의 경우, PCell로만 구성된 서빙 셀이 단 하나 존재한다. 반면, RRC_C0NNECTED 상태에 있고 캐리어 병합이 설정된 단말의 경우, 하나 이상의 서빙 샐이 존재하고, 전체 서빙 셀에는 PCell과 전체 SCell이 포함된다. 캐리어 병합을 위해, 네트워크는 초기 보안 활성화 (initial security activation)과정이 개시된 이후, 연결 설정 과정에서 초기에 구성되는 PCell에 부가하여 하나 이상의 SCell을 캐리어 병합을 지원하는 단말을 위해 구성할 수 있다.
도 10은 복수의 캐리어가 병합된 경우의 스케줄링을 예시한다. 3개의 DL CC가 병합되었다고 가정한다. DL CC A가 PDCCH CC로 설정되었다고 가정한다. DL CC A~C는 서빙 CC, 서빙 캐리어, 서빙 셀 등으로 지칭될 수 있다. CIF가 디스에이블 된 경우, 각각의 DL CC는 LTE PDCCH 규칙에 따라 CIF 없이 자신의 PDSCH를 스케줄링 하는 PDCCH만을 전송할 수 있다. 반면, 단말 -특정 (또는 단말 -그룹 -특정 또는 샐-특정) 상위 계층 시그널링에 의해 CIF가 이네이블 된 경우, DL CC A(PDCCH CC)는 CIF를 이용하여 DL CC A의 PDSCH를 스케즐링 하는 PDCCH뿐만 아니라 다른 CC의 PDSCH를 스케줄링 하는 PDCCH도 전송할 수 있다. 이 경우, PDCCH CC로 설정되지 않은 DL CC B/C에서는 PDCCH가 전송되지 않는다. 따라서, DL CC A(PDCCH CC)는 DL CC A와 관련된 PDCCH 서치 스페이스, DL CC B와 관련된 PDCCH 서치 스페이스 및 DL CC C와 관련된 PDCCH서치 스페이스를 모두 포함해야 한다.
LTE-A는 복수의 DL CC를 통해 전송된 복수의 PDSCH에 대한 복수의 ACK/NACK 정보 /신호를 특정 ULCC (예, ULPCC또는 UL PCell)를 통해 피드백하는 것을 고려하고 있다. 설명을 위해, 단말이 어떤 DL CC에서 SU— MIMC Single User Multiple Input Multiple Output) 모드로 동작하여 2개의 부호어 (혹은 전송블록)를 수신한다고 가정하자. 이 경우, 단말은 해당 DL CC에 대해 ACK/ACK, ACK/NACK, NACK/ACK, NACK/NACK의 총 4개의 피드백 상태, 흑은 DTX까지 포함하여 최대 5개의 피드백 상태를 전송할 수 있어야 한다. 만약, 해당 DL CC가 단일 부호어 (흑은 전송블록)를 지원하도록 설정된 경우, 해당 DL CC에 대해 ACK, NACK, DTX의 최대 3개 상태가 존재한다. 만약, NACK을 DTX와 동일하게 처리하면, 해당 DL CC에 대해 ACK, NACK/DTX의 총 2개의 피드백 상태가 존재하게 된다. 따라서, 단말이 최대 5개의 DL CC를 병합하고 모든 CC에서 SU-MIM0 모드로 동작한다면 최대 55개의 전송 가능한 피드백 상태를 가질 수 있고 이를 표현하기 위한 ACK/NACK 페이로드 사이즈는 총 12 비트가 된다. 만약, DTX를 NACK과 동일하게 처리한다면 피드백 상태 수는 45개가 되고 이를 표현하기 위한 ACK/NACK페이로드 사이즈는 총 10 비트가 된다.
이를 위해, LTE-A에서는 멀티캐리어 상황에서 기존의 PUCCH 포맷 la/ lb와 ACK/NACK다중화 (즉, ACK/NACK선택) 방법을 이용하여 복수의 ACK/NACK정보 /신호를 전송하는 것이 논의되고 있다. 이 때, 각 단말이 ACK/NACK전송을 위해 복수의 PUCCH 자원을 확보하는 방식은 묵시적 (implicit) 방식과 명시적 (explicit) 방식으로 나뉠 수 있다. 묵시적 방식은 기존 LTE에서와 같이 PDSCH를 스케줄링하는 PDCCH에 링크된 PUCCH 자원을 단말에게 할당하는 방식이다 (수학식 1 참조). 명시적 방식은 RRC 시그널링 등을 통해 단말이 사용할 PUCCH 자원을 미리 할당하는 방식이다. 따라서, ACK/NACK 채널 선택을 위해 묵시적 자원을 사용하거나, 명시적 자원을 사용하거나, 묵시적 자원과 명시적 자원의 조합을 사용하는 방식을 고려할 수 있다.
본 발명은 각 단말의 ACK/NACK 전송을 위한 PUCCH 자원이 다른 단말의 PUCCH 자원과 충돌하는 것을 피하기 위해, PDSCH-스케줄링 PDCCH를 통해 ARI (ACK/NACK resource index)와 같은 정보를 전송하여 해당 단말의 ACK/NACK 전송을 위한 PUCCH 자원을 변경할 것을 제안한다. 또한, 본 발명은 단말에게 할당되는 묵시적 /명시적 PUCCH자원의 조합에 따라 ARI를 적용하는 방식을 구체적으로 제안한다.
편의상, 이하의 설명은 단말에 대해 .2개의 DL CC가 설정 (configure)되고, 단말은 각 DLCC의 PDSCH를 통해 최대 2개의 MIM0부호어 (예, 전송 블톡)를 수신하는 경우를 가정한다. 또한, 복수의 ACK/NACK은 ACK/NACK 채널 선택 방식을 이용하여 전송된다고 가정한다. 이를 위해, 단말은 최대 4개의 부호어 (혹은 전송 블록)에 대응하는 최대 4비트 ACK/NACK 정보를 전송할 수 있도톡 4개의 PUCCH 자원을 점유한다고 가정한다. 또한, 단말은 복수의 DL CC를 통해 PDSCH를 스케줄링하는 PDCCH를 수신하지만 ACK/NACK전송을 위한 PUCCH자원은 특정 ULCC (예, ULPCC) (예, DL PCC와 링크된 UL CC)내에서만 할당 받는다고 가,정한다. 상술한 가정은 발명의 설명을 돕기 위한 것으로서ᅳ 본 발명이 이로 제한되는 것은 아니다. 본 발명은 단말이 임의와 수의 DL CC들로 구성되고 각 DL CC에서 임의의 수의 MIM0 부호어를 수신하여 이에 필요한 수의 PUCCH자원을 사용하는 경우에 적용될 수 있다. 또한, 이하의 설명은 각각의 DL CC를 통해 최대 2개의 MIM0부호어 (예, 전송 블록)를 PDSCH를 통해 수신하는 경우를 가정하므로, 한 개의 PDCCH에 대해 2개의 PUCCH 자원이 확보되는 경우를 예시한다. 본 예는 각각의 DL CC를 통해 최대 1개의 부호어 (예 , 전송 블록)를 PDSCH를 통해 수신하고ᅳ ACK/NACK신호를 다중 안테나 전송 기법 (예, 전송 다이버시티)을 이용하여 전송하는 경우에도 적용될 수 있다. 예를 들어, 2Tx 전송을 위해, 한 개의 PDCCH에 대해 2개의 PUCCH자원이 확보될 수 있다. 이하의 설명에서, PCC PDCCH는 PCC 상에서 수신된 PDCCH, 흑은 대웅되는 PDSCH가 PCC 상에서 수신된 PDCCH를 의미한다. 유사하게 , SCC PDCCH는 SCC 상에서 수신된 PDCCH, 혹은 대웅되는 PDSCH가 SCC 상에서 수신된 PDCCH를 의미한다. CC는 셀과 흔용되고, PCC는 PCell과 흔용되며, SCC는 SCell과 흔용된다.
실시예 1: 복수의 PDCCH 모니터링 CC를 통해 PDCCH가 전송되고 모든 PDCCH에 대하여 묵시적 자원을사용하는 경우
도 11은 본 실시예에 따른 ACK/NACK 전송을 위한 PUCCH 자원의 할당 방법을 예시한다. 본 예는 모든 PDCCH에 대하여 묵시적 자원을 사용하는 경우를 예시한다. 도 11을 참조하면, 단말은 복수의 DL CC를 통해 PDSCH-스케줄링 PDCCH를 수신할 수 있다. 도면은 PCC 및 SCC 상에서 각각 하나의 PDCCH가 수신되는 경우를 예시한다. 이후, 단말은 각각의 PDCCH에 대웅하는 PDSCH 신호를 수신한다. MIM0 모드인 경우, 각각의 PDSCH를 통해 최대 2개의 부호어가 전송될 수 있다. 본 예의 경우, 단말은 최대 4개의 부호어에 대하여 ACK/NACK을 전송할 수 있도록 각 PDCCH에 링크된 2개의 PUCCH 자원을 할당 받을 수 있다. 이후, 단말은 ACK/NACK 채널 선택 방식을 이용하여 복수의 ACK/NACK을 피드백한다. 즉, 단말은 복수의 PUCCH자원 중 하나를 이용하여 복수의 ACK/NACK에 대웅하는 비트 값을 전송한다.
PDCCH에 링크된 2개의 PUCCH 자원은 예를 들어 해당 PDCCH를 구성하는 첫 번째 CCE (즉, CCE 인덱스 - nCCE)와 링크된 PUCCH 자원과 첫 번째 CCE에 인접한 CCE (즉, CCE 인덱스 = nCCE+l)와 링크된 PUCCH자원일 수 있다. 이 때, 해당 UL CC에 두 개의 DL CC에 대한 ACK/NACK 전송용 PUCCH 자원들을 DL CC별로 따로 확보하지 않고 공유하는 경우에는 PCC PDCCH에 링크된 PI XH 자원들과 SCC PDCCH에 링크된 PUCCH 자원들이 층돌할 수 있다.
따라서 , 본 예는 서로 다른 PDCCH 모니터링 CC를 통해 송신되는 PDCCH에 링크된 묵시적 PUCCH 자원을 ACK/NACK 전송에 사용하는 경우, PDCCH를 통해 알려 주는 ARI 정보를 통해 해당 PDCCH에 링크된 PUCCH 자원을 변경하는 방식을 제안한다. 예를 들어, ARI 정보를 통해 해당 PDCCH에 링크된 PUCCH 자원에 대하여 특정 오프셋만큼 자원을 변경할 수 있다. 즉, ARI 정보는 PUCCH 자원을 변경하지 않는 경우와, PUCCH 자원을 하나 혹은 복수의 오프셋 값들 중 하나로 변경하는 경우를 포함할 수 있다. ARI 정보는 SCC PDCCH에만 포함되어 해당 PDCCH에 링크된 PUCCH 자원의 위치만 변경할 수 있다. 혹은 ARI 정보는 PCC PDCCH에만 포함되어 해당 PDCCH에 링크된 PUCCH자원의 위치만 변경할 수 있다. 흑은 ARI 정보는 PCC PDCCH및 SCC PDCCH 모두에 포함될 수 있다.
복수의 PDCCH가 ARI 정보를 포함하는 경우, 각 PDCCH 안의 ARI 정보는 해당 PDCCH에 링크된 PUCCH 자원들에 대해서만 적용될 수 있다. 예를 들어, SCC PDCCH가 송신되는 SCC가 복수인 경우, 각 SCC PDCCH 안의 ARI 정보는 해당 PDCCH에 링크된 PUCCH 자원들에 대해서만 적용될 수 있다. 즉, SCC PDCCH들의 ARI 정보는 각각 독립적으로 설정될 수 있다.
ARI (예, 오프셋 값)는 PUCCH 인텍스를 변경하는데 사용돨 수 있다. 그 결과, 변경된 PUCCH 인덱스로부터 변경된 사이클릭 쉬프트, 변경된 직교 커버 및 /또는 변경된 PRB가 얻어질 수 있다. 또한, ARI (예, 오프셋 값)는 사이클릭 쉬프트, 직교 커버 및 PRB중 적어도 하나를 직접 변경하는데 사용될 수 있다.
수학식 2는 ARI 정보를 이용하여 묵시적 PUCCH 자원을 변경하는 예를 나타낸다. 본 예는 이후의 실시예에서 묵시적 PUCCH.자원을 변경하는 경우에도 유사하게 적용될 수 있다.
【수학식 2]
PCC PDCCH
n(1)puccH,i = nccE.pcc + N(1)PUCCH
n(1)puccH,2 - nccE.pcc + 1 + N(1)PUCCH SCC PDCCH
n(1 cH,3 = nccE.scc + a + N(1)PI]CCH
n(1)puccH,4 = nccE.scc + a + 1 + N(1)PUCCH
여기서 , n(1) PUCCH,x =1,2,3,4)는 PUCCH자원 인덱스를 나타낸다. nCCE,PCC는 PCC PDCCH를 구성하는 최소 CCE인덱스를 나타낸다. nCCE,scc는 SCC PDCCH를 구성하는 최소 CCE인덱스를 나타낸다. N(1) PUCCH는상위계층 (예, RRC)으로부터 전달받는 시그널링 값을 나타낸다. α는 ARI에 따른 오프셋 값을 나타낸다.
예시한 바와 달리, PUCCH인덱스 #3 (n(1) PUCCH,3)과 PUCCH인덱스 #4 (n(1),4)를 위한 오프셋은 독립적으로 주어질 수 있다.
실시예 2: 복수의 PDCCH모니터링 CC에 대하여 특정 DL CC에는 묵시적 자원을, 나머지 DL CC에 대해서는 명시적 자원을사용하는 경우
도 12는 본 실시예에 따른 ACK/NACK 전송을 위한 PUCCH 자원의 할당 방법을 예시한다. 본 예는 특정 DL CC (예, PCC)를 통해 전송되는 PDCCH에 대해서는 묵시적 PUCCH 자원을 사용하고 나머지 DL CC(들)로 전송되는 PDCCH에 대해서는 명시적 PUCCH 자원을 사용하는 경우를 예시한다.
도 12를 참조하면, 단말은 복수의 DL CC를 통해 PDSCH-스케줄링 PDCCH를 수신할 수 있다. 도면은 PCC 및 SCC 상에서 각각 하나의 PDCCH가 수신되는 경우를 예시한다ᅳ 이후, 단말은 각각의 PDCCH에 대응하는 PDSCH 신호를 수신한다. MIM0 모드인 경우, 각각의 I SCH를 통해 최대 2개의 부호어가 전송될 수 있다. 본 예의 경우, PCC PDCCH가 스케줄링하는 PDSCH를 통해 전송되는 2개의 부호어 (혹은 전송 블록)에 대하여 해당 PDCCH에 링크된 2개의 PUCCH자원을 ACK/NACK 전송용으로 할당 받을 수 있다.또한, SCCPDCCH가 스케줄링하는 PDSCH로 전송되는 2개의 부호어 (혹은 전송 블록)에 대하여는 2개의 명시적 PUCCH 자원을 ACK/NACK 전송용으로 미리 할당 받을 수 있다. 이후, 단말은 ACK/NACK채널 선택 방식을 이용하여 복수의 ACK/NACK을 피드백한다. 즉, 단말은 복수의 PUCCH 자원 중 하나를 이용하여 복수의 ACK/NACK에 대웅하는 비트 값을 전송한다.
한편, 시스템에서 필요한 PUCCH 자원의 총량을 즐이기 위하여 동일한 명시적 PUCCH 자원을 복수의 단말에게 할당할 수 있다. 이 경우, 단말간의 JCCH 자원 충돌을 피하기 위해, PDCCH에 포함된 ARI 정보를 이용하여 명시적 PUCCH 자원을 변경 /지정할 수 있다. ARI 정보는 PCC PDCCH 및 /또는 SCC PDCCH에 포함될 수 있다. 바람직하게, ARI정보는 묵시적 PUCCH자원을 지정하는 데에 사용되지 않는 PDCCH (예 SCC를 통해 전송된 PDCCH)에 포함될 수 있다.
ARI 정보는 예를 들어 명시적 PUCCH자원을 변경하는데 사용되는 오프셋 값을 포함할 수 있다. 이 경우, ARI정보는 PUCCH인덱스를 변경하는데 사용될 수 있다.그 결과, 변경된 PUCCH 인덱스로부터 변경된 사이클릭 쉬프트, 변경된 직교 커버 및 /또는 변경된 PRB가 얻어질 수 있다. 또한, ARI 사이클릭 쉬프트, 직교 커버 및 PRB 중 적어도 하나를 직접 변경하는데 사용될 수 있다.
표 4는 본 예에 따른 명시적 PUCCH 자원을 예시한다. 표에서 상위 계층은 RRCCRadio Resource Control) 계층을 포함한다. 본 예는 이후의 실시예에서 명시적 PUCCH 자원을 변경하는 경우에도 유사하게 적용될 수 있다.
【표 4】
Figure imgf000023_0001
Qi.i ~ a 2,3은 ARI 값에 따른 오프셋을 나타낸다.
또한, ARI 정보는 서로 다른 명시적 PUCCH 자원 세트를 지정할 수 있다. 명시적 자원 세트는 PDCCH 하나 당 할당되는 복수의 명시적 자원을 의미한다. 예를 들어, 명시적 자원 세트는 PUCCH자원 쌍을 포함한다.
표 5는 본 예에 따른 명시적 PUCCH 자원을 예시한다. 본 예는 이후의 실시예에서 명시적 PUCCH 자원을 지정하는 경우에도 유사하게 적용될 수 있다.
【표 5】 ARI (2 bits) PUCCH인택스 #1 PUCCH인덱스 #2
The 1ᅳ 1st PUCCH resource value The 1ᅳ 2st PUCCH resource value
00
configured by the higher layers configured by the higher layers
The 2-lnd PUCCH resource value The 2ᅳ 2nd PUCCH resource value
01
configured by the higher layers configured by the hi her layers
The 3"lrd PUCCH resource value The 3ᅳ 2rd PUCCH resource value
10
configured by the higher layers configured by the higher layers
The 4ᅳ 1th PUCCH resource value The 4-2th PUCCH resource value
11
configured by the higher layers configured by the higher layers
복수의 SCC PDCCH가 전송되고 이에 대해 명시적 PUCCH자원들이 '
각각의 SCC PDCCH들은 ARI정보를 포함할 수 있다. 이 때 ,각각의 SCC PDCCH에 포함된 ARI 정보 (예, PUCCH자원 오프셋 값 혹은 PUCCH자원 세트)는 동일할 수 있다. 또한, 각각의 SCC PDCCH에 포함된 ARI 정보는 서로 독립적일 수 있다.
상술한 예는 ARI 정보가 묵시적 정보 (실시예 1), 혹은 명시적 정보 (실시예
2)만을 변경 /지정하는 방법을 설명하였다. 그러나, 이는 예시로서, ARI 정보는 묵시적 자원 또는 명시적 자원을 선택적으로 지정 /변경하는데 사용될 수 있다. 예를 들어, ARI 정보는 해당 PDCCH에 링크된 묵시적 자원을 사용할지 (실시예 1), 명시적 자원을 사용할지 여부를 알려즐 수 있다 (실시예 2). 혹은, ARI 정보는 PDCCH에 링크된 두 개의 묵시적 자원 각각에 대하여 해당 PUCCH 자원을 사용할지, 명시적 자원을 사용할지 여부를 알려줄 수 있다. 혹은, ARI 정보는 PDCCH로부터 유도된 묵시적 자원 및 묵시적 자원에 대하여 오프셋으로 표현되는 하나 혹은 복수의 자원 세트 (들)과 하나의 명시적 자원 세트 중 하나를 지정할 수 있다. 혹은, ARI 정보는 PDCCH로부터 유도된 묵시적 자원 및 복수의 명시적 자원 세트 (혹은 명시적 자원 세트 및 이에 대한 오프셋으로 결정되는 자원들) 중 하나를 지정할 수 있다. 흑은, ARI 정보는 PDCCH로부터 유도된 묵시적 자원 및 묵시적 자원에 대하여 오프셋으로 표현되는 하나 혹은 복수의 자원 세트 (들)과 복수의 명시적 자원 세트 (흑은 명시적 자원 세트 및 이에 대한 오프셋으로 결정되는 자원들) 중 하나를 지정할 수 있다. 실시예 3: 복수의 PDCCH모니터링 CC에 대하여 특정 DL CC에는 묵시적 자원과 명시적 자원의 조합을, 나머지 DL CC에 대해서는 명시적 자원을 사용하는 경우
도 13은 본 실시예에 따른 ACK/NACK 전송을 위한 PUCCH 자원의 할당 방법을 예시한다. 본 예는 특정 DL CC (예를 들어서 PCC)를 통해 전송되는 2개의 부호어 MIMO 전송을 스케줄링하는 PDCCH에 대해서 하나의 묵시적 PUCCH 자원을 할당 받고, 나머지 PUCCH자원들을 명시적 방식으로 할당 받는 경우를 예시한다.
도 13을 참조하면, 단말은 복수의 DL CC를 통해 PDSCH-스케줄링 PDCCH를 수신할 수 있다. 도면은 PCC 및 SCC 상에서 각각 하나의 PDCCH가 수신되는 경우를 예시한다. 이후, 단말은 각각의 PDCCH에 대응하는 PDSCH 신호를 수신한다. MIM0 모드인 경우, 각각의 PDSCH를 통해 최대 2개의 부호어가 전송될 수 있다. 본 예의 경우, PCC PDCCH가 스케줄링하는 PDSCH로 전송되는 2개의 부호어에 대하여 해당 PDCCH에 링크된 1개의 PUCCH자원을 ACK/NACK 전송용으로 할당 받을 수 있다. 반면, 나머지 3개의 PUCCH 자원은 명시적 방식으로 미리 할당 받을 수 있다. 이후, 단말은 ACK/NACK 채널 선택 방식을 이용하여 복수의 ACK/NACK을 피드백한다ᅳ 즉, 단말은 복수의 PUCCH 자원 중 하나를 이용하여 복수의 ACK/NACK에 대웅하는 비트 값을 전송한다.
한편, 시스템에서 필요한 PUCCH 자원의 총량을 줄이기 위하여 동일한 명시적 PUCCH 자원을 복수의 단말에게 할당할 수 있다. 이 경우, 단말간의 PUCCH 자원 충돌을 피하기 위해, PDCCH에 포함된 ARI 정보를 이용하여 명시적 PUCCH 자원을 변경 /지정할 수 있다. ARI 정보는 PCC PDCCH 및 /또는 SCC PDCCH에 포함될 수 있다. 바람직하게 ARI정보는 묵시적 PUCCH자원을 지정하는 데에 사용되지 않는 PDCCH (예, SCC를 통해 전송된 PDCCH)에 포함될 수 있다.
ARI 정보는 예를 들어 명시적 PUCCH자원을 변경하는데 사용되는 오프셋 값을 포함할 수 있다 (표 4참조). 이 경우, ARI 정보는 PUCCH인덱스를 변경하는데 사용될 수 있다. 그 결과, 변경된 PUCCH인덱스로부터 변경된 사이클릭 쉬프트, 변경된 직교 커버 및 /또는 변경된 PRB가 얻어질 수 있다. 또한, ARI 사이클릭 쉬프트, 직교 커버 및 PRB 중 적어도 하나를 직접 변경하는데 사용될 수 있다. 또한, ARI 정보는 서로 다른 명시적 PUCCH 자원 세트를 지정할 수 있다 (표 5 참조). 명시적 자원 세트는 PDCCH 하나 당 할당되는 복수의 명시적 자원을 의미한다. 예를 들어, 명시적 자원 세트는 PUCCH 자원 쌍을 포함한다.
ARI에 의해 변경되는 PUCCH 자원은 전체 명시적 PUCCH 자원 중 일부일 수 있다. 예를 들어, 도 13의 3개의 명시적 PUCCH 자원 중 하나는 주로 PCC 상으로 스케줄링되는 PDSCH에 대한 ACK/NACK 정보의 맵핑에만 사용될 수 있다. 이 경우, 상기 하나의 PUCCH 자원에는 SCC PDCCH의 ARI 정보를 적용하지 않을 수 있다. 이로 인해, SCC PDCCH를 단말이 놓쳤을 경우 PCC로 전송되는 PDSCH에 대한 ACK/NACK 웅답에 오류가 생기는 것을 피할 수 있다.
복수의 SCC PDCCH가 전송되고 이에 대해 명시적 PUCCH자원들이 사용될 경우, 각각의 SCC PDCCH들은 ARI정보를 포함할 수 있다. 이 때, 각각의 SCC PDCCH에 포함된 ARI 정보 (예, PUCCH자원 오프셋 값 혹은 PUCCH자원 세트)는 동일할 수 있다. 또한, 각각의 SCC PDCCH에 포함된 ARI 정보는 서로 독립적일 수 있다.
상술한 예는 ARI 정보가 묵시적 정보 (실시예 1), 혹은 명시적 정보 (실시예
3)만을 변경 /지정하는 방법을 설명하였다. 그러나, 이는 예시로서, ARI 정보는 묵시적 자원 또는 명시적 자원을 선택적으로 지정 /변경하는데 사용될 수 있다. 예를 들어, ARI 정보는 해당 PDCCH에 링크된 묵시적 자원을 사용할지 (실시예 1), 명시적 자원을 사용할지 여부를 알려줄 수 있다 (실시예 3). 보다 바람직하게, ARI 정보는 PDCCH에 링크된 두 개의 묵시적 자원 각각에 대하여 해당 PUCCH 자원을 사용할지, 명시적 자원올 사용할지 여부를 알려줄 수 있다. 보다 바람직하게, ARI 정보는 PDCCH로부터 유도된 묵시적 자원 및 묵시적 자원에 대하여 오프셋으로 표현되는 하나 혹은 복수의 자원 세트 (들)과 하나의 명시적 자원 세트 중 하나를 지정할 수 있다. 혹은, ARI 정보는 PDCCH로부터 유도된 묵시적 자원 및 복수의 명시적 자원 세트 (혹은 명시적 자원 세트 및 이에 대한 오프셋으로 결정되는 자원들) 증 하나를 지정할 수 있다. 혹은, ARI 정보는 PDCCH로부터 유도된 묵시적 자원 및 묵시적 자원에 대하여 오프셋으로 표현되는 하나 혹은 복수의 자원 세트 (들)과 복수의 명시적 자원 세트 (혹은 명시적 자원 세트 및 이에 대한 오프셋으로 결정되는 자원들) 중 하나를 지정할 수 있다.
실시예 4: 하나의 PDCCH 모니터링 CC를 통해 복수의 PDCCH가 전송되고 각 PDCCH에 대하여 묵시적 자원과 명시적 자원의 조합을사용하는 경우
도 14는 본 실시예에 따른 ACK/NACK 전송을 위한 PUCCH 자원의 할당 방법을 예시한다. 본 예는 하나의 PDCCH 모니터링 CC (예, PCC)를 통해 전송되는 2개의 부호어 MIMO 전송을 스케줄링하는 각 PDCCH에 대해서 하나의 묵시적 PUCCH 자원을 할당 받고, PDCCH당 하나씩 추가로 명시적 PUCCH 자원을 미리 할당 받는 경우를 예시한다.
도 14를 참조하면, 단말은 하나의 PDCCH 모니터링 CC를 통해 복수의
PDSCH-스케줄링 PDCCH를 수신할 수 있다. 도면은 PCC를 통해 복수의 PDCCH가 수신되는 경우를 예시한다. 이후, 단말은 각각의 PDCCH에 대응하는 PDSCH 신호를 수신한다. MIMO 모드인 경우, 각각의 ?DSCH를 통해 최대 2개의 부호어가 전송될 수 있다. 본 예의 경우, 각 PDCCH에 링크된 1개의 PUCCH 자원을 ACK/NACK 전송용으로 할당 받고, 2개의 PUCCH 자원은 명시적 방식으로 미리 할당 받을 수 있다. 이후, 단말은 ACK/NACK 채널 선택 방식을 이용하여 복수의 ACK/NACK을 피드백한다. 즉, 단말은 복수의 PUCCH 자원 중 하나를 이용하여 복수의 ACK/NACK에 대응하는 비트 값을 전송한다.
한편, 시스템에서 필요한 PUCCH 자원의 총량을 줄이기 위하여 동일한 명시적 PUCCH 자원을 복수의 단말에게 할당할 수 있다. 이 경우, 단말간의 PUCCH 자원 충돌을 피하기 위해, PDCCH에 포함된 ARI 정보를 이용하여 명시적 PUCCH 자원을 변경 /지정할 수 있다. ARI 정보는 PCC PDCCH 및 /또는 SCC PDCCH에 포함될 수 있다. 바람직하게, ARI정보는 묵시적 PUCCH자원을 지정하는 데에 사용되지 않는 PDCCH (예, SCC를 통해 전송된 PDCCH)에 포함될 수 있다.
ARI 정보는 예를 들어 명시적 PUCCH자원을 변경하는데 사용되는 오프셋 값을 포함할 수 있다. 이 경우, ARI 정보는 PUCCH인덱스를 변경하는데 사용될 수 있다 (표 4참조). 그 결과, 변경된 PUCCH인덱스로부터 변경된 사이클릭 쉬프트, 변경된 직교 커버 및 /또는 변경된 PRB가 얻어질 수 있다. 또한, ARI 사이클릭 쉬프트, 직교 커버 및 PRB 중 적어도 하나를 직접 변경하는데 사용될 수 있다. 또한, ARI 정보는 서로 다른 명시적 PUCCH 자원 세트를 지정할 수 있다 (표 5 참조). 명시적 자원 세트는 PDCCH 하나 당 할당되는 복수의 명시적 자원을 의미한다. 예를 들어, 명시적 자원 세트는 PUCCH 자원 쌍을 포함한다. ARI에 의해 변경되는 PUCCH 자원은 전체 명시적 PUCCH 자원 중 일부일 수 있다. '예를 들어, 도 14의 2개의 명시적 PUCCH 자원 중 하나는 주로 PCC 상으로 스케줄링되는 PDSCH에 대한 ACK/NACK 정보의 맵핑에만 사용될 수 있다. 이 경우, 상기 하나의 PUCCH 자원에는 SCC PDCCH의 ARI 정보를 적용하지 않을 수 있다. 이로 인해, SCC PDCCH를 단말이 놓쳤을 경우 PCC로 전송되는 PDSCH에 대한 ACK/NACK 응답에 오류가 생기는 것을 피할 수 있다.
복수의 SCC PDCCH가 전송되고 이에 대해 명시적 PUCCH자원들이 사용될 경우, 각각의 SCC PDCCH들은 ARI정보를 포함할 수 있다. 이 때,각각의 SCC PDCCH에 포함된 ARI 정보 (예, PUCCH자원 오프셋 값 혹은 PUCCH자원 세트)는 동일할 수 있다. 또한, 각각의 SCC PDCCH에 포함된 ARI 정보는 서로 독립적일 수 있다.
혹은, 각 PDCCH 별로 할당되는 두 번째 PUCCH 자원에 대하여 묵시적 자원과 명시적 자원을 ARI 정보를 이용하여 선택적으로 사용하는 것도 가능하다. 예를 들어, ARI 정보는 해당 PDCCH에 링크된 묵시적 자원을 사용할지 (실시예 1), 명시적 자원을 사용할지 여부를 알려줄 수 있다 (실시예 4). 또한, ARI 정보는 PDCCH로부터 유도된 묵시적 자원 및 묵시적 자원에 대하여 오프셋으로 표현되는 하나 흑은 복수의 자원 (들)과 하나의 명시적 자원 중 하나를 지정할 수 있다. 혹은, ARI 정보는 PDCCH로부터 유도된 묵시적 자원 및 복수의 명시적 자원 (혹은 명시적 자원 및 이에 대한 오프셋으로 결정되는 자원들) 중 하나를 지정할 수 있다. 혹은, ARI 정보는 PDCCH로부터 유도된 묵시적 자원 및 묵시적 자원에 대하여 오프셋으로 표현되는 하나 혹은 복수의 자원 (들)과 복수의 명시적 자원 (혹은 명시적 자원 및 이에 대한 오프셋으로 결정되는 자원들) 중 하나를 지정할 수 있다.
실시예 5: 하나의 PDCCH 모니터링 CC를 통해 복수의 PDCCH가 전송되고 모든 PDCCH에 대하여 묵시적 자원을사용하는 경우
도 15는 본 실시예에 따른 ACK/NACK 전송을 위한 PUCCH 자원의 할당 방법을 예시한다. 본 예는 모든 PDCCH에 대해 묵시적 자원을 사용하는 경우를 예시한다. 도 15를 참조하면, 단말은 하나의 PDCCH 모니터링 CC를 통해 복수의 PDSCH-스케줄링 PECCH를 수신할 수 있다. 도면은 PCC를 통해 복수의 PDCCH가 수신되는 경우를 예시한다. 이후, 단말은 각각의 PDCCH에 대응하는 PDSCH 신호를 수신한다. MIM0모드인 경우, 각각와 PDSCH를 통해 최대 2개의 부호어가 전송될 수 있다. 본 예의 경우, 각 PDSCH로 전송되는 2개의 부호어에 대하여 ACK/NACK을 전송할 수 있도록 각 PDCCH에 링크된 2개의 PUCCH자원을 할당 받을 수 있다. 이후, 단말은 ACK/NACK 채널 선택 방식을 이용하여 복수의 ACK/NACK을 피드백한다. 즉, 단말은 복수의 PUCCH 자원 중 하나를 이용하여 복수의 ACK/NACK에 대웅하는 비트 값을 전송한다.
하나의 PDCCH에 대응되는 2개의 부호어를 위해, 해당 PDCCH를 구성하는 2개의 CCE (예, 첫 번째 CCE,두 번째 CCE)에 링크된 두 개의 PUCCH자원이 할당될 수 있다. 예를 들어, PDCCH에 링크된 2개의 PUCCH 자원은 해당 PDCCH를 구성하는 첫 번째 CCE (즉, CCE인덱스 =nCCE)와 링크된 PUCCH자원과 첫 번째 CCE에 인접한 CCE (즉, CCE 인덱스 = nCCE+l)와 링크된 PUCCH자원일 수 있다. 이 때, PDCCH가 하나의 CCE만으로 구성되면, 할당된 PUCCH자원이 다른 단말이 사용하는 PUCCH자원과 층돌할 수 있다. 따라서, 본 예는 하나의 PDCCH 자원에 대하여 복수의 PUCCH 자원을 링크하여 할당할 경우 PDCCH를 통해 알려 주는 ARI 정보를 통해 해당 PDCCH에 링크된 PUCCH 자원 모두 혹은 그 중 일부 (예, 두 번째 CCE에 링크된 PUCCH 자원)를 변경하는 방식올 제안한다. 예를 들어 , ARI정보를 통해 해당 PDCCH에 링크된 PUCCH자원 모두 혹은 그 중 일부 (예, 두 번째 CCE에 링크된 PUCCH 자원)에 대하여 특정 오프셋만큼 자원을 변경할 수 있다. 즉, ARI 정보는 PUCCH자원을 변경하지 않는 경우와, PUCCH 자원을 하나 혹은 복수의 오프셋 값들 중 하나로 변경하는 경우를 포함할 수 있다. 도면은 SCC PDCCH에 링크된 두 개의 PUCCH 자원 중 하나만을 ARI를 통해 변경하는 방식을 예시한다.
ARI정보는 PCC PDCCH에만 포함되어 해당 PDCCH에 링크된 PUCCH자원만 변경할 수 있다. 혹은 ARI 정보는 SCC PDCCH에만 포함되어 해당 PDCCH에 링크된 PUCCH 자원만 변경할 수 있다. SCC PDCCH가 복수인 경우, 각 SCC PDCCH 안의 ARI 정보는 해당 PDCCH에 링크된 PUCCH자원들에 대해서만 적용될 수 있다. 즉, SCC PDCCH들의 ARI 정보는 각각 독립적으로 설정될 수 있다. ARI (예, 오프셋 값)는 PDCCH에 링크된 PUCCH 인덱스를 변경하는데 사용될 수 있다. 그 결과, 변경된 PUCCH 인덱스로부터 변경된 사이클릭 쉬프트, 변경된 직교 커버 및 /또는 변경된 PRB가 얻어질 수 있다. 또한, ARI (예, 오프셋 값)는 사이클릭 쉬프트, 직교 커버 및 PRB 중 적어도 하나를 직접 변경하는데 사용될 수 있다.
다른 예로, 각 PDCCH 별로 할당되는 모든 /일부 PUCCH 자원에 대하여 묵시적 자원과 명시적 자원을 ARI 정보를 이용하여 선택적으로 사용하는 것도 가능하다. 예를 들어 , ARI 정보는 PDCCH로부터 유도된 묵시적 자원 및 묵시적 자원에 대하여 오프셋으로 표현되는 하나 혹은 복수의 자원 (들)과 하나의 명시적 자원 중 하나를 지정할 수 있다. 흑은, ARI 정보는 PDCCH로부터 유도된 묵시적 자원 및 복수의 명시적 자원 (혹은 명시적 자원 및 이에 대한 오프셋으로 결정되는 자원들) 중 하나를 지정할 수 있다. 혹은, ARI 정보는 PDCCH로부터 유도된 묵시적 자원 및 묵시적 자원에 대하여 오프셋으로 표현되는 하나 혹은 복수의 자원 (들)과 복수의 명시적 자원 (흑은 명시적 자원 및 이에 대한 오프셋으로 결정되는 자원들) 중 하나를 지정할 수 있다.
실시예 6: 복수의 PDCCH 모니터링 CC에 대하여 PDCCH를 전송하고 각 PDCCH에 대하여 묵시적 자원과 명시적 자원의 조합을사용하는 경우
도 16은 본 실시예에 따른 ACK/NACK 전송을 위한 PUCCH 자원의 할당 방법을 예시한다ᅳ 각 DL CC를 통해 전송되는 2개의 부호어 MIM0 전송을 스케즐링하는 각 PDCCH에 대해 하나의 묵시적 PUCCH 자원을 할당 받고, MIM0 전송이 가능한 DL CC당 하나씩 추가로 명시적 PUCCH자원을 미리 할당 받는 경우를 예시한다.
도 16을 참조하면, 단말은 복수의 DL CC를 통해 PDSCH-스케줄링 PDCCH를 수신할 수 있다. 도면은 PCC 및 SCC 상에서 각각 하나의 PDCCH가 수신되는 경우를 예시한다. 이후, 단말은 각각의 PDCCH에 대응하는 PDSCH 신호를 수신한다. MIM0 모드인 경우, 각각의 PDSCH를 통해 최대 2개의 부호어가 전송될 수 있다. 본 예의 경우, AC /NACK 전송을 위해 각 PDCCH에 링크된 1개의 PUCCH 자원을 할당 받고, 나머지 PUCCH 자원을 명시적 방식으로 미리 할당 받을 수 있다. 이후, 단말은 ACK/NACK 채널 선택 방식을 이용하여 복수의 ACK/NACK을 피드백한다. 즉, 단말은 복수의 PUCCH 자원 중 하나를 이용하여 복수의 ACK/NACK에 대응하는 비트 값을 전송한다.
한편, 시스템에서 필요한 PUCCH 자원의 총량을 줄이기 위하여 동일한 명시적 PUCCH 자원을 복수의 단말에게 할당할 수 있다. 이 경우, 단말간의 PUCCH 자원 충돌을 피하기 위해, PDCCH에 포함된 ARI 정보를 이용하여 명시적 PUCCH 자원을 변경 /지정할 수 있다. ARI 정보는 PCC PDCCH 및 /또는 SCC PDCCH에 포함될 수 있다. 바람직하게 , ARI정보는 묵시적 PUCCH자원을 지정하는 데에 사용되지 않는 PDCCH (예 SCC를 통해 전송된 PDCCH)에 포함될 수 있다.
ARI 정보는 예를 들어 명시적 PUCCH 자원을 변경하는데 사용되는 오프셋 값을 포함할 수 있다. 이 경우, ARI 정보는 PUCCH인덱스를 변경하는데 사용될 수 있다 (표 4참조). 그 결과, 변경된 PUCCH인덱스로부터 변경된 사이클릭 쉬프트, 변경된 직교 커버 및 /또는 변경된 PRB가 얻어질 수 있다, 또한, ARI 사이클릭 쉬프트, 직교 커버 및 PRB 중 적어도 하나를 직접 변경하는데 사용될 수 있다. 또한, ARI 정보는 서로 다른 명시적 PUCCH 자원 세트를 지정할 수 있다 (표 5 참조). 명시적 자원 세트는 PDCCH 하나 당 할당되는 복수의 명시적 자원을 의미한다. 예를 들어, 명시적 자원 세트는 PUCCH 자원 쌍을 포함한다.
ARH1 의해 변경되는 PUCCH 자원은 전체 명시적 PUCCH 자원 중 일부일 수 있다. 예를 들어, 도 16의 2개의 명시적 PUCCH 자원 중 하나는 주로 PCC 상으로 스케줄링되는 PDSCH에 대한 ACK/NACK 정보의 맵핑에만 사용될 수 있다. 이 경우, 상기 하나의 PUCCH 자원에는 SCC PDCCH의 ARI 정보를 적용하지 않을 수 있다. 이로 인해, SCC PDCCH를 단말이 놓쳤을 경우 PCC로 전송되는 PDSCH에 대한 ACK/NACK 웅답에 오류가 생기는 것을 피할 수 있다.
복수의 C PDCCH가 전송되고 이에 대해 명시적 PUCCH자원들이 사용될 경우, 각각의 SCC PDCCH들은 ARI정보를 포함할 수 있다. 이 때,각각의 SCC PDCCH에 포함된 ARI 정보 (예, PUCCH자원 오프셋 값 혹은 PUCCH자원 세트)는 동일할 수 있다. 또한, 각각의 SCC PDCCH에 포함된 ARI 정보는 서로 독립적일 수 있다.
또한, PDCCH를 통해 전송되는 ARI는 해당 PDCCH에 링크된 묵시적 PUCCH 자원을 변경할 수 있다. 즉, 동일한 UL CC에 대하여 서로 다른 DL CC로 전송되는 PDCCH에 링크되는 묵시적 PUCCH 자원을 따로 확보하지 않는 경우에 묵시적 PUCCH 자원 사이에 층돌이 있을 수 있으므로 ARI를 통해 충돌을 피할수 있다. 이 때, ARI 정보는 PCC 이외의 DL CC로 전송되는 PDCCH에만 포함될 수 있다.
혹은, 각 PDCCH 별로 할당되는 두 번째 PUCCH 자원에 대하여 묵시적 자원과 명시적 자원을 ARI 정보를 이용하여 선택적으로 사용하는 것도 가능하다. 예를 들어 ARI 정보는 해당 PDCCH에 링크된 묵시적 자원을 사용할지 (실시예 1), 명시적 자원을 사용할지 여부를 알려줄 수 있다 (실시예 6). 또한, ARI 정보는 PDCCH로부터 유도된 묵시적 자원 및 묵시적 자원에 대하여 오프셋으로 표현되는 하나 혹은 복수의 자원 (들)과 하나의 명시적 자원 중 하나를 지정할 수 있다. 혹은, ARI 정보는 PDCCH로부터 유도된 묵시적 자원 및 복수의 명시적 자원 (혹은 명시적 자원 및 이에 대한 오프셋으로 결정되는 자원들) 중 하나를 지정할 수 있다. 혹은, ARI 정보는 PDCCH로부터 유도된 묵시적 자원 및 묵시적 자원에 대하여 오프셋으로 표현되는 하나 흑은 복수의 자원 (들)과 복수의 명시적 자원 (혹은 명시적 자원 및 이에 대한 오프셋으로 결정되는 자원들) 중 하나를 지정할 수 있다.
도 17은 본 발명에 일 실시예에 적용될 수 있는 기지국 및 단말을 예시한다. 무선 통신 시스템에 릴레이가 포함되는 경우, 백홀 링크에서 통신은 기지국과 릴레이 사이에 이뤄지고 억세스 링크에서 통신은 릴레이와 단말 사이에 이뤄진다. 따라서, 도면에 예시된 기지국 또는 단말은 상황에 맞춰 릴레이로 대체될 수 있다. 도 17을 참조하면, 무선 통신 시스템은 기지국 (BS, 110) 및 단말 (UE, 120)을 포함한다. 기지국 (110)은 프로세서 (112), 메모리 (114) 및 무선 주파수 (Radio Frequency, RF) 유닛 (116)을 포함한다. 프로세서 (112)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (114)는 프로세서 (112)와 연결되고 프로세서 (112)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛 (116)은 프로세서 (112)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 단말 (120)은 프로세서 (122), 메모리 (124) 및 RF 유닛 (126)을 포함한다. 프로세서 (122)는 본 발명에서 제안한 절차 및 /또는 방법들을 구현하도록 구성될 수 있다. 메모리 (124)는 프로세서 (122)와 연결되고 프로세서 (122)의 동작과 관련한 다양한 정보를 저장한다. RF 유닛 (126)은 프로세서 (122)와 연결되고 무선 신호를 송신 및 /또는 수신한다. 기지국 (110) 및 /또는 단말 (120)은 단일 안테나 또는 다중 안테나를 가질 수 있다. 이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및 /또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다흔 실시예에 포함될 수 있고, 또는 다른 실시예의 대웅하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 본 발명의 실시예들은 주로 단말과 기지국 간의 데이터 송수신 관계를 중심으로 설명되었다. 본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드 (upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들 (network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국 (fixed station), Node B, eNode B(eNB) , 억세스 포인트 (access point) 등의 용어에 의해 대체될 수 있다.또한, 단말은 UECUser Equipment), MS(Mobile Station), MSSCMobile Subscriber Station) 등의 용어로 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어 (fir丽 are), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs ( ap 1 i cat ion specific integrated circuits), DSPsCdigital signal processors) , DSPDs(digital signal processing devices) , PLDs (programmable logic devices) , FPGAs( field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트를러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능또는 동작들을 수행하는 모들, 절차, 함수 둥의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명.은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
【산업상 이용가능성】
본 발명은 단말, 릴레이, 기지국 등과 같은 무선 통신 장치에 사용될 수 있다.

Claims

【특허청구범위】
【청구항 1】
무선 통신 시스템에서 복수의 셀이 구성된 통신 장치가 상향링크 제어정보를 전송하는 방법에 있어서 ,
하나의 샐 상에서 복수의 PDCCH(Physical Downlink Control CHannel) 신호를 수신하는 단계 ;
상기 복수의 PDCCH가 지시하는 복수의 PDSCH(Physical Downlink Shared CHannel) 신호를 수신하는 단계;
상기 복수의 PDSCH신호에 대웅하는 복수의 HARQACK Hybrid Automatic Repeat reQuest - Acknowledgement)을 생성하는 단계; 및
복수의 PUCCH(Physical Uplink Control CHannel) 자원 중 하나의 PUCCH자원을 이용하여 상기 복수의 HARQ-ACK에 대응하는 비트 값을 전송하는 단계를 포함하고, 상기 복수의 PUCCH자원은,
각 PDCCH 신호의 전송을 위한 자원 인덱스와 링크된 복수의 계 1 PUCCH자원과 상위 계층에 의해 구성된 적어도 하나의 제 2 PUCCH자원을 포함하는 방법.
【청구항 2】
제 1항에 있어서,
상기 복수의 PDCCH 신호 중 적어도 하나는 HARQ-ACK을 위한 자원 지시 정보를 포함하고, 상기 HARQ-ACK을 위한 자원 지시 정보는 상기 적어도 하나의 제 2 PUCCH 자원을 변형하는데 사용되는 방법.
【청구항 3]
제 2항에 있어서,
상기 HARQ-ACK을 위한 자원 지시 정보는 오프셋 값을 포함하는 방법 .
【청구항 4】
제 2항에 있어서,
상기 HARQ-ACK을 위한 자원 지시 정보는 세컨더리 샐 상에서 전송되는 PDSCH 신호에 대응하는 PDCCH 신호의 TPC(Transmit Power Field) 필드에 포함되는 방법.
【청구항 5】
제 1항에 있어서,
상기 복수의 PDCCH신호 중 적어도 하나는 HARQ-ACK을 위한 자원 지시 정보를 포함하고, 상기 HARQ-ACK을 위한 자원 지시 정보는 상기 상위 계층에 의해 구성된 제 2 PUCCH 자원 후보 세트로부터 상기 적어도 하나의 제 2 PUCCH 자원을 지시하는 정보를 포함하는 방법 .
[청구항 6】
제 1항에 있어서,
상기 제 1 PUCCH자원은 해당 PDCCH신호의 전송을 위한 가장 작은 CCE(Control Channel Element) 인덱스를 이용하여 주어지는 방법.
【청구항 71
제 1항에 있어서,
상기 복수의 PDCCH신호는 프라이머리 셀 상에서 수신되는 방법.
【청구항 8】
무선 통신 시스템에서 복수의 셀이 구성된 상황에서 상향링크 제어정보를 전송하도록 구성된 통신 장치에 있어서, ·
무선 주파수 (Radio Frequency, RF) 유닛; 및
프로세서를 포함하고,
상기 프로세서는 하나의 셀 상에서 복수의 PDCCH(Physical Downlink Control CHannel) 신호를 수신하며, 상기 복수의 PDCCH가 지시하는 복수의 PDSCH(Physical Downlink Shared CHannel) 신호를 수신하고, 상기 복수의 PDSCH 신호에 대응하는 복수의 HARQ ACK(Hybrid Automatic Repeat reQuest - Acknowledgement )을 생성하며, 복수의 PUCCH(Physical Uplink Control CHannel) 자원 중 하나의 PUCCH 자원을 이용하여 상기 복수의 HARQ-ACK에 대응하는 비트 값을 전송하도록 구성되고,
상기 복수의 PUCCH자원은,
각 PDCCH신호의 전송을 위한 자원 인텍스와 링크된 복수의 제 1 PUCCH자원과 상위 층에 의해 구성된 적어도 하나의 제 2 PUCCH 자원을 포함하는 통신 장치 .
【청구항 9]
제 8항에 있어서,
상기 복수의 PDCCH신호 증 적어도 하나는 HARQ-ACK을 위한 자원 지시 정보를 포함하고, 상기 HARQ-ACK을 위한 자원 지시 정보는 상기 적어도 하나의 제 2 PUCCH 자원을 변형 는데 사용되는 통신 장치.
【청구항 10]
제 9항에 있어서,
상기 HARQ-ACK을 위한 자원 지시 정보는 오프셋 값을 포함하는 통신 장치 .
【청구항 11】
제 9항에 있어서,
상기 HARQ-ACK을 위한 자원 지시 정보는 세컨더리 셀 상에서 전송되는 PDSCH 신호에 대응하는 PDCCH 신호의 TPC Transmit Power Field) 필드에 포함되는 통신 장치.
【청구항 12】
제 8항에 있어서,
상기 복수의 PDCCH신호 중 적어도 하나는 HARQ-ACK을 위한 자원 지시 정보를 포함하고, 상기 HARQ-ACK을 위한 자원 지시 정보는 상기 상위 계충에 의해 구성된 제 2 PUCCH 자원 후보 세트로부터 상기 적어도 하나의 제 2 PUCCH 자원을 지시하는 정보를 포함하는 통신 장치 .
【청구항 13]
제 8항에 있어서,
상기 제 1 PUCCH자원은 해당 PDCCH신호의 전송을 위한 가장 작은 CCE(Control Channel Element) 인덱스를 이용하여 주어지는 통신 장치.
【청구항 14】
제 8항에 있어서,
상기 복수의 PDCCH 신호는 프라이머리 샐 상에서 수신되는 통신 장치 .
PCT/KR2011/006611 2010-09-13 2011-09-07 제어 정보를 전송하는 방법 및 이를 위한 장치 WO2012036409A2 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/822,624 US9055574B2 (en) 2010-09-13 2011-09-07 Method and device for transmitting control information
CN201180044059.5A CN103109486B (zh) 2010-09-13 2011-09-07 用于传输控制信息的方法和装置
DE112011103063T DE112011103063T5 (de) 2010-09-13 2011-09-07 Verfahren und Vorrichtung zum Übertragen von Steuerinformation
KR1020137007167A KR101802761B1 (ko) 2010-09-13 2011-09-07 제어 정보를 전송하는 방법 및 이를 위한 장치
GB1304752.7A GB2497468B (en) 2010-09-13 2011-09-07 Method and device for transmitting control information
US14/700,840 US9736820B2 (en) 2010-09-13 2015-04-30 Method and device for transmitting control information

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US38245810P 2010-09-13 2010-09-13
US61/382,458 2010-09-13
US38330710P 2010-09-15 2010-09-15
US61/383,307 2010-09-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/822,624 A-371-Of-International US9055574B2 (en) 2010-09-13 2011-09-07 Method and device for transmitting control information
US14/700,840 Continuation US9736820B2 (en) 2010-09-13 2015-04-30 Method and device for transmitting control information

Publications (2)

Publication Number Publication Date
WO2012036409A2 true WO2012036409A2 (ko) 2012-03-22
WO2012036409A3 WO2012036409A3 (ko) 2012-05-03

Family

ID=45832058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/006611 WO2012036409A2 (ko) 2010-09-13 2011-09-07 제어 정보를 전송하는 방법 및 이를 위한 장치

Country Status (6)

Country Link
US (2) US9055574B2 (ko)
KR (1) KR101802761B1 (ko)
CN (1) CN103109486B (ko)
DE (1) DE112011103063T5 (ko)
GB (1) GB2497468B (ko)
WO (1) WO2012036409A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104871619A (zh) * 2013-06-17 2015-08-26 华为技术有限公司 上行控制信息传输方法、用户设备和基站

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011118803A1 (ja) * 2010-03-25 2011-09-29 シャープ株式会社 通信方法、移動局装置、基地局装置および移動通信システム
KR101699493B1 (ko) * 2010-05-03 2017-01-26 주식회사 팬택 Mimo 환경에서 직교성을 제공하는 사이클릭 쉬프트 파라메터를 송수신하는 방법 및 장치
JP4923161B1 (ja) * 2010-09-29 2012-04-25 シャープ株式会社 移動通信システム、移動局装置、基地局装置、通信方法および集積回路
JP5832643B2 (ja) * 2011-05-24 2015-12-16 エルジー エレクトロニクス インコーポレイティド 制御情報を送信する方法及びそのための装置
WO2012163423A1 (en) * 2011-06-01 2012-12-06 Nokia Siemens Networks Oy Signalling arrangement for inter-site carrier aggregation having only single component carrier available in uplink direction
CN103378954B (zh) 2012-04-20 2019-03-15 北京三星通信技术研究有限公司 支持发送分集和信道选择的分配harq-ack信道资源的方法
JP6044901B2 (ja) 2012-05-11 2016-12-14 サン パテント トラスト 無線通信端末装置、無線通信方法及び集積回路
EP2894908B1 (en) * 2012-09-28 2019-12-04 Huawei Technologies Co., Ltd. Method for power adjustment, base station, and user equipment
US10154491B2 (en) * 2013-08-14 2018-12-11 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for signaling of UL-DL configuration
US9667386B2 (en) 2013-11-13 2017-05-30 Samsung Electronics Co., Ltd Transmission of control channel and data channels for coverage enhancements
US10038521B2 (en) * 2015-08-12 2018-07-31 Lg Electronics Inc. Method for transmitting control information and an apparatus therefor
CN106470089B (zh) 2015-08-14 2021-05-11 中兴通讯股份有限公司 一种上行控制信息的发送方法及装置
CN106549742B (zh) * 2015-09-23 2021-01-08 索尼公司 无线通信***中的装置和方法
ES2832589T3 (es) * 2015-12-31 2021-06-10 Nec Corp Métodos y aparatos para transmitir y recibir información de enlace ascendente
WO2017118627A1 (en) 2016-01-07 2017-07-13 Nokia Solutions And Networks Oy Method and apparatus for allocating acknowledgement resources
WO2018228487A1 (en) 2017-06-15 2018-12-20 Huawei Technologies Co., Ltd. Method and devices for multiple transmit receive point cooperation for reliable communication
US10306669B2 (en) 2017-10-26 2019-05-28 Telefonaktiebolaget Lm Ericsson (Publ) Physical uplink control channel (PUCCH) resource allocation
BR112020007915B1 (pt) * 2017-10-26 2021-02-23 Telefonaktiebolaget Lm Ericsson (Publ) Método realizado por um dispositivo sem fio, dispositivo sem fio emétodo para operar um dispositivo sem fio
US10477567B2 (en) 2018-01-12 2019-11-12 Lg Electronics Inc. Method and apparatus for transmitting/receiving wireless signal in wireless communication system
GB2570145B (en) * 2018-01-12 2020-05-20 Tcl Communication Ltd Control information transmission
US11218996B2 (en) * 2018-04-06 2022-01-04 Qualcomm Incorporated PUCCH resource allocation before RRC setup
US11368260B2 (en) * 2018-05-03 2022-06-21 Mediatek Singapore Pte. Ltd. Method and apparatus for reporting hybrid automatic repeat request-acknowledge information in mobile communications
CN110784925B (zh) * 2018-07-31 2022-10-18 华为技术有限公司 通信方法及装置
US11652526B2 (en) * 2019-04-30 2023-05-16 Ofinno, Llc Channel state information feedback for multiple transmission reception points
CN112532370B (zh) * 2021-02-09 2021-05-25 广州慧睿思通科技股份有限公司 Pucch信息检测方法、装置、电子设备及计算机可读存储介质
CN113645019B (zh) * 2021-10-12 2021-12-17 成都诺比侃科技有限公司 无线通信方法、***以及使用该***的变电站环境监控***

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8630240B2 (en) 2008-02-19 2014-01-14 Texas Instruments Incorporated Mapping between logical and physical uplink control resource blocks in wireless networks
KR101614994B1 (ko) * 2008-03-10 2016-04-22 인터디지탈 패튼 홀딩스, 인크 반지속적 및 동적 데이터 전송을 위해 harq 프로세스를 효율적으로 이용하기 위한 방법 및 장치
US9036564B2 (en) 2008-03-28 2015-05-19 Qualcomm Incorporated Dynamic assignment of ACK resource in a wireless communication system
WO2010017222A1 (en) * 2008-08-04 2010-02-11 Research In Motion Limited Allocation of different harq process identifiers to different initial semi-persistent scheduling in order to solve retransmissions ambiguity when different harq processes overlap
WO2010018978A2 (en) 2008-08-11 2010-02-18 Lg Electronics Inc. Method and apparatus of transmitting information in wireless communication system
US8335466B2 (en) * 2008-12-19 2012-12-18 Research In Motion Limited System and method for resource allocation
CN101771515A (zh) * 2008-12-30 2010-07-07 三星电子株式会社 传输harq-ack的方法
EP2380388A1 (en) * 2009-01-16 2011-10-26 Telefonaktiebolaget LM Ericsson (publ) Method and apparatus for pucch load control by pdcch restrictions
EP2214340A1 (en) 2009-01-30 2010-08-04 Panasonic Corporation HARQ operation for macro-diversity transmissions in the downlink
EP2234308A1 (en) * 2009-03-23 2010-09-29 Panasonic Corporation Retransmission mode signaling in a wireless communication system
KR101827584B1 (ko) * 2010-01-08 2018-02-08 인터디지탈 패튼 홀딩스, 인크 캐리어 집성에서의 채널 자원 맵핑을 위한 방법 및 장치
WO2011122874A2 (en) * 2010-03-31 2011-10-06 Samsung Electronics Co., Ltd. Indexing resources for transmission of acknowledgement signals in multi-cell tdd communication systems
US8737299B2 (en) * 2010-06-18 2014-05-27 Mediatek Inc. Resource allocation of uplink HARQ feedback channel for carrier aggregation in OFDMA systems
US8842622B2 (en) * 2011-01-07 2014-09-23 Interdigital Patent Holdings, Inc. Method, system and apparatus for downlink shared channel reception in cooperative multipoint transmissions

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
HUAWEI: 'Resource allocation for uplink ACK/NACK multiplexing' 3GPP TSG RAN WG1 #62, RL-104282 23 August 2010, *
PANTECH: 'UL PUCCH A/N resource allocation for CA' 3GPP TSG RAN WG1 #62, RL-104632 23 August 2010, *
SAMSUNG: 'PUCCH HARQ-ACK Resource Mapping for DL CA' 3GPP TSG RAN WG1 #61BIS, RL-103637 28 June 2010, *
TEXAS INSTRUMENTS: 'Resource Allocation for A/N Transmission on PUCCH' 3GPP TSG RAN WG1 #62, RL-104466 23 August 2010, *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104871619A (zh) * 2013-06-17 2015-08-26 华为技术有限公司 上行控制信息传输方法、用户设备和基站

Also Published As

Publication number Publication date
KR101802761B1 (ko) 2017-11-29
CN103109486A (zh) 2013-05-15
GB2497468A (en) 2013-06-12
US20130182675A1 (en) 2013-07-18
CN103109486B (zh) 2016-09-14
GB201304752D0 (en) 2013-05-01
US20150237611A1 (en) 2015-08-20
US9055574B2 (en) 2015-06-09
WO2012036409A3 (ko) 2012-05-03
KR20130109119A (ko) 2013-10-07
US9736820B2 (en) 2017-08-15
DE112011103063T5 (de) 2013-06-27
GB2497468B (en) 2018-03-28

Similar Documents

Publication Publication Date Title
US9736820B2 (en) Method and device for transmitting control information
US10785756B2 (en) Method for transmitting control information and apparatus for same
KR102216247B1 (ko) 무선 통신 시스템에서 수신확인응답 전송 방법 및 장치
CN104904154B (zh) 用于在无线通信***中发送上行链路信号的方法和设备
KR101721885B1 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
JP5827311B2 (ja) 制御情報を伝送する方法及びそのための装置
US9320026B2 (en) Method and user equipment for transmitting ACK/NACK information, and method and base station for receiving ACK/NACK information
US9084243B2 (en) Method and device for transmitting control information
KR101752430B1 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
JP2019198125A (ja) 非免許帯域を支援する無線接続システムにおいてディスカバリ参照信号を送信する方法及び装置
CN107104762B (zh) 传输控制信息的方法和装置
WO2012067459A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
JP2016519890A (ja) 無線接続システムにおいて上りリンク制御情報送信方法及び装置
WO2012169744A2 (ko) 무선통신 시스템에서의 정보 전송 방법 및 장치
WO2012044135A2 (ko) 제어 정보를 전송하는 방법 및 이를 위한 장치
JP2017504245A (ja) 機械タイプ通信をサポートする無線接続システムにおけるハイブリッド自動再送信遂行方法及び装置
WO2014171794A1 (ko) 무선 접속 시스템에서 스케줄링 요청 전송 방법 및 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180044059.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11825369

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13822624

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111030630

Country of ref document: DE

Ref document number: 112011103063

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 1304752

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20110907

WWE Wipo information: entry into national phase

Ref document number: 1304752.7

Country of ref document: GB

ENP Entry into the national phase

Ref document number: 20137007167

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11825369

Country of ref document: EP

Kind code of ref document: A2